
Verification of the Busy-Forbidden
Protocol

(using an Extension of the Cones and Foci Proof Framework)

P. H. M. van Spaendonck(B)

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, Netherlands

P.H.M.v.Spaendonck@tue.nl

Abstract. The busy-forbidden protocol is a new readers-writer lock
with no resource contention between readers, which allows it to out-
perform other locks. For its verification, specifications of its implementa-
tion and its less complex external behavior are provided by the original
authors but are only proven equivalent for up to 7 threads.

We provide a general equivalence proof using the cones and foci proof
framework, which rephrases whether two specifications are branching
bisimilar as six properties on the data objects of the specifications. We
provide an extension of this framework consisting of four additional prop-
erties and prove that when the additional properties hold, the two sys-
tems are divergence-preserving branching bisimilar, a stronger version of
the aforementioned relation that also distinguishes livelocks.

Keywords: cones and foci proof framework · divergence-preserving
branching bisimulation · process algebra · protocol verification ·
readers-writer lock

1 Introduction

The readers-writer lock problem is a concurrency problem introduced and solved
by Courtois et al. [5]. The problem requires a synchronisation protocol that pro-
vides safe access to both a shared readers section, which can be used simulta-
neously by any number of threads, as well as an exclusive writer section, which
can not be used by more than one thread at any given time and only when the
readers section is not in use.

In [9], Groote et al. introduce a new readers-writer lock called the busy-
forbidden protocol. This locking protocol is of particular interest as it has no
resource contention between readers, and therefore provides a significant speedup
over other locks when having high readers section workloads.

To ensure the correctness of the protocol, the authors give process algebraic
specifications of both the implementation of the new algorithm as well as a

This publication is part of the PVSR project (with project number 17933) of the
MasCot research programme which is financed by the Dutch Research Council (NWO).

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
H. Hojjat and E. Ábrahám (Eds.): FSEN 2023, LNCS 14155, pp. 126–141, 2023.
https://doi.org/10.1007/978-3-031-42441-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42441-0_10&domain=pdf
http://orcid.org/0000-0002-9536-1524
https://doi.org/10.1007/978-3-031-42441-0_10

Verification of the Busy-Forbidden Protocol 127

specification of its external behavior. The authors applied model checking and
proved the implementation and external behavior equivalent for up to 7 threads
using the mCRL2 toolset [4], but they were unable to do this for more concurrent
threads due to the statespace of the implementation becoming too large.

But as readers-writer locks often use a large number of concurrent threads,
a general correctness proof for the busy-forbidden protocol is desired. We opt
to prove the process algebraic specifications of the implementation and external
behavior to be equivalent. The advantage of this technique over contract-based
approaches, such as Floyd-Hoare logic [12], and its extension for parallel com-
posed systems by Owicki and Gries [15,16], is that the much smaller equivalent
model can also be used for the modeling and verification of systems built on
top of the busy-forbidden protocol. We consider this a significant advantage, as
this is the typical use-case for readers-writer locks, e.g. the parallel term library
which the protocol was originally designed for.

We prove the equivalence of the implementation and its external behavior by
using the cones and foci proof framework, originally proposed in [11] by Groote
and Springintveld and later generalized by Fokkink et al. in [6]. This framework
simplifies the often complex and cumbersome branching bisimulation proof by
reducing it to a small set of propositions on the data objects occurring in the
implementation and specification. If these propositions are shown to hold, it
follows that the two systems are equivalent modulo branching bisimulation.

The proof framework has already been used in several case studies to prove
implementation and specification models equivalent, such as the verification of
the 1-bit sliding window protocol in [2], a complex leader election protocol in
[7], and a part of the IEEE P1394 high-speed bus protocol [1] in [17].

Since the equivalence relation proven by the cones and foci proof framework
does not distinguish livelock, we first provide an extension to the framework
such that it can also be used to prove equivalence modulo divergence-preserving
branching bisimulation. This relation is a stronger version of branching bisimu-
lation that does distinguish livelocks [8]. Our extension provides four additional
propositions on the data objects in the implementation and specification models,
that, when shown to also hold, imply the equivalence of the two processes modulo
divergence-preserving branching bisimulation. We give a soundness proof of this
extension and use it to prove the equivalence of implementation and specification
of the busy-forbidden protocol.

2 The Busy-Forbidden Protocol

We first discuss the busy-forbidden protocol. An overview of its implementation
using pseudocode is given in Table 1. The enter - and leave shared functions
are used to have a thread p enter or leave the readers section. Similarly, enter -
and leave exclusive provide functionality for safe access to the writer section.

The protocol uses two binary flags per thread and a single mutex. The first
flag, the busy flag, indicates that a thread is either working or going to work
inside of the readers section. The second flag, the forbidden flag, indicates that

128 P. H. M. van Spaendonck

a thread is not allowed to enter the readers section. All flags are initially set to
false. The mutex, called mutex, enforces exclusive access to the writer section.

Table 1. Pseudocode description of the busy-forbidden protocol

enter shared(thread p) :
p.busy := true;
while p.forbidden

p.busy := false;
if mutex.timed lock()

mutex.unlock();
p.busy := true;

enter exclusive(thread p) :
mutex.lock();
while exists thread q with

¬q.forbidden
select thread r
r.forbidden := true;
if r.busy or sometimes

r.forbidden := false;

leave shared(thread p) :
p.busy := false;

leave exclusive(thread p) :
while exists thread q with

q.forbidden
select thread r
usually do

r.forbidden := false;
sometimes do

r.forbidden := true
mutex.unlock();

When entering the readers section, a thread sets its busy flag and enters iff
its forbidden flag is false. If the forbidden flag is true, the busy flag is set back
to false to avoid deadlock and the process is repeated again. To reduce resource
contention on the flags, a mutex.timed lock() can be used without altering the
externally visible behavior of the protocol [9]. Upon leaving the readers section,
the thread sets its busy flag back to false.

A thread that wants to enter the writer section must first acquire the mutex.
This ensures that no other thread can be in the writer section simultaneously
and that only the given thread is altering the forbidden flags. Once the mutex
has been acquired, the thread sets the forbidden flag of each thread, but will
immediately undo this if the busy flag of the same thread is true. To prevent a
thread that is acquiring the writer section from locking out some reader threads
while still waiting for others to leave the readers section, random forbidden flags
can sometimes be set back to false. The writer section is entered once all for-
bidden flags are true. Upon leaving, all forbidden flags are set back to false
and the mutex is released. During this, random forbidden flags can be set back
to true. This prevents each iteration that occurs while leaving, from becoming
externally visible and significantly reduces the number of states in the external
specification.

The externally visible behavior of the protocol is given in Fig. 1 and, as
we will prove later, provides an equivalent overview of how threads interact

Verification of the Busy-Forbidden Protocol 129

via the protocol. Individual threads move from node to node. Transition labels
ending with call represent the identically named function being called by a
thread moving across, and those ending with return represent those function
calls terminating. All transitions not labeled as such represent some sequence of
internal calculations that occurs during these function calls. Transitions labeled
with a guard, i.e. starting with if, only allow a thread to progress if the given
condition is met.

The Free node represents a thread not interacting with the protocol and being
outside of any section. Each thread initially starts out in this node. The Shared
and Exclusive nodes represent the readers and writer sections, respectively.

A thread starting to acquire the readers lock enters the EnterShared (ES)
node. The thread stays in the ES node as long as its forbidden flag is true.
As repeatedly checking the flag is discouraged through the timed lock call, the
internal loop is labeled as improbable. When the forbidden flag is evaluated to
false, the thread moves to the LockedOffExclusive (LOE) node. After this, it
is no longer possible for any other thread to enter the writer section until the
readers section is completely freed. The LeaveShared (LS) node represents a
thread leaving this section.

Fig. 1. The external behaviour

When a thread tries to acquire
the writer lock, it enters the EnterEx-
clusive (EE) node. Once the thread
acquires the mutex variable, it will
move to the SetAllForbidden (SAF)
node and it will not be possible for any
other thread to acquire the writer lock
before it is released by this thread.
The loop in the SAF node repre-
sents a forbidden flag being set back
to false; this transition is labeled as
improbable as this only rarely occurs.
Once the last busy flag is evaluated to
false, exclusive access is attained and
the thread will move to the Locked-
OutShared (LOS) node before offi-
cially terminating the function call.

When the thread starts releasing
the writer lock, it enters the Leav-
ingExclusive (LE) node. Similar to
the SAF node, a thread within the LE
node can repeatedly turn the forbid-
den flag off and on again, thus never fully opening up the readers section. Because
a forbidden flag is only very rarely set back to true when releasing the lock, this
transition is also labeled as improbable. Once the last forbidden flag is set to
false, this is no longer possible and the thread moves to the OpenedExclusive

130 P. H. M. van Spaendonck

(OE) node, after which it will officially terminate the function call and move
back to the Free node.

We can use the model of the external behavior to reason about certain safety
properties. For example, from the guarded transitions from ES to LOE and from
SAF to LOS, we can quickly see that the Shared and Exclusive sections can not
be populated simultaneously, as they require the other respective section to be
empty. The guarded transition from EE to SAF also assures that only a single
thread can be present in the Exclusive section at any given time.

3 Linear Process Equations

Both the implementation of the pseudocode shown in Table 1 and the external
behavior have been modeled in the mCRL2 language [10]. The mCRL2 lan-
guage is based on the Algebra of Communicating Processes [3] and Calculus of
Communicating Processes [14].

The mCRL2 language models processes using a combination of states and
actions. States represent a collection of internal values that are used to calculate
which actions can occur and what the resulting state will be. Actions represent
any sort of atomic event such as calling a function, or setting or reading a flag.
An action consists of a label and a possible set of data parameters, e.g. the action
lock(p) has lock as the label and p as the data parameter. Parameters can be of
varying types such as booleans, algebraic data types, and mappings. The exact
data types used within the busy-forbidden models are given later.

A special action τ , the so-called hidden or internal action, is used to represent
an action that is externally not directly visible. We use distinct action labels for
internal actions to be able to easily distinguish between them. We explicitly state
which actions should be considered to be τ actions.

We require all process algebraic equations to be in a clustered linear form,
see Definition 1. This form specifies for each action when it can occur and what
the resulting state will be. The

∑
e:S operator models the application of the

non-deterministic choice operator + over all elements in some set S. We also
allow process equations in which the

∑
operators are split into separate smaller∑

operators and individual + operators.
Since the cones and foci proof framework concerns itself only with the actions

that are enabled in a single given state, the clustered normal form becomes
especially useful, as we can directly infer for any given state if an action is
enabled and what the resulting state will be. In [19], Usenko shows that any
mCRL2 specification can be transformed into a clustered linear process equation.

Definition 1. A clustered linear process equation (LPE) is a process specifica-
tion of the form:

X(d:D) =
∑

a:Act

∑

ea:Ea

ca(d, ea) → a(fa(d, ea)) · X(ga(d, ea)),

where D is the set of states, Act is the set of action labels including τ , Ea is an
indexed set of all data types that need to be considered for label a, the boolean

Verification of the Busy-Forbidden Protocol 131

function ca(d, ea) specifies when the action a with parameters resulting from the
function fa(d, ea) is enabled in state d, and ga(d, ea) gives the resulting state
from taking this action from state d.

Often we end up in a situation in which the set of states D also contains
unreachable states. As we are only interested in the reachable states, we intro-
duce the notion of an invariant in Definition 2. An invariant is a predicate on
states in an LPE such that when it holds for a given state d:D, it also holds for
all subsequent states.

Definition 2. Given a clustered LPE X as per Definition 1. A predicate I on
the set of states D is called an invariant iff the following holds: for all a:Act, d:D
and ea:Ea,

I(d) ∧ ca(d, ea) ⇒ I(ga(d, ea))

4 Equivalence and the Cones and Foci Proof Framework

As stated before, we prove the model of the implementation and the specification
of the busy-forbidden protocol equivalent modulo divergence-preserving branch-
ing bisimulation. We define this equivalence relation in Definition 4, which is
based on the definitions used in [13] and has been adapted to work with process
equations instead of transition systems. In Definition 3, we provide some syn-
tactic glue to make this shift between labeled transition systems and clustered
LPEs more intuitive.

Definition 3. Given a clustered LPE as per Definition 1, states d, d′ ∈ D, and
action l, we define the following relations:

– d
l−→ d′ iff there is an action a with an associated data type ea such that

l = a(fa(d, ea)), the condition ca(d, ea) holds, and ga(d, ea) = d′.
– d

l−→∗d′ iff there is a finite sequence of states d0, . . . , dk such that d0 = d,
dk = d′ and for all 0 ≤ i < k we have di

l−→ di+1.

Definition 4. Given two clustered LPEs as per Definition 1 with sets of states
D and D′. A relation R on the states D×D′ is a divergence-preserving branching
bisimulation iff the following conditions for all states s ∈ D, t ∈ D′, and actions
l ∈ Act hold:

(B1) If sRt and s
l−→ s′ for some state s′ ∈ D, then either l = τ and s′Rt, or

there are states t′, t′′ ∈ D′ such that t
τ−→∗t′ l−→ t′′, sRt′, and s′Rt′′.

(B2) If sRt and t
l−→ t′ for some state t′ ∈ D′, then either l = τ and sRt′, or

there are states s′, s′′ ∈ D such that s
τ−→∗s′ l−→ s′′, s′Rt, and s′′Rt.

(D1) If sR t and there is an infinite sequence of states (sn)n∈N such that s = s0,
and sk

τ→ sk+1 and skR t for all k ∈ N, then there is a state t′ ∈ D′ such that
t

τ→ t′, and skR t′ for some k ∈ N.

132 P. H. M. van Spaendonck

(D2) If sR t and there is an infinite sequence of states (tn)n∈N such that t = t0,
and tk

τ→ tk+1 and sR tk for all k ∈ N, then there is a state s′ ∈ D such that
s

τ→ s′, and s′R tk for some k ∈ N.

Two clustered LPEs with respective initial states d0 and d′
0 are divergence-

preserving branching bisimilar iff there is a divergence-preserving branching
bisimulation R such that d0R d′

0.

Note that in (divergence-preserving) branching bisimulation, τ -actions are
said to be externally visible iff their begin- and endpoint are not equivalent.

In [11], it is noted that in communicating systems, equivalent states often
have a “cone-like” structure as is shown in Fig. 2. In this figure, equivalent states
are grouped together in the cone C. In the focus point state fc, all externally
visible actions of said cone, i.e. a and b, are enabled. For all other states in
which not all externally visible actions are simultaneously enabled, such as d
or the states along the edges, there is always a path of internal actions, i.e. τ
actions within the cone, that ends in the state fc. We show one such path for
the state d, using the dashed arrows.

Fig. 2. A cone C with focus point fc

If a given system consists of such
“cones”, the cones and foci proof
framework can be used to prove equiv-
alence. To do so, we must provide a
state mapping h : D → D′ that maps
states in the implementation to their
equivalent state in the specification,
a focus condition FC : D → B that
indicates if a state should be consid-
ered a focus point, i.e. all externally
observable actions are enabled, and a
well-founded ordering <M on D that orders states by their distance to a focus
point. We must then prove that a small set of requirements are met by the LPEs
and the provided state mapping, focus condition and ordering.

Any τ action in the implementation that does not leave a cone, i.e. the state
mapping h maps begin- and endpoint to the same state, is renamed to int (short
for internal action). This allows us to easily distinguish between τ actions that
are externally observable, i.e. that are preserved in our specification, and those
that are not. While an int action is considered a τ action, we exclude them from
the set of actions Act.

In Theorem 1, we extend the proof framework towards divergence-preserving
branching bisimulation with a labeling p on cones that labels cones as either
divergent (Δ) or non-divergent (∇), and four additional requirements on the
LPEs. The divergent τ -loops in the specification, i.e. a τ transition with the
same begin- and endpoint, are renamed to int to relate these to the divergent
internal behavior in the implementation, i.e. repeatable paths of int actions.

Theorem 1. Consider a clustered linear process equation of an implementation
with initial state d0 and some invariant I that holds in d0,

Verification of the Busy-Forbidden Protocol 133

X(d:D) =
∑

a:Act∪{int}

∑

ea:Ea

ca(d, ea) → a(fa(d, ea)) · X(ga(d, ea)),

and a clustered linear process equation of a specification with initial state d′
0,

Y (d′:D′) =
∑

a:Act∪{int}

∑

ea:Ea

c′
a(d′, ea) → a(f ′

a(d′, ea)) · Y (g′
a(d′, ea)).

The LPEs X and Y are divergence-preserving branching bismilar if there is a
state mapping h : D → D′, a focus condition FC : D → B, a well founded
ordering <M on D, and a cone labeling p : D′ → {Δ,∇} such that h(d0) = d′

0

and the following requirements hold for all states d:D in which invariant I holds:

I If not a focus point, there is at least one internal step such that the target
state is closer to the focus point:

(¬FC(d)) ⇒ (∃eint:Eint. cint(d, eint) ∧ gint(d, eint) <M d)

II For every internal step, the mapping h maps source and target states to the
same states in the specification:

∀eint:Eint.cint(d, eint) ⇒ h(d) = h(gint(d, eint))

III Every visible action in the specification must be enabled after a finite number
of int actions for each corresponding focus point: For all a:Act

∀ea:Ea.(FC(d) ∧ c′
a(h(d), ea)) ⇒ (∃dint:D.d

int−−→∗dint ∧ ca(dint, ea))

IV Every visible action in the implementation must be mimicked in the corre-
sponding state in the specification: For all a:Act

∀ea:Ea.ca(d, ea) ⇒ c′
a(h(d), ea)

V Matching actions have matching parameters: For all a:Act

∀ea:Ea.ca(d, ea) ⇒ fa(d, ea) = f ′
a(h(d), ea)

VI For all matching actions in specification and implementation, their endpoints
must be related: For all a:Act

∀ea:Ea.ca(d, ea) ⇒ h(ga(d, ea)) = g′
a(h(d), ea)

IΔ Any internal action in the specification is part of an int-loop:

∀eint
:Eint.c

′
int(h(d), eint) ⇒ g′

int(h(d), eint) = h(d)

134 P. H. M. van Spaendonck

IIΔ The cone labeling indicates whether or not a specification state allows an
int-loop:

p(h(d)) = Δ ⇔ (∃eint:Eint. c′
int(h(d), eint))

IIIΔ A cone is labelled as divergent if and only if it is possible to take an internal
action in its focus points:

FC(d) ⇒ (p(h(d)) = Δ ⇔ ∃eint:Eint.cint(d, eint))

IVΔ All internal transitions within a non-divergent cone must bring us closer
to a focus point:

∀eint:Eint.((p(h(d)) = ∇ ∧ cint(d, eint)) ⇒ gint(d, eint) <M d)

Proof. We define R ⊆ D × D′ as {〈d, h(d)〉 | d ∈ D ∧ I(d)}.
Proving that R is a branching bisimulation, i.e. proving conditions B1 and

B2 from Defininition 4, follows the same general proof structure as is used in
both [6], and [11]. We give a concise proof sketch.

Condition B1. Consider the states d, d′:D, and label l:Act ∪ {int} such that
d

a→ d′. As per Requirement II , if l = int then h(d) = h(d′). If l �= int, then we
have h(d) l→ h(d′) as per Requirement IV , and VI.

Condition B2. Consider the states d:D, d′
2:D

′, and label l:Act∪ {int} such that
h(d) l→ d′

2. If l = int, then h(d′
2) = h(d), as per Requirement IΔ . If l �= int,

then there is a state d2:D such that d
int−−→∗d2 and FC(d2) as per Requirement I

and <M being well founded. As per Requirements III and VI, there are states
d3, d4:D such that d

int−−→∗d2
int−−→∗d3

l→ d4 and h(d4) = d′
2. From Requirement II

follows that all states along the int path are related to h(d).
We show that the branching bisimulation R is also divergence-preserving by

proving the two remaining conditions.

Condition D1. Consider the pair 〈d, h(d)〉 ∈ R and an infinite sequence (dn)n∈N

over states in D such that d0 = d and for any n ∈ N we have h(dn) = h(d)
and dn

int−−→dn+1. We show that there is some eint:Eint such that c′
int(h(d), eint)

and g′
int(h(d), eint) = h(d). If h(d) is labeled Δ then this directly follows from

Requirements IΔ, and IIΔ.
Assume, for sake of contradiction, that h(d) is labeled as ∇ instead. Since <M

is a well-founded ordering on D, the sequence (dn)n∈N contains some minimal
element d⊥ such that no other element in the sequence is smaller than d⊥.
However, as per Requirement IVΔ, any outgoing int action from d⊥ must have
an endpoint that is smaller than d⊥, and thus the state that comes directly
after d⊥ in the sequence would have to be smaller, contradicting that d⊥ is the
minimal element.

Condition D2. Consider the pair 〈d, h(d)〉 ∈ R and an infinite sequence (d′
n)n∈N

over states in D′ such that d′
0 = h(d) and for any n ∈ N we have d R d′

n, i.e.
d′

n = h(d), and d′
n

int−−→d′
n+1.

Verification of the Busy-Forbidden Protocol 135

Since h(d) allows an int-loop, we have p(h(d)) = Δ as per Requirement IIΔ.
If d is not a focus point then this action is enabled as per Requirement I. If d
is a focus point then this action is enabled as per Requirement IIIΔ , since its
corresponding cone is labeled as Δ. Requirement II gives us that the endpoint
of this internal action is related to h(d). Thus, if a state in the specification
diverges then so do the related states in the implementation.

We thus conclude that the relation R is a divergence-preserving branching
bisimulation. ��

5 Models of the Specification and the Implementation

We now discuss the models of the specification and implementation of the busy-
forbidden protocol, such that we can use the extended proof framework to prove
them equivalent in Sect. 6. From here on, we use N to denote the number of
concurrent threads and we define P = {p1, . . . , pN} to be the set containing all
N threads.

The linear process equation of the external behavior of the busy-forbidden
protocol is given in Table 9 in the appendix [18]. The set S contains the nodes
shown in Fig. 1. Each state in the specification is represented using a mapping s
that maps each thread to its current node, with each thread starting in the Free
node. The set of specification states for N threads is denoted by D′

N . Note that
each condition in the specification is the same as the conditions shown in Fig. 1.
The improbable actions are considered to be int actions.

The linear process equation of the implementation is given in Table 10 in the
appendix [18]. All non-typewriter font actions are considered to be τ actions
and italicized actions are specifically considered to be int actions. The set of
implementation states DN is given in Definition 5. A part of each state consists
of N substates, with each substate giving the state of that specific thread. The
set of substates is given in Definition 6, in which substates corresponding to the
same node are grouped together.

Definition 5. Each state in the linearized process of the busy-forbidden imple-
mentation for N threads is defined as the tuple

d = 〈dp1 , dp2 , . . . , dpN
, busy, forbidden,mtx〉:DN , in which:

– dp1 , dp2 , . . . , dpN
are the substates of threads 1 through N .

– busy : P → B is the mapping that keeps track of all the busy flags, in which
busy(p) is the current value of the busy flag of thread p.

– forbidden : P → B is the mapping that keeps track of all the forbidden flags
in the same way as the busy mapping.

– mtx is a boolean that indicates whether the mutual exclusion variable mtx is
locked or unlocked.

Definition 6. The set of substates for each individual process is defined as the
union of the following sets:

136 P. H. M. van Spaendonck

– Free = {Free}, ES = {ES1,ES2,ES3,ES4}, LOE = {LOE},
Shared = {Shared}, LS = {LS1,LS2}, EE = {EE}, LOS = {LOS1,LOS2},
Exclusive = {Exclusive}, and OE = {OE1,OE2},

– SAF = {SAFU |U ⊂ P}∪{SAFpx,U |px:P,U ⊂ P}∪{SAFundo
px,U |px:P,U ⊂ P},

– and LE = {LEU |U ⊆ P ∧ U �= ∅}.

Note that the singleton sets, such as Free, contain a single state with the same
name as the set and do not contain themselves.

In the initial state of the implementation for N threads, all substates are set
to Free, busy and forbidden map each thread p to false and mtx is set to false.

Since the state tuple contains a large number of elements, we use a shorthand
notation for writing down the resulting state. All elements which remain the same
are not listed and are abbreviated with “etc.”. A substate or the mtx variable
being changed in the resulting state is denoted with the “=” operator, where the
lefthand side is assigned the value on the righthand side, e.g. dp = ES2 indicates
that the substate of thread p becomes ES2 in the next state. The function update
f [e �→ n] specifies that in the next state f(x) equals the new value n if x ≈ e
and otherwise equals its original value.

We introduce the Invariants 1, 2, and 3. These exclude some unreachable
states and show that for any given state, the exact values of busy, forbidden,
and mtx can be inferred from just the set of substates, i.e. dp1 , dp2 , . . . , dpN

. In
the proof of Invariant 1, we show that the value of mtx can be inferred from
just the set of substates and that it is not possible to have multiple threads
simultaneously present in the set of states fenced off by the mutex operations.
We show that the values of the busy and forbidden flags can also be inferred
from just the set of substates in the proofs of Invariants 2 and 3.

The exact proofs for these invariants can be found in the appendix [18]. All
of them follow the same general structure. Namely, the actions that result in
a thread entering or leaving the given set of states, e.g. B, are the exact same
actions that result in the value, e.g. busy(p), being altered. And thus the exact
values can be inferred from just the set of substates.

Invariant 1. The following invariant holds in the initial state and all subsequent
states of the implementation: Given any state d:D as per Definition 5,

∃p:P. dp ∈ M ⇔ mtx, and ∀px, py:P. dpx
, dpy

∈ M ⇒ px = py,

where M = SAF ∪ LOS ∪ Exclusive ∪ LE ∪ {OE2}.

Invariant 2. The following invariant holds in the initial state and all subsequent
states of the implementation: Given any state d:D as per Definition 5,

∀p:P.dp ∈ B ⇔ busy(p), where B = LOE ∪ Shared ∪ {ES1,ES4,LS2}.

Invariant 3. The following invariant holds in the initial state and all subsequent
states of the implementation: Given any state d:D as per Definition 5,

∀p:P.forbidden(p) ⇐⇒ ∃q:P.dq ∈ F,

Verification of the Busy-Forbidden Protocol 137

where F = LOS ∪ Exclusive ∪ {LEU |U ⊂ P ∧ p ∈ U} ∪ {SAFU |U ⊂ P ∧ p ∈
U} ∪ {SAFp,U |U ⊂ P} ∪ {SAFundo

p,U |U ⊂ P}.

6 Correctness of the Busy-Forbidden Protocol

The state mapping, focus condition, state ordering and cone labeling used during
the equivalence proof are given in Definitions 7, 8, 9, and 10, respectively. These
data objects only need to use substates since the values of the busy, forbidden,
and mtx data objects can be directly inferred from the substates in any given
state.

Definition 7. We define our state-mapping h : DN → D′
N as follows:

h(〈d1, d2, . . . , dN , busy, forbidden,mtx〉) = s where s(p) = hP (dp) for any p:P .

The mapping hP , referred to as the substate-mapping, maps each substate to
the specification state with the same name as the set, shown in Definition 6,
that it belongs to, e.g. hP (ES3) = ES and hP (SAF{p1,p3,p4}) = SAF.

Definition 8. We define our focus condition FC : DN → B as follows:

FC(〈dp1 , dp2 , . . . , dpN
, busy, forbidden, mtx〉) =

∧

px:P

FCpx
(dpx

),

where FCpx
(dpx

)
def
= px ∈ {Free,ES1,LOE, Shared,LS1,EE,SAF∅,LOS1,Exclu-

sive,LE{px},OE1}. We refer to the predicate FCpx
, for any given px:P , as the

sub-focus condition.

Definition 9. Given two states d = 〈dp1 , dp2 , . . . , dpN
, busy, forbidden,mtx〉 and

d′ = 〈d′
p1, d

′
p2, . . . , d′

pN , busy′, forbidden′,mtx′〉, we define the ordering on these
states as follows:

d <M d′ def
=

∧

p:P

dp <p d′
p,

where, given some thread p:P , the ordering <p on its substates is defined such
that only the following holds:

– ES1 <p ES2 <p ES3 <p ES4, LS1 <p LS2, LOS1 <p LOS2,
and OE1 <p OE2,

– SAFpx,U <p SAFU iff px ∈ U for any given U :P(P) and px:P ,
SAFU\{px} <p SAFpx,U for any given U :P(P) and px:P ,
SAFU < SAFundo

px,U ′ for any given given U,U ′:P(P) and px:P ,
– LEU <p LEU ′ iff U ⊂ U ′ ∧ p ∈ U or p ∈ U ∧ p �∈ U ′ for any given U,U ′:P(P)

Definition 10. We define the cone labeling p : D′
N → {Δ,∇} as follows: Given

any state s:D′
N , p(s) = Δ iff ∃q:P.s(q) ∈ {SAF,LE} ∨ (∃q : P.s(q) = ES ∧

∃q′:P.q′ ∈ {LOS,Exclusive}) otherwise p(s) = ∇.

138 P. H. M. van Spaendonck

The specification indicates that if there is one thread in the ES node and
one thread in the SAF node, either one of them should be able to progress to
the next node. This is not simultaneously possible in the implementation, as
progressing to the LOE node requires the busy flag to be true and the forbidden
flag to be false, while progressing to the LOS node requires all busy flags to be
false and all forbidden flags to be true. Thus, the subfocus point of each node is
chosen such that the external actions are enabled directly given that they would
also be enabled in the specification, with the exception of SAF∅ which is used
as the focus point of the SAF node.

We show that there is a path of int actions from this to some state dint in
which the transition to LOE is enabled. This is outlined in Theorem 2 for which
the proof is given in the appendix [18]. The general idea behind the proof is that
if the forbidden flag is set before it is read by the thread in the ES node, the
busy flag will be set back to false. Repeating this, leads to all busy flags being
false and all forbidden flags being true, thus enabling the transition to LOE.

We now conclude by proving the implementation and specification of the
busy-forbidden protocol equivalent in Theorem 3.

Theorem 2. Given some state d:D, some thread pSAF:P , and some data con-
figuration eτ :Eτ such that FC(d) and c′

τ (h(d), eτ) hold, h(d)(pSAF) = SAF and
g′

τ (h(d), eτ) = LOE. There must be some state dint:D such that d
int−−→∗dint and

cτ (dint, eτ) hold and h(gτ (dint, eτ))(pSAF) = LOE.

Theorem 3. The LPE of the implementation given in Table 10 and the LPE of
the specification given in Table 9 are divergence-preserving branching bisimilar.

Proof. To prove the aforementioned equivalence, we show that all ten require-
ments given in Theorem 1 hold using Invariants 1, 2, and 3, and the state map-
ping, focus condition, ordering and cone labeling, given in Definitions 7, 8, 9,
and 10, respectively. From the linear process equation, it is relatively easy to see
that Requirements I, II, V, VI, IΔ, and IIΔ are not invalidated. As such, we refer
the reader to their extended proofs, found in the appendix [18].

Both the implementation and specification contain exactly three externally
observable actions that are not always enabled. For these actions, we show that
if the action in the specification is enabled, the same action is also enabled in
the corresponding focus point in the implementation, and if the action in the
implementation is enabled, the corresponding specification action is also enabled,
thus showing that Requirements III, and IV hold.

The first action is the load(Forbidden(p), false, p) action in ES2 and the τ
transition from the ES to the LOE node in the specification. The load action is
only enabled when forbidden(p) is false, and the τ transition in the specification is
only enabled if there are no threads in LOS or Exclusive node. As per Invariant 3,
these conditions hold exactly when they hold in the corresponding focus points.

The second action is the lock(p) action in EE and the τ transition in the
EE node in the specification. The lock action is only enabled when mtx is false,
and the τ transition in the specification is only enabled if there is no thread in

Verification of the Busy-Forbidden Protocol 139

the SAF, LOS, Exclusive, and LE node. As per Invariant 1, these conditions,
again, hold exactly when they would hold in the corresponding focus points of
the implementation.

The third action is the load(Busy(px), false, p) action in SAFpx,U and the τ
transition from the SAF to the LOS node in the specification. The load action
is only enabled when Busy(p) is false and the τ transition is only enabled if there
is no thread in the LOE and Shared nodes. As per Invariant 2, if busy(p) is false
then the LOE and Shared node are empty and thus, if the action is enabled
in the implementation, it is also enabled in the specification. As per the same
invariant, the only focus points in which the action would not be enabled while
it would be in the corresponding specifications state, are the ones in which a
thread is in the SAF node, i.e. some thread p:P has the substate SAF∅. In these
cases, as per Theorem 2, there must be some finite path of int actions to some
state dint in which this action is enabled.

In the corresponding focus points for the SAF and LE cone, there is always
at least one internal action enabled. In the focus point for the ES cone, the
load(Forbidden(p), true, p) action is enabled iff forbidden(p) is true. As per Invari-
ant 3, the only focus points in which Forbidden(p) is true are the ones in which
the LOS or Exclusive node are occupied. In all other focus points, there are no
further internal actions enabled. Thus Requirement IIIΔ holds.

If a cone is labelled as non-diverging (∇), then each thread should be in one
of the following nodes: Free, LOE, Shared, LS, EE, LOS, Exclusive, or OE, or
ES, given that there are no threads present in either LOS or Exclusive. With the
exception of the load(Forbidden(p), true, p) action in the ES node, all the inter-
nal actions within these nodes take us closer to a focus point. As per Invariant
3, forbidden is true only if there is a thread present in either the LOS or Exclu-
sive, LE, or SAF node, which are known to be empty. Thus Requirement IVΔ

also holds and the implementation and specification are divergence-preserving
branching bisimilar as per Theorem 1. ��

7 Conclusion and Future Work

We have extended the cones and foci proof framework [6,11] with four addi-
tional requirements, i.e. Requirements IΔ, IIΔ, IIIΔ, and IVΔ, such that it can
be used to prove divergence-preserving branching bisimulation. We have proven
this extension to be sound and have used it to prove the implementation and
specification of the novel busy-forbidden protocol [9] to be equivalent.

We note some opportunities to extend upon the work in this paper:

– The completeness of the extended cones and foci proof framework has not
been formally proven. We assume its completeness due to the weakening of
Requirement III, and it is of similar interest as to whether this Requirement
can be made stronger without loss of our assumed completeness.

– As mentioned before, the original cones and foci proof framework has been
used for the verification of the sliding window protocol [2]. The communica-
tion channels used by this protocol are unreliable and thus allow divergence.

140 P. H. M. van Spaendonck

As such, the sliding window protocol could provide an interesting case study
for our extension of the cones and foci proof framework.

– The diverging loops in the external behavior are considered to be improbable,
as such, we abstract away any actual, but potentially informative, probabilis-
tic analysis of the protocol.

References

1. IEEE standard for a high performance serial bus. IEEE Std 1394–1995, pp. 1–384
(1996). https://doi.org/10.1109/IEEESTD.1996.81049

2. Badban, B., Fokkink, W., Groote, J.F., Pang, J., Pol, J.V.d.: Verification of a
sliding window protocol in µcrl and pvs. FAC 17(3), 342–388 (2005). https://doi.
org/10.1007/s00165-005-0070-0

3. Baeten, J., Weijland, W.: Process algebra, Cambridge tracts in theoretical com-
puter science, vol. 18. Cambridge University Press (1990). https://doi.org/10.1017/
CBO9780511624193

4. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

5. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers”
and “writers”. Commun. ACM 14(10), 667–668 (1971). https://doi.org/10.1145/
362759.362813

6. Fokkink, W., Pang, J., van de Pol, J.: Cones and foci: a mechanical framework for
protocol verification. Formal Methods Syst. Des. 29(1), 1–31 (2006). https://doi.
org/10.1007/s10703-006-0004-3dBLP:journals/fmsd/FokkinkPP06

7. åke Fredlund, L., Groote, J.F., Korver, H.: Formal verification of a leader election
protocol in process algebra. Theor. Comput. Sci. 177(2), 459–486 (1997). https://
doi.org/10.1016/S0304-3975(96)00256-3

8. van Glabbeek, R., Luttik, B., Trcka, N.: Computation tree logic with deadlock
detection. Logical Methods Comput. Sci. 5(4) (2009). https://doi.org/10.2168/
LMCS-5(4:5)2009

9. Groote, J.F., Laveaux, M., van Spaendonck, P.H.M.: A thread-safe term library,
pp. 422–459 (2022). https://doi.org/10.1007/978-3-031-19849-6 25

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
The MIT Press, Cambridge (2014)

11. Groote, J., Springintveld, J.: Focus points and convergent process operators?: a
proof strategy for protocol verification. J. Logic Algebraic Program. 49, 31–60
(2001). https://doi.org/10.1016/S1567-8326(01)00010-8

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

13. Luttik, B.: Divergence-preserving branching bisimilarity. EPTCS 322, 3–11 (2020).
https://doi.org/10.4204/EPTCS.322.2

14. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

15. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs i. Acta
informatica 6(4), 319–340 (1976). https://doi.org/10.1007/BF00268134

16. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic app-
roach. Commun. ACM 19(5), 279–285 (1976)

https://doi.org/10.1109/IEEESTD.1996.81049
https://doi.org/10.1007/s00165-005-0070-0
https://doi.org/10.1007/s00165-005-0070-0
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/362759.362813
https://doi.org/10.1145/362759.362813
https://doi.org/10.1007/s10703-006-0004-3dBLP:journals/fmsd/FokkinkPP06
https://doi.org/10.1007/s10703-006-0004-3dBLP:journals/fmsd/FokkinkPP06
https://doi.org/10.1016/S0304-3975(96)00256-3
https://doi.org/10.1016/S0304-3975(96)00256-3
https://doi.org/10.2168/LMCS-5(4:5)2009
https://doi.org/10.2168/LMCS-5(4:5)2009
https://doi.org/10.1007/978-3-031-19849-6_25
https://doi.org/10.1016/S1567-8326(01)00010-8
https://doi.org/10.1145/363235.363259
https://doi.org/10.4204/EPTCS.322.2
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BF00268134

Verification of the Busy-Forbidden Protocol 141

17. Shankland, C., Van Der Zwaag, M.: The tree identify protocol of IEEE 1394 in
µcrl. Formal Aspects Comput. 10(5), 509–531 (1998)

18. van Spaendonck, P.H.M.: Verification of the busy-forbidden protocol, August 2022.
https://doi.org/10.48550/arxiv.2208.05334

19. Usenko, Y.S.: Linearization of µcrl specifications. In: Proceedings of 3rd Work-
shop on Verification and Computational Logic, Technical Report DSSE-TR-2002-
5. Department of Electronics and Computer Science, University of Southampton.
Citeseer (2002)

https://doi.org/10.48550/arxiv.2208.05334

	Verification of the Busy-Forbidden Protocol
	1 Introduction
	2 The Busy-Forbidden Protocol
	3 Linear Process Equations
	4 Equivalence and the Cones and Foci Proof Framework
	5 Models of the Specification and the Implementation
	6 Correctness of the Busy-Forbidden Protocol
	7 Conclusion and Future Work
	References

