
Chapter 20 
Intelligent Reentry Guidance 
with Dynamic No-Fly Zones Based 
on Deep Reinforcement Learning 

Qingji Jiang, Xiaogang Wang, and Yu Li 

Abstract Aimed at avoiding multiple dynamic no-fly zones and satisfying path 
constraints and terminal constraints in the reentry process of hypersonic glide vehi-
cles, intelligent reentry guidance based on deep reinforcement learning is developed. 
Firstly, the guidance is decoupled as longitudinal guidance and lateral guidance. The 
lateral guidance provides the sign of the bank angle to adjust the heading direction 
while the longitudinal guidance outputs the magnitude of the bank angle through the 
artificial intelligence interface. Then, the reentry guidance simulation is mapped to 
a Markov Decision Process, in which the essential elements including state, action, 
and reward are defined or designed adaptively. Finally, the policy neural network is 
trained by the twin delayed deep deterministic policy gradient (TD3) algorithm. By 
selecting proper hyperparameters and network architecture, the policy neural network 
is able to converge. Simulations imply that under the influence of dynamic no-fly 
zones, initial state errors, and kinds of online dispersion, the proposed guidance can 
avoid all the no-fly zones and reach the target accurately with all the satisfied path 
constraints. 

Keywords Hypersonic glide vehicle · Reentry guidance · No-fly zones · Artificial 
intelligence · Deep reinforcement learning 

20.1 Introduction 

There has been increasing attention to hypersonic glide vehicles (HGV) due to their 
high speed, wide flight space, and strong maneuver capability [1–6]. After decades 
of development, reentry guidance has formed a relatively complete methodological
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system. For HGV, the task complexity and real-time performance are challenging in 
the future. For example, there are several dynamic no-fly zones whose information is 
not clear before the flight. HGV is requested to avoid all the no-fly zones and arrive 
at the specified target area under the premise of satisfying multiple path constraints 
and terminal constraints. With the help of artificial intelligence, HGV can fly out 
novel trajectories different from traditional algorithms and complete the mission. 

The conventional guidance methods mainly include reference trajectory guid-
ance [7–9] and predictor–corrector guidance [10–13]. For guidance issues with no-
fly zones, current methods mainly include trajectory optimization, lateral guidance 
design, and route planning method. In trajectory optimization methods, the no-fly 
zones constraint is modeled in the optimization model and the problem is solved by 
off-line optimization algorithms. Zhao et al. [14] applied the Gauss pseudo-spectral 
method (GPM) to the multi-phase of the reentry problem and used waypoints to 
the complete optimization of the trajectory with no-fly zones. Zhao and Song [15] 
proposed a multiphase convex programming method for the path, waypoint, and no-
fly zone constraints, and they solve the second-order conic problem (SOCP) problems 
with the help of the open-source solver ECOS. Zhang et al. [16] developed a time-
optimal memetic whale optimization method based on GPM, which is excellent in 
both global searching and local convergent, and the simulation shows that the method 
is competitive in entry trajectory optimization with no-fly zones. The advantage of 
optimization methods is that by relying on strong search capability, the feasible solu-
tion is guaranteed if the scene parameters are in the range of dynamic ability. On 
the other hand, the computational complexity is commonly huge and not able to 
implement online with real-time performance. 

There are many works based on lateral guidance design and route planning 
methods. Liang and Ren [17] presented a tentacle-based guidance method to satisfy 
the no-fly zone constraint, in which the sign of bank angle is determined by the feed-
back of tentacles. Gao et al. [18] proposed an improved tentacle-based bank angle 
transient lateral guidance method for avoiding static, dynamic, or unknown no-fly 
zones. Considering the concise mathematical expression and practicability, the arti-
ficial potential field (APF) method and its improved version are applied in reentry 
guidance with no-fly zone constraints. Zhang et al. [19] combined APF and velocity 
azimuth angle error threshold in lateral guidance to reduce heading error and avoid 
no-fly zones. Li et al. [20] proposed an improved APF method, in which the passing 
waypoints and avoiding no-fly zones problem is transformed into generating the 
reference heading angle. Li et al. [21] designed an adaptive cross corridor based on 
the concept of repulsion force in the APF method and the corridor is practicable for 
conventional guidance logic and avoiding no-fly zones logic. Hu et al. [22] presented 
an improved APF method for complex distributed no-fly zones, in which the refer-
ence heading angle is calculated according to geographic coordinate velocity and the 
designed potential field function. It can be seen that the methods based on APF are 
easy to achieve rapid real-time performance and robust to multiple complex no-fly 
zones. However, the design of the attractive and repulsive potential field is relevant 
to no-fly zones and other distances, which lacks robustness to unknown scenes and 
errors.
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During recent decades, artificial intelligence technology has experienced rapid 
development and has been applied in lots of fields. More recently, deep reinforcement 
learning (DRL) shows excellent decision-making ability in complex high dimension 
tasks. DRL takes features of tasks as input and output decision results directly, 
naturally, the end-to-end characteristic makes it easy to handle different tasks. There 
are some applications of DRL in HGV or avoiding no-fly zones. For example, Yuksek 
et al. [23] used reinforcement learning and proposed a planning method for the 
unmanned aerial vehicle, which can avoid no-fly zones and ensure the time-of-arrival 
constraint. 

In DRL algorithms, the AC (actor-critic) framework plays an important role, in 
which the policy from the actor is used to generate decision actions and the critic 
is in charge of evaluating the actions in the current state of the environment. Based 
on policy gradient theory, there is a family of progressive algorithms: determin-
istic policy gradient (DPG) [24], deep deterministic policy gradient (DDPG) [25], 
twin delayed deep deterministic policy gradient (TD3) [26], distributed distributional 
deterministic Policy Gradients (D4PG) [27]. Considering that the guidance command 
of HGV is generated according to its flight state, the guidance process can be seen as 
a decision-making mission. And the irreversibility of flight trajectory makes it easy 
to build a Markov decision process (MDP), that the problem can be solved by the 
TD3 algorithm. 

The purpose of this paper is to develop an intelligent guidance method for reentry 
problems with several dynamic no-fly zones and constraints. The contributions of 
this paper can be summarized as follows: The reentry problem with several dynamic 
no-fly zones is described as an MDP. In MDP, the state is defined by parameters 
of HGV, the current no-fly zone, and the target. The guidance command of HGV 
is defined as the action of the agent, which can be seen as the output of a policy 
neural network and learned by training. Secondly, the action is trained by the TD3 
algorithm. Finally, the converged policy network is invoked online with a tremendous 
real-time performance, which is an advantage in online guidance. 

This paper is arranged as follows. Section 20.2 describes the reentry model with 
no-fly zones. Section 20.3 introduces the general principles of DRL and the TD3 
algorithm. Section 20.4 proposes intelligent guidance based on TD3. Section 20.5 
shows the training results and verifies the proposed method in simulations. Finally, 
the conclusions of this work are in Sect. 20.6. 

20.2 Problem Model 

20.2.1 Dynamics Equations in Reentry Process 

Suppose the earth is a spherical non-rotating sphere, the dynamics equations in the 
reentry process are given by:
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

V̇ = − D 
m − g sin γ 

γ̇ = L cos σ 
mV − . g 

V − V r
.
cos γ 

ψ̇ = L sin σ 
mV cos γ + V cos γ sin ψ tan φ 

r 

ṙ = V sin γ 
θ̇ = V cos γ sin ψ 

r cos φ 
φ̇ = V cos γ cos ψ 

r 

(20.1) 

where V is the Earth-relative velocity, γ is the flight-path angle, ψ is the heading angle 
of velocity, r is the distance between the Earth center and HGV, θ is the longitude, 
φ is the latitude, m is the mass of HGV, g is the gravitational acceleration, σ is the 
bank angle. L and D represent the aerodynamic lift and drag respectively, which are 
expressed by

.
D = 1 2 ρV 

2CD Sm 
L = 1 2 ρV 

2CL Sm 
(20.2) 

where ρ is the atmospheric density, Sm is the reference area of HGV, CD and CL 

are the drag coefficient and lift coefficient respectively, which depend on the Mach 
number and angle of attack (AOA). 

20.2.2 Constraints in Reentry Process 

During the reentry flight, there are several hard path constraints: the maximum heating 
rate Q̇max, the maximum dynamic pressure qmax, and the maximum aerodynamic 
overload nmax. HGV is required to satisfy these constraints: 

⎧ 
⎪⎨ 

⎪⎩ 

Q̇ = kQρ0.5V 3.15 < Q̇max 

q = 1 2 ρV 
2 < qmax 

n = 
√
D2+L2 

m < nmax 

(20.3) 

where Q̇ is the heating rate, q is the dynamic pressure, n is the aerodynamic overload, 
kQ is a constant. 

Assume that no-fly zones are described as infinite-height cylinders with a central 
point (θ i, ϕi) and radius Ri. Then the constraint of no-fly zones is expressed as: 

Si = Re arccos(cos φ cos φi cos(θ − θi ) + sin φ sin φi ) >  Ri + .S (20.4) 

where Si is the distance between HGV and the central point of the ith no-fly zone, 
Re is the radius of the earth and .S is a safe threshold. 

Terminal constraints include altitude, velocity, and distance to the target.
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⎧ 
⎨ 

⎩

.H (t f ) = |H(t f ) − H∗| ≤ .H̃

.S(t f ) = |V (t f ) − V ∗| ≤ .Ṽ 
s(t f ) ≤ s∗ 

(20.5) 

where tf represents the final flight time, H*, V *, and s* are the required alti-
tude, velocity, and distance respectively. In this paper, .H̃ = 1000 m, .Ṽ = 
20 m/s, s∗ = 300 km. 

20.2.3 Guidance Scheme 

Longitudinal Guidance 

In reentry guidance, the terminal constraints of altitude and velocity are combined 
as an energy-form variable e 

e = 
1 

r 
− 

V 2 

2μ 
(20.6) 

where μ is the Earth’s gravitational constant. If the Earth rotation is ignored, e is 
monotonically increasing, which can be set as the termination condition of dynamics 
integration. 

If the final height and velocity are determined, the terminal energy is determined: 

e∗ = 
1 

r∗ − 
V ∗2 

2μ 
(20.7) 

The integration of dynamics will last until the termination condition is met: e ≥ 
e*. 

During the reentry process, the trajectory is decided by the AOA α and the bank 
angle σ . Usually, the AOA profile is a piecewise linear function of velocity or energy. 
In this paper the AOA is expressed as: 

α = 

⎧ 
⎪⎨ 

⎪⎩ 

αmax V ≥ Ṽ 
α0 + αmax−α0 

V1−V2 
(V − V2) Ṽ2 < V < Ṽ 

α0 V ≤ Ṽ2 

(20.8) 

where αmax is the max AOA of HGV, α0 is the AOA when the lift-drag radio gets the 
maximum value, Ṽ1 and Ṽ2 are designed values. 

The purpose of longitudinal guidance is to generate the magnitude of the bank 
angle to satisfy the request for height, velocity, and other path constraints. In conven-
tional guidance algorithms, the magnitude of the bank angle is updated iteratively to



296 Q. Jiang et al.

make the final distance error s(tf ) decrease to 0. In this paper, the magnitude of the 
bank angle is generated by the intelligent algorithm. 

Lateral Guidance 

The purpose of lateral guidance is to generate the sign of bank angle to make HGV 
avoid the no-fly zones and fly to the target. Hence, the lateral guidance in this paper 
is divided into two phases. In the first phase, there is a closest no-fly zone near the 
route of HGV, so lateral guidance is designed to avoid the no-fly zone. In the second 
phase, after all the no-fly zones are avoided, the lateral guidance is designed to satisfy 
the terminal constraints. Because the velocity and height constraints are satisfied by 
the termination condition of dynamics integration, the purpose of the second phase 
can be seen as to decrease the terminal range error. In the first phase, the relative 
position of the current no-fly zone is described in Fig. 20.1. The LOS (line of sight) 
angle of the ith no-fly zone ψ i is calculated by: 

λi = arccos(sin φ sin φi + cos φ cos φi cos(θ − θi )) 

ψi = arccos 
sin φi − sin φ cos λi 

cos φ sin λi 
(20.9) 

where λi is the geocentric angle between HGV and the ith no-fly zone. 
In Fig. 20.1, the horizontal axis represents the east and the vertical axis represents 

the north. According to the direction of V, there are four areas: I, II, III, and IV. When 
HGV is in the II area, it should output a negative bank angle to decrease ψ and avoid 
the current no-fly zone quickly. Conversely, When HGV is in the III area, it should 
output a positive bank angle to increase ψ. When HGV is in the I and IV area, it 
should output a negative and positive bank angle respectively to increase the angle

Fig. 20.1 HGV and current no-fly zone 
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between V and LOS direction |.ψ i |. There is a criterion for whether the current ith 
no-fly zone has been avoided: 

|.ψi | = |ψ − ψi | > 90◦ (20.10) 

which means that when the HGV passes through the II area and enters the I area, 
the sign of the bank angle should keep minus until the criterion (20.10) is satisfied. 
Similarly, When HGV is in the III and IV area, it should output a positive bank angle. 

Hence, in the first phase, the sign of the bank angle is decided by: 

sign(σ ) =
.
1 ψ >  ψi 

−1 ψ ≤ ψi 
(20.11) 

In the second phase, the LOS angle of target ψ tar is expressed as: 

ψtar  = arccos 
sin φtar  − sin φ cos λtar  

cos φ sin λtar  

λtar  = arccos(sin φ sin φtar  + cos φ cos φtar  cos(θ − θtar  )) (20.12) 

where λtar is the geocentric angle between HGV and the target. 
The sign of the bank angle is decided by the lateral corridor: 

sign(σ ) = 

⎧ 
⎨ 

⎩ 

1 .ψ > .ψup  

sign(σ ) .ψlow ≤ .ψ ≤ .ψup  

−1 .ψ < .ψlow 

(20.13) 

where.ψ = ψ−ψ tar , is the heading error,.ψup and.ψ low are the upper and lower 
bound:

.ψup  = 

⎧ 
⎪⎨ 

⎪⎩ 

ψ1 + ψ2−ψ2 

V2−V1 
(V − V1) V1 < V ≤ V2 

ψ2 V2 < V ≤ V3 

ψ2 + ψ3−ψ2 

V4−V3 
(V − V3) V3 < V ≤ V4 

(20.14) 

where V 1 = 2000 m/s, V 2 = 3500 m/s, V 3 = 6500 m/s, V 4 = 7000 m/s, ψ1 = 2°, 
ψ1 = 2°, ψ1 = 10°. The corridor is shown in Fig. 20.2.
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Fig. 20.2 Corridor of heading angle error 

20.3 TD3 Algorithm 

20.3.1 Deep Reinforcement Learning 

Commonly the sequential decision-making problem can be modeled as a Markov 
Decision Process (MDP), in which there are elements including state, action, and 
reward. The object who makes decisions is called an agent and the agent is in a 
dynamic environment. The agent can interact with the environment State is a variable 
that can describe the features of the environment. The agent takes an action or decides 
according to the state. Then the environment is transformed from state S1 to the 
next state S2. At the same time, the agent gets a reward from the environment. The 
interaction progress will last until some termination condition is met. So there is a 
tuple <Si, Ai, Si+1, Ri> at every interaction time. For the agent, the goal is to maximize 
the total discounted reward in the whole process: 

Gt = 
∞.

k=0 

λk Rt+k+1 (20.15) 

where λ is the discount rate which determines the present value of future rewards. 
In RL, the agent’s policy π is a mapping from states to probabilities of selecting 

some possible action, and π (a|s) means the probability that At = a if St = s. 
The action-value function for policy π is q(s, a): 

qπ (s, a) = Eπ [Gt |St = s, At = a] =  Eπ

. ∞.

k=0 

λk Rt+k+1|St = s, At = a

.

(20.16)
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Similarly, the state-value function vπ (s) is defined as: 

vπ (s) = Eπ [Gt |St = s] =  Eπ

. ∞.

k=0 

λk Rt+k+1|St = s

.

(20.17) 

There is an optimal action-value function q*(s, a) which satisfies that: 

q∗(s, a) = max 
π 

qπ (s, a), ∀s ∈ S (20.18) 

At this point, the policy π * is called the optimal policy. In DRL, the policy is 
implemented by a neural network parameterized by θ π . This is implemented by a 
neural network parameterized by θ Q. The purpose of DRL training is to find the 
optimal parameters θ π and θ Q, which means that the best policy for the agent is 
found. 

20.3.2 TD3 Algorithm 

The baseline algorithm used in this paper for the neural network training is the twin 
delayed deep deterministic policy gradient (TD3), which is an improved version of 
the deep deterministic policy gradient (DDPG). In DDPG, there is a policy network 
actor parameterized by π (s| θ π ) and an evaluation network critic parameterized by 
Q (s, a| θ Q). The input of the actor is the state of the environment s and it outputs 
the actions a. The input of the critic is the combination of s, a and it outputs the 
approximate action-value function Q (s, a). And two target networks are designed 
to make the training process stable, the target actor network parameterized by π .(s| 
θ π’) and the target critic network parameterized by Q.(s, a| θ Q’). 

The update of the critic is based on the gradient descent method. According to 
the Bellman Equations, the loss of critic L(θ Q) is expressed as: 

L(θ Q ) = E[(r (st , at ) + λQ.(st+1, π
.(st+1|θ π .

)|θ Q.
) − Q(st , at |θ Q ))2] (20.19) 

By updating the parameter θ Q, the critic is closer and closer to the optimal Q(s, 
a), which means that the evaluation of action is getting accurate gradually. 

The actor π (s, a|θ π ) is updated according to the theory of policy gradient: 

∇θ π J ≈ Est∼ξ [∇θ π Q(s, a|θ Q)|s=st ,a=π(st ,θ π )] 
= Est∼ξ [∇a Q(s, a|θ Q)s=st ,a=π(st )∇θ π π(s|θ π )s=st ]

(20.20) 

where J is the objective to be optimized and ξ is the distribution of state.



300 Q. Jiang et al.

Compared with DDPG, twin delayed deep deterministic policy gradient (TD3) has 
three improvements. First of all, TD3 provides two different critic networks including 
critic 1 parameterized by Q1(s, a|θ Q1 ) and critic 2 parameterized by Q2(s, a|θ Q2 ). 
In the training process, the smaller output value of critic 1 and critic 2 is set as the 
target Q value, which can overcome the overestimation of the Q value. 

y = r (st , at ) + λ min{Q.
1(st+1, ãt+1|θ Q.

1 ), Q.
2(st+1, ãt+1|θ Q.

2 )} (20.21) 

where the next action is calculated by 

ãt+1 = π .(st+1|θ π .
) + ε (20.22) 

where ε ~ clip (N (0, σ̃ ), −c, c) is the clipped noise in the range of [−c, c], in which 
σ̃ is the variance of the noise. 

The loss of critic 1 L(θ Q1 ) and the loss of critic 2 L(θ Q2 ) are

.
L(θ Q1 ) = E[(y − Q(st , at |θ Q1 ))2] 
L(θ Q2 ) = E[(y − Q(st , at |θ Q2 ))2] (20.23) 

Secondly, the update of policy is delayed, which means that TD3 updates critic 
networks more frequently than the actor and gets a higher quality policy update. The 
delayed update is meaningful because only if the critic is accurate, the improvement 
of policy is valuable. 

Thirdly, TD3 adds a small amount of random noise to the target policy in 
Eq. (20.22), and the noise is clipped to keep the target close to the original action, in 
which way target policy smoothing is realized. 

The three target networks are updated periodically: 

⎧ 
⎨ 

⎩ 

θ π . ← (1 − τ)θ  π + τθ  π .

θ Q.
1 ← (1 − τ)θ  Q1 + τθ  Q.

1 

θ Q.
2 ← (1 − τ)θ  Q2 + τθ  Q.

2 

(20.24) 

where τ is the soft update factor. 

20.4 Intelligent Guidance Law Based on TD3 

20.4.1 Framework for Intelligent Guidance 

In this section, the TD3-based guidance is proposed. 
Firstly, the reentry including the no-fly zones process is normalized into two func-

tions (scenario initialization function and policy cycle function) and the interfaces 
are open to the TD3 algorithm. In the scenario initialization function, the motion
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Fig. 20.3 Algorithm flow of intelligent guidance law 

parameters of HGV are initialized randomly within a certain range. The information 
of N no-fly zones is also set randomly. At each policy step, HGV gets a magnitude 
command of the bank angle and generates the sign of the bank angle according 
to lateral guidance. The simulation proceeds until the energy e > e* or any path 
constraint is not satisfied. Then, the transformation from the reentry process to MDP 
is accomplished. The kinematical parameters of HGV are mapped to states, and the 
guidance command of bank angle is designed as the action. The reward function is 
designed according to whether avoiding the no-fly zones and arriving at the neigh-
borhood of the target. Finally, based on TD3, the algorithm goes into operation as is 
shown in Fig. 20.3. 

20.4.2 Markov Decision Process 

The fundamental variables in MDP are defined as follows. Firstly, we divide the 
glide phase into two phases. In Phase I, there is one no-fly zone in HGV’s flight path, 
which need to be avoided. In Phase II, HGV has passed through all the no-fly zones, 
so it needs to fix its path and approach the target. 

(1) States 

The basic state of the HGV agent in Phase I is defined as s = sI = [V, γ , ψ, r, θ, φ, 
1, θ now, φnow, Rnow, V *], where θ now, φnow, and Rnow are the longitude, latitude, and 
geocentric distance of current no-fly zone, which can uniquely express the features
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of the current situation. Considering dynamic no-fly zones, the information about 
no-fly zones is unknown before the flight. 

Then, after the HGV has passed through all the no-fly zones, the state in Phase II 
is redefined as s = sII = [V, γ , ψ, r, θ, φ, 0,  θ tar , φtar , H*, V *], where θ tar , φtar are 
the longitude, latitude of the target. The design of sII aims to guide the HGV to the 
target. 

(2) Actions 

Since the AOA is decided by profile and the sign of the bank angle is decided by 
lateral guidance, the action of the agent is mapped to the magnitude of the bank 
angle. So no matter what phase the HGV is in, the action is defined as a ∈ [0, σ max], 
where σ max is the maximum bank angle. Then the command of bank angle σ cmd is 
obtained: 

σcmd = sign(σ ) · a (20.25) 

where the sign of the bank angle sign(σ ) is given by lateral guidance. 

(3) Rewards 

The reward function plays a decisive role in guiding HGV to avoid the no-fly zones 
and achieve the target accurately. The reward function is shown as follows: 

RI =
.
10, |ψ − ψi | > 90◦ 

0, |ψ − ψi | ≤  90◦ (20.26) 

where RI is the no-fly-zone-related reward. The design of RI means that when the 
HGV passes through the current no-fly zone, the agent will get a positive reward. 

RII = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

50 + 40−50 
300−0 (s(t f ) − 0), s(t f ) ≤ 300 

40 + 10−40 
500−300 (s(t f ) − 300), 300 < s(t f ) ≤ 500 

10, 500 < s(t f ) ≤ 2000 
1, s(t f ) >  2000 

(20.27) 

where s(tf ) is the terminal distance error (unit km) and RII is the target-related reward 
in the second phase. The piecewise linear functions are designed to guide the agent 
to reduce the final distance to the target. When HGV is in Phase I and Phase II, the 
reward is RI and RII respectively.
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20.4.3 Steps of the Algorithm 

Based on TD3, the intelligent reentry guidance is proposed as follows: 

20.4.4 Structures of Neural Networks 

The structure of the actor is shown in Table 20.1 and the structure of the two critics 
is shown in Table 20.2. 

Table 20.1 Structure of the actor 

Layer number Layer type Nodes number Activation function 

1 Dense 11 × 300 Leaky ReLU 

2 Dense 300 × 200 Leaky ReLU 

3 Batch normalization 200 – 

4 Dense 200 × 100 Leaky ReLU 

5 Dense 100 × 1 – 

6 Batch normalization 1 Tanh
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Table 20.2 Structure of the critics 

Layer number Layer type Nodes number Activation function 

1 Dense 12 × 300 Leaky ReLU 

2 Dense 300 × 200 Leaky ReLU 

3 Batch normalization 200 – 

4 Dense 200 × 100 Leaky ReLU 

5 Dense 100 × 1 Leaky ReLU 

Table 20.3 Hyperparameters 
in the training Number Hyperparameter Value 

1 Discount factor 0.99 

2 Batch size 128 

3 Replay buffer size 5000 

4 Learning rate 10−5 

5 Target update rate 0.001 

20.5 Verification and Simulation 

20.5.1 Parameters Settings 

The hardware device used in the simulation is Intel-i5 CPU, RTX 3060Ti GPU, 
and 16GB RAM. The software used for training is PyTorch and Python. The 
hyperparameters in the training are given in Table 20.3. 

HGV parameters are set according to the common aero vehicle (CAV-H). The 
mentioned parameters in simulation are set as follows: m = 907 kg, g = 9.8066 m/s2, 
Sm = 0.4839 m2, ρ0 = 1.225 kg/m3, β = 0.000141, Re = 6378004 m, kQ = 5 × 10–5, 
qmax = 100 kPa, nmax = 3, Q̇max = 2000 kW/m2, Vre = 2500 m/s, .S = 1000 m, 
αmax = 20°, α0 = 10°, Ṽ1 = 5000 m/s, Ṽ2 = 3000 m/s, σ max = 85°. The number of 
no-fly zones is 3. The integration step size is 0.01 s and the guidance (policy) step 
size is 200 s. 

The random parameters used in simulations are shown in Table 20.4.

20.5.2 Training Result of Policy Network 

After the training of 6665 episodes, the policy network converges. The average returns 
and success rates in the latest 100 episodes are shown in Fig. 20.4.
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Table 20.4 Range of random 
parameters in simulations Parameters Unit Max value Min value 

Initial HGV longitude θ 0 ° 5 0 

Initial HGV latitude φ0 ° 10 −10 

Initial HGV velocity V0 m/s 7100 6800 

Required terminal velocity V* m/s 2600 2400 

Initial HGV height H0 Km 67 65 

Initial HGV path angle γ 0 ° −0.001 −0.1 

Target longitude θ tar ° 75 65 

Target latitude φtar ° 5 −5 

Target height Htar Km 31 26 

Drag coefficient error .CD – 5% 0% 

Lift coefficient error .CL – 5% 0%

Fig. 20.4 Average return and success rates in the latest 100 episodes 

At the end of the training process, the success rates reach and stabilize at 100%, 
which means that the policy network can output stable and valid commands. The 
average return fluctuates slightly in the range of 70–80, which coincides with the 
design of reward in Eqs. (20.26) and (20.27).
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20.5.3 Verifications on Random Trajectories 

The well-trained policy network is verified in random simulation. 

(1) Scene 1. 

The parameters of HGV and target are: θ 0 = 1.270°, φ0 = −  3.734°, V 0 = 7000 m/ 
s, H0 = 65 km, γ = −  0.1°, ψ0 = 86.286°, θ tar = 71.163°, φtar = 2.212°, Htar = 
30.020 km, V* = 2482.800 m/s. The parameters of three no-fly zones are listed in 
Table 20.5. 

The simulation results are shown in Figs. 20.5, 20.6, 20.7 and 20.8. 

(2) Scene 2. 

The parameters of HGV and target are: θ 0 = 3.059°, φ0 = 3.008°, V 0 = 6823.816 m/ 
s, H0 = 65.891 km, γ 0 = −  0.1°, ψ0 = 95.121°, θ tar = 69.605°, φtar = −  3.514°, 
Htar = 28.203 km, V* = 2545.289 m/s. The parameters of three no-fly zones are 
listed in Table 20.6.

Table 20.5 Parameters of no-fly zones in scene 1 

Serial number Center longitude (°) Center latitude (°) Radius (km) 

1 34.928 0.599 274.823 

2 48.809 −6.812 268.502 

3 59.079 −3.261 316.207 

Fig. 20.5 Ground track of HGV in scene 1
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Fig. 20.6 Space trajectory of HGV in scene 1 

Fig. 20.7 States curves of HGV in scene 1
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Fig. 20.8 Path constraints curves of HGV in scene 1

Table 20.6 Parameters of no-fly zones in scene 2 

Serial number Center longitude (°) Center latitude (°) Radius (km) 

1 31.691 −3.667 285.678 

2 44.948 3.199 224.935 

3 57.354 −5.675 252.818 

The simulation results are shown in Figs. 20.9, 20.10, 20.11 and 20.12.
We can see from Fig. 20.5, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11 and 20.12 that in 

the two scenes, HGV can pass through all the dynamic no-fly zones and reach the 
target. In the flight process, all the path constraints are satisfied. The terminal errors 
of constraints are shown in Table 20.7.

Under the influence of initial parameter perturbation and aerodynamic deviations, 
HGV agent can satisfy all the constraints and avoid dynamic no-fly zones.
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Fig. 20.9 Ground track of HGV in scene 2

Fig. 20.10 Space trajectory of HGV in scene 2
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Fig. 20.11 States curves of HGV in scene 2
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Fig. 20.12 Path constraints curves of HGV in scene 2 

Table 20.7 Terminal errors 
in the scenes Terminal errors Scene 1 Scene 2 

Height error .H(tf ) 257.283 m 701.66 m 

Velocity error .V (tf ) 1.008 m/s 2.690 m/s 

Distance error s(tf ) 166.830 km 116.250 km

20.6 Conclusions 

Based on deep reinforcement learning, an intelligent method for reentry guidance 
with dynamic no-fly zones is studied in the paper. First of all, the mathematical model 
of HGV is established. Facing the dynamic no-fly zones, the reentry process of HGV 
is divided into two phases and the guidance scheme is given accordingly. Then, the 
problem is transformed into a Markov decision process, where the action is used to 
output guidance commands. State and reward are designed according to the flight 
phase. With the help of the TD3 algorithm, the policy network is trained to converge. 
Finally, the policy network is verified on random trajectories and proved to be robust 
to dynamic parameters of no-fly zones and other deviations.
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