
kProp: Multi-neuron Relaxation Method
for Neural Network Robustness

Verification

Xiaoyong Xue, Xiyue Zhang, and Meng Sun(B)

School of Mathematical Sciences, Peking University, Beijing 100871, China
{xuexy,zhangxiyue,sunm}@pku.edu.cn

Abstract. With the increasing application of neural networks in safety-
critical domains, their robustness becomes a crucial concern. In this paper,
we present a multi-neuron relaxation-based verification framework kProp
for ReLU neural networks with adversarial distortions in general norms.
In contrast with existing verification methods tackling general distor-
tion norms, the proposed multi-neuron relaxation method is able to cap-
ture the relations among a group of neurons, thus providing tighter con-
vex relaxations and improving verification precision. In addition, existing
methods based on linear relaxation may include infeasible inputs to the
neural network for robustness verification, which further leads to verifica-
tion precision loss. To address this problem, we propose a region clipping
method to exclude infeasible inputs to further improve the verification pre-
cision. We implement our verification framework and evaluate its perfor-
mance on open-source benchmarks. The experiments show that kProp can
produce precise verification results where existing verification methods fail
to produce conclusive results, and can be applied to neural networks with
more than 4k neurons in general distortion norms.
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1 Introduction

Neural networks (NNs) have been increasingly used in a broad range of applica-
tions and made inspiring breakthroughs in many safety-critical domains, such as
autonomous driving, drone control, and medical diagnosis [1,3,10]. Meanwhile, a
lot of studies have highlighted the vulnerability of neural networks against adver-
sarial attacks. Adversarial attacks can be performed by applying small impercep-
tible perturbations to alter the NN’s prediction result on the original image [9].
In addition, more practical attacks can be achieved by adding real-world phys-
ical perturbations [5]. With the increasing deployment of neural networks into
safety-critical tasks, rigorous verification of NN’s robustness against adversarial
perturbations has gained substantial momentum in recent years.

Verification methods for neural networks mainly fall into two categories –
complete and incomplete. Complete verification methods based on satisfiability
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modulo theories (SMT) [4,11] or mixed integer linear programming (MILP) [13]
can provide an exact answer of whether a neural network is robust. However,
robustness verification of neural networks even with the piece-wise linear func-
tion ReLU (Rectified Linear Unit) is an NP-hard problem [11]. The worst-case
exponential complexity severely restricts the application of such complete veri-
fiers. In contrast, incomplete methods leverage various approximation techniques
to attain better scalability. Approximation techniques include abstract inter-
pretation [8,14–16] which captures the propagation from inputs to outputs in
symbolic shapes, and linear relaxation [18–20] which computes linear upper and
lower bounds for non-linear activation functions.

Given a neural network, the (local) robustness verification problem is to
ensure that the neural network has the same prediction (such as predicted labels)
on the neighborhood of an arbitrary input. Generally, the neighborhood of an
input is characterized by an �p ball for a given radius ε ∈ R

+ with the input as
the center. The aforementioned verification methods based on abstract interpre-
tation, e.g. kPoly [15] and PRIMA [14], only consider �∞ perturbation neigh-
borhood. However, some real-life perturbations such as adding black and white
stickers [5] cannot be characterized by this formalization. It is more appropri-
ate to capture such distortion in the form of �1 or �2 ball. Verification methods
based on linear relaxation are able to verify robustness for general �p norms.
The commonly-used Δ-relaxation [4] in these methods offers the tightest possi-
ble relaxation for one single neuron. However, due to the ignorance of the con-
straints between multiple neurons, methods based on Δ-relaxation still suffer
from precision loss. In addition, verification methods based on linear relaxation
make use of Hölder Inequality to calculate the global bounds. In this computa-
tion process, infeasible input regions are considered to derive the global bounds,
which leads to more approximation loss.

In this work, we propose a propagation algorithm based on multi-neuron
relaxation method to produce tighter relaxations for ReLU neural networks in
Sect. 3. The overall framework of this algorithm is to propagate the verifica-
tion objective from the output layer to the input layer, which yields a linear
over-approximation of the original neural network and thus is able to apply to
general �p distortions. The key insight of this algorithm is multi-neuron relax-
ation, shown in Sect. 4, to capture the relations among a group of neurons (in the
same layer), which naturally leads to tighter approximation and increased veri-
fication precision. Moreover, we propose a region clipping method for infeasible
input removal in Sect. 5 to further improve the verification precision.

2 Preliminary

In this section, we provide the preliminaries about neural networks, the local
robustness property, and two kinds of polyhedron representation.

2.1 Neural Network

Neural networks are sequential programs that consist of an input layer, sev-
eral hidden layers, and an output layer. The adjacent layers are connected
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with weighted edges. A neural network N with n-dimensional input and m-
dimensional output can be regarded as a function f : R

n → R
m. For every

neuron in hidden layers, we split it into the pre-activation neuron and the post-
activation neuron. The neural network y = f(x) can be formulated as follows:

z0,i = xi ∀i = 1 . . . n (1)

ẑl,i =
nl−1∑

j=1

wl
i,jzl−1,j + bli ∀l = 1 . . . L, i = 1 . . . nl (2)

zl,i = σ(ẑl,i) ∀l = 1 . . . L, i = 1 . . . nl (3)
yi = zL,i ∀i = 1 . . . m (4)

The input layer is represented in Eq. (1), where each neuron takes one-
dimensional value of the input data. This network has L − 1 hidden layers and
nl neurons for layer l. Equations (2) and (3) describe the behavior of affine
transformations and non-linear transformations in terms of activation functions.
Here zl,i is the output of the i-th neuron in layer l and ẑl,i is the corresponding
pre-activation output value. wl

i,j and bli denote the connection weights and biases
between neurons of adjacent layers. The activation function that we consider in
this paper is ReLU, that is σ(x) = max{0, x}. Equation (4) represents the
output layer where the i-th dimension of the output is yi, also denoted as fi(x).
In classification tasks, for a given input x, the neural network determines that
x belongs to class t if ft(x) > fk(x),∀k �= t, 1 ≤ k ≤ m.

2.2 Robustness Property

In real-world deployment, neural networks are expected to stay stable when
small perturbations occur to the input data. This safety property is referred to
as local robustness [20], which states that all data that is close to the original
input x0 has the same prediction label as x0.

Specifically, local robustness can be formalized as follows. Given a neural
network f , its input domain Df , an input data x0 with ground-truth label l,
and the distortion radius ε, we say the neural network satisfies local robustness
in the neighborhood Bp(x0, ε) if

∀x′ ∈ Df , ||x′ − x0||p ≤ ε,∀j �= l : fl(x′) > fj(x′). (5)

The local robustness is represented by the conjunction of a set of inequalities,
which can be verified by checking the satisfiability of each constraint.

2.3 Polyhedron Representation

The abstract domain of polyhedron is generally used in abstract interpretation
for neural network verification. A bounded polyhedron can be represented as the
intersection of a set of half-spaces, or the convex hull of a set of points. The former
representation is called the H-representation, and the latter one is called the V -
representation. Here are the formal definitions of these two representations.
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Definition 1 (H-representation). A is an m × n-matrix, and b is a column
vector in R

m. A polyhedron in H-representation is a region P ⊆ R
n that satisfies

a set of linear constraints.

P = {x ∈ R
n | Ax ≤ b}

Definition 2 (V -representation). Let R = {r1, r2, . . . , rm} be a set of points
in R

n. A bounded polyhedron in V -representation is the convex hull of R.

P = {x ∈ R
n | x =

m∑

i=1

λiri,

m∑

i=1

λi = 1, λi ≥ 0, i = 1 . . . m}

Both representations can describe a polyhedron, but each has its advan-
tages and disadvantages. Computing intersection of polyhedra is simpler in H-
representation. And the V -representation makes it easier to compute the convex
hull. We can use the Double Description Method [6] to transform one to another.

3 Propagation Framework

In this section, we present the general propagation framework with multi-neuron
relaxation and region clipping to compute tighter convex relaxation of neural
networks and more precise verification results against adversarial distortions in
general �p norms, which is shown in Fig. 1.

The idea of layer-by-layer propagation from output to the input has been
widely used in many neural network verification methods [16,17,19,20]. As
shown in Fig. 1, the propagation procedure begins from the output layer. Specif-
ically, the verification objective t = yo −yl is characterized by the linear inequal-
ities in Eq. (5), where l is the prediction label of the given input and o �= l. If
t < 0, then the local robustness of the neural network on the given input data
within the adversarial distortions is guaranteed.

The verification objective t is then propagated from the output to the input
layer by layer. However, the non-convexity of activation functions is the obstacle
in the backward propagation of the linear objective. Therefore, in this process,

Fig. 1. Backward propagation framework
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we maintain an over-approximation of t by performing linear relaxations for
the activation functions in each hidden layer. In this way, we can transform
the linear inequalities to the input layer and obtain a linear relaxation of the
neural network. When the verification objective is propagated to the input layer,
the over-approximation of t is a linear combination of input variables. We then
calculate the upper bound of t restricted by the input constraints.

The most crucial part in the propagation framework is the linear relaxation.
For neuron ẑk,i, we compute its two scalar bounds ubk,i and lbk,i that satisfy
lbk,i ≤ ẑk,i ≤ ubk,i for any x′ ∈ Bp(x, ε). The neurons of hidden layers can be
categorized into three types according to the scalar bounds.

– If the neuron is always activated (lbk,i ≥ 0), we have zk,i = ẑk,i.
– If the neuron is always deactivated (ubk,i ≤ 0), we have zk,i = 0.
– If the neuron is unstable (lbk,i < 0 < ubk,i), we perform linear relaxation.

Existing verification methods use an upper bounding function Uk,i and a
lower bounding function Lk,i for each unstable neuron zk,i. These two functions
are subject to the following inequality: Lk,i(ẑk,i) ≤ σ(ẑk,i) ≤ Uk,i(ẑk,i). The most
frequently used bounding functions are linear functions, which can be calculated
based on the scalar bounds of the pre-activation neurons as follows:

Uk,i(ẑk,i) =
ubk,i

ubk,i − lbk,i
(ẑk,i − lbk,i) L1

k,i(ẑk,i) = ẑk,i L2
k,i(ẑk,i) = 0

The above bounding functions are used in many verification methods [16,20].
Generally, the upper bounding function has only one candidate. But the lower
bounding functions are adaptively selected from L1

k,i and L2
k,i. The bounding

function that minimizes the area between the activation function and lower
bound is chosen, which means Lk,i(ẑk,i) = ẑk,i is selected if ubk,i + lbk,i ≥ 0, and
Lk,i(ẑk,i) = 0 is selected if ubk,i + lbk,i < 0.

Existing works mentioned above only consider the relaxation on one single
neuron, losing sight of relations among neurons in the same hidden layer. We
aim to capture the relations between multiple neurons and obtain tighter convex
relaxation by calculating the joint bounding function for a group of neurons.

We propose a multi-neuron relaxation based verification framework as shown
in Algorithm 1. To calculate joint bounding functions for a group of neurons,
the first step is to compute bounding functions for each single neuron through
a fast linear relaxation method (line 1). In the backward propagation process,
neurons that are always activated or deactivated can be directly propagated to
the pre-activation layer (line 5 - 8). For the remaining unstable neurons, we
gather them together (line 9) and perform multi-neuron relaxation (line 10 -
15). Computing joint bounding functions for all unstable neurons is practically
infeasible for large-scale neuron networks. To achieve better scalability, we divide
the unstable neurons into several non-overlapping groups and calculate bounding
functions for each neuron group. Each group is formed by randomly selecting k
unstable neurons.

Based on the multi-neuron relaxation method, we can propagate the verifi-
cation objective to the preceding layer according to Eq. (2) (line 17). Through
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Algorithm 1: Propagation Framework
Input: Verification objective t =

∑nL−1
i=1 cL−1,izL−1,i + βL−1,

the given input x0, radius ε, norm p, weights wl
i,j , biases bl

i,
number of neurons in a group k

Output: An upper bound of t
1 ub, lb, U , L ← InitalBounding(x0, ε, p)
2 for l ← L-1, . . . , 1 do
3 unstable neurons ← {}
4 for i ← 1 to nl do
5 if lbl,i ≥ 0 then
6 t ← t − cl,izl,i + cl,iẑl,i

7 else if ubl,i ≤ 0 then
8 t ← t − cl,izl,i + 0 · ẑl,i

9 else add zl,i to unstable neurons

10 while unstable neurons is not empty do
11 Pop k neurons zl,u1 , zl,u2 , . . . , zl,uk from unstable neurons

12 U group ← [ Ul,u1 , Ul,u2 , . . . , Ul,uk ]
13 L group ← [ Ll,u1 , Ll,u2 , . . . , Ll,uk ]

14 upper bound ← JointBound(
∑k

i=1 cl,uizl,ui, U group, L group, x0, ε, p)

15 t ← t − ∑k
i=1 cl,uizl,ui+ upper bound

16 for i ← 1 to nl do

17 t ← t − ĉl,iẑl,i +
∑nl−1

j=1 ĉl,iw
l
i,jzl−1,j + ĉl,i ∗ bl

i

18 res ← GlobalBound(t, x0, ε, p)
19 return res

repeating the above procedure for every hidden layer in a backward manner, we
can obtain a linear relaxation of the verification objective, which is in the form
of t ≤ α1x1 + α2x2 + · · · + αnxn + β.

The last step of this algorithm is to find a global upper bound, the maximum
value of t, with regard to the input perturbations. For any input x0, we can use
Hölder Inequality to find the solution in Bp(x0, ε) [20]. However, some regions of
this ball are not included in the input domain of the neural network. To address
this problem, we propose the region clipping method in Sect. 5.

4 Multi-neuron Relaxation

In this section, we introduce the insight of multi-neuron relaxation over single
neuron relaxation and how to calculate the multi-neuron relaxation for a group
of unstable neurons.
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4.1 Motivation Example

We first show the superiority of multi-neuron relaxation with a simple example.

Example 1. Consider a neural network with one hidden layer. It has three neu-
rons in the input layer, two neurons in the hidden layer, and two neurons in the
output layer. The structure of this neural network is illustrated with the following
equations and figure.

x1, x2, x3 ∈ [0, 1]
ẑ1 = x1 − x2

ẑ2 = x1 + x2 + x3 − 1
z1 = ReLU(ẑ1)
z2 = ReLU(ẑ2)

y1 = z1 y2 = −1
2
z2

The range of each input neuron is [0, 1]. In this example, we attempt to find
the upper bound of t = y1 − y2 = z1 + 1

2z2.

We first perform single neuron relaxation using the bounding functions shown
in Sect. 3. According to the value range of x1, x2, x3, we can calculate that the
lower scalar bound and upper scalar bound of ẑ1 are −1, 1, and those of ẑ2 are
−1, 2. The single-neuron upper bounding function for z1 and z2 are U1 = 1

2 ẑ1+ 1
2

and U2 = 2
3 ẑ2 + 2

3 .
With the above bounding function we have t ≤ 1

2 ẑ1+ 1
3 ẑ2+ 5

6 . By substituting
ẑ1, ẑ2 with x1, x2, x3, we have t ≤ 5

6x1 − 1
6x2 + 1

3x3 + 1
2 . Considering the input

range, the upper bound of t with single neuron relaxation is 5
3 .

Fig. 2. Relations of hidden neurons in Example 1

In single neuron relaxation, we only make use of the scalar upper and lower
bounds. The pre-activation neurons ẑ1 and ẑ2 are treated to be independent
of each other. However, they are not independent. In this example, the values
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Algorithm 2: Computing Joint Bound
Input: Function t =

∑k
i=1 cizi, upper bounding functions U group, lower

bounding functions L group, the given input x0, radius ε, norm p
Output: An upper bounding function of t

1 octahedron ← OctaheralAbstraction(U group, L group, x0, ε, p)
2 segments ← Split(octahedron, k)
3 generators ← {}
4 for each segment in segments do
5 vertices ← GetVertices(segment)
6 for each (v1, . . . , vk) in vertices do

7 lifted v ← (v1, . . . , vk,
∑k

i=1 ReLU(vi))
8 add lifted v to generators

9 bounds ← GetFacets(generators)
10 upper bound ← BoundSelection(bounds, generators)
11 return upper bound

of ẑ1 and ẑ2 are taken from blue region as shown in Fig. 2(a). Then the image
of function t = ReLU(ẑ1) + 1

2ReLU(ẑ2) over the blue region is illustrated in
Fig. 2(b). This image is composed by four planes as the function is linear in each
quadrant. As this function is piece-wise linear, the formulated region in (ẑ1, ẑ2, t)-
space is non-convex. To calculate the joint bounding functions, we calculate the
convex hull of this region as shown in Fig. 2(c) where each facet of the convex
hull can be transformed into a bounding function.

Considering the orientations of facets in Fig. 2(c), we can obtain two upper
bounding functions. Using the bound selection algorithm (Sect. 4.3), t ≤ 1

2 ẑ1 +
ẑ2 + 1

2 is selected to be the upper bounding function. After propagating this
joint bound to the input layer, we have t ≤ x1 + 1

2x3. The upper bound of t is
then calculated to be 3

2 with multi-neuron relaxation, which is tighter than the
obtained upper bound with single neuron relaxation.

4.2 Joint Bounding Function

In this subsection we present how to compute the joint bounding functions for
multi-neuron relaxation.

The multi-neuron relaxation algorithm is shown in Algorithm 2. It can
be divided into three steps: determining the value range of the pre-activation
neurons, constructing the corresponding region in the (ẑ, t)-space where ẑ =
(ẑ1, . . . , ẑk), and computing the convex hull of this region.

We use octahedral abstraction [14,15] to determine the value range of the
pre-activation neurons (line 1). Specifically, the octahedral abstraction is rep-
resented by a series of linear inequalities that over-approximate the values of
a group of neurons, i.e., {∑k

i=1 diẑi ≤ ei | di ∈ {−1, 0, 1}, di are not all zero.}.
The constant term ei is generated by computing the upper bound of

∑k
i=1 diẑi,

which utilizes the single neuron bounding functions.



150 X. Xue et al.

Next we construct the region in the (ẑ, t)-space, which corresponds to the
value range of pre-activation neurons (line 2 - 7). As ReLU is linear in each
orthant, the input domain is split into a list of subregions by adding constraints
ẑi ≥ 0 or ẑi ≤ 0 (line 2). If there are k neurons in a group, the number of
produced subregions is at most 2k.

Example 2. The value range of ẑ1, ẑ2 in Example 1 can be described with the
following linear inequalities.

ẑ1 ≤ 1, −ẑ1 ≤ 1, ẑ1 ≤ 2, −ẑ1 ≤ 1, ẑ1 + ẑ2 ≤ 2, −ẑ1 + ẑ2 ≤ 2, ẑ1 − ẑ2 ≤ 1, −ẑ1 − ẑ2 ≤ 1

This can be split into 4 subregions by adding inequalities like ẑ1 ∼ 0, ẑ2 ∼ 0 (∼ is
≤ or ≥). For example, by adding ẑ1 ≥ 0, ẑ2 ≥ 0 the upper right quadrant (after
simplification) is ẑ1 ≤ 1, −ẑ1 ≤ 0, −ẑ2 ≤ 0, ẑ1 + ẑ2 ≤ 2.

In each subregion, as the activation function is linear, the constituted region
in (ẑ, t)-space is a plane, which can be represented with linear inequalities, i.e.,
H-representation. For the convenience of computing the convex hull of the con-
stituted region in (ẑ, t)-space, we transform this into the V -representation. We
firstly use the Double Description Method to transform the subregion into the
V -presentation and get its vertices (line 5). Then for each vertex v, we compute
its corresponding t value and concatenate it with v (line 7). In this way, we lift
this vertex to the (ẑ, t)-space, and we get the V -representation of the formulated
region in the (ẑ, t)-space.

Example 3. The vertices of the quadrant in Example 2 are (0, 2), (0, 0), (1, 0),
(1, 1). The output function is t = ReLU(ẑ1) + 1

2ReLU(ẑ2). For vertex (0, 2), we
have t = ReLU(0) + 1

2ReLU(2) = 1. Concatenate this with (0, 2), and we can
get the lifted vertex (0, 2, 1). In the same way, the other three lifted vertices are
(0, 0, 0), (1, 0, 1), (1, 1, 3

2 ). The corresponding region of the upper right quadrant
in (ẑ1, ẑ2, t)-space is represented as the convex hull of these 4 lifted points, i.e.,
V -representation.

The last step is to compute the convex hull of all subregions in (ẑ1, . . . , ẑ, t)-
space. Since all formulated subregions are in V -representation, we just need to
gather all the vertices (line 8) to get the V -representation of the convex hull.
Then we can use Double Description Method again to transform the convex hull
into H-representation (line 9). Each inequality of the H-representation is a facet
of the convex hull, and thus a bounding function in multi-neuron relaxation.
We can determine the orientation of a facet with the coefficient of the output
variable.

Example 4. By gathering all the vertices, we can get the V -representation of the
convex hull in Fig. 2(c). And with Double Description Method, we can get the
facets of this convex hull.

−ẑ1 + 2t ≤ 2, −ẑ1 − ẑ2 + 2t ≤ 1
−t ≤ 0, ẑ1 − t ≤ 0, ẑ2 − t ≤ 0, 2ẑ1 + ẑ2 − 2t ≤ 0

The coefficients of t in the first two inequalities are positive, thus they are the
upper bounding functions.
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4.3 Bounding Function Selection

We have introduced how to compute the bounding functions in the previous
subsection. Note that the convex hull of the constructed region may have more
than one facet, and thus the bounding functions may not be unique. For exam-
ple, there are two upper bounding functions in Example 4. However, only one
bounding function can be adopted in the propagation framework for computa-
tional efficiency. To address this problem, we propose an approach to select the
bounding functions (line 10).

Similar to the adaptive selection in single neuron relaxation, we choose the
bounding function that minimizes the difference between the bounding func-
tion and the original activation function. Specifically, we measure the difference
between the bounding function and activation function on the region vertices.
After splitting the value range of the pre-activation neurons, we can gather the
vertices of all subregions together. We then calculate the sum of the differences
between the bounding function and activation function on these vertices.

difference =
∑

p∈generators

|bounding(p) − activation(p)|

The bounding function with the minimum difference is chosen to be the best
and applied in the propagation framework.

Example 5. There are two upper bounding functions in Example 4: f1 = 1
2 ẑ1 +

1
2 ẑ2 + 1

2 , and f2 = 1
2 ẑ1 + 1 The vertices are (0, 2), (1, 1), (1, 0), (0, 0), (0,−1),

(−1, 0), (−1, 1). For bounding function f1 = 1
2 ẑ1 + 1

2 ẑ2 + 1
2 ,

diff1 = |3
2

− 1| + |3
2

− 3
2
| + |1 − 1| + |1

2
− 0| + |0 − 0| + |0 − 0| + |1

2
− 1

2
| = 1

For bounding function f2, we have diff2 = 3 in the same way. The first bounding
function is closer to the activation function than the second one. Therefore, we
choose f1 as the upper bounding function in Example 1.

5 Region Clipping

As introduced in Sect. 3, simply using Hölder Inequality may lead to verification
precision loss because the derived global upper bound of the neural network may
take infeasible inputs into consideration. For example, as shown in Fig. 3, when
the given data point (black dot) lies on the boundary of the input region, some
portion of the �p ball (red part) is not included in the neural network’s input
domain.

For robustness verification, we only need to consider the intersection of the
neural network’s input domain and the distortion neighborhood, which is repre-
sented by the blue region in Fig. 3. Clipping out infeasible inputs to the neural
network can assist in computing a tighter global upper bound, thus increasing
the verification precision.
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Fig. 3. The neighborhood of a borderline input.

Without loss of generality, we assume the value range of each input neuron
is [0, 1]. Considering robustness verification with respect to Bp(x0, ε), comput-
ing the global bound of the neural network in the clipped input region can be
formulated as the following constrained optimization problem

γ = max
x′

n∑

i=1

αix
′
i + β s.t. x′

i ∈ [0, 1], ||x′ − x0||p ≤ ε

We can reformulate the above problem by setting vi = x′
i − x0,i.

γ = max
v

n∑

i=1

αivi +
n∑

i=1

αix0,i + β s.t. − x0,i ≤ vi ≤ 1 − x0,i,
n∑

i=1

|vi|p ≤ εp

The last two terms of γ are constants. So we just need to find the maximum
value of the first term. Solving this optimization problem with respect to l∞
neighborhood is trivial. We just need to clip the illegal value range of each
input variable and the resulted feasible region is still a box. However, for the
other cases, the feasible region is irregular. Next we propose the region clipping
methods for �1 neighborhood and �p (p ≥ 2) neighborhood separately.

For �1 neighborhood, we sort the perturbation variables in non-increasing
order according to the absolute values of their coefficients. This is because vari-
able with larger absolute value of coefficient has more influence on the optimiza-
tion objective. Therefore, we maximize the perturbation variables one by one in
this order until either reaching the boundary of the feasible region or exhausting
the allowed distortions.

Region clipping for �p (p ≥ 2) neighborhood is presented in Algorithm 3. As
with region clipping for �1 neighborhood, we only maximize the first term of γ.
This optimization problem can be solved by Lagrange multiplier method. We can
construct the Lagrangian function and obtain the Karush-Kuhn-Tucker (KKT)
conditions. As the objective function is linear and the inequality constraints are
continuously differentiable convex functions, the satisfaction of KKT conditions
are sufficient and necessary conditions for the optimal solution. We can find the
optimal solution along with the direction of the gradient. If the boundary of
a linear constraint is encountered, we fix the corresponding distortion vi and
optimize the remaining variables. The solution found by Algorithm 3 satisfies
the KKT conditions, thus is the optimal solution.
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Algorithm 3: Region clipping for lp neighborhood
Input: The objective function

∑n
i=1 αivi, the given data point x0,

neighborhood radius ε, norm p
Output: the maximum value of

∑n
i=1 αivi

1 ri ← 0 for all i = 1, . . . , n
2 for i ← 1 . . . n do
3 if αki > 0 then
4 ri ← 1 − x0,i

5 else
6 ri ← −x0,i

7 q ← 1
p−1

8 {αk1 , . . . , αkn} ← sort {α1, . . . , αn} in non-decreasing order according to ri
α
q
i

9 remain, γ ← εp, 0
10 for i = 1 to n do

11 if
r
p
ki

α
pq
ki

∑n
j=i αpq

kj
≥ remain then

12 γ ← γ + (
∑n

j=i αpq
kj

)
1
pq · remain 1

p

13 break

14 else
15 γ ← γ + αki · rki

16 remain ← remain − rp
ki

17 return γ

6 Experiments

We implement the propagation framework with multi-neuron relaxation and
region clipping as kProp. To show the effectiveness of our algorithm, we
compare kProp with two widely-used robustness verifiers, DeepPoly [16] and
CROWN [20]. DeepPoly is an efficient verifier with high precision, but it can
only be used for distortions of l∞ norm. CROWN can verify the robustness
of neural networks with regard to general lp norms. But CROWN simply uses
Hölder Inequality to calculate the global bound of the final optimization problem.
Both of them adopt the single neuron relaxation.
Neural Networks and Datasets. The neural networks used in our experiments are
well-trained models from the publicly available ERAN dataset [7]. We conduct
experiments on both feed-forward neural networks (FNNs) and convolutional
neural networks (CNNs) trained on MNIST [12] and CIFAR-10 [2] datasets.
The feed-forward neural network with a hidden layers and b neurons per hidden
layer is denoted as a× b. The convolutional neural network denoted as Conv has
two convolutional layers and two fully-connected layers. For each neural network,
we use the first 1000 images from the corresponding test data as the test images
and filter out the misclassified images.
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Problem Settings. The properties considered in the experiments are local robust-
ness with respect to distortions in �∞, �1 and �2 norms. The radius of �p ball ε is
set to different values in different settings to avoid meaningless results. Experi-
ments conducted on neural networks with respect to l∞ norm are set to smaller
radius than those with respect to l1 norm. The detailed radius settings ε are
shown in Table 1. For all neural networks and norms, we use k = 3 in kProp to
balance precision and time cost. This is shown in Table 2.

Table 1. Number of verified local robustness properties.

Dataset Model �∞ norm �1 norm �2 norm

ε kProp DeepPoly ε kProp CROWN ε kProp CROWN

MNIST 6×100 0.026 174 160 2.5 350 223 0.3 546 287

9 × 100 0.026 186 182 2.5 309 219 0.3 456 272

6 × 200 0.015 303 292 2 303 144 0.25 342 116

9 × 200 0.015 262 259 2 188 132 0.25 276 112

Conv 0.12 158 158 1.5 766 367 0.6 486 137

CIFAR-10 6 × 100 0.002 55 54 1 112 97 0.07 106 99

9 × 200 0.002 63 63 1 136 112 0.07 127 123

Conv 0.01 274 256 0.5 303 268 0.12 307 280

Experiment Results. Table 1 shows the number of verified local robustness prop-
erties for common distortions in terms of �∞, �1, and �2 norms based on different
verification algorithms. In general, our method demonstrates better verification
precision and outperforms DeepPoly and CROWN or achieves comparable per-
formance for all verification problems.

For �1 and �2 norms, kProp shows great superiority over CROWN with
tighter convex relaxation through the multi-neuron relaxation method and
tighter global bounds through region clipping. For MNIST dataset, the number
of verified properties by kProp is at least 40% more than those of CROWN. The
precision gain is especially noticeable on convolution neural networks. kProp suc-
cessfully verifies 766 problems for �1 norm and 486 problems for �2 norm, whereas
CROWN verifies 367 and 486 problems respectively. For the CIFAR-10 dataset,
the improvements on convolutional neural networks are also more significant
compared with FNNs. For �∞ norm, we only perform comparison experiments
with DeepPoly as it demonstrates better verification performance than CROWN
in this case. DeepPoly also performs region clipping for distortions of �∞ norm.
Therefore, the results mainly demonstrate the effect of multi-neuron relaxation.
We can see that kProp is able to verify more robustness problems than DeepPoly
which indicates that multi-neuron relaxation can provider tighter bounds than
single neuron relaxation. The computational cost of kProp is acceptable. For
the most complicated verification task, robustness of CNN trained on CIFAR-10
with respect to �2 norm, the average runtime cost of each problem is less than
12 min. For verification tasks on FNNs with respect to �1 or �∞ norms, kProp
is able to finish in a few seconds.
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The Choice of k. To explore the influence of parameter k in kProp, we perform
experiments on the 6×100 FNN and MNIST dataset for different k. The number
of verified properties and corresponding runtime are shown in Table 2. With a
larger k, we can capture more complicated relations among neurons, and thus
generate tighter bounding functions. However, this can take plenty of time. On
the contrary, smaller k costs less time but provides looser bounding functions.
To balance precision and efficiency, we chose k = 3 in the previous experiment.

Table 2. Number of verified properties of 6×100 FNN and runtime for k = 2, 3, 4.

Norm ε k=2 k=3 k=4

verified(#) time(s) verified(#) time(s) verified(#) time(s)

�∞ 0.026 166 1.99 174 4.61 174 187.71

�1 2.5 344 5.90 350 9.83 351 131.92

�2 0.3 546 35.33 550 56.87 550 180.06

7 Conclusion

We presented a multi-neuron based robustness verification framework kProp to
verify the local robustness of neural networks for general �p norms. kProp is
featured with constraint propagation, multi-neuron relaxation, and region clip-
ping. The propagation framework enables kProp to verify robustness properties
for general �p norms. The multi-neuron relaxation and region clipping together
improve the verification precision. We implement our algorithm and evaluate it
on a set of neural networks with different sizes, which demonstrates the effec-
tiveness of our method. In the future, we would like to extend the application
range of our method to more activation functions and network architectures.
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