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Abstract. Computing triangular decompositions of polynomial systems
can be performed incrementally with a procedure named Intersect. This
procedure computes the common zeros (encoded as regular chains) of a
quasi-component and a hypersurface. As a result, decomposing a polyno-
mial system into regular chains can be achieved by repeated calls to the
Intersect procedure. Expression swell in Intersect has long been observed
in the literature. When the regular chain input to Intersect is of positive
dimension, intermediate expression swell is likely to happen due to spu-
rious factors in the computation of resultants and subresultants.

In this paper, we show how to eliminate this issue. We report on
its implementation in the polynomial system solver of the BPAS (Basic
Polynomial Algebra Subprogram) library. Our experimental results illus-
trate the practical benefits. The new solver can process various systems
which were previously unsolved by existing implementations of regu-
lar chains. Those implementations were either limited by time, memory
consumption, or both. The modular method brings orders of magnitude
speedup.

Keywords: Polynomial system solving · Triangular decomposition ·
Modular method · Regular chains · Intersection · Quasi-component

1 Introduction

Since the early works of Ritt [35], Wu [42], and Yang and Zhang [45], the Char-
acteristic Set Method has been extended and improved by many researchers.
This effort has produced more powerful decomposition algorithms, and now
applies to different types of polynomial systems or decompositions: paramet-
ric algebraic systems [18,22,44], differential systems [8,19,26], difference sys-
tems [24], unmixed decompositions and primary decomposition [38] of poly-
nomial ideals, intersection multiplicities [31], cylindrical algebraic decomposi-
tion [16,28], quantifier elimination [17], parametric [44] and non-parametric [14]
semi-algebraic systems. Today, triangular decomposition algorithms are avail-
able in several software packages [4,13,40,41,43]. Moreover, they provide
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back-engines for computer algebra system front-end solvers, such as Maple’s
solve command.

Despite of their successful application in various areas (automatic theorem
proving, dynamical systems, program verification, to name a few), solvers based
on triangular decompositions are sometimes put to challenge with input polyno-
mial systems that appear to be easy to solve by other methods, based on Gröbner
bases. Of course, one should keep in mind that different solvers may have differ-
ent specifications, not always easy to compare. Nevertheless, for certain classes of
systems, say zero-dimensional systems, one can expect that a triangular decom-
position on one hand, and the computation of a lexicographical Gröbner basis
(followed by the application of Lazard’ s Lextriangular algorithm [29]) on the
other, produce essentially the same thing.

While the development of modular methods for computing Gröbner bases
took off in the 1980’s thanks to Traverso [39] and Faugère [23], with follow-up
works by Arnold [1] and others, the development of such methods for triangular
decompositions started only in 2005 with the paper [21] by Dahan, Moreno Maza,
Schost, Wu and Xie. This latter method computes a triangular decomposition
Δ of a zero-dimensional polynomial system V (F ) over the rational numbers by

1. first computing a triangular decomposition, say Δp, of that system modulo a
sufficiently large prime number p;

2. transforming Δp into a canonical triangular decomposition of V (F mod p),
called the equiprojectable decomposition, Ep of V (F mod p); and

3. finally, lifting Ep (using the techniques of Schost [37]) into the equiprojectable
decomposition of V (F ).

Hence, this method helps to control the effect of expression swell at the level of
the numerical coefficients, which resulted in a significant efficiency improvement
on a number of famous test systems. However, this modular method has no
benefits on expression swell when expression swell manifests as an (unnecessary)
inflation on the number of terms. This phenomenon is generally caused by the
so-called extraneous or spurious factors in resultants, which have been studied
in the case of Dixon resultants [27]. Most algorithms for computing triangular
decompositions compute iterated resultants, either explicitly or implicitly.

In broad terms, the iterated resultant res(f, T ) between f and a regular
chain1 T ⊆ k[X1 < . . . Xn] encodes conditions for the hypersurface V (f) and
the quasi-component W (T ) to have a non-empty intersection.

To be precise, we recall some of the results in Sect. 6 of [15]. Assume that
T is a zero-dimensional regular chain. We denote by VM (T ) the multiset of the
zeros of T , where each zero of T appears a number of times equal to its local
multiplicity as defined in Chap. 4 of [20]. If T is normalized, that is, the initial
of every polynomial in T is a constant, then we have:

res(f, T ) =
∏

α∈VM (T )

f(α).

1 See Sect. 2 for a review of regular chain theory, including definitions of the terms
quasi-component, initial, etc.
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This Poisson Formula tells us that, if T is normalized, then res(f, T ) is “fully
meaningful”. In other words, it does not contain extraneous factors. Now, let us
relax the fact that T is normalized. For i = 1, . . . , n, we denote respectively by
ti, hi, ri: (1) the polynomial of T whose main variable is Xi, (2) the initial of ti,
(3) the iterated resultant res({t1, . . . , ti−1}, hi). In particular, we have r1 = h1.
We also define: (1) en = deg(f,Xn), (2) fi = res({ti+1, . . . , tn}, f), for 0 ≤ i ≤
n − 1, (3) ei = deg(fi, xi), for 1 ≤ i ≤ n − 1. Then, res(T, f) is given by:

he1
1

⎛

⎝
∏

β1∈VM (t1)

h2(β1)

⎞

⎠
e2

· · ·
⎛

⎝
∏

βn−1∈VM (t1,...,tn−1)

hn(βn−1)

⎞

⎠
en

⎛

⎝
∏

α∈VM (T )

f(α)

⎞

⎠

From that second Poisson formula, we can see that all factors but the rightmost
one (that is, the one from the first Poisson formula) are extraneous. Indeed, in the
intersection V (f) ∩ W (T ) there are no points cancelling the initials h2, . . . , hn.

These observations generalize to regular chains of positive dimension (just
seeing the field k as a field of rational functions) and can explain how the cal-
culation of iterated resultants can cause expression swells in triangular decom-
position algorithms. To deal with that problem, the authors of [15] study a few
trivariate systems consisting of a polynomial f(X1,X2,X3) and a regular chain
T = {t2(X1,X2), t3(X1,X2,X3)}. They compute res(T, f) by

1. specializing X1 at sufficiently many well-chosen values a,
2. computing R(a) := res(N(a), f(a)) where f(a) = f(a,X2,X3) and N(a) is

the normalized regular chain generating the ideal 〈t2(a,X2), t3(a,X2,X3)〉 in
k[X2,X3], and

3. combining the R(a)’s and applying rational function reconstruction.

The numerator of the reconstructed fraction is essentially the desired non-extra-
neous factor of res(T, f).

In this paper, we extend the ideas of [15] so that one can actually compute
V (f) ∩ W (T ) and not just obtain conditions on the existence of those common
solutions for f and T . Computing such intersections is the core routine of the
incremental triangular decomposition method initiated by Lazard in [28] and
further developed by Chen and Moreno Maza [15,33]. Consequently, we have
implemented the proposed techniques and measured the benefits that they bring
to the solver presented in [4].

We stress the fact that our objective is to optimize the Intersect algorithm [15]
for computing intersections of the form V (f)∩W (T ). Moreover, one of the main
applications of our work in this area is to support algorithms in differential alge-
bra, as in the articles [10,11]. With the challenges of that application2 in mind
and noting the success obtained in applying regular chain theory to differential
algebra, our approach to optimize the Intersect algorithm must remain free of
(explicit) Gröbner basis computations.

2 The differential ideal generated by finitely many differential polynomials is generally
not finitely generated, when regarded as an algebraic ideal.
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We observe that if Gröbner basis computations are to be used to support
triangular decompositions, efficient algorithms exist since the 1990’s. As shown
in [34], applying Lazard’ s Lextriangular to the lexicographical Gröbner basis
G(F ) of a zero-dimensional polynomial ideal 〈F 〉 produces a triangular decom-
position of the algebraic variety V (F ) in a time which is negligible comparing
to that of computing G(F ). This efficiency follows from the structure of a lexi-
cographical Gröbner basis as stated by the Gianni-Kalkbrener theorem [29].

The presentation of our modular method for computing V (f)∩W (T ) is ded-
icated to the case where T is one-dimensional. The cases where T is of dimension
higher than one are work in progress but not reported here. Our approach to
the design of such a modular method is as follows.

In Sect. 3, we identify hypotheses under which V (f)∩W (T ) is given by a sin-
gle zero-dimensional regular chain C, such that V (f)∩W (T ) = W (C) holds. We
call those hypotheses genericity assumptions because C is shape lemma in the
sense of [7]. In Sect. 4, we develop a modular method which computes C, if the
genericity assumptions hold, and detects which assumption does not hold other-
wise. One intention of that algorithm is that, whenever a genericity assumption
fails, one should be able to recycle the computations performed by the modular
method, in order to finish the computations, see Sect. 5 for details. Section 6
gathers some notes about a preliminary implementation of the modular algo-
rithm presented in Sect. 4. The experimentation, reported in Sect. 7, contains
very promising results. Indeed, our solver based on this modular method can
process various systems which were previously unsolved by our solver (without
the modular method) and unsolved by the RegularChains library of Maple.

2 Preliminaries

This section is a short review of concepts from the theory of regular chains and
triangular decompositions of polynomial systems. Details can be found in [15].
This paper also relies on the theory of subresultants and we refer the unfamiliar
reader to the concise preliminaries section of [5].

Polynomials. Throughout this paper, let k be a perfect field, K be its algebraic
closure, and k[X] be the polynomial ring over k with n ordered variables X =
X1 < · · · < Xn. Let p ∈ k[X] \ k. Denote by mvar(p), init(p), and mdeg(p),
respectively, the greatest variable appearing in p (called the main variable of p),
the leading coefficient of p w.r.t. mvar(p) (called the initial of p), and the degree
of p w.r.t. mvar(p) (called the main degree of p). For F ⊆ k[X], we denote by
〈F 〉 and V (F ) the ideal generated by F in k[X] and the algebraic set of Kn

consisting of the common roots of the polynomials of F , respectively.

Triangular Sets. Let T ⊆ k[X] be a triangular set, that is, a set of non-constant
polynomials with pairwise distinct main variables. Denote by mvar(T ) the set
of main variables of the polynomials in T . A variable v ∈ X is called algebraic
w.r.t. T if v ∈ mvar(T ), otherwise it is said free w.r.t. T . For v ∈ mvar(T ), we
denote by Tv and T−

v (resp. T+
v ) the polynomial f ∈ T with mvar(f) = v and the



A Modular Algorithm for Computing the Intersection 73

polynomials f ∈ T with mvar(f) < v (resp. mvar(f) > v). Let hT be the product
of the initials of the polynomials of T . We denote by sat(T ) the saturated ideal
of T : if T = ∅ holds, then sat(T ) is defined as the trivial ideal 〈0〉, otherwise it is
the ideal 〈T 〉 : h∞

T . The quasi-component W (T ) of T is defined as V (T ) \V (hT ).
For f ∈ k[X], we define Z(f, T ) := V (f) ∩ W (T ). The Zariski closure of W (T )
in Kn, denoted by W (T ), is the intersection of all algebraic sets V ⊆ Kn such
that W (T ) ⊆ V holds; moreover we have W (T ) = V (sat(T )). For f ∈ k[X], we
denote by res(f, T ) the iterated resultant of f w.r.t. T , that is: if f ∈ k or T = ∅
then f itself, else res(res(f, Tv, v), T−

v ) if v ∈ mvar(T ) and v = mvar(f) hold, or
res(f, T−

v ) otherwise.

Regular Chains, Triangular Decomposition. A triangular set T ⊆ k[X] is
a regular chain if either T is empty, or letting v be the largest variable occurring
in T , the set T−

v is a regular chain, and the initial of Tv is regular (that is, neither
zero nor a zero divisor) modulo sat(T−

v ). Let H ⊆ k[X]. The pair [T,H] is a
regular system if each polynomial in H is regular modulo sat(T ). The dimension
of T , denoted by dim(T ), is by definition, the dimension of its saturated ideal
and, as a property, equals n−|T |, where |T | is the number of elements of T . If T
has dimension zero, then T generates sat(T ) and we have V (T ) = W (T ).

The saturated ideal sat(T ) enjoys important properties, in particular the
following, proved in [9]. Let U1, . . . , Ud be all the free variables of T . Then sat(T )
is unmixed of dimension d. Moreover, we have sat(T ) ∩ k[U1, . . . , Ud] = 〈0〉.
Another property is the fact that a polynomial p belongs to sat(T ) if and only if
p reduces to 0 by pseudo-division w.r.t. T , see [6]. Last but not least, a polynomial
p is regular modulo sat(T ) if and only if we have res(p, T ) 	= 0.

Specialization and Border Polynomial. Let [T,H] be a regular system of
k[X]. Let U = U1, . . . , Ud be the free variables of T . Let a = (a1, . . . , ad) ∈ Kd.
We say that [T,H] specializes well at a if:

(i) for each t ∈ T the polynomial init(t) is not zero modulo the ideal 〈U1 −
a1, . . . , Ud − ad〉; and

(ii) the image of [T,H] modulo 〈U1 − a1, . . . , Ud − ad〉 is a regular system.

Let BT,H be the primitive and square-free part of the product of all res(h, T )
for h ∈ H ∪ {hT }. We call BT,H the border polynomial of [T,H]. From the spe-
cialization property of sub-resultants, one derives the following [32]: The system
[T,H] specializes well at a ∈ Kd if and only if BT,H(a) 	= 0 holds.

Normalized Regular Chain. The regular chain T ⊆ k[X] is said to be nor-
malized if, for every v ∈ mvar(T ), none of the variables occurring in init(Tv)
is algebraic w.r.t. T−

v . Let d = dim(T ), Y = mvar(T ), and U = U1, . . . , Ud be
X \Y . Then, T normalized means that for every t ∈ T we have init(t) ∈ k[U ]. It
follows that if T is normalized, then T is a lexicographical Gröbner basis of the
ideal that T generates in k(U)[Y ] (that is, over the field k(U) of rational func-
tions), and we denote by nf(p, T ) the normal form of a polynomial p ∈ k(U)[Y ]
w.r.t. T as a Gröbner basis. Importantly, if T is normalized and has dimension
zero, then init(t) ∈ k for every t ∈ T .
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Regular GCD. Let T ⊆ k[X] be a regular chain. Let i be an integer with
1 ≤ i ≤ n. Let p, t ∈ k[X] \ k be polynomials with the same main variable Xi,
and g ∈ k or g ∈ k[X] with mvar(g) ≤ Xi. Assume that:

1. Xi > Xj holds for all Xj ∈ mvar(T ); and
2. both init(p) and init(t) are regular w.r.t. sat(T ).

For the residue class ring k[X1, . . . , Xi−1]/
√

sat(T ), denote its total ring of frac-
tions as A. Note that A is isomorphic to a direct product of fields. We say that
g is a regular GCD of p, t w.r.t. T whenever the following conditions hold:

(G1) the leading coefficient of g in Xi is invertible in A;
(G2) g belongs to the ideal generated by p and t in A[Xi]; and
(G3) if deg(g,Xi) > 0, then g divides both p and t in A[Xi], that is, both

prem(p, g) and prem(t, g) belong to
√

sat(T ).

When Conditions (G1), (G2), (G3) and deg(g,Xi) > 0 hold:

(G4) if mdeg(g) = mdeg(t), then
√

sat(T ∪ t) =
√

sat(T ∪ g) and W (T ∪ t) ⊆
Z(hg, T ∪ t) ∪ W (T ∪ g) ⊆ W (T ∪ t);

(G5) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is a regular chain and
we have
(a)

√
sat(T ∪ t) =

√
sat(T ∪ g) ∩ √

sat(T ∪ q) and
(b) W (T ∪ t) ⊆ Z(hg, T ∪ t) ∪ W (T ∪ g) ∪ W (T ∪ q) ⊆ W (T ∪ t);

(G6) W (T ∪ g) ⊆ V (p); and
(G7) V (p) ∩ W (T ∪ t) ⊆ W (T ∪ g) ∪ V (p, hg) ∩ W (T ∪ t) ⊆ V (p) ∩ W (T ∪ t).

Intersect and Regularize. Let p ∈ k[X] and let T ⊆ k[X] be a regular chain.
The function Intersect(p, T ) computes regular chains T1, . . . , Te such that: V (p)∩
W (T ) ⊆ W (T1)∪ · · ·∪W (Te) ⊆ V (p)∩W (T ). The function call Regularize(p, T )
computes regular chains T1, . . . , Te such that: (1) for each i = 1, . . . , e, either
p ∈ sat(Ti) holds or p is regular w.r.t. sat(Ti); and (2) we have W (T ) = W (T1)∪
· · · ∪ W (Te), and mvar(T ) = mvar(Ti) holds for i = 1, . . . , e.

Triangular Decomposition. Let F ⊆ k[X]. The regular chains T1, . . . , Te

of k[X] form a triangular decomposition of V (F ) in the sense of Kalkbrener
(resp. Wu and Lazard) whenever we have V (F ) =

⋃e
i=1 W (Ti) (resp. V (F ) =⋃e

i=1 W (Ti)). Hence, a triangular decomposition of V (F ) in the sense of Wu
and Lazard is necessarily a triangular decomposition of V (F ) in the sense of
Kalkbrener, while the converse is not true. Note that a triangular decomposition
can thus be computed from repeated calls to Intersect; see [15].

3 Genericity Assumptions

Let k be a field of characteristic zero or a prime field of sufficiently large charac-
teristic, where that latter condition will be specified later. Let f, t2, . . . , tn ∈ k[X]
be non-constant polynomials in the ordered variables X = X1 < · · · < Xn.
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Assume that T := {t2, . . . , tn} is a regular chain with mvar(ti) = Xi for
2 ≤ i ≤ n. Assume also mvar(f) = Xn. Our goal is to compute the intersection
V (f)∩W (T ) in the sense of the function call Intersect(f, T ), as specified in Sect. 2.
We shall show that, under some assumptions, one can compute a regular chain
C ⊆ k[X] so that C is zero-dimensional and we have: V (f) ∩ W (T ) = W (C).

For convenience, we define rn := f . Regarding tn and rn as polynomials in
(k[X1, . . . , Xn−1])[Xn], let S(tn, rn,Xn) be the subresultant chain of tn and rn,
if mdeg(tn) ≥ mdeg(rn), or the subresultant chain of rn and tn otherwise. Let
S0(tn, rn,Xn) and S1(tn, rn,Xn) be the subresultants of index 0 and 1 from
S(tn, rn,Xn). We let

rn−1 := S0(tn, rn,Xn) and gn := S1(tn, rn,Xn).

Continuing in this manner, for 2 ≤ i ≤ n − 1, let S(ti, ri,Xi) be the sub-
resultant chain of ti and ri (resp. ri and ti) regarded as polynomials in
(k[X1, . . . , Xi−1])[Xi] if mdeg(ti) ≥ mdeg(ri) (resp. mdeg(ti) < mdeg(ri)) holds.
Let S0(ti, ri,Xi) and S1(ti, ri,Xi) be the subresultants of index 0 and 1 from
S(ti, ri,Xi). We let

ri−1 := S0(ti, ri,Xi) and gi := S1(ti, ri,Xi).

To make the problem generic, we assume the following:

Hypothesis 1: ri 	∈ k and mvar(ri) = Xi, for 1 ≤ i ≤ n − 1 (1)
Hypothesis 2: gi 	∈ k, for 2 ≤ i ≤ n, (2)
Hypothesis 3: C := {s, g2, . . . gn} is a regular chain, (3)
Hypothesis 4: (∀i ∈ {2, . . . , n}) res(init(ti), {s, g2, . . . , gi−1}) 	= 0, (4)

where s is the squarefree part of s := r1, that is, s/gcd(s,der(s)). Hypothesis 3
has a number of consequences which, essentially, rephrase the fact that C is
a regular chain. Proposition 1 gathers those consequences. Building on that,
Proposition 2 yields Eq. (5) which plays a key role in our method for computing
Intersect(f, T ).

Proposition 1. The polynomials s, g2, . . . gn are non-constant and have main
variables X1, X2, . . . , Xn, respectively. Moreover, the initial of gi is invertible
modulo the ideal 〈s, g2, . . . , gi−1〉 generated by s, g2, . . . , gi−1 in k[X1, . . . , Xi−1].

Hypothesis 4 expresses the fact that the initial of the polynomial ti is invert-
ible modulo the ideal 〈s, g2, . . . , gi−1〉, for i = 2 · · · n. We note that from Hypoth-
esis 4, the set {s, g2, . . . , gi−1, ti} is also a regular chain, for 2 ≤ i ≤ n.

Proposition 2. Fix an integer i such that 2 ≤ i ≤ n holds. Then, the polyno-
mial gi is a regular GCD of ri and ti modulo the regular chain {s, g2, . . . , gi−1}.
Moreover, we have:

V (s, g2, . . . , gi−1, ri, ti) = V (s, g2, . . . , gi−1, gi). (5)
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Proof. We first prove that gi is a regular GCD of ri and ti modulo the regular
chain {s, g2, . . . , gi−1}. Since {s, g2, . . . , gi−1, gi} is a regular chain, Property (G1)
of a regular GCD clearly holds. We prove (G2). Subresultant theory tells us that
there exist polynomials ui, vi ∈ k[X1, . . . , Xi] so that we have: uiri + viti = gi.
Let Ai be the total ring of fractions of k[X1, . . . , Xi]/〈s, g2, . . . , gi〉. Since s is
squarefree and since mdeg(g2) = · · · = mdeg(gi−1) = 1, the ring Ai−1 is actually
a direct product of fields which tells us that gi is the GCD (in the sense of a
Euclidean domain) of ri and ti over each of those fields. Therefore, Property
(G2) holds. In particular, both ri and ti belong to the ideal generated by gi in
Ai−1[Xi]. Thus, there exist polynomials qri

, qti ∈ Ai−1[Xi] so that the following
hold in Ai−1[Xi]: ri = qri

gi and ti = qtigi. Every polynomial p ∈ Ai−1[Xi] can be
written as the fraction of a polynomial n ∈ k[X1, . . . , Xi] over a polynomial d ∈
k[X1, . . . , Xi−1] so that d is invertible modulo 〈s, g2, . . . , gi−1〉. Therefore, there
exist polynomials in Ai−1[Xi], that we denote again qri

and qti for convenience,
so that the following hold in k[X1, . . . , Xi]: ri ≡ qri

gi mod 〈s, g2, . . . , gi−1〉 and
ti ≡ qtigi mod 〈s, g2, . . . , gi−1〉. From the above, it is clear that gi pseudo-divides
(actually divides) both ri and ti modulo 〈s, g2, . . . , gi−1〉. Therefore, Property
(G3) holds and we have proved that gi is a regular GCD of ri and ti modulo
the regular chain {s, g2, . . . , gi−1}. The second claim of this proposition follows
from the first one and Lemma 1.

Lemma 1. Fix an integer i such that 2 ≤ i ≤ n holds. Let ĝi ∈ k[X1, . . . , Xi]
be a non-constant polynomial with mvar(ĝi) = Xi. Assume that ĝi is a regular
GCD of ri and ti modulo the regular chain {s, g2, . . . , gi−1}. Then, we have:

V (s, g2, . . . , gi−1, ri, ti) = V (s, g2, . . . , gi−1, ĝi). (6)

Proof. We denote by Ti the regular chain {s, g2, . . . , gi−1, ti}. It follows from
Property (G7) of a regular GCD that: V (ri) ∩ W (Ti) ⊆ W ({s, g2, . . . , gi−1, ĝi})
∪ V (ri, hĝi

) ∩ W (Ti) ⊆ V (ri) ∩ W (Ti). Since hĝi
, the initial of ĝi, is invert-

ible modulo 〈s, g2, . . . , gi−1〉, we have: V (ri, hĝi
) ∩ W (Ti) = ∅. Since V (Ti) and

V ({s, g2, . . . , gi−1, ĝi}) are both zero-dimensional, we have: V (s, g2, . . . , gi−1, ti)
= W (Ti) = W (Ti) and V (s, g2, . . . , gi−1, ĝi) = W ({s, g2, . . . , gi−1, ĝi}). There-
fore, we have: V (ri, s, g2, . . . , gi−1, ti) = V (s, g2, . . . , gi−1, ĝi).

Theorem 1 tells us that, under our genericity assumptions, the result of
Intersect(f, T ) is given by the regular chain C = {s, g2, . . . , gn}.

Theorem 1. With our four Hypotheses 1, 2, 3 and 4, we have:

V (f, t2, . . . , tn) = V (s, g2, . . . , gn). (7)

Proof. This follows immediately from Proposition 2 and Lemma 2.

Lemma 2. For each integer i, such that 2 ≤ i ≤ n holds, let ĝi ∈ k[X1, . . . , Xi]
be a non-constant polynomial with mvar(ĝi) = Xi so that ĝi is a regular GCD of
ri and ti w.r.t. the regular chain {s, ĝ2, . . . , ĝi−1}. Then, we have:

V (f, t2, . . . , tn) = V (s, ĝ1, . . . , ĝn). (8)
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Algorithm 1. GenericIntersectDimOne

Require: (f, T ) as in Theorem 1. Recall: f �∈ k and mvar(f) = Xn.
Ensure: C as in Theorem 1.
1: rn := f
2: for i := n . . . 1 do
3: ri−1 := S0(ti, ri, Xi)
4: gi := S1(ti, ri, Xi)
5: if ri−1 ∈ k or mvar(ri−1) �= Xi−1 then
6: throw Hypothesis 1 not met
7: if gi ∈ k then
8: throw Hypothesis 2 not met
9: s:= squareFreePart(r1)

10: C := {s, g2, . . . gn}
11: if C is not a regular chain then
12: throw Hypothesis 3 not met
13: for i := 2 ... n do
14: if hi is not regular w.r.t. C then
15: throw Hypothesis 4 not met
16: return C

Proof. Since rn = f and since ri−1 belongs to the ideal generated by ri and ti,
we have: V (f, t2, . . . , tn) = V (r1, t2, r2, . . . , tn, rn). Since s is the squarefree part
of s = r1, we also have: V (f, t2, . . . , tn) = V (s, t2, r2, . . . , tn, rn). With repeated
application of Lemma 1, we deduce: V (f, t2, . . . , tn) = V (s, ĝ1, . . . , ĝn).

Algorithm 1 summarizes the results of this section. Note that Algorithm 1
computes Intersect(f, T ) only if Hypotheses 1, 2, 3, 4 hold, and throws an excep-
tion otherwise. The general task of computing Intersect(f, T ) can be achieved by
the algorithms presented in [15]. In fact, these exceptions can be caught by a
wrapper algorithm, which can then call the general Intersect procedure. More-
over, one can attach to these exceptions the data already computed by Algo-
rithm 1 so that the wrapper algorithm can avoid unnecessary computations. We
will return to the handling of the exceptions of Algorithm 1 in Sect. 5.

4 The Modular Method

We use the same notations as in Sect. 3. The objective of this section is to turn
Algorithm 1 into a modular algorithm where:

1. we evaluate f and T at sufficiently many values of X1 so that:
(a) T specializes well at X1 = a to a zero-dimensional regular chain T (a),
(b) T (a) is replaced with a normalized regular chain Na generating the same

ideal,
(c) the images of gn, . . . , g2, r1 at X1 = a are computed efficiently; and

2. the polynomials gn, . . . , g2, r1 are reconstructed from their images by means
of interpolation and rational function reconstruction.
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Let ri(a) be the polynomial ri evaluated at X1 = a and ti(a) be the polynomial
from Na with main variable Xi. The benefit of this modular algorithm is that
the computation of the subresultants S0(ti(a), ri(a),Xi) and S1(ti(a), ri(a),Xi)
avoid the expression swell described in Sect. 1. Indeed, the regular chain Na is
normalized. This modular algorithm leads to the usual questions:

1. Can all computed modular images be combined in order to retrieve the desired
result, or are there some specializations that must be discarded?

2. If so, how do we detect those specializations that must be discarded?
3. How many modular images do we need in order to obtain the desired result?

We detail the answers to these three questions in the following three sub-
sections, respectively. Luckily, there are only finitely many bad specializations
which must be discarded.

4.1 The Fumber of Bad Specializations is Finite

Let a ∈ k and let Φa be the evaluation homomorphism from k[X1, . . . , Xn] to
k[X2, . . . , Xn] which evaluates X1 at a. Recall that C stands for {s, g2, . . . , gn}.
Assume that a is not a root of the border polynomial BC ∈ k[X1] of C. Therefore,
for 2 ≤ i ≤ n, the polynomial Φa(ti) is not constant and has main variable Xi.
Moreover, the set {Φa(t2), . . . , Φa(tn)} is a zero-dimensional regular chain in
k[X2, . . . , Xn]. Let S(Φa(ti), Φa(ri),Xi) be the subresultant chain of Φa(ti) and
Φa(ri) regarded as polynomials in (k[X2, . . . , Xi−1])[Xi]. From this subresultant
chain, let S0(Φa(ti), Φa(ri),Xi) and S1(Φa(ti), Φa(ri),Xi) be the subresultants
of index 0 and 1.

Proposition 3. With Hypothesis 1, there exists a finite subset D(f, T ) ⊆ k such
that, for all a 	∈ D(f, T ), for all 2 ≤ i ≤ n, we have:

Φa(gi) = S1(Φa(ti), Φa(ri),Xi), and Φa(r1) = S0(Φa(t2), Φa(r2),X2).

Proof. Fix i ∈ N such that 2 ≤ i ≤ n From Hypothesis 1, we have ri 	∈ k and
mvar(ri) = Xi. Using the lexicographical term order induced by X2 < · · · < Xi,
let ci−1 be the leading coefficient of ri regarded as a multivariate polynomial in
k[X1][X2, . . . , Xi], such that ci−1 ∈ k[X1]. If a is not a root of ci−1 then Φa(ri)
and ri have the same degree in Xi. Since BT (a) 	= 0, the polynomials Φa(ti)
and ti have the same degree in Xi too. It follows from the specialization property
of subresultants that Φa(gi) and S1(Φa(ti), Φa(ri),Xi) are equal. Therefore, the
desired set is: D(f, T ) = {a ∈ k | (BT · c1 · · · cn−1)(a) = 0}, which is finite.

4.2 Number of Bad Specializations and Other Degree Estimates

We start by giving an estimate of the cardinality of D(f, T ) based on considera-
tions directly derived from subresultant theory. This estimate is pessimistic and,
in a second phase, we will revisit it to derive a modular algorithm computing
the regular chain C = {s, g2, . . . , gn}, as stated in Theorem 1.



A Modular Algorithm for Computing the Intersection 79

Let d
(n)
i be the maximum of the degrees of f, tn, . . . , t2 w.r.t. Xi, for 1 ≤

i ≤ n. Using the determinantal formulation of subresultants, it follows that the
degree of any subresultant of S(tn, rn,Xn) w.r.t. Xi, for 1 ≤ i ≤ n−1, is bounded
over by deg(tn,Xn) deg(rn,Xi) + deg(rn,Xn) deg(tn,Xi) ≤ 2d

(n)
n d

(n)
i =: d

(n−1)
i .

Using again the determinantal formulation, it follows that the degree of any
subresultant of S(tn−1, rn−1,Xn−1) w.r.t. Xi for 1 ≤ i ≤ n − 2, is bounded over
by deg(tn−1,Xn−1) deg(rn−1,Xi) + deg(rn−1,Xn−1) deg(tn−1,Xi), yielding

d
(n−2)
i := d

(n)
n−1d
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i + d
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n−1 d

(n)
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Continuing, the degree of any subresultant of S(tn−j , rn−j ,Xn−j) w.r.t. Xi for
1 ≤ i ≤ n − j, is bounded above by d

(n−j−1)
i = d

(n)
n−jd

(n−j)
i + d

(n−j)
n−j d

(n)
i . To

obtain a concise result, let d be the maximum of d
(n)
1 , . . . , d

(n)
n . Then, we have

d
(n−1)
i = 2d2, d

(n−2)
i = 4d3 and d

(n−j−1)
i = 2j+1dj+2, for 0 ≤ j ≤ n − 2.

Returning to the polynomial BT ·c1 · · · cn−1, we are now ready to estimate its
degree. First, we note that deg(cn−j−1) ≤ d

(n−j−1)
i , thus we have deg(cn−j−1) ≤

2j+1dj+2. Second, let hi be the initial of ti, for 2 ≤ i ≤ n. The border polynomial
BT of the regular chain T is the product of the iterated resultants res(hi, T ), for
2 ≤ i ≤ n. Observe that, in the above discussion, the degree estimates d

(n−j−1)
i

remain valid when we replace f by each of h2, . . . , hn. Therefore, we have:
deg(BT ) = deg(res(h2, T ))+· · ·+deg(res(hn, T )) ≤ (n−1)d(1)1 = (n− 1)2n−1dn.
Finally, we deduce: deg(BT c1 · · · cn−1) ≤ (n − 1)2n−1dn + 2n−1dn + · · · + 2d2 ≤
n2ndn+1.

Proposition 4. With the hypotheses and notations of Proposition 3, the cardi-
nality of D(f, T ) is at most n2ndn+1, where d is the maximum partial degree of
f, t2, . . . , tn in any variable X1, . . . , Xn.

Of course, this estimate is not sharp, particularly if the product of the par-
tial degrees d

(n)
1 , . . . , d

(n)
n exceeds the total degree of either f or tn. There-

fore, in order to design a modular method for computing the regular chain
C = {s, g2, . . . , gn} of Theorem 1, by means of an evaluation and interpolation
strategy, we take advantage of the Bézout inequality (see Theorem 3 in [36]).
Since V (f, t2, . . . , tn) is a zero-dimensional affine variety, the number of its ele-
ments is bounded over by the product of the total degrees of the polynomials
f, t2, . . . , tn, that we denote by B(f, t2, . . . , tn). Thus, the degree of the univariate
polynomial s ∈ k[X1] cannot exceed B(f, t2, . . . , tn).

Furthermore, assume that the call Intersect(f, T ) (with T = {t2, . . . , tn})
was made as part of the triangular decomposition of a zero-dimensional system,
say {f1, . . . , fm}. Then, one can use the Bézout bound B(f1, . . . , fm) instead of
B(f, t2, . . . , tn), since the former is likely to be (much) smaller than the latter.

In fact, any bound B on the number of points of V (f1, . . . , fm) can be used
as an upper bound for deg(s). Moreover, our experimentation suggests that the
degrees of the univariate polynomials c1, . . . , cn−1 are not likely to exceed the
degree of r1. Hence, the number of specializations X1 = a which do not cancel



80 A. Brandt et al.

the border polynomial BC but cancel one of c1, . . . , cn−1 are likely to be bounded
over by (n − 1)B. Therefore, using nB + 1 specializations X1 = a is likely to be
sufficient for computing s, assuming that we have a practically efficient criterion
for avoiding the specialization cancelling BC . This latter observation leads us
to the algorithm of Sect. 4.3. In fact, we shall see that, in practice, the quantity
nB + 1 can often be reduced to 2B + 1 or 3B + 1, even when n > 3 holds.

4.3 A Modular Algorithm

In addition to the strategy presented in Sect. 4, the other key ingredients of our
modular algorithm are the following ones: (1) Monagan’s probabilistic strategy
for computing resultants via evaluation and interpolation [30], (2) the small
prime modular algorithm for computing the GCD of two univariate polynomials
over Z, see Chap. 6 in [25], and (3) rational function reconstruction, see Sect. 5.7
in [25].

Algorithm 2 takes as input the same arguments f and T as Algorithm 1.
In addition, Algorithm 2 takes three other arguments B, s,D which are positive
integers with the following respective roles:

1. B is an estimate of the degree of r1.
2. e controls the behavior of Monagan’s probabilistic strategy: once 2B + e + 1

images (of the polynomials gn, . . . , g2, r1) are computed then the recombi-
nation of the first 2B + 1 images is compared to the recombination of the
first 2B + e + 1; if they are equal, then rational function reconstruction is
attempted. If rational function reconstruction fails, then e more images are
collected and the next comparison uses the first 2B + e + 1 and the first
2B + 2e + 1 images, and so on.

3. D is an estimate for the number of bad specializations defined in Sect. 4.1.

As we shall see, if B is an upper bound for the degree of r1, and if D is
an upper bound for the number of bad specializations, then the algorithm is
deterministic, otherwise it is probabilistic.

In practice, a smaller B and a small e makes the algorithm check for termi-
nation (in the sense Monagan’s probabilistic strategy) more frequently, which
may have an impact on performance, positive or negative. In practice, if B is
believed to be a sharp estimate for deg(r1), then e can be small, even a small
percentage of B, without negative performance impact. Similarly, a smaller D
makes the algorithm check earlier whether C has the required properties, that
is, whether Hypotheses 2, 3, 4 hold or not. This may also have an impact on
performance, positive or negative. In practice, if B is believed to be a sharp
estimate for deg(r1), then D can be small, say a percentage of B.

Algorithm 2 uses two simple sub-procedures specified below:

– InitializeImageCollection initializes A and G to the empty list, and d to a list
of n zeros. A will store the evaluation points and G the corresponding images
of gn, . . . , g2, r1.
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Algorithm 2. ModularGenericIntersectDimOne
Require: (f, T, B, e, D), where f, T are as in Theorem 1 with f �∈ k and mvar(f) = Xn, B

is a positive integer which estimates deg(r1), e is a positive integer, and D estimates the
number of bad specializations.

Ensure: C as in Theorem 1, provided Hypotheses 1, 2, 3 and 4 are met, otherwise an exception

is raised.

1: a := Random(); P := {a} � a random element of k used as a seed
2: M := 2B + 1 � Twice the bound is necessary for rational function reconstruction

3: c := 0 � counts the number of specializations used so far
4: b := 0 � counts the number of bad specializations met so far

5: (A, G, d) := InitializeImageCollection(f, T )
6: CM := {}; CM+e := {}
7: while c < M + e + D do

8: (a, T (a), f(a), P) := FindCandidateSpecialization(f, T, P)

9: c := c + 1

10: i := n
11: ri(a) := f(a)
12: Na := Normalize(T (a)) � normalize the regular chain

13: ti(a) := Polynomial(Xi, Na) � The poly. of Na with main var. Xi

14: while i > 1 do

15: ri−1(a) := S0(ti(a), ri(a), Xi)
16: if ri−1 ∈ k or mvar(ri−1) < Xi−1 then

� Bad specialization or Hypothesis 1 not met

17: b := b + 1; Goto Line 8

18: if #A > 0 and deg(ri−1(a), Xi−1) > d[i − 1] then
� Every specialization in A is bad

19: b := b +#A; Goto Line 5

20: if #A > 0 and deg(ri−1(a), Xi−1) < d[i − 1] then
� The specialization X1 = a is bad

21: b := b + 1; Goto Line 8

22: d[i − 1] = deg(ri−1(a), Xi−1)
23: gi(a) := S1(ti(a), ri(a), Xi)
24: i := i − 1

25: G := Append(G, [gn(a), . . . , g2(a), r1(a)])
26: A := Append(A, a)
27: if #A = M and CM = {} then

28: CM := Interpolate(A, G, X1) � Recover X1 in gn, . . . , g2, r2

29: if #A = M + e and CM+s = {} then
30: CM+e := Interpolate(A, G, X1)

31: if CM = CM+e �= {} and c > D then � If M and M + e images produce the same
recombination and those are expected to have the correct degrees

32: C := RationalFunctionReconstruction(CM , A, X1)
33: if C �= Failure then

34: if one of gn, . . . , g2 is constant then
35: throw Hypothesis 2 not met
36: if C is not a regular chain then

37: throw Hypothesis 3 not met
38: if one of h2, . . . , hn is not regular w.r.t. C then

39: throw Hypothesis 4 not met
40: return (C)

41: M := M + e ; CM := CM+e ; CM+e := {}
42: throw Hypothesis 1 not met
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– FindCandidateSpecialization(f, T,P): (1) randomly chooses a ∈ k such that
a 	∈ P, a does not cancel BT and init(f), and (2) returns f and T specialized
at X1 = a. Finally, P is replaced with P ∪ {a}.

To avoid the use of a couple more sub-procedures (which would have many
arguments and complicated specifications), the pseudo-code of Algorithm 2 uses
Goto statements in three places:

– At Line 19, the Goto statement forces the algorithm to resume from Line 5,
thus discarding all images that have been computed up to that point.

– At Lines 17 and 21, the Goto statement forces the algorithm to resume from
Line 8, thus discarding the image that is currently being computed.

A few more observations about the pseudo-code of Algorithm 2:

– Between Lines 14 and 24, the while-loop is used to compute and collect the
images of gn, . . . , g2, r1 for X1 = a.

– Between Lines 7 and 41, the main loop is located. Each iteration of that
loop starts with the selection of a new specialization point. If the images of
gn, . . . , g2, r1 at that specification are successfully collected, then the algo-
rithm checks whether the desired result has been reached. When this is not
the case, more images may be computed. Note that this while-loop runs until
c ≥ M + s + D holds, or until an exception is raised, or until the result is
returned. The quantity M is replaced by M + s during the loop. However, as
we shall see in Theorem 2 the algorithm always terminates.

Finally, note that pseudo-code uses two counters c and b. They, respectively,
count the total number of specializations used and the number of bad special-
izations hit during the execution of the algorithm. The counter b is not used by
the algorithm, but it is an interesting information that the algorithm can return.

Theorem 2. Algorithm 2 always terminates. This is a probabilistic algorithm
for computing the regular chain C as defined in Theorem 1, if Hypotheses 1, 2,
3, and 4 all hold, or detecting which Hypothesis does not hold, otherwise. If the
input arguments B and D are upper bounds for deg(r1) and the number of bad
specifications, respectively, then the algorithm is deterministic.

Proof. We first prove termination. Suppose that Hypothesis 1 does not hold.
Then, the while-loop between Lines 14 and 24 will never succeed in reaching
i = 0. Indeed, each time this while-loop is entered the Goto statement at Line 17
will force the algorithm to exit this while-loop and resume at Line 8. As a result,
the counter c will reach the bound M + s + D of the outer while-loop (between
Lines 7 and 41) and the algorithm will terminate by throwing the exception
Hypothesis 1 not met.

Suppose now that Hypothesis 1 holds. Then, the while-loop between Lines
14 and 24 will exit before reaching i = 0 if and only if bad specializations are
discovered:

1. at Line 19, because all previous specializations were bad,
2. or at Line 21, because the current specialization is bad.
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Thus, when the while-loop between Lines 14 and 24 reaches i = 0, a new image of
(gn, . . . , g2, r1) is added to G. Once the total number of images of (gn, . . . , g2, r1)
is greater than or equal to M + e and D, the algorithm:

1. tests at Line 31 whether the recombination of those images has stabilized,
and, if so,

2. attempts rational function reconstruction at Line 32, and, if successful,
3. checks whether Hypotheses 2, 3 and 4 all hold

When the condition c > D holds, the current recombination of the images of
gn, . . . , g2, r1 are believed to have the correct degrees. And, in fact, they do
have the correct degrees whenever D is an upper bound for the number of bad
specializations. Now, if c ≤ D holds or if rational function reconstruction fails,
the value of M is replaced by M + e, and thus the while-loop bound M + e + D
is increased. Nevertheless, after combining sufficiently images of gn, . . . , g2, r1
(not using bad specializations) both conditions CM = CM+e and c > D will
be true together, and, moreover, rational function reconstruction will succeed.
Consequently, the section of code between Lines 34 and 40 will be entered and,
therefore, the algorithm will terminate. Clearly, if the input arguments B and D
are upper bounds for deg(r1) and the number of bad specifications, respectively,
then the Algorithm 2 satisfies its specifications in a deterministic way.

5 Relaxing the Hypotheses

The previously described modular method works well to avoid expression swell
and makes certain problems tractable, see Sect. 7. However, when one of the
Hypotheses 1, 2, 3 or 4 does not hold, the algorithm will fail to produce a result.
We take this section to sketch how a wrapper algorithm handles the cases where
Algorithm 2 throws an exception.

When Hypothesis 1 Fails. If ri ∈ k or mvar(ri) 	= Xi, for some i, three cases
must be considered. First, if ri = 0 then the polynomials ri+1 and ti+1 have a
GCD with a positive degree in Xi. Let us call this GCD d. The computations thus
split into two cases: d 	= 0 and d = 0. This leads, in principle, to two recursive
calls to the Intersect algorithm; see [15]: one to compute the intersection of f
and {t2, . . . , ti, ti+1/d, ti+2, . . . , tn} and one to compute the intersection of f and
{t2, . . . , ti, d, ti+2, . . . , tn}. We note that the first one may be attempted by our
modular algorithm. Meanwhile in the second one, we have ri+1 null modulo
sat(T ), thus the computations performed in the original call can be recycled in
order to complete Intersect(f, T ). Second, if ri ∈ k \ {0} then V (f) ∩ W (T ) = ∅
and the empty set should be returned. Third, If mvar(ri) 	= Xi, say mvar(ri) =
Xj for j < i. Then, one simply needs to “skip” computing the subresultant chain
of ri and ti and instead compute the subresultant chain between ri and tj with
respect to Xj . Then, the corresponding gi−1, . . . , gj+1 are set to be ti−1, . . . , tj+1,
respectively.

When Hypothesis 2 Fails. If one of the g2, . . . , gn is constant, say gi, then a
regular GCD for ri and ti can be found using a subresultant of index higher than
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1 from S(ri, ti,Xi). Since Algorithm 2 has computed S(ri, ti,Xi) (by computing
modular images of it), one can recycle the computations performed by that
algorithm in order to obtained a regular GCD for ri and ti.

When Hypothesis 3 Fails. When this happens, the set C := {s̄, g2, . . . , gn} is
not a regular chain. As in the previous case, one of the polynomials g2, . . . , gn,
say gi, fails to be a regular GCD of ri and ti modulo 〈s̄, g2, . . . , gi−1〉. Here again,
one can recycle the modular images S(ri, ti,Xi) to obtain a correct regular GCD.

Recovering from the failure of Hypotheses 2 or 3 can be accomplished by
means of a task-pool scheme where each task consists of an integer i and a
proposed regular chain C ′. The general idea is to process the regular chain
“bottom-up”, replacing any offending gi with a new regular GCD, and splitting
computations as necessary. For gi to be a regular GCD of ri and ti modulo
〈s̄, g2, . . . , gi−1〉, init(gi) must be regular modulo 〈s̄, g2, . . . , gi−1〉; this can easily
be checked with a call to the function Regularize.

As soon as we hit a gi such that its initial is not regular modulo Ci :=
〈s̄, g2, . . . , gi−1〉, the regular chain Ci is split in two (or more) regular chains Ci,1

and Ci,2. For one of these regular chains, say Ci,1, we have that the initial of
gi is regular modulo Ci,1. This implies that in this particular branch of the
computations, gi is a regular GCD of ri and ti. For the second branch, gi is
zero modulo Ci,2 and thus gi is not a regular GCD of ri and ti. Hence, we
need to replace gi with the next non-zero polynomial in the subresultant chain
between ri and ti, say g′

i. We replace the previous task with two new ones: one in
which we want to check the regularity of the initial of gi+1, . . . , gn modulo Ci,1,
and another one in which we want to check the regularity of g′

i, gi+1, . . . , gn

modulo Ci,2. A task is considered complete once gn is found to be regular. We
repeat this process until the task pool is empty.

When Hypothesis 4 Fails. Lastly, consider Hypothesis 4. This hypothesis
says that the resulting regular chain C := {s̄, g2, . . . , gn} must maintain the
inequalities defined by the initials of the polynomials ti in the regular chain T ,
that is, none of those initials must vanish on V (f) ∩ W (T ). Hypothesis 4 fails
if and only if (at least) one of the init(ti)’s is not invertible modulo the ideal
〈s̄, g2, . . . , gn〉. Rectifying this issue is handled easily by a call to Regularize. Let ti
be a polynomial whose initial is not regular modulo 〈C〉. Since C, after passing
Hypothesis 3, is a regular chain, one can call Regularize(init(ti), C) to compute
regular chains C1, . . . , Ce such that init(ti) is either regular or zero modulo Cj .
Then, one simply discards any Cj for which init(ti) is zero. A similar “discarding
process” is applied by the CleanChain procedure in the non-modular case [15].

6 Implementation

In the preceding sections we have discussed a modular algorithm based on
evaluation-interpolation. In fact, we employ two separate modular methods.
In practice, triangular decompositions are often performed over the rational
numbers. Thus, k should be Q in all of the previous algorithms.
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Algorithm 2 is actually implemented and executed over a finite field. Our
implementation is written in the C programming language as part of the BPAS
Library [2] and follows [3] for its implementation of sparse multivariate polyno-
mials over the rationals and finite fields. Moreover, our implementation actually
implements a wrapper function, as detailed in Sect. 5. This function is able to
catch the exceptions of Hypotheses 2, 3, or 4, recover from them, and produce
a correct output. The implementation does not yet handle when Hypothesis 1
fails, instead falling back to the non-modular implementation of Intersect in
BPAS [4,12]. This is left to future work.

The implementation of Algorithm 2 is broken into three main phases: com-
puting subresultants, interpolation and reconstruction of the regular chain C (see
Sect. 3 for notations), and lifting the coefficients from a finite field to Q. Inter-
polation and rational function reconstruction are standard algorithms. Thus, we
describe the other two main parts.

Subresultants are computed in three different ways depending of the degrees
of the input polynomials. All three methods are detailed in [5]. First, an opti-
mized version of Ducos’ subresultant chain algorithm handles the general case.
Second, when degrees are high, one can compute each subresultant itself using
evaluation-interpolation. We can evaluate the variables X2, . . . , Xi−1, compute
strictly univariate subresultants, and then recover the true subresultants through
interpolation. We implement this multivariate evaluation-interpolation using a
multi-dimensional truncated Fourier transform (TFT). Third, when computa-
tions are univariate (either when computing s̄ or as univariate images in the
evaluation-interpolation scheme), one can use an algorithm based on Half-GCD
to compute only the subresultants of index 0 and 1 rather than the entire sub-
resultant chain.

Recovering the rational number coefficients is an implementation of the tech-
nique based on Hensel-lifting described in [21]. With an implementation of this
Hensel lifting for triangular sets, notice that a modular algorithm for a zero-
dimensional intersect is immediate. Algorithm 2 can be transformed to compute
the intersection between f and a zero-dimensional regular chain T as follows.
Working modulo a prime p, do not specialize any variables and directly normal-
ize T . Compute the iterated subresultants of f and T , do not interpolate any
variables, and directly construct C. Then, perform Hensel lifting to reconstruct
the coefficients of C over Q. This method is very effective in practice to reduce
expression swell in the coefficients, as we describe next.

7 Experimentation and Discussion

Our experimentation was collected on a desktop running 20.04.1-Ubuntu with an
Intel Core i7-7700K processor at 4.20GHz, and 16GB DDR4 memory at 2.4 GHz.
We first show that the modular method is effective in practice to significantly
reduce the computational time of computing a triangle decomposition, and even
solves some polynomial systems which were infeasible for previous solvers.

Table 1 summarizes these results by describing the structure of these well-
known systems, as well as the execution time to solve the system using the
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Table 1. Running times of Maple vs. BPAS(non-modular) vs. BPAS(modular)

System Number of
Variables

Number of
Equations

Bézout
Bound

Number of
Solutions

Maple
Time (s)

BPAS(non-modular)
Time (s)

BPAS(modular)
Time (s)

noon5 5 5 243 233 1.46 0.61 0.42

eco8 8 8 1458 64 N/A N/A 60.63

Cassou-Nogues 4 4 1344 16 1.43 5.60 0.42

childDraw-2 10 10 256 42 12.70 2.83 2.48

Issac97 4 4 16 16 156.33 101.16 1.92

Themos-net-2 6 6 32 24 55.10 57.60 1.37

Uteshev-Bikker 4 4 36 36 N/A N/A 362.97

Theomes-net-3 5 5 32 24 54.93 57.01 1.36

Noonburg-5 5 5 243 233 2011.24 314.72 6.43

cohn2 4 4 900 Positive
Dimension

145.39 1322.98 1315.34

rabno 9 9 36000 16 3.77 2.97 2.97

tangents0 6 6 64 24 3.69 2.40 0.39

Cassou-Nogues-2 4 4 450 8 N/A N/A 2145.28

Table 2. Runtime analysis of the subroutines of the modular method

System Call
Number

Number of
Evaluations

Bézout
Bound

Time (s) for
Collect Images

Time (s) for
Subresultants

Time (s) for
Interpolation

Time (s) for Time (s) for
Modular Intersect

Time (s) for
Hensel lifting

noon5 1st 161 243 0.01 0.01 0.02 0.00 0.03 0.02

noon5 2nd 161 243 0.00 0.01 0.02 0.00 0.03 0.00

noon5 3rd 161 243 0.00 0.01 0.02 0.00 0.03 0.01

eco8 1st 289 1458 0.07 0.06 0.31 0.12 0.63 2.56

Cassou-Nogues 1st 161 1344 0.02 0.04 0.02 0.01 0.08 0.08

Issac97 1st 161 16 0.01 0.01 0.02 0.00 0.05 0.33

Themos-net-2 1st 161 32 0.02 0.02 0.03 0.01 0.09 0.74

Uteshev-Bikker 1st 193 36 0.02 0.03 0.04 0.01 0.12 58.91

Themos-net-3 1st 161 32 0.02 0.02 0.03 0.01 0.09 0.75

Noonburg-5 1st 257 243 0.02 0.64 1.22 0.01 3.04 2.93

tangents0 1st 161 64 0.02 0.02 0.02 0.00 0.00 0.13

Cassou-Nogues-2 1st 161 450 0.01 0.03 0.02 0.00 0.07 0.04

modular method and not using the modular method, if the latter is possible. The
non-modular implementation is the (serial) version described in [4,12]. As a point
of comparison, we also present the time to compute a triangular decomposition
using the RegularChains library of Maple 2022. In particular, the systems eco8,
Uteshev-Bikker, and Cassou-Nogues-2, could not be solved within two hours of
computation time. However, the modular method allows the first two to be solved
on the order of minutes, and Cassou-Nogues-2 on the order of 10s of minutes.

In Table 2, we describe a detailed analysis of the modular intersect in dimen-
sion one. Observe that the running time for each main task is provided. Addi-
tionally, it is important to mention that in some cases, the number of collected
images is far below the Bézout bound of the input systems. Therefore, this shows
the importance of stabilization techniques in the implementation.

Among our works-in-progress is, of course, is the adaptation and implementa-
tion of this modular method for Intersect(f, T ) for T in dimension higher than 1.
This is necessary in order to tackle even harder polynomial systems. Moreover,
recovering from cases where Hypothesis 1 fails must also be implemented.
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