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A Systematic Review on ECG and EMG 
Biomedical Signal Using Deep-Learning 
Approaches

Aarti Chugh and Charu Jain

Abstract  Biomedical signals play an indispensable role in many medical applica-
tions like diagnosis, prognosis, and defining treatment procedures. Recent advance-
ments in artificial intelligence and computation speed have intensified biomedical 
signal research. This article conducts a systematic and exhaustive overview of the 
latest research literature on deep-learning methods for the analysis of biomedical 
signal results, such as electrocardiograms (ECGs) and electromyograms (EMG). 
ECG and EMG techniques are among some of the most imperative biomedical sig-
nals in the diagnosis and activity recognition of the subject. Additionally, the review 
will explore various well-known databases and discuss numerous contemporary 
methods with results published between January 2018 and December 2020. We 
mainly studied the key parameters in the collected paper: deep-learning model and 
training architecture, medical tasks, dataset sources, and medical application. These 
are the essential parameters that influence performance. This paper will also discuss 
and conclude by highlighting critical research gaps and possible future scope to 
directly build intelligent computational models from biomedical signals.

1 � Introduction

Biomedical signals (BS) describe the electrical activity generated by different 
human body cells like muscular, cardiac, etc. BS evidence in the form of 1D signals 
are time-domain data, in which sample data points are acquired over time [1]. These 
signals are constantly changing and reflect the health of the patient’s psyche. BS 
data categories include electromyogram (EMG), data about alterations to skeleton 
muscle tissue, and electrocardiogram (ECG), data about changes in heartbeat or 
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rhythm. Some signals are systematic and spontaneous activities of the human 
psyche, such as electroglottography EEG or ECG. In contrast, others, such as the 
signal of visual evoked potential, are responses to external stimuli. Additionally, BS 
analysis practices are often shared. The behavior and essential aspects of generating 
such signals have to be understood, considering the end objective to retrieve the 
desired information. However, the form of analysis can alter depending on the ana-
lyzed signals and the data to be retrieved. Figures 1 and 2 show the raw EMG sam-
ple and raw ECG signal. Deep neural network (DNN) is already increasingly used 
in various disciplines for prediction and classification. In recent time, DNNs are 
rapidly developing and significantly impacting generalization ability for a vast 
range of medical tasks.

We assembled papers via PubMed’s search tool with keyword combination: 
“deep-learning,” “deep-learning electromyogram,” and “deep-learning electrocar-
diogram.” We found 87 recent research work published between January 2018 and 
December 2020 inclusive from numerous academic journals and publishers. The 
predominant objective of this survey is to address a wide range of DLM application 
in BS research. Next section shows literature review followed by Sect. 3 for the 
most popular deep training models and training architecture employed in the stud-
ied articles. Then, in Sect. 4, we provide a summary of deep-learning deployment in 
specific signal categories and tabulated representation for quick reference. In tables, 
we only compare the key parameters within studied paper such as medical applica-
tion, medical task, variants of different DLM, dataset used, and performance of that 
paper. The Sect. 5 is for discussion and the final section conclude the key gaps and 
foreseeing research direction.

2 � Related Works

Deep-learning approaches in biomedical signaling application evidence between 
January 2018 and December 2020 provide two forms of scientific research. The first 
is oriented toward medical fields, such as a taxonomy focusing on medical activities 

500

0.2 0.4 0.6 10.8 1.2

Time (seconds)

Raw EMG signal

1.4 1.6 1.8 2
–500

E
M

G
 A

m
pl

itu
de

 (
uV

)

0

Fig. 1  Raw EMG sample [3]
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Fig. 2  Raw ECG sample [4]

such as computer-aided detection, illness detection, etc. or a taxonomy focusing on 
anatomy implementation areas such as the heart, chest, abdomen, eyes, and liver, 
among others.

The author [5] has accumulated 53 scientific publications on deep-learning strat-
egies for BS processing conducted from 2012 to 2017. This research initially used 
DLM techniques such as RNN, auto-encoder (AE), DBN, RBM, and GAN. The 
papers are then categorized according to the BS data modalities. Each segment con-
tains information about the clinical applications, the deep-learning algorithm, the 
dataset, and the results. The second section discusses deep-learning strategies such 
as taxonomy centered toward deep-learning architectures such as RNN, AE, DBN, 
GAN, CNN, and U-Net [2]. A comprehensive systematic study is conducted on 
one-dimensional BS (base station) data, with a specific emphasis on developing a 
taxonomy. This study collected 71 articles, mostly ECG publications from 2010 to 
2017. The survey’s primary objective was to analyze a variety of DLM for the BS 
study. It then classified DLMs according to their data source, application purpose, 
input BS class, dataset volume, and neural network training aspect. The author of 
[6] listed a few biomedical domain factors in deep-learning intervention studies for 
healthcare complex challenges. It defined the use of DLM in medicine by categoriz-
ing it as biological systems, e-health records, medical images, and BS. It concluded 
by presenting research directions for optimizing health management through the use 
of BS applications.

3 � Deep-Learning Techniques and Training Architecture

3.1 � Deep-Learning Techniques

Deep learning concerns research on the extraction of information, predictions, sen-
sible decision, or the recognition of complex patterns employing a collection of 
data. DNNs are far more adaptable compared to traditional learning approaches 
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since higher accuracy is ideally achieved by increasing the network’s size or the 
training set’s scale. For certain modern implementations, shallow teaching strate-
gies such as random forest and support vector machines (SVMs) are insufficient, 
requiring a large number of generalization experiments and significant manual 
skilled effort to specify a prior pattern to model [6, 7]. Several DLMs, such as the 
feed forward network (FFN), convolutional neural network (CNN), recurrent neural 
network (RNN) and restricted Boltzmann machine (RBM), and vision transformer, 
have been proposed recently to enhance the accuracy of various learning tasks. The 
contrastive learning and vision transformer network has recently been applied in 
learning theory which tremendously improves the DLM [8, 9]. There are also 
assemble learning technique which combines multiple neural networks [10] and 
recent approach like transfer learning which transfers the knowledge from one task 
to another task.

The diversity of training architecture was studied according to the range of data 
modality. The first type of architecture exploits the traditional MLM as a feature 
extractor and DLM as a classifier. For instance, mean absolute value divided the raw 
EMG sample into N levels then, feed into CNN to discriminate sample. The feature 
extractor and classifier design is shown in Fig. 3.

In contrast, the second architectural type utilizes the DLM as an extractor and the 
traditional MLM as a classifier. The deep-learning extraction process uses unlabeled 
data to train the raw sample. The training architecture depicted in Fig. 4 employs 
deep learning as a feature extractor and conventional machine learning as a classi-
fier. For instance, SAE is used to divide the raw EEG sample into N levels, and then 
SVM classifies the emotion state based on the featured data.

The third architecture type uses only a DLM to train the raw sample and achieve 
the final output. The training architecture depicted in Fig. 5 demonstrates the use of 
only deep-learning approaches to acquire raw data, perform classification, and pro-
duce the outcome. For instance, the ECG sample is fed into LSTM to discriminate 
the patient’s cardiac condition.

INPUT

(EMG)

Machine Learning 

(Mean Absolute Value)

Deep Learning Method

(CNN)
OUTPUT

Feature Extractor Classifier

Fig. 3  Training architecture with machine learning acts as feature extractor and deep learning acts 
as a classifier

Machine Learning 

(SVM)
Deep Learning Method

(SAE)
OUTPUT

Feature Extractor Classifier

INPUT

(EMG)

Fig. 4  Deep learning is used to derive features and machine learning is used to classify
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INPUT
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DEEP LEARNING
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OUTPUT
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Fig. 5  End-to-end deep-learning training architecture

4 � Biomedical Signal Analysis

BS analysis is research that estimates a physical phenomenon for human health. In 
order to record biomedical parameters, three strategies are practiced: reports (RP), 
reading (RD), and behavior (BH) [11]. The RP is a manual evaluation of the subject 
by the specialist. The RD consists of data that are collected by a computer for read-
ing the condition of the patient body, including muscle strength, pulse, etc. The 
measuring of BH records a range of behavioral patterns like human eye response. 
This article emphasizes only the RD and BH measurement technique in which the 
outcomes of the response are given in an ECG, EMG, signal modality.

The EMG signal’s muscle tension pattern gives recognition to the movement of 
the muscles. The rhythm of the heart or pulse version includes a range of cardiovas-
cular diseases, sleep, sentimentality, and gender. This section includes categoriza-
tion of BS modality in relation to various deep learning models. We compare the 
DLM quantitatively and qualitatively. The list of DLM used in medical application 
is depicted for quantitative comparison. Since the performance metric is not given 
universally for qualitative comparison, we presume an accuracy value as a base 
criterion for an overall performance comparative analysis.

4.1 � Deep Learning with Electrocardiogram (ECG)

As shown in Tables 1, 2, and 3, we identified 56 research papers that used DLM to 
evaluate ECG signal datasets from the public, private, and hybrid dataset sources. 
Their important contributions include recognition of cardiac diseases, classification of 
heartbeat signals, classification of sleep stages, gender-age estimation, and emotion 
recognition. In a public dataset, the CNN model achieves an overall accuracy of more 
than 83% for heart disease classification. The LSTM model gives an average accuracy 
of greater than 90%. The CNN + LSTM model achieves an average accuracy of more 
than 98%. In the private dataset's heart disease identification, the CNN model achieves 
an average accuracy of greater than 97%, while the CNN + LSTM model achieves an 
accuracy of greater than 83%. Therefore, the CNN model outperforms the 
CNN + LSTM model. As a result, the CNN + LSTM model outperforms the others. 
For heartbeat signal classification in a publicly available dataset, the CNN model 
achieves an overall accuracy of greater than 95%. The LSTM model achieves an over-
all accuracy of greater than 98%, and the hybrid of CNN and LSTM achieves an 
overall accuracy of greater than 87%. In heartbeat signal classification of the private 
dataset, only the CNN model is employed and the model performs with an overall 
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Table 2  Medical task in ECG analysis using a private dataset sources

Medical task
No. of 
subjects Dataset DLM Results

ECG anomaly 
detection [27]

155,8415 Telehealth Network 
of Minas Gerais

CNN Spec. = 99%, 
F1-score = 80%

Veritas detection and 
cardiologs [28]

1500 ECGs of HCMC CNN Acc. = 92.2%, 
spec. = 94.0%, 
sens. = 88.7%

Detection of 
dysfunction of left 
ventricular systolic 
[29]

16,056 Mayo Clinic ECG CNN Acc. = 86.5%, 
spec. = 86.8%, sens. = 
82.5%

Noise detection with 
screening model [30]

165, 142, 
920

Trauma intensive-
care unit

CNN F1 = 0.80%, 
AUC = 0.93%, 
sens. = 0.88%, 
spec. = 0.89%

ECG classification 
(scalogram) [31]

290 Physikalisch-
Technische 
Bundesanstalt

ResNet 
(CNN)

Acc. = 0.730%

100 Chosun 
University-ECG

Acc. = 0.940%

Table 3  Medical task in ECG analysis using hybrid dataset sources

Medical task
No. of 
subjects Dataset DLM Results

Ventricular 
fibrillation 
detection [32]

N/A Creighton Uni. Ventricular 
Tachyarrhythmia 
PhysioNet MIT-BIHMVA

1D-
CNN + LSTM

Spec. = 98.9%, 
sens. = 99.7%, 
BAC = 99.3%

N/A OHCA Sujects Spec. = 96.7%, 
sens. = 99.2%, 
BAC = 98.0%

accuracy above 78%. Therefore, the LSTM model outperforms CNN and a hybrid of 
CNN and LSTM models for heartbeat signal classification. Only the CNN model is 
used to detect and classify sleep stages in the public dataset, with an accuracy level 
greater than 87%. The private dataset's sleep-stage classification was performed with 
99% accuracy using the CNN-GRU model. We only found gender-age prediction and 
emotion analysis from the private dataset source. In gender-age prediction, the CNN 
model performs with an accuracy of more than 90%. CNNs along with RNN models 
provide an accuracy of more than 73% in classifying emotions. The CNN model per-
forms well in terms of gender-age estimation, with an accuracy of more than 90%.

�Deep Learning with Electromyogram

Electromyographic signals (EMG) are biomedical signals that depict the electric charge 
produced by skeletal muscle fibers. EMG detectors acquire signals from multiple motor 
units simultaneously, resulting in signal interaction. Since distinct muscle knowledge is 
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characterized by distinct movement, it is capable of discriminating between patterns of 
action such as an open or closed hand. To classify certain motion patterns based on 
EMG signal knowledge, 26 research works were performed using DLM, as shown in 
Table 2. There are two kinds of significant contributions within these study works. One 
is devoted to hand gesture detection, and the other is devoted to muscle movement rec-
ognition in general. In publicly available datasets for hand motion recognition, CNN and 
CNN + RNN models are the widely used model. The CNN model achieves an average 
accuracy of more than 68%. However, the CNN + RNN model outperforms the CNN 
model with a score of more than 82%. In private dataset, the DBN model outperforms 
other model with an average 88% accuracy. For muscle activity recognition in public 
dataset, the CNN is most favored. The CNN model has NMSE of 0.034 ± 0.017, while 
RNN-LSTM model has NMSE of 0.096 ± 0.014. As a result, the CNN is better option 
than LSTM model in this medical challenge as shown in Table 4.

Table 4  Medical task in EMG analysis using a public dataset, private dataset, and hybrid 
dataset sources

Medical task
No. of 
subjects Dataset Sources DLM Results

Gesture 
recognition [59]

27 NinaProDB1 Public CNN + RNN Acc. = 87.0%
40 NinaProDB2 Acc. = 82.2%
17 BioPatRec Acc. = 94.1%
18 CapgMyo Acc. = 99.7%
5 CSL-HDEMG Acc. = 94.51%

Gesture 
recognition [60]

128 NinaPro CNN Acc. = 85.78%
53 BioPatRec Acc. = 94.0%

Gesture signal 
classification 
[61]

17 MYO CNN Acc. = 98.31%
10 NinaPro Acc. = 68.9%

Hand gesture 
classification 
[62]

10 NinaPro GFM Acc. = 63.8 ± 05.12%

Hand movement 
classification 
[63]

78 Ninapro CNN + RNN Acc. = 87.31 ± 04.9%

Sign language 
recognition [64]

8 6D inertial sensor Private DBM Acc. = 95.1%

Hand-grasping 
classification 
[65]

15 MYO SAE Acc. = 95%

Hand motion 
classification 
[66]

7 MYO CNN MCE ± SD = 09.79 ± 04.61

Limb movement 
estimation [67]

8 NCC Medical 
Co., LTD

CNN + RNN Mean_R2 = 90.30 ± 04.50%

(continued)
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Table 4  (continued)

Medical task
No. of 
subjects Dataset Sources DLM Results

Movement 
multi-labeled 
info. extraction 
[68]

14 ELSCH064NM3 CNN Mean matchRate = 78.7%.

Muscle activity 
detection [69]

N/A Vastus Lateralis RNN SNR < 5

Musculoskeletal 
force prediction 
[70]

156 TrignoWireless 
EMG system

CNN Std. = 0.13, RMSE = 0.25

Prosthetic limb 
control [71]

2 Grapevine NIP 
system

CNN NMSE = 0.032 ± 0.018

Wave form 
identification 
[72]

83 Tokushima 
University 
Hospital

CNN Acc. = 86%

Gesture 
recognition [73]

137
182

NinaPro Public CNN Acc. = 98.15%

Gesture 
recognition [74]

18+5 CapgMyo 
(DB-a) + CSL- 
HDEMG

3D CNN Acc. = 90.7%

Sleep staging 
classifier [75]

5213 Sleep Heart 
Health Study

CNN + LSTM F1 = 0.87, K = 0.82

Neuromuscular 
disorder 
detection [76]

25 EMGLAB 
database

CNN + kNN Mean acc. = 100%

Multi-stroke 
handwriting 
character [77]

3 MYO CNN + LSTM Acc. = 94.85%

5 � Discussion

All the performance of the studied architecture is investigated by using seven popu-
lar metrics. They are accuracy (acc.), sensitivity (sen.), specificity (spe.), precision 
(pre.), false positive rate (FPR), F1 score, and Cohen’s kappa index.

For the deep-learning task in medical application, we observed that the majority 
of the contributions were made for the detection, feature retrieval, and data com-
pression tasks. The detection task emphasizes whether or not the instance exists. 
Arrhythmia diagnosis [35], for example, determines whether a cardiovascular pat-
tern is natural or arrhythmic. The classification activity often concentrates on a 
grouping or even leveling the instance types. For instance, the classification of emo-
tions analyzes emotion into the depressed, pleasant, normal, or fear categories. The 
objective of the extraction of features [41] focuses on improving the training dataset 
to escape an added stress of manually labeled data, using unsupervised learning 
techniques. Data compression [28] minimizes data size while ensuring high data 
quality for processing and transfer.
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The studied paper has three basic training architecture from using traditional 
MLM as feature extractor and classifying using DLM to DLM as feature extractor 
and traditional MLM as the classifier. However, this type of architecture con-
sumes more time and needs extra human labor in selecting the suitable parameter 
or model. The third architecture takes direct raw input and only needs a DLM to 
reach the final output. This architecture’s goal is to strengthen the algorithm of the 
DLM without focusing on the input type, which eases the implementation stage. 
Our survey concludes that each of them has its limitation and benefit, but the third 
architecture has a much better future scope as dataset size increases by time, and 
so computation power.

6 � Conclusion

This survey conveyed an analysis of deep-learning systems implemented in bio-
medical 1D signal over the past 3 years. We found 87 papers using the DLM in 
EMG and ECG biosignal. By examining these works, we present to identify critical 
parameters used to predict age, gender, sleep analysis, emotion, heart signal analy-
sis, and hand motion.

Additionally, we exhibit that the CNNs outperform the BS at the ultramodern 
level. We also have determined that there is still no well-defined standardized hyper-
parameter setting. These nonuniform parameters make it problematic to compare 
actual performance. The comparison we made should acquaint other researchers to 
make quick decisions on choosing input data, deep-learning architecture for achiev-
ing their desired MA, and obtaining more reliable outcomes. As a lesson learned 
from these reviews, our discussion can also help fellow researchers make suitable 
decisions for future work. The parameter we studied has a significant weight on the 
system performance. In conclusion, a DLM has confirmed promising for bringing 
those modern contributions to the up to the minute BS analysis for medical treatment.
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