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1  Introduction

AI has gained immense popularity and showcased its power across various domains 
and societies. Its successful applications have revolutionized industries, transformed 
the way we live, and enabled groundbreaking advancements (Marr 2019). Within 
the realm of healthcare, AI finds utility in early disease detection, crafting personal-
ized treatment regimens, and facilitating drug discovery (Johnson et al. 2021). In the 
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financial sector, AI algorithms are instrumental for tasks such as fraud detection, 
risk evaluation, and algorithmic trading (Nuti et al. 2011). In the domain of trans-
portation, AI fuels the capabilities of autonomous vehicles, optimizes traffic man-
agement systems, and enhances predictive maintenance (Iyer 2021). AI has also 
made significant contributions to entertainment, with recommendation systems, vir-
tual assistants, and immersive experiences (Ali et al. 2022). Moreover, AI has also 
made an impact in addressing societal challenges. For example, AI-based platforms 
facilitate personalized learning experiences and intelligent tutoring (Chaipidech 
et  al. 2022). In agriculture, AI facilitates precision farming, monitors crop 
health (Sun et al. 2020), and optimizes crop yields (Sharma et al. 2022). Additionally, 
AI algorithms are deployed in the realm of cybersecurity to swiftly identify and 
mitigate real-time threats (Ali et al. 2022). Besides, maybe the most popular appli-
cation, ChatGPT (Biswas 2023), is based on the progress of AI in natural language 
processing, machine translation, and speech recognition, improving communication 
and accessibility (Hirschberg and Manning 2015). AI has transformed our daily 
lives through virtual assistants like ChatGPT, Siri and Alexa, smart home automa-
tion systems, and personalized digital experiences. It has made significant strides in 
computer vision, enabling facial recognition, object detection, and augmented real-
ity applications. The popularity and power of AI are reflected in its integration into 
our everyday devices and services.

AI is considered powerful and highly desired in climate and environment sci-
ence. Climate and environmental research generate vast amounts of complex data 
from various sources such as satellite imagery, weather stations, and sensor net-
works (Sun et al. 2019). AI techniques, such as machine learning (ML) and deep 
learning, excel at processing and analyzing large datasets, identifying patterns, and 
extracting valuable insights (Janiesch et al. 2021). AI can help researchers uncover 
hidden relationships and correlations, enabling a deeper understanding of climate 
dynamics, ecosystem behavior, and environmental impacts. Another major reason is 
that AI algorithms can be trained on historical climate and environmental data to 
develop sophisticated models for predicting future scenarios (Sun et al. 2022, 2023). 
These models can simulate climate change impacts, forecast extreme weather 
events, predict species distribution shifts, and assess the effectiveness of mitigation 
strategies. AI-based prediction models provide decision-makers with valuable 
information to plan and implement adaptive measures to minimize risks and protect 
vulnerable ecosystems (Barzegar et  al. 2018). Also, AI algorithms can optimize 
resource allocation and management in climate and environmental domains. They 
can assist in designing efficient energy systems, optimizing water resource alloca-
tion  (Sun and Scanlon 2019), and managing waste and pollution. AI techniques 
enable real-time monitoring, data-driven decision-making, and automated control 
systems, leading to more sustainable and environmentally friendly practices 
(Cunningham 2021). AI-powered image and pattern recognition can aid in biodiver-
sity conservation efforts. Meanwhile, AI can analyze images from remote sensing 
devices, cameras, or drones to identify and monitor endangered species, detect ille-
gal logging or poaching activities, and assess the health of ecosystems (Dauvergne 
2020). This helps researchers and conservationists make informed decisions and 
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implement targeted conservation strategies. AI can handle complex tasks with speed 
and efficiency, allowing for scalable and automated processes. They can process 
large datasets and perform repetitive tasks more quickly than human experts, saving 
time and resources. Besides, AI also can facilitate real-time monitoring and decision- 
making, facilitating rapid response to climate events and environmental emergen-
cies (Chowdhury et al. 2012).

One recent successful example is the use of AI in deforestation monitoring 
(Shivaprakash et al. 2022). Deforestation is a major environmental issue that con-
tributes to climate change, loss of biodiversity, and other ecological imbalances. AI 
can detect deforestation by analyzing satellite imagery and other data sources to 
identify areas at risk and monitor changes in forest cover. Global Forest Watch, a 
partnership led by the World Resources Institute, utilizes AI algorithms to analyze 
satellite data and identify forest cover changes in near real-time (Perbet et al. 2019). 
This information helps governments, organizations, and local communities to take 
proactive measures to prevent further deforestation by sending enforcement teams 
to the identified locations, imposing penalties on illegal activities, and engaging 
local communities in sustainable land management practices. By harnessing the 
power of AI and ML, we can improve the efficiency and effectiveness of deforesta-
tion monitoring and prevention efforts, leading to better conservation outcomes and 
the preservation of valuable ecosystems.

While AI research has made significant advancements in various fields, there are 
several reasons why many AI research outputs are not always practical or actionable 
in real-world decision-making due to a number of restrictions and bottlenecks. First, 
AI researchers usually lack deep understanding and expertise in specific domains 
like climate and environment science. This can lead to a disconnect between the AI 
models developed and the practical needs of decision-makers. For example, an AI 
model trained to predict climate patterns may produce accurate results, but if it fails 
to consider the specific needs and constraints of stakeholders, it may not provide 
actionable insights. In addition, the current AI models heavily rely on data for train-
ing and inference. In the context of climate and environment, data may be limited, 
incomplete, or biased, leading to inaccurate or unreliable predictions. If an AI model 
is trained on historical climate data that does not reflect recent changes or emerging 
patterns, its predictions may not be applicable to the current climate scenario. Also, 
ethical and societal aspects must be comprehensively considered and dealt with 
before using AI to make any decisions. In climate and environment, decisions often 
involve trade-offs and value judgments. For instance, an AI model that recommends 
land-use changes for carbon sequestration may not account for the socioeconomic 
impacts on local communities or indigenous rights. This lack of ethical consider-
ations can hinder the practicality and acceptability of AI research outputs. Another 
major challenge is that many AI models, such as deep neural networks, are often 
considered black boxes, making it challenging to understand and interpret their 
decision-making processes. This lack of interpretability raises concerns about 
accountability and trust. Decision-makers may be reluctant to adopt AI solutions if 
they cannot understand how the models arrive at their recommendations. Addressing 
these challenges requires close collaboration between AI researchers and domain 
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experts in climate and environment science, policy, and decision-making. By incor-
porating domain-specific knowledge, ensuring diverse and representative datasets, 
addressing ethical considerations, and developing interpretable AI models, research-
ers can bridge the gap between AI research and practical decision-making in climate 
and environment.

This section basically sets the stage and we will start to explore the role of AI in 
climate and environmental applications. It highlights the increasing popularity and 
power of AI technologies in various sectors of society, including climate and envi-
ronment. It acknowledges the successful applications of AI in areas such as weather 
forecasting, renewable energy optimization, and biodiversity conservation. 
However, it also acknowledges that many AI research outputs in this field are not 
always practical or actionable in real-world decision-making. In the following sec-
tions, we will delve into the reasons behind the gap between AI research and practi-
cal decision-making in climate and environment. It will discuss the challenges 
posed by the lack of domain-specific knowledge, data limitations and biases, ethical 
considerations, and interpretability of AI models. The focus will be on providing 
insights and strategies to make AI research more actionable and applicable in real- 
world climate and environmental decision-making. The cutting-edge AI technolo-
gies will be introduced, showcasing their potential in addressing climate and 
environmental challenges. Use cases will be discussed, illustrating how AI has been 
utilized in areas such as climate modeling, natural disaster prediction and manage-
ment, environmental monitoring, and sustainable resource management. The chap-
ter will emphasize the need for actionable AI strategies that incorporate domain 
expertise, ethical considerations, interpretable models, and stakeholder engage-
ment. We will also provide detailed analyses, case studies, and practical recommen-
dations to bridge the gap between AI research and real-world decision-making. It 
aims to guide researchers, practitioners, and policymakers in harnessing the power 
of AI to tackle climate and environmental issues effectively and implement action-
able solutions.

2  Latest AI Technologies in Daily Practice

2.1  Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are a class of deep learning models com-
monly used for computer vision tasks such as image classification, object detection, 
and image segmentation (O’Shea et al. 2015). They consist of multiple layers of 
interconnected neurons that perform convolution and pooling operations to extract 
relevant features from images. Specifically, a typical CNN usually consists of input 
layers, hidden convolutional layers, activation and pooling layers, fully connected 
layers, and a dense layer as output (Fig. 12.1). The input to a CNN is usually an 
image represented as a grid of pixels with red, green, and blue (RGB) color chan-
nels (or more channels if the image is hyperspectral or multi-spectral). The middle 
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Fig. 12.1 An example CNN

layers of a CNN are convolutional layers that apply a set of filters to the input image. 
Each filter performs a convolution operation by sliding across the image, extracting 
local features by computing dot products between the filter weights and the pixel 
values in the receptive field. The output of this layer is a set of feature maps that 
capture different aspects of the input image. After each convolutional layer, a non- 
linear activation function, typically ReLU (Rectified Linear Unit) (Agarap 2018), is 
applied element-wise to introduce non-linearity and enhance the model’s represen-
tational power. Pooling layers are then used to downsample the feature maps, reduc-
ing their spatial dimensions while retaining important information (Gholamalinezhad 
et al. 2020). Max pooling is a common pooling operation that selects the maximum 
value within a pooling window and discards the rest. Once the image features are 
extracted through convolutional and pooling layers, they are flattened into a 
1-dimensional vector. The flattened vector is then connected to one or more fully 
connected layers, which are traditional artificial neural network layers where each 
neuron is connected to every neuron in the previous layer. The fully connected lay-
ers learn to combine the extracted features to make predictions on the input image, 
such as classifying it into specific categories. The final layer of the CNN is the 
output layer, which typically uses a softmax activation function for multi-class clas-
sification to produce class probabilities.

During training, the network learns the optimal weights for the filters and fully 
connected layers by minimizing a loss function, such as categorical cross-entropy, 
using gradient descent optimization algorithms like backpropagation. Once trained, 
the CNN can make predictions on new unseen images by forwarding them through 
the network, and the output with the highest probability corresponds to the pre-
dicted class.

CNNs have been successfully used in applications such as image classification, 
object detection, facial recognition, and medical image analysis. One of the most 
famous CNN architectures is the VGGNet (Wang et  al. 2015), which achieved 
breakthrough performance in the ImageNet Large-Scale Visual Recognition 
Challenge (Russakovsky et  al. 2015). The VGGNet consists of 16 convolutional 
layers, 5 max pooling layers, and 3 fully connected layers, with a total of 138 mil-
lion parameters. It demonstrated the power of CNNs in image classification tasks by 
achieving state-of-the-art accuracy rates.
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2.2  RNN

Recurrent neural networks (RNNs) are a class of neural networks commonly used 
for sequential data processing tasks (Sun et al. 2019). They have a unique ability to 
capture dependencies and patterns over time by using recurrent connections within 
the network. RNNs are particularly effective in tasks involving natural language 
processing and time series analysis.

Typical RNN include the following components. The input to an RNN is a 
sequence of data, such as a sentence or a time series. At each time step t, the RNN 
receives an input x(t) and a hidden state h(t-1) from the previous time step, which 
captures information from previous steps. At the initial step, h(0) is usually set to 
zero or initialized randomly. The hidden state h(t-1) is combined with the input x(t) 
and passed through a non-linear activation function, such as the hyperbolic tangent 
or the rectified linear unit (ReLU). The output of this activation function becomes 
the hidden state h(t) at the current time step. It represents a summary of the input 
sequence up to that point. The hidden state h(t) is then used as the input for the next 
time step, creating a recurrent connection that allows the RNN to process the 
sequence iteratively. At each time step, the RNN can produce an output based on the 
hidden state h(t). For example, in a language model, the output could be a probabil-
ity distribution over the next word in the sequence. In sequence-to-sequence tasks, 
such as machine translation, the RNN can produce an output sequence by feeding 
the output at each time step as the input for the next step. While training, the RNN 
learns the optimal weights that maximize its predictive performance. This is done 
by comparing the predicted output with the ground truth labels and adjusting the 
weights using gradient descent optimization. Backpropagation through time (BPTT) 
is normally used to calculate the gradients of the loss function with respect to the 
weights over multiple time steps. It extends the standard backpropagation algorithm 
to account for the recurrence in the network. The gradients are then used to update 
the weights using an optimization algorithm such as stochastic gradient 
descent (SGD).

RNNs have been very successfully used in many applications, including lan-
guage modeling, sentiment analysis, speech recognition, and machine translation. 
One popular variant of RNNs is the long short-term memory (LSTM) network 
(Hochreiter et al. 1997), which addresses the issue of vanishing gradients and allows 
the network to capture long-term dependencies. LSTM has achieved impressive 
results in various tasks, such as language translation and speech recognition, and is 
one of the industry-proven techniques. LSTM networks have been successfully 
used for language modeling tasks, where the goal is to predict the next word in a 
sequence of words. A prominent example is Google’s Smart Reply feature, which 
suggests short responses to incoming emails. LSTM models are employed to under-
stand the context and generate relevant replies. LSTM-based language models have 
also been applied in machine translation systems, improving the accuracy and flu-
ency of generated translations. An example is the listen, attend, and spell (LAS) 
model (Chan et al. 2016), which uses LSTMs to convert acoustic features of speech 
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into text. LAS has shown remarkable results in automatic speech recognition sys-
tems, enhancing transcription accuracy. Also in finance, LSTM models have been 
used for stock price prediction, enabling traders to make informed decisions. As for 
art and music, LSTM networks have been used to generate music sequences and 
compose new melodies. By training on large music datasets, LSTM models can 
learn musical patterns and create original compositions in various genres. This has 
led to the development of AI-generated music platforms and tools, such as Jukedeck 
and Amper Music.

2.3  Transformers

Transformers are a type of neural network architecture that has revolutionized natu-
ral language processing tasks (Tunstall et al. 2022). They use attention mechanisms 
to process sequences of data, such as sentences or paragraphs, by attending to dif-
ferent parts of the input. The self-attention mechanism captures dependencies 
between different words in a sentence or sequence. Each word in the input sequence 
is represented as a vector, and attention weights are calculated between all pairs of 
words. These attention weights determine the importance of each word in relation 
to the others, allowing the model to focus on relevant information. Transformers 
also consist of an encoder and a decoder. The encoder processes the input sequence, 
while the decoder generates the output sequence. The encoder’s self-attention 
mechanism captures contextual information from the input sequence, creating rich 
representations for each word. The decoder’s self-attention mechanism helps it 
attend to previously generated words, ensuring coherence in the generated output. 
Transformers incorporate positional encoding to account for the sequential order of 
words in the input sequence. Positional encodings are added to the word embed-
dings, providing the model with information about the relative positions of words. 
Transformers employ multi-head attention, where multiple attention heads are used 
to capture different aspects of the input sequence. Each attention head attends to 
different parts of the input sequence, allowing the model to capture diverse relation-
ships. Transformers include feed-forward networks to transform the representations 
obtained from the self-attention mechanism. These networks consist of multiple 
layers of fully connected neural networks, introducing non-linearity and enabling 
complex transformations.

 ChatGPT is probably the most well-known product of Transformers. It has been 
trained on a large corpus of text data and can generate coherent and contextually 
relevant responses in conversational settings. ChatGPT has been used in chatbots, 
virtual assistants, and other applications that require generating human-like text 
responses. Transformers also have significantly improved machine translation per-
formance, surpassing traditional approaches. Google’s Neural Machine Translation 
(GNMT) system (Wu et al. 2016) utilizes the Transformer model for high-quality 
translation between different languages. Transformers have shown effectiveness in 
capturing long-range dependencies and context, leading to more accurate 
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translations. Other applications include extractive and abstractive text summariza-
tion tasks which means selecting important sentences from a document, while 
abstractive summarization generates concise and coherent summaries. Transformers 
have shown improvements in generating informative and coherent summaries by 
leveraging the attention mechanism. Sentiment analysis tasks are another type of 
work that Transformers can fulfill. They can capture contextual information and 
dependencies between words, improving sentiment analysis accuracy. Promising 
results for social media analysis, customer reviews, and other text classification 
tasks have been successfully obtained via transformers.

2.4  Reinforcement Learning

Reinforcement learning (RL) is a branch of AI that focuses on an agent learning to 
make decisions in an environment to maximize a reward signal (Arulkumaran et al. 
2017). It uses trial and error learning through interactions with the environment. 
The RL process starts with defining an environment that the agent interacts with. 
The environment can be a simulated environment, a physical system, or a game. It 
provides feedback to the agent in the form of states, actions, and rewards. The agent 
is the learner or decision-maker that interacts with the environment. The environ-
ment presents the agent with a state, which represents the current situation or obser-
vation. The state can be a raw sensory input, a numerical representation, or a 
combination of various features. Based on the current state, the agent selects an 
action from a set of available actions. The action determines the agent’s behavior or 
response to the environment. The agent follows a policy, which is a strategy that 
maps states to actions. After taking an action, the agent receives feedback from the 
environment in the form of a reward. The reward indicates the desirability or quality 
of the agent’s action. The agent’s objective is to learn a policy that maximizes the 
cumulative reward over time. The agent learns from experience by iteratively inter-
acting with the environment. It updates its policy based on the received rewards to 
improve its decision-making. The RL algorithms, such as Q-learning and Deep 
Q-Networks (DQN) (Hester et  al. 2018), use different approaches to update the 
policy and estimate the value of actions.

Reinforcement learning has found success in various applications, including 
game playing (e.g., AlphaGo), robotics, autonomous vehicles, and recommendation 
systems. ChatGPT actually used RL in its training extensively. AlphaGo, developed 
by DeepMind, demonstrated the power of RL in the game of Go (Silver et al. 2016). 
It defeated the world champion Go player, Lee Sedol, in a five-game match in 2016. 
AlphaGo used RL techniques, including Monte Carlo Tree Search and deep neural 
networks, to learn from self-play and make strategic decisions in the game. Another 
big application field of RL is robotics and RL has been employed to train robots for 
complex tasks, such as grasping objects and locomotion. For example, OpenAI’s 
robot hand, Dactyl (Akkaya et al. 2019), learned to manipulate objects using RL 
algorithms. By interacting with the environment and receiving rewards or penalties 
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based on task completion, the robot learned to perform dexterous manipulation 
tasks. Autonomous vehicles are another major user of RL and it helped the vehicle 
computers to make decisions in complex driving scenarios. Researchers have 
applied RL algorithms to optimize driving policies, including lane keeping, 
decision- making at intersections, and adaptive cruise control. The RL agents learn 
from simulated or real-world driving experiences and improve their driving perfor-
mance over time. Another typical use case is training an agent to play the game of 
Atari Breakout. The agent observes the game screen as the state, selects actions 
(move paddle left or right), and receives rewards based on its performance (e.g., 
points for breaking bricks). By interacting with the game environment and receiving 
rewards, the agent learns to improve its policy and eventually becomes skilled at 
playing the game.

2.5  Generative Adversarial Networks (GANs)

The idea of GANs is highly ingenious (Goodfellow et al. 2020). It consists of two 
neural networks, a generator and a discriminator, that compete against each other. 
The generator aims to create realistic data samples, while the discriminator tries to 
distinguish between real and generated data. The generator takes random noise as 
input and generates synthetic data samples. The discriminator takes either real or 
generated data samples as input and predicts their authenticity. The generator gener-
ates a batch of synthetic samples by passing random noise through its network. The 
discriminator is trained on both real and generated samples, learning to classify 
them correctly. The generator aims to generate samples that are classified as real by 
the discriminator, fooling it. The discriminator aims to correctly classify real sam-
ples as real and generated samples as fake. The training process involves updating 
the weights of the generator and discriminator using gradient descent. The generator 
and discriminator are trained iteratively, with the generator trying to improve its 
generated samples based on the feedback from the discriminator. The goal is to 
reach a point where the generator can generate highly realistic samples that can fool 
the discriminator. Deep convolutional GANs (DCGANs) (Radford et al. 2015) are 
a popular variant of GANs used for image generation. The generator network con-
sists of transposed convolutions that upsample the noise into a realistic image. The 
discriminator network is a convolutional neural network that classifies between real 
and generated images. The GAN is trained on a dataset of real images, and the gen-
erator learns to generate images that resemble the real ones. Table 12.1 shows the 
code of a simple version of GAN. If you continue to increase the layer numbers of 
hidden layers, it will eventually turn into a new DCGAN.

GANs have been successfully used in generating realistic images, synthesizing 
voice and music, creating deepfakes, and data augmentation for training other mod-
els. GANs have been used to generate realistic images that resemble real-world 
examples. Examples include generating high-resolution images from low- resolution 
inputs (e.g., super-resolution GANs) and generating new images based on existing 
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ones (e.g., Pix2Pix). GANs have been employed for style transfer, allowing users to 
apply the style of one image to another, for example, CycleGAN (Chu et al. 2017) 
can transfer the style of one domain (e.g., horses) to another (e.g., zebras), and 
DeepArt enables users to apply artistic styles to their images. GANs have been used 

# Import required libraries
import tensorflow as tf
from tensorflow.keras import layers

# Define the generator model
generator = tf.keras.Sequential([

layers.Dense(7*7*256, input_shape=(100,), use_bias=False),
layers.BatchNormalization(),
layers.LeakyReLU(),

layers.Reshape((7, 7, 256)),
layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False),
layers.BatchNormalization(),
layers.LeakyReLU(),

layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False),
layers.BatchNormalization(),
layers.LeakyReLU(),

layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, 
activation='tanh')
])

# Define the discriminator model
discriminator = tf.keras.Sequential([

layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]),
layers.LeakyReLU(),
layers.Dropout(0.3),

layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'),
layers.LeakyReLU(),
layers.Dropout(0.3),

layers.Flatten(),
layers.Dense(1)

])

# Compile the discriminator
discriminator.compile(optimizer='adam', 
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True))

# Compile the GAN
gan = tf.keras.Sequential([generator, discriminator])
gan.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True))

Table 12.1 A simple example of GAN
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to generate images from textual descriptions. GANs is also being experimented to 
generate synthetic medical images, aiding in data augmentation and addressing pri-
vacy concerns, such as generating realistic brain MRI scans, retinal images, and 
skin lesion images, etc., for image enhancement.

3  AI Research in Climate and Environmental Sciences

3.1  AI for Climate Modeling and Prediction 
and Impact Assessment

This section overviewed some latest research about using AI in climate modeling 
and prediction, as well as the climate impact assessment. For example, Kaack et al. 
(2022) provide a comprehensive framework for understanding the impacts of ML 
on greenhouse gas (GHG) emissions in the context of climate change mitigation. It 
emphasizes the need for further research, policy interventions, and organizational 
actions to ensure that ML is aligned with climate strategies and contributes posi-
tively to addressing climate challenges. They introduce a systematic framework for 
understanding the effects of ML on GHG emissions in the context of climate change 
mitigation. The framework encompasses three categories: computing-related 
impacts, immediate impacts of ML applications, and system-level impacts. It 
addresses the need to holistically account for ML in long-term climate projections 
and policy design. The article highlights that measuring macro-scale effects of ML 
is challenging and emphasizes the importance of estimating impacts, understanding 
dynamics, and prioritizing actions to align ML with climate strategies. The frame-
work provides a comprehensive overview of the different mechanisms through 
which ML may impact emissions, offering a starting point for research, policy- 
making, and organizational action. Allawi et al. (2018) explained the importance of 
accurate simulation models for the effective operation of dam and reservoir systems 
in water resource management. It emphasizes the role of AI techniques in develop-
ing robust models to handle the stochastic nature of hydrological parameters and 
optimize reservoir operations. The review explores the application of AI in reservoir 
inflow forecasting, evaporation prediction, and the integration of AI with optimiza-
tion methods. It also discusses future research directions and proposes a new math-
ematical procedure for evaluating the performance of optimization models in terms 
of reliability, resilience, and vulnerability indices. Haupt et al. (2021) discussed the 
application of artificial intelligence (AI) in post-processing weather and climate 
model output. It provides a historical overview and highlights the potential of AI in 
improving numerical weather prediction (NWP) forecasts and climate projections. 
The article emphasizes the need for trustworthy and interpretable algorithms, adher-
ence to FAIR data practices, and the development of techniques that leverage our 
physical knowledge of the atmosphere. It also proposes the creation of a repository 
for datasets and methods to facilitate testing and intercomparison of AI approaches. 
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Huntingford et al. (2019) discuss the challenges in climate modeling, including the 
discrepancies between ESMs and the parameterization of sub-grid processes. ML 
and AI methods are proposed as potential solutions to reduce inter-ESM uncertainty 
and improve climate projections. The authors also highlight the importance of 
advanced algorithms in analyzing the increasing amount of climate-related data col-
lected through satellite monitoring. They emphasized the untapped potential of ML 
and AI in addressing climate change challenges, advocating for their integration 
into climate research and adaptation planning processes. Crane-Droesch (2018) 
presents a ML-based approach to modeling crop yields, specifically focusing on 
corn yield in the US Midwest. The approach combines a semiparametric variant of 
a deep neural network, which can capture complex nonlinear relationships, with 
known parametric structures and unobserved cross-sectional heterogeneity. The 
results demonstrate that this approach outperforms classical statistical methods and 
fully nonparametric neural networks in predicting yields of withheld years. The 
study also reveals that the projected impacts of climate change on corn yield are 
large but less severe than those projected using traditional statistical methods, with 
a more optimistic outlook for the warmest regions and scenarios. Schultz et  al. 
(2021) investigated the potential of deep learning (DL) methods in the field of mete-
orology, specifically for weather forecasting. While there is interest in applying DL 
techniques to improve weather prediction, the authors argue that fundamental 
breakthroughs are needed before completely replacing current numerical weather 
models. They highlight challenges such as the lack of explainability of deep neu-
ral networks and the need to incorporate physical constraints into DL approaches. 
Vo et al. (2023) developed a hybrid model, LSTM-CM, for drought prediction by 
combining long short-term memory (LSTM) and a climate model (CM). The per-
formance of LSTM-CM is compared to standalone LSTM and the climate predic-
tion model GloSea5 (GS5). LSTM-CM demonstrates improved drought predictions 
by combining the low bias of LSTM-SA and the physical process simulation ability 
of GS5, resulting in accurate detection of drought events with reduced uncertainty 
compared to LSTM-SA and GS5. Regarding the general use of AI in the more broad 
Earth science, Sun et al. (2022) provide an overview of the current status, technol-
ogy, use cases, challenges, and opportunities of artificial intelligence (AI) in Earth 
sciences. Led by NASA Earth Science Data Systems Working Groups and Earth 
science information partners (ESIP) ML cluster, the study aims to improve accu-
racy, enhance model intelligence, scale up operations, and reduce costs in various 
subdomains. The paper covers major spheres in the Earth system, investigates rep-
resentative AI research in each domain, and discusses the challenges and opportuni-
ties for Earth AI practitioners.

These AI studies demonstrate the increasing integration of ML and artificial 
intelligence techniques in various domains of climate and Earth sciences. These 
studies emphasize the potential benefits and challenges of applying AI in addressing 
climate change, improving weather forecasting, optimizing reservoir operations, 
enhancing drought prediction, and advancing crop yield modeling. The research 
highlights the need for further investigations, policy interventions, and organiza-
tional actions to ensure that AI is aligned with climate strategies and contributes 
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positively to tackling climate challenges. The studies also underline the importance 
of interpretability, data practices, physical knowledge integration, and the develop-
ment of reliable and scalable AI algorithms in Earth science applications.

3.2  AI for Environmental Monitoring and Conservation

Lamba et al. (2019) looked into the transformative impact of deep learning in the 
field of artificial intelligence and its potential applications in environmental conser-
vation. It highlights the ability of deep learning to automate the classification of 
visual, spatial, and acoustic information, thereby enabling large-scale and real-time 
environmental monitoring. The article also addresses the challenges of resource 
requirements and data annotation that can hinder the widespread adoption of deep 
learning in conservation programs. Yang et  al.  (2021) developed an autonomous 
indoor environment management approach for smart homes, aiming to ensure a 
healthy indoor environment with minimized energy costs. The approach formulates 
the problem as a Markov decision process and proposes a deep reinforcement learn-
ing control strategy to make adaptive control decisions based on current observa-
tions, without requiring forecast information. Comparative results demonstrate that 
the proposed approach achieves improved control performance, reducing average 
daily energy costs while maintaining optimal indoor air quality and temperature. 
Borowiec et al. (2022) synthesize 818 deep learning studies and highlight the wide-
spread adoption of deep learning in these disciplines since 2019. They discuss the 
applications, limitations, and future potential of deep learning in ecology and evolu-
tion, emphasizing its role in automated species identification, environmental moni-
toring, genetic analysis, and more. The review also suggests that deep learning will 
continue to be integrated into biodiversity monitoring, genetic inference, and train-
ing programs in the near future. Tuia et al.’s (2022) review work found that advance-
ments in sensor technologies are revolutionizing data acquisition in animal ecology, 
offering opportunities for large-scale ecological understanding. However, the cur-
rent processing approaches struggle to efficiently extract relevant information from 
the vast amount of data collected. Integrating ML with domain knowledge has the 
potential to enhance ecological models and create hybrid modeling tools, but inter-
disciplinary collaboration and training are essential for successful implementation 
in ecology and conservation research. These technological advancements in data 
collection can address the limitations of conventional methods, providing insights 
into wildlife diversity, population dynamics, and conservation needs at various spa-
tial and temporal scales.

Deep learning has the potential to revolutionize environmental conservation by 
automating the classification of visual, spatial, and acoustic data, enabling large- 
scale and real-time monitoring. However, challenges such as resource requirements 
and data annotation need to be addressed for widespread adoption in conservation 
programs. In the context of smart homes, a deep reinforcement learning approach 
has been proposed for autonomous indoor environment management, reducing 
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energy costs while maintaining optimal air quality and temperature. The adoption of 
deep learning in ecology and evolution has rapidly increased since 2019, with appli-
cations in species identification, environmental monitoring, genetic analysis, and 
more, and it is expected to continue integrating into biodiversity monitoring and 
genetic inference.

3.3  AI for Air Quality Prediction and Monitoring

It has been very popular in the past few years among scientists to use AI to monitor 
and predict air quality. Because of the lightweight and flexibility of AI models 
(compared to the heavy numerical models), and the availability of large long-time- 
series datasets, scientists are getting more used to utilizing ML algorithms to ana-
lyze various data sources and predict air quality levels in real-time. The training data 
is collected from air quality monitoring stations, satellite imagery, weather data, and 
additional environmental parameters and serves as input for training and validating 
AI models. For instance, the OpenAQ project (https://openaq.org/) collects global 
air quality data from various sources and makes it accessible for research and analy-
sis. The collected data is then processed and cleaned to remove outliers, fill in miss-
ing values, and standardize the format to ensure data consistency and quality for 
further analysis. Relevant features are extracted from the collected data to represent 
different aspects of air quality, such as pollutant concentrations, meteorological 
conditions, geographical factors, and temporal patterns, which will be used as inputs 
for the AI models. Common target features include particulate matter (PM) concen-
trations, temperature, wind speed, and humidity from air quality sensor data. The 
next step is to train AI models, such as regression models, decision trees, support 
vector machines, or deep learning models, using the preprocessed data. The models 
will learn the relationships between the input features and the corresponding air 
quality levels. The trained models are then evaluated using validation data to assess 
their performance in predicting air quality. Metrics like mean absolute error, root 
mean square error, or correlation coefficients are commonly used to measure pre-
diction accuracy. The collected data is usually split into training and validation sets, 
and evaluating the model’s performance on the validation set. Once the models are 
trained and validated, they can be deployed to make real-time air quality predictions 
based on the latest input data to enable continuous monitoring and timely alerts for 
potential air quality issues.

There are many recent air quality studies focusing on AI. For example, Alnuaim 
et al. (2023) have developed a website using AI technology to improve the real time 
CMAQ ozone products and provide the public with more accurate and reliable 
ozone forecasting (Fig. 12.2). Indoor air quality monitoring has gained attention due 
to the COVID-19 pandemic, as indoor spaces can trap pollutants and potentially 
contribute to virus transmission. Existing monitoring systems lack predictive capa-
bilities, prompting the development of an IoT-based solution that measures multiple 
pollutants and predicts air quality using ML algorithms. Mumtaz et  al. (2021) 
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Fig. 12.2 The Community Multiscale Air Quality modeling system (CMAQ) AI website deployed 
(Alnuaim et al. 2023)

developed a system which can achieve high accuracy in classifying air quality using 
a neural network model and accurately predicted pollutant concentrations and over-
all air quality using an LSTM model, offering advantages such as remote 
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monitoring, scalability, and real-time status updates. Kang et al. (2018) explored the 
use of big data analytics and ML techniques for air quality forecasting. Masih, 
A. (2019) did a similar study by using support vector regression (SVR) to forecast 
pollutant and particulate levels and to predict the air quality index (AQI). Vu 
et al. (2019) used random forest to assess the plan’s effectiveness by separating the 
impact of meteorology on air quality and their results showed that meteorological 
conditions played a significant role in year-to-year variations in air quality, but the 
action plan still led to substantial reductions in air pollutants, primarily from coal 
combustion. Ameer et  al. (2019) discussed the challenge of air pollution in city 
environments and the importance of real-time monitoring using IoT-based sensors. 
It compares four advanced regression techniques for predicting air quality and eval-
uates their performance based on Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), and processing time. Lee et al. (2020) present a ML approach for 
predicting PM2.5 concentration in Taiwan and utilized a large-scale database from 
the Environmental Protection Administration and Central Weather Bureau, incorpo-
rating data from 77 air monitoring stations and 580 weather stations. The method 
shows promising results for 24-hour  PM2.5 prediction at most air stations, and 
proved forecasting accuracy is improved by the method. Lim et  al. (2019) used 
mobile sampling with low-cost air quality sensors to develop land use regression 
(LUR) models for street- level PM2.5 concentration in Seoul, South Korea. The 
study collects 169 hours of data from a 3-week campaign using smartphone-based 
particle counters and incorporates geospatial data from OpenStreetMap. Three sta-
tistical approaches are compared, with the stacked ensemble model achieving the 
highest cross-validation R2 value of 0.80, indicating the potential of mobile sam-
pling and ML for characterizing urban street-level air quality with high spatial reso-
lution, particularly in areas with limited air quality data.

However, besides funding and opportunities, there are many other issues causing 
these studies to be not immediately actionable. Most of the studies focus on small- 
scale experiments or specific locations, which may not be easily scalable or repli-
cable in larger areas or diverse contexts. For example, the study by Mumtaz et al. 
develops an IoT-based system for air quality monitoring and prediction, but its 
applicability in different indoor environments or regions with varying pollutant 
sources and characteristics may be limited. They rely on historical data or data col-
lected during specific campaigns, which may not reflect real-time air quality condi-
tions or enable timely interventions. For instance, the research by Ameer et  al. 
(2019) compares regression techniques for air quality prediction but does not 
address the challenge of real-time monitoring and decision-making. While ML 
models show promise in predicting air quality, they often neglect external factors 
that influence pollution levels. For example, Vu et al. assess the effectiveness of an 
action plan using random forest, but the model’s reliance on meteorological condi-
tions alone may overlook other significant contributors to air pollution, such as 
industrial emissions or traffic patterns. Although some studies explore the effective-
ness of air quality improvement measures, the translation of findings into actionable 
policies or interventions is often overlooked. For instance, while Lee et al. present a 
ML approach for predicting PM2.5 concentrations, they do not provide concrete 
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recommendations for mitigating pollution or integrating the predictive models into 
air quality management strategies. Several studies rely on limited data sources or 
specific geographical locations, which may not represent the complexities and vari-
ations of air pollution in different regions or countries. For example, Lim et al.’s 
study on land use regression models for PM2.5 concentration focuses solely on 
Seoul, South Korea, making it challenging to generalize the findings to other urban 
areas with different characteristics and pollutant sources. To ensure the actionable 
nature of air quality research, it is important to acknowledge early and address these 
limitations and consider broader factors such as scalability, real-time data availabil-
ity, policy integration, and generalizability to diverse contexts. Additionally, col-
laboration between researchers, policymakers, and stakeholders is essential to 
translate research findings into effective strategies for mitigating air pollution.

3.4  AI for Oceanographic Research

AI has a wide range of applications in oceanography, enabling advancements in 
various areas such as marine ecosystem monitoring, climate modeling, underwater 
exploration, and ocean data analysis. AI-powered image recognition algorithms can 
automate the identification of marine species based on images or video footage. 
This helps in assessing biodiversity and tracking species distributions. For example, 
the Fish4Knowledge project (https://homepages.inf.ed.ac.uk/rbf/fish4knowledge/) 
developed AI algorithms for automated fish species recognition using underwater 
videos. AI can also predict ocean currents, sea surface temperature anomalies, and 
harmful algal blooms. For autonomous underwater vehicles (AUVs) and robotics, 
AI enables them to autonomously navigate, collect data, and perform tasks such as 
seafloor mapping, oceanographic surveys, and ecosystem monitoring. The REMUS 
SharkCam (Hawkes et  al. 2020), developed by Woods Hole Oceanographic 
Institution, utilizes AI to track and film sharks in their natural habitats. Ocean acous-
tic data analysis is another major area for AI to conduct marine mammal detection, 
underwater noise analysis, and mapping seafloor habitats. On large-scale climate 
modeling, AI-based models can enhance the accuracy and efficiency of ocean cli-
mate and weather predictions by assimilating data from multiple sources. These 
models can improve storm track predictions, sea surface temperature forecasts, and 
El Niño/Southern Oscillation (ENSO) predictions. In addition, ocean pollution 
detection and monitoring is another important application of AI, for example, the 
DeepSeaVision project developed an AI-based system to detect and track plastic 
debris in the ocean using satellite images.

In literature, there are waves of AI-related papers published in oceanography 
journals and conferences. Chen et al. (2019) focused on the remote estimation of 
surface seawater partial pressure of CO2 (pCO2) in the Gulf of Mexico (GOM) and 
found that the random forest-based regression ensemble (RFRE) model was the best 
approach among various modeling techniques. The RFRE model utilized extensive 
pCO2 datasets collected over 16 years, along with satellite-derived environmental 
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variables such as sea surface temperature, salinity, chlorophyll concentration, and 
diffuse attenuation of downwelling irradiance. The model has high accuracy, with a 
root mean square difference (RMSD) of 9.1 μatm, coefficient of determination (R2) 
of 0.95, and satisfactory performance in both open GOM waters and coastal/river- 
dominated waters. Niu et al. (2017) used ML algorithms to study source localization 
in ocean acoustics, including feed-forward neural networks (FNN), support vector 
machines (SVM), and random forests (RF), to estimate source ranges based on 
observed acoustic data. Bianco et al. (2019). reviewed that deep learning (DL) has 
shown promising advancements in acoustics, particularly in tasks such as sound 
event detection and source localization, can outperform conventional methods, and 
offer a general framework for acoustics tasks, eliminating the need for specialized 
algorithms in different subfields. However, a major challenge is the availability of 
sufficient training data, although synthetic data or data augmentation can help 
address this limitation. Recent studies have demonstrated the effectiveness of DL 
architectures, such as convolutional recurrent neural networks (CNNs) and deep 
residual neural networks (ResNet), in achieving competitive results in sound event 
detection, direction of arrival (DOA) estimation, and ocean source localization 
tasks. Gregor et al. (2019) concluded that although advanced statistical inference 
and ML methods have been used to fill gaps in sparse surface ocean CO2 measure-
ments and constrain the variability in sea-air CO2 fluxes, these methods are reach-
ing their limitations, referred to as “the wall,” where pCO2 estimates are constrained 
by data gaps and scale-sensitive observations. To enhance surface ocean pCO2 esti-
mates, further improvements might be possible by incorporating additional vari-
ables, increasing sampling resolution, and integrating pCO2 estimates from alternate 
platforms. James et al. (2018) trained ML models on iterations of a physics-based 
wave model to predict ocean conditions. The models, tested on Monterey Bay, rep-
licated wave heights with a root-mean-squared error of 9 cm and correctly identified 
over 90% of the characteristic periods, achieving efficient computation compared to 
the physics-based model. Fan et al. (2021) developed OC-SMART, a versatile plat-
form for analyzing data obtained by satellite ocean color sensors, supporting mul-
tiple sensors and providing products such as reflectances, chlorophyll concentration, 
and optical properties. By utilizing extensive radiative transfer simulations and ML 
techniques, OC-SMART improves the quality of retrieved water products and 
resolves issues with negative water-leaving radiance. It is claimed to be faster than 
NASA’s SeaDAS platform, includes advanced cloud screening, and can recover 
valuable data in coastal areas, making it a valuable tool for ocean color analysis. 
Sinha and Abernathey (2021) explored the use of ML algorithms to infer global 
surface currents from satellite observable quantities. The ML models are trained 
using simulated ocean data and show that a neural network (NN) outperforms linear 
regression models, accurately predicting surface currents over most of the global 
ocean. By incorporating geographic information and using convolutional filters, 
their research showed that NN can effectively learn spatial gradients and improve 
the accuracy of surface flow predictions. Gloege et al. (2022) produced The Lamont 
Doherty Earth Observatory-Hybrid Physics Data (LDEO-HPD) pCO2 product by 
using ML to merge observations with global ocean biogeochemical models 
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(GOBMs) to estimate surface ocean pCO2 and air-sea CO2 exchange. By training 
an eXtreme Gradient Boosting (XGB) algorithm to correct the model-data mis-
match, LDEO-HPD provides a more accurate reconstruction of pCO2 compared to 
other observation-based products. The results show good agreement with indepen-
dent pCO2 observations and are consistent with estimates from other products and 
the Global Carbon Budget.

Similar to other AI applications in climate sciences, while the mentioned research 
papers present valuable contributions to the field of oceanography and demonstrate 
the potential, there are certain limitations and challenges that restrict their immedi-
ate adoption. For example, the practical implementation of Chen et  al.’s model 
requires extensive pCO2 datasets and satellite data, which may not be readily avail-
able or accessible in real-world scenarios. Additionally, the model’s performance in 
different oceanic regions or under different environmental conditions needs to be 
further evaluated. Niu et al’s study will be restricted by the applicability of these 
algorithms in real-world situations and may be limited by the availability of suffi-
cient training data, which can be a challenge in ocean acoustics. The effectiveness 
of these algorithms needs to be validated in different acoustic environments and 
with diverse source characteristics. Although as Bianco et al.’s review revealed and 
emphasized on the promise of deep learning (DL) in acoustics for tasks such as 
sound event detection and source localization, the availability of large and diverse 
training datasets remains a challenge. The reliance on synthetic data or data aug-
mentation techniques may introduce biases or limitations in the generalizability of 
the trained models. Further research is needed to address these challenges and 
improve the robustness of DL approaches in acoustics. Gregor et  al.’s research 
acknowledged the “wall” phenomenon which indicates that pCO2 estimates are 
constrained by data gaps and scale-sensitive observations. The study explicitly sug-
gests potential improvements such as incorporating additional variables, increasing 
sampling resolution, and integrating data from alternate platforms, practical imple-
mentation, and addressing the limitations of sparse data availability and observa-
tional constraints remain significant challenges. James et al.’s work focuses on a 
specific test site, Monterey Bay, and limits the generalizability of the models to 
different oceanic regions and conditions. Further validation and testing across 
diverse geographical locations are necessary to assess the models’ robustness and 
applicability in practical oceanographic applications. For Fan et al.’s OC-SMART, 
the practical adoption may require addressing challenges related to data availability, 
integration with existing data processing systems, and validation across different 
sensor platforms and environmental conditions. Sinha et al.’s ML models’ perfor-
mance and generalizability need to be further evaluated across diverse oceanic 
regions and under different oceanographic conditions. Additionally, incorporating 
geographic information and using convolutional filters may introduce challenges in 
terms of data processing requirements and computational complexity. The practical 
implementation and utilization of the Gloege et al.’s product depend on the avail-
ability and accessibility of relevant observational data and the integration of the 
product into existing carbon cycle research and monitoring frameworks.

12 Actionable AI for Climate and Environment



346

4  Analyzing Low Actionability of AI Projects

After reviewing the use cases in the previous section, most AI projects in climate 
and environmental science face challenges that limit their actionability and practical 
applicability in real-world decision-making. These challenges arise from the inher-
ent complexities of climate and environmental systems, the presence of uncertain-
ties and incomplete knowledge, limited data availability and quality, as well as the 
need for model validation and reliability. Additionally, real-world decision-making 
processes pose their own set of challenges, including policy and governance consid-
erations, communication and stakeholder engagement, and ethical and equity con-
siderations. Climate and environmental systems are characterized by intricate 
interdependencies and nonlinear dynamics, making them difficult to model accu-
rately. Despite advancements in AI techniques, climate models still struggle to cap-
ture all the complexities of the Earth’s climate system. Uncertainty and incomplete 
knowledge are prevalent in climate and environmental science. Predicting the long- 
term impacts of climate change on specific regions or ecosystems is a complex task 
due to uncertainties in data, model formulations, and future projections. This limits 
the reliability of AI-based predictions and decisions. A study by Knutti et al. (2017) 
emphasizes the importance of quantifying and communicating uncertainties in cli-
mate projections to improve decision-making processes.

Another critical challenge is the limited availability and quality of climate and 
environmental data. Data scarcity in remote or inaccessible regions hampers the 
development and training of robust AI models. Furthermore, the lack of long-term 
observations or sparse data for rare events or extreme conditions adds further com-
plexity. Climate Data Records provided by research institutions help bridge the data 
gaps, but challenges persist in data coverage and quality (Eyring et  al. 2016). 
Validating AI models and ensuring their reliability is crucial for real-world decision- 
making. The performance of AI models relies on the quality of validation datasets 
and the ability to reproduce past events accurately. However, validating AI models 
for future projections, where real-world observations are limited, poses challenges. 
Models used for long-term climate predictions or ecological forecasts require rigor-
ous validation procedures. Real-world decision-making involves policy and gover-
nance considerations. AI projects in climate and environmental science must align 
with policy frameworks and governance structures to inform decision-making. 
However, integrating AI-derived information into policy processes and ensuring 
transparency and interpretability of AI models can be challenging. The United 
Nations Sustainable Development Goals provide a framework for integrating AI in 
climate change mitigation strategies and sustainable development initiatives (Lee 
et al. 2016). Effective communication and stakeholder engagement are essential for 
AI projects. Communicating complex AI-driven results and uncertainties to policy-
makers, scientists, and the general public can be challenging. Public perception and 
understanding of AI predictions related to extreme weather events or biodiversity 
loss play a crucial role in decision-making processes. Maibach et al. (2015) stress 
the importance of clear and accessible communication to bridge the gap between 
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scientific findings and public understanding. Ethical considerations and equity con-
cerns are also significant. AI projects should address potential biases, ensure fair 
distribution of benefits, and avoid excluding marginalized groups in decision- 
making processes. The impact of AI-driven climate models on vulnerable commu-
nities and the potential for AI technologies to reinforce existing inequalities need 
careful attention. The Climate Justice Research Centre addresses issues of equity 
and justice in climate and environmental decision-making (Climate Justice Research 
Centre, https://www.climatejusticecenter.org).

5  How to Make AI Practical?

We believe that every AI project has the potential to be practical and make its posi-
tive impacts on climate and environment. This section will list several key strategies 
that can be employed to make your AI research more action-oriented. However, 
there are many parties involved when any AI model is going online and making real 
impacts. The playbooks for each group will be different on how to develop, treat, 
adapt, utilize, and thrive on the AI application. This section will break down the 
strategies and give suggestions tailored for them.

5.1  Suggestion for AI Practitioners

AI practitioners should consider the following strategies. First, prioritize under-
standing the specific needs and context of end-users and stakeholders. This involves 
engaging with decision-makers, policymakers, and domain experts to identify the 
key challenges, uncertainties, and decision-making processes. By understanding the 
user’s perspective, AI practitioners can tailor their models and outputs to provide 
actionable insights. For example, in flood risk management, AI models can be 
developed to provide real-time flood forecasting and early warning systems that are 
directly relevant to emergency response agencies and local communities. By align-
ing the AI models with user needs, the outputs become more actionable and relevant 
to decision-makers. Second, practitioners should build AI models with the integra-
tion of domain knowledge and constraints. This involves collaborating with domain 
experts to incorporate their insights and understanding of the underlying processes 
and factors influencing climate and environmental systems. Through combining 
domain knowledge with AI techniques, practitioners can develop models that are 
more accurate and reliable. For example, in carbon sequestration projects, AI mod-
els can be used to optimize land-use planning by considering ecological constraints, 
biodiversity conservation, and socioeconomic factors. By accounting for domain- 
specific knowledge and constraints, AI models become more realistic and feasible 
for real-world decision-making. Third, AI practitioners should focus on providing 
outputs that are not only accurate but also actionable and interpretable by end-users. 
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This can be achieved by translating complex AI outputs into intuitive and under-
standable formats, such as visualizations or decision-support tools. Additionally, AI 
models should provide explanations or justifications for their predictions or recom-
mendations to enhance trust and understanding. For example, in climate change 
impact assessment, AI models can be used to analyze the vulnerability of different 
regions and provide visualizations that clearly highlight areas at high risk. Also 
interpretable outputs can help decision-makers better understand the implications of 
the AI models and make informed decisions. AI practitioners should consider the 
ethical implications and potential biases associated with their models. Bias in AI 
can lead to unfair outcomes and exclusion of certain groups or communities. AI 
practitioners should invest in diverse and representative training data, consider algo-
rithmic fairness techniques, and conduct thorough evaluations for bias. For instance, 
in environmental justice, AI models can be used to analyze the distribution of envi-
ronmental burdens and ensure equitable access to environmental resources. By 
addressing ethical and fairness considerations, AI models become more trustworthy 
and accountable for real-world decision-making.

AI practitioners should actively reach out to create partnerships for collaboration 
and interdisciplinary research between AI experts, climate scientists, environmental 
researchers, and policy stakeholders. This collaboration can help bridge the gap 
between technical advancements and real-world applications. By working together, 
different stakeholders can contribute their expertise, validate AI models, provide 
contextual knowledge, and ensure the relevance and practicality of the AI products. 
For example, in renewable energy planning, collaborative research between AI 
experts and energy policymakers can lead to the development of AI-driven tools that 
optimize renewable energy deployment based on spatial, economic, and environ-
mental considerations. By fostering collaboration, AI practitioners can develop 
models that address the complex challenges of climate and environmental 
decision-making.

5.2  Suggestions for Decision-Makers and Stakeholders

Although most responsibilities of making AI practical are on AI researchers’ shoul-
ders, there is still a lot more that can be done from the user side to help them develop 
better AI products. AI users should first identify their specific challenges and goals 
related to climate and environmental issues, like understanding the areas where AI 
can provide valuable insights or solutions, such as improving resource management, 
optimizing energy efficiency, or enhancing environmental monitoring. Clearly 
defining their needs can make users better assess the relevance and potential impact 
of AI research products. Instead of being pitched by scientists, users with demands 
should actively reach out to academia. Collaborating with AI experts and research-
ers can be highly beneficial for users in climate and environment. AI experts can 
provide guidance on selecting appropriate AI models and methods, tailoring them to 
specific user requirements, and validating their effectiveness in addressing 
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real-world challenges. This collaboration can involve partnerships with academic 
institutions, research organizations, or AI consulting firms. Meanwhile, before full- 
scale adoption, users should consider conducting pilot studies or demonstrations to 
evaluate the feasibility and benefits of AI research products, such as implementing 
AI models on a smaller scale or in controlled environments to assess their perfor-
mance, reliability, and practicality. Pilot studies can help identify any potential limi-
tations or adjustments needed for successful implementation.

As decision-makers and stakeholders often assess the cost-effectiveness and 
return on investment before adopting AI research products, they should perform a 
thorough cost-benefit analysis that takes into account the implementation costs, 
potential savings, improved decision-making capabilities, and long-term benefits. 
This analysis can help justify the adoption of AI and secure necessary resources. 
Also, there are a lot of things to consider from the user side besides science integ-
rity. AI users should prioritize addressing privacy, security, and ethical consider-
ations to gain trust and ensure compliance with regulations. This includes 
safeguarding sensitive data, implementing appropriate security measures, and 
adhering to ethical guidelines and standards. Users should be transparent about the 
data sources, model training methods, and potential biases to build confidence 
among stakeholders.

6  Vision for Earth AI in Future Environment Practice

Our shared vision for AI is very important for bringing scientists and the society 
together to address pressing issues. Earth AI represents the next generation of sys-
tems that can provide innovative solutions for tackling climate and environmental 
issues in an intelligent and unprecedented manner. This vision is unique in its 
approach to addressing climate challenges by harnessing advanced technologies 
and data-driven methodologies to offer actionable insights and innovative solutions 
for environmental monitoring, conservation, resource management, and climate 
change mitigation with unparalleled efficiency and capability. Unlike traditional 
technologies, Earth AI combines the power of artificial intelligence, ML, and big 
data analytics to unlock the full potential of available environmental data, enabling 
us to make more informed decisions and take proactive measures in addressing cli-
mate issues. Earth AI offers a transformative approach that can enhance our under-
standing of complex Earth systems, optimize resource allocation, support 
evidence-based decision-making, and foster collaboration among stakeholders. It is 
this integration of cutting-edge technologies with environmental stewardship that 
sets Earth AI apart, making it a crucial component of our future strategy to tackle 
climate challenges effectively and promote sustainable practices.

Earth AI is expected to provide actionable insights and innovative solutions for 
environmental monitoring, conservation, resource management, and climate change 
mitigation, for example, the use of AI technologies to revolutionize environmental 
monitoring and conservation efforts (Sun et al. 2022). For example, remote sensing 
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data combined with ML algorithms can enable the automated detection and tracking 
of deforestation, illegal fishing activities, or wildlife poaching in real-time. This 
allows for more efficient and targeted interventions, such as timely enforcement 
actions or habitat protection measures. Organizations like Global Forest Watch and 
Wildlife Insights are already leveraging AI to monitor and protect forests and wild-
life. AI can optimize the management of Earth’s limited resources, and analyze 
large datasets from weather sensors, satellite imagery, and agricultural records to 
optimize water usage, crop yields, and irrigation practices. This helps in reducing 
water waste, improving food production, and ensuring sustainable resource alloca-
tion. It will support climate change mitigation and adaptation strategies by predict-
ing extreme weather events, assessing the impact of climate change on ecosystems, 
and designing resilient infrastructure. AI-powered models will be able to optimize 
renewable energy deployment, developing carbon capture and storage technologies, 
and improving climate risk assessments for vulnerable communities. Projects like 
ClimateAI and Climate Corporation are actively working on AI-based climate solu-
tions. Earth AI envisions the development of decision-support systems that facilitate 
collaborative and evidence-based decision-making processes. By integrating AI 
models, expert knowledge, and stakeholder inputs, these systems can provide poli-
cymakers with insights to design effective environmental policies, conservation 
strategies, and sustainable development plans. They can also simulate the potential 
outcomes of different policy scenarios to guide decision-makers in making informed 
choices. Initiatives like AI for Earth by Microsoft and the Earth System Prediction 
Capability are aiming to provide decision-support tools for environmental 
management.

7  Conclusion

This chapter listed the need for AI practitioners to bridge the gap between AI 
research and actionable science in the field of climate and environment, and revealed 
the challenges faced by AI models and products in terms of their limited actionabil-
ity and adoption in real-world decision-making processes. It provides valuable 
insights and future outlooks for AI practitioners to make their products better posi-
tioned for actionable science like improving interpretability and transparency of AI 
models, integrating domain expertise in model development, leveraging interdisci-
plinary collaborations, focusing on scalability and transferability of models, and 
addressing data limitations and biases. Through implementing these strategies, AI 
practitioners can expect to enhance the practicality and relevance of their AI prod-
ucts, ensuring their effective use in addressing climate and environmental chal-
lenges and enabling informed decision-making processes.

In future, the guidance for actionable AI can better position our scientists for 
adoption from the public, by providing better AI products with interpretability and 
transparency of AI models to gain stakeholders’ trust and facilitate understanding of 
model predictions. We expect this chapter will help Earth AI scientists thrive on 

Z. Sun



351

integrating domain expertise and involving stakeholders in the model development 
process to ensure the relevance and applicability of AI solutions, actively reaching 
out to promoting interdisciplinary collaborations to leverage diverse perspectives 
and expertise, facilitating the development of holistic and actionable AI products, 
communicating the benefits and value of AI products effectively to decision- makers, 
policymakers, and the public, fostering trust, and promoting adoption. By incorpo-
rating these future outlooks into their practices, scientists in climate and environ-
ment domains can drive the transformation of AI research into actionable science, 
contributing to effective climate and environmental management and decision- 
making processes.
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