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Abstract. Fuzzy cellular automata are dynamical systems that are con-
tinuous counterparts of the usual cellular automata (CA). Compared
with the binary case, defining a fuzzy CA with three or more states
is challenging because defining mixed states is difficult. Recently, this
difficulty was resolved by representing multiple states as independent
vectors in higher dimensions, and the concept of vector-valued fuzzy CA
(VFCA) was introduced. In this study, we theoretically analyze and dis-
cuss the asymptotic behavior of three-state, three-neighbor VFCA. First,
we define the weighted-averaging rules of VFCA and show how many
rules exist up to the equivalence relations. According to these rules, each
state vector in the next step is determined by the weighted average of the
vectors in its neighboring cells. Next, we prove that VFCA with weighted-
averaging rules converge to a periodic configuration characterized by the
symmetric group of order 3. In particular, the non-commutativity of the
group action provides an interesting behavior that is not observed in
fuzzy CA arising from binary states. These results can be extended to
VFCA with more than three states and/or three neighbors.

Keywords: Fuzzy cellular automata · Vector-valued cellular
automata · Weighted-averaging rule · Periodic behavior

1 Introduction

Cellular automata (CA) are dynamical systems that describe cell configurations
that evolve concurrently in accordance with a local update rule based on neigh-
boring cells. CA are used as tools for mathematical modeling in areas such as
traffic flows and life sciences. One of the simplest CA is a one-dimensional two-
state, three-neighbor CA, also known as the elementary CA (ECA). The local
rule of an ECA can be expressed in a disjunctive normal form in Boolean alge-
bra, which can be converted into a usual polynomial. It provides the local rule
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of an elementary fuzzy CA (EFCA) [1], which is a continuous counterpart of the
ECA whose state set is the closed interval [0, 1]. In this study, fuzzy CA does
not refer to CA on fuzzy sets [2] or the fuzzy choice of local rules [3]. Although
ECA rule 184 is famous for traffic models, the application of EFCA rule 184 to
traffic flows was recently proposed [4].

Compared with the binary case, defining a fuzzy CA with three or more states
is not easy. We previously introduced a vector-valued CA to apply fuzzification
to CA with three or more states [5]. The results are briefly summarized. Let
e1,e2,e3 be the standard basis vectors of R3. The integer-valued states 2, 1, 0 are
associated with e1,e2,e3, yielding the state set Q = {e1,e2,e3} of three-state
vector-valued CA. For i ∈ Z and t ∈ Z≥0, where Z≥0 is the set of nonnegative
integers, let xt

i denote the vector in cell i at time step t. In the case of three-
neighbor CA, the evolution is determined by the local rule f : Q3 → Q as
xt+1

i = f(xt
i−1,x

t
i,x

t
i+1). Then, the local rule f can also be expressed as:

f(x,y,z) =

⎛
⎜⎝

∑
f(ej ,ek,e�)=e1

xjykz�∑
f(ej ,ek,e�)=e2

xjykz�∑
f(ej ,ek,e�)=e3

xjykz�

⎞
⎟⎠ , (1)

where x = (x1, x2, x3)�,y = (y1, y2, y3)� and z = (z1, z2, z3)�. Consider the
two-dimensional simplex Δ with vertices e1,e2,e3:

Δ =
{
(x1, x2, x3)� ∈ R

3 | x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0
}

.

The domain of function f can be expanded from Q3 to Δ3 through the right-
hand side of (1), and f satisfies f(Δ3) ⊂ Δ. Consequently, the state set Q can be
expanded to Δ, and a vector-valued fuzzy CA (VFCA), which is a continuous-
valued CA with local rule f : Δ3 → Δ, is obtained. The expression (1) is similar
to the disjunctive normal form of a local rule of ECA. Thus, VFCA can be
regarded as an extension of EFCA introduced in [1], which is the reason why
we use the term fuzzy. In a recent study [6], VFCA are related to stochastic CA
because vectors in Δ are considered to express the probability for each state.
As in EFCA, traffic flow models in terms of VFCA were discussed in [6,7].
Thus, theoretical study of VFCA will help the analysis of both deterministic
and stochastic mathematical models.

1.1 Our Contributions

In this study, we consider the asymptotic behavior of VFCA, especially the
convergence of VFCA. Hereafter, all CA are assumed to satisfy the periodic
boundary condition with a positive integer period L; that is, xt

i = xt
i+L for

i ∈ Z and t ∈ Z≥0. The local rule f of a VFCA induces the global rule F :
ΔL → ΔL. A VFCA with the initial configuration X0 ∈ ΔL can be expressed
as the sequence {Xt}t∈Z≥0 , where Xt+1 = F (Xt) for t ∈ Z≥0. Let [xi]k denote
the kth component of xi. The convergence of VFCA is defined with respect to
the following metric d on ΔL:

d((x0,x1, . . . ,xL−1), (y0,y1, . . . ,yL−1)) = max
i=0,1,...,L−1

max
k=1,2,3

|[xi]k − [yi]k|.
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First, we define the weighted-averaging local rules of VFCA. In these rules,
each state vector xt+1

i is determined by the weighted average of two of the
three neighboring vectors xt

i−1,x
t
i,x

t
i+1. These rules were discussed in EFCA [8].

Because we consider a three-dimensional vector, we can permute the entries of
each vector before taking the weighted average. We present a brief description
of how many different weighted-averaging rules exist up to the equivalence rela-
tions. These VFCA systems exhibit asymptotically periodic behavior in both
time and space. The main section provides a theoretical proof of the conver-
gence of VFCA with weighted-averaging rules. Using a transformation of VFCA
into another CA admitting different local rules for each cell, we present a proof
that is applicable to many types of weighted-averaging rules. We demonstrate
that the action of the symmetric group S3 plays a crucial role in classifying the
periodic pattern of behavior. In particular, the non-commutativity of S3 induces
a special type of convergence not observed in EFCA.

1.2 Related Works

The asymptotic behavior of EFCA has been discussed in several studies. For
example, self-averaging rules [9] and weighted-averaging rules [8] are important
classes of EFCA local rules, such that their convergence may be analytically
proven. The dynamics of several specific rules have been individually studied,
such as EFCA rules 90 [10] and 184 [11]. In computer simulations for some VFCA
corresponding to traffic models [6,7], it was suggested that such VFCA converge
to homogeneous configurations after sufficiently large steps. In contrast, this
study focuses on a theoretical analysis of the convergence of VFCA.

2 Weighted-Averaging Rules in VFCA

In this section, we focus on several special rules of VFCA, called weighted-
averaging rules. The formal definitions are as follows. Let us define the action of
S3 on Δ by σ(x) = ([x]σ−1(1), [x]σ−1(2), [x]σ−1(3))� for x ∈ Δ and σ ∈ S3. The
local rule f of a VFCA is called a weighted-averaging rule if it is expressed in
one of the following forms:

f(x,y,z) = (1 − 〈x〉) · σ(y) + 〈x〉 · τ(z), (2)
f(x,y,z) = (1 − 〈z〉) · σ(y) + 〈z〉 · τ(x), (3)
f(x,y,z) = (1 − 〈y〉) · σ(x) + 〈y〉 · τ(z). (4)

Here, σ, τ ∈ S3 and 〈x〉 is one of [x]1, [x]2, [x]3, 1− [x]1, 1− [x]2, 1− [x]3. Because
there are six choices for σ, τ and 〈x〉, we have 6 × 6 × 6 = 216 local rules for
each type (2)–(4). In particular, the local rules of forms (2) and (3) are called
the weighted-averaging rules of type 1, and the local rules of the form (4) are
called those of type 2.

We introduce an equivalence relation for the local rules of VFCA. The action
of ρ ∈ S3 on f : Δ3 → Δ is defined as

(ρ ◦ f)(x,y,z) = ρ(f(ρ−1(x), ρ−1(y), ρ−1(z))).
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We also define the reflection r as

(r ◦ f)(x,y,z) = f(z,y,x).

Then, the two local rules are said to be equivalent if one is obtained from the
other by the action of ρ ∈ S3, reflection, or their composition. Specifically, (2)
and (3) provide equivalent local rules. Based on this equivalence relation, 432
weighted-averaging rules of forms (2) and (3) are divided into 40 equivalence
classes. Note that some equivalence classes contain only 6 rules, whereas others
contain 12 rules. For example, consider the local rule

f(x,y,z) = (1 − [x]1) · σ(y) + [x]1 · z
with σ = (2 3). It is essential that σ(1) = 1. Subsequently, for ρ ∈ S3, we obtain

((ρσ) ◦ f)(x,y,z)

= (1 − [x]ρσ(1)) · ρσ(σ(σ−1ρ−1(y))) + [x]ρσ(1) · ρσ(σ−1ρ−1(z))

= (1 − [x]ρ(1)) · ρ(σ(ρ−1(y))) + [x]ρ(1) · ρ(ρ−1(z))
= (ρ ◦ f)(x,y,z).

Therefore, each rule appears twice owing to the action of S3, which reduces the
number of rules in the equivalence class by half. Representatives of such types
of equivalence classes are of the form (2), where 〈x〉 = [x]1 or 1 − [x]1, and
σ, τ are identities or (2 3). Therefore, there are eight classes that contain six
rules. Similarly, 216 weighted-averaging rules of the forms (4) are divided into
20 equivalence classes.

To prove the convergence of VFCA with the weighted-averaging rules, we use
a general framework. Let int(Δ) be the relative interior of Δ; that is

int(Δ) =
{
(x1, x2, x3)� ∈ R

3 | x1 + x2 + x3 = 1, x1, x2, x3 > 0
}

.

Hereafter, the indices of the cells are considered in modulo L if not specified.

Proposition 1. Let {Xt}t∈Z≥0 be a sequence in ΔL with X0 ∈ int(Δ)L, where
Xt = (xt

0,x
t
1, . . . ,x

t
L−1). Suppose that the evolution can be written as

xt+1
i = (1 − γt

i )x
t
i + γt

ix
t
i+1.

If there exists γ with 0 < γ < 1/2 such that γt
i ∈ [γ, 1 − γ] for all i ∈ Z and

t ∈ Z≥0, then there exists p ∈ Δ such that Xt converges to a homogeneous
configuration X∗ = (p,p, . . . ,p) as t → ∞.

In the proof of Proposition 1, we use the following result for EFCA:

Lemma 1 ([8]). Let {Xt}t∈Z≥0 be a sequence in [0, 1]L with X0 ∈ (0, 1)L, where
Xt = (xt

0, x
t
1, . . . , x

t
L−1). Suppose that the evolution can be written as

xt+1
i = (1 − γt

i )x
t
i + γt

ix
t
i+1.

If there exists γ with 0 < γ < 1/2 such that γt
i ∈ [γ, 1 − γ] for all i ∈ Z and

t ∈ Z≥0, then there exists p ∈ [0, 1] such that Xt converges to the homogeneous
configuration (p, p, . . . , p) as t → ∞.
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Proof (Proposition 1). For each k ∈ {1, 2, 3}, the initial configuration satisfies
([x0

0]k, [x0
1]k, . . . , [x0

L−1]k) ∈ (0, 1)L. Moreover, the evolution can be written as

[xt+1
i ]k = (1 − γt

i )[x
t
i]k + γt

i [x
t
i+1]k.

Therefore, the sequence {Xt
k}t∈Z≥0 where Xt

k = ([xt
0]k, [xt

1]k, . . . , [xt
L−1]k) sat-

isfies the assumption of Lemma 1. Thus, [xt
i]k converges to the same constant

pk ∈ [0, 1] independent of cell i. This implies that xt
i converges to the same

vector p = (p1, p2, p3)� ∈ Δ independent of cell i. 
�

3 Convergence of VFCA with Weighted-Averaging Rules

We now present the convergence statement of VFCA with weighted-averaging
rules. In contrast to the case of EFCA, we observe two types of convergence
depending on whether σ and τ are commutative, that is, στ = τσ. For simplicity,
the period L is assumed to be a multiple of |S3| = 6.

3.1 Commutative Case of the Weighted-Averaging Rules of Type 1

Figure 1(left) illustrates the space-time diagram of VFCA whose local rule is

f(x,y,z) =

⎛
⎝
(x2 + x3)y2 + x1z3
(x2 + x3)y3 + x1z1
(x2 + x3)y1 + x1z2

⎞
⎠ = (1 − x1)

⎛
⎝

y2
y3
y1

⎞
⎠ + x1

⎛
⎝

z3
z1
z2

⎞
⎠ .

Here, σ = (1 3 2) and τ = (1 2 3) are commutative. We observed that this VFCA
exhibited periodic behavior in both time (vertical axis) and space (horizontal
axis) after a sufficient number of time steps. This is stated in the following
theorem. Note that ordσ is the order of a permutation σ in S3.

Theorem 1. Suppose X0 = (x0
0,x

0
1, . . . ,x

0
L−1) ∈ int(Δ)L. If σ and τ are com-

mutative, there exists p ∈ Δ such that the VFCA with the weighted-averaging
rule (2) periodically converges as follows:

Xt → (σs(p), σsπ−1(p), . . . , σsπ−(L−1)(p)), t = s mod (ordσ).

Here, π = σ−1τ and 0 ≤ s ≤ ordσ − 1.

We note that the vector p in Theorem 1 depends on the initial configuration
and is not obtained explicitly in a simple formula.

Proof. First, we verify that mt := mini mink=1,2,3[xt
i]k is nondecreasing and

M t := maxi maxk=1,2,3[xt
i]k is nonincreasing. For any i and k ∈ {1, 2, 3},

[xt+1
i ]k = (1 − 〈xt

i−1〉) · [σ(xt
i)]k + 〈xt

i−1〉 · [τ(xt
i+1)]k

= (1 − 〈xt
i−1〉) · [xt

i]σ−1(k) + 〈xt
i−1〉 · [xt

i+1]τ−1(k)

≥ min([xt
i]σ−1(k), [xt

i+1]τ−1(k))

≥ mt.
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Fig. 1. To visualize the evolution of VFCA, we use the RGB color system. The states e1,
e2, and e3 are associated with red, green, and blue, respectively. An inner point of Δ is
expressed by the mixture of the three colors. (left) Space-time diagram for a complete
number-conserving rule (rule 3,226,064,485,963 by Wolfram’s numbering rule [12]).
(right) Space-time diagram for a weighted averaging rule (rule 3,226,250,775,339)
(Color figure online)

Here, the property of the weighted average was used. Therefore, mt+1 ≥ mt.
Similarly, we show that M t+1 ≤ M t. In particular, if we take γ > 0 such that
γ ≤ m0 ≤ M0 ≤ 1−γ, then both [xt

i]k and 1− [xt
i]k are in the interval [γ, 1−γ]

for all i, t, and k.
The local rule (2) can be written as

f(x,y,z) = σ((1 − 〈x〉) · y + 〈x〉 · π(z)),
where π = σ−1τ . Let F : ΔL → ΔL be the global rule of this VFCA. For each
t ∈ Z≥0 and i = 0, 1, . . . , L − 1 we define the local function as

gt,i(x,y,z) = (1 − 〈σtπ−(i−1)(x)〉) · y + 〈σtπ−(i−1)(x)〉 · z. (5)

Note that this local function differs for each cell i and time t. In addition, we
define the global map Gt : ΔL → ΔL as

Gt(x0,x1, . . . ,xL−1)
= (gt,0(xL−1,x0,x1), gt,1(x0,x1,x2), . . . , gt,L−1(xL−2,xL−1,x0)).

(6)
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We also define the bijection ht : ΔL → ΔL as

ht(x0,x1, . . . ,xL−1) = (σ−t(x0), σ−tπ(x1), . . . , σ−tπL−1(xL−1)).

We then show that ht+1 ◦ F = Gt ◦ ht for all positive integers t ∈ Z≥0.
The vector at cell i of (ht+1 ◦ F )(x0,x1, . . . ,xL−1) is

σ−(t+1)πi(σ((1 − 〈xi−1〉) · xi + 〈xi−1〉 · π(xi+1)))

= (1 − 〈xi−1〉) · σ−tπi(xi) + 〈xi−1〉 · σ−tπi+1(xi+1).

In contrast, the vector at cell i of (Gt ◦ ht)(x0,x1, . . . ,xL−1) is

gt,i(σ−tπi−1(xi−1), σ−tπi(xi), σ−tπi+1(xi+1))

= (1 − 〈σtπ−(i−1)(σ−tπi−1(xi−1))〉) · σ−tπi(xi)

+ 〈σtπ−(i−1)(σ−tπi−1(xi−1))〉 · σ−tπi+1(xi+1)

= (1 − 〈xi−1〉) · σ−tπi(xi) + 〈xi−1〉 · σ−tπi+1(xi+1).

In both computations, we use σπ = πσ, which is derived from στ = τσ. Because
this holds for all i = 0, 1, . . . , L−1, we have ht+1 ◦F = Gt ◦ht. Using this system
repeatedly, we can express t times the composition of F as

F t = h−1
t ◦ (Gt−1 ◦ · · · ◦ G1 ◦ G0) ◦ h0. (7)

We set Y 0 := h0(X0) ∈ int(Δ)L. We define Y t as

Y t = (Gt−1 ◦ · · · ◦ G1 ◦ G0)(Y 0).

From (5) and (6), the sequence {Y t}t∈Z≥0 satisfies Proposition 1. Therefore, Y t

converges to a homogeneous configuration (p,p, . . . ,p) ∈ ΔL as t → ∞. From
(7), Xt converges to

h−1
t (p,p, . . . ,p) = (σt(p), σtπ−1(p), . . . , σtπ−(L−1)(p)).

In particular, when t = s mod (ordσ), we obtain

Xt → (σs(p), σsπ−1(p), . . . , σsπ−(L−1)(p))

as t → ∞. 
�

3.2 Non-commutative Case of the Weighted-Averaging Rules
of Type 1

Next, we consider the case in which σ and τ are non-commutative. The cor-
responding VFCA converges to a homogeneous configuration consisting of cen-
troids whenever the initial configuration is in int(Δ)L. Figure 1(right) shows the
space-time diagram of a VFCA whose local rule is

f(x,y,z) =

⎛
⎝
(x2 + x3)y2 + x1z3
(x2 + x3)y1 + x1z1
(x2 + x3)y3 + x1z2

⎞
⎠ = (1 − x1)

⎛
⎝

y2
y1
y3

⎞
⎠ + x1

⎛
⎝

z3
z1
z2

⎞
⎠ .

Here, σ = (1 2) and τ = (1 2 3) are non-commutative. We can see that all cells
converge to “gray”, representing (1/3, 1/3, 1/3)�.
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Theorem 2. Suppose X0 = (x0
0,x

0
1, . . . ,x

0
L−1) ∈ int(Δ)L. If σ and τ are non-

commutative, then the VFCA with the weighted-averaging rule (2) converges to

X∗ = (a,a, . . . ,a),

where a = (1/3, 1/3, 1/3)�.

The following two lemmas will be used in the proof of Theorem 2. Let
S(σ, τ ;m,n) be the set of all permutations in S3 obtained from a composition
of m times σ and n times τ in any order.
Lemma 2. Let mt = mini mink=1,2,3[xt

i]k, M t = maxi maxk=1,2,3[xt
i]k. Under

the assumption in Theorem2, we consider γ > 0 such that γ ≤ m0 ≤ M0 ≤ 1−γ.
At step t, suppose M t = [xt

i]k. Then, for any pair (j, s) with 0 ≤ j ≤ s and
permutation ρ ∈ S(σ, τ ; s − j, j),

[xt+s
i−j ]ρ(k) ≥ mt + γs(M t − mt).

Proof. As in the proof of Theorem 1, we see that mt is nondecreasing and M t is
nonincreasing; in particular, both 〈xt

i〉 and 1− 〈xt
i〉 are in the interval [γ, 1− γ]

for all i and t. We prove the assertion of this lemma through induction on s.
The case s = 0 is trivial. Suppose that this assertion is true for s − 1. Let
ρ ∈ S(σ, τ ; s − j, j).
Case 1: ρ = σρ′ where ρ′ ∈ S(σ, τ ; s − j − 1, j).

Under the assumption of induction, we obtain

[xt+s−1
i−j ]ρ′(k) ≥ mt + γs−1(M t − mt).

Therefore, we have

[xt+s
i−j ]ρ(k) = [σ−1(xt+s

i−j)]ρ′(k)

= (1 − 〈xt+s−1
i−j−1〉) · [xt+s−1

i−j ]ρ′(k) + 〈xt+s−1
i−j−1〉 · [σ−1τ(xt+s−1

i−j+1)]ρ′(k)

≥ (1 − 〈xt+s−1
i−j−1〉) · (mt + γs−1(M t − mt)) + 〈xt+s−1

i−j−1〉 · mt

≥ γ(mt + γs−1(M t − mt)) + (1 − γ)mt

= mt + γs(M t − mt).

In the second inequality, we use the following fact. If a ≥ b and p ≥ q,
then pa + (1 − p)b ≥ qa + (1 − q)b.

Case 2: ρ = τρ′ where ρ′ ∈ S(σ, τ ; s − j, j − 1).
Under the assumption of induction, we obtain

[xt+s−1
i−(j−1)]ρ′(k) ≥ mt + γs−1(M t − mt).

Therefore, we have

[xt+s
i−j ]ρ(k) = [τ−1(xt+s

i−j)]ρ′(k)

= (1 − 〈xt+s−1
i−j−1〉) · [τ−1σ(xt+s−1

i−j )]ρ′(k) + 〈xt+s−1
i−j−1〉 · [xt+s−1

i−j+1]ρ′(k)

≥ (1 − 〈xt+s−1
i−j−1〉) · mt + 〈xt+s−1

i−j−1〉 · (mt + γs−1(M t − mt))

≥ (1 − γ)mt + γ(mt + γs−1(M t − mt))

= mt + γs(M t − mt).
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Thus, we have proven this lemma by induction. 
�
Lemma 3. Suppose σ, τ ∈ S3 are non-commutative. For any k, k′ ∈ {1, 2, 3}
and m,n ≥ 3, there exists a permutation ρ ∈ S(σ, τ ;m,n) such that ρ(k) = k′.

Proof. If σ is a cycle of length 3 and τ is a transposition, we define ρ1, ρ2, ρ3 ∈
S(σ, τ ;m,n) as follows:

ρ1 := (σm−3τn−2)(σ3τ2) = (σm−3τn−2),

ρ2 := (σm−3τn−2)(σ2τστ) = (σm−3τn−2)σ,

ρ3 := (σm−3τn−2)(στσ2τ) = (σm−3τn−2)σ2.

Because one of ρ1(k), ρ2(k) or ρ3(k) is k′, we can obtain a desired permutation
ρ ∈ S(σ, τ ;m,n). The case in which σ and τ are distinct transpositions is proven
similarly. 
�
Proof (Theorem 2).. We apply Lemma 2 for s = L + 6 and consider the case
3 ≤ j ≤ L + 3. From Lemma3, for any k′, there exists ρ ∈ S(σ, τ ; s − j, j) such
that ρ(k) = k′. Here, k is the fixed index selected from Lemma 2. Then, for any
k′ = 1, 2, 3 and 3 ≤ j ≤ L + 3, we have

[xt+L+6
i−j ]k′ ≥ mt + γL+6(M t − mt).

Using the periodic boundary condition, we obtain

[xt+L+6
i ]k′ ≥ mt + γL+6(M t − mt)

for i = 0, 1, . . . , L − 1, yielding

mt+L+6 ≥ mt + γL+6(M t − mt).

Let m∗ = limt→∞ mt and M∗ = limt→∞ M t. We demonstrate that m∗ =
M∗. In contrast, suppose m∗ < M∗. Then, there exists ε > 0 such that M t−mt >
ε for all t ∈ Z≥0. In contrast, for all δ > 0, there exists T ∈ Z≥0 such that
m∗ − mT < δ. Setting δ = γL+6ε, we obtain

mT+L+6 ≥ mT + γL+6(MT − mT ) > mT + γL+6ε > m∗,

which is contradictory. Therefore, we have proven m∗ = M∗ = 1/3. 
�

3.3 Weighted-Averaging Rules of Type 2

In this subsection, we consider weighted-averaging rules of the form (4). The
period of space is assumed to be 2L, which is a multiple of 12.

Theorem 3. Suppose X0 = (x0
0,x

0
1, . . . ,x

0
2L−1) ∈ int(Δ)2L. If σ and τ are

commutative, then there exists p, q ∈ Δ such that the VFCA with weighted
averaging rule (4) periodically converges as follows:

Xt → (σsπr(p), σsπr(q), σsπr−1(p), σsπr−1(q), . . . , σsπr−(L−1)(q)),
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when t = s mod (ordσ) and t = 2r mod 2(ordπ) and

Xt → (σsπr+1(q), σsπr(p), σsπr(q), σsπr−1(p), . . . , σsπr−(L−1)(p))

when t = s mod (ordσ) and t = 2r + 1 mod 2(ordπ), where π = σ−1τ , 0 ≤ s ≤
ordσ − 1 and 0 ≤ r ≤ ord τ − 1.

Proof. The local rule (4) can be written as

f(x,y,z) = σ((1 − 〈y〉) · x+ 〈y〉 · π(z)).

Let F : Δ2L → Δ2L be the global rule. Furthermore, let F̃ : Δ2L → Δ2L be the
shifted global rule defined by

F̃ (x0,x1, . . . ,x2L−1) := (S ◦ F )(x0,x1, . . . ,x2L−1)
= (f(x0,x1,x2), f(x1,x2,x3), . . . , f(x2L−1,x0,x1)),

where S : Δ2L → Δ2L denotes the left-shift map

S(x0,x1, . . . ,x2L−1) = (x1, . . . ,x2L−1,x0).

As in the case of the EFCA [8], the key idea is to divide the entire space into
even and odd parts. The original VFCA can then be regarded as a direct product
of the two sequences, satisfying the assumption of Proposition 1.

For t ∈ Z≥0 and i = 0, 1, . . . , L − 1, we define the functions as

get,i(x,z;y) = (1 − 〈σtπ−i(y)〉) · x+ 〈σtπ−i(y)〉 · z,

got,i(x,z;y) = (1 − 〈σtπ−(i+1)(y)〉) · x+ 〈σtπ−(i+1)(y)〉 · z,

and global maps Ge
t , G

o
t : ΔL → ΔL as

Ge
t(x0,x1, . . . ,xL−1;y0,y1, . . . ,yL−1)

= (get,0(x0,x1;y0), get,1(x1,x2;y1), . . . , get,L−1(xL−1,x0,yL−1)),

Go
t (x0,x1, . . . ,xL−1;y0,y1, . . . ,yL−1)

= (got,0(x0,x1;y1), got,1(x1,x2;y2), . . . , got,L−1(xL−1,x0;y0)).

Here, x0,x1, . . . ,xL−1 are the variables considered. In addition, we define two
projective maps, he

t , h
o
t : Δ2L → ΔL, as follows:

he
t(x0,x1, . . . ,x2L−1) =(σ−t(x0), σ−tπ(x2), . . . , σ−tπL−1(x2(L−1))),

ho
t (x0,x1, . . . ,x2L−1) =(σ−t(x1), σ−tπ(x3), . . . , σ−tπL−1(x2L−1)).

Using these notations, we can verify

(he
t+1 ◦ F̃ )(X) = Ge

t(h
e
t(X);ho

t (X)), (ho
t+1 ◦ F̃ )(X) = Go

t (h
o
t (X);he

t(X))

for t ∈ Z≥0 and X = (x0,x1, . . . ,x2L−1) ∈ Δ2L. These equalities are obtained
in a manner similar to the proof of Theorem 1.
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We define ht : Δ2L → ΔL × ΔL and Gt : ΔL × ΔL → ΔL × ΔL as

ht(X) = (he
t(X), ho

t (X)) and Gt((Y ,Z)) = (Ge
t(Y ;Z), Go

t (Z;Y )).

Then, ht is a bijection, and

(ht ◦ F̃ )(X) = (Ge
t(h

e
t(X);ho

t (X)), Go
t (h

o
t (X);he

t(X))) = (Gt ◦ ht)(X).

Therefore, the t-times composition of F̃ can be expressed as

F̃ t = h−1
t ◦ (Gt−1 ◦ Gt−2 ◦ · · · ◦ G0) ◦ h0.

Using the commutativity of F and left-shift map S, we have

F t = (St)−1 ◦ h−1
t ◦ (Gt−1 ◦ Gt−1 ◦ · · · ◦ G0) ◦ h0.

We set (Y 0,Z0) := h0(X0) ∈ int(Δ)L × int(Δ)L. If we define

(Y t,Zt) = (Gt−1 ◦ Gt−2 ◦ · · · ◦ G0)(Y 0,Z0),

both {Y t}t∈Z≥0 and {Zt}t∈Z≥0 satisfy the assumption of Proposition 1. There-
fore, Y t and Zt converge to configurations (p,p, . . . ,p) and (q, q, . . . , q) as
t → ∞, respectively. Then, Xt converges to

((S−1)t ◦ h−1
t )((p,p, . . . ,p), (q, q, . . . , q))

=(S−1)t((σt(p), σt(q), σtπ−1(p), σtπ−1(q) . . . , σtπ−(L−1)(p), σtπ−(L−1)(q)))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(σtπ
t
2 (p), σtπ

t
2 (q), σtπ

t
2−1(p), σtπ

t
2−1(q), . . .

. . . , σtπ
t
2−(L−1)(p), σtπ

t
2−(L−1)(q)) if t is even,

(σtπ
t+1
2 (q), σtπ

t−1
2 (p), σtπ

t+1
2 −1(q), σtπ

t−1
2 −1(p), . . .

. . . , σtπ
t+1
2 −(L−1)(q), σtπ

t−1
2 −(L−1)(p)) if t is odd.

From the periodicities of σ and π, we may assert this theorem. 
�
Combining the proofs of Theorems 2 and 3, we obtain the following result.

Theorem 4. Suppose X0 = (x0
0,x

0
1, . . . ,x

0
2L−1) ∈ int(Δ)2L. If σ and τ are

non-commutative. The VFCA with the weighted-averaging rule (4) then con-
verges to the homogeneous configuration with the centroid a = (1/3, 1/3, 1/3)�:

X∗ = (a,a, . . . ,a).

4 Conclusion

In this study, we provide an analytical proof for the convergence of VFCA.
The convergence patterns of some of the weighted-averaging rules in three-state,
three-neighbor VFCA are similar to those in EFCA. However, there are weighted-
averaging rules with a new type of convergence pattern in the three-state case
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because the symmetric group S3 is non-commutative, whereas S2 is commutative.
Under these rules, all the components of the vectors are mixed, and each cell
converges to the centroid. Moreover, this proof can be easily extended to VFCA
in more than three states by considering the group Sn. Although weighted-
averaging rules are a small part of all rules of three-state, three-neighbor VFCA,
the proofs presented in this study may be effective for the general case. Future
work will demonstrate the convergence of VFCA with other rules.
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