
On the Complexity of Linear Algebra
Operations over Algebraic Extension

Fields

Amir Hashemi1,2(B) and Daniel Lichtblau3

1 Department of Mathematical Sciences, Isfahan University of Technology,
84156-83111 Isfahan, Iran

Amir.Hashemi@cc.iut.ac.ir
2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

19395-5746 Tehran, Iran
3 Wolfram Research, 100 Trade Center Dr, Champaign, IL 61820, USA

danl@wolfram.com

Abstract. In this paper, we study the complexity of performing some
linear algebra operations such as Gaussian elimination and minimal poly-
nomial computation over an algebraic extension field. For this, we use
the theory of Gröbner bases to employ linear algebra methods as well as
to work in an algebraic extension. We show that this has good complex-
ity. Finally, we report an implementation of our algorithms in Wolfram
Mathematica and illustrate its effectiveness via several examples.

Keywords: Gaussian elimination · Minimal polynomial · Polynomial
ideals · Gröbner bases · FGLM algorithm · Algebraic extension fields ·
Complexity analysis

1 Introduction

In field theory, a field extension K ⊂ L is called algebraic if every element of L
is a root of some non-zero and monic polynomial over K. In this paper, we are
interested in analysing the complexity of performing some linear algebra opera-
tions over an algebraic extension field L. In this direction, we concentrate only
on carrying out Gaussian elimination on a matrix over L as well as computing
the minimal polynomial of a square matrix over L.

More precisely, assume that f1 ∈ K[x1] is a monic polynomial of degree
d1 ≥ 2 over the field K. Then, additions in K[x1]/〈f1〉 need d1 operations
whereas multiplications require O(d1 log(d1) log(log(d1))) operations. We refer
to [9] for more details. If α1 denotes the class of x1 in K[x1]/〈f1〉, then this
quotient ring is denoted by K[α1]. Doing an induction, assume that for each
2 ≤ i ≤ n, fi is a monic and reduced polynomial of degree di ≥ 2 in xi, over
the ring K[x1, . . . , xi−1]/〈f1, . . . , fi−1〉. Thus, we obtain the multiple algebraic
extension K[x1, . . . , xn]/〈f1, . . . , fn〉 which is denoted by L := K[α1, . . . , αn] for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 141–161, 2023.
https://doi.org/10.1007/978-3-031-41724-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_8

142 A. Hashemi and D. Lichtblau

simplicity. Let D = d1 · · · dn. Performing additions and multiplications in L
require O(D) and O(4nD log(D) log(log(D))) operations respectively; see [23,
Theorem 1] and [18] for more details. Lebreton [22] showed that in the latter
bound the number 4 can be replaced by 3. We will mostly be concerned with
doing linear algebra over L. Unless stated otherwise, we will work with square
matrices of dimension m×m. In prior work, Moreno Maza et al. [26, Theorem 2]
proposed an algorithm to compute the inverse of a matrix over L using

O(4nD(mω+1/2 + nmax{d1, . . . , dn}(ω−1)/2) log(D) log(log(D)))

operations, where ω < 2.3728639 denotes the optimal exponent of matrix multi-
plication (see [2,21]). If in this bound, we remove the term mω+1/2, then one gets
the cost of calculating the inverse of an element in L, see [26, Theorem 1]. Our
focus will be on straightforward but practical implementations of linear algebra
on matrices with elements in L. As such, we will not attempt to use asymptot-
ically fast matrix multiplication (so our exponent will be 3), but much of the
analysis that follows can be carried over to the asymptotic regime.

An important issue that we address in this paper is the computation of
the minimal polynomial of a matrix over an algebraic extension field. The best
deterministic approach to compute the minimal polynomial of an m × m over K
is due to Storjohann [29] (by computing the Frobenius normal form of the matrix)
which needs O(m3) field operations.

Note that in the setting of [9,23,26] (and indeed in much of the litera-
ture), the ideal 〈f1, . . . , fn〉 is generated by a triangular set. In this paper we
instead consider an arbitrary zero-dimensional ideal which is not necessarily rep-
resented by a triangular set, and show how one is able to perform various kinds
of linear algebra computations in L. In consequence, the complexity bounds
that we present may not be comparable with the existing bounds for ideals
generated by triangular sets. If we assume that, for each i, fi is irreducible
over K[x1, . . . , xi]/〈f1, . . . , fi−1〉 then L becomes a field. However this additional
assumption is not required in the sequel, and we can work with L as an exten-
sion ring (in which case we do not always have invertibility of ring elements, and
hence might be unable to make polynomials in the ring monic). We will note
when more restrictive assumptions are being made, such as a field given by a
tower of irreducible algebraic extensions or by a primitive element. In the latter
case, when the base field is prime, computations can be particularly fast, as we
will see in the experimental results.

Since an algebraic extension L can be represented more generally as a quo-
tient of a polynomial ring by a zero-dimensional ideal, Gröbner bases are a basic
tool for doing effective computations in L. Thus, in this paper, by applying par-
ticular tools developed for zero-dimensional Gröbner bases, we investigate the
complexity of performing some linear algebra operations over the field L. We
note that [17] presented an efficient algorithm for computing the minimal poly-
nomial of a matrix over L by using Gröbner bases. In this paper we will discuss
the arithmetic complexity of the method given in [17].

The notion of Gröbner bases as well as the first algorithm for their construc-
tion were introduced by Buchberger in 1965 in his Ph.D. thesis [7,8]. In 1979,

Linear Algebra over Algebraic Extension Fields 143

he improved this algorithm by applying two criteria (known as Buchberger’s
criteria) to remove some of the superfluous reductions, [5]. Later, [14] described
an efficient algorithm to install these criteria on Buchberger’s algorithm. Since
then, several improvements have been proposed to speed-up the computation of
Gröbner bases. In particular, in [13], using linear algebra techniques, the FGLM
algorithm was proposed to convert a Gröbner basis (of a zero-dimensional ideal)
with respect to any term ordering into a Gröbner basis for the same ideal with
respect to another ordering. We exploit FGLM techniques in analyzing worst-
case complexity for algorithms we present in this paper. In [6], Buchberger also
showed how one might employ Gröbner bases to do computations in algebraic
number fields. This general technique plays a role in our implementation section.

The paper [27] also describes a method for computing a matrix minimal
polynomial over a finite field. In contrast to the present work, they count field
operations as units. This is regardless of whether the field is prime or a power of
a prime. The present work, in contrast, accounts for all operations in the base
ring (that is, the rationals or underlying prime field). Thus this also takes into
consideration the complexity of the extension field representation.

The structure of the paper is as follows. Section 2 reviews the basic notations
and terminologies used throughout the paper. In Sect. 3, we discuss the com-
plexity of performing some linear algebra operations over an algebraic extension
field. Section 4 describes implementations of our approach presented in Sect. 3
along with experimental results.

2 Preliminaries

Throughout this article, we use the following notations. Let P = K[x1, . . . , xn] be
the polynomial ring where K is a field. We consider a sequence f1, . . . , fk of non-
zero polynomials in P and the ideal I = 〈f1, . . . , fk〉 generated by this sequence.
We assume that each fi has total degree di ≥ 2. Furthermore, we denote by R
the quotient ring P/I. Any element of this ring is given by [f] := f + I where
f ∈ P.

For us, a term is a power product xα := xα1
1 · · · xαn

n of the variables x1, . . . , xn

where α = (α1, . . . , αn). Let us fix a term ordering ≺. The leading term of a
polynomial f ∈ P, denoted by LT(f), is the greatest term (with respect to ≺)
appearing in f . The coefficient of LT(f) in f is called the leading coefficient of
f and is denoted by LC(f). The product LM(f) := LC(f) · LT(f) is the leading
monomial of f . The leading term ideal of I is defined as LT(I) = 〈LT(f) | 0 	=
f ∈ I〉. For a finite set G ⊂ P, LT(G) denotes the set {LT(g) | g ∈ G}.

A finite subset G ⊂ I is called a Gröbner basis for I with respect to ≺, if
LT(I) = 〈LT(G)〉. A Gröbner basis is called minimal if all leading coefficients
are unity and in addition it contains no redundant elements, that is, no leading
term is divisible by the leading term of a different element. From here on we
assume all Gröbner bases to be minimal. A minimal Gröbner basis is called
reduced if no term in any polynomial in the basis is divisible by the leading term
of a different element. One of the most immediate and important applications

144 A. Hashemi and D. Lichtblau

of Gröbner bases is the following result (which is referred to in the literature as
Macaulay’s theorem) allowing us to find a basis for R as a K-vector space.

Proposition 1 ([11, Proposition 4, page 250]). Let G be a Gröbner basis
of the ideal I ⊂ P. Then, the normal set N(G) := {[u] | u is a term and u /∈
〈LT(G)〉} forms a basis for R as a K-vector space. This is known as the normal
set for the basis G.

By abuse of notation, we will refer to basis elements of N(G) by the minimal
terms that generate them.

It is well-known that the remainder of the division a polynomial f by a
Gröbner basis G with respect to ≺ is unique and is denoted by NFG(f). We shall
notice that NFG provides a K-linear map from P to R and in consequence we
have R = {[NFG(f)] | f ∈ P}. From the finiteness theorem (see [11, Theorem 6,
page 251]), we know that if I is zero-dimensional then N(G) is finite and its
size is the dimension of R as a K-vector space. Subsequently, this size will be
considered as a factor in our complexity analysis. An immediate corollary to the
above proposition is that if the product of terms t1t2 belongs to N(G) then each
factor lies in N(G).

Definition 1 ([15, page 52]). Let I ⊂ P be any zero-dimensional ideal. We
define the degree of I as the cardinality of N(G); and we denote it by deg(I).

Definition 2. Let t be a power product in the normal set N(G) and x be a
variable in the defining ideal. If xt does not lie in N(G) then we call it a boundary
term. The set of all boundary terms associated to G is denoted by B(G).

Since all elements of LT(G) lie in B(G), we see that |G| ≤ |B(G)| ≤ n|N(G)|.
Also recall a simple result in Proposition 2.1 of [13]: each element of B(G) is
either an element of LT(G) or else a product of the form xit where t ∈ B(G).
We refer to [4,11] for more details on the theory of Gröbner bases.

Now let us recall some facts concerning algebraic extension fields. A finite
algebraic extension field L of K is a field K(α1, . . . , αn) where the αi’s are alge-
braic over K. According to Kronecker’s construction, we have the K-algebra
homomorphism

ψ : P → K(α1, . . . , αn)

defined by xi �→ αi. It is well-known that there exist polynomials f1, . . . , fn ∈ P
such that Ker(ψ) = 〈f1, . . . , fn〉. From now on, we denote this ideal by I; it is
a maximal (and zero-dimensional) ideal of P. It is clear that K(α1, . . . , αn) is
isomorphic to K[x1, . . . , xn]/I as a K-algebra (with each αi being the equivalence
class of xi modulo I). For more details on the relation of the Gröbner bases to
the algebraic extension fields, we refer to [1,6].

In the subsequent sections we work with the quotient ring K[x1, . . . , xn]/I
where I is not necessarily represented by a triangular set. Instead it will be
represented by the reduced Gröbner basis G = {g1, . . . , gt} with respect to a
given term ordering ≺. In some cases this might include finding a primitive
element that generates I (in which case there is an obvious equivalence to a

Linear Algebra over Algebraic Extension Fields 145

triangular set representation). We define D to be deg(I) (that is, D is the size
of the normal set). By the well-known Bézout theorem, we have D ≤ dn where
d is the maximum degree of a generating set of I. We give some indication of
the complexity of computing a primitive element that generates I in Sect. 4.
We shall note that in our complexity analysis in the next section, we do not
take into account the complexity of computing the reduced Gröbner basis G.
Dickenstein et al. [12] have shown that if the zero-dimensional ideal I is generated
by polynomials of degree at most d then its reduced Gröbner basis with respect
to ≺ can be computed within the arithmetic complexity dO(n2), see also [16].

For reasons that will be clarified later in this paper, we may also assume
that algebraic extensions have primitive elements, that is, can be generated by a
single algebraic element of the multiplicative group of the field (in practice this
will be a linear combination of the given set of generating elements). See [4,19]
for details regarding computation and use of primitive elements.

A common way of defining an extension field using multiple elements is to
have the i-th element defined as a solution of a monic polynomial fi in the new
variable xi, with coefficients of the non-leading terms being polynomials in the
prior elements. In particular, if {f1, . . . , fn} forms a triangular set then we have
such a representation. In the setting of triangular sets, the size D of the extension
is easily seen to be the product of the degrees of the fi in the corresponding main
variables xi. So we have n ≤ log2(D) or, stated differently, D ≥ 2n (we tacitly
assume no extension elements are trivial, that is, linear combinations of previous
elements, so all generators are algebraic elements of degree at least 2). In the case
that {f1, . . . , fn} is a triangular set, we will refer to the corresponding extension
as a “tower extension”. Note that algebraic fields need not be given as tower
extensions, as the next example shows.

Example 1. The ideal given by the polynomials {x2 + xy + 2, y2 + yz − 3, z2 −
zx + zy + 4x + 3y + 5} is in terms of n = 3 variables and hence 2n = 8. A
Gröbner basis for this ideal is {2004 − 1656z + 83z2 + 210z3 − 90z4 + 61z5 −
3z6 + 3z7, 356844 + 252448y + 202412z − 27327z2 + 35961z3 − 14627z4 +
834z5 − 807z6, − 166836 + 378672x − 205968z − 11873z2 − 58193z3 − 857z4 −
2934z5 + 219z6}. So the normal set has the size D = 7 and this is less than 2n.

3 Complexity Results

In this section, we discuss the complexity analysis of computing the inverse of
an algebraic number as well as performing some of the well-known linear algebra
operations over an algebraic extension field. We assume unless stated otherwise
that the extension field is defined by n algebraic elements and represented by a
Gröbner basis G.

3.1 Multiplication Table

In some of the theorems that follow we will require a fast means of reducing
products of pairs of elements in the normal set N(G) into linear combinations

146 A. Hashemi and D. Lichtblau

of elements in N(G). To this end we create a table of these products and their
corresponding reduced forms. We will assume that table elements can be stored
and found in O(n) time; in implementations this might be accomplished using
for example a hash table on the exponent vectors. Once we have such a table,
every reduction of such a product is O(nD) operations where n is the number
of algebraic elements defining the ideal (this is simply the cost of writing that
many terms).

Given a polynomial p1 of length l1 and a reducing polynomial p2 of length l2,
where terms in p1 are comprised of products of two normal set elements and those
in p2 are only normal set elements, we make the assumption that the reduction
can be performed in O(nl2) steps, that is, the length of the polynomial being
reduced does not matter. In practice this can be achieved for example by using a
dense data structure for the elements in N(G) and hashing all exponent vectors
to locate their position in that structure; we regard this as a preprocessing step.
Since we will also need to look up term reductions after we compute them, we
have another cost of O(nD2). For our purposes we will assume n ≤ D. In the
theorem below we ignore these costs because they are smaller than the actual
complexity. We now give the complexity of computing a multiplication table, as
we will use this in the sequel (in particular in Subsect. 3.2). Moreover, as this is
an extension of the FGLM method of basis conversion [13], it is thus of interest
in its own right.

Theorem 1. Given a reduced Gröbner basis G for an ideal I defined by n alge-
braic elements, with normal set N(G) of size D, we can compute a multiplication
table for all pairs in N(G) in O(D4) arithmetic operations.

Proof. Denote the elements of N(G) as u1, u2, . . . , uD with u1 ≺ u2 ≺ · · · ≺ uD.
We have at most O(D2) distinct power products in the set of product pairs. As
the first step, we order these products. We consider first the elements of N(G),
then the elements of LT(G), next the elements of B(G) \ LT(G) and finally the
remaining term products. For this ordering, we use the same term ordering ≺
as was used for the computation of G. It is well known that sorting a set of
size k comprised of elements of size n in this way is no worse than O(nk log(k)),
so this will not dominate the complexity analysis. Now, we hash this sorted list
of terms and it costs O(nD2) arithmetic operations (for simplicity we can use
e.g. natural numbers 1, 2, 3, . . . as the range of the hash function). Within the
complexity O(n) we can determine whether a term u belongs to LT(G) or not.
The same holds for membership in other subsets of term products. Below, we
keep the normal form of each term in the form b1u1 + · · · + bDuD and assume
that each elements g ∈ G is represented of the form LT(g) − b1u1 + · · · − bDuD.

Now assume that we are given a product u. Then four cases may occur:
Case (1) u ∈ N(G): This case comprises a “base case”, that is, we need no

replacements for them.
Case (2) u ∈ LT(G): Testing for membership in LT(G) is O(n). In this case,

we have the normal form of u with no calculations other than to list the O(D)
terms.

Linear Algebra over Algebraic Extension Fields 147

Case (3) u ∈ B(G) \ LT(G): In this case, we are able to write u as xt for a
variable x and a term t with t ∈ B(G). Since t ≺ u, it already has a rewrite as
a sum of elements in N(G). Thus we have u = xt = x(b1u1 + · · · + bDuD). As
each xui ≺ u we have xui = ci,1u1 + · · ·+ ci,DuD. Thus we can rewrite u at cost
O(n2 + nD + D2). Here the D2 contribution is for the actual rewriting, the n2

is the cost of finding such t ∈ B(G) (we have to check up to n variables, and
each check is O(n) to compute the exponent vector of u/xj and then to do a
lookup on that vector), and the nD component comes from having to locate D
reductions for the xui terms.

Case (4) u /∈ N(G) ∪ B(G): Then we can find a variable x and term t such
that u = xt and t /∈ N(G). Since t ≺ u it already has a reduction and thus we
have u = x(b1u1 + · · · + bDuD) for base ring elements ai and terms ui ∈ N(G).
For each such product we have xui ∈ B(G). Since we already handled terms from
B(G) in case (3), by applying an induction, we have xui = ci,1u1 + · · · + ci,Dud.
Here the main point is also the choice of the variable x. Indeed, any variable x
appearing in u will work, and the corresponding term t = u/x will already have
a reduction due to the order in which we compute these. The cost of finding x
and the lookup cost for the reduction of t are both clearly O(n). Similarly the
cost of finding reductions for the O(D) terms xui is O(nD). Thus we can reduce
u at cost O(n + nD + D2).

As we have O(nD) terms for case (3) and O(D2) terms for case (4), and
n ≤ D, the total cost is bounded by O(D4). �

We shall note that this proof is in essence the same argument as in the
FGLM reference [13], except that, in our paper, we also take into account the
number of generators n. However, since we have n ≤ D the overall complexity
given in [13] does not require this accounting. We remark that this bound is
pessimistic. Indeed, it is commonly the case that |G| is O(D) rather than O(nD).
Also we need not consider elements in B(G) that are not also in the set of
products of pairs in N(G). This is relevant for instance when G is a lexicographic
Gröbner basis and the smallest variable is in general position (so the shape lemma
applies). In this case the set of products is actually O(D) and only one Gröbner
basis reduction is needed since only one element from B(G) appears in the set
of products.

In the special case where we have a tower extension, we can work with a lexi-
cographical ordering. In this case the original polynomials defining the extension
are already a Gröbner basis although possibly not fully reduced. Thus we have
|G| = n, so we can drop a factor of D in the complexity analysis. Also in this
case we have D = d1d2 · · · dn where di is the degree in the extension-generating
variable xi of the ith polynomial fi, and by assumption of nontriviality we have
di ≥ 2. The set of products from N(G) lies in the Minkowski sum of N(G)
with itself, and as the normal set lies in a rectangular prism in Z

n, this sum
has cardinality 2nD ≤ D2. Thus we compute rewrites for strictly fewer than D2

terms in computing the multiplication table. Specifically, for any di ≥ 3 we have
a factor di/2 reduction in the number of operations for the largest component
of the complexity.

148 A. Hashemi and D. Lichtblau

3.2 Algebraic Inverse

Based on the structure of the FGLM algorithm, Noro [28] presented a simple
and effective method for computing the inverse of an algebraic number (another
method is given in [6]). To explain Noro’s method, let N(G) = {b1, . . . , bD}
be a basis for the K-vector space P/I with I = 〈f1, . . . , fn〉 (recall we take
as basis the normal set for a given Gröbner basis G of the extension ideal I).
Furthermore, let σ be an element of K(α1, . . . , αn). There exists a polynomial
f such that f = ψ−1(σ), where ψ is the map from Sect. 2 taking xi to αi.
Then the inverse of σ is

∑D
i=1 ciψ(bi), where the ci’s belong to K and satisfy

∑D
i=1 ciNFG(fbi) = 1.
Let d = deg(f) and τ be the number of non-zero terms of f . To simplify

the final complexity bounds, we assume here and throughout that d and τ are
less than or equal to D. If these inequalities do not hold, then it suffices to
compute the normal form of f with respect to G, and this does not change the
correctness of this approach. These simplifications are considered in the following
subsections.

In the next theorem we assume we have already precomputed a multiplication
table, so that cost is not included in the complexity analysis.

Theorem 2. The arithmetic complexity of computing the inverse of σ is
O(nD3).

Proof. First we form a generic linear combination p of the normal set elements,
that is, p =

∑D
i=1 ciψ(bi). This will be our inverse and so we must determine

values of the parameters. We next multiply by σ at cost O(nD2). We now reduce
σp − 1. Using the precomputed multiplication table (see Theorem 1) we rewrite
each of the O(D2) terms as a linear combination of N(G) at cost O(nD). Thus
the total of reducing this product is O(nD3). We set each coefficient to zero.
This gives a linear system of D equations in D unknowns. The arithmetic cost
of solving is bounded by O(D3) and so the O(nD3) reduction is the dominating
term in the complexity. �
Theorem 3. Keeping the above notations, and assuming our extension is given
by a primitive element, the arithmetic complexity of computing the inverse of σ
is O(D3).

Proof. As before, we form a generic linear combination p =
∑D

i=1 ciψ(bi). Again
we must determine values of the parameters. We next multiply by σ at cost
O(D2). The primitive element representation implies that the product has fewer
than 2D = O(D) distinct terms. We now reduce σp − 1 by the polynomial that
defines our primitive element. Since each reduction of the top monomial reduces
the degree, this entails O(D) reduction steps. As the reducing polynomial has
at most O(D) terms, the complexity of each reducing step is also O(D), so the
total cost of reducing σp − 1 is O(D2). Setting the reduced polynomial to zero
coefficient-wise gives D linear equations in the D unknown parameters. Solving
this system is O(D3) operations in the base field. As this dominates the prior
parts we achieve the claimed bound. �

Linear Algebra over Algebraic Extension Fields 149

We remark that if the field in question is an algebraic extension of a prime
field by a single irreducible polynomial (hence has a primitive element), well
known asymptotically fast methods for computing products and inverses (e.g.
based on Fourier-type transforms and the half-GCD respectively) become quite
practical. In such cases these are in fact what we use. When the base field is a
prime field but the extension is not given by a primitive element, then some of the
linear algebra analysis from the next subsection, which uses the multiplication
table, will still apply for converting to a primitive element representation and
back again.

In the rest of this subsection, we compare our complexity bound presented
in Theorem 2 to the bound that one can obtain using the FGLM techniques. In
doing so, let us recall some useful results regarding the FGLM algorithm, see [13]
for more details. Let I ⊂ P be a zero-dimensional ideal and D := deg(I). The
FGLM algorithm receives as input the reduced Gröbner basis G1 with respect
to ≺1, and outputs the reduced Gröbner basis G2 with respect to another term
ordering ≺2. The main advantage of this algorithm is the use of linear algebra
techniques that make it very efficient in practice. The basic ingredient of this
algorithm is the efficient computation of the normal form of a polynomial with
respect to G1. For this, one needs to construct the matrix corresponding to the
linear map φi : N(G) → N(G) with φi(b�) = NFG1(xib�) for each � where
N(G) = {b1, . . . , bD}. This leads to the construction of the FGLM table T (G) =
(tij�) where tij� denotes the j-coordinate with respect to N(G) of φi(xib�). It
is shown that cost of computing the FGLM table is O(nD3), [13, Proposition
3.1] and this complexity is the dominant factor in the complexity analysis of
transforming G1 to G2.

Theorem 4. The arithmetic complexity of computing the inverse of σ, by using
the FGLM table, is O(nD5).

Proof. Using the Noro’s method, we shall compute NFG(fb�) for an arbitrary
�. For this, we consider the complexity of computing NFG(xib�) where xi is a
variable. Using the FGLM table, it is equal to ti1�b1 + · · · + tiD�bD. One can
see easily that the cost of computing NFG(xrxib�) is O(D2) field operations.
In consequence, the complexity of computing NFG(mb�) is O(ndD2) where m is
a term of degree d. Since f has τ ≤ D terms then the complexity of NFG(fb�) is
O(nD4). Performing these operations for all � has the complexity O(nD5). Note
that the bound O(nD5) includes also the complexity O(nD3) for computing the
FGLM table. Finally, finding the inverse of σ is equivalent to finding the ci’s
such that

∑D
i=1 ciNFG(fbi) = 1 and this has the cost D3, ending the proof. �

Corollary 1. By taking into account the complexity of computing a multipli-
cation table (Theorem 1), the worst-case complexity of computing an algebraic
inverse by using Theorem 2 is O(nD4) which is lower than the corresponding
worst-case bound that one obtains using the FGLM techniques (Theorem 4).

Remark 1. By applying dynamic evaluation and modular techniques, Langemyr
in [20] gave an almost optimal algorithm, i.e. in computing time O(Sδ+1) for all

150 A. Hashemi and D. Lichtblau

δ > 0, where S is the best known a priori bound on the length of the output, for
computing the inverse of σ.

3.3 Gaussian Elimination

In this subsection, we discuss the complexity of performing Gaussian elimination
on a given matrix over K(α1, . . . , αn).

Theorem 5. Let A be a matrix of size s × t over K(α1, . . . , αn). Keeping the
notations presented in Subsect. 3.2, and assuming either that we have a prim-
itive element or that we have precomputed a multiplication table for N(G),
the arithmetic complexity of performing Gaussian elimination on A is given by
O(min(s, t)stnD3).

Proof. We know that for each i, j there exists polynomial fi,j such that fi,j =
ψ−1(A[i, j]). Let d be the maximum of deg(fi,j)’s and τ the maximum number
of non-zero terms of the fi,j ’s. From the above discussion we have n, d, τ ≤ D.
Let Row(i, A) denote the i-th row of A. Assume that we want to reduce the first
column of A by using A[1, 1]. Let σ be A[1, 1]. Now, to perform a row reduction
operation, one can first compute σ−1 (see Theorem 2 and corollaries), multiply
all the entries of Row(1, A) by σ−1 and then expand each entry of σ−1Row(1, A).
Recall the cost of inverting σ was bounded by O(nD3). Then the number of field
operations for this part is O(nD3 + tnD2). Note that σ−1 and each entry in the
first row have length at most D in terms of the elements of N(G), hence all
products have length bounded by D2. Reducing each term in such a product
under the assumption of a table or a primitive element is O(nD) and gives rise
to a result of length O(D), so the full reduction cost is no worse than O(nD3). As
there are t elements to consider, the complexity of making the pivot 1 is O(tnD3)
(and, as with element inversion, using a primitive element can bring this step to
O(tD2) since product lengths become bounded by 2D). Finally, we shall reduce
Row(i, A) with i > 1 by using the new row; i.e. σ−1Row(1, A). The number of
field operations to reduce one row is easily seen to be the same as the step of
making the pivot equal to 1. We shall repeat this operation for i = 2, . . . , s. All
in all, reducing s − 1 rows by the first row costs O(nD3 + tnD3 + (s − 1)tnD3)
which is dominated by O(stnD3). The number of pivots to reduce beneath is
equal to the rank of the matrix, which is bounded by min(s, t) and this ends the
proof. �
We remark that for many purposes one need not make pivots equal to 1, and
so the complexity of inverting an element can be avoided. If we work with a
primitive element extension and also avoid computing inverses then the com-
plexity above is reduced by a factor of nD, to O(min(s, t)stD2), excluding costs
of pre- and post-processing for using a primitive element. If asymptotically fast
methods are used for multiplying algebraic elements, this reduces further to
õ(min(s, t)stD) (where the ”soft-Oh” notation hides logarithmic factors in D).

Linear Algebra over Algebraic Extension Fields 151

3.4 Minimal Polynomial

In this subsection, we analyse the complexity of computing the minimal poly-
nomial of a square matrix over K(α1, . . . , αn) by using the algorithm pre-
sented in [17]. For the reader’s convenience, we recall it here (see Algorithm
1). To explain the complexity of this algorithm, let A be an m × m matrix
over K(α1, . . . , αn). Then for each i, j there exists a polynomial fi,j such that
fi,j = ψ−1(A[i, j]). In order to reduce the complexity, we first replace each fi,j

by its normal form with respect to G. Without loss of generality, assume that
fi,j = NFG(fi,j). Let d be the maximum of deg(fi,j)’s and τ the maximum
number of non-zero terms of the fi,j ’s. In consequence we have n, d, τ ≤ D. Fur-
thermore let p(s) = amsm+am−1s

m−1+ · · ·+a0 be the minimal polynomial of A
where each ai ∈ K(α1, . . . , αn) will be determined. We shall need to compute the
sequence A2, A3, . . . , Am. From p(A) = 0 we can derive m2 algebraic equations
between the ai’s, say g1,1, . . . , gm,m. As we interleave reductions with each step,
it is easy to see that these polynomials have degree at most D (in terms of the
xi’s). In Algorithm 1, |X| denotes the size of a set X.

Algorithm 1 MinPoly

Require: Am×m a non-zero matrix, and G a Gröbner basis for the ideal I
Ensure: The minimal polynomial p(s) of A
1: gi,j :=

∑m
t=0 atA

t[i, j] for i, j = 1, . . . , m
2: J := 〈q1,1, . . . , qm,m〉 where qi,j = NFG(gi,j) for each i and j
3: G1 := A minimal Gröbner basis for I + J with respect to the lexicographical

ordering with xj ≺plex a0 ≺lex · · · ≺lex am for each j
4: � := The highest integer i such that ai appears in a polynomial in G1

5: if a0, . . . , a� ∈ G1 then
6: Return (s�+1)
7: end if
8: r := The integer i with a0, . . . , ai−1 ∈ G1 and ai /∈ G1 (if a0 /∈ G1, set r := 0)
9: G2 := G1|ar=1

10: p := NFG2(x
r + ar+1s

r+1 + · · · + a�s
�)

11: σ := AlgebraicInverse(a�)
12: p := σ · p
13: Return (p)

We note that the costly step of Algorithm 1 is the computation of a Gröbner
basis of the ideal I + J with respect to the mentioned ordering (see the line 2).
Below we present a simple and efficient way to compute such a basis. The first
point is that we need only a minimal Gröbner basis for I + J , rather than
the reduced one. Let qi,j = NFG(gi,j) for each i, j. Order the qi,j ’s from the
highest leading term to the lowest. Assume that q1, . . . , qm2 is this sequence of
polynomials. We want to construct recursively, for each i, the polynomials hi

and h̃i. At the beginning, we let h1 = q1. Suppose that h1 as a polynomial
in terms of the ai’s can be written as p�a� + · · · + p0a0 where p� 	= 0. Since

152 A. Hashemi and D. Lichtblau

[p�] ∈ R is invertible, we let h̃1 = w�h1 where [w�p�] = [1]. Thus, LT(h̃1) = a�.
Now, for each i = 2, . . . , m2, we define hi = NF{h̃1,...,h̃i−1}(qi). Consider hi as a
polynomial in terms of the ai’s of the form hi = pi0ai0 + · · ·+p0a0 where pi0 	= 0.
We know that [pi0] ∈ R is invertible. Define h̃i = wi0hi where [wi0pi0] = [1].
It yields that LT(h̃i) = ai0 .

Proposition 2. G ∪ {h̃1, . . . , h̃m2} \ {0} is a minimal Gröbner basis for I + J .

Proof. Proceeding by induction, we first show that if G ∪ {h̃1, . . . , h̃i−1} forms
a minimal Gröbner basis, then G ∪ {h̃1, . . . , h̃i} is a minimal Gröbner basis for
the ideal it generates. Since we have

gcd(LT(h̃i),LT(h)) = 1 ∀h ∈ G ∪ {h̃1, . . . , h̃i−1}

the claim follows immediately from Buchberger’s first criterion. From the con-
struction of the h̃i’s, it follows that the ideal generated by G∪{h̃1, . . . , h̃m2}\{0}
is equal to I + J , which ends the proof. �
Remark 2. For the proof of the correctness of Algorithm 1, we refer to [17,
Theorem 1]. Our presentation of this algorithm is slightly different from the
original version.

Example 2. In this example we illustrate the above process step by step to com-
pute the minimal polynomial of a given matrix. Let us consider the matrix
presented in [17, Example 2]. We wish to compute the minimal polynomial of
the following matrix over the field Z5(α1, α2) = Z5[x1, x2]/〈x2

1 + 1, x2
2 + x1〉. Let

A =

⎡

⎣
α1 1 0

α1 + α2 2 1
1 3 α1α2 + 1

⎤

⎦ .

It is easy to see that G = {x2
1 + 1, x2

2 + x1} is a Gröbner basis with respect
to x1 ≺lex x2 for the ideal I it generates. Let p(s) = a3s

3 + a2s
2 + a1s + a0 be

a polynomial vanishing on A. Then, with the above notations, we have

q1,1 = a0 + x1a1 + (x1 + x2 + 4)a2 + (2x1x2 + x1 + 2x2 + 4)a3

q1,2 = a1 + (x1 + 2)a2 + (3x1 + x2 + 1)a3

q1,3 = a2 + (x1x2 + x1 + 3)a3

q2,1 = (x1 + x2)a1 + (x1x2 + 2x1 + 2x2)a2 + (x1 + x2)a3

q2,2 = a0 + 2a1 + (x1 + x2 + 2)a2 + (4x1x2 + 4x1 + 4x2 + 3)a3

q2,3 = a1 + (x1x2 + 3)a2 + (4x1x2 + 2x1 + x2)a3

q3,1 = a1 + (x1x2 + 4x1 + 3x2 + 1)a2 + (2x1 + x2 + 3)a3

q3,2 = 3a1 + 3x1x2a2 + (3x1x2 + 2x1 + 3x2 + 3)a3

q3,3 = a0 + (x1x2 + 1)a1 + (2x1x2 + x1 + 4)a2 + (4x1x2 + 3x1 + 4x2 + 4)a3.

Now, we set h1 = q1,1. The coefficient of this polynomial in terms of the ai’s is
2x1x2 + x1 + 2x2 + 4. The inverse of this polynomial is −x1x2 − 3 = 4x1x2 + 2.

Linear Algebra over Algebraic Extension Fields 153

Therefore, h̃1 = (4x1x2 + 2)a0 + (2x1 + x2)a1 + (x1x2 + 2x1 + 3x2 + 2)a2 + a3.
Following the similar approach, we get

h̃2 = (x1x2 + x1 + 4x2 + 3)a0 + (x1x2 + 4x1 + x2 + 4)a1 + a2

h̃3 = (2x1 + 2x2 + 1)a0 + a1.

One observes that h4 = · · · = h9 = 0. Thus G ∪ {h̃1, h̃2, h̃3} is the desired
Gröbner basis for I + J . By the notations used in the algorithm we have r = 0
and � = 3. Putting a0 = 1 in this basis, and computing the normal form of
p(s) with respect to this basis leads to q(s) := (4x1x2 + x1 + 4x2 + 4)s3 +
(4x1 + 3x2)s2 + (3x1 + 3x2 + 4)s + 1. The inverse of 4x1x2 + x1 + 4x2 + 4 is
σ := 2x2 + 2x1. By multiplying q(s) with σ, we get the minimal polynomial
s3 + (4α1α2 + 4α1 + 2)s2 + (2α1α2 + 2α1 + 3α2 + 4)s + 2α1 + 2α2 for A.

Remark 3. We remark that we can emulate linear algebra by computing a mod-
ule Gröbner basis (see for example [24,25]). The ai’s can be seen as defining
the matrix columns (these are sometimes called “tag variables” in the literature,
and no S-polynomials are formed between distinct pairs of these. This can be
enforced either by using a basis algorithm that provides for degree bounds, or
else by the expedient of adding relations that all products of ai pairs vanish.
Computing a module Gröbner basis is one means of implementing the approach
described in the remarks preceding Proposition 2. We use this as one of the
methods in the implementation section.

Remark 4. Following the notations used in Algorithm 1, assume that a0, . . . , a�

belong to G1. Since a�+1 does not appear in G1 then A�+1 = 0 and in turn we
have a0 = · · · = a� = 0. In this case, the minimal polynomial of A is p(s) = s�+1.
For example, if we consider the matrix

A =
[

0 1
0 0

]

over the field Z5(α1, α2) (see the above example) then we have A2 = 02×2 and
in turn G1 = {x2

1 + 1, x2
2 + x1, a0, a1}. Thus, p(s) = s2.

Remark 5. For the efficiency of the algorithm, we can apply Algorithm 1 in an
iterative way by enumerating the matrices I,A,A2, . . . and stopping whenever a
linear dependency is detected.

Theorem 6. Keeping the above notations, and assuming either that we have a
primitive element or that we have precomputed a multiplication table for N(G),
the arithmetic complexity of computing the minimal polynomial of the matrix A
is O(m4nD3).

Proof. As the first step, we shall compute A2, A3, . . . , Am. From linear algebra,
it is well-known that the arithmetic complexity of computing X2 where X is
a matrix of size m × m is bounded by O(m3). However, since the entries of
A are polynomials containing at most D non-zero terms, then we shall take

154 A. Hashemi and D. Lichtblau

into account the cost of expanding the entries of A2. The cost of multiplying
two polynomials in n variables with D terms is O(nD2). Thus, to compute A2,
we need O(m3nD2) field operations. Next we compute the normal form with
respect to G of the entries of A2. Recall from the proof of Theorem 2 that
reducing an individual product in A2 has complexity O(nD3). Therefore the
total complexity of this operation for all entries of A2 is O(m3nD2 + m2nD3).
In consequence, the number of field operations to calculate A2, A3, . . . , Am is
O(m4nD2 + m3nD3). Within this complexity, we obtain the gi,j ’s and each gi,j

has at most D terms. The complexity of the rest of the computation is equivalent
to the cost of performing Gaussian elimination on a matrix of dimensions m2×m,
which we showed in Theorem 5 to be O(m4nD3) and this finishes the proof. �
Remark 6. Assume that p(s) = amsm + am−1s

m−1 + · · · + a0 is the mini-
mal polynomial of the matrix A. It is well-known that if a0 is non-zero then
A is invertible and its inverse can be compute using the equality A−1 =
−a−1

0 (amAm−1 + am−1A
m−2 + · · · + a1). Thus the complexity of Theorem 6

holds true for computing the inverse of A as well. In this case, the determinant
of A is a0.

One of our implementations does division-free linear algebra directly. In this
case Gröbner basis usage is restricted to interleaving extension field reductions
with the matrix operations. We avoid inverting elements in this implementation
(and thus typically do not obtain a monic minimal polynomial). As mentioned
earlier, this helps to reduce the complexity.

We (mostly) avoid a factor of n if we work with a primitive element. The
factor will instead appear in pre- and post-processing steps, where we first replace
the n original defining elements by polynomials in the primitive element, and at
the end reverse this replacement. We will say more about this when we describe
experiments. Another advantage, as noted before, is that we also reduce the
complexity of the linear algebra by a factor of D.

A further probabilistic complexity improvement is to work not with powers
At but instead with Atv where v is a random vector in the base field (this appears
to be a folklore approach and we have not found a definitive reference for its
origin). This gives rise to a Monte Carlo algorithm that reduces the complexity
of the deterministic one by a factor of m. This works reliably when the base field
is either infinite or a prime field, that is, large compared to the matrix dimension.
We remark that similar ideas are used in [27] and in some of the references cited
in that work.

4 Notes on Implementation and Experimental Results

As mentioned earlier, a reasonable way to work with linear algebra over an alge-
braic field is to compute a Gröbner basis over a module, with new variables for
the matrix columns and a Position-over-Term (POT) term ordering to enforce
left-to-right reduction. An implementation of matrix minimal polynomial com-
putation over an algebraic number field can be found in the Wolfram Function
Repository:

Linear Algebra over Algebraic Extension Fields 155

https://resources.wolframcloud.com/FunctionRepository/resources/Matrix
MinimalPolynomial

This way of computing the basis is the one described following Algorithm 1.
There are several ways the computations can be made more efficient than the
most naive implementation would provide. One improvement is to use a degree-
based Gröbner basis for handling the algebraic numbers. This is incorporated
into the overall Gröbner basis computations as follows. In order to do linear
algebra row reduction, the module variables need to be ordered lexicographically,
so we use a block ordering with these ranked highest and lexically between one
another. The variables representing the algebraics defining the extension field
come lexically after the module variables, and are ordered between themselves
by the graded reverse lexicographic (GRL) term order.

Again as noted earlier, sizes (degree and number of terms) in the step of
taking matrix products are controlled by interleaving reductions in each powering
step. When the base field is the rationals Q and n and D are fixed, integer
sizes grow as O(m) (and it is straightforward to show that this is a worst-case
upper bound). Since the arithmetic complexity in terms of matrix dimension
m is O(m4) (again holding all else constant, that is, ignoring the effect of the
algebraic extension), we expect the bit complexity to scale as O(m6) if the bit
sizes are too small to allow for arithmetic operations using asymptotically fast
methods.

4.1 Dependence on Matrix Dimension

In order to assess complexity empirically we conducted a simple experiment.
We construct a family of random examples and time them using the code men-
tioned in the implementation section. Each member of the family is indexed by
dimension, from 6 to 34. Matrix elements are random integers between -5 and
5, except the (1, 1) element is x and the (2, 2) element is y, where (x, y) satisfy
the algebraic relations 9x2 − 2, 8y3 − 3. Timings in seconds are given below.

0.1514 0.2596 0.4203 0.6413 0.9326 1.3277
1.9964 2.7591 3.8360 5.8487 8.0759 11.994
19.174 26.695 39.879 56.576 78.567 108.49
146.50 203.79 264.15 348.10 492.03 643.46
843.17 1091.1 1428.2 1758.3 2319.5

We fit these to polynomials of degree 5, 6, 7 and 8. This is done in a numer-
ically stable way by reweighting the values (dividing by the dimension raised to
the degree of the fit), fitting to a Laurent polynomial, and undoing the effect
of weighting to obtain an ordinary polynomial. We then assess relative errors
between polynomial values vs. computed values.

The maximum percentage relative errors for these four fits, from degree 5
to 8, are 15.8, 7.2, 5.7 and 4.7 respectively. The norms of the relative errors
show a similar drop between degrees 5 and 6, followed by a tapering: they are
(.439, .172, .134, .124). The principal of parsimony argues in favor of degree 6
being optimal.

https://resources.wolframcloud.com/FunctionRepository/resources/MatrixMinimalPolynomial
https://resources.wolframcloud.com/FunctionRepository/resources/MatrixMinimalPolynomial

156 A. Hashemi and D. Lichtblau

4.2 Dependence on Normal Set Size

We now describe experiments to assess complexity in terms of size of the exten-
sion field. For this purpose we chose to control coefficient growth by working in
an algebraic extension of the prime field Z7919. We used straightforward linear
algebra code with division-free row reduction. At each step we interleaved reduc-
tions by the extension field. In one variation we pre-process by (i) computing
a primitive element, (ii) solving for all defining algebraics in as polynomials in
this element, and (iii) replacing them in the matrix by their equivalent primi-
tive element polynomials. When the linear algebra is finished and we have our
polynomial, we post-process by replacing powers of the primitive element with
reduced polynomials in the original extension variables. We remark that we do
not compute algebraic element inverses using this method. This saves a factor
of D in the complexity, at the expense of obtaining a result, that is not monic.
We also use the Monte Carlo probabilistic method since it makes for faster code.
The goal is to show that experiments are consistent with the claimed complexity
being no worse than cubic in D. For this purpose we removed the costly step
of inversion in setting pivots to unity. By also taking advantage of the speed
gain from the Monte Carlo variation, we are able to run the experiments over a
fairly large range of extension degrees (recall that this speed gain applies to the
matrix dimension component of the complexity and not the component due to
D, so this does not interfere with the goal of these particular experiments).

In the first part of this experiment our algebraic extension is given by the
polynomials (3jxj − j, 2jyj+1 − (j +1)) where j varies from 16 to 45. We use the
same input matrix for all extensions. It is comprised of random integers between
-5 and 5, with the (1, 1) element replaced by x and the (1, 2) element replaced
by y. The sizes D of the normal sets, and corresponding timings, are in the table
below.

((272, 2.16) (306, 2.77) (342, 3.57) (380, 4.24) (420, 5.16)
(462, 6.40) (506, 7.90) (552, 9.05) (600, 11.10) (650, 12.79)
(702, 14.91) (756, 18.01) (812, 21.06) (870, 26.24) (930, 29.19)
(992, 36.32) (1056, 37.65) (1122, 41.64) (1190, 50.50) (1260, 63.87)
(1332, 64.01) (1406, 69.76) (1482, 77.50) (1560, 100.1) (1640, 109.6)
(1722, 119.6) (1806, 133.9) (1892, 139.5) (1980, 158.9) (2070, 191.0))

This fits reasonably well to a polynomial quadratic in D: 275.14−1.42894x+
0.004678x2. The largest relative error is under 0.1 (so less than 10%), and the
norm of the vector of relative errors is 0.28. These show but little change when we
use a cubic or higher degree fit. We show a log-log plot of times vs. D, translated
to go through the origin, along with the line y = 2x.

The experimental complexity in this case appears to be not much larger
than O(D2) (in particular, if we adjust the slope in the graph from 2 to 2.2,
we get even closer alignment), and this is better than the predicted value. This
is in part due to the use of an extension that has a sparse Gröbner basis. We
mention also that in this experiment, cost is dominated by the Gröbner basis

Linear Algebra over Algebraic Extension Fields 157

computation and the creation and use of a multiplication table to convert back
from a primitive element to the algebraic elements that originally define the
field extension. A variant of this experiment uses the same extension, but works
with a 20 digit prime modulus. The results were similar, with each data point
typically around 50% slower than the corresponding one with the smaller prime
modulus (Fig. 1).

Fig. 1. Translated log-log plot of normal set size vs. computation times, primitive
element sparse case

Our next experiment uses dense polynomials to define the extension. Leading
terms in the two variables are the same as in the last experiment, but now we
fill in with random coefficients times lesser power products. In this example the
complexities of different steps vary considerably. The main costs (as D increases)
are in (i) computing the primitive element Gröbner basis, (ii) computing the
table of replacements to rewrite powers of the primitive element in terms of the
normal set for the basis using the original variables and (iii) performing the
substitutions at the end (using this table) and expanding the result. Possibly
these are due to specifics of the implementation so we note two details. We
handle (i) using an implementation of the Gröbner walk [10] that has path
perturbation [3]. For (ii) we do repeated reductions of successive powers of the
primitive element and create a substitution table that we apply in (iii) to the
minimal polynomial; this is similar to how we create and utilise a multiplication
table when not working with a primitive element. A log-log plot, now using a
slope of 2.5, suggests an experimental complexity of O(D2.5). A fit indicates that
this gives a smaller relative error (by a factor of 2 or so) than a quadratic.

If we ignore the cost of computing a primitive polynomial for the extension,
translating the input to that form, and translating the result back to a form
expressed in the original field elements, the cost can be seen to be softly linear
in the degree extension D. We show this in Fig. 4, now plotted against a line of
slope 1.1.

If we forego the use of a primitive element then the speed-limiting factors
change. This must happen, since both the cost of computing a primitive element

158 A. Hashemi and D. Lichtblau

that of converting the resulting minimal polynomial to use the original variables
are removed. The new speed bump is in computing the normal set replacements
for products of all pairs of terms in the normal set. This is quite fast for the
case where the Gröbner basis polynomials are sparse; in the case where they
are dense it becomes the bottleneck. The plot in Fig. 3 indicates a plausible
complexity scaling as O(D2) (Fig. 2).

Fig. 2. Translated log-log plot of normal set size vs. computation times, primitive
element dense case plus computing and translating to-from primitive element repre-
sentation

Fig. 3. Translated log-log plot of normal set size vs. computation times, primitive
element dense case linear algebra only

Note that the plausible O(D2) complexity in no way contradicts the more
conservative bounds from the theory presented in the last section, in particular
Theorem 6. These examples have a fixed number of generators at n = 2. Thus
the Minkowski polytope for the sum of normal set elements is O(D) (rather than
O(D2)) and products of algebraic elements are likewise O(D) in length. Hence
we remove two factors of D in the overall complexity analysis.

Linear Algebra over Algebraic Extension Fields 159

Fig. 4. Translated log-log plot of computation times vs. normal set size, dense case
without primitive element

There is another idiosyncrasy of implementation that seems worthy of
remark. Our implementation that uses a Gröbner basis for the linear algebra
step has no need to compute algebraic inverses. Setting pivots to unity happens
automatically as part of the Gröbner computation, as S-polynomials are formed
between leading row elements and the extension-defining polynomials. On the
one hand, this introduces an inefficiency as compared to straight linear alge-
bra. On the other, it appears to vastly reduce coefficient swell in the case where
our base field is the rationals. The practical trade-offs of these implementations
might warrant further study, independent of the theoretical bounds presented in
this work.

Acknowledgements. The authors would like to thank the reviewers for their many
comments on our manuscript that helped us to improve it. The research of the first
author was in part supported by a grant from IPM (No. 14020413).

References

1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases, vol. 3. Ameri-
can Mathematical Society, Providence (1994)

2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplica-
tion. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 522–539. Society for Industrial and Applied Mathematics (2021)

3. Amrhein, B., Gloor, O., Küchlin, W.: On the walk. Theor. Comput. Sci. 187,
179–202 (1997)

4. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Com-
mutative Algebra. In cooperation with Heinz Kredel, Springer, New York (1993).
https://doi.org/10.1007/978-1-4612-0913-3

5. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction
of Gröbner-bases. In: Ng, E.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 3–21.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5 52

https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/3-540-09519-5_52

160 A. Hashemi and D. Lichtblau

6. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory.
In: Multidimensional Systems Theory, Progress, Directions and Open Problems.
Mathematics Application. vol.16, pp. 184–232. D. Reidel Publ. Co. (1985)

7. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität
Innsbruck (1965)

8. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. J.
Symb. Comput. 41(3–4), 475–511 (2006)

9. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary
algebras. Acta Inf. 28(7), 693–701 (1991)

10. Collart, S., Kalkbrener, M., Mall, D., Solernó, P.: Converting bases with the
Gröbner walk. J. Symb. Comput. 24, 465–469 (1997)

11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 3rd edn.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-35651-8

12. Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C.: The membership problem for
unmixed polynomial ideals is solvable in single exponential time. Discrete Appl.
Math. 33(1–3), 73–94 (1991)

13. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

14. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2–3), 275–286 (1988)

15. Hartshorne, R.: Algebraic Geometry. Corr. 8rd printing, vol. 52. Springer, New
York (1977). https://doi.org/10.1007/978-1-4757-3849-0

16. Hashemi, A., Heintz, J., Pardo, L.M., Solernó, P.: Intrinsic complexity for con-
structing zero-dimensional Gröbner Bases. In: Boulier, F., England, M., Sadykov,
T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 245–265.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 14

17. Hashemi, A., M.-Alizadeh, B.: Computing minimal polynomial of matrices over
algebraic extension fields. Bull. Math. Soc. Sci. Math. Roum. Nouv. Sér. 56(2),
217–228 (2013)

18. van der Hoeven, J., Lecerf, G.: Accelerated tower arithmetic. J. Complexity 55,
26 (2019). id/No 101402

19. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra. II. Springer,
Berlin (2005). https://doi.org/10.1007/3-540-28296-3

20. Langemyr, L.: Algorithms for a multiple algebraic extension II. In: Mattson, H.F.,
Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS, vol. 539, pp. 224–233. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54522-0 111

21. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
ISSAC 2014, pp. 296–303. ACM Press, New York (2014)

22. Lebreton, R.: Relaxed Hensel lifting of triangular sets. J. Symb. Comput. 68, 230–
258 (2015)

23. Li, X., Moreno Maza, M., Schost, É.: Fast arithmetic for triangular sets: from
theory to practice. J. Symb. Comput. 44(7), 891–907 (2009)

24. Lichtblau, D.: Practical computations with Gröbner bases (2009). https://www.
researchgate.net/publication/260165637 Practical computations with Grobner
bases

25. Lichtblau, D.: Applications of strong Gröbner bases over Euclidean domains. Int.
J. Algebra 7(5–8), 369–390 (2013)

https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/978-3-030-60026-6_14
https://doi.org/10.1007/3-540-28296-3
https://doi.org/10.1007/3-540-54522-0_111
https://www.researchgate.net/publication/260165637_Practical_computations_with_Grobner_bases
https://www.researchgate.net/publication/260165637_Practical_computations_with_Grobner_bases
https://www.researchgate.net/publication/260165637_Practical_computations_with_Grobner_bases

Linear Algebra over Algebraic Extension Fields 161

26. Moreno Maza, M., Schost, É., Vrbik, P.: Inversion modulo zero-dimensional regular
chains. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2012. LNCS, vol. 7442, pp. 224–235. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32973-9 19

27. Neunhöffer, M., Praeger, C.E.: Computing minimal polynomials of matrices. LMS
J. Comput. Math. 11, 252–279 (2008)

28. Noro, M.: An efficient implementation for computing Gröbner bases over algebraic
number fields. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151,
pp. 99–109. Springer, Heidelberg (2006). https://doi.org/10.1007/11832225 9

29. Storjohann, A.: An O(n3) algorithm for the Frobenius normal form. In: Proceedings
of the 1998 International Symposium on Symbolic and Algebraic Computation,
ISSAC 1998, Rostock, Germany, 13–15 August 1998, pp. 101–104. ACM Press,
New York (1998)

https://doi.org/10.1007/978-3-642-32973-9_19
https://doi.org/10.1007/978-3-642-32973-9_19
https://doi.org/10.1007/11832225_9

	On the Complexity of Linear Algebra Operations over Algebraic Extension Fields
	1 Introduction
	2 Preliminaries
	3 Complexity Results
	3.1 Multiplication Table
	3.2 Algebraic Inverse
	3.3 Gaussian Elimination
	3.4 Minimal Polynomial

	4 Notes on Implementation and Experimental Results
	4.1 Dependence on Matrix Dimension
	4.2 Dependence on Normal Set Size

	References

