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Abstract. In this paper, we specialise a more general theory for test-
ing symbolic finite state machines (SFSM) to an important sub-class
of SFSMs. This specialisation allows for a significant reduction of test
cases needed for proving language equivalence between an SFSM refer-
ence model and an implementation whose true behaviour is captured by
another SFSM from a given fault domain.

Keywords: model-based testing · symbolic finite state machines ·
complete test suites

1 Introduction

Background and Motivation. In model-based (black-box) testing (MBT),
test cases to be executed against a system under test (SUT) are derived from
reference models specifying the expected behaviour of the SUT, as far as visible
at its interfaces. MBT is often performed with the objective to show that the SUT
fulfils a conformance relation to the reference model, such as language equiva-
lence at the interface level. Alternatively, in property-oriented testing, MBT is
applied to check whether an SUT fulfils just a set of selected properties that are
fulfilled by the reference model [12].

In the context of safety-critical systems, so-called complete test suites are of
special interest. A suite is complete, if it (1) accepts every SUT fulfilling the
correctness criterion (soundness), and (2) rejects every SUT violating the cor-
rectness criterion (exhaustiveness). In black-box testing, completeness can only
be guaranteed under certain hypotheses about the kind of errors that can occur
in implementations. Therefore, the potential faulty behaviours are identified by
so-called fault domains: these are models representing both correct and faulty
behaviours, the latter to be uncovered by complete test suites. Without these
constraints, it is impossible to guarantee that finite test suites will uncover every
deviation of an implementation from a reference model: the existence of hidden
internal states leading to faulty behaviour after a trace that is longer than the
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ones considered in a finite test suite cannot be checked in black-box testing. The
original work on complete test suites [3] was considered to be mainly of theo-
retical interest, but practically infeasible, due to the size of the test suites to be
performed in order to prove conformance. Since then however, it has been shown
that complete test suites can be generated with novel strategies leading to sig-
nificantly smaller numbers of test cases [5], and complete test suites for complex
systems can be generated with acceptable size, if equivalence class strategies are
used [9]. Moreover, the possibility to generate and execute large test suites in a
distributed manner on cloud server farms have pushed the limits of practically
tractable test suite sizes in a considerable way.

While the original theories on complete test suites have been elaborated for
finite states machines (FSM) with input and output alphabets (Mealy machines),
FSMs are less suitable for modelling reactive systems with complex, conceptually
infinite data structures. Therefore, complete strategies for MBT with different
modelling formalisms have been elaborated over the years, such as extended
finite state machines [11], timed automata [19], process algebras [13], variants of
Kripke structures [9], and symbolic finite state machines [12,15].

Symbolic finite state machines (SFSM) offer a good compromise between
semantic tractability and expressiveness: just like FSMs, they still operate on a
finite state space, but they allow for typed input and output variables. Transi-
tions are guarded by Boolean expressions (so-called symbolic inputs) over input
variables. In the more general case of SFSMs investigated in this paper, sym-
bolic outputs are Boolean first order expressions involving arithmetic expressions
over input and output variables, so that nondeterministic outputs are admissi-
ble. This makes SFSMs well-suited for modelling control systems with inputs
obtained from discrete or analogue sensors and outputs to likewise discrete or
analogue actuators. The control decisions depend on the guard valuations for the
given inputs and on a finite number of internal control states. Typical systems
of this kind are airbag controllers, speed monitors [10], or train protection units
for autonomous trains [4].

Objectives and Main Contributions. In this paper, we present a complete
testing strategy for verifying language equivalence against a sub-class of SFSM
reference models. The SFSMs in this class may be nondeterministic with respect
to both transition guards and output expressions, but they are required to pos-
sess separable alphabets, as defined in Sect. 2. Intuitively speaking, their output
expressions are pairwise distinguishable for every guard condition by selecting a
specific input valuation for that the respective guard evaluates to true.

As fault domains, SFSMs of this class, with a bounded number of states,
arbitrary transfer faults (misdirected transitions), interchanged guards or output
expressions, and finitely many mutations of guards and outputs are accepted.

We consider the following results as the main contributions of this paper.
(1) A new complete language equivalence testing strategy is presented for SFSMs
with separable alphabets. The underlying mathematical theory is considerably
simpler than the general theory providing complete strategies for unrestricted
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SFSMs. (2) In contrast to competing approaches [14–16,20], the SFSMs consid-
ered here may use nondeterministic transitions and output expressions. (3) It
is explained by means of a complexity argument and illustrated by an example
that the complete test suites for SFSMs with separable alphabets are signifi-
cantly shorter in general than those needed for SFSMs with arbitrary alphabets.
(4) An open source tool is provided that creates test suites according to the
strategy described in this paper and executes them against software SUTs.

Observe that we have chosen language equivalence as the desired conformance
relation and not reduction, where the implementation language is a subset of the
reference model’s language. In principle, since reduction preserves the safety
properties of the model, it would also be well-suited for testing safety-critical
control systems. In the worst case, however, complete test suites for reduction
testing require significantly more test cases than needed for equivalence test-
ing [18, Sect. 5.8.3]. Practically, language equivalence testing requires that the
reference model should be sufficiently detailed, so that the implementation is
expected to realise all behaviours the model is capable of.

Overview. In Sect. 2, SFSMs are defined, and their basic semantic properties
are introduced. The restricted family of SFSMs that are covered by the testing
theory presented here is introduced. In Sect. 3, the generation of complete test
suites for this SFSM sub-class is described, and the lemmas and theorems for
proving the completeness property are presented. In Sect. 4, an open source tool
implementing the test generation method presented here is introduced. The test
suite generation is illustrated by means of an example in Sect. 5. Complexity
considerations regarding test suite size are presented in Sect. 6. Section 7 presents
the conclusion.

The complete underlying theory covering general SFSMs, conformance test-
ing, and property-oriented testing, as well as the SFSM specialisations investi-
gated in this paper are available in the technical report [8]. This paper focuses
on the main contributions listed above, and it is self-contained, so that it can
be understood without studying the report. The latter is intended for read-
ers interested in the “big picture” of the general theory and further results
beyond those presented here. Due to the usual space limitations, the full proofs
of the lemmas and theorems discussed in this paper are only contained in the
report [8, Appendix A]. The report also discusses comprehensive related work [8,
Section 14]. In this paper, we refer to selected related work where appropriate.

2 Symbolic Finite State Machines

Definition. A Symbolic Finite State Machine (SFSM) is a tuple

S = (S, s0, R, I,O,D,ΣI , ΣO, Σ).

Finite set S denotes the state space, and s0 ∈ S is the initial state. Finite set I
contains input variable symbols, and finite set O output variable symbols. The
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sets I and O must be disjoint. We use Var to abbreviate I ∪ O. We assume that
the variables are typed, and infinite domains like reals or unlimited integers are
admissible. Set D denotes the union over all variable type domains. The input
alphabet ΣI consists of finitely many guard conditions, each guard condition
being a predicate, that is, a Boolean quantifier-free first-order expression over
input variables. The finite output alphabet ΣO consists of output expressions;
these are predicates over (optional) input variables and at least one output vari-
able. We admit constants, function symbols, and arithmetic operators in these
expressions, but require that they can be solved based on some decision theory,
for example, by an SMT solver. The symbolic alphabet Σ ⊆ ΣI × ΣO consists
of all non-equivalent pairs of guards and output expressions used by the SFSM.
Set R ⊆ S × Σ × S denotes the transition relation.

This definition of SFSMs is consistent with the definition of “symbolic
input/output finite state machines (SIOFSM)” introduced by Petrenko [14],
but slightly more general: SIOFSMs allow only assignments on output vari-
ables, while our definition admits general quantifier-free first-order expressions.
This is useful for specifying nondeterministic outputs and for performing data
abstraction.

Fig. 1. Braking system BRAKE.

Example 1. Consider the SFSM BRAKE that is graphically represented in Fig. 1.
It describes a (fictitious) braking assistance system to be deployed in modern
vehicles. Input variable x ∈ [0, 400] is the actual vehicle speed that should not
exceed v = 200[km/h]. As long as the speed limit is not violated, the system
remains in state s0 and does not interfere with the brakes: the brake force output1

1 This output y is a scalar value, to be multiplied with a constant to obtain the braking
force in physical unit Newton.



Testing Symbolic Finite State Machines 59

y ∈ R≥0 is set to 0. When the speed exceeds v, guard condition x > v evaluates
to true, and a transition s0 −→ s2 is performed. This transition sets the braking
force y to

y = B2 + (x − v)/c (1)

with constants B2 = 2 and c = 100. The resulting brake force y to be applied is
greater than 2, and it is increased linearly according to the extent that x exceeds
the allowed threshold v. For the maximal speed x = 400 that is physically
possible for this vehicle type, the maximal brake force y = 4 is applied. Note
that the output expressions do not represent assignments, but quantifier free
first-order expressions involving at least one output variable and optional input
variables.

While in state s2, the brake force is adapted according to the changing speed
by means of Formula (1). To avoid repeated alternation between releasing and
activating the brakes when the speed varies around v, the system remains in state
s2 while x ≥ v − δ with constant δ = 10. As a consequence, the braking force is
decreased down to B2 − 0.1 = 1.9 while the vehicle slows down to x = v − δ. As
soon as the speed is below v − δ, the braking system releases the brakes (y = 0)
and returns to state s0.

When BRAKE is in state s0 and the speed equals v, a nondeterministic sys-
tem reaction is admissible. Either the system stays in state s0 without any
braking intervention, or it transits to state s1 while applying a low brake force
y ∈ [B0, B1] with B0 = 0.9, B1 = 1.1 (we allow nondeterministic output expres-
sions). This nondeterminism could be due to an abstraction hiding implementa-
tion details. While in state s1, this nondeterministic brake force in range [B0, B1]
is applied, until either the speed is increased above v (this triggers the same reac-
tion as in state s0), or the speed is decreased below v, which results in a transition
s1 −→ s0.

Computations, Valuation Functions, and Traces. A symbolic finite com-
putation of S is a sequence ζ = (s0, (ϕ1, ψ1), s1).(s1, (ϕ2, ψ2), s2) · · · ∈ (S ×
Σ × S)∗, such that (si−1, (ϕi, ψi), si) ∈ R for all i > 0. Its projection ξ =
(ϕ1, ψ1).(ϕ2, ψ2) · · · ∈ Σ∗ is called a symbolic trace. The symbolic language Ls(S)
of an SFSM S is the set of all its symbolic traces.

A valuation function σ : X −→ D with X ∈ {I,O,Var} assigns values to
variable symbols. In case X = I, values are only defined for input variables, in
case X = O only for output symbols; for X = Var , all variables are mapped
to concrete values from their domain contained in D. Given any quantifier-free
formula ϕ over variable symbols from X, we write σ |= ϕ and say that σ is a
model for ϕ, if and only if the Boolean expression ϕ[v/σ(v) | v ∈ X] (this is the
formula ϕ with every symbol v ∈ X replaced by its valuation σ(v)) evaluates to
true.

We assume that each SFSM is completely specified. This means that in every
state, the union of all valuations that are models for at least one of the guards
applicable in this state equals the whole set DI of input valuations. Alternatively,



60 W. Huang et al.

this can be expressed by the fact that the disjunction over all guards of a state
is always a tautology.

A concrete finite computation of S is a sequence ζc = (s0, σ1, s1)(s1, σ2, s2) . . .
with valuation functions σi defined on Var , such that there exists a symbolic
computation ζ traversing the same sequence of states and satisfying σi |= ϕi ∧ψi

for all i > 0. The concrete computation ζc is called a witness of ζ, this is
abbreviated by ζc |= ζ. This is the synchronous interpretation of the SFSM’s
visible input/output behaviour, as discussed by van de Pol [17]: inputs and
outputs occur simultaneously, that is, in the same computation step σi.

The set of all valuations σ : X −→ D is denoted by DX . A (concrete) trace is
a sequence κ = σ1 . . . σn ∈ (

DVar
)∗ of valuation functions, such that there exists

a symbolic trace ξ = (ϕ1, ψ1) . . . (ϕn, ψn) ∈ Ls(S) with κ |= ξ, i.e., σi |= ϕi ∧ ψi,
for all i = 1, . . . , n. The set of all traces of S is called its (concrete) language
and denoted by L(S). For any α = (ϕ1, ψ1) . . . (ϕk, ψk) ∈ (ΣI × ΣO)∗, define
α|ΣI

= ϕ1 . . . ϕk. S is called reduced if its states are pairwise distinguishable by
concrete input traces leading to different outputs when applied to these states.
We can check this by trying to find a concrete trace κs = σ1 . . . σn ∈ (

DVar
)∗

for each state pair (s, s′) ∈ S with s �= s′, where κs is a model for some concrete
finite computation ζs = (s, σ1, s1) . . . (sn−1, σn, sn) starting in s, but where there
is no concrete finite computation ζs′ = (s′, σ1, s

′
1) . . . (s′

n−1, σn, s′
n) for s′. If such

a concrete trace κs exists for all distinct s, s′ ∈ S, the states in S are pairwise
distinguishable and S is reduced.

For the remainder of this paper, only well-formed SFSMs are considered.
This means that all guard conditions and associated output expressions can be
solved in the sense that every transition label (ϕ,ψ) ∈ Σ has at least one model
σ ∈ DVar satisfying σ |= ϕ ∧ ψ.

A Restricted Family of SFSMs – Separable Alphabets. As indicated in
Sect. 1, we consider a slightly restricted class of SFSMs S in this paper that
allows for considerably smaller complete test suites for language equivalence
testing. All restrictions refer to the input alphabet ΣI , output alphabet ΣO,
and alphabet Σ ⊆ ΣI × ΣO used by these SFSMs. The restrictions are specified
as follows, and we call any alphabet tuple (ΣI , ΣO, Σ) fulfilling them separable.

1. The alphabet Σ ⊆ ΣI × ΣO contains pairwise non-equivalent pairs of guards
and output expressions: for every two elements (ϕ,ψ) �= (ϕ′, ψ′) ∈ Σ, formu-
lae ϕ ∧ ψ and ϕ′ ∧ ψ′ have differing sets of models.

2. The symbolic input alphabet ΣI partitions the set DI of input valuations,
that is, for all σ ∈ DI , there exists a uniquely determined ϕ ∈ ΣI such that
σ |= ϕ.

3. Separability of output expressions. For any (ϕ,ψ) ∈ Σ, there exists at least
one input valuation σI ∈ DI distinguishing (ϕ,ψ) from all other (ϕ,ψ′) ∈ Σ
with ψ′ �= ψ ∈ ΣO, in the sense that σI fulfils
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(∃σO ∈ DO � σI ∪ σO |= ϕ ∧ ψ) ∧ (2)
(∀ψ′ ∈ ΣO \ {ψ} � (ϕ,ψ′) ∈ Σ =⇒

(∀σ′
O ∈ DO � (σI ∪ σ′

O |= ψ) =⇒ (σI ∪ σ′
O |= ¬ψ′))

)

Restriction 1 is only syntactic: if (ϕ,ψ) �= (ϕ′, ψ′) ∈ Σ differ syntactically, but
are equivalent first order expressions, one of these pairs, say (ϕ′, ψ′), is removed
from Σ. SFSM transitions (s1, ϕ′, ψ′, s2) ∈ R are replaced by (s1, ϕ, ψ, s2) with-
out changing the language of the SFSM.

Likewise, Restriction 2 is only syntactic: by refining guard conditions, a new
syntactic representation of the original SFSM is obtained that has the same
language. The detailed refinement mechanism is described in [8], a simple case
is shown below in Sect. 5.

Only Restriction 3 reduces the semantic domain of SFSMs that can be
tested according to the strategy described here. Intuitively speaking, Formula (2)
requires for each pair of guard ϕ and output expression ψ the existence of an
input valuation σI ∈ DI such that a suitable output valuation σO ∈ DO satis-
fying σI ∪ σO |= ϕ ∧ ψ exists, and every possible output σ′

O that can occur for
output expression ψ and the given inputs σI could not have been produced by
any other output expression ψ′ �= ψ. In the example presented in Sect. 5, it is
illustrated how the syntactic Requirements 1,2 can be established by a refining
transformation, and how the third restriction is checked.

The airbag controllers, speed monitors, and train protection units mentioned
in Sect. 1 can all be modelled as SFSMs with separable alphabets. A simple class
of alphabet tuples that are not separable are those where the output expressions
define nondeterministic, overlapping data ranges that do not depend on input
values at all, such as, for example,

(ΣI , ΣO, Σ) = ({x < 0, x ≥ 0}, {y ∈ [0, 2], y ∈ [1, 3]}, ΣI × ΣO).

Here, the more general testing theory described in [8] needs to be applied.
The following lemma states the important property that separability of alpha-

bets is preserved when an SFSM only uses a subset of the output expressions
occurring in a separable alphabet.

Lemma 1. Let (ΣI , ΣO, Σ) be a separable alphabet. Then any alphabet
(ΣI , Σ

′
O, Σ′) satisfying Σ′

O ⊆ ΣO, Σ′ ⊆ ΣI × Σ′
O and Σ′ ⊆ Σ is also sepa-

rable.

Complete Testing Assumptions. As is usual in black-box testing of nonde-
terministic systems, we adopt the complete testing assumption [7]. This requires
the existence of some known k ∈ N such that, if an input sequence (i.e. a test
case) is applied k times to the SUT, then all possible responses are observed,
and, therefore, all states reachable by means of this sequence have been visited.
Since we are dealing with possibly infinite input and output domains, “all pos-
sible responses” is interpreted in the way that all satisfiable symbolic traces of
the system under test are visited when executing a test case k times.
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In “real-world” test campaigns for safety-critical systems, code coverage
and/or hardware address coverage measurements are performed during software
tests and HW/SW integration tests, so that it can be determined whether all
reactions to a given test case have been observed after its k-fold execution.

Finite State Machine Abstraction. Recall that a finite state machine (FSM,
Mealy Machine) is a tuple M = (S, s0, R,ΣI , ΣO, Σ) with finite state space S,
initial state s0 ∈ S, finite input and output alphabets ΣI , ΣO, transition relation
R ⊆ S × Σ × S.

Given a SFSM S = (S, s0, R, I,O,D,ΣI , ΣO, Σ), simply deciding to leave
guard conditions and output expressions uninterpreted yields an FSM M =
(S, s0, R,ΣI , ΣO, Σ). The language L(M) of FSM M is the set of all traces α =
(ϕ1, ψ1) . . . (ϕk, ψk) ∈ Σ∗, such that there exists a sequence of states s0.s1 . . . sk

satisfying ∀i ∈ {1, . . . , k} � (si−1, ϕi, ψi, si) ∈ R.
Since M uses the SFSM’s transition relation and symbolic alphabets, and

since the language of M is defined exactly as the symbolic language of S, this
abstraction of SFSM S to FSM M preserves the symbolic language, that is,
L(M) = Ls(S).

Fault Domains. In the context of this paper, a fault domain is an SFSM-set
F(ΣI , ΣO, Σ,m), that is defined for any separable alphabet (ΣI , ΣO, Σ). All
SFSMs S ′ ∈ F(ΣI , ΣO, Σ,m) have the following properties. (1) The alphabet
(ΣI , Σ

′
O, Σ′) of S ′ satisfies Σ′

O ⊆ ΣO and Σ′ ⊆ Σ. (2) When represented in
observable, reduced form2, S ′ has at most m states. Moreover, (3) The reference
model S is also contained in F(ΣI , ΣO, Σ,m) and has n ≤ m states, when
represented in observable, reduced form.

Following the concept of mutation testing, a fault domain admits finitely
many mutants of guard conditions and mutants of output expressions, these
are contained in ΣI and ΣO, respectively. Since, as explained above, the input
alphabet of any SFSM can always be transformed for a set of refined guard
conditions without changing the language, it can always be assumed that all
SFSMs in the fault domain operate on the same input alphabet. This is usually
more fine-grained than the original alphabet used by the reference model, in order
to accommodate for erroneous guard conditions. Erroneous implementations may
use faulty combinations of guards ϕ and output expressions ψ, but these faulty
combinations (ϕ,ψ) must be captured in Σ. Faulty SFSMs may possess up to
m − n additional states, and they may exhibit arbitrary transfer faults, that is,
misdirected transitions. The fault domain construction principle is illustrated in
the example discussed in Sect. 5.

2 An SFSM is observable if every concrete trace leads to a uniquely determined tar-
get state. Every non-observable SFSM can be transformed into an observable one
without changing its language [8]. An observable SFSM is reduced if its states are
pairwise distinguishable.



Testing Symbolic Finite State Machines 63

3 Test Suite Generation

Throughout this section, SFSM S plays the role of a reference model, and S ′ is
the representation of the true SUT behaviour as an SFSM. S ′ is supposed to be
contained in the fault domain.

Symbolic and Concrete Test Cases, Test Suites. A symbolic test case is
a sequence of (guard condition/output expression) pairs, that is, any sequence
α ∈ Σ∗. A concrete test case is a sequence τ of pairs of (input/output) valuation,
that is τ ∈ (DVar )∗.

Note that in other contexts, test cases represent just sequences of inputs [3].
In this paper, a test case is a sequence of symbolic or concrete input/response
pairs, because this facilitates the investigation of language equivalence. Observe
further, that it is not required for a test case to be in the language of the reference
model: a test case can also contain responses to inputs that are erroneous from
the reference model’s perspective.

A symbolic input test case is a finite sequence of guard conditions ξI ∈ Σ∗
I .

For concrete test executions, of course, only the input projections of concrete test
cases are passed to the SUT, we denote these sequences as concrete input test
cases. Given a concrete input test case τI = σ1

I . . . σp
I ∈ (DI)∗ and a sequence of

output valuations τO = σ1
O . . . σp

O ∈ (DO)∗ of the same length as τI , we use the
abbreviated notation τI/τO = (σ1

I ∪ σ1
O) . . . (σp

I ∪ σp
O) ∈ (DVar )∗.

Let outk(S ′, τI) denote the collection of output responses of S ′ to the concrete
input test case τI obtained during k executions of this test case. Note that
outk(S ′, τI) is a random collection: for repeated execution of k test case runs
each, outk(S ′, τI) may contain different output traces in the nondeterministic
case.

A symbolic test suite TS ⊆ Σ∗ is a set of symbolic test cases, a concrete test
suite TS ⊆ (DVar )∗ is a set of concrete test cases.

Pass Relations

Definition 1 (Pass relation for symbolic test cases). Let α ⊆ Σ∗ be a
symbolic test case. We say S ′ passes α (with respect to reference model S) if and
only if

α ∈ Ls(S ′) ⇐⇒ α ∈ Ls(S).
Definition 2 (Pass relation for concrete input test cases). Let τI ∈
(DI)∗ be a concrete input test case. We say S ′ passes τI if and only if

1. for any τO ∈ outk(S ′, τI), it holds that τI/τO ∈ L(S), and
2. for any α ∈ Ls(S) with τI/τO |= α, there exists τ ′

O ∈ outk(S ′, τI) satisfying
τI/τ ′

O |= α.

Condition 1 of this pass relation requires that all concrete outputs τO observ-
able in k executions of input test case τI conform to S in the sense that τI/τO

is contained in the language of S.
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Language Equivalence Testing. A symbolic test suite is called complete, if
passing this suite is equivalent to proving equality of the symbolic languages of
reference model and implementation.

Definition 3 (Complete test suites). Let TS ⊆ Σ∗ be a symbolic test suite.
TS is called complete for proving the equivalence of Ls(S) and Ls(S ′) if and
only if Ls(S) ∩ TS = Ls(S ′) ∩ TS ⇐⇒ Ls(S) = Ls(S ′).

In the sense of Definition 1, this means that S ′ passes all test cases from TS
with respect to reference model S, because

Ls(S) ∩ TS = Ls(S ′) ∩ TS ≡ ∀α ∈ TS �
(
α ∈ Ls(S) ⇐⇒ α ∈ Ls(S ′)

)

A symbolic input test suite TSI ⊆ Σ∗
I is called complete for proving the equiv-

alence of Ls(S) and Ls(S ′) if and only if the symbolic test suite TS = {α ∈
Σ∗ | α|ΣI

∈ TSI} is complete for proving the equivalence of Ls(S) and Ls(S ′).

Definition 4 (Distinguishing Function). A distinguishing function T :
Σ∗ → (DI)∗ is a function from sequences of the symbolic alphabet to
sequences of input valuations, such that for any α ∈ Σ∗, |T (α)| = |α|,
and T (α)(i) ∈ dis(α(i)), ∀i = 1, . . . , |α|, where dis(ϕ,ψ′) = {σI ∈
DI | σI satisfies Formula (2)}.

A function T : Σ → DI is called a distinguishing function associated with
Σ, if its natural extension T : Σ∗ → (DI)∗ defined by T ((ϕ1, ψ1) . . . (ϕk, ψk)) =
T (ϕ1, ψ1) . . . T (ϕk, ψk) is a distinguishing function.

A given distinguishing function T can be reduced to a function depending on
symbolic input sequences only by defining T (αI) = {T (α) | α ∈ Σ∗∧α|ΣI

= αI}.
For the remainder of this paper, T always denotes a distinguishing function.

The following lemma states that any sequence of input valuations obtained by a
distinguishing function already determines the associated sequence of symbolic
alphabet elements in a unique way.

Lemma 2. Suppose α, β ∈ Σ∗, τI = T (α) ∈ (DI)∗ and τO ∈ (DO)∗, such that
τI/τO |= α holds. Then τI/τO |= β implies α = β.

Lemma 3. Let α ∈ Σ∗ be a symbolic test case. Suppose S ′ passes concrete input
test case T (α). Then S ′ passes symbolic test α, i.e., α ∈ Ls(S) ⇐⇒ α ∈ Ls(S ′).

The following theorem shows that for the restricted class of SFSMs considered
in this paper, concrete language equivalence already implies symbolic language
equivalence.

Theorem 1. Ls(S) = Ls(S ′) ⇐⇒ L(S) = L(S ′).

Theorem 2. Let TS ⊆ Σ∗ be a complete test suite for proving the equivalence of
Ls(S) and Ls(S ′). Then T (TS) is a complete concrete input test suite for proving
the equivalence of L(S) and L(S ′).
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We can now state the main theorem about complete test suites for SFSMs
with separable alphabets: complete symbolic input test suites can be directly
transformed into likewise complete concrete input test suites, using the distin-
guishing function.

Theorem 3. Let TSI ⊆ Σ∗
I be a complete symbolic input test suite for prov-

ing the equivalence of symbolic languages Ls(S) and Ls(S ′). Then T (TSI) is a
complete concrete input test suite for proving the equivalence of L(S) and L(S ′).

For generating a complete test suite for testing language equivalence against
some SFSM reference model S, we can abstract S to an FSM M and use an arbi-
trary complete test generation method for testing language equivalence against
M . A complete FSM test suite TSFSM consists of test cases that are input
sequences α over the alphabet ΣI . Each sequence α can be turned into a con-
crete SFSM input test case by applying a distinguishing function T : Σ −→ DI

associated with S. The resulting test suite generation method is specified in
Algorithm 2 below. Algorithm 1 specifies how to calculate the distinguishing
function T for a given SFSM S.

Algorithm 1 Calculate Distinguishing Function T for alphabet (ΣI , ΣO, Σ).
T ← ∅;
for all (ϕ, ψ) ∈ ΣI × ΣO do

find solution σI ∈ DI for Formula (2) using an SMT solver supporting quantified
satisfaction [2]:
(∃σO ∈ DO � σI ∪ σO |= ϕ ∧ ψ) ∧ (∀ψ′ ∈ ΣO \ {ψ} � (ϕ, ψ′) ∈ Σ =⇒

(∀σ′
O ∈ DO � (σI ∪ σ′

O |= ψ) =⇒ (σI ∪ σ′
O |= ¬ψ′))

)

if solution σI exists then
T ← T ∪ {(ϕ, ψ) 	→ σI};

else
terminate with error “Alphabet does not fulfil separability condition”;

end if
end for
return T .

4 Tool Support

Essential for creating a complete concrete input test suite is the calculation
of the distinguishing function T : Σ −→ DI according to Definition 4. This
can be performed using Algorithm 1. The crucial step in this algorithm is the
calculation of a valuation function σI satisfying Formula (2) for given (ϕ,ψ) ∈ Σ.
To solve this formula, an SMT solver supporting quantified satisfaction (QS) is
required [2]. Several tools are available for this purpose, we have integrated Z33
into our test generator for this purpose.
3 https://github.com/Z3Prover/z3.

https://github.com/Z3Prover/z3
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Algorithm 2 Generate test suite for proving language equivalence against SFSM
S = (S, s0, R, I,O,D,ΣI , Σ

′
O, Σ′) and fault domain F(ΣI , ΣO, Σ,m)

.
Require: (ΣI , ΣO, Σ) is separable, Σ′

O ⊆ ΣO, Σ′ ⊆ Σ;
Calculate distinguishing function T : Σ −→ DI using Algorithm 1;
if calculation of T returns an error then

return error message “Test suite cannot be generated, since alphabet does not
fulfil separability condition”

end if
Define FSM M = (S, s0, R, ΣI , Σ

′
O, Σ′) abstracting S as described in Section 2;

Calculate complete input test suite TSFSM ⊆ Σ∗
I for checking FSM language equiva-

lence against M and fault domain FFSM(ΣI , ΣO, m);
return T (TSFSM).

The complete test suite generation is specified in Algorithm 2. As shown in
Theorem 4, this algorithm yields a complete test suite for the SFSM reference
model S, when applying the distinguishing function T to a complete test suite
from the FSM obtained by abstracting S. For calculating a complete test suite
for a given reference FSM and fault domain F(ΣI , ΣO, Σ,m)FSM the tool makes
use of the library libfsmtest [1] that contains many of the well-established test
generation algorithms for testing against FSM models.

Theorem 4. Algorithm 2 generates a test suite TS that is complete for proving
language equivalence against reference model S = (S, s0, R, I,O,D,ΣI , ΣO, Σ)
and fault domain F(ΣI , ΣO, Σ,m).

Note that a value of m can be obtained by static analysis of the SUT state
variables occurring in the source code. The potential mutations of guards and
output expressions can be obtained by identifying the condition expressions and
the right-hand sides of assignments, respectively. These techniques have been
manually applied by Gleirscher et al. [6], but automated static analysers for
these purposes are not yet available.

A demonstration instance of the tool with a web interface exists at
http://fsmtestcloud.informatik.uni-bremen.de.

5 Application of the Test Method: Example

In this section, we use the SFSM BRAKE introduced in Example 1 to illustrate the
transformations needed to incorporate the fault hypotheses and to obtain the
required syntactic representation that is necessary to apply the testing method
presented in Sect. 3. Then a test suite is produced according to the algorithms
described in Sect. 4.

Step 1 – define input and output alphabet mutations. Initially, the pos-
sible mutations of the reference model’s alphabet that may occur in erroneous
implementations are identified. To keep this example readable, we only add one

http://fsmtestcloud.informatik.uni-bremen.de
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guard mutation x ≤ v − δ to the set of guards actually used by SFSM BRAKE.
Additionally, one mutated output expression y = B2 + (x − v)2/c is added.

Step 2 – input alphabet refinement. Next, the input alphabet including
guard mutations is refined to ensure that Restriction 2 (input alphabet partitions
DI) is fulfilled. The original input alphabet of BRAKE extended by the above
guard mutation does not fulfil this condition. Therefore, a refined alphabet ΣI =
{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} with

ϕ1 ≡ x ∈ [0, v − δ) ϕ2 ≡ x = v − δ ϕ3 ≡ x ∈ (v − δ, v)
ϕ4 ≡ x = v ϕ5 ≡ x ∈ (v, 400] (3)

is introduced, and SFSM BRAKE is transformed accordingly. This leads to the
new representation BRAKE′ that is shown in tabular form in Table 1. Obviously,
BRAKE′ and BRAKE are language-equivalent. Moreover, it is easy to see that the
states s0, s1, s2 of BRAKE′ are still distinguishable, so n = 3 for the reference
model BRAKE′ of this example.

Table 1. Refined SFSM BRAKE′ fulfilling assumptions 1 — 3 specified in Sect. 2. Left
column lists source states, starting with initial state. First row lists guard conditions
from ΣI . Inner table cells cij list ‘next state/output expression’, applicable when guard
condition ϕj is triggered in source state si. Guards ϕi are specified in Eq. (3), and
output expressions ψj are defined in Eq. (4).

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

s0 s0/ψ1 s0/ψ1 s0/ψ1 s0/ψ1

s1/ψ2

s2/ψ3

s1 s0/ψ1 s0/ψ1 s0/ψ1 s1/ψ2 s2/ψ3

s2 s0/ψ1 s2/ψ3 s2/ψ3 s2/ψ3 s2/ψ3

Step 3 – specify the fault domain. For the fault domain F(ΣI , ΣO, Σ,m),
the input alphabet ΣI is already defined by Eq. (3). For specifying ΣO, the
output alphabet of BRAKE is extended by the output mutation identified in Step 1.
This results in ΣO = {ψ1, ψ2, ψ3, ψ4} with

ψ1 ≡ y = 0, ψ2 ≡ y ∈ [B0, B1], ψ3 ≡ y = B2+(x−v)/c, ψ4 ≡ y = B2+(x−v)2/c
(4)

for our example. Since ϕ4 ∧ ψ4 is equivalent to ϕ4 ∧ ψ3, the alphabet is specified
by Σ = (ΣI × ΣO) \ {(ϕ4, ψ4)} to ensure separability.

As an estimate for the maximal number m ≥ n of states for SFSM behaviours
captured by F(ΣI , ΣO, Σ,m), we choose m = 4 for this example.

Step 4 – calculate distinguishing function T . The distinguishing function
T : Σ −→ DI is calculated according to Algorithm 1 in Sect. 4. For our example,
T results in the function specified in Table 2.
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It is easy to see that the separability condition for output expressions is
fulfilled. Observe that for BRAKE′, the distinguishing function T does not depend
on the second argument ψ ∈ ΣO. In the general case, the image value of T
depends on both guard condition and output expression.

Table 2. Function table T : Σ −→ DI for transformed SFSM BRAKE′.
Guards ϕi are specified in Eq. (3), output expressions ψj in Eq. (4).

T (ϕ1, ψi) ={x 	→ 180}, T (ϕ2, ψi) = {x 	→ 190}, T (ϕ3, ψi) = {x 	→ 195}, i = 1, 2, 3, 4

T (ϕ4, ψi) ={x 	→ 200}, i = 1, 2, 3, T (ϕ5, ψi) = {x 	→ 210}, i = 1, 2, 3, 4

Step 5 – calculate complete test suite on FSM abstraction. We now
abstract BRAKE′ to an FSM as described in Sect. 2 with F(ΣI , ΣO, Σ,m)FSM
as fault domain. To generate a complete test suite for FSM language equiva-
lence testing, we apply the well-known W-method [3] for this example, since this
method is simple to introduce and to apply without tool support. From Theo-
rem 3 follows that any complete input test suite W for the FSM abstraction will
directly yield a complete input test suite for the SFSM BRAKE′ by applying the
distinguishing function T to W.

For fault domain F(ΣI , ΣO, Σ,m)FSM, a complete input test suite according
to the W-method is given by the set of input sequences

W = V.
( m−n+1⋃

i=0

Σi
I

)
.W,

where V is a state cover consisting of input traces leading from the initial state to
every state in the reference model, Σi

I is the set of all input traces of length i (Σ0
I

just contains the empty trace ε), and W is a characterisation set, distinguishing
all states of the reference model. The “ .”-operator concatenates all traces in the
first operand with all traces in the second operand. For our example, m−n+1 = 2
and

V = {ε, ϕ4, ϕ5}, W = {ϕ4},
2⋃

i=0

Σi
I = {ε, ϕj , ϕj .ϕk | j, k ∈ {1, 2, 3, 4, 5}}.

Applying T to this FSM test suite results in the SFSM input test suite

TSin = A.B.C, A = {ε, T (ϕ4, ·), T (ϕ5, ·)}
B = {ε, T (ϕj , ·), T (ϕj , ·).T (ϕk, ·) | j, k ∈ {1, 2, 3, 4, 5}}, C = {T (ϕ4, ·)}

Consider, for example, a faulty implementation IBRAKE, that differs from
BRAKE′ by a transfer fault: the correct BRAKE-transition s2

ϕ2/ψ3−−−−→ s2 has been

replaced by the faulty transition s2
ϕ2/ψ3−−−−→ s1. This faulty transition is detected
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by the input test case tc1 = {x �→ 210}.{x �→ 190}.{x �→ 200} ∈ A.B.C:
execution of this test case against IBRAKE will result in witnesses for symbolic
trace ξ1 = (ϕ5, ψ3).(ϕ2, ψ3).(ϕ4, ψ2). The reference model BRAKE′, however, will
produce only a witness for symbolic trace ξ′

1 = (ϕ5, ψ3).(ϕ2, ψ3).(ϕ4, ψ3), and
ϕ4∧ψ3 has y = B2 as the only solution, while ϕ4∧ψ2 has solutions y ∈ [B0, B1].

6 Complexity Considerations

After discarding input traces that are prefixes of longer ones, the test suite
specified in the previous section results in 65 test cases. Using the general the-
ory for testing language equivalence of arbitrary SFSMs would result in 176
test cases [8]. The reason for this significant difference can be understood from
the general theory [8]: every complete test suite has to contain a “core set”
V.(

⋃m−n+1
i=0 Ai) of test cases that are suitable for (a) reaching every state s in

the SUT, and (b) exercising the relevant inputs from a set A ⊆ DI in every state
s. In the general case, the number of elements in A depends on the number of
input/output equivalence classes, each class constructed by conjunctions of pos-
itive and negated guards and output expressions. For our example, this leads to
8 concrete representatives of these input/output classes. The specialised theory
presented in this paper, however, only needs one representative for every guard
in ΣI , after having previously ensured that ΣI partitions DI . This leads to 5
representatives only. For worst case estimates, the input set A has a cardinality
of order O(2(|ΣI |+|ΣO|)) in the general theory, whereas the cardinality of A is of
order O(2|ΣI |) in the specialised cases presented here, due to the separability of
alphabets.

7 Conclusion

We have presented a testing strategy for checking input/output language equiva-
lence against a restricted class of nondeterministic symbolic finite state machines
and proven its completeness. The restricted class of admissible SFSM models is
characterised by separable alphabets. This means that output expressions are
pairwise distinguishable for each transition guard, by choosing appropriate input
valuations fulfilling the respective guard conditions. If a reference model con-
forms to this restriction, the resulting test suites proving language equivalence
are significantly smaller than those needed for the general case, for which a
complete theory exists as well.

It should be emphasised that for grey-box software testing, the check whether
an implementation is really contained in a given fault domain can be performed
by means of static analysis of the source code. Applying these analyses, the
complete tests described here represent an alternative to code verification by
model checking.
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