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Abstract Probabilistic learning is a research program that aims to understand how 
animals and humans learn and adapt their behavior in situations where the pairing 
between cues and outcomes is not always completely reliable. This chapter provides 
an overview of the challenges of probabilistic learning for models of the brain 
and behavior. We discuss the historical background of probabilistic learning, its 
theoretical foundations, and its applications in various fields such as psychology, 
neuroscience, and artificial intelligence. We also review some key findings from 
experimental studies on probabilistic learning, including the role of feedback, 
attention, memory, and decision-making processes. Finally, we highlight some of 
the current debates and future directions in this field. 
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1 Introduction 

For a very long time, behavioral scientists have been wondering how animals can 
learn and adapt their behavior to environmental demands. One big concern among 
some scientists was that the pairing between cues and outcomes is not always 
completely reliable. If we honor Darwin’s hypothesis, animals would seek to adapt 
their behavior to the environmental demands, even in unreliable situations. Since 
the early days of behaviorism, this research program concerned with how animals 
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can learn under unreliable outcomes conditions was known as probabilistic learning 
(Brunswik 1943; Edwards 1961; Castellan 1973). 

To study probabilistic learning is quite simple. The experimenter has only to 
adjust some schedule routine in order to make the pairing between cues and 
outcomes unreliable. For example, one of the first conditioning experiments that 
relied on the use of probabilistic learning was the experiment of Rescorla (1968). He 
adjusted the pairing routines between a tone (conditioned stimulus; CS) and a shock 
(unconditioned stimulus; US) by implementing different conditions in which the US 
was probabilistically paired with the CS. He noted that the conditioning strength was 
higher whenever the US and the CS occurred deterministically (i.e., with 100% of 
matching accuracy), but strength continually declined as the pairing became more 
unreliable (e.g., 80% of accurate matchings; 60% of accurate matchings). Overall, 
probabilistic associations between US and CS impoverish the conditioned learning. 
However, simple conditioning experiments were limited in their capacity to explain 
complex human behaviors such as inference, reasoning, and categorization. So, in 
the cognitive turn (see Miller 2003 for a brief review), conditioning was abandoned 
and replaced by cognitive explanations of probabilistic learning (Estes 1976; Lindell 
1976). The cognitive turn on probabilistic learning highlighted the relationship 
between learning and memory formation, and whether those learned associations 
can be recovered through explicit processing. 

A way of formalizing how memory and learning occur in the cognitive system 
is by means of computational modeling. Since the beginning of the cognitive 
turn, it is common to find mathematical formulations that represent a certain 
cognitive function as a testable “algorithmic” hypothesis (see Wilson and Collins 
2019). This means that experimental and computational modeling explanations of 
probabilistic learning work together. In the current work, we will be interested in 
those computational/mathematical explanations. However, our discussion will be 
kept at a general level, so that readers that are not familiar with this area of research 
can grasp the general problems of the field. For those readers interested in the gory 
details, we provide numerous references. 

We recognize that there are different areas of cognition interested in probabilistic 
processing and how to model it, such as decision-making (Tversky and Kahneman 
1974), reasoning (Oaksford and Chater 2007), or Bayesian learning (Tenenbaum 
et al. 2006). However, our primary focus here is on the process of learning to 
classify when receiving probabilistic feedback across a sequence of consecutive 
trials. By understanding human probabilistic learning, it should be possible to 
better develop artificial learning systems that face the same problems as humans 
do (e.g., such as in machine learning; Frénay and Verleysen 2014). Also, it should 
be possible to develop a better explanation of the environmental demands that 
people face in natural learning conditions (e.g., doctors learning to diagnose from 
a set of symptoms; Estes 1986). This chapter presents some of the most well-
known challenges that research on probabilistic learning faces in the era of cognitive 
neuroscience.
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2 Challenges to Probabilistic Learning Modeling 

2.1 Error Correction 

One of the first challenges faced by modelers and experimentalists in explaining 
probabilistic learning was whether people actually learn from their errors and what 
is the mechanism that people and animals use to correct their behavior. As we 
outlined in the introduction, discoveries from behaviorisms stated that animals learn 
because of the teaching signal, which can be either an aversive or appetitive stimuli. 
One of the first mathematical formulations of error correction was the Rescorla and 
Wagner (1972) learning rule. In short, this learning rule states that the associative 
strength of a cue, which is stored in memory, depends on its predictive value of 
the outcome (López and Shanks 2008). Subjects will assign specific associative 
strengths depending on the cue predictiveness, which is acquired through learning, 
and thus, a cue with a highly predictive value will gain more associative strength. 
A way in which this model is often discussed is by saying that learning will be 
enhanced if the outcome is surprising, i.e., it is not predicted by the currently active 
cues. This surprisingness is computed through an error term which represents the 
discrepancy between the expectation and the actual status of the outcome in the 
current trial. The Rescorla and Wagner model (1972) was of special interest because 
it addresses problems that earlier theories of conditioning seemed unable to explain. 
One of those problems is the blocking effect (Kamin 1969), which states that when 
two cues are presented within the same trial, subjects will only learn the cue with 
the most predictive value while blocking the cue with the lower predictive value. 
Also, the model is consistent with neuroanatomical evidence regarding how the 
dopamine system works in humans and animals. Research carried out by Schultz 
(1999) shows evidence that dopaminergic neurons in the macaque midbrain fire 
when the predictive cue is presented (which was previously paired with a response), 
predicting the same firing rate that will trigger the response. Since then, these results 
have been replicated many times, with human and nonhuman animals (Daw and 
Doya 2006). Because the model provides an account for experiments with different 
salient cues and also because of its biological plausibility, the Rescorla and Wagner 
model is included, in one way or another, in many learning models. 

A probabilistic learning model that incorporates the Rescorla and Wagner rule 
was the configural cue model developed by Gluck and Bower (1988a, b), Gluck 
(1991). They implemented a connectionist model (see Thomas and McClelland 
2008) to address whether people can learn two potential categories from a set 
of different cues. This kind of experimental procedure is known as Multiple Cue 
Probability Learning (MCPL; Edgell 1980; Estes  1986). Here, the categories (i.e., 
Disease R and Disease C) are the outcomes which provide probabilistic feedback 
to different combinations of four different cues (i.e., the symptoms). Across 250 
trials (of different combinations of symptoms), there was a probability of 25% that
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a specific trial will be correctly classified as Disease R (and a 75% of correctly 
be classified as Disease C). However, the first symptom (i.e., the bloody nose) had 
a 69% diagnosticity for Disease R (and the opposite for Disease C). The authors 
found that subjects learned that the first symptom was indeed more diagnostic of 
Disease R, independent of the base-rate of Disease R being low (i.e., 25%). Later, 
the authors modeled the behavioral results using their configural cue model. Using 
an error correction activation algorithm (the least mean squared rule (LMS), which 
as Sutton and Barto (1981) noted, is a special case of the Rescorla and Wagner 
rule), their model successfully predicted that the first symptom should become, in 
fact, more diagnostic. This occurs because different cues and the combination of 
those cues compete with each other to match the teaching signal, while the winning 
cue is the one that reduces the error between the response and the outcome (i.e., the 
classification). 

However, the configural cue model was incapable of explaining all classification 
phenomena. Criticisms from Nosofsky and colleagues argued that the model was 
insufficient to account for rule-based classification (Nosofsky et al. 1994). This 
led to the emergence of other computational models which integrate an error 
term that were able to explain some rule-based problems. One such model is the 
ALCOVE (Kruschke 1992) model, which is an exemplar-based model embedded 
with the same LMS algorithm function. In brief, ALCOVE, much like other 
exemplar models, assumes that different stimuli are stored in memory as individual 
traces. Computationally, this idea is implemented as a neural net where a hidden 
layer has nodes representing each of the exemplars in the training set. However, 
ALCOVE still retains a learning mechanism which updates attentional resources 
by trial and error. Exemplar-based models were preferred, because they integrate a 
cognitive explanation of the attentional resources combined with an error-correction 
mechanism. 

2.2 Feedback Discounting 

Despite preferences in the literature for exemplar-based models of learning and 
categorization, they faced a second major challenge. A phenomenon known as 
feedback discounting (or error discounting) pushed the limits of these kinds of 
models. Feedback discounting occurs because people (and perhaps even nonhuman 
animals) will eventually accept a certain level of unavoidable error, and, continually, 
they will begin to discount feedback information slowing down their learning (Estes 
1984; Kruschke and Johansen 1999; Craig et al. 2011). 

Kruschke and Johansen (1999) developed an extension of the ALCOVE model 
which is able to capture whenever people stop using feedback information. They 
called this new model RASHNL (Rapid Attention SHifts ‘N’ Learning). This model 
incorporates a feedback discounting mechanism whenever attention is shifted away 
from irrelevant cues (those that produce error) to relevant cues (those that reduce 
error). Thus, in a trial-by-trial fashion, the RASHNL model will eventually reduce
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the learning rate from which it updates the cue-outcome associations (note that the 
RASHNL is an extension of the ALCOVE model, using the same error-correction 
term to update learning). Furthermore, the feedback discounting phenomenon 
has received supporting evidence from electrophysiology studies (EEG). A study 
conducted by Sewell and colleagues showed that participants who discount feed-
back entirely eliminate an EEG component known as feedback-related negativity 
(FRN), while participants who do not discount feedback presented a standard 
FRN frequency (Sewell et al. 2018). The FRN component usually elicits a peak 
evoked signal between 200 and 300 ms after the presentation of the feedback, being 
generally larger for negative feedback rather than for positive feedback (Cohen et al. 
2011). In a nutshell, probabilistic learning models should take feedback discounting 
into account. As noted by Craig et al. (2011), models of probabilistic learning tend to 
improve whenever they incorporate a feedback discounting mechanism. Moreover, 
participants who discounted feedback showed different brain signals often found 
in the middle region of the EEG scalp. Regardless of the previous evidence, it is 
still unclear what conditions cause participants to start feedback discounting, and 
whether this is an automatic process or an explicit conscious strategy. 

2.3 Normative Responses 

Researchers in the psychology of decision-making and behavioral economics were 
interested in knowing whether people behaved according to normative criteria 
when dealing with probabilistic information. If so, then it should be found that 
people behave close to normatively. From the decision-making literature, it has 
been suggested that maximizing is the normative response when dealing with 
uncertainties (Fiorina 1971; Shanks et al. 2002). In short, maximizing states that 
people will always place a certain item into the response that is most likely to belong 
to. For example, if we have an item s, in which 80% of the trials belong to keyboard 
response A, then, people should maximize their responses by always responding A 
whenever item s is presented. However, there is a debate whether people always 
behave according to maximizing, which brings us closer to our third challenge. For 
some researchers, people often deviate from maximizing, and instead, they rely on a 
suboptimal response strategy which is called probability matching (Castellan 1973; 
Friedman and Massaro 1998; Shanks et al. 2002). Probability matching states that 
people will progressively match their responses according to the outcome criteria. 
For example, if item s belongs to response A with an 80% chance, then, subjects 
will tend to respond 80% of the times that item s belongs to response A. 

There is still a debate under which circumstances people will respect maximizing 
or will fall into probability matching. For example, Shanks et al. (2002) created 
different experimental situations in which probability matching would be unde-
sirable. However, there were always people (albeit a small proportion) that relied 
on probability matching. Studies that were concerned about how people learned to 
categorize under unreliable situations showed that – on average – people follow a
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probability matching pattern across learning trials (Little and Lewandowsky 2009a, 
b; Craig et al. 2011; Sewell et al.  2018). Obviously, this pattern of results places 
challenges for cognitive modeling, considering that maximizing and probability 
matching seem so different in terms of possible underlying cognitive mechanisms. 

2.4 Cognitive Processing 

So far, we have reviewed three challenges that are critical when researchers want 
to develop a probabilistic learning model. Whether our model has to update learned 
responses using an error correction algorithm, or whether it should be implemented 
with a feedback discounting mechanism whenever people stop relying on the 
informativeness of the feedback, or whether our model follows normative responses 
or deviates greatly from them. However, such challenges tell us little about the 
cognitive mechanisms underlying probabilistic learning. Error correction algorithms 
are thought to rely on associative-based processing, in which motor responses are 
guided through contingency routines of stimulus-outcome associations (Gluck and 
Bower 1988a, 1988b; Gluck 2008; Marchant et al. 2022; Marchant and Chaigneau 
2022). On the other hand, it is not clear which cognitive processes underlie the 
phenomena of feedback discounting and probability matching. For some authors, 
they are explicit rules; for others, they are implicit rules, so the debate is still open. 
Our fourth challenge is related to what cognitive processes underlie probabilistic 
learning and how modeling might help us to understand such processes. 

Evidence in the 1990s showed that amnesic patients perform similar to controls in 
a probabilistic learning task known as the Weather Prediction Task1 (WPT), but just 
for the first 50 trials. Later in training, normal control samples outperform amnesic 
patients. Knowlton and colleagues believed that this effect occurred, because control 
subjects were capable of formulating a declarative strategy which they maintained 
“online” through the course of learning, while amnesic patients were incapable of 
doing that (Knowlton et al. 1994, 1996a; Meeter et al. 2006). However, a different 
set of evidence on Huntington disease patients, a disease that affects mostly the 
basal ganglia and other subcortical structures and reduces motor control and motor 
planning, showed that Huntington’s disease patients also perform poorly in the WPT 
(Knowlton et al. 1996b). Thus, both, a motor-based component and a rule-based 
strategy, might be both necessary to learn under probabilistic feedback conditions. 

Gluck et al. (2002) wondered whether there are different kinds of strategies that 
people rely on when solving probabilistic learning. Implementing a WPT with a 
debriefing phase just after the experiment ended, they asked subjects to verbally

1 In the Weather Prediction Task, subjects are presented with combinations of playing cards with 
different patterns (i.e., geometric figures) combinations. The subjects must learn to use them to 
predict the weather (i.e., rain or sun). During training, subjects are presented with combinations of 
cards (i.e., one to four cards), while each specific combination is probabilistically associated with 
the two outcomes. 
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report how they solved the task. They found that most participants relied on a 
singleton strategy early in training (i.e., subject learned the optimal response for 
each of the four possible patterns of the WPT and guessed on the remaining 
trials). However, they also found that some participants changed their strategy 
in the later phases of learning toward a one-cue strategy (i.e., responding based 
on the presence or absence of one single cue) or to a multi-cue strategy (i.e., 
responding based on something like probability matching). Behavioral and patient-
based evidence support that probabilistic learning relies on associative and motor 
processing and also on suboptimal strategies which can be retrieved through verbal 
reports. In the next and final challenge, we return to the idea of whether those 
cognitive processes occur simultaneously or compete with each other. Obviously, 
very different computational models ensue from each of these alternatives. 

2.5 Rule-Based or Associative Mechanisms? 

There is an ongoing debate in the literature about whether probabilistic learning 
is explained by a rule-based, associative-based, or a mixture between the two 
processes. Some researchers believe that rule-based processing comprises explicit 
declarative knowledge, whereas associative-based processing comprises implicit 
automatic learning (Ashby and O’Brien 2005). This distinction is often referred 
to as the dual-systems view in psychology, and certainly, it is not common only 
in probabilistic learning. There is evidence of dual-systems in reasoning (Sloman 
1996) and also in decision-making (Evans 2008). In the field of probabilistic 
learning (also referred to as probabilistic categorization), computational models 
have been used to attempt to understand under what conditions subjects perform 
one or the other kind of processing. 

A well-known computational model that embodies the dual-systems view is 
the COVIS model (Ashby et al. 1998, 2007; Ashby and Crossley 2012). COVIS 
assumes that these two systems (i.e., associative or procedural and declarative 
or rule-based) compete with each other to account for the best results according 
to task demands. One system is the procedural system in which there is little 
explicit verbal access or awareness of implicit memories. This system is feedback 
dependent and relies on the use of implicit memory systems (Maddox et al. 2004; 
Smith and Grossman 2008). The second system is a declarative system, which 
is engaged whenever a rule-based task is performed. This system maintains a 
series of subprocesses such as selecting, focusing, and switching rules. COVIS is 
not the only model that assumes a competition between two processing systems. 
Another learning model is ATRIUM (Attention to Rules and Instances in a Unified 
Model; Erickson and Kruschke 1998). This model assumes that people compute 
both rule-based strategies and exemplar-based computations (similar to ALCOVE 
and RASHNL models mentioned above). Similar to the COVIS model, Erickson 
and Kruschke (1998) conclude that people will rely on the use of rules or exemplar-
based processing depending on task demands.



80 N. Marchant et al.

However, other researchers have been skeptical regarding the dual-view compet-
ing mechanism hypothesis (see Newell et al. 2011) and have questioned whether 
probabilistic learning involves some sort of self-awareness during the experimental 
task. If that is the case, then it is unlikely that the two processes occur independently, 
and some kind of interaction must be occurring (Evans et al. 2003). A study 
carried out by Lagnado et al. (2006) inspected if subjects rely on the use of self-
insight (i.e., being able to report their own thought processes) under a probabilistic 
categorization problem. By implementing the WPT paradigm, the authors tracked 
learning across trials using a rolling regression method. This statistical method 
showed that regression coefficients accurately tracked the statistical contingencies 
over the task, revealing that subjects accurately learned the task structure. But, 
more importantly, the coefficient weights also correlated with self-insight regarding 
how much they used a certain cue. Thus, self-insight regression weights correlate 
with objective task performance, revealing a kind of interaction between an explicit 
processing (how useful a subject believes that a certain cue is) with an implicit 
process (how much a subject has learned about the cue-outcome contingencies). 

Furthermore, other studies wondered if other cognitive processes typically 
involved in rule-based behavior would have an impact on probabilistic learning. 
A study carried out by Newell et al. (2007) wondered whether working memory 
capacity, which is usually related to explicit or rule-based behavior, will have 
an impact during a probabilistic learning task. They showed that a concurrent 
memory task will impoverish performance on the WPT, meaning that performance 
on the WPT is dependent on the use of working memory (i.e., on explicit rules). 
Another research by Rolison et al. (2011) showed that by using an MCPL (multiple 
cue probabilistic learning task) task, working memory capacity was only useful 
whenever a negative cue (i.e., a cue negatively correlated with the outcome) was 
presented. Whenever a positive cue was presented (i.e., a cue positively correlated 
with the outcome), working memory appeared to be unnecessary. Undoubtedly, 
learning models have helped us to understand the cognitive basis of probabilistic 
learning, making it possible to test different hypotheses. The debate is still open as 
to whether both mechanisms (associative and rule-based) compete with each other 
or whether there is a kind of interaction between the two. Future experiments and 
models should address under what circumstances one kind of mechanism interferes 
with the other. 

3 Summary 

Since the earlier days of behaviorism, the study of probabilistic learning has been 
a major endeavor, encompasing learning. And also to more complex experimental 
situations involving decisions that people often face in their daily lives. Cognitive 
explanations contributed to the development of formal computational models that 
represent how learning occurs in the mind and how it relates to memory. In this book
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chapter, we outlined some of the most discussed challenges faced by researchers 
when modeling probabilistic learning. 

A first reviewed challenge was whether our model has to integrate an error 
correction algorithm that updates past responses according to a teaching signal. 
A typical error correction algorithm used in connectionist models is the LMS 
algorithm, which is closely related to Rescorla and Wagner (1972) learning rule. A 
second challenge was whether our model should incorporate a feedback discounting 
mechanism. Evidence has shown that people often stop considering feedback 
information in situations where it becomes too unreliable for learning. A third 
challenge is whether subjects respond normatively (i.e., maximizing) or whether 
they tend to use probability matching. There is a large discussion about whether 
people maximize their responses or whether they match the probability of the 
outcome. Evidence suggests that most subjects under most situations rely on 
probability matching. A fourth challenge is regarding the cognitive processing 
that underlies probabilistic learning. There is still a debate whether probabilistic 
learning is explained by an associative-based system or whether it is explained by 
the use of logical rules (declarative system). Some researchers have proposed that 
people use a range of possible different strategies according to individual parameters 
(i.e., focusing on one stimulus, on combination of stimuli, and so on). And a final 
reviewed challenge, closely related to the previous one, is whether or not associative 
and rule-based are competing mechanisms or not. Some authors have suggested that 
implicit and explicit processing compete in order to achieve a good performance, 
while other researchers have been skeptical to this idea proposing that probabilistic 
learning is explained by an interaction between declarative memory (self-insight) 
and implicit processing. 

Certainly, the experiments and modeling of probabilistic learning have improved 
our understanding of the human mind. It addresses questions regarding how people 
interact, process, and store in memory the environment’s unreliable information; 
what are the neural mechanisms that our brain uses when learning probabilistic 
information; and how we have to develop formal mathematical models that integrate 
algorithms that enable us to explain behavior. 
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