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Chapter 19
Artificial Intelligence and Machine 
Learning

Hamidreza Moradi

Learning Objectives
After completing this chapter, you will be able to:

•	 Understand and implement machine learning models for regression, classifica-
tion, and clustering tasks

•	 Utilize both machine learning and deep learning to devise a predictive model
•	 Apply concepts of computer vision and natural language processing

1 � Introduction

Machine learning (ML) has gained a lot of attention in recent years, and many tools 
and libraries have been developed to help enthusiasts. Devising a predictive model 
requires a good understanding of the underlying concepts and hands-on experience 
with at least a library or package for developing models. In the first section, we aim 
to discuss traditional ML methods and the libraries to be utilized for developing a 
prediction model. The models we considered were regression, classification, and 
clustering. In regression, we aim to predict continuous values, while with classifica-
tion, the goal is to predict data labels assigned to data instances. And clustering tries 
to find a natural groping in the data. In the second section, we will start by discuss-
ing the basic building blocks of a neural network (NN) model. Then, we develop 
regression and classification models using NNs to get familiar with how the same 
task can be achieved using traditional and new approaches. Next, we will review 
more advanced examples that can be better addressed using NNs, computer vision, 
and natural language processing (NLP). In computer vision, convolutions will be 
introduced with examples, and we will see how they can be combined to extract 
features from an image. In NLP, we will address how we can make words and sen-
tences interpretable and understandable by machines. Finally, the last two sections 
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will briefly discuss how we can make ML models interpretable and recent advance-
ments. All code examples are provided here in Python, as it is the preferred lan-
guage for both ML and deep learning (DL) for students and engineers in academia 
and industry. Simplicity, flexibility, platform independence, being open-source, and 
the existence of powerful libraries/frameworks supported by industry leaders are 
just a few reasons for its popularity and attention.

2 � Machine Learning

In artificial intelligence (AI), computer systems are programmed to mimic human 
behaviors to devise intelligent machines. This required writing programs with the 
rules needed to make decisions based on the inputs to the system. However, with 
increased data and computation power, research studies investigate algorithms that, 
given the inputs and expected outputs, can automatically infer the rules needed, 
learning from examples. This marked the beginning of the ML era, a subset of AI. In 
the following subsections, we will discuss some of the ML algorithms that can be 
used for inferring the rules and making a prediction for the expected output.

2.1 � Regression

Regression is one of the early forms of ML models that establishes a linear relation-
ship between a dependent variable and one or more independent variables, usually 
called features. Linear regression can be graphically presented using a straight line 
and can be used to predict continuous values. In its simplest form, it can be repre-
sented in the form of y′ = β + αX, where α is the weight for the input feature X, β is 
the intercept for the line, and y′ is the predicted value. With ML, the aim is to find α 
and β using a dataset of samples. Figure 19.1 shows the data samples used to find a 
regression line with black dots and the devised regression line in blue. The blue dots 
on the regression line show a couple of predicted values for the corresponding input 
(X) on the regression line.

The error between the actual observations and their predicted values should be 
minimized to find the regression line with the best fit. As a result, we are interested 
in finding the values for α and β that minimize the prediction error � � � �y yi i for all 
the observations, where y is the actual observation, y′ is the predicted value, and i is 
the observation number in the sample dataset. We need to define and minimize a 
cost (loss) function here. The cost function for linear regression can be defined as 
 � �� �� �

i
i iy y

2
 to penalize large errors and should be minimized by an ML algo-

rithm. In regression, when more than one independent variable exists, the formula 
can be extended to the form y′ = β + α1X1 + α2X2 + … + αnXn , where n is equal to the 
number of features for each observation. Then, the ML algorithm needs to find the 
best αi that minimize the cost function.
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Fig. 19.1  Regression line with actual and predicted observations

Let’s see how to develop an ML model. To train a linear regression model in 
Python [1], Scikit-Learn [2] library provides many preimplemented functions. 
These functions can be easily utilized to fit a model to a dataset. After installing the 
latest versions of Python (v3.8) and Scikit-learn (v1.0.2), we need to import the 
linear models from the library into the working environment in the code editor of 
choice.1 Scikit-Learn also provides many small toy datasets [3] to help users try and 
learn about the implemented functionalities. Here we will import and use the diabe-
tes dataset. Features include patients’ baseline measurements such as body mass 
index, age, blood, and glucose level to predict a quantitative measure of disease 
progression a year after the baseline. As the outcomes considered for patients are 
integer numbers (between 25 and 346), we will use linear regression for modeling 
and prediction.

from sklearn import linear_model

from sklearn import datasets

diabetes = datasets.load_diabetes()

input = diabetes.data

outcome = diabetes.target

 

1 PyCharm or Jupyter Notebook are recommended.

Train-Test split
In ML, the goal is to train a predictive model and then evaluate the accuracy 
of an unseen data set. This gives us a measure of how the model may perform 
in the production environment. To achieve this goal, we can split our data into 
nonoverlapping train and test subsets of 80% and 20%, respectively.
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To have the most accurate model and find the weight for each feature representa-
tive of its importance, it is best to standardize the features using a z − score. This 
will result in inputs to the model on the same scale. But to normalize the data, we 
should consider the test set as unseen. As a result, we need to learn the parameters 
required to standardize the data from the training set and use the same parameters to 
transform the test data.

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

in_train, in_test, out_train, out_test = 

train_test_split(input, outcome, test_size=0.20)

scaler = StandardScaler()

scaler.fit(in_train)

in_train = scaler.transform(in_train)

in_test = scaler.transform(in_test)  

In the above code block, the “scaler.fit” step will learn the required parameters to 
standardize each feature separately. Then, using the learned parameter from the 
train set (in train), both the training and test datasets are transformed.

Now, we can train the model using a training set to predict the output of the test 
data and evaluate its accuracy.

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

reg = LinearRegression().fit(in_train, out_train)

pred_test = reg.predict(in_test)

print(mean_squared_error(out_test, pred_test))  

Here we used mean squared error to measure accuracy, but many other metrics 
can be used. The most popular ones that readers are encouraged to review are R 
square, mean absolute error, and mean relative absolute error.

Simple linear regression, as used above, does not always provide the best results 
possible. The outliers greatly impact it and may learn random variations within the 
training data, causing an issue known as model overfitting. The cost function can be 
adjusted to address these limitations by adding a penalization term to consider the 
features’ weight. This will result in three derived regression models with differences 
in their regularization terms: Lasso, Ridge, and Elastic-Net.

In Lasso regression, weights will be used as the penalization term in the loss 
function formed as  � �� � �� ��

i
i i

i
iy y w

2
� # # , where λ is a hyperparameter to 

tune and wi is the weight for the feature i. Using the sum of the absolute values of 
weights, known as L1 loss, will result in smaller weights closer to zero. This will 
cause sparsity in the weights and is used as a feature selection method. Below are 
the codes needed to import and train Scikit-Learn’s Lasso regression [4] to make 
predictions for the discussed dataset.
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from sklearn.linear_model import Lasso

reg2 = Lasso().fit(in_train, out_train)

pred2_test = reg2.predict(in_test)

print(mean_squared_error(out_test, pred2_test))  

Note 1  For simplicity, here we trained Lasso regression using the default parame-
ters. However, given that we now have λ as a hyperparameter, we may need to tune 
it and find the best value for it. One approach would be to split the training dataset 
into new training and validation sets. Models can be trained on the new training set 
using different values of λ, and results will be evaluated on the validation set to find 
the best value. Then, the model with the best λ value can be used to evaluate the 
accuracy of the test dataset. This approach will allow us to fine-tune the model’s 
hyperparameter and use the best model for the test dataset without data leakage.

Ridge regression will similarly penalize the weights of the features in the loss 
function. However, the final loss function will be in the form of 
 � �� � �� ��
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2 2� . Using the sum of squares of weights in the loss function, 
known as L2 loss, will penalize the larger values with higher intensity, resulting in 
a more uniform range of weights. Ridge regression is useful when there are too 
many features or when features have a high degree of multicollinearity. The code 
below utilizes Ridge regression for modeling and prediction.

from sklearn.linear_model import Ridge

reg3 = Ridge().fit(in_train, out_train)

pred3_test = reg3.predict(in_test)

print(mean_squared_error(out_test, pred3_test))  

Finally, Elastic-Net combines the two aforementioned regularization terms to 
form the loss function  � �� � � �� � ��
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2� � . Here, we can take 

benefit from both the regularization terms discussed for Lasso and Ridge regression. 
However, the hyperparameter turning for both λ1 and λ2 is needed.

from sklearn.linear_model import ElasticNet

reg4 = ElasticNet().fit(in_train, out_train)

pred4_test = reg4.predict(in_test)

print(mean_squared_error(out_test, pred4_test))  

Note 2  There are different methods of hyperparameter tuning. Grid search will 
evaluate all possible combinations of hyperparameters with their provided search 
space to find the best subset. This search method implemented in Scikit-Learn [5] is 
recommended for a small set of hyperparameters. The search space will grow expo-
nentially with an increase in the number of hyperparameters or their corresponding 
search space. Random search [6] implementation will use a random combination of 
values for each hyperparameter for a preset number of iterations and report the best 
combination. Although random search has gained a lot of interest and has proven to 
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be efficient, more advanced techniques exist to better utilize any correlation between 
the accuracy achieved and the parameters tried to make a more informed decision 
about the next set of values to try. The HyperOpt [7] library is an example that uti-
lizes Bayesian optimization for hyperparameter tuning.

2.2 � Classification

In classification, the goal is to use ML algorithms and assign a class label to the 
input examples. For instance, class labels can be patients’ death or discharge out-
comes at the end of a treatment or negative or positive blood test results. These 
examples are called binary classification since one of the outcomes can happen at a 
time and can be coded as a zero or one output for a model. It is possible to have 
more than two outcome classes as well, where instances can still belong to only one 
class, usually referred to as multiclass classification. In the case of multilabel clas-
sification, input examples can have more than one class label.

There are many ML algorithms designed to address each task mentioned above. 
Some can only perform simple binary classification, while many are inherently 
capable of multiclass or multilabel classification. Still, advanced techniques can be 
incorporated to use a simple binary classifier and form a multiclass or multilabel 
classifier.

Logistic regression is a simple binary classifier that essentially passes the output 
of a linear regression model, here f(x), through a sigmoid function p(x′) = 1/1 + e−(x′). 
This will result in an output with values between zero and one. The final class label 
can be considered a positive outcome for a predicted value above a specific thresh-
old, while the value below the threshold will be interpreted as negative.

K-Nearest Neighbor (KNN) is a multiclass classifier. It uses a measure of dis-
tance2 (e.g., Euclidean, Hamming, Cosine, Manhattan) to find the K closest neigh-
boring data instances in the training set to a given input sample. Then, the class 
labels for the determined K-nearest neighbors will be used in a voting scheme to 
decide the best matching class label. While having a simple algorithm, KNN does 
not perform well on very large or high-dimensional datasets.3

In recent years, tree-based models have shown great efficiency for classification 
tasks with high prediction accuracy. Tree-based models are based on the simple idea 
of a decision tree, where a series of conditional steps are taken to make a decision. 
Figure 19.2 shows an example of a decision tree. However, simplicity comes with 
disadvantages. Model overfitting arises when the tree fits well to the training data 
but performs poorly on the testing set. Moreover, considering the order of the 
conditional steps taken, trees of various shapes will be generated and performed 

2 It is best to use a measure of distance relevant to and representative of available features.
3 With an increase in data dimensionality, the data points will appear closer together, making this 
algorithm inefficient. Additionally, pairwise comparison to find the closest neighbors makes the 
algorithm in efficient in datasets with a large number of instances.
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differently. These issues resulted in the invention of two well-known models based 
on decision trees: Random Forests (RF) and Gradient Boosting Decision 
Tresses (GBDT).

RF builds a bunch of decision trees independently, each making a simple predic-
tion. Each tree’s structure will be randomized and created on top of a bootstrap4 
sample of the training dataset. The final prediction by RF will be the aggregated 
prediction of all trees. The randomization of the structure and use of bootstrapping 
have made RF a powerful model resistant to outliers and missing values in the 
datasets.

Let’s get to coding by considering a classification task. For the dataset, we con-
sidered using Scikit-Learn breast cancer data [8]. This dataset includes samples of 
569 patients with 30 numeric predictive attributes, each labeled as malignant or 
benign. Like regression, we need to load the dataset, split the data to train and test 
sets and standardize the features.

4 Random sampling with replacement.

Boosting
To build a more robust model, GBDT models and popular examples (e.g., 
XGBoost and CatBoost) use an ensemble of weak decision tree predictors. In 
GBDT, tresses are built iteratively. Meaning each tree is built after the other, 
and the previous step’s output is used in addition to the features as input to the 
next tree. This will result in each new tree improving on the predictions made 
by the previous round, improving overall efficiency, a concept called boosting.

Fig. 19.2  A decision tree to predict patients’ need for a prescription
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breast_cancer = datasets.load_breast_cancer()

features = breast_cancer.data

labels = breast_cancer.target

f_train, f_test, l_train, l_test = train_test_split(features, 

labels, test_size=0.20)

scaler = StandardScaler()

scaler.fit(f_train)

f_train = scaler.transform(f_train)

f_test = scaler.transform(f_test)  

For the classification algorithm, we will use the Scikit-Learn implementation of 
RF [9]. We need to first fit the model to the training data using the “.fit” call. Then 
the trained model can be used to predict the class labels for the test dataset. Finally, 
to measure the model’s performance, we can calculate the percentage of correct 
predictions using the “accuracy_score” function imported from “sklearn.metrics.”

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

rf = RandomForestClassifier().fit(f_train, l_train)

pred_rf = rf.predict(f_test)

print(accuracy_score(l_test, pred_rf))  

We can try different classification algorithms to find the best-performing algo-
rithm for a given dataset. Here, we use the Scikit-Learn implementation of GBDT 
[10] to evaluate the performance gain achieved using a more advanced implementa-
tion of decision trees on the same predictive task.

from sklearn.ensemble import

GradientBoostingClassifier

gbc = GradientBoostingClassifier().fit(f_train, l_train)

pred_gbc = gbc.predict(f_test)

print(accuracy_score(l_test, pred_gbc))  

Results show improved accuracy by using the GBDT model over the RF. However, 
it should be noted that there are hyperparameters for each algorithm that need to be 
tuned using grid search, random search, or Bayesian optimization techniques, as 
discussed previously.

Note 3  For RF, some important hyperparameters to consider are the number of 
estimators, the maximum depth of trees, and the criterion to measure the quality of 
splits for each feature. GBDT, while providing a similar hyperparameter to tune, has 
a few additional unique hyperparameters, such as loss function and learning rate, to 
consider.

Note 4  It should be noted that the percentage of correct predictions for a classifica-
tion task is not the only measure of its performance. The confusion matrix, the area 
under ROC curve (AUC), and the F1 score are a few others.
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2.3 � Clustering

So far, all the ML algorithms we discussed are considered supervised learning tech-
niques. In supervised learning, the data instances have a class label or a value 
assigned. As an expected outcome, this value or label will be used to train a model 
and later need to be predicted for new instances. In contrast, clustering is an unsu-
pervised ML method that involves discovering a natural groping among the exam-
ples. A cluster is an area of densely populated samples or samples closer to each 
other. Clustering helps us better understand a problem or dataset, group similar data 
instances, or map new data to an existing cluster in the dataset. Figure 19.3 shows 
data instances in a two-dimensional space with three clusters. Each cluster is identi-
fied with a separate color surrounded by a black circle and a gray dot in the center 
as a cluster centroid.

K-means and OPTICS are two clustering algorithms we are going to discuss 
here. K-means requires the number of clusters (K) and a measure of distance to be 
defined and used for calculation. It starts by considering K random values5 as clus-
ter centroids. Then, it calculates the distance between each data instance and all the 
cluster centroids, assigning the closest cluster to it. When the initial clustering hap-
pens for all the data instances, K-means will move each cluster centroid to the cen-
ter of the data instances assigned to it.6 With the new cluster centroids, K-means will 
recalculate the distances and assign data instances to the newly formed cluster cen-
ters. This process will be repeated until there is no change in the assigned cluster for 
any data instances or it reaches an identified maximum number of iterations.

While K-means splits the feature space into distinct areas with its measure of 
distance, OPTICS uses a measure of density and reachability in a provided neigh-
borhood for clustering. Although both clustering algorithms may provide the same 
results in some cases, the results of applying each clustering algorithm could be 

5 The value considered as K is a hyperparameter that needs to be tuned.
6 This will be done by taking the average of each feature for the data instances assigned to the same 
cluster.

Fig. 19.3  Three clusters of data in a two-dimensional space
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drastically different. Many evaluation metrics are devised for clustering algorithms. 
However, there is no best or easiest method of comparison. Evaluation of the identi-
fied cluster may require controlled experiments or domain expert knowledge. 
Figure 19.4 shows clusters found by both K-means and OPTICS differentiated by 
their colors.

To increase the interpretability of our analysis, here we use the Scikit-Learn syn-
thetic dataset generator to create a data set for clustering. The dataset consists of 500 
samples in a two-dimensional space, intentionally generated to have five clusters 
with varied densities, as shown below.

from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=500, centers=5, 

cluster_std =1.00)
 

We can now import K-means clustering [11] from Scikit-Learn and apply it to 
synthetically generate a dataset7 to form five clusters as we expect. The clusters will 
be formed using the “.fit” call, and by “.cluster_centers_” we can print out the cen-
ters calculated.

from sklearn.cluster import KMeans

km = KMeans(n_clusters=5)

km.fit(X)

print(km.cluster_centers_)  

We will use the Seaborn library to generate the figure for the clustered data. 
Figure 19.5 shows the clusters identified by different colors for the synthetically 
generated data with five known clusters.

import seaborn as sns

sns.scatterplot(x=X[:,0], y=X[:,1], c= km.labels_)

sns.scatterplot(x=km.cluster_centers_[:, 0], 

y=km.cluster_centers_[:, 1], c=['black'])  

Like K-means clustering, we can apply OPTICS [12] to the same dataset getting 
the identified clusters and comparing the two algorithms. Figure 19.6 shows the 
results of utilizing the OPTICS algorithm.

from sklearn.cluster import OPTICS

opt = OPTICS()

opt.fit(X)

sns.scatterplot(x=X[:,0], y=X[:,1], c= opt.labels_)

 

7 Forming a train and test splits may not be required as we do not have any assigned labeled to 
the data.
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Fig. 19.4  Clusters found by both K-means and OPTICS

While the results for K-means clustering seem more appealing, if we consider 
the density-based nature of the OPTICS algorithm, we can conclude that both algo-
rithms are clustering the data perfectly based on their similarity measure. We can 
observe that K-means separated the two-dimensional space into K  =  5 distinct 
regions with data instances close together. At the same time, optics has found and 
clustered the data instances with the same density at the center and border of each 
cluster.

Note 5  Similar to supervised learning algorithms, unsupervised techniques also 
have hyperparameters that need to be tuned. For K-means, the number of clusters 
(K) is one of the most important parameters. K can be found using the elbow 
method. With the elbow method, clustering will be conducted using different K 
values, followed by the calculation of inertia.8 The K value as a function of the 
number of clusters is best where the highest reduction in the inertial is observed, and 

8 Inertia measures the sum squared distance between each data point and its assigned centroid.
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Fig. 19.5  K-means clustering and synthetic data

then a plateau is reached.9 For OPTICS, minimum samples and maximum neighbor-
hood distance are hyperparameters to consider. However, OPTICS presents less 
sensitivity to hyperparameters than its density-based clustering predecessor, 
DBSCAN [13].

Note 6  The silhouette score is another metric for evaluating the clustering algo-
rithms. It measures the degree to which the data points are similar within the 
assigned cluster compared to neighboring clusters. The silhouette value ranges from 
−1 to 1, with 1 representing the best match and −1 representing the opposite.

3 � Neural Networks and Deep Learning

The first interesting and practical demonstration of DL goes back to 1989, when 
Yann LeCun implemented a NN for handwritten digit recognition. But the capabili-
ties are not limited to computer vision. Now, NNs are used for regression, time-
series prediction, object detection and segmentation, robotics, self-driving cars, and 
even NLP to evaluate text sentiment or generate responses to a question.

NNs, or artificial NNs, are a subset of ML and the heart of DL, inspired by the 
human brain. It is composed of three or more layers (an input layer, one or more 

9 With an increase in the number of clusters, the inertia will constantly decrease, with the lowest 
inertia achieved with K equal to the number of data instances.
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Fig. 19.6  OPTICS clustering and synthetic data

hidden layers, and an output layer). Each layer is composed of neurons connected 
to other layers with edges and their associated weights. If the sum of the inputs to a 
neuron, multiplied by their corresponding weights and added by the neuron’s bias 
value, passes a threshold,10 the neuron will be activated and pass the signals to the 
next layer. Generally, NNs start with random weights11 and zero biases assigned to 
the edges and neurons. Optimization is needed to generate the required output 
model to adjust these values. Many efficient optimization algorithms12 have been 
devised based on gradient descent and backpropagation, making efficient model 
adjustments possible. In this order, the inputs will be provided in a forward pass to 
the model to generate an output. Then the difference between the generated and 
expected output will be used in a backpropagation step by an optimization algo-
rithm to adjust the weights and biases, reducing the model’s error.13 Figure 19.7 
shows a NN with three neurons in the input layer, two hidden layers each with five 
neutrons, and an output layer with two neurons. Here, colored in blue, are the 
weights connecting input 1 to the next layer of neurons in hidden layer 1.

NNs with enough layers, the correct number of neurons, and the correct settings 
can virtually simulate any function and provide higher accuracy than traditional 
models. However, an increase in the model’s complexity to achieve higher 

10 This threshold and the degree to which a neuron will be activated are defined by an activation 
function. The choice of activation function will influence the model’s training time and accuracy.
11 For further details, readers are encouraged to see He and Glorot weight initialization.
12 Adam optimizer, RMSprop, and AdaGrad are a few to name.
13 The model’s error is calculated using a cost function.
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accuracies comes at the cost of requiring more training data. NNs are also better at 
feature selection than traditional ML models and can accurately learn important 
features among abundant input. This section will use the Keras v2.10 [14] library 
backed by TensorFlow v2.8 [15, 16] to develop some of the architectures useful for 
supervised DL tasks.

3.1 � NN for Regression

Let’s design the architecture of our model to solve the same regression problem we 
discussed in the first part of this chapter, the diabetes dataset. We have the data 
loaded, split into training and test sets, and normalized, ready to be used for training 
a predictive model.

After installing and importing TensorFlow and Keras into the environment, first, 
we need to specify the type of model implementation we want to use.14 A sequential 
implementation is chosen here. Now we can add layers of NN one after the other 
using the “.add()” command, where the output of one layer will be automatically 
forwarded to the next layer as input. For the next couple of fully connected layers, 
a few parameters need to be set. We need to specify the input size for the first layer, 
the number of neurons, and the activation functions for each layer. We can observe 
in the code block below that we used the input size of 10, the same as the number of 
input features, the first and second hidden layers each with 20 neurons,15 and the 

14 There are three types of model implementation in TensorFlow: sequential, functional, and 
subclassing.
15 The number of hidden layers and the neurons in each layer are hyperparameters that need to be 
tuned for each model and dataset.

Fig. 19.7  A simple deep neural network
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final output layer of size 1 just to predict a single numerical value. The higher the 
number of neurons in each layer, the more connections with their associated param-
eters in the model that need to be tuned, increasing the chance of model overfitting. 
To solve this issue, more training data with a higher computation cost and training 
time may be required to achieve a good generalizable model.16

For each fully connected layer in our model, a few activation functions are avail-
able to choose from. Some that we can utilize here are Sigmoid, Tanh, Linear, and 
Relu. Here we used the Relu function for the first and second hidden layers, as it has 
proven to be suitable for many predictive tasks and helps train and converge the 
model faster with fewer epochs.17 However, the activation function for the output 
layer is chosen to be a linear function, consistent with the regression task and the 
range of values to be predicted.

from tensorflow import keras

model = keras.models.Sequential() 

model.add(keras.layers.Dense(20, input_dim=10, 

activation="relu")) 

model.add(keras.layers.Dense(20, activation="relu"))

model.add(keras.layers.Dense(1, activation="linear"))

 

The “model.summary()” helps us get a summary of the defined model with the 
number of trainable parameters within each layer. By compiling the model, we are 
required to specify a loss (cost) function, an optimizer algorithm, and an accuracy 
metric. The loss function provides the library with a means to evaluate how much 
the generated output deviates from the expected output in each training epoch. And 
the optimizer algorithm tries to minimize the value of the loss function by adjusting 
the model’s parameters in backpropagation steps. The Adam optimizer is used here 
due to its accuracy and efficiency. The metrics provided will be used to evaluate the 
model’s accuracy during training.18 Finally, the model can be trained for the speci-
fied number of epochs by providing the training data and corresponding expected 
outputs. After completion of the training, the trained model’s accuracy is evaluated 
by predicting the results for the test dataset.

16 To prevent overfitting and get a good generalization, the use of the “Dropout” layer is recom-
mended. This technique will randomly deactivate some of the neurons in each training epoch.
17 Each forward pass to feed the data into the model, getting an output, and its corresponding back-
propagation pass to adjust the model are called an epoch.
18 While in this task, the loss (cost) function and accuracy metric are the same, this is not always 
the case and usually happens for regression models.
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model.summary()

model.compile(loss= "mean_squared_error" , 

optimizer="adam", metrics=["mean_squared_error"])

model.fit(in_train, out_train, epochs=20)

pred_test= model.predict(in_test)

print(np.sqrt(mean_squared_error(out_test,pred_test)))

 

Note 7  One of the most important hyperparameters in NN is the number of layers 
and neutrons in each layer. These parameters should be tuned for each predictive 
task accordingly. Grid Search, Random Search, or Bayes Optimization can be 
utilized.

Note 8  While we used well-known metrics of accuracy, optimization algorithm, 
and cost function, there are many others to try, affecting the final model’s accuracy. 
It is advised to select a few different options and consider experimenting with a 
number of combinations to achieve the best possible results.

Note 9  NNs use random weights for model initialization. It is best to make the 
results replicable by setting a seed value19 for the random number generator in both 
the TensorFlow and NumPy libraries.

3.2 � NN for Classification

We will consider the breast cancer dataset used previously for the classification task. 
Here, the number of neurons in the last layer should equal the number of classes in 
the dataset. As a result, each neuron corresponds to one class. During model training 
and prediction, the neuron in the last layer generating the largest output will be 
considered the final predicted class label. However, for a binary classification (can-
cer or not cancer), it is possible to use a single neuron at the output layer. With a 
single neuron, results can be interpreted as positive if the generated output is above 
a threshold and negative in reverse. To practice multiclass classification, we will 
consider two output neurons to simulate a scenario that can be extended to more 
than two classes.

We use the sequential model implementation here. There are 30 features in the 
dataset used as inputs to the model (input_dim). It is recommended to have more 
neutrons than inputs in the subsequent layers, with two layers of each 50 neurons. 

19 Seed is the value used in computer systems to generate a sequence of pseudo random numbers. 
By providing an initial input (seed) to a random number generator, the same sequence of random 
numbers will be generated.
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Fully connected layers may overfit, memorizing the random variations in the data 
and noise instead of learning interactions. Randomly disconnecting some edges 
between the fully connected layers will improve the model’s generalizability. This 
is achieved using dropout layers after each fully connected layer. In the last layer, 
we use two neurons equal to the number of classes we are predicting. Moreover, the 
SoftMax activation function is considered for the last layer, making the summation 
of all output equal to one20 and simulating an Argmax Function.21

model = keras.models.Sequential() 

model.add(keras.layers.Dense(50, input_dim=30, 

activation="relu")) 

model.add(keras.layers.Dropout(0.25))

model.add(keras.layers.Dense(50, activation="relu"))

model.add(keras.layers.Dropout(0.25))

model.add(keras.layers.Dense(2, activation="softmax"))

model.summary()  

To compile the model for classification, we need to use categorical cross-entropy 
loss [17]. Moreover, we considered categorical accuracy to compare if the class 
with the highest predicted probability matches the label provided in the dataset.

from sklearn import preprocessing

model.compile(loss= "categorical_crossentropy" , 

optimizer="adam", metrics=["categorical_accuracy"])  

The model here has two output neurons, and TensorFlow expects the class labels 
in a OneHot-encoded format for multiclass classification. For each class, we need to 
have a column, and only one column per data instance can have one value, repre-
senting the corresponding class label. The code below will apply the required trans-
formation to both training and test labels.

lb = preprocessing.OneHotEncoder(sparse=False)

lb.fit(l_train.reshape([-1,1]))

binerized_l_train = lb.transform(l_train.reshape([-1,1]))

binerized_l_test = lb.transform(l_test.reshape([-1,1]))  

Now, we need to fit the model with training data.22

20 Converting numbers into a predicted probability distribution.
21 Argmax function sets the largest predicted probability equal to one and the remaining values 
equal to zero.
22 More training epochs are considered here compared to the previous example with more neurons. 
The number of training epochs is a parameter that needs tuning and should be chosen by consider-
ing the model’s training loss to prevent overfitting.
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model.fit(f_train, binerized_l_train, epochs=50)  

For the final model evaluation, we will predict the test set’s class labels and com-
pare them against the actual labels. As a measure of accuracy, we will calculate the 
percentage of correct predictions using the Scikit-Learn “accuracy_score” func-
tion.23 One important note is that the model’s predictions are probabilities for each 
class. To convert these to actual class labels, we need to consider the class with the 
highest probability for each instance as the final prediction. The NumPy Argmax 
function will look at the predicted probabilities for each instance and return the cor-
responding column number for which it has the highest probability.

from sklearn.metrics import accuracy_score

pred_prob_test= model.predict(f_test)

prediction_test = np.argmax(pred_prob_test, axis=1)

print(accuracy_score(l_test, prediction_test))  

Note 10  In this example, all the features are numerical values. Category features 
should be converted to OneHot-encoded versions before being used as input to 
the model.

3.3 � NN for Computer Vision

The field of computer vision is interwoven with Convolutional Neural Networks 
(CNNs). CNNs have helped computers achieve accuracy above humans in visual 
tasks. CNNs are used in many tasks, from object detection and classification to self-
driving cars and, recently, in many medical imaging domains to detect symptoms 
and automate the diagnosis process. But what are the CNNs and how a simple CNN 
can be implemented for a computer vision task are what we will discuss in this 
section.

In fully connected NNs, each neuron is connected to every neuron in the next 
layer. This architecture causes a few issues in image processing. If you use fully 
connected layers for a computer vision task with an image as an input, while the 
model may learn and predict the assigned classes, shifting or scaling the object in 
the image would easily affect the final prediction. Since the model has memorized 
the exact location and size of an object. To address these limitations, we need fea-
ture extractors that can learn simple features or patterns in the initial layers of NNs. 
More complex features and combinations are learned as the data moves along the 
layers. The first few layers may only learn the horizontal, vertical, and diagonal 
lines; while moving along the layers, the combination of features in the previous 

23 Other metrics to name are the confusion matrix or area under receiver-operating characteristics.
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layer can be learned to shape more complex patterns. Generally, a convolution in 
CNN acts the same as a feature extractor. It will shift over the image and extract 
features by multiplying with the underlying pixels or values in each step. Figure 19.8 
shows an example of a convolutional feature extractor (filter) in CNN. The pixel24 
values for a hypothetical black-and-white25 image of size 5 by 5 are shown in white 
with a feature extractor of size 3 by 3 in green. The feature extractor moves over the 
image calculating the summation of the products. The resulting output will be of 
size 3 by 3, being forwarded to the next layer.

Convolutional layers are usually followed by a pooling layer, reducing the output 
size and decreasing the number of parameters required to train in the subsequent 
layers. A very popular pooling layer is max pooling of size of 2 by 2, convolving 
similarly over an image, taking the max value of the pixels. Figure 19.9 shows an 
example of a max pooling filter applied to the final results of Fig. 19.8.

Now that we know the basics of CNNs, let’s get to coding and see how we can 
use layers of CNNs to detect patterns within an image.

Fashion_mnist is a dataset of images with 10 classes of clothing items. Each 
image has one layer, as images are black and white. The first step is to load the 
images from the dataset and reshape them into arrays with four dimensions, as 
TensorFlow requires. In the reshape function, we can see the requested dimensions 
in order: the number of training samples (60,000), the height and width of each 
image (28 × 28), and the number of layers in each image [1]. To normalize the data 
for image processing, all the values can be divided by the maximum intensity (255), 
resulting in an intensity value of 0–1. We need to repeat the same process for our test 
dataset as well.

 

import tensorflow as tf 

 

mnist = tf.keras.datasets.fashion_mnist 

(training_images, training_labels), (test_images, 

test_labels) = mnist.load_data() 

 

training_images = training_images.reshape(60000, 28, 

28, 1) 

training_images = training_images / 255.0 

test_images = test_images.reshape(10000, 28, 28, 1) 

test_images = test_images / 255.0 

  

After loading the data, it is time to build our model. Using TensorFlow sequential 
modeling, we provide the layers in order. In the first layer, we want 64 convolutions 
with a filter size of 5 by 5 and a ReLu activation function. The input size would be 
the same as the size of each image, 28 by 28, with 1 layer. The output of this layer 

24 The basic unit of a digital image that can be displayed on a digital device or display.
25 Black and white images can be represented by a single layer, with values presenting the intensity 
of the light.
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Fig. 19.8  A single convolutional filter convolving over an image

Fig. 19.9  A max pooling filter convolving over an image

will automatically be forwarded to the next layer. After the convolutional layer, we 
utilize a pooling layer to reduce the dimensions of the features. We have one more 
layer of convolutions with 64 filters of size 3 by 3, followed by a pooling layer of 
size 2 by 2. These layers will extract features from the images. Now, we need to 
flatten the multidimensional output to one dimension using the “flatten()” function 
and send it to two fully connected layers for final classification. The final layer 
needs to have 10 neurons, equal to the number of classes.
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model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(64,(5,5), activation ='relu', 

input_shape=(28,28,1)),

tf.keras.layers.MaxPooling2D(2,2),

tf.keras.layers.Conv2D(64, (3, 3), 

activation='relu'),

tf.keras.layers.MaxPooling2D(2, 2),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation=tf.nn.relu), 

tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])

 

To compile the model we just defined, we need to specify the optimizer algo-
rithm, loss function,26 and accuracy metric. Then, we can get the model summary 
for parameters and layers and start the training.

model.compile(optimizer = 'Adam', 

loss = 'sparse_categorical_crossentropy', 

metrics=['accuracy'])

model.summary()

model.fit(training_images, training_labels, epochs=5)  

With the trained model, now we can predict the test set and evaluate the accuracy 
of the model.

model.evaluate(test_images, test_labels)
 

3.4 � NN for NLP

NLP is a branch of ML that allows computers to process and understand text data. 
This includes, but is not limited to, sentiment analysis, question answering, text 
summarization, and machine translation. In recent years, DL has revolutionized 
NLP by developing language models capable of understanding context, trained on 
millions of documents. In this section, as an introduction to NLP, we will develop a 
model for sentiment analysis, predicting the positivity and negativity of a text writ-
ten by a user as a review.

Like many other NLP tasks, the first step is data cleaning and selecting a method 
for sentence representation. Data cleaning (depending on the task) refers to remov-
ing punctuation, extra spaces, HTML tags in the text, emojis, hyperlinks, and stop 
words. There are quite a few approaches to representing the sentences. One of the 

26 The use of sparse categorial cross-entropy loss would eliminate the need to provide the one hot 
encoded version of class labels.
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old methods is a one-hot representation, with one column per word in the dataset. If 
a word appeared in the sentence, its corresponding column would have a value of 1 
and otherwise be zero. While this helps to capture sentiments and represent words 
in a sentence, the words’ order and appearance together will be removed, resulting 
in information being lost. Using bi-gram and tri-gram can help capture words that 
appear together and in sequential order. However, this method also suffers from not 
utilizing the context in which the words have appeared.

For better representations, instead of a sparse matrix with columns representing 
the words, using an n-dimensional vector to represent each word is a better approach. 
This n-dimensional representation should encode the word meaning, referred to as 
embedding. With this approach, we can replace words with embeddings and repre-
sent sentences with word-length sequences. There are many pre-trained embed-
dings27 to utilize. However, embeddings can be directly learned from a dataset 
as well.

The dataset we will use here has words pre-converted to unique integer values for 
simplicity. Integer representations are not recommended as they are randomly cho-
sen. Using an embedding layer in TensorFlow, we can learn the best representation 
from the dataset for the integer representation provided here.

First, we load the dataset from TensorFlow. “Num_words” limits the TensorFlow 
to represent the top 10,000 words based on the frequency of their repetition, consid-
ering others as unknown (oov_char).28 “Maxlen” instructs the library to truncate any 
sentence longer than 512 to the same size. Shorter sentences will be padded by zero, 
making all the representations the same length.

import tensorflow as tf

(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.imdb.load_data(num_words=10000)

x_train = 

tf.keras.preprocessing.sequence.pad_sequences(x_train, 

maxlen=512)

x_test = 

tf.keras.preprocessing.sequence.pad_sequences(x_test, 

maxlen=512)

 

Now we need to define our network. The “input” variable is a placeholder repre-
sentative of the sentence that will be passed to the model. The first layer would be 
the Embedding layer. TensorFlow has recently added this capability, where the 
model can learn the best representation of the words based on the input dataset. This 
helps to use representations that accurately encode the word’s meaning instead of a 
randomly generated integer by the data loader. The first value (10000) provided to 

27 Glove and word2vec are two of the statically generated word embeddings.
28 This helps to remove the words that have a very low frequency of repetition.

H. Moradi



339

the embedding layer will represent the expected number of vocabulary words, and 
the second is the number of output dimensions for representing each word.

inputs = tf.keras.Input(shape=(None,), dtype="int32")

x = tf.keras.layers.Embedding(10000, 100)(inputs) 

 

We need NN models capable of understanding the sequential nature of words in 
a language. Although using fully connected layers may be possible, they could not 
understand the context in which the words appeared accurately. Using recurrent 
NNs (RNNs), not only are the neurons in each layer connected to the next layer, but 
there is also a hidden state connecting the neurons within the same layer. These con-
nections are usually unidirectional.29 But the unidirectional connections can utilize 
the context information of the previous words for representation. Here, we use a 
bidirectional implementation of the RNN called Long Short-Term Memory (LSTM) 
networks to address this limitation. The bidirectional implementation helps infor-
mation flow from the beginning to the end of a sentence and in reverse, while the 
LSTM model helps better understand long sequences of words. Finally, the last 
layer has a neuron as a final classifier, predicting the sentiment for this binary clas-
sification task.

x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, 

return_sequences=True))(x)

x = 

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)

outputs = tf.keras.layers.Dense(1, 

activation="sigmoid")(x)

 

The final step would be setting the input and output of the model, followed by 
compilation and evaluating the model’s performance.

model.compile("adam", "binary_crossentropy", 

metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=64, epochs=3) # , 

validation_data=(x_test, y_test)

model.evaluate(x_test, y_test)

 

29 From the first neural to the last, or from the beginning of the sentence to the end of the sentence.
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4 � Recent Advancements

While here, we provided a couple of source codes and discussed the implementation 
details. Examples are countless. Applications of ML and DL are not limited to 
regression and classification tasks or sentiment analysis. In computer vision, with 
the help of DL, machines can find an object of interest within an image (object 
detection) and provide an accurate bounding box for it (object localization). They 
are helping automate the disease diagnosis processes and assisting doctors by pro-
posing areas that might need more attention. Using image segmentation techniques 
in computer vision, we can provide an exact area where an abnormality is observed 
with pixel-level accuracy (object segmentation). Studies now focus on utilizing DL 
to increase the quality of MRI and X-ray images. In NLP, we used the patients’ 
historical notes in EHR to provide clinicians with a summary or even propose a 
discharge summary. They are helping to improve clinical documentation and saving 
clinicians’ time.

5 � Models’ Interpretability

A black-box ML model usually focuses on predicting outcomes, but little insight is 
available beyond the predictions. However, recent years have witnessed numerous 
advances in producing robust and interpretable insights from complex machine-
learning models. Some of the examples are the Grad-CAM [18, 19], LIME [20, 21], 
and SHAP [22, 23] libraries utilized in many applications. The most popular library, 
SHapley Additive exPlanation (SHAP), is based on the game theoretic approach, 
which has gained a lot of attention in many domains. SHAP provides insightful 
interpretations of a complex ML model with high accuracy and robustness, close to 
human interpretations. The generated SHAP values for input features of an ML 
model can be used to assess the effect of the inputs on the final model’s prediction. 
There are abundant examples of applications in many domains, including tabular 
data modeling, text classification, question answering, image processing, and 
genomics.

6 � Further Practice

	 1.	 What is the cost function?
	 2.	 Why do we need to split the data into train and test datasets?
	 3.	 Why do we need to standardize the input data?
	 4.	 What are the metrics to evaluate the accuracy of the linear regression model?
	 5.	 What are the differences between Lasso and Ridge linear regressions?
	 6.	 Why do we need to tune the hyperparameters on a validation set?
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	 7.	 Which terms are different in the L1 and L2 losses?
	 8.	 What are binary, multiclass, and multilabel classifications?
	 9.	 What are RF and GBDT models, and how do they differ from Decision Trees?
	10.	 What are the differences between K-means and OPTICS clustering algorithms?
	11.	 What should be the input and output sizes of a NN for a given predictive task?
	12.	 How the model generalization can be improved in fully connected NNs?
	13.	 What should be the order of dimensions as input for image processing in TF?
	14.	 Why do we need to use a pooling layer in CNN?
	15.	 What are pre-trained embeddings, and how they can be utilized for an NLP task?

Answer Keys
	 1.	 A function that determines how well an ML model is performing
	 2.	 Because the model will be evaluated on the same data it has seen during train-

ing. As a result, an evaluation would not be representative of real-world perfor-
mance with unseen data.

	 3.	 To have the same scale for all the data. Many ML algorithms are sensitive to the 
data scale and may find unrealized coefficients.

	 4.	 Mean squared error, mean absolute error, and R-squared.
	 5.	 Lasso cost function will result in some coefficient closer to zero and act as a 

feature selector, while Ridge will result in a coefficient more uniform and works 
better with multicollinearity.

	 6.	 Before applying models to the actual test dataset and evaluating the perfor-
mance, hyperparameters should be tuned on an unseen part of the dataset. But 
this could not be the test set. This is why the training dataset is usually utilized 
to drive another subset of data to test the model with different hyperparameters 
to find the best, called the validation set.

	 7.	 L1 loss uses the sum of the absolute value of the weight for penalization, while 
L2 loss uses the sum of squared weights.

	 8.	 Binary classification refers to a task that can be seen as a binary outcome posi-
tive and negative. Multiclass classification has multiple outcomes in which only 
one can be true for each instance, while in multilabel classification multiple 
class labels can be assigned to a single instance.

	 9.	 RF uses an ensemble of Decision Trees (DT) using a bagging method by data 
resampling and combines the result using a voting method. GBDT uses sample 
weighting or output of previous models to build the next level of predictors, 
improving modeling accuracy interactively.

	10.	 K-means used a method of distance to find K closes neighbor and uses voting 
for the final decision, while OPTICS uses density as a measure of clustering 
using minimum points in a neighborhood in a core distance.

	11.	 Input should be equal to the number of features, size of an image, or length of 
a sentence based on a task. While output size is equal to the number of classes 
to predict.

	12.	 Using the dropout layer model generalization can be improved.
	13.	 First is the number of samples, then the size of each sample, and the last dimen-

sion represents the number of color channels.
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	14.	 The pooling layer reduces the dimensionality of feature, reducing the required 
computations

	15.	 Pre-trained embeddings provide the representation for each word with meaning 
encoded in it. Each word should be replaced by a corresponding embedding 
representation before being forwarded to the model.
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