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Abstract. We present an original algorithm in the MAPLE system
for solving the scattering problem in single-channel approximation of
the coupled-channel method of the optical model (OM) described by
a second-order ordinary differential equation (ODE) with a complex-
valued potential and regular boundary conditions. The complex-valued
potential consists of the known real part, which is a sum of the nuclear
potential, the Coulomb potential, and the centrifugal potential, and the
imaginary part, which is a product of the unknown coupling constant
g(E), depending on the collision energy E of a pair of ions, and the
derivative of the real part of the known nuclear potential with respect to
the ODE independent variable.

The presented algorithm implements the solution of the inverse prob-
lem, i.e., calculates the unknown coupling constant g(E) and scattering
matrix S(g(E), E) from condition |S(g(E), E)|2 = 1− |T (E)|2 by means
of the secant method. The required amplitudes of transmission T (E) and
reflection R(E) subject also to the condition |R(E)|2 = 1 − |T (E)|2 of
the model with incoming wave boundary conditions (IWBCs) are pre-
viously calculated by the standard MAPLE implemented KANTBP 4M
program.

The algorithm provides a one-to-one correspondence between the OM
with a complex-valued potential and the model of IWBCs with a real-
valued potential.
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The efficiency of the proposed approach is shown by solving numer-
ically the scattering problem and calculating the reference fusion cross
section for a pair of heavy ions 16O+144Sm in the single-channel approx-
imation of the close-coupling method.

Keywords: Symbolic-numerical algorithm · Optical model with
complex-valued potential · Incoming wave boundary conditions model ·
Heavy ion collision problem

1 Introduction

In the coupled-channel (CC) method for describing sub-barrier reactions with
heavy ions, the scattering problem is solved for a system of second-order ordinary
differential equations (ODEs) with complex-valued optical model (OM) poten-
tials and the ODE solutions subjected to regular boundary conditions (BCs).
This approach has started from [1–3] and was continued in [4–6].

The alternative incoming wave boundary condition (IWBC) model uses real-
valued potentials, each of them being a sum of a short-range nuclear potential
of interaction between two heavy particles, a long-range real Coulomb poten-
tial, and a long-range real centrifugal potential [7–13]. In the IWBC model, to
formulate correctly the Robin BCs with the correct set of threshold energies in
the coupled channel method, it was required to diagonalize the coupling matrix
of the effective potentials of coupled channels at the potential minimum point
inside the potential barrier [14–16]. Such a formulation of the IWBCs with diag-
onalization of the potential channel coupling matrix at the minimum point inside
the potential barrier was reported in recent papers [17,18] and implemented in
the KANTBP 3.0, KANTBP 3.1 programs [19,20].

This circumstance allowed us to return to considering the OM with the
complex-valued potential [2]. For simplicity, it is specified by the real-valued
spherical Wood–Saxon nuclear potential and the imaginary part of the surface
nuclear potential of the OM given as a product of the unknown coupling con-
stant and derivative of the known nuclear potential with respect to the ODE
independent variable, which is sufficient for low collision energies [21].

In the OM with a complex-valued potential, one of the main problems is to
find the coupling constant parameter, which depends on the collision energy of
two heavy ions. The problem of including the imaginary part into the nuclear
potential is traditionally solved by fitting the coupling constant value to the
experimental data on the cross section of the reaction, which depends on the
collision energy of the pair of heavy ions.

To specify the real part of the nuclear potential, it is sufficient to use the
well-known tabulated parameters of the Wood–Saxon nuclear potential and its
multipole deformation in the collective nuclear model [22], which correspond to
the experimental data on the reaction cross sections depending on the collision
energy [23]. Thus, to calculate the coupling constants for the imaginary part of
the nuclear potential in OMs, it is sufficient to construct an algorithm that uses
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as the initial data the transmission and reflection coefficients of the IWBC model
previously calculated by the KANTBP 4M program [24] implementing the finite
element method in MAPLE [25].

This paper presents an original algorithm implemented in the MAPLE system
for calculating the parameter g(E) > 0, the coupling constant of the imaginary
part of the complex-valued potential depending on the collision energy E of a
pair of ions, in the OM of the scattering problem described by the second-order
ODEs with complex-valued potential using the KANTBP 4M program.

In OM, the coupling constant g(E) > 0 is calculated from the condition

1 − |SL(g(E), E)|2 = |TL(E)|2,
where SL(g(E), E) is the scattering matrix depending on g(E) and E, and
TL(E) is the transmission amplitude depending only on E of the IWBC model
with the real-valued potential. The scattering matrix SL(g(E), E) is determined
by solving the ODE subject to regular BCs of a scattering problem for the
OM with complex-valued potential with given g(E). The transmission ampli-
tude TL(E) = T IWBC

L (E) is extracted from the solution of the ODE subject
to IWBC. Thus, the proposed algorithm provides a one-to-one correspondence
between the OM with a complex-valued potential and the IWBC model with a
real-valued potential announced in the pioneer paper [1].

The efficiency of the proposed algorithm is shown by solving the scattering
problem and calculating the reference fusion cross section of a pair of heavy ions
16O+144Sm in the single-channel approximation of the coupled-channel method
with the complex-valued potential.

The paper is organized as follows. In Sect. 2, we formulate the OM in the
single-channel approximation. Section 3 presents the OM algorithm. Section 4
presents a numerical example, in which the solutions of the scattering problem
and the reference cross section for the fusion of a pair of heavy ions 16O+144Sm
and the coupling constant of the imaginary part of the surface nuclear poten-
tial are calculated. In Conclusion, the main results are summarized and further
prospects for applying the proposed approach are outlined.

2 Optical Model and IWBC Model in the Single-Channel
Approximation

First, we compare the single-channel approximation of the OM [2] and the IWBC
model [10,20] without nuclear deformation coupling described by the equation

(
− �

2

2μ
�r + V (g, r) − E

)
Ψ(r) = 0, (1)

where Ψ(r) = r−1
∑

Lm ΨL(r)Y m
L (θ, ϕ), Y m

L (θ, ϕ) is a spherical harmonic [21],
and ΨL(r) satisfies the radial equation

(
− �

2

2μ
d2

dr2
+ VL(g, r) − E

)
ΨL(r) = 0. (2)
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In the OM and IWBC model, the radial wave function ΨL(r) is subjected to dif-
ferent BCs in the boundary points of different intervals r ∈ [rmin

L , rmax
L ] presented

in Sect. 3.
For the OM in Eq. (2), VL(g, r) is the complex-valued potential given by a

sum of four terms:

VL(g, r) = V (g, r) +
�
2

2μ
L(L + 1)

r2

= VN (r) − ıg(E)
dVN (r)

dr
+ V̄C(r) +

�
2

2μ
L(L + 1)

r2
, (3)

namely, the real-valued nuclear Woods–Saxon potential

VN (r) = − V0

1 + exp((r − R0)/a)
, (4)

the imaginary part of the surface nuclear potential including the unknown real-
valued coupling constant g(E) depending on collision energy E

− ıg(E)
dVN (r)

dr
, (5)

the Coulomb potential [26] describing the interaction of the projectile charge ZP

with the target charge ZT , uniformly distributed over a ball of radius RC

depending on the masses of the projectile AP and the target AT , and parame-
ter R00

V̄C(r) = ZP ZT

{
1/r, r ≥ RC ,
(3R2

C − r2)/(2R3
C), r < RC ,

(6)

RC = R0 = R00(A
1/3
P + A

1/3
T ).

The last term in Eq. (3) is a rotation centrifugal potential.
For solving a scattering problem in the IWBC model in Eq. (2), the complex-

valued potential VL(g, r) is replaced to the real-valued potential VL(r) deter-
mined by the following:

VL(r) = VL

(
g = 0,max

(
r, rmin

L

))
, (7)

where the value of rmin
L depends on the angular momentum L and is determined

by the condition

E > V min
L = VL

(
g = 0, rmin

L

)
,

dV min
L (g = 0, r)

dr

∣∣∣∣
r=rmin

L

= 0. (8)

The value of Lmax is restricted by the limited value of the incident energy E in
the entrance channel: E = VL(rmin

L ), where VL(rmin
L ) is the potential minimum,

L = 0, . . . , Lmax.
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Fig. 1. OM potential V (x, z) = �V (g, r) in the xz-plane (a) and VL(g, r) and its
components at g = 1 and L = 0 (b) for a pair of heavy ions 16O+144Sm

Fig. 2. Real and imaginary parts of the potentials VL(g, r) of OM (a) and the real-
valued potential VL(r) of IWBC model (b) for a pair of heavy ions 16O+144Sm

In the IWBC model, the nuclear potential VN (r) having a constant value of
VN (r = rmin

L ) for r ≤ rmin
L , the value of rmin

L is determined by the condition (8).
In Fig. 1 (a), we show the real part �V (g, r) of the OM potential in the

xz-plane. Figure 1 (b) shows the components of the potential VL(g, r) at L = 0
and g = 1. The real and imaginary parts of the potentials VL(g, r) and VL(r)
for 16O+144Sm are shown in Fig. 2 (a) for the OM model and in Fig. 2 (b) for
the IWBC model, respectively.

The parameters of the problem for the 16O+144Sm reaction are:

AP = 16, AT = 144.0, ZP = 8, ZT = 62, μ = AP AT /(AP + AT );
V0 = 105 MeV, R00 = 1.1 fm, A0 = 0.75 fm;

R0 = R00(A
1/3
P + A

1/3
T ) in the zeroth approximation.

3 The Optical Model Algorithm

The following algorithm calculates the unknown coupling constant g(E) > 0 for
a given value of energy E from the condition

1 − |SL(g(E), E)|2 = |TL(E)|2.
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The transmission TL(E) amplitude and the reflection RL(E) amplitude and
the eigenfunction ΨL(r) are calculated in advance by numerically solving the
ODE (2) with the real-valued potential VL(r) from (7) subject to IWBCs for a
given value of energy E. The scattering matrix SL(g(E), E) and eigenfunction
ΨL(r) are calculated by numerically solving the ODE (2) subject to regular BCs
of a scattering problem for the OM with complex-valued potential VL(g(E), r)
from (3) with given g(E).

Algorithm OMCCG.

Input E ∈ {E1, . . . , En} is a grid of real values of collision energies E.
Step 1. Finding the parameter g(E) > 0 on the grid E ∈ {E1, . . . , En} by the

secant method with a given tolerance 0 < ε � 1 � (10−8, 10−13).
Step 1.1. We put g = 0 and calculate G0 = −|TL(Ei)|2 using Algorithm

IWBCM.
Step 1.2. We choose the initial values of g0 = {0, i = 1, 2; g(Ei−2), i =

3, 4, . . . , n}, g1 = {10−4, i = 1; g(Ei−1), i = 2, 3, . . . , n}, and calcu-
late

G1 = 1 − |SL(g1, Ei)|2 − |TL(Ei)|2,
where SL(g1, Ei) is computed using the OM algorithm and the value
of |TL(Ei)|2 is calculated at Step 1.1.

Step 1.3. For k = 1, 2, . . . while |gk − gk−1| > ε: we put

gk+1 = gk − Gk
gk − gk−1

Gk − Gk−1
,

and calculate

Gk+1 = 1 − |SL(gk+1, Ei)|2 − |TL(Ei)|2.

Step 1.4. The fusion cross section σfus(E) is calculated using the formula

σfus(E) =
∑
L=0

σL
fus(E), σL

fus(E) =
π

k2
(2L + 1)(1 − |SL(g,E)|2). (9)

Output. Sets g(E), ΨL(r), SL(g,E), and σL
fus(E) of scattering states at the given

real energy E: on the grid E ∈ {E1, . . . , En} in the OM.

End of Algorithm OMCCG

Algorithm IWBCM.

Input r = [rmin
L , rmax

L ] is the interval of independent variable of ODE of the
IWBC model; E is the collision energy; VL(r) is the real-valued poten-
tial from (7).
Solving the scattering problem for Eq. (2) of the IWBC model with the
real-valued potential VL(r) from (7) and Robin BC at the boundary
points of the interval r = [rmin

L , rmax
L ],
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dΨL(r)
dr

= R(r)ΨL(r), R(r) =
dΨas

L (r)
dr

1
Ψas

L (r)
(10)

which follows from the asymptotic solution [20]

Ψas
L (rmin

L ) =
exp(−ıKr)√

K
T IWBC

L (E), K =

√
2μ
�2

√
E − VL(rmin

L ), (11)

Ψas
L (rmax

L ) =
1√
k
(Ĥ−

L (kr)−Ĥ+
L (kr)RIWBC

L (E)), k =

√
2μ
�2

√
E.

Here Ĥ±
L (kr) are the normalized outgoing and incoming Coulomb par-

tial wave functions,

Ĥ±
L (kr) = [±ıFL(η, kr) + GL(η, kr)] exp(∓ıδC

L ) (12)

and FL(η, kr) and GL(η, kr) are the regular and irregular Coulomb par-
tial wave functions, η = kZP ZT e2/(2E) is the Sommerfeld parameter,
δC
L = argΓ (L + 1 + ıη) is the Coulomb phase shift [27,28].

Calculating ΨL(r), TL(E) ≡ T IWBC
L (E) and RL(E) ≡ RIWBC

L (E),
testified to the following condition:

|TL(E)|2 + |RL(E)|2 = 1.

Output. ΨL(r) and TL(E), and RL(E) of scattering states at the given real
energy E in the IWBC model.

End of Algorithm IWBCM

Algorithm OM

Input. KeyOM = 0 is computing scattering states; KeyOM = 1 is computing
metastable states;
r = [r0L, rmax

L ] is the interval of the independent variable of ODE (2) of
the IWBC model; E is the collision energy; g(E) is the given coupling
constant depending on E; VL(g(E), r) is the real-valued potential from
(3).
If KeyOM = 0 then go to 1 else go to 2 fi.

1. Solving the scattering problem for Eq. (2) with respect to Ψ(r) and
SL(g,E) of the OM with the complex-valued potential VL(g, r) (3) for
a given value of g(E) calculated at Step 1.3 of OMCCG algorithm and
mixed BCs at the boundary points of interval r ∈ [r0L, rmax

L ]:
the Neumann BC at r = r0L,

dΨas
L (r)
dr

∣∣∣∣
r=r0

L

= 0, r0L ≤ rmin
L ,

and the Robin BC at r = rmax
L ,

dΨL(r)
dr

= R(r)ΨL(r), R(r) =
dΨas

L (r)
dr

1
Ψas

L (r)
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Fig. 3. Collision energy dependence of the parameter g(E), the fusion probability
P L
fus = |TL(E)|2, the reflection (scattering) coefficient |RL(E)|2 = |SL(g(E), E)|2, as

well as the smooth fusion partial cross section σL
fus(E) (in mb) of sub-barrier fusion

reaction for a pair of heavy ions 16O+144Sm for L = 0 (a) and L = 5 (b)

which follows from the asymptotic solution [20]

Ψas
L (rmax

L ) =
Ĥ−

L (kr) − Ĥ+
L (kr)SL(g,E)√
k

.

2. Calculating the eigenfunctions ΨLν(r) and the complex-valued eigenen-
ergies EM

L,ν of metastable states at a given value g(E) > 0 calculated at
Step 1.3 of OMCCG algorithm with the outgoing wave at the boundary
point r = rmax

L [29],

Ψas
Lν(r

max
L ) =

1√
k

Ĥ+
L (kr)OOM

L (EM
L,ν), k =

√
2μ
�2

√
EM

L,ν ,

where OOM
L (EM

L,ν) is the amplitude of outgoing wave.
Output. ΨL(r) and SL(g,E) of scattering states at the given real energy E in

the OM or eigenfunctions ΨLν(r) and complex eigenenergies EM
L,ν of

metastable states in the OM.

End of Algorithm OM
Remark. Instead of the Neumann BC, one can use also the Robin BC r = r0L,

which follows from the regular asymptotic solution

Ψas
L (r0L) =

rL+1 exp(−ıKr)√
K

AOM
L (E), K =

√
2μ
�2

√
E − VL(r0L),

where AOM
L (E) is a normalization factor.

4 Benchmark Calculations

An example of sub-barrier fusion reaction for a pair of heavy ions 16O+144Sm
is numerically studied using the IWBC model and the OM. To solve the scat-
tering problem and to calculate the metastable states, we use the KANTBP 4M
program [24] implementing the finite element method in MAPLE [25].
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Fig. 4. Eigenfunctions Ψ0(r) = ΨL(r) of scattering states of sub-barrier fusion reaction
for a pair of heavy ions 16O+144Sm at a non resonance energy of E = 61 MeV, L = 0.
IWBC (a) in comparison with OM at g = 0 (b) and g = 0.00429 (c)

Fig. 5. Eigenfunctions Ψ0(r) = ΨL(r) of the OM scattering states of sub-barrier fusion
reaction for a pair of heavy ions 16O+144Sm at L = 0 in the vicinity of resonance
(the second peak of g(E) in Fig. 3), E = Eres ≈ 57.7330 MeV at g = 0.001 (b) and
E = Eres ≈ 57.7375 MeV at g = 0 (e), in comparison with the eigenfunctions of
scattering states at E = Eres ± 0.1 MeV (a,c,d,f)

Figure 3 illustrates the collision energy dependence of the parameter g(E),
the fusion probability PL

fus = |TL(E)|2, the reflection (scattering) coefficient
|RL(E)|2 = |SL(g(E), E)|2, as well as the smooth fusion partial cross section
σL
fus(E) (in mb) at L = 0 (a) and L = 5 (b). The resonance structure of the cou-

pling constant g(E) is seen, which testifies for the existence of metastable states,
manifesting themselves as resonances in the elastic scattering in the interval of
energies E ∈ [52, 68] MeV.

Figure 4 (a) shows the eigenfunctions of the IWBC scattering states for
comparison with OM ones at g = 0 (Fig. 4 (b)) and at g = 0.00429 (Fig. 4 (c))
for a non-resonance energy of E = 61 MeV. At first glance, these functions have
similar behavior, but the real part of the IWBC function has v = 18 nodes in the
interval r ∈ [0, 10] and the transmission coefficient equal to |T0|2 = 0.411 that
corresponds to a partial transmission, whereas the OM function has v = 17 nodes
in the interval r ∈ [0, 10] and the transmission coefficient equal to |T0|2 = 0, i.e.,
|R0|2 = 1, which corresponds to a total reflection.
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Fig. 6. Eigenfunctions Ψ0(r) = ΨLν(r) of the three metastable states at L = 0 and
ν = 16, 17, 18 with complex energies EL,ν = Eν : E16 = 53.773 − 0.012ı (a), E17 =
57.732 − 0.013ı (b) and E18 = 61.162 − 0.166ı (c) at g = 0.001 in the vicinity of
the first, second, and third peaks of g(E), in comparison with three metastable states
E16 = 53.773 − 10−6ı (d), E17 = 57.732 − 0.001ı (e) and E18 = 61.163 − 0.155ı (f) at
g = 0 for a pair of heavy ions 16O+144Sm

Note that the IWBC function is calculated in the interval r ∈ [rmin
L , rmax

L ]
with Robin BCs. Here we continue this function over the interval r ∈ (0, rmin

L ]
using its asymptotic behavior (10). The latter is known because the nuclear
potential VN (r) = VN (rmin

L ) in this interval, as shown by horizontal lines in
Fig. 2 (b). However, in all papers exploiting the IWBC model, the behavior of
wave functions in this interval is not discussed. This is because of the difference
in the definition of potentials and BCs in these two models. Indeed, the OM
potential is prolonged till the vicinity r0L � rmin

L and the regular Neumann BC
are used at r0L, while in the IWBC model, the potential is cut off at r = rmin

L and
the Robin BC is used at this point. To compensate for this principal difference,
the imaginary part of the optical potential is switched on with the help of the
initially unknown coupling constant g(E) > 0. The corresponding scattering
state eigenfunction of OM at g = 0.00429 has the same v = 17 nodes in the
interval r ∈ [0, 10] and yields the transmission coefficient |T0|2 = 0.412, as shown
in Fig. 4 (c).

This observation gave us an opportunity to propose the above algorithm, in
which the agreement of OM and IWBC wave functions at L = 0 is achieved
by solving an inverse problem, namely, by calculating the unknown coupling
constant g(E) from the reflection R0(E) and transmission T0(E) amplitudes,
determined in advance together with the required wave functions of the IWBC
model.

The resonance peaks of g(E) correspond to the appearance of metastable
states with complex energy EM

L,ν at �EM
L,ν < 0, such that the real part of a

metastable state energy is close to the resonance scattering energy Eres ≈ �EM
L,ν .

The eigenfunctions of scattering states with the resonance energy Eres ≈ 57.73
at g = 0.001 and g = 0 in the vicinity of the second peak of g(E) are shown
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Table 1. The complex energy EM
L,ν = �EM

L,ν + ı�EM
L,ν of metastable states and the

corresponding shape resonance energies Eres ≈ �EM
L,ν of scattering problem OM at

L = 0, g = 0 and g = gres for a pair of heavy ions 16O+144Sm

ν EM
L,ν(g = 0) Eres(g = 0) g = gres EM

L,ν(g = gres) Eres(g = gres)

16 53.7731 − 10−6ı 53.7729 5 · 10−13 53.7731 − 1.2 · 10−6ı 53.7731
17 57.7328 − 0.0012ı 57.7326 1 · 10−7 57.7328 − 0.0012ı 57.7329
18 61.1639 − 0.1558ı 61.0675 0.0023 61.1614 − 0.1801ı 61.1645

in Figs. 5 (b) and 5 (e), and for the near-resonance energy Eres ± 0.1 in Fig. 5.
At g = 0.001 and g = 0, the resonance eigenfunctions, in contrast to the non-
resonance ones, are localized in the potential well. At g(E) > 0, the degree of
localization is less than at g = 0. Three metastable states correspond to three
peaks of g(E) in Fig. 3 (a), as shown in Fig. 6. So, at g(E) > 0, the absolute
value of the imaginary part of energy is larger than at g = 0. We show in
Table 1 the complex energy EM

L,ν of metastable states and corresponding shape
resonance energies Eres ≈ �EM

L,ν of the elastic scattering at L = 0 and g = 0,
and g(E) > 0. One can see that the imaginary parts of energy �EM

L,ν increase
with increasing value of the coupling constant g(E) > 0, that means decreasing
a life time of metastable states.

5 Conclusions

The algorithm implemented in the MAPLE system for solving the scattering
problem for a second-order ordinary differential equation of the OM with a
complex-valued potential and regular BCs is presented. The complex-valued
potential is a sum of the known real part of the potential, which includes the
nuclear potential, the Coulomb potential, and the centrifugal potential, and the
imaginary part of the potential, represented as a product of the unknown cou-
pling constant parameter g(E) depending on the collision energy E of a pair
of ions and the derivative of the real part of the known nuclear potential with
respect to the independent variable of the ODE.

The algorithm implements the solution of the inverse problem: the calculation
of the unknown coupling constant g(E) by means of secant method using as
input the amplitudes of reflection R(E) and transmission T (E) of the model
with IWBCs, calculated in advance using the standard MAPLE-implemented
program KANTBP 4M [24]. The proposed algorithm is shown to provide one-
to-one correspondence between the OM with a complex-valued potential and the
model of IWBCs with a real-valued potential.

The efficiency of the proposed approach was illustrated by a numerical exam-
ple of solving the scattering problem of a pair of heavy ions 16O+144Sm in the
single-channel approximation of the coupled-channel method of the test desk
given in Ref. [20]. The behavior of the coupling constant g(E) is shown to pos-
sess a resonance structure that corresponds to the existence of metastable states,
that manifest themselves as resonances in the elastic scattering in the region of
energy, where the fusion cross section smoothly increases.
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A generalization of the algorithm over the solution of the scattering problem
in OM for a system of second-order ODEs using the updated KANTBP 4M and
KANTBP 3.1 programs will allow a description of the experimental data on the
cross section for deep sub-barrier fusion of a pair of heavy ions. We hope that
the proposed algorithm will provide a wider application of the extended OM in
a description of sub-barrier reactions of heavy ions.
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