
317© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. K. Mitra (ed.), Statistical Approaches for Epidemiology,
https://doi.org/10.1007/978-3-031-41784-9_19

Chapter 19
Artificial Intelligence and Machine
Learning

Hamidreza Moradi

Learning Objectives
After completing this chapter, you will be able to:

•	 Understand and implement machine learning models for regression, classifica-
tion, and clustering tasks

•	 Utilize both machine learning and deep learning to devise a predictive model
•	 Apply concepts of computer vision and natural language processing

1 � Introduction

Machine learning (ML) has gained a lot of attention in recent years, and many tools
and libraries have been developed to help enthusiasts. Devising a predictive model
requires a good understanding of the underlying concepts and hands-on experience
with at least a library or package for developing models. In the first section, we aim
to discuss traditional ML methods and the libraries to be utilized for developing a
prediction model. The models we considered were regression, classification, and
clustering. In regression, we aim to predict continuous values, while with classifica-
tion, the goal is to predict data labels assigned to data instances. And clustering tries
to find a natural groping in the data. In the second section, we will start by discuss-
ing the basic building blocks of a neural network (NN) model. Then, we develop
regression and classification models using NNs to get familiar with how the same
task can be achieved using traditional and new approaches. Next, we will review
more advanced examples that can be better addressed using NNs, computer vision,
and natural language processing (NLP). In computer vision, convolutions will be
introduced with examples, and we will see how they can be combined to extract
features from an image. In NLP, we will address how we can make words and sen-
tences interpretable and understandable by machines. Finally, the last two sections

H. Moradi (*)
Department of Computer Science, North Carolina Agricultural and Technical State
University, Greensboro, North Carolina, United States
e-mail: hmoradi@ncat.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41784-9_19&domain=pdf
https://doi.org/10.1007/978-3-031-41784-9_19#DOI
mailto:hmoradi@ncat.edu

318

will briefly discuss how we can make ML models interpretable and recent advance-
ments. All code examples are provided here in Python, as it is the preferred lan-
guage for both ML and deep learning (DL) for students and engineers in academia
and industry. Simplicity, flexibility, platform independence, being open-source, and
the existence of powerful libraries/frameworks supported by industry leaders are
just a few reasons for its popularity and attention.

2 � Machine Learning

In artificial intelligence (AI), computer systems are programmed to mimic human
behaviors to devise intelligent machines. This required writing programs with the
rules needed to make decisions based on the inputs to the system. However, with
increased data and computation power, research studies investigate algorithms that,
given the inputs and expected outputs, can automatically infer the rules needed,
learning from examples. This marked the beginning of the ML era, a subset of AI. In
the following subsections, we will discuss some of the ML algorithms that can be
used for inferring the rules and making a prediction for the expected output.

2.1 � Regression

Regression is one of the early forms of ML models that establishes a linear relation-
ship between a dependent variable and one or more independent variables, usually
called features. Linear regression can be graphically presented using a straight line
and can be used to predict continuous values. In its simplest form, it can be repre-
sented in the form of y′ = β + αX, where α is the weight for the input feature X, β is
the intercept for the line, and y′ is the predicted value. With ML, the aim is to find α
and β using a dataset of samples. Figure 19.1 shows the data samples used to find a
regression line with black dots and the devised regression line in blue. The blue dots
on the regression line show a couple of predicted values for the corresponding input
(X) on the regression line.

The error between the actual observations and their predicted values should be
minimized to find the regression line with the best fit. As a result, we are interested
in finding the values for α and β that minimize the prediction error � � � �y yi i for all
the observations, where y is the actual observation, y′ is the predicted value, and i is
the observation number in the sample dataset. We need to define and minimize a
cost (loss) function here. The cost function for linear regression can be defined as
 � �� �� �

i
i iy y

2
 to penalize large errors and should be minimized by an ML algo-

rithm. In regression, when more than one independent variable exists, the formula
can be extended to the form y′ = β + α1X1 + α2X2 + … + αnXn , where n is equal to the
number of features for each observation. Then, the ML algorithm needs to find the
best αi that minimize the cost function.

H. Moradi

319

Fig. 19.1  Regression line with actual and predicted observations

Let’s see how to develop an ML model. To train a linear regression model in
Python [1], Scikit-Learn [2] library provides many preimplemented functions.
These functions can be easily utilized to fit a model to a dataset. After installing the
latest versions of Python (v3.8) and Scikit-learn (v1.0.2), we need to import the
linear models from the library into the working environment in the code editor of
choice.1 Scikit-Learn also provides many small toy datasets [3] to help users try and
learn about the implemented functionalities. Here we will import and use the diabe-
tes dataset. Features include patients’ baseline measurements such as body mass
index, age, blood, and glucose level to predict a quantitative measure of disease
progression a year after the baseline. As the outcomes considered for patients are
integer numbers (between 25 and 346), we will use linear regression for modeling
and prediction.

from sklearn import linear_model

from sklearn import datasets

diabetes = datasets.load_diabetes()

input = diabetes.data

outcome = diabetes.target

1 PyCharm or Jupyter Notebook are recommended.

Train-Test split
In ML, the goal is to train a predictive model and then evaluate the accuracy
of an unseen data set. This gives us a measure of how the model may perform
in the production environment. To achieve this goal, we can split our data into
nonoverlapping train and test subsets of 80% and 20%, respectively.

19  Artificial Intelligence and Machine Learning

320

To have the most accurate model and find the weight for each feature representa-
tive of its importance, it is best to standardize the features using a z − score. This
will result in inputs to the model on the same scale. But to normalize the data, we
should consider the test set as unseen. As a result, we need to learn the parameters
required to standardize the data from the training set and use the same parameters to
transform the test data.

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

in_train, in_test, out_train, out_test =

train_test_split(input, outcome, test_size=0.20)

scaler = StandardScaler()

scaler.fit(in_train)

in_train = scaler.transform(in_train)

in_test = scaler.transform(in_test)

In the above code block, the “scaler.fit” step will learn the required parameters to
standardize each feature separately. Then, using the learned parameter from the
train set (in train), both the training and test datasets are transformed.

Now, we can train the model using a training set to predict the output of the test
data and evaluate its accuracy.

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

reg = LinearRegression().fit(in_train, out_train)

pred_test = reg.predict(in_test)

print(mean_squared_error(out_test, pred_test))

Here we used mean squared error to measure accuracy, but many other metrics
can be used. The most popular ones that readers are encouraged to review are R
square, mean absolute error, and mean relative absolute error.

Simple linear regression, as used above, does not always provide the best results
possible. The outliers greatly impact it and may learn random variations within the
training data, causing an issue known as model overfitting. The cost function can be
adjusted to address these limitations by adding a penalization term to consider the
features’ weight. This will result in three derived regression models with differences
in their regularization terms: Lasso, Ridge, and Elastic-Net.

In Lasso regression, weights will be used as the penalization term in the loss
function formed as  � �� � �� ��

i
i i

i
iy y w

2
� # # , where λ is a hyperparameter to

tune and wi is the weight for the feature i. Using the sum of the absolute values of
weights, known as L1 loss, will result in smaller weights closer to zero. This will
cause sparsity in the weights and is used as a feature selection method. Below are
the codes needed to import and train Scikit-Learn’s Lasso regression [4] to make
predictions for the discussed dataset.

H. Moradi

321

from sklearn.linear_model import Lasso

reg2 = Lasso().fit(in_train, out_train)

pred2_test = reg2.predict(in_test)

print(mean_squared_error(out_test, pred2_test))

Note 1  For simplicity, here we trained Lasso regression using the default parame-
ters. However, given that we now have λ as a hyperparameter, we may need to tune
it and find the best value for it. One approach would be to split the training dataset
into new training and validation sets. Models can be trained on the new training set
using different values of λ, and results will be evaluated on the validation set to find
the best value. Then, the model with the best λ value can be used to evaluate the
accuracy of the test dataset. This approach will allow us to fine-tune the model’s
hyperparameter and use the best model for the test dataset without data leakage.

Ridge regression will similarly penalize the weights of the features in the loss
function. However, the final loss function will be in the form of
 � �� � �� ��

i
i i

i
iy y w

2 2� . Using the sum of squares of weights in the loss function,
known as L2 loss, will penalize the larger values with higher intensity, resulting in
a more uniform range of weights. Ridge regression is useful when there are too
many features or when features have a high degree of multicollinearity. The code
below utilizes Ridge regression for modeling and prediction.

from sklearn.linear_model import Ridge

reg3 = Ridge().fit(in_train, out_train)

pred3_test = reg3.predict(in_test)

print(mean_squared_error(out_test, pred3_test))

Finally, Elastic-Net combines the two aforementioned regularization terms to
form the loss function  � �� � � �� � ��

i
i i

i
i

i
iy y w w

2

1

2

2
2� � . Here, we can take

benefit from both the regularization terms discussed for Lasso and Ridge regression.
However, the hyperparameter turning for both λ1 and λ2 is needed.

from sklearn.linear_model import ElasticNet

reg4 = ElasticNet().fit(in_train, out_train)

pred4_test = reg4.predict(in_test)

print(mean_squared_error(out_test, pred4_test))

Note 2  There are different methods of hyperparameter tuning. Grid search will
evaluate all possible combinations of hyperparameters with their provided search
space to find the best subset. This search method implemented in Scikit-Learn [5] is
recommended for a small set of hyperparameters. The search space will grow expo-
nentially with an increase in the number of hyperparameters or their corresponding
search space. Random search [6] implementation will use a random combination of
values for each hyperparameter for a preset number of iterations and report the best
combination. Although random search has gained a lot of interest and has proven to

19  Artificial Intelligence and Machine Learning

322

be efficient, more advanced techniques exist to better utilize any correlation between
the accuracy achieved and the parameters tried to make a more informed decision
about the next set of values to try. The HyperOpt [7] library is an example that uti-
lizes Bayesian optimization for hyperparameter tuning.

2.2 � Classification

In classification, the goal is to use ML algorithms and assign a class label to the
input examples. For instance, class labels can be patients’ death or discharge out-
comes at the end of a treatment or negative or positive blood test results. These
examples are called binary classification since one of the outcomes can happen at a
time and can be coded as a zero or one output for a model. It is possible to have
more than two outcome classes as well, where instances can still belong to only one
class, usually referred to as multiclass classification. In the case of multilabel clas-
sification, input examples can have more than one class label.

There are many ML algorithms designed to address each task mentioned above.
Some can only perform simple binary classification, while many are inherently
capable of multiclass or multilabel classification. Still, advanced techniques can be
incorporated to use a simple binary classifier and form a multiclass or multilabel
classifier.

Logistic regression is a simple binary classifier that essentially passes the output
of a linear regression model, here f(x), through a sigmoid function p(x′) = 1/1 + e−(x′).
This will result in an output with values between zero and one. The final class label
can be considered a positive outcome for a predicted value above a specific thresh-
old, while the value below the threshold will be interpreted as negative.

K-Nearest Neighbor (KNN) is a multiclass classifier. It uses a measure of dis-
tance2 (e.g., Euclidean, Hamming, Cosine, Manhattan) to find the K closest neigh-
boring data instances in the training set to a given input sample. Then, the class
labels for the determined K-nearest neighbors will be used in a voting scheme to
decide the best matching class label. While having a simple algorithm, KNN does
not perform well on very large or high-dimensional datasets.3

In recent years, tree-based models have shown great efficiency for classification
tasks with high prediction accuracy. Tree-based models are based on the simple idea
of a decision tree, where a series of conditional steps are taken to make a decision.
Figure 19.2 shows an example of a decision tree. However, simplicity comes with
disadvantages. Model overfitting arises when the tree fits well to the training data
but performs poorly on the testing set. Moreover, considering the order of the
conditional steps taken, trees of various shapes will be generated and performed

2 It is best to use a measure of distance relevant to and representative of available features.
3 With an increase in data dimensionality, the data points will appear closer together, making this
algorithm inefficient. Additionally, pairwise comparison to find the closest neighbors makes the
algorithm in efficient in datasets with a large number of instances.

H. Moradi

323

differently. These issues resulted in the invention of two well-known models based
on decision trees: Random Forests (RF) and Gradient Boosting Decision
Tresses (GBDT).

RF builds a bunch of decision trees independently, each making a simple predic-
tion. Each tree’s structure will be randomized and created on top of a bootstrap4
sample of the training dataset. The final prediction by RF will be the aggregated
prediction of all trees. The randomization of the structure and use of bootstrapping
have made RF a powerful model resistant to outliers and missing values in the
datasets.

Let’s get to coding by considering a classification task. For the dataset, we con-
sidered using Scikit-Learn breast cancer data [8]. This dataset includes samples of
569 patients with 30 numeric predictive attributes, each labeled as malignant or
benign. Like regression, we need to load the dataset, split the data to train and test
sets and standardize the features.

4 Random sampling with replacement.

Boosting
To build a more robust model, GBDT models and popular examples (e.g.,
XGBoost and CatBoost) use an ensemble of weak decision tree predictors. In
GBDT, tresses are built iteratively. Meaning each tree is built after the other,
and the previous step’s output is used in addition to the features as input to the
next tree. This will result in each new tree improving on the predictions made
by the previous round, improving overall efficiency, a concept called boosting.

Fig. 19.2  A decision tree to predict patients’ need for a prescription

19  Artificial Intelligence and Machine Learning

324

breast_cancer = datasets.load_breast_cancer()

features = breast_cancer.data

labels = breast_cancer.target

f_train, f_test, l_train, l_test = train_test_split(features,

labels, test_size=0.20)

scaler = StandardScaler()

scaler.fit(f_train)

f_train = scaler.transform(f_train)

f_test = scaler.transform(f_test)

For the classification algorithm, we will use the Scikit-Learn implementation of
RF [9]. We need to first fit the model to the training data using the “.fit” call. Then
the trained model can be used to predict the class labels for the test dataset. Finally,
to measure the model’s performance, we can calculate the percentage of correct
predictions using the “accuracy_score” function imported from “sklearn.metrics.”

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

rf = RandomForestClassifier().fit(f_train, l_train)

pred_rf = rf.predict(f_test)

print(accuracy_score(l_test, pred_rf))

We can try different classification algorithms to find the best-performing algo-
rithm for a given dataset. Here, we use the Scikit-Learn implementation of GBDT
[10] to evaluate the performance gain achieved using a more advanced implementa-
tion of decision trees on the same predictive task.

from sklearn.ensemble import

GradientBoostingClassifier

gbc = GradientBoostingClassifier().fit(f_train, l_train)

pred_gbc = gbc.predict(f_test)

print(accuracy_score(l_test, pred_gbc))

Results show improved accuracy by using the GBDT model over the RF. However,
it should be noted that there are hyperparameters for each algorithm that need to be
tuned using grid search, random search, or Bayesian optimization techniques, as
discussed previously.

Note 3  For RF, some important hyperparameters to consider are the number of
estimators, the maximum depth of trees, and the criterion to measure the quality of
splits for each feature. GBDT, while providing a similar hyperparameter to tune, has
a few additional unique hyperparameters, such as loss function and learning rate, to
consider.

Note 4  It should be noted that the percentage of correct predictions for a classifica-
tion task is not the only measure of its performance. The confusion matrix, the area
under ROC curve (AUC), and the F1 score are a few others.

H. Moradi

325

2.3 � Clustering

So far, all the ML algorithms we discussed are considered supervised learning tech-
niques. In supervised learning, the data instances have a class label or a value
assigned. As an expected outcome, this value or label will be used to train a model
and later need to be predicted for new instances. In contrast, clustering is an unsu-
pervised ML method that involves discovering a natural groping among the exam-
ples. A cluster is an area of densely populated samples or samples closer to each
other. Clustering helps us better understand a problem or dataset, group similar data
instances, or map new data to an existing cluster in the dataset. Figure 19.3 shows
data instances in a two-dimensional space with three clusters. Each cluster is identi-
fied with a separate color surrounded by a black circle and a gray dot in the center
as a cluster centroid.

K-means and OPTICS are two clustering algorithms we are going to discuss
here. K-means requires the number of clusters (K) and a measure of distance to be
defined and used for calculation. It starts by considering K random values5 as clus-
ter centroids. Then, it calculates the distance between each data instance and all the
cluster centroids, assigning the closest cluster to it. When the initial clustering hap-
pens for all the data instances, K-means will move each cluster centroid to the cen-
ter of the data instances assigned to it.6 With the new cluster centroids, K-means will
recalculate the distances and assign data instances to the newly formed cluster cen-
ters. This process will be repeated until there is no change in the assigned cluster for
any data instances or it reaches an identified maximum number of iterations.

While K-means splits the feature space into distinct areas with its measure of
distance, OPTICS uses a measure of density and reachability in a provided neigh-
borhood for clustering. Although both clustering algorithms may provide the same
results in some cases, the results of applying each clustering algorithm could be

5 The value considered as K is a hyperparameter that needs to be tuned.
6 This will be done by taking the average of each feature for the data instances assigned to the same
cluster.

Fig. 19.3  Three clusters of data in a two-dimensional space

19  Artificial Intelligence and Machine Learning

326

drastically different. Many evaluation metrics are devised for clustering algorithms.
However, there is no best or easiest method of comparison. Evaluation of the identi-
fied cluster may require controlled experiments or domain expert knowledge.
Figure 19.4 shows clusters found by both K-means and OPTICS differentiated by
their colors.

To increase the interpretability of our analysis, here we use the Scikit-Learn syn-
thetic dataset generator to create a data set for clustering. The dataset consists of 500
samples in a two-dimensional space, intentionally generated to have five clusters
with varied densities, as shown below.

from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=500, centers=5,

cluster_std =1.00)

We can now import K-means clustering [11] from Scikit-Learn and apply it to
synthetically generate a dataset7 to form five clusters as we expect. The clusters will
be formed using the “.fit” call, and by “.cluster_centers_” we can print out the cen-
ters calculated.

from sklearn.cluster import KMeans

km = KMeans(n_clusters=5)

km.fit(X)

print(km.cluster_centers_)

We will use the Seaborn library to generate the figure for the clustered data.
Figure 19.5 shows the clusters identified by different colors for the synthetically
generated data with five known clusters.

import seaborn as sns

sns.scatterplot(x=X[:,0], y=X[:,1], c= km.labels_)

sns.scatterplot(x=km.cluster_centers_[:, 0],

y=km.cluster_centers_[:, 1], c=['black'])

Like K-means clustering, we can apply OPTICS [12] to the same dataset getting
the identified clusters and comparing the two algorithms. Figure 19.6 shows the
results of utilizing the OPTICS algorithm.

from sklearn.cluster import OPTICS

opt = OPTICS()

opt.fit(X)

sns.scatterplot(x=X[:,0], y=X[:,1], c= opt.labels_)

7 Forming a train and test splits may not be required as we do not have any assigned labeled to
the data.

H. Moradi

327

Fig. 19.4  Clusters found by both K-means and OPTICS

While the results for K-means clustering seem more appealing, if we consider
the density-based nature of the OPTICS algorithm, we can conclude that both algo-
rithms are clustering the data perfectly based on their similarity measure. We can
observe that K-means separated the two-dimensional space into K = 5 distinct
regions with data instances close together. At the same time, optics has found and
clustered the data instances with the same density at the center and border of each
cluster.

Note 5  Similar to supervised learning algorithms, unsupervised techniques also
have hyperparameters that need to be tuned. For K-means, the number of clusters
(K) is one of the most important parameters. K can be found using the elbow
method. With the elbow method, clustering will be conducted using different K
values, followed by the calculation of inertia.8 The K value as a function of the
number of clusters is best where the highest reduction in the inertial is observed, and

8 Inertia measures the sum squared distance between each data point and its assigned centroid.

19  Artificial Intelligence and Machine Learning

328

Fig. 19.5  K-means clustering and synthetic data

then a plateau is reached.9 For OPTICS, minimum samples and maximum neighbor-
hood distance are hyperparameters to consider. However, OPTICS presents less
sensitivity to hyperparameters than its density-based clustering predecessor,
DBSCAN [13].

Note 6  The silhouette score is another metric for evaluating the clustering algo-
rithms. It measures the degree to which the data points are similar within the
assigned cluster compared to neighboring clusters. The silhouette value ranges from
−1 to 1, with 1 representing the best match and −1 representing the opposite.

3 � Neural Networks and Deep Learning

The first interesting and practical demonstration of DL goes back to 1989, when
Yann LeCun implemented a NN for handwritten digit recognition. But the capabili-
ties are not limited to computer vision. Now, NNs are used for regression, time-
series prediction, object detection and segmentation, robotics, self-driving cars, and
even NLP to evaluate text sentiment or generate responses to a question.

NNs, or artificial NNs, are a subset of ML and the heart of DL, inspired by the
human brain. It is composed of three or more layers (an input layer, one or more

9 With an increase in the number of clusters, the inertia will constantly decrease, with the lowest
inertia achieved with K equal to the number of data instances.

H. Moradi

329

Fig. 19.6  OPTICS clustering and synthetic data

hidden layers, and an output layer). Each layer is composed of neurons connected
to other layers with edges and their associated weights. If the sum of the inputs to a
neuron, multiplied by their corresponding weights and added by the neuron’s bias
value, passes a threshold,10 the neuron will be activated and pass the signals to the
next layer. Generally, NNs start with random weights11 and zero biases assigned to
the edges and neurons. Optimization is needed to generate the required output
model to adjust these values. Many efficient optimization algorithms12 have been
devised based on gradient descent and backpropagation, making efficient model
adjustments possible. In this order, the inputs will be provided in a forward pass to
the model to generate an output. Then the difference between the generated and
expected output will be used in a backpropagation step by an optimization algo-
rithm to adjust the weights and biases, reducing the model’s error.13 Figure 19.7
shows a NN with three neurons in the input layer, two hidden layers each with five
neutrons, and an output layer with two neurons. Here, colored in blue, are the
weights connecting input 1 to the next layer of neurons in hidden layer 1.

NNs with enough layers, the correct number of neurons, and the correct settings
can virtually simulate any function and provide higher accuracy than traditional
models. However, an increase in the model’s complexity to achieve higher

10 This threshold and the degree to which a neuron will be activated are defined by an activation
function. The choice of activation function will influence the model’s training time and accuracy.
11 For further details, readers are encouraged to see He and Glorot weight initialization.
12 Adam optimizer, RMSprop, and AdaGrad are a few to name.
13 The model’s error is calculated using a cost function.

19  Artificial Intelligence and Machine Learning

330

accuracies comes at the cost of requiring more training data. NNs are also better at
feature selection than traditional ML models and can accurately learn important
features among abundant input. This section will use the Keras v2.10 [14] library
backed by TensorFlow v2.8 [15, 16] to develop some of the architectures useful for
supervised DL tasks.

3.1 � NN for Regression

Let’s design the architecture of our model to solve the same regression problem we
discussed in the first part of this chapter, the diabetes dataset. We have the data
loaded, split into training and test sets, and normalized, ready to be used for training
a predictive model.

After installing and importing TensorFlow and Keras into the environment, first,
we need to specify the type of model implementation we want to use.14 A sequential
implementation is chosen here. Now we can add layers of NN one after the other
using the “.add()” command, where the output of one layer will be automatically
forwarded to the next layer as input. For the next couple of fully connected layers,
a few parameters need to be set. We need to specify the input size for the first layer,
the number of neurons, and the activation functions for each layer. We can observe
in the code block below that we used the input size of 10, the same as the number of
input features, the first and second hidden layers each with 20 neurons,15 and the

14 There are three types of model implementation in TensorFlow: sequential, functional, and
subclassing.
15 The number of hidden layers and the neurons in each layer are hyperparameters that need to be
tuned for each model and dataset.

Fig. 19.7  A simple deep neural network

H. Moradi

331

final output layer of size 1 just to predict a single numerical value. The higher the
number of neurons in each layer, the more connections with their associated param-
eters in the model that need to be tuned, increasing the chance of model overfitting.
To solve this issue, more training data with a higher computation cost and training
time may be required to achieve a good generalizable model.16

For each fully connected layer in our model, a few activation functions are avail-
able to choose from. Some that we can utilize here are Sigmoid, Tanh, Linear, and
Relu. Here we used the Relu function for the first and second hidden layers, as it has
proven to be suitable for many predictive tasks and helps train and converge the
model faster with fewer epochs.17 However, the activation function for the output
layer is chosen to be a linear function, consistent with the regression task and the
range of values to be predicted.

from tensorflow import keras

model = keras.models.Sequential()

model.add(keras.layers.Dense(20, input_dim=10,

activation="relu"))

model.add(keras.layers.Dense(20, activation="relu"))

model.add(keras.layers.Dense(1, activation="linear"))

The “model.summary()” helps us get a summary of the defined model with the
number of trainable parameters within each layer. By compiling the model, we are
required to specify a loss (cost) function, an optimizer algorithm, and an accuracy
metric. The loss function provides the library with a means to evaluate how much
the generated output deviates from the expected output in each training epoch. And
the optimizer algorithm tries to minimize the value of the loss function by adjusting
the model’s parameters in backpropagation steps. The Adam optimizer is used here
due to its accuracy and efficiency. The metrics provided will be used to evaluate the
model’s accuracy during training.18 Finally, the model can be trained for the speci-
fied number of epochs by providing the training data and corresponding expected
outputs. After completion of the training, the trained model’s accuracy is evaluated
by predicting the results for the test dataset.

16 To prevent overfitting and get a good generalization, the use of the “Dropout” layer is recom-
mended. This technique will randomly deactivate some of the neurons in each training epoch.
17 Each forward pass to feed the data into the model, getting an output, and its corresponding back-
propagation pass to adjust the model are called an epoch.
18 While in this task, the loss (cost) function and accuracy metric are the same, this is not always
the case and usually happens for regression models.

19  Artificial Intelligence and Machine Learning

332

model.summary()

model.compile(loss= "mean_squared_error" ,

optimizer="adam", metrics=["mean_squared_error"])

model.fit(in_train, out_train, epochs=20)

pred_test= model.predict(in_test)

print(np.sqrt(mean_squared_error(out_test,pred_test)))

Note 7  One of the most important hyperparameters in NN is the number of layers
and neutrons in each layer. These parameters should be tuned for each predictive
task accordingly. Grid Search, Random Search, or Bayes Optimization can be
utilized.

Note 8  While we used well-known metrics of accuracy, optimization algorithm,
and cost function, there are many others to try, affecting the final model’s accuracy.
It is advised to select a few different options and consider experimenting with a
number of combinations to achieve the best possible results.

Note 9  NNs use random weights for model initialization. It is best to make the
results replicable by setting a seed value19 for the random number generator in both
the TensorFlow and NumPy libraries.

3.2 � NN for Classification

We will consider the breast cancer dataset used previously for the classification task.
Here, the number of neurons in the last layer should equal the number of classes in
the dataset. As a result, each neuron corresponds to one class. During model training
and prediction, the neuron in the last layer generating the largest output will be
considered the final predicted class label. However, for a binary classification (can-
cer or not cancer), it is possible to use a single neuron at the output layer. With a
single neuron, results can be interpreted as positive if the generated output is above
a threshold and negative in reverse. To practice multiclass classification, we will
consider two output neurons to simulate a scenario that can be extended to more
than two classes.

We use the sequential model implementation here. There are 30 features in the
dataset used as inputs to the model (input_dim). It is recommended to have more
neutrons than inputs in the subsequent layers, with two layers of each 50 neurons.

19 Seed is the value used in computer systems to generate a sequence of pseudo random numbers.
By providing an initial input (seed) to a random number generator, the same sequence of random
numbers will be generated.

H. Moradi

333

Fully connected layers may overfit, memorizing the random variations in the data
and noise instead of learning interactions. Randomly disconnecting some edges
between the fully connected layers will improve the model’s generalizability. This
is achieved using dropout layers after each fully connected layer. In the last layer,
we use two neurons equal to the number of classes we are predicting. Moreover, the
SoftMax activation function is considered for the last layer, making the summation
of all output equal to one20 and simulating an Argmax Function.21

model = keras.models.Sequential()

model.add(keras.layers.Dense(50, input_dim=30,

activation="relu"))

model.add(keras.layers.Dropout(0.25))

model.add(keras.layers.Dense(50, activation="relu"))

model.add(keras.layers.Dropout(0.25))

model.add(keras.layers.Dense(2, activation="softmax"))

model.summary()

To compile the model for classification, we need to use categorical cross-entropy
loss [17]. Moreover, we considered categorical accuracy to compare if the class
with the highest predicted probability matches the label provided in the dataset.

from sklearn import preprocessing

model.compile(loss= "categorical_crossentropy" ,

optimizer="adam", metrics=["categorical_accuracy"])

The model here has two output neurons, and TensorFlow expects the class labels
in a OneHot-encoded format for multiclass classification. For each class, we need to
have a column, and only one column per data instance can have one value, repre-
senting the corresponding class label. The code below will apply the required trans-
formation to both training and test labels.

lb = preprocessing.OneHotEncoder(sparse=False)

lb.fit(l_train.reshape([-1,1]))

binerized_l_train = lb.transform(l_train.reshape([-1,1]))

binerized_l_test = lb.transform(l_test.reshape([-1,1]))

Now, we need to fit the model with training data.22

20 Converting numbers into a predicted probability distribution.
21 Argmax function sets the largest predicted probability equal to one and the remaining values
equal to zero.
22 More training epochs are considered here compared to the previous example with more neurons.
The number of training epochs is a parameter that needs tuning and should be chosen by consider-
ing the model’s training loss to prevent overfitting.

19  Artificial Intelligence and Machine Learning

334

model.fit(f_train, binerized_l_train, epochs=50)

For the final model evaluation, we will predict the test set’s class labels and com-
pare them against the actual labels. As a measure of accuracy, we will calculate the
percentage of correct predictions using the Scikit-Learn “accuracy_score” func-
tion.23 One important note is that the model’s predictions are probabilities for each
class. To convert these to actual class labels, we need to consider the class with the
highest probability for each instance as the final prediction. The NumPy Argmax
function will look at the predicted probabilities for each instance and return the cor-
responding column number for which it has the highest probability.

from sklearn.metrics import accuracy_score

pred_prob_test= model.predict(f_test)

prediction_test = np.argmax(pred_prob_test, axis=1)

print(accuracy_score(l_test, prediction_test))

Note 10  In this example, all the features are numerical values. Category features
should be converted to OneHot-encoded versions before being used as input to
the model.

3.3 � NN for Computer Vision

The field of computer vision is interwoven with Convolutional Neural Networks
(CNNs). CNNs have helped computers achieve accuracy above humans in visual
tasks. CNNs are used in many tasks, from object detection and classification to self-
driving cars and, recently, in many medical imaging domains to detect symptoms
and automate the diagnosis process. But what are the CNNs and how a simple CNN
can be implemented for a computer vision task are what we will discuss in this
section.

In fully connected NNs, each neuron is connected to every neuron in the next
layer. This architecture causes a few issues in image processing. If you use fully
connected layers for a computer vision task with an image as an input, while the
model may learn and predict the assigned classes, shifting or scaling the object in
the image would easily affect the final prediction. Since the model has memorized
the exact location and size of an object. To address these limitations, we need fea-
ture extractors that can learn simple features or patterns in the initial layers of NNs.
More complex features and combinations are learned as the data moves along the
layers. The first few layers may only learn the horizontal, vertical, and diagonal
lines; while moving along the layers, the combination of features in the previous

23 Other metrics to name are the confusion matrix or area under receiver-operating characteristics.

H. Moradi

335

layer can be learned to shape more complex patterns. Generally, a convolution in
CNN acts the same as a feature extractor. It will shift over the image and extract
features by multiplying with the underlying pixels or values in each step. Figure 19.8
shows an example of a convolutional feature extractor (filter) in CNN. The pixel24
values for a hypothetical black-and-white25 image of size 5 by 5 are shown in white
with a feature extractor of size 3 by 3 in green. The feature extractor moves over the
image calculating the summation of the products. The resulting output will be of
size 3 by 3, being forwarded to the next layer.

Convolutional layers are usually followed by a pooling layer, reducing the output
size and decreasing the number of parameters required to train in the subsequent
layers. A very popular pooling layer is max pooling of size of 2 by 2, convolving
similarly over an image, taking the max value of the pixels. Figure 19.9 shows an
example of a max pooling filter applied to the final results of Fig. 19.8.

Now that we know the basics of CNNs, let’s get to coding and see how we can
use layers of CNNs to detect patterns within an image.

Fashion_mnist is a dataset of images with 10 classes of clothing items. Each
image has one layer, as images are black and white. The first step is to load the
images from the dataset and reshape them into arrays with four dimensions, as
TensorFlow requires. In the reshape function, we can see the requested dimensions
in order: the number of training samples (60,000), the height and width of each
image (28 × 28), and the number of layers in each image [1]. To normalize the data
for image processing, all the values can be divided by the maximum intensity (255),
resulting in an intensity value of 0–1. We need to repeat the same process for our test
dataset as well.

import tensorflow as tf

mnist = tf.keras.datasets.fashion_mnist

(training_images, training_labels), (test_images,

test_labels) = mnist.load_data()

training_images = training_images.reshape(60000, 28,

28, 1)

training_images = training_images / 255.0

test_images = test_images.reshape(10000, 28, 28, 1)

test_images = test_images / 255.0

After loading the data, it is time to build our model. Using TensorFlow sequential
modeling, we provide the layers in order. In the first layer, we want 64 convolutions
with a filter size of 5 by 5 and a ReLu activation function. The input size would be
the same as the size of each image, 28 by 28, with 1 layer. The output of this layer

24 The basic unit of a digital image that can be displayed on a digital device or display.
25 Black and white images can be represented by a single layer, with values presenting the intensity
of the light.

19  Artificial Intelligence and Machine Learning

336

Fig. 19.8  A single convolutional filter convolving over an image

Fig. 19.9  A max pooling filter convolving over an image

will automatically be forwarded to the next layer. After the convolutional layer, we
utilize a pooling layer to reduce the dimensions of the features. We have one more
layer of convolutions with 64 filters of size 3 by 3, followed by a pooling layer of
size 2 by 2. These layers will extract features from the images. Now, we need to
flatten the multidimensional output to one dimension using the “flatten()” function
and send it to two fully connected layers for final classification. The final layer
needs to have 10 neurons, equal to the number of classes.

H. Moradi

337

model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(64,(5,5), activation ='relu',

input_shape=(28,28,1)),

tf.keras.layers.MaxPooling2D(2,2),

tf.keras.layers.Conv2D(64, (3, 3),

activation='relu'),

tf.keras.layers.MaxPooling2D(2, 2),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation=tf.nn.relu),

tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])

To compile the model we just defined, we need to specify the optimizer algo-
rithm, loss function,26 and accuracy metric. Then, we can get the model summary
for parameters and layers and start the training.

model.compile(optimizer = 'Adam',

loss = 'sparse_categorical_crossentropy',

metrics=['accuracy'])

model.summary()

model.fit(training_images, training_labels, epochs=5)

With the trained model, now we can predict the test set and evaluate the accuracy
of the model.

model.evaluate(test_images, test_labels)

3.4 � NN for NLP

NLP is a branch of ML that allows computers to process and understand text data.
This includes, but is not limited to, sentiment analysis, question answering, text
summarization, and machine translation. In recent years, DL has revolutionized
NLP by developing language models capable of understanding context, trained on
millions of documents. In this section, as an introduction to NLP, we will develop a
model for sentiment analysis, predicting the positivity and negativity of a text writ-
ten by a user as a review.

Like many other NLP tasks, the first step is data cleaning and selecting a method
for sentence representation. Data cleaning (depending on the task) refers to remov-
ing punctuation, extra spaces, HTML tags in the text, emojis, hyperlinks, and stop
words. There are quite a few approaches to representing the sentences. One of the

26 The use of sparse categorial cross-entropy loss would eliminate the need to provide the one hot
encoded version of class labels.

19  Artificial Intelligence and Machine Learning

338

old methods is a one-hot representation, with one column per word in the dataset. If
a word appeared in the sentence, its corresponding column would have a value of 1
and otherwise be zero. While this helps to capture sentiments and represent words
in a sentence, the words’ order and appearance together will be removed, resulting
in information being lost. Using bi-gram and tri-gram can help capture words that
appear together and in sequential order. However, this method also suffers from not
utilizing the context in which the words have appeared.

For better representations, instead of a sparse matrix with columns representing
the words, using an n-dimensional vector to represent each word is a better approach.
This n-dimensional representation should encode the word meaning, referred to as
embedding. With this approach, we can replace words with embeddings and repre-
sent sentences with word-length sequences. There are many pre-trained embed-
dings27 to utilize. However, embeddings can be directly learned from a dataset
as well.

The dataset we will use here has words pre-converted to unique integer values for
simplicity. Integer representations are not recommended as they are randomly cho-
sen. Using an embedding layer in TensorFlow, we can learn the best representation
from the dataset for the integer representation provided here.

First, we load the dataset from TensorFlow. “Num_words” limits the TensorFlow
to represent the top 10,000 words based on the frequency of their repetition, consid-
ering others as unknown (oov_char).28 “Maxlen” instructs the library to truncate any
sentence longer than 512 to the same size. Shorter sentences will be padded by zero,
making all the representations the same length.

import tensorflow as tf

(x_train, y_train), (x_test, y_test) =

tf.keras.datasets.imdb.load_data(num_words=10000)

x_train =

tf.keras.preprocessing.sequence.pad_sequences(x_train,

maxlen=512)

x_test =

tf.keras.preprocessing.sequence.pad_sequences(x_test,

maxlen=512)

Now we need to define our network. The “input” variable is a placeholder repre-
sentative of the sentence that will be passed to the model. The first layer would be
the Embedding layer. TensorFlow has recently added this capability, where the
model can learn the best representation of the words based on the input dataset. This
helps to use representations that accurately encode the word’s meaning instead of a
randomly generated integer by the data loader. The first value (10000) provided to

27 Glove and word2vec are two of the statically generated word embeddings.
28 This helps to remove the words that have a very low frequency of repetition.

H. Moradi

339

the embedding layer will represent the expected number of vocabulary words, and
the second is the number of output dimensions for representing each word.

inputs = tf.keras.Input(shape=(None,), dtype="int32")

x = tf.keras.layers.Embedding(10000, 100)(inputs)

We need NN models capable of understanding the sequential nature of words in
a language. Although using fully connected layers may be possible, they could not
understand the context in which the words appeared accurately. Using recurrent
NNs (RNNs), not only are the neurons in each layer connected to the next layer, but
there is also a hidden state connecting the neurons within the same layer. These con-
nections are usually unidirectional.29 But the unidirectional connections can utilize
the context information of the previous words for representation. Here, we use a
bidirectional implementation of the RNN called Long Short-Term Memory (LSTM)
networks to address this limitation. The bidirectional implementation helps infor-
mation flow from the beginning to the end of a sentence and in reverse, while the
LSTM model helps better understand long sequences of words. Finally, the last
layer has a neuron as a final classifier, predicting the sentiment for this binary clas-
sification task.

x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64,

return_sequences=True))(x)

x =

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))(x)

outputs = tf.keras.layers.Dense(1,

activation="sigmoid")(x)

The final step would be setting the input and output of the model, followed by
compilation and evaluating the model’s performance.

model.compile("adam", "binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=64, epochs=3) # ,

validation_data=(x_test, y_test)

model.evaluate(x_test, y_test)

29 From the first neural to the last, or from the beginning of the sentence to the end of the sentence.

19  Artificial Intelligence and Machine Learning

340

4 � Recent Advancements

While here, we provided a couple of source codes and discussed the implementation
details. Examples are countless. Applications of ML and DL are not limited to
regression and classification tasks or sentiment analysis. In computer vision, with
the help of DL, machines can find an object of interest within an image (object
detection) and provide an accurate bounding box for it (object localization). They
are helping automate the disease diagnosis processes and assisting doctors by pro-
posing areas that might need more attention. Using image segmentation techniques
in computer vision, we can provide an exact area where an abnormality is observed
with pixel-level accuracy (object segmentation). Studies now focus on utilizing DL
to increase the quality of MRI and X-ray images. In NLP, we used the patients’
historical notes in EHR to provide clinicians with a summary or even propose a
discharge summary. They are helping to improve clinical documentation and saving
clinicians’ time.

5 � Models’ Interpretability

A black-box ML model usually focuses on predicting outcomes, but little insight is
available beyond the predictions. However, recent years have witnessed numerous
advances in producing robust and interpretable insights from complex machine-
learning models. Some of the examples are the Grad-CAM [18, 19], LIME [20, 21],
and SHAP [22, 23] libraries utilized in many applications. The most popular library,
SHapley Additive exPlanation (SHAP), is based on the game theoretic approach,
which has gained a lot of attention in many domains. SHAP provides insightful
interpretations of a complex ML model with high accuracy and robustness, close to
human interpretations. The generated SHAP values for input features of an ML
model can be used to assess the effect of the inputs on the final model’s prediction.
There are abundant examples of applications in many domains, including tabular
data modeling, text classification, question answering, image processing, and
genomics.

6 � Further Practice

	 1.	 What is the cost function?
	 2.	 Why do we need to split the data into train and test datasets?
	 3.	 Why do we need to standardize the input data?
	 4.	 What are the metrics to evaluate the accuracy of the linear regression model?
	 5.	 What are the differences between Lasso and Ridge linear regressions?
	 6.	 Why do we need to tune the hyperparameters on a validation set?

H. Moradi

341

	 7.	 Which terms are different in the L1 and L2 losses?
	 8.	 What are binary, multiclass, and multilabel classifications?
	 9.	 What are RF and GBDT models, and how do they differ from Decision Trees?
	10.	 What are the differences between K-means and OPTICS clustering algorithms?
	11.	 What should be the input and output sizes of a NN for a given predictive task?
	12.	 How the model generalization can be improved in fully connected NNs?
	13.	 What should be the order of dimensions as input for image processing in TF?
	14.	 Why do we need to use a pooling layer in CNN?
	15.	 What are pre-trained embeddings, and how they can be utilized for an NLP task?

Answer Keys
	 1.	 A function that determines how well an ML model is performing
	 2.	 Because the model will be evaluated on the same data it has seen during train-

ing. As a result, an evaluation would not be representative of real-world perfor-
mance with unseen data.

	 3.	 To have the same scale for all the data. Many ML algorithms are sensitive to the
data scale and may find unrealized coefficients.

	 4.	 Mean squared error, mean absolute error, and R-squared.
	 5.	 Lasso cost function will result in some coefficient closer to zero and act as a

feature selector, while Ridge will result in a coefficient more uniform and works
better with multicollinearity.

	 6.	 Before applying models to the actual test dataset and evaluating the perfor-
mance, hyperparameters should be tuned on an unseen part of the dataset. But
this could not be the test set. This is why the training dataset is usually utilized
to drive another subset of data to test the model with different hyperparameters
to find the best, called the validation set.

	 7.	 L1 loss uses the sum of the absolute value of the weight for penalization, while
L2 loss uses the sum of squared weights.

	 8.	 Binary classification refers to a task that can be seen as a binary outcome posi-
tive and negative. Multiclass classification has multiple outcomes in which only
one can be true for each instance, while in multilabel classification multiple
class labels can be assigned to a single instance.

	 9.	 RF uses an ensemble of Decision Trees (DT) using a bagging method by data
resampling and combines the result using a voting method. GBDT uses sample
weighting or output of previous models to build the next level of predictors,
improving modeling accuracy interactively.

	10.	 K-means used a method of distance to find K closes neighbor and uses voting
for the final decision, while OPTICS uses density as a measure of clustering
using minimum points in a neighborhood in a core distance.

	11.	 Input should be equal to the number of features, size of an image, or length of
a sentence based on a task. While output size is equal to the number of classes
to predict.

	12.	 Using the dropout layer model generalization can be improved.
	13.	 First is the number of samples, then the size of each sample, and the last dimen-

sion represents the number of color channels.

19  Artificial Intelligence and Machine Learning

342

	14.	 The pooling layer reduces the dimensionality of feature, reducing the required
computations

	15.	 Pre-trained embeddings provide the representation for each word with meaning
encoded in it. Each word should be replaced by a corresponding embedding
representation before being forwarded to the model.

References

1.	https://www.python.org/
2.	https://scikit-learn.org/stable/
3.	https://scikit-learn.org/stable/datasets/toy_dataset.html.org
4.	https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html.org
5.	https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.

html.org
6.	h t tps : / / sc ik i t - learn .org /s table /modules /genera ted/sk learn .model_se lec t ion .

RandomizedSearchCV.html.org
7.	http://hyperopt.github.io/hyperopt/
8.	https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html.org
9.	https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.

html.org
10.	https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoosting

Classifier.html.org
11.	https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.org
12.	https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html.org
13.	https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.org
14.	https://keras.io/getting_started/faq/
15.	https://www.tensorflow.org/
16.	Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-

scale machine learning. In: 12th USENIX symposium on operating systems design and imple-
mentation (OSDI 16). 2016. p. 265–83. Available from: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf

17.	https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy
18.	Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual

explanations from deep networks via gradient-based localization. Int J Comput Vis.
2020;128(2):336–59.

19.	http://gradcam.cloudcv.org/
20.	https://homes.cs.washington.edu/~marcotcr/blog/lime/
21.	Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any

classifier. arXiv; 2016. Available from: http://arxiv.org/abs/1602.04938
22.	https://shap.readthedocs.io/en/latest/index.html
23.	Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I,

Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in
neural information processing systems. Curran Associates, Inc.; 2017.

H. Moradi

https://www.python.org/
https://scikit-learn.org/stable/
http://hyperopt.github.io/hyperopt/
https://keras.io/getting_started/faq/
https://www.tensorflow.org/
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy
http://gradcam.cloudcv.org/
https://homes.cs.washington.edu/~marcotcr/blog/lime/
http://arxiv.org/abs/1602.04938
https://shap.readthedocs.io/en/latest/index.html

	Chapter 19: Artificial Intelligence and Machine Learning
	1 Introduction
	2 Machine Learning
	2.1 Regression
	2.2 Classification
	2.3 Clustering

	3 Neural Networks and Deep Learning
	3.1 NN for Regression
	3.2 NN for Classification
	3.3 NN for Computer Vision
	3.4 NN for NLP

	4 Recent Advancements
	5 Models’ Interpretability
	6 Further Practice
	References

