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Abstract. Document images, when captured in real-world settings,
either modern or historical, frequently exhibit various forms of degra-
dation such as ink stains, smudges, faded text, and uneven illumination,
which can significantly impede the performance of deep learning-based
approaches for document processing. In this paper, we propose a novel
end-to-end framework for binarization of degraded document images
based on cold diffusion. In particular, our approach involves training
a diffusion model with the objective of generating a binarized document
image directly from a degraded input image. To the best of the authors’
knowledge, this is the first work that investigates diffusion models for
the task of document binarization. In order to assess the effectiveness of
our approach, we evaluate it on 9 different benchmark datasets for doc-
ument binarization. The results of our experiments show that our pro-
posed approach outperforms several existing state-of-the-art approaches,
including complex approaches utilizing generative adversarial networks
(GANs) and variational auto-encoders (VAEs), on 7 of the datasets,
while achieving comparable performance on the remaining 2 datasets.
Our findings suggest that diffusion models can be an effective tool for
document binarization tasks and pave the way for future research on dif-
fusion models for document image enhancement tasks. The implementa-
tion code of our framework is publicly available at: https://github.com/
saifullah3396/coldbin.

Keywords: Document Binarization · Document Image Enhancement ·
Diffusion Models · Cold Diffusion · Document Image Analysis

1 Introduction

In the era of automation, accurate and efficient automated processing of docu-
ments is of the utmost importance for streamlining modern business workflows
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[1–3]. At the same time, it has vast applications in the preservation of historical
scriptures [4–6] that contain valuable information about ancient cultural her-
itages and scientific contributions. Deep learning (DL) has recently emerged as
a powerful tool for handling a wide variety of document processing tasks, showing
remarkable results in areas such as document classification [1,7], optical charac-
ter recognition (OCR) [8], and named entity recognition (NER) [2,9]. However,
it remains challenging to apply DL-based models to real-world documents due
to a variety of distortions and degradations that frequently occur in these docu-
ments. Document image enhancement (DIE) is a core research area in document
analysis that focuses on recovering clean and improved images of documents
from their degraded counterparts. Depending on the severity of the degrada-
tion, a document may display wrinkles, stains, smears, or bleed-through effects
[10–12]. Additionally, distortions may result from scanning documents with a
smartphone, which may introduce shadows [13], blurriness [14], or uneven illu-
mination. Such degradations, which are particularly prevalent in historical docu-
ments, can significantly deteriorate the performance of deep learning models on
downstream document processing tasks [15]. Therefore, it is essential that prior
to applying these models, there be a pre-processing step that performs denoising
and recovers a clean version of the degraded document image.

Over the past few decades, DIE has been the subject of several research
efforts, including both classical [16,17] and deep learning-based studies [6,13,18,
19]. Lately, generative models such as deep variational autoencoders (VAEs) [20]
and generative adversarial networks (GANs) [21] have gained popularity in this
domain, owing to their remarkable success in natural image generation [21,22]
and restoration tasks [23–25]. Generative models have attracted considerable
attention due to their ability to accurately capture the underlying distribution
of the training data, which allows them not only to generate highly realistic
and diverse samples [22], but also to generate missing data when necessary [26].
As a result, a number of GAN and VAE based approaches have been recently
proposed for DIE tasks, such as binarization [6,18,27], deblurring [6,19], and
watermark removal [6].

Diffusion models [28] are a new class of generative models inspired by the
process of diffusion in non-equilibrium thermodynamics. In the context of image
generation, the underlying mechanism of diffusion models involves a fixed for-
ward process of gradually adding Gaussian noise to the image, and a learnable
reverse process to denoise and recover the clean image, utilizing a Markov chain
structure. Diffusion models have been shown to have several advantages over
GANs and VAEs such as their high training stability [28–30], diverse and realis-
tic image synthesis [31,32], and better generalization to out-of-distribution data
[33]. Additionally, conditional diffusion models have been employed to perform
image synthesis with an additional input, such as class labels, text, or source
image and have been successfully adapted for various natural image restoration
tasks, including super-resolution [34], deblurring [35], and JPEG restoration [36].
Despite their growing popularity, however, there is no existing literature that has
explored their potential in the context of document image enhancement.
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In this study, we investigate the potential of diffusion models for the task
of document image binarization, and introduce a novel approach for restoring
clean binarized images from degraded document images using cold diffusion.
We conduct a comprehensive evaluation of our proposed approach on multiple
publicly available benchmark datasets for document binarization, demonstrating
the effectiveness of our methodology in producing high-quality binarized images
from degraded document images. The main contributions of this paper are two-
fold:

– To the best of the authors’ knowledge, this is the first work that presents a
flexible end-to-end document image binarization framework based on diffusion
models.

– We evaluate the performance of our approach on 9 different benchmark
datasets for document binarization which include DIBCO ’9 [37], H-DIBCO
’10 [11], DIBCO ’11 [38], H-DIBCO ’12 [39], DIBCO ’13 [12], H-DIBCO ’14
[40], H-DIBCO ’16 [41], DIBCO ’17 [42], and H-DIBCO ’18 [43].

– Through a comprehensive quantitative and qualitative evaluation, we demon-
strate that our approach outperforms several classical approaches as well as
the existing state-of-the-art on 7 of the datasets, while achieving competitive
performance on the remaining 2 datasets.

2 Related Work

2.1 Document Image Enhancement

Document image enhancement (DIE) has been extensively studied in the liter-
ature over the past few decades [5,16,44–46]. Classical approaches to DIE were
primarily based on global thresholding [16], local thresholding [44,47] or their
hybrids [48]. These approaches were based on determining threshold values to
segment the image pixels of a document into foreground or background. In a
different direction, energy-based segmentation approaches such as Markov ran-
dom fields (MRFs) [49] and conditional random fields (CRFs) [50] and classical
machine learning-based approaches such as support vector machines (SVMs)
[17,51] have also been widely explored in the past.

In recent years, there has been a burgeoning interest in the application of
deep learning-based techniques for the enhancement of document images [4,52–
54]. The earliest work in this area was majorly focused on utilizing convolutional
neural networks (CNNs) [4,5,52,55]. One notable example of this is the work
of Pastor-Pellicer et al. [56], who proposed a CNN-based classifier in conjunc-
tion with a sliding window approach for segmenting images into foreground and
background regions. Building upon this, Tensmeyer et al. [52] presented a more
advanced methodology that entailed feeding raw grayscale images, along with rel-
ative darkness features, into a multi-scale CNN, and training the network using
a pseudo F-measure loss. Another approach was proposed by Calvo-Zaragoza
et al. [55], in which they utilized a CNN-based auto-encoder (AE) to train the
model to map degraded images to clean ones in an end-to-end fashion. A similar
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approach was presented by Kang et al. [5], who employed a pre-trained U-Net
based auto-encoder model for binarization, with minimal training data require-
ments. Since then, a number of AE-based approaches have been proposed for
DIE tasks [53,54]. In a slightly different direction, Castellanos et al. [57] has
also investigated domain adaptation in conjunction with deep neural networks
for the task of document binarization.

Generative Adversarial Networks (GANs) have also been extensively explored
in this field to generate clean images by conditioning on degraded versions
[6,19,27,46]. These methods typically consist of a generative model that gen-
erates a clean binarized version of the image, along with a discriminator that
assesses the results of the binarization. Zhao et al. [27] proposed a cascaded
GAN-based approach for the task of document image binarization and demon-
strated excellent performance on a variety of benchmark datasets. Jemni et al.
[58] recently presented a multi-task GAN-based approach which incorporates
a text recognition network in combination with the discriminator to further
improve text readability along with binarization. Similarly, Yu et al. [46] pro-
posed a multi-stage GAN-based approach to document binarization that first
applies discrete wavelet transform to the images to perform enhancement, and
then trains a separate GAN for each channel of the document image. Besides
GANs and CNN-based auto-encoders, the recent success of transformers in nat-
ural language processing (NLP) [9] and vision [59] has also sparked interest
in transformers for the enhancement of document images. In a recent study,
Souibgui et al. [45] proposed a transformer-based auto-encoder model that
demonstrated state-of-the-art performance on several document binarization
datasets.

3 ColDBin: The Proposed Approach

This section presents the details of our proposed approach and explains its rela-
tionship to standard diffusion [28]. The overall workflow of our approach is illus-
trated in Fig. 1. Primarily inspired by cold diffusion [60], our approach involves
training a deep diffusion network for document binarization in two steps: a for-
ward diffusion step and a reverse restoration step. As shown, in the forward
diffusion step, a clean ground-truth document image is degraded to a specified
severity level based on a given type of input degradation. In the reverse restora-
tion step, a neural network is tasked with undoing the forward diffusion process
in order to generate a clean ground-truth image from an intermediary degraded
image. These forward and reverse steps are repeated in a cycle, and the neural
network is trained for the binarization task by applying image reconstruction loss
to its output. In the following sections, we provide a more detailed explanation
of the forward and reverse steps of our approach.

3.1 Forward Diffusion

In the context of document binarization, let P = {(x, x0) ∼ (X ,X0)}N
n=1 define

a training set consisting of pairs of degraded document images x and their
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Fig. 1. Demonstration of the forward diffusion and reverse restoration processes of our
approach. The forward diffusion process incrementally degrades a clean ground-truth
image into its degraded counterpart. Whereas, the reverse restoration process, defined
by a neural network, generates a clean binary image from a degraded input image

corresponding binarized ground-truth images x0. Let D(x0, t) be a diffusion oper-
ator that adds degradation to a clean ground-truth image x0 proportional to the
severity t ∈ {0, 1, . . . , T}, T being the maximum severity permitted, then the
degraded image at any given severity t can be derived as follows:

xt = D(x0, t) (1)

Consequently, the following constraint must be satisfied:

D(x0, 0) = x0 (2)

Generally in standard diffusion [28], this forward diffusion operator D(x0, t) is
defined as a fixed Markov process that gradually adds Gaussian noise ε to the
image using a variance schedule specified by β1 . . . βT . In particular, it is defined
as the posterior q(x1, . . . , xT |x0) that converts the data distribution q(x0) to the
latent distribution q(xT ) as follows:

q(x1, . . . , xT |x0) :=
T∏

t=1

q(xt|xt−1)

q(xt|xt−1) := N (xt;
√

βtxt−1, (1 − βt)I)

where βt is a hyper-parameter that defines the severity of degradation at each
severity level t. An important property of the above forward process is that it
allows sampling xt at any arbitrary severity t in closed form: using the notation
αt := 1 − βt and α̂t := Πt

s=1αs, we have

q(xt|x0) := N (xt;
√

α̂txt−1, (1 − α̂t)I) (3)
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Which results in the following the diffusion operator D(x0, t):

xt = D(x0, t) =
√

α̂tx0 +
√

1 − α̂tε, ε ∼ N (0, I) (4)

Our approach maintains the same forward process as standard diffusion, except
that Gaussian noise ε is not used to define the diffusion operator D(x0, t) (hot
diffusion). Rather, we define it as a cold diffusion operation that interpolates
between the binarized ground-truth image x0 and its degraded counterpart image
x based on the noise schedule β1 . . . βT . More formally, given a fully degraded
input image x and its respective binarized ground-truth image x0, an interme-
diate degraded image xt at severity t is then defined as follows:

xt = D(x0, x, t) =
√

α̂tx0 +
√

1 − α̂tx, x0 ∼ X0, x ∼ X (5)

Note that this procedure is essentially the same as adding Gaussian noise ε
in standard diffusion, except that here we are adding a progressively higher
weighted degraded image to the clean ground-truth image to generate an inter-
mediary noisy image. In addition, our diffusion operator for binarization is
slightly modified D(x0, x, t) and requires both the ground-truth image x0 and
the target degraded image x for forward the process.

3.2 Reverse Restoration

Let R(xt, t) define the reverse restoration operator that restores any degraded
image xt at severity t to its clean binarized form x0:

R(xt, t) ≈ x0 (6)

In standard diffusion [28], generally this restoration operator R(xt, t) is defined as
a reverse Markov process p(x0, . . . , xT−1|xT ) that transforms the data from the
latent variable distribution pθ(xT ) to the data distribution pθ(x0) parameterized
by θ; the process generally starting from p(xT ) = N (xT ;0, I):

p(x0, . . . , xT−1|xT ) :=
T∏

t=1

pθ(xt−1|xt)

pθ(xt−1|xt) := N (xt−1;μθ(xt, t), σθ(xt, t)2I)

Our approach uses the same reverse restoration process as the standard diffusion
[28], with the exception that it begins with a degraded input image xT ∼ X
instead of Gaussian noise xT ∼ N (xT ;0, I). In practice, R(xt, t) is generally
implemented as a neural network Rθ(xt, t) parameterized by θ which is trained
to perform the reverse restoration task. In our approach, the restoration network
Rθ(xt, t) is trained by minimizing the following loss:

min
θ

Ex∼X ,x0∼X0 ||Rθ(D(x0, x, t), t) − x0|| (7)
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Algorithm 1. Training
1: Input: Ground truth image x0 and its corresponding degraded image x pairs

P = {(x0, x)}K
k=1, and total diffusion steps T

2: Initialize: Randomly initialize the restoration network Rθ(xt, t)
3: repeat
4: Sample (x0, x) ∼ P , and t ∼ Uniform({1, . . . , T})
5: Take the gradient step on
6: ∇θ||Rθ(xt, t) − x0||, xt =

√
α̂tx0 +

√
1 − α̂x

7: until converged

where || · || defines a norm, which we took as standard �2 norm in this work. The
overall training process of the restoration network is given in Algorithm 1. As
shown, the restoration network Rθ(xt, t) is initialized with a maximum severity
level of T . In each training iteration, a mini-batch of degraded images x and
their corresponding binarized ground-truth images x0 is randomly sampled from
the training set P , and the degradation severity is randomly sampled from the
integer set {1, . . . , T} The severity value t is then used in combination with
the ground-truth x0 and degraded image x pairs to compute the intermediate
interpolated images xt using Eq. 5 (line 6). The restoration network Rθ(xt, t) is
then used to recover a binarized image from the interpolated image xt. Finally,
the network is optimized in each step by taking the gradient step on Eq. 7 (line
6).

3.3 Restoration Network

The complete architecture of the restoration network Rθ(xt, t) used in our app-
roach is illustrated in Fig. 1. As shown, we used a U-Net [61] inspired architecture
as the restoration network which takes as input the degraded image xt and the
diffusion severity t ∈ 1, 2, . . . , T and generates a binarized image as the output.
The input severity level t is transformed into a severity embedding te based on
sinusoidal positional encoding as proposed in [62]. The embedded severity and
the image are then passed through multiple downsampling blocks, a middle pro-
cessing block and then multiple upsampling blocks to generate the output image.
Each downsampling and upsampling block is characterized by two ConvNeXt
[63] blocks, a residual block with a linear attention layer, and a downsampling
layer. The middle block consists of a ConvNeXt block followed by an attention
module and another ConvNeXt block and is inserted between the downsampling
and upsampling phases.

3.4 Inference Strategies

We investigated two different inference strategies for restoring images from their
degraded counterparts: direct restoration and cold diffusion sampling. Direct
restoration simply applies the restoration operator Rθ(xt, t) to a degraded input
image x with degradation severity t set to T . On the other hand, cold diffusion
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sampling as proposed in [60] iteratively performs the reverse restoration pro-
cess over T steps as described in Algorithm 2. Although a number of sampling
strategies have been proposed previously for diffusion models [28,64], Bansal et
al. [60] demonstrated in their work that this sampling strategy performs better
than standard sampling [28] for cold diffusion processes, and therefore it has
been investigated in this study.

4 Experiments and Results

In this section, we first describe the experimental setup, including datasets,
evaluation metrics, and the training process. Subsequently, we present a com-
prehensive quantitative and qualitative analysis of our results.

4.1 Experimental Setup

Datasets. 9 different DIBCO document image binarization datasets were used
to assess the performance of our proposed approach. These datasets include
DIBCO ’9 [37], DIBCO ’11 [38], DIBCO ’13 [12], and DIBCO ’17 [42], as well as
H-DIBCO ’10 [11], H-DIBCO ’12 [39], H-DIBCO ’14 [40], H-DIBCO ’16 [41], and
H-DIBCO ’18 [43]. A variety of degraded printed and handwritten documents
are included in these datasets, which exhibit various degradations such as ink
bleed through, smudges, faded text strokes, stain marks, background texture,
and artifacts.

Evaluation Metrics. Several evaluation methods have been commonly used in
the literature for evaluating the binarization of document images, including FM
(F-Measure), pFM (pseudo-F-Measure), PSNR (Peak Signal-to-Noise Ratio),
and DRD (Distance Reciprocal Distortion), which have been adopted in this
study. A higher value indicates better binarization performance for the first three
metrics, while the opposite is true for DRD. Due to space constraints, detailed
definitions of these metrics are omitted here and can be found in [11,12].

Data Preprocessing. To train the restoration model on a specific DIBCO
dataset, all the images from other DIBCO and H-DIBCO datasets as well as the
Palm Leaf dataset [65] were used. The training set was prepared by splitting each
degraded image and its corresponding ground truth image into overlapped patches

Algorithm 2. Cold Diffusion Sampling Strategy [60]
1: Input: A degraded sample x
2: for s=t,t-1,. . . ,1 do
3: x̂0 = R(xs, s)
4: xs−1 = xs − D(x̂0, s) + D(x̂0, s − 1)
5: end for
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Table 1. The size of the training and test sets for all DIBCO datasets is provided.

DIBCO ’9 [37] H-DIBCO ’10 [11] DIBCO ’11 [38] H-DIBCO ’12 [39] DIBCO ’13 [12] H-DIBCO ’14 [40] H-DIBCO ’16 [41] DIBCO ’17 [42] H-DIBCO ’18 [43]

Train 17716 17669 17448 16885 16231 17492 17300 15983 17202

Test (256) 135 150 217 356 542 182 256 610 266

Test (512) 40 46 66 104 166 55 74 184 74

of size 384 × 384 × 3. Table 1 shows the total number of training set samples that
were generated for eachDIBCOdataset as a result of using the above strategy.Dur-
ing training, a random crop of size 256 × 256 × 3 was extracted from each image
and then fed to the model. Additionally, a number of data augmentations were used
such as horizontal flipping, vertical flipping, color jitter, grayscale conversion, and
Gaussian blur, all of which were randomly applied to the images. A specific aug-
mentation we used in our approach was to randomly colorize the degraded image
using the inverted ground truth image as a mask. This augmentation was necessary
to prevent the models from overfitting to black-color text since most of the images
in the DIBCO datasets consisted of black-color text on various backgrounds. Fur-
thermore, we used ImageNet normalization with per-channel means of μRGB =
{0.485, 0.456, 0.406} and standard deviations of σRGB = {0.229, 0.224, 0.225} to
normalize each image before feeding it to the model.

Training Hyperparameters. We initialized our restoration networks with
maximum diffusion severity T set to 200 and severity embedding set to 64. For
the forward diffusion process, we used a cosine beta noise schedule β1, . . . , βT

as described in [66]. We trained our networks for 400k iterations with a batch
size of 128, Adam optimizer, and a fixed learning rate of 2e − 5 on 4–8 NVIDIA
A100 GPUs.

Evaluation Hyperparameters. To evaluate our approach, we divided each
image into patches of fixed input size, restored them using the inference strategies
outlined in Sect. 3.4, and then reassembled them to produce the final binarized
image. Depending on the size of the input patch, binarization performance can
be greatly affected, since smaller patches provide less context for the model,
whereas larger patches provide more context. In this work, we examined two
different patch sizes at test time, which were 256 × 256 and 512 × 512. It should
be noted that we trained the models solely on 256 × 256 input images, and used
images of size 512 × 512 only during evaluation.

Table 2. Comparison of different evaluation strategies on DIBCO ’9 [37], H-DIBCO
’12 [39], and DIBCO ’17 [42] datasets. The top strategy for each metric is bolded.

DIBCO ’9 [37] H-DIBCO ’12 [39] DIBCO ’17 [42]

Strategy / Patch size FM↑ p-FM↑ PSNR↑ DRD↓ FM↑ p-FM↑ PSNR↑ DRD↓ FM↑ p-FM↑ PSNR↑ DRD↓
Direct Restoration / 256 93.83 96.25 20.34 2.75 96.09 97.16 23.07 1.42 92.21 94.33 18.93 2.80

Direct Restoration / 512 94.19 96.52 20.65 2.58 96.37 97.41 23.40 1.28 93.04 95.12 19.32 2.29

Cold Sampling / 256 93.55 96.05 20.03 2.71 95.70 96.68 22.69 1.46 89.57 91.66 18.18 3.61

Cold Sampling / 512 93.69 96.08 20.21 2.69 96.10 97.09 23.07 1.28 90.81 92.86 18.59 2.99

FM = F-Measure, p-FM = pseudo F-Measure PSNR = Peak Signal-to-Noise Ratio, DRD = Distance Reciprocal Distortion
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Original Image Ground Truth (GT) ColDBin (Ours) Difference
(GT − ColDBin)

Fig. 2. Binarization results for images 1 (top) and 10 (bottom) of the H-DIBCO ’16
[41] dataset using our approach. The difference between the ground truth image and
the binarized output of our proposed approach is shown to emphasize that our model
produces slightly thicker strokes for this dataset

4.2 Choosing the Best Evaluation Strategy

In this section, we compare the results of direct restoration and cold diffusion sam-
pling strategies with varying patch sizes on three different datasets DIBCO ’9 [37],
H-DIBCO ’12 [39], and DIBCO ’17 [42] as shown in Table 2. It is evident from the
table that direct restoration performed significantly better than cold diffusion sam-
pling for binarization with both patch sizes of 256 and 512. While diffusion mod-
els are well known for providing better reconstruction/image generation perfor-
mance when using sampling as compared to direct inference over T steps, sampling
resulted in poorer FM, p-FM, PSNR, and DRD values than direct restoration in
our case. Moreover, sampling is a very computationally intensive process, requir-
ing multiple forward and reverse diffusion steps, whereas direct inference requires
only a single step and, therefore, is extremely fast. Also evident from the table
is that the model performed better with patch sizes of 512 × 512 as opposed to
256 × 256. This was the case for the majority of DIBCO datasets we examined.
However, we observed that the 256 × 256 patch size provided better performance
for some datasets such as H-DIBCO ’16 [41] and H-DIBCO ’18 [43]. This raises the
question of whether it is possible to develop a more effective evaluation approach
that is able to accommodate images of different sizes and text resolutions within
those images. However, we leave those questions to future research. Since 512×512
patch size with direct restoration offered the best performance for most datasets,
we present only the results from this evaluation strategy when doing a performance
comparison in the subsequent sections.

4.3 Performance Comparison

In this section, we present a quantitative comparison of our approach against
a variety of other approaches, including classical approaches [16,44,67,68,
72], CNN-based VAEs [52,69,70], GAN-based approaches [27,46,58,71], and



ColDBin: Cold Diffusion for Document Image Binarization 217

Table 3. Performance evaluation of different methods for document binarization on
all the DIBCO/H-DIBCO evaluation datasets. For each metric, the top 1st, 2nd, and
3rd methods are bolded, italicized, and underlined, respectively. The results presented
here were generated using the Direction Restoration / 512 evaluation strategy.

Methods

Otsu [16] Sauvola [44] Lu [67] Su [68] Tensemeyer [52] Vo [69] He [70] Zhao [27] Suh [71] Xiong [72] Souibgui [45] Jemni [58] Yu [46] Ours

1979 2000 2010 2013 2017 2018 2019 2019 2020 2021 2022 2022 2022 2023

Thres. Thres. CV CV CNN-AE CNN-AE CNN-AE GAN GAN SVM Tr-VAE Multitask-GAN Multiple GANs Diffusion

Datasets Metrics

DIBCO ’9 [37]

FM↑ 78.72 85.41 91.24 93.50 89.76 - - 94.10 - 93.46 - - - 94.19

p-FM↑ - - - - 92.59 - - 95.26 - - - - - 96.52

PSNR↑ 15.34 16.39 18.66 19.65 18.43 - - 20.30 - 20.01 - - - 20.65

DRD↓ - - - - 4.89 - - 1.82 - - - - - 2.58

H-DIBCO ’10 [11]

FM↑ 85.27 75.30 86.41 92.03 94.89 - - 94.03 - 93.73 - - - 95.29

p-FM↑ 90.83 84.22 88.25 94.85 97.65 - - 95.39 - 95.18 - - - 96.67

PSNR↑ 17.51 15.96 18.14 20.12 21.84 - - 21.12 - 20.97 - - - 22.06

DRD↓ 1.26 - - 1.58 - - - - - 1.36

DIBCO ’11 [38]

FM↑ 82.10 82.35 81.67 87.80 93.60 92.58 91.92 92.62 93.57 90.72 94.37 - 94.08 95.23

p-FM↑ 85.96 88.63 - - 97.70 94.67 95.82 95.38 95.93 96.15 - 97.08 96.93

PSNR↑ 15.72 15.75 15.59 17.56 20.11 19.16 19.49 19.58 20.22 18.85 20.81 - 20.51 21.53

DRD↓ 8.95 7.86 11.24 4.84 1.85 2.38 2.37 2.55 1.99 4.47 1.63 - 1.75 1.44

H-DIBCO ’12 [39]

FM↑ 80.18 82.89 - - 92.53 - - 94.96 - 94.26 95.31 95.18 - 96.37

p-FM↑ 82.65 87.95 - - 96.67 - - 96.15 - 95.16 96.29 94.63 - 97.41

PSNR↑ 15.03 16.71 - - 20.60 - - 21.91 - 21.68 22.29 22.00 - 23.40

DRD↓ 26.46 6.59 - - 2.48 - - 1.55 - 2.08 1.6 1.62 - 1.28

DIBCO ’13 [12]

FM↑ 80.04 82.73 - - 93.17 93.43 93.36 93.86 95.01 93.51 - - 95.24 96.62

p-FM↑ 83.43 88.37 - - 96.81 95.34 96.70 96.47 96.49 94.54 - - 97.51 97.15

PSNR↑ 16.63 16.98 - - 20.71 20.82 20.88 21.53 21.99 21.32 - - 22.27 23.98

DRD↓ 10.98 7.34 - - 2.21 2.26 2.15 2.32 1.76 2.77 - - 1.59 1.20

H-DIBCO ’14 [40]

FM↑ 91.62 83.72 - - 91.96 95.97 95.95 96.09 96.36 96.77 - - 96.65 97.80

p-FM↑ 95.69 87.49 - - 94.78 97.42 98.76 98.25 97.87 97.73 - - 98.19 98.10

PSNR↑ 18.72 17.48 - - 20.76 21.49 21.60 21.88 21.96 22.47 - - 22.27 24.38

DRD↓ 2.65 5.05 - - 2.72 1.09 1.12 1.20 1.07 0.95 - - 0.96 0.66

H-DIBCO ’16 [41]

FM↑ 86.59 84.27 - - 89.52 90.01 91.19 91.66 92.24 89.64 - 94.95 91.46 89.50

p-FM↑ 89.92 89.10 - - 93.76 93.44 95.74 94.58 95.95 93.56 - 94.55 96.32 93.73

PSNR↑ 17.79 17.15 - - 18.67 18.74 19.51 19.64 19.93 18.69 - 21.85 19.66 18.71

DRD↓ 5.58 6.09 - - 3.76 3.91 3.02 2.82 2.77 4.03 - 1.56 2.94 3.84

DIBCO ’17 [42]

FM↑ 77.73 77.11 - - - - - 90.73 - 89.37 92.53 89.80 90.95 93.04

p-FM↑ 77.89 84.10 - - - - - 92.58 - 90.8 95.15 89.95 93.79 95.12

PSNR↑ 13.85 14.25 - - - - - 17.83 - 17.99 19.11 17.45 18.57 19.32

DRD↓ 15.54 8.85 - - - - - 3.58 - 5.51 2.37 4.03 2.94 2.29

H-DIBCO ’18 [43]

FM↑ 51.45 67.81 - - - - - 87.73 - 88.34 89.21 92.41 91.66 89.71

p-FM↑ 53.05 74.08 - - - - - 90.60 - 90.37 92.54 94.35 95.53 93.00

PSNR↑ 9.74 13.78 - - - - - 18.37 - 19.11 19.47 20.18 20.02 19.53

DRD↓ 59.07 17.69 - - - - - 4.58 - 4.93 3.96 2.60 2.81 3.82

FM=F-Measure, p-FM=pseudo F-Measure PSNR=Peak Signal-to-Noise Ratio, DRD=Distance Reciprocal Distortion

Transformer-based autoencoders [45]. The results of our evaluation are summa-
rized in Table 3, where FM, p-FM, PSNR, and DRD of each method are com-
pared for different DIBCO/H-DIBCO datasets, with the top three approaches
for each dataset bolded, italicized and underlined, respectively. As shown, our
approach outperforms existing classical and state-of-the-art (SotA) approaches
on 7 datasets, including DIBCO ’9 [37], H-DIBCO ’10 [11], DIBCO ’11 [38],
H-DIBCO ’12 [39], DIBCO ’13 [12], H-DIBCO ’14 [40], and DIBCO ’17 [42],
ranking first on the majority of metrics, while performing competitively on the
remaining 2 datasets H-DIBCO ’16 [41] and H-DIBCO ’18 [43]. It is worth men-
tioning that a number of recent SotA binarization techniques, including those
presented by Yu et al. [46] and Jemni et al. [58], utilize several training stages,
networks, or target objectives in order to achieve the reported results. Compar-
atively, our approach employs only a single diffusion network in an end-to-end
fashion, and is able to outperform these methods across multiple datasets.

On DIBCO ’9 [37] dataset, our approach scored the highest on all metrics
except DRD, on which it ranked second. Furthermore, it demonstrated signifi-
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Fig. 3. Qualitative results of our proposed method for the restoration of a few samples
from the DIBCO and H-DIBCO datasets. These images are arranged in columns as
follows: Left: original image, Middle: ground truth image, Right: binarized image using
our proposed method

cant improvements in FM and PSNR on the H-DIBCO ’10 [11] and DIBCO ’11
[38] datasets in comparison to existing methods. We also observed a particularly
noticeable improvement in PSNR with our approach on the H-DIBCO ’12 [39],
DIBCO ’13 [12], and H-DIBCO ’14 [40] datasets, with increases of 1.11, 1.71,
and 1.91 compared to the previous state-of-the-art method, respectively. Simi-
larly, despite lower DRD values on some datasets, it was significantly improved
for these three datasets, with values of 1.28, 1.20, and 0.66, respectively. Similar
performance improvements were observed on the DIBCO ’17 [42] dataset as well,
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where our approach ranked first on FM, PSNR, and DRD, and ranked second on
p-FM. On H-DIBCO ’18 [43], our approach placed third; however, it is evident
from the results that our model demonstrated comparable performance to the
top approaches.

Despite the high performance achieved on other datasets, our approach failed
to achieve satisfactory results on the H-DIBCO ’16 [41] dataset. Interestingly,
upon inspecting the binarization outputs, we found that our approach was, in
fact, quite capable of producing high quality binarization results for this dataset.
The approach, however, had the tendency to generate slightly thicker text strokes
compared to the ground truth images, which may explain why it did not produce
the best quantitative results on this dataset. Figure 2 illustrates this effect by
presenting two samples from the H-DIBCO ’16 [41] dataset along with their
corresponding ground truth images, binarized images derived from our method,
and their difference. As can be seen from the difference image, our proposed
approach produces binarized outputs very similar to the ground truth but with
slightly thicker strokes in comparison. Overall, we observed that our approach
demonstrated relatively consistent performance across the majority of DIBCO
datasets and provided the highest FM and PSNR.

4.4 Qualitative Evaluation

This section presents a qualitative analysis of the binarization performance of
our approach. In Fig. 3, we compare the binarization results of our approach
with the ground truth for a few randomly selected samples from the different
DIBCO and H-DIBCO datasets. As evident from the figure, our approach was
highly effective at removing various types of noise, such as stains, smears, faded

Original Image Ground Truth ColDBin (Ours) Otsu (1979) [16]

Sauvola (2000)
[44]

DIBCO ’17 [42]
Winner (2017)

Jemni et al.
(2022) [58]

Souibgui et al.
(2022) [45]

Fig. 4. Document binarization results for the input image 12 of DIBCO ’17 [42] by
different methods
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Original Image Ground Truth ColDBin (Ours) Otsu (1979) [16]

Sauvola (2000)
[44]

He et al. (2019)
[70]

Zhao et al.
(2019) [27]

Suh et al. (2020)
[71]

Fig. 5. Document binarization results for the input image HW5 of DIBCO ’13 [12] by
different methods

text, and background texture from a number of degraded document images.
Moreover, it was able to produce high-quality binarized images that were visually
comparable to the corresponding ground truth images, reflecting the exceptional
quantitative performance discussed in the previous section.

Aside from comparisons with ground truth, we also compare the results of
our approach to both classical and existing state-of-the-art (SotA) approaches.
Figure 4 illustrates the binarization performance of various approaches, including
ours, on sample 12 of the DIBCO ’17 [42] dataset. The results demonstrate that
our approach was successful in restoring a highly degraded document sample
that many other approaches, including the multi-task GAN approach by Jemni
et al. [58], failed to sufficiently restore. Interestingly, our results for this sam-
ple were visually similar to those obtained by Souibgui et al. [45], who used an
encoder-decoder Transformer architecture for binarization. In Fig. 5, we compare
the binarization performance of various approaches on another sample, namely,
the HW5 from the DIBCO ’13 [12] dataset. As can be seen, our approach was
successful in restoring the image entirely, with the resulting image looking strik-
ingly identical to the ground truth image. Additionally, we observed that our
results for this sample were similar but slightly better than those of Suh et al.
[71] and Yu et al. [46], who employed two-stage and three-stage GAN-based
approaches for binarization, respectively.

4.5 Runtime Evaluation

In this section, we briefly analyze the runtime of our approach and compare it
with other approaches. Since binarization speed depends on the size of input
images, we evaluate the runtime in terms of secs/megapixel (MP) as used in
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Table 4. Average runtimes for different binarization methods.

Runtime of different methods (secs/megapixel (MP))

Otsu [16] Sauvola [44] Niblack [47] Lu [67] Su [68] Bhowmik [51] Tensemeyer [52] Vo [69] Zhao [27] Xiong [72] Ours (D-256) Ours (D-512) Ours (S-256) Ours (S-512)

Thres. Thres. Thres. CV CV Game Theory CNN-AE CNN-AE GAN SVM Diffusion Diffusion Diffusion Diffusion

0.042 0.092 0.106 12.839 7.372 80.845 6.436 3.043 0.9819 19.306 0.9679 0.9918 135.47 193.49

D-256= Direct Reconstruction (256×256), D-512 = Direct Reconstruction (512×512), S-256 = Cold Sampling with T=200 (256×256), S-512 = Cold Sampling with T=200 (512×512)

prior works [27,72]. Both direct reconstruction and cold sampling were evaluated
using a single NVIDIA GTX 1080Ti GPU with batch sizes of 4 and 32 for 512
× 512 and 256 × 256 image resolutions, respectively. The evaluation runtimes
for other approaches were obtained directly from two papers [27,72], which may
have used different resources for evaluation and therefore we are only able to
make a rough comparison. As shown in Table 4, with direct reconstruction, our
approach had a runtime of ∼1 sec/MP for both input image resolutions, which
is comparable to the approach developed Zhao et al. [27], and is much lower
than other computer vision methods [67,68] and deep learning approaches [52,
69]. In contrast, the runtime for cold sampling scaled proportionally with the
number of diffusion steps T. With T=200 in our experiments, for a 256 × 256
input resolution, sampling took ∼135× more time than direct reconstruction,
and for a 512 × 512 input resolution, it took ∼193× more time. Thus, direct
reconstruction was not only effective quantitatively and qualitatively, but also
time-efficient in comparison with sampled reconstruction. It is worth noting that
the problem of unreasonably high sampling times in diffusion models is well-
known, and different sampling strategies [64,73] have been proposed recently to
overcome this problem.

5 Conclusion

This paper presents an end-to-end approach for binarization of document images
using cold diffusion, which involves gradually transforming clean images into
their degraded counterparts and then training a diffusion model that learns
to reverse that process. The proposed approach was evaluated on 9 different
DIBCO document benchmark datasets, and our results demonstrate that it out-
performs traditional and state-of-the-art methods on a majority of datasets and
does equally well on others. Despite its promising potential for document bina-
rization, we believe it is also pertinent to discuss its limitations. As is the case
with deep networks generally, the reliability of our models was quite depen-
dent on the availability of data. While training datasets (DIBCO and Palm Leaf
combined) have quite a lot of diversity in terms of sample distribution, the intra-
class variance of samples was rather low, which necessitated training the models
for a large number of iterations with various data augmentations in order to
achieve the reported results. Therefore, to further enhance the performance of
deep network-based approaches in the future, it may be worthwhile to invest
resources in the creation of a large independent and diverse training dataset
(whether synthetic or not) for binarization. We also observed a significant corre-
lation between patch size and binarization performance with our approach. To
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address this issue in the future, it may be worthwhile to investigate the possibil-
ity of conditioning the output of our model on the surrounding context of each
image patch.
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