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Abstract. This paper presents a novel scalable GPU-based method for
Test Paths (TPs) and Prime Paths (PPs) Generation, called TPGen,
used in structural testing and in test data generation. TPGen outper-
forms existing methods for PPs and TPs generation in several orders of
magnitude, both in time and space efficiency. Improving both time and
space efficiency is made possible through devising a new non-contiguous
and hierarchical memory allocation method, called Three-level Path
Access Method (TPAM), that enables efficient storage of maximal sim-
ple paths in memory. In addition to its high time and space efficiency,
a major significance of TPGen includes its self-stabilizing design where
threads execute in a fully asynchronous and order-oblivious way with-
out using any atomic instructions. TPGen can generate PPs and TPs of
structurally complex programs that have an extremely high cyclomatic
and/or Npath complexity.

Keywords: Prime Path · Test Path · GPU Programming

1 Introduction

This paper presents a scalable GPU-based method for the Generation of all
Test Paths (TPs) and Prime Paths (PPs), called TPGen, for structural test-
ing. Complete Path Coverage (CPC) is an ideal testing requirement where all
execution paths in a program are tested. However, such coverage may be impos-
sible because some execution paths may be infeasible, and the total number of
program paths may be unbounded due to loops and recursion. Lowering expec-
tations, one would resort to testing all simple paths, where no vertex is repeated
in a simple path, but the Control Flow Graph (CFG) of even small programs
may have an extremely large number of simple paths. Amman and Offutt [1]
propose the notion of Prime Path Coverage (PPC), where a prime path is a
maximal simple path; a simple path that is not included in any other simple
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path. PP coverage is an important testing requirement as it subsumes other
coverage criteria (e.g., branch coverage) in structural testing. As such, finding
the set of all PPs of a program (1) expands the scope of path coverage, and (2)
enables the generation of Test Paths (TPs), which are very important in test
data generation. This paper presents a scalable approach for the generation of
PPs and TPs in structurally complex programs.

Despite the crucial role of PPC in structural testing, there are a limited
number of methods that offer effective and efficient algorithms for generating
PPs and TPs for complex real-world programs. Amman and Offutt [2] propose a
dynamic programming solution for extracting all PPs. Dwarakanath and Jankiti
[6] utilize Max-Flow/Min-Cut algorithms to generate minimum number of TPs
that cover all PPs. Hoseini and Jalili [10] use genetic algorithms to generate
PPs/TPs of CFGs extracted from sequential programs. Sayyari and Emadi [14]
exploit ant colony algorithms to generate TPs covering PPs. Sirvastava et al.
[15] extract a Markov chain model and produce an optimal test set. Bidgoli et
al. [4] apply swarm intelligence algorithms using a normalized fitness function to
ensure the coverage of PPs. Lin and Yeh [11] and also Bueno and Jino [5] present
methods based on genetic algorithm to cover PPs. Our previous work [8] gen-
erates PPs and TPs in a compositional fashion where we separately extract the
PPs of each Strongly Connected Component (SCC) in a CFG, and then merge
them towards generating the PPs of the CFG. Most aforementioned methods
are applicable to simple programs and cannot be utilized for PP coverage of
programs that have a high structural complexity; i.e., very large number of PPs.
This paper exploits the power of GPUs in order to provide a time and space
efficient parallel algorithm for the generation of all PPs.

Contributions: The major contributions of this paper are multi-fold. First,
we present a novel high-performance GPU-based algorithm for PPs and TPs
generation that works in a self-stabilizing fashion. The TPGen algorithm first
generates the component graph of the input CFG on the CPU and then processes
each vertex of the component graph (each SCC) in parallel on a GPU. TPGen
is vertex-based in that each GPU thread Ti is mapped to a vertex vi and a list li
of partial paths is associated with vi. Each thread extends the paths in li while
ensuring their simplicity. The execution of threads is completely asynchronous.
Thread Ti updates li based on the extension of the paths in the predecessors
of vi, and removes all covered simple paths from li. The experimental evalua-
tions of TPGen show that it can generate all PPs of programs with extremely
large cyclomatic [12] and Npath complexity [13] in a time and space efficient
way. Cyclomatic Complexity (CC) captures the number of linearly independent
execution paths in a program [12]. Npath complexity is a metric for the number
of execution paths in a program while limiting the loops to at most one itera-
tion [13]. TPGen outperforms existing sequential methods up to 3.5 orders of
magnitude in terms of time efficiency and up to 2 orders of magnitude in space
efficiency for a given benchmark. TPGen achieves such efficiency while ensuring
data race-freedom without using ‘atomic’ statements in its design. Moreover,
TPGen is self-stabilizing in the sense that the GPU threads start in any order.
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Our notion of self-stabilization provides robustness against arbitrary initializa-
tion of TPGen where the order of execution of threads is arbitrary. This is
different from traditional understanding of self-stabilization where an algorithm
recovers if perturbed by transient faults. TPGen threads generate PPs without
any kind of synchronization with each other, or with the CPU. Such lack of
synchronization significantly improves time efficiency but is hard to design due
to the risk of thread interference. As a result, we consider the design of TPGen
as a model for other GPU-based algorithms, which by itself is a novel contribu-
tion. Second, we propose a non-contiguous and hierarchical memory allocation
method, called Three-level Path Access Method (TPAM), that enables efficient
storage of maximal simple paths. We also put forward a benchmark of synthetic
programs for evaluating the structural complexity of programs and for experi-
mental evaluation of PPs/TPs generation methods.

Organization. Section 2 defines some basic concepts. Section 3 states the PPs
generation problem. Subsequently, Sect. 4 presents the TPAM method of mem-
ory allocation. Section 5 puts forward a highly time and space-efficient paral-
lel algorithm implemented on GPU for PPs generation. Section 6 presents our
experimental results. Section 7 discusses related work. Finally, Sect. 8 makes con-
cluding remarks and discusses future extensions of this work.

2 Preliminaries

This section presents some graph-theoretic concepts that we utilize throughout
this paper. A directed graph G = (V,E) includes a set of vertices V and a set of
arcs (vi, vj) ∈ E, where vi, vj ∈ V . A simple path p in G is a sequence of vertices
v1, · · · , vk, where each arc (vi, vi+1) belongs to E for 1 ≤ i < k and k > 0, and no
vertex appears more than once in p unless v1 = vk. A vertex vj is reachable from
another vertex vi iff (if and only if) there is a simple path that emanates from vi
and terminates at vj . A SCC in G is a sub-graph G′ = (V ′, E′), where V ′ ⊆ V
and E′ ⊆ E, and for any pair of vertices vi, vj ∈ V ′, vi and vj are reachable
from each other. Tarjan [16] presents a polynomial-time algorithm that finds the
SCCs of the input graph and constructs its component graph. Each vertex of the
input graph appears in exactly one of the SCCs. The result is a Directed Acyclic
Graph (DAG) whose every vertex is an SCC. A Control Flow Graph (CFG)
models the flow of execution control between the basic blocks in a program,
where a basic block is a collection of program statements without any conditional
or unconditional jumps. A CFG is a directed graph, G = (V,E). Each vertex
v ∈ V corresponds to a basic block. Each edge/arc e = (vi, vj) ∈ E corresponds
to a possible transfer of control from block vi to block vj . A CFG often has a start
vertex that captures the block of statement starting with the first instruction of
the program, and has some end vertices representing the blocks of statements
that end in a halt/exit/return instruction. (We use the terms ‘arc’ and ‘edge’
interchangeably throughout this paper.) Figure 1 illustrates an example method
as well as its corresponding CFG (adopted from [3]) for a class in the Apache
Commons library.
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Start: private static int binarySearch0 (long[] a, int fromI, int toIndex, long key) { 

1: int low = fromIndex;

1:    int high = toIndex - 1; 

2: while (low <= high) { 

3: int mid = (low + high) >>> 1;    

3: long midVal = a[mid];                 

3: if (midVal < key)                     

4: low = mid + 1;               

5: else if (midVal > key)      

6: high = mid - 1;   

7: else 

7: return mid; // key found   

8: }

9: return -(low + 1); // key not found.       

End: } 

(a) java.util.Arrays.binarySearch0()

Start

1

3

4
5

9

End

2

8

6

7

(b) CFG for method (a)

Fig. 1. Example method and corresponding CFG

Definition 1 (PP). A PP is a maximal simple path in a directed graph; i.e.,
a simple path that cannot be extended further without breaking its simplicity
property (e.g., PP 〈2, 3, 4, 8, 2〉 in Fig. 1(b)).

Definition 2 (TP). A path p from vs to vt is a TP iff vs is the Start vertex of
G and vt is an End vertex in G. (e.g., the path 〈Start, 1, 2, 3, 4, 8, 2, 9, End〉 in
Fig. 1(b))

Definition 3 (CompletePP). A PP p from vs to vt is a CompletePP iff
vs is the Start vertex of G and vt is an End vertex in G. (e.g., the PP
〈Start, 1, 2, 3, 5, 7, End〉 in Fig. 1(b))

Definition 4 (Component Graph of CFGs). The component graph of a
CFG G = (V,E), called CCFG, is a DAG whose vertices are the SCCs of G,
and each arc (vi, vj) ∈ E starts in an SCCi and ends in a distinct SCCj (see
Fig. 2(b)).

Since this paper presents a parallelized version of the method in [8], we rep-
resent a summary of the major steps of the algorithm of [8], illustrated in Fig. 3:
(1) compute the component graph of the input CFG, denoted CCFG; (2) gen-
erate the set of PPs of CCFG and the set of PPs of each individual SCC in
CCFG; (3) extract different types of intermediate paths of each SCC, and (4)
merge the PPs of SCCs to generate all PPs of the original input CFG. Exper-
imental evidence [8] indicates that the most time consuming step is the second
one (i.e., PP generation) where we generate the internal PPs of each individual
SCC. This is due to cyclic structure of SCCs. To resolve this bottleneck, we
present an efficient parallel algorithm in Sect. 5.
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Fig. 2. SCC and CCFG extracted from CFG for Fig. 1(b)

3 Problem Statement

Generating PPs and TPs of the control flow graphs related to real world pro-
grams with a large Npath complexity is an important problem in software struc-
tural testing. These types of graphs have a huge number of PPs and processing
them under conventional algorithms on CPUs requires a lot of time. Thus, it
is necessary to develop algorithms that address this problem and maintain the
accuracy of the PP generation. In a graph-theoretic setting, the PPs generation
problem can be formulated as follows:

Problem 1 (PPs Generation).

– Input: A graph G = (V,E) that represents the CFG of a given program, a
start vertex s ∈ V and an end vertex e ∈ V .

– Output: The set of PPs finished at each vertex v ∈ V and the set of TPs
covering all PPs.

In principle, the number of PPs could be exponential. However, testers should
ideally work with a minimum number of TPs that provide a complete PP cov-
erage. Since finding the minimum number of TPs that provide complete PP
coverage is hard, we focus on generating a small number of TPs, where each TP
covers multiple PPs. For example, consider the second TP in the first column
of Table 1 that covers six PPs in the second column of Table 1 (illustrated by
the bold fonts). Notice that, this TP starts from the Start node (in Fig. 2(a)),
iterates twice in the loop 2-3-4-8-2, and exits through the nodes 5, 7 and End.
Figuring out that such a TP can cover six PPs by going through the loop 2-3-
4-8-2 twice is non-trivial for human testers. Moreover, generating such TPs is
impossible without extracting all PPs. Thus, it is important to efficiently solve
Problem 1. We emphasize that testers generate test data only for TPs.
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SCCs Extraction

Component  Control Flow Graph (CCFG)

Extraction of partial paths from/to entry/exit vertices of SCCs

Complete PPs Generation

Prime Paths from/to SCCs Generation

Program Control Flow Graph

Preprocessing

Generation

Path extraction

Merging

Total PPs of the programTest Paths covering PPs of the program

Fig. 3. Overview of the compositional method of [8].

Table 1. TPs and PPs generated for Fig. 1(b)

Test Paths Prime Paths

{0,1,2,3,5,6,8,2,3,5,6,8,2,3,5,7,10} {8,2,3,4,8}{4,8,2,3,4}{2,3,4,8,2}{4,8,2,3,5,6}
{0,1,2,3,4,8,2,3,4,8,2,3,5,7,10} {5,6,8,2,3,5} {0,1,2,3,5,6,8} {3,5,6,8,2,9,10}
{0,1,2,3,5,6,8,2,3,4,8,2,9,10} {2,3,5,6,8,2} {4,8,2,3,5,7,10} {3,4,8,2,9,10}
{0,1,2,3,4,8,2,3,5,6,8,2,9,10} {6,8,2,3,5,7,10} {3,5,6,8,2,3} {0,1,2,3,4,8}
{0,1,2,3,5,7,10} {3,4,8,2,3} {6,8,2,3,5,6} {8,2,3,5,6,8}
{0,1,2,9,10} {5,6,8,2,3,4} {0,1,2,3,5,7,10} {0,1,2,9,10}

In practice, solving Problem 1 is more costly when the input graph is an
SCC because every vertex is reachable from any other vertex in an SCC. For
this reason, Sect. 5 proposes a parallel GPU-based algorithm that extracts the
PPs of SCCs in a time and space efficient fashion. The in-degree of s is 0,
and out-degree of e is 0. We focus on CFGs where all vertices v ∈ V except e
have a maximum out-degree of 2. Without loss of generality, we can convert a
vertex v with an out-degree greater than 2 (i.e., switch-case structure) to vertices
with out-degree 2 by adding some new intermediate vertices between v and its
successor vertices. (See details in [9]).
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4 Data Structures

In this section, we present a data structure for storing the input CFG (Sect. 4.1),
a path data structure (Sect. 4.2), and a novel memory allocation method
(Sect. 4.3) for storing the generated PPs.

4.1 CFG Data Structure

A matrix is usually stored as a two-dimensional array in memory. In the case of
a sparse matrix, memory requirements can be significantly reduced by maintain-
ing only non-zero entries. Depending on the number and distribution of non-zero
entries, we can use different data structures. The Compressed Sparse Row (CSR,
CRS or Yale format) [7] represents a matrix by a one-dimensional array that sup-
ports efficient access and matrix operations. We employ the CSR data structure
(see Fig. 4) to maintain a directed graph in the global memory of GPUs, where
vertices of the graph receive unique IDs in {0, 1, · · · , |V | − 1}. To represent a
graph in CSR format, we store end vertices and start vertices of arcs in two
separate arrays EndV and StartV respectively (see Fig. 4). Each entry in EndV
points to the starting index of its adjacency list in array StartV. We assign one
thread to each vertex. That is, thread t is responsible for the vertex whose ID
is stored in EndV[t], where {0 ≤ t < |V | − 1} (see Fig. 4). For example, Fig. 4
illustrates the CSR representation of the graph of Fig. 1(b). Since the proposed
algorithm computes all PPs ending in each vertex v ∈ V , maintaining the pre-
decessor vertices is of particular importance. In CSR data structure, first the
vertex itself and then its predecessor vertices are stored.

4.2 Path Structure

We utilize a set of flags to keep the status of each recorded path along with each
vertex (see Fig. 5). Let vi be a vertex and p be a path associated with vi. The
PathValidity flag (p[0]) indicates whether or not the recorded information repre-
sents a simple path. The PathExtension flag (p[1]) means that the current path
is an extended path; hence not a PP. We assume each non-final vertex can have
a maximum of two successor vertices. We use the LeftSuccessor (p[2]) and the
RightSuccessor (p[3]) flags to indicate whether the thread of each corresponding
successor has read the path ending in vertex vi. Once one of those successor
threads reads the path ending in vi it will mark its flag. In each iteration of
the algorithm, paths with marked extension and marked successor flags will be
pruned. We set the CyclicPath flag (p[4]) if p is a cyclic path. If p is cyclic, then
it will no longer be processed by the successor threads of v and is recorded as a
PP at the vi. (see Fig. 5).

Note: Since there is a unique thread associated to each vertex, we use the
terms “successor” and “predecessor” for both vertices and threads.
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Fig. 4. Compressed Sparse Row (CSR) graph representation of Fig. 1(b)
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4.3 Three-Level Path Accessing Method (TPAM)

In each CFG, the extraction of the PPs is based on the generation of the simple
paths terminated in each vertex vi ∈ V . There is a list associated to each vertex
vi, denoted vi.list to record all generated PPs ending in vi. To implement this
idea, all acyclic paths ending in predecessors of vi must be copied to the list of the
vertex vi. For a large CFG, the number of such paths could be enormous, which
would incur a significant space cost on the algorithm. To mitigate this space
complexity, we introduce a non-contiguous memory allocation method with a
pointer-based Three-level Path Accessing Method (TPAM). TPAM is a path
accessing scheme which consists of three levels of address tables in a hierarchical
manner. The entries of Level 1 address table with length |V | are pointers to each
vi.list at Level 2 address tables. Level 2 address tables contain addresses of all
paths stored in each vi.list. The entries of the last level tables are actual paths
information in memory (see Fig. 6).

All activities such as compare, copy, extend and delete are applied to the
paths of each vertex. Let vi be a vertex in V and p be a path in vi.list. To access
path p, the start address of the vi.list is discovered from the first array (i.e.,
Path[vi]). The start address of path p is stored in Level 2 address table in Fig. 6
(i.e., Path[vi][p]). The list of vertices of path p is in Level 3 path table, which
according to path structure mentioned in Fig. 5, all activities can be done on the
elements of the path (i.e., Path[vi][p][5] shows the length of the path p).
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Fig. 6. Three-level Path Accessing Method (TPAM).

Instead of using malloc in allocating host memory, we call CUDA to cre-
ate page-locked pinned host memory. Page-Locked Host Memory for CUDA
(and other external hardware with DMA capability) is allocated on the physical
memory of the host computer. This allocation is labeled as non-swappable (not-
pageable) and non-transferable (locked, pinned). This memory can be accessed
with the virtual address space of the kernel (device). This memory is also added
to the virtual address space of the user process to allow the process to access it.
Since the memory is directly accessible by the device (i.e., the GPU), the write
and read speeds are high bandwidth. Excessive allocation of such memory can
greatly reduce system performance as it reduces the amount of memory avail-
able for paging, but proper use of this memory allocation method provides a
high performance data transfer scheme.

5 GPU-Based Prime Paths Generation

In order to scale up PPs generation, this section presents a parallel composi-
tional method that provides better time efficiency in comparison with existing
sequential methods for PPs generation. Specifically, we introduce a GPU-based
PPs generation algorithm. The input of the PP generation algorithm (Algorithm
1) includes a CFG representing the Program Under Test (PUT). The output of
Algorithm 1 is the set of all PPs finished at each vertex vi ∈ V .

A GPU-based CUDA program has a CPU part and a GPU part. The CPU
part is called the host and the GPU part is called the kernel, capturing an array
of threads. The proposed algorithm includes one kernel. The host (i.e., CPU)
initializes the vi.list of all vi and an array of boolean flags, called PublicF lag,
where PublicF lag[vi] = true indicates that the predecessors of vertex vi have
been updated and so the vi.list needs to be updated. One important objective is
to design a self-stabilizing algorithm with no CPU-GPU communications, thus
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the host launches the kernel Update-Vertex (i.e., Algorithm 1) only once. The
proposed algorithm is implemented in such a way that there is no need for
repeated calls to synchronize different threads. One of the major challenges in
parallel applications that drastically reduces their efficiency is the use of atomic
instructions. Atomic instructions are executed without any interruption, but
greatly reduce the efficiency of parallel processing. The self-stabilizing device
(i.e., GPU) code in this section is implemented without using atomic instructions.

Algorithm 1 forms the core of the kernel, and performs three kinds of pro-
cessing on each vertex vi ∈ V : pruning the extended paths in vi.list, extending
acyclic simple paths in the lists of predecessors of vi, and examining the termi-
nation of all backward reachable vertices from vi. Lines 2 to 8 in Algorithm 1
remove extra paths from vi.list. A path p ∈ vi.list is extra if it is extended by
one of the vi’s successor(s) or covered by another path p′ ∈ vi.list.

Lines 9 to 19 extend eligible acyclic simple paths in the lists of all pre-
decessor vertices of vi. Suppose that vj ∈ V is one of the vi’s predecessor. A
path q ∈ vj .list is an eligible path if q is not a cyclic path, and vi is the start
vertex of q in case vi already appeared in q. The thread assigned to vi runs a
function called ExtendPath (in Algorithm 2) to append the new eligible path
to the vi.list. In Lines 21 to 33, the thread of vi cannot be terminated if the
vertex vi is not the final vertex and has any unread paths in vi.list (Lines 21 to
25). Thread of vi then examines the termination of all its backward reachable
vertices by examining their PublicF lag. If all the ancestor vertices of vi are ter-
minated, then the vertex vi will also set its PublicFlag to false and exit the while
loop (Lines 28 to 32). In fact, self-stabilization is achieved through localizing
path extension to each thread, but making sure that any change in ancestors of
a vertex will eventually propagate to it.

We devise Algorithm 2 to append a new simple path to the list of a given
vertex. This algorithm takes a path p as well as a specified vertex v as inputs.
Algorithm 2 first adds the vertex v at the end of the path p and increments the
length of p (Lines 2 and 3). Then, it checks the occurrence of vertex v as the
first vertex of p. This property causes the new path p to be considered as a cycle
in vertex v (Lines 4 to 6). Finally, Algorithm 2 sets PathValidity flag of the new
path p to true and appends it to the end of v.list (Lines 7 and 8).

Theorem 1. Algorithm 1 terminates, is data race free and finds all PPs.

Proof. Due to space constraints, we present a proof sketch and refer the readers
to the complete proof in [9]. To prove the termination of Algorithm 1, we show
that at some finite point in time, vi.LocalFlag and vi.PublicFlag will become false
for every vi ∈ V and will remain false. As such, when PublicFlag of all vertices
in vi.ReachedFrom are set to false, the thread assigned to vi will eventually stop.
When no more extensions occur for any vertex, Algorithm 1 terminates. To
prove data race freedom, we show that neighboring threads cannot perform
read and write operations on the same path simultaneously. Consider two arcs
(vj , vi) and (vi, vk) in the input CFG. A data race could arise when the thread
of vk reads a path p in vi.list in Line 12 and at the same time the thread of vi
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Algorithm 1. Update-Vertex(vi, G = (V,E))
1: while (vi.PublicF lag = true) do
2: for each path p ∈ vi.list do
3: if p has been read by both successors then
4: if (p is an extended path) or (p is already included in some path p′ ∈

vi.list) then
5: remove p;
6: end if
7: end if
8: end for
9: for each vj where (vj , vi) ∈ E do // Read from predecessors.

10: for each path q ∈ vj .list do // PathValidity flag
11: if q is not read by vi then
12: Label q as read by vi; // Left or Right Successor flag
13: if (q is not a cycle) and (vi does not appear in q or vi is the first

vertex of q) then
14: ExtendPath (q,vi);
15: Label q as an extended path; // PathExtension flag
16: end if
17: end if
18: end for
19: end for
20: vi.LocalF lag = false;
21: for each path p ∈ vi.list do
22: if p is not read by both successors then
23: vi.LocalF lag = true;
24: end if
25: end for
26: if vi.LocalF lag = false then // all paths in vi.list have been read by both

v′
is successors

27: vi.PublicF lag = false;
28: for each vk where vi is Reachable from vk do
29: if vk.PublicF lag = true then
30: vi.PublicF lag = true;
31: end if
32: end for
33: end if
34: end while

Algorithm 2. ExtendPath(Path[] p, Vertex v)
1: Path[] NewPath = p;
2: NewPath[5 + |p| + 1] = v;
3: NewPath[5] = p[5] + 1;
4: if v is the first vertex of p then
5: NewPath[4] = 1; // CyclicPath flag
6: end if
7: NewPath[0] = 1; // PathValidity flag
8: append NewPath to v.list;
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may be removing p in Line 5. However, this cannot occur because thread of vi
removes p if it has been read by both successors. That is, vk must have read p
before vi can remove it. A similar conflict could occur when vi extends a path
p in vj .list in Line 14 and vj wants to remove p in Line 5. This scenario is also
impossible to occur because vj can remove p only if it has already been read by
vi. We also show that if Algorithm 1 fails to find some prime path, then the list
of some vertex must have been empty initially, which is contrary to initializing
the list of every vertex with itself.

6 Experimental Results

This section presents the results of our experimental evaluations of the proposed
GPU-based method for PPs and TPs generation compared to the CPU-based
approach proposed in [8]. The experimental benchmark consists of a set of ten
modified CFGs from [3] (which are taken from Apache Commons libraries).
To increase the structural complexity of input CFGs, we synthetically include
extra nested loops and a variety of conditional statements to create more SCCs.
Our strategy for creating additional loops/SCCs is to include new arcs from the
‘then’ part of conditional statements back to their beginning. Table 2 presents the
structure of these CFGs. Columns 3 to 9 of Table 2 provide the number of nodes,
edges, and SCCs of each CFG. The total numbers of nodes and edges of all SCCs
are mentioned as SccNodes and SccEdges, respectively. Columns 7 and 8 show
the Cyclomatic Complexity (CC) [12] and Npath Complexity [13] of the input
CFGs. The last column illustrates the number of prime paths produced with
the GPU-based method. We compare the parallel and the sequential approaches
with respect to their running time and memory consumption. The number of
generated PPs for each CFG is provided in Column 9 of Table 2. We ran all the
experiments on an Intel Core i7 machine with 3.6GHz X 8 processors and 16 GB
of memory running Ubuntu 17.01 with gcc version 5.4.1. The parallel approach
is implemented on a Nvidia GTX graphical processing unit equipped with 4G
RAM and 768 CUDA cores.

The bar graph of Fig. 7 illustrates the time efficiencies of the CPU-based and
GPU-based approaches. (The reported timings for each approach is the average
of twenty runs.) These values reflect the fact that the time costs of the CPU-
based sequential method is less for smaller CFGs. Specifically, for the CFGs
of the top five rows of Table 2, on average, the CPU-based method consumed
61% less time than the GPU-based method (due to the transfer overhead from
CPU to GPU). However, for large CFGs at the bottom of Table 2, the parallel
GPU-based method costs 39% less time than the sequential method. This time
efficiency increases significantly with growing graph size. For example, the GPU-
based time efficiency in the last graph is 71%. The recorded times indicate that
by increasing the structural complexity, the GPU-based algorithm provides a
better performance (assigning exactly one thread for each vertex). Thus, for real-
world applications that have a large number of lines and complex structures, the
GPU-based algorithm is expected to be highly efficient.
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Table 2. Modified benchmark CFGs and their structural complexity

CFG Original Functions Graph structure after modification PPs
Nodes Edges SCC SccNodes SccEdges CC Npath

1 AsmClassReaderAccept 180 214 18 78 83 35 2.1e7 35629
2 AsmClassWriterToByteArray 215 258 24 103 110 44 6.1e11 176481
3 SquareMesh2DcreateLinks 244 290 27 115 125 49 3.3e12 139684
4 PrivilizerAsmMethodWriter 355 431 38 160 173 68 4.5e22 253954
5 SingularValueDecomposition 486 567 47 223 244 104 1.1e23 643738
6 ListParserTokenManager 723 853 75 331 351 131 2.0e32 1016762
7 BOBYQAOptimizer 874 994 83 409 762 155 9.3e39 1477397
8 ParserParserTokenManager 963 1119 93 448 490 213 1.3e44 2573594
9 InternalXsltcCompilerCUP 1441 1713 149 626 712 273 4.1e68 4478382
10 XPathLexerNextToken 2160 2566 224 957 1073 404 8.4e97 9563583

Fig. 7. Time cost of CPU-based vs. GPU-based method.

The bar graph of Fig. 8 illustrates the space efficiency of the CPU-based vs.
the GPU-based approach. These values indicate that the GPU-based approach
applying TPAM method has less memory costs than the CPU-based method.
On average, the GPU-based approach consumes 62% less memory for the input
CFGs. On the other hand, for more complex CFGs, the CPU-based method
consumes a lot of memory due to the contiguous memory allocation.

7 Related Work

This section discusses related works on the prime and test paths coverage in
model-based software testing context. There are two major categories of TPs
generation/coverage. Static methods generate TPs of a given CFG. For exam-
ple, Amman and Offutt [1] start with the longest PP and extend every PP to
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Fig. 8. Memory cost of CPU-based vs. GPU-based method.

visit the start and end vertices, thus forming a TPs. Their process continues
with the remaining uncovered longest PPs. This algorithm does not attempt
to minimize the number of TPs but is extremely simple. Fazli and Afsharchi
[8] extract the set of SCC’s entry-exit paths that cover all internal PPs of all
SCCs. Then, they merge these paths using the complete paths of the component
graph, thereby yielding complete TPs that cover all incomplete PPs. Dynamic
methods instrument the PUT in order to analyze the coverage of a set of desired
paths. For example, nature-inspired methods (e.g., genetic algorithms [10], ant
colony [15], swarm intelligence [4]) provide dynamic methods for PPs and TPs
coverage. TPGen, however, is a parallel self-stabilizing vertex-based algorithm
that significantly scales up the PPs and TPs generation in a static fashion for
structurally complex programs that are beyond the reach of existing methods.

8 Conclusions and Future Work

We presented a novel scalable GPU-based method, called TPGen, for the gener-
ation of all Test Paths (TPs) and Prime Paths (PPs) used in structural testing
and in test data generation. TPGen outperforms existing methods for PPs and
TPs generation in several orders of magnitude, both in time and space efficiency.
To reduce TPGen’s memory costs, we designed a non-contiguous and hierarchi-
cal memory allocation method, called Three-level Path Access Method (TPAM),
that enables efficient storage of maximal simple paths in memory. TPGen does
not use any synchronization primitives for the execution of the kernel threads
on GPU, and starting from any execution order of threads, TPGen generates
the PPs ending in any individual vertex; hence providing a fully asynchronous
self-stabilizing GPU-based algorithm.

As an extension of this work, we plan to further improve the scalability of
TPGen through execution on a network of GPUs. Moreover, we will integrate
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PPs/TPs generation with constraint solvers towards generating test data for
specific TPs. We will expand the proposed benchmark with more structurally
complex programs. We also plan to develop tools that can calculate the structural
complexity of a given CFG for different complexity measures (e.g., CC, Npath,
PPs), and can compare two programs in terms of their structural complexity.
An important application of such tools will be in program refactoring towards
lowering structural complexity while preserving functional correctness.
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