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Abstract. An effective algorithm for computing Noetherian operators
of positive dimensional ideals is introduced. It is shown that an algo-
rithm for computing Noetherian operators of zero dimensional ideals,
that was previously published by the authors [https://doi.org/10.1007/
s00200-022-00570-7], can be generalized to that of positive dimensional
ideals. The key ingredients of the generalization are the prime decompo-
sition of a radical ideal and a maximal independent set. The results of
comparison between the resulting algorithm with another existing one
are also given.
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1 Introduction

This is the continuation of the authors’ paper [16] that introduces an algorithm
for computing Noetherian operators of zero dimensional ideals.

In the 1930s, W. Gröbner addressed the problem of characterizing ideal mem-
bership with differential conditions [11]. Later in the 1960s, L. Ehrenspreis and
V. P. Palamodov obtained a complete description of primary ideals and modules
in terms of differential operators [7,8,21]. At the core of the results, one has the
notion of Noetherian operators to describe a primary module (and ideal).

Recently several authors, including the authors of the present paper, have
studied the Noetherian operators in the context of symbolic computation. In [3–
6], Y. Cid-Riz, J. Chen et al. give algorithms for computing Noetherian operators
and the Macaulay2 implementation. They use the Hilbert schemes and Macaulay
dual spaces for studying and computing them. In [16], the authors propose a dif-
ferent algorithm for computing Noetherian operators of zero dimensional ideals.
The theory of holonomic D-modules and local cohomology play key roles in this
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approach. Notably, as the authors’ algorithm [16] is constructed by mainly linear
algebra techniques, the algorithm is much faster than the algorithms presented
by Y. Cid-Riz, J. Chen et al. in computational speed.

In this paper, by adopting the framework proposed in [16], we consider a
method for computing Noetherian differential operators of a positive dimensional
primary ideal. We show that the use of the maximally independent set allows
us to reduce the computation of Noetherian operators of positive dimensional
primary ideals to that of zero dimensional cases. Accordingly, as the resulting
algorithm of computing Noetherian operators of positive dimensional primary
ideals consists mainly of linear algebra computation, it is also effective.

This paper is organized as follows. In Sect. 2, following [16], we recall results
of Noetherian operators of zero dimensional primary ideals. In Sect. 3, we review
some mathematical basics that are utilized in our main results. Section 4 con-
sists of three subsections. In Sect. 4.1, we describe an algorithm for computing
Noetherian operators of positive dimensional ideals. In Sect. 4.2 we give results
of benchmark tests. In Sect. 4.3, we introduce a concept of Noetherian represen-
tations and we present an algorithm for computing Noetherian representations
as an application of our approach.

2 Noetherian Operators of Zero Dimensional Ideals

Here we recall the algorithm for computing Noetherian operators of zero dimen-
sional ideals that is published in [16].

Through this paper, we use the notation X as the abbreviation of n variables
x1, x2, . . . , xn, K as a subfield of the field C of complex numbers and Q as the field
of rational numbers. The set of natural numbers N includes zero. For f1, . . . , fr ∈
K[X] = K[x1, . . . , xn], let 〈f1, . . . , fr〉 denote the ideal in K[X] generated by
f1, . . . , fr and

√〈f1, . . . , fr〉 denote the radical of the ideal 〈f1, . . . , fr〉. If an
ideal I ⊂ K[X] is primary and

√
I = p, then we say that I is p-primary.

Let D = K[X][∂] denote the ring of partial differential operators with
coefficients in K[X] where ∂ = {∂x1 , ∂x2 , . . . , ∂xn

}, ∂xi
= ∂

∂xi
with relations

xixj = xjxi, ∂xi
∂xj

= ∂xj
∂xi

, ∂xj
xi = xi∂xj

(i �= j), ∂xi
xi = xi∂xi

+ 1
(1 ≤ i, j ≤ n), i.e. D = {∑β∈Nn cβ∂β |cβ ∈ K[X]} where ∂β = ∂β1

x1
∂β2

x2
· · · ∂βn

xn

and β = (β1, β2, . . . , βn) ∈ N
n. For β = (β1, β2, . . . , βn) ∈ N

n, |β| :=
∑n

i=1 βi.
The set of all terms of ∂ is denoted by Term(∂) and that of X is denoted by
Term(X).

Let us fix a term order 	 on Term(∂). For a given partial differential operator
of the form

ψ = cα∂α +
∑

∂α�∂β

cβ∂β (cα, cβ ∈ K[X]),

we call ∂α the head term, cα the head coefficient and ∂β the lower terms. We
denote the head term by ht(ψ), the head coefficient by hc(ψ) and the set of lower
terms of ψ as LL(ψ) =

{
∂λ ∈ Term(ψ)

∣
∣ ∂λ �= ht(ψ)

}
. For a finite subset Ψ ⊂ D,

ht(Ψ) = {ht(ψ) |ψ ∈ Ψ }, LL(Ψ) =
⋃

ψ∈Ψ LL(ψ).
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For instance, let ψ = x3
1x

2
2∂

3
x1

∂2
x2

∂x3 + x2
3∂

2
x1

∂x3 + x1x3∂x2∂x3 + x2
1x2x3 be

a partial differential operator in Q[x1, x2, x3][∂x1 , ∂x2 , ∂x3 ] and 	 the graded
lexicographic term order on Term({∂x1 , ∂x2 , ∂x3}) with ∂x1 	 ∂x2 	 ∂x3 . Then,
ht(ψ) = ∂3

x1
∂2

x2
∂x3 , hc(ψ) = x3

1x
2
2 and LL(ψ) = {∂2

x1
∂x3 , ∂x2∂x3 , 1}.

For each 1 ≤ i ≤ n, we write the standard unit vector as

ei = (0, . . . , 0,
ith
1 , 0, . . . , 0).

The definition of Noetherian operators is the following.

Theorem 1 (Ehrenspreis-Palamodov [7,8,21]). Let q be a p-primary ideal
in K[X] and proper. There exist partial differential operators ψ1, ψ2, . . . , ψ� ∈ D
with the following property. A polynomial g ∈ K[X] lies in the ideal q if and
only if ψ1(g), ψ2(g), . . . , ψ�(g) ∈ p.

Definition 1. The partial differential operators ψ1, ψ2, . . . , ψ� that satisfy The-
orem 1 are called Noetherian operators of the primary ideal q.

The core of the algorithm for computing Noetherian operators of zero dimen-
sional ideals, that is introduced in [16], is the following theorem. Actually, this is
the generalization of the result of L. Hörmander [14, Theorem 7.76 and pp. 235].

Theorem 2 ([16, Theorem 5]). Let I be a zero-dimensional ideal generated by
f1, . . . , fr in K[X] and q a primary component of a minimal primary decompo-
sition of I with

√
q = p. Let Ns(I) be the set of all partial differential operators

ϕ =
∑

β∈Nn,|β|<s c′
β∂β (c′

β ∈ K[X]), such that ϕ(f) ∈ p for all f ∈ I where
s is a natural number that satisfies ps ⊂ q. Let NTq be the set of all partial
differential operators ψ =

∑
β∈Nn,|β|<s cβ∂β (cβ ∈ K[X]), such that the com-

mutator [ψ, xi] = ψxi − xiψ ∈ Ns−1(I) for i = 1, 2, . . . , n and ψ(fj) ∈ p for
j = 1, 2, . . . , r. Then,

(i) g ∈ K[X], ψ(g) ∈ p for all ψ ∈ NTq ⇐⇒ g ∈ q.
(ii) Further, one can choose ψ1, ψ2, . . . , ψ� ∈ NTq such that

g ∈ K[X], ψk(g) ∈ p for k = 1, 2, . . . , � ⇐⇒ g ∈ q.

In what follows, the notation NTq, that is introduced in Theorem 2, is utilized
as the set of Noetherian operators of the primary ideal q.

Proposition 1 ([16, Proposition 1]). Let q be a zero dimensional primary
ideal in K[X] and

√
q = p. Then, the set NTq, that is from Theorem 2, is a

finite dimensional vector space over the field K[X]/p.

Definition 2. Let 	 be a term order on Term(∂), q a zero dimensional primary
ideal in K[X] and

√
q = p. Let NBq be a basis of the vector space NTq over the

field K[X]/p such that

for all ψ ∈ NBq,hc(ψ) = 1,ht(ψ) /∈ ht(NBq \{ψ}) and ht(ψ) /∈ LL(NBq).

Then, the basis NBq is called a reduced basis of the vector space NTq over K[X]/p
w.r.t. 	.

The algorithm that is presented in [16] always outputs a reduced basis of the
vector space if we input a zero dimensional primary ideal.
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3 Mathematical Basics

Here we quickly review some mathematical basics of maximally independent
sets, extensions of ideals and Noetherian operators.

3.1 Extension and Contraction

Definition 3. Let I be a proper ideal in K[X] and U ⊂ X. Then U is called
an independent set modulo I if K[U ] ∩ I = {0}. Moreover, U ⊂ X is called a
maximal independent set (MIS) modulo I if it is an independent set modulo I
and the cardinality of U is equal to the dimension of I.

For a finite subset Y , the cardinality of Y is written by |Y |.
Definition 4. Let I be an ideal in K[X], U ⊂ X and Y = X\U . Then, the
extension Ie of I to K(U)[Y ] is the ideal generated by the set I in the ring
K(U)[Y ] where K(U) is the field of rational functions with variables U . If J is
an ideal in K(U)[Y ], then the contraction Jc of J to K[X] is defined as J∩K[X].

The following lemmas are fundamental in commutative algebra and computer
algebra. See [2].

Lemma 1. Let I be an ideal in K[X]. If U ⊂ X is a MIS modulo I, then Ie is
a zero dimensional ideal of K(U)[X\U ].

Lemma 2 ([2, Lemma 1.122, Lemma 8.97]).

(1) Let p be a prime ideal in K[X] and U a MIS modulo p and Y = X\U . Then
pe is prime in K(U)[Y ] and p = pec = (pe)c.

(2) Let p be a prime ideal in K[X] and U a MIS modulo I and Y = X\U . If q is
a p-primary ideal of K[X], then qe is pe-primary in K(U)[Y ] and q = qec.

Let 	 be a term order on Term(Y ). For a polynomial g ∈ K(U)[Y ], we denote
the head coefficient of g by hc(g). In the following three lemmas, we fix subsets
U ⊂ X and Y = X\U .

Lemma 3 ([2, Lemma 8.91]). Let 	 be a term order on Term(Y ). Suppose J is
an ideal of K(U)[Y ], and G is a Gröbner basis w.r.t. 	 of J such that G ⊂ K[X].
Let I be the ideal generated by G in K[X], and set f as a least common multiple
of {hc(g)|g ∈ G} (i.e. f = LCM{hc(g)|g ∈ G}), where hc(g) ∈ K[U ] is taken of
g as an element of K(U)[Y ]. Then, Jc = I : f∞.

Lemma 4 ([2, Proposition 8.94]). Let 	 be a block term order on Term(X)
with Y 
 U , and suppose I is an ideal of K[X] and G is a Gröbner basis
of I w.r.t. 	. Set f as a least common multiple of {hc(g)|g ∈ G} (i.e.
f = LCM{hc(g)|g ∈ G}), where hc(g) ∈ K[U ] is taken of g as an element
of K(U)[Y ]. Then, Iec = I : f∞.

Lemma 5 ([2, Lemma 8.95]). Let I = 〈f1, . . . , fr〉 ⊂ K[X]. Suppose q ∈ K[X]
and s ∈ N\{0} are such that I : qs = I : q∞. Then, I = 〈f1, . . . , fr, q

s〉∩ (I : qs).

In [12,13], J. Hoffmann and V. Levandovskyy provided more information on
the extension and contraction from both theoretical and algorithmic point of
view.
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3.2 Noetherian Operators of a Primary Ideal qe ⊂ K(U)[Y ]

Here we discuss the relations between Noetherian operators and local cohomol-
ogy classes for extensions of ideals. This discussion is basically the same as
Sect. 3.1 of [16]. See [16,18,19,23,24] for details.

Throughout this subsection, let I be an ideal in K[X], U a MIS modulo I,
q a primary component of the minimal primary decomposition of I such that a
MIS modulo q is U ,

√
q = p, Y = X\U and |Y | = �. Then, by Lemma 1, Ie, qe

and pe are zero dimensional ideals in K(U)[Y ].
Let H�

[Z](K(U)[Y ]) denote an algebraic local cohomology group, with support

on Z = {a ∈ K(U)
�|g(a) = 0,∀g ∈ pe}, defined as

H�
[Z](K(U)[Y ]) = lim

k→∞
Ext�

K(U)[Y ]

(
K(U)[Y ]/(pe)k,K(U)[Y ]

)

where K(U) be an algebraic closure of the field K(U) of rational functions.
Set Hqe = {ψ ∈ H�

[Z](K(U)[Y ])|qψ = 0,∀q ∈ qe}. Then, the following holds

Hqe ∼= HomK(U)[Y ]

(
K(U)[Y ]/qe,H�

[Z](K(U)[Y ])
)

= HomK(U)[Y ]

(
K(U)[Y ]/Ie,H�

[Z](K(U)[Y ])
)

.

Let De = K(U)[Y ][{∂y|y ∈ Y }] denote the ring of partial differential opera-
tors with coefficients in K(U)[Y ]. Then, since K(U)[Y ] ⊂ De, we also have

Hqe ∼= HomDe

(
De/Deqe,H�

[Z](K(U)[Y ])
)

= HomDe

(
De/DeIe,H�

[Z](K(U)[Y ])
)

.

Noetherian operators are considered as follows.

Definition 5. The set of De-linear homomorphisms HomDe (Mqe ,Mpe)
between the two left De-modules are called the Noetherian space of q ⊂ K[X]
w.r.t. U where Mqe = De/Deqe and Mpe = De/Depe are De-modules.

The Noetherian space has the structure of the right K(U)[Y ]/pe-module.

Example 1. Let us consider a primary ideal

q = 〈x4
1 − 3x2x1x

2
0 + 2x3x

3
0, x2x

3
1 − 2x3x

2
1x0 + x2

2x
2
0,

x3x
3
1 − 2x2

2x1x0 + x2x3x
2
0, x

2
2x

2
1 − 2x2x3x1x0 + x2

3x
2
0, x

2
3x1 − x3

2〉
in Q[x0, x1, x2, x3]. Then, a MIS modulo q is {x2, x3}. A Gröbner basis G of qe

w.r.t. the lexicographic term order with x0 	 x1 is G = {(x3x0−x4
2)

2, x2
3x1−x3

2}
in Q(x2, x3)[x0, x1]. It is obvious that

√
qe = 〈x3x0 − x4

2, x
2
3x1 − x3

2〉. Hence, the
Noetherian space of q ⊂ Q[x0, x1, x2, x3] w.r.t. {x0, x1} is SpanR

(
1, ∂

∂x0

)
where

R = Q(x0, x1)[x2, x3]/〈x3x0 − x4
2, x

2
3x1 − x3

2〉.
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Proposition 2. Let MIe = De/DeIe. Then,

HomDe (MIe ,Mpe) ∼= HomDe (Mqe ,Mpe) .

The proposition above says that the primary ideal qe ⊂ K(U)[Y ] can be
determined by Ie and the prime ideal pe.

4 Main Results

Here, first we generalize the algorithm for computing Noetherian operators of
a zero dimensional ideal [16] to that of positive dimensional ideal. Second, we
compare the resulting algorithm with another existing one [4]. Third, we discuss
a Noetherian representation of an ideal as an application of the Noetherian
operators.

4.1 Generalization

By utilizing a MIS modulo an ideal, we are able to generalize Theorem 2 to the
following.

Lemma 6. Let I be an ideal generated by f1, . . . , fr in K[X], U a MIS modulo
I, q a primary component of the minimal primary decomposition of I such that
the MIS modulo q is U and

√
q = p. Let Ns(Ie) be the set of all partial differential

operators ϕ =
∑

β∈N�,|β|<s c′
β∂β (c′

β ∈ K(U)[Y ]), such that ϕ(f) ∈ pe for all f ∈
Ie ⊂ K(U)[Y ] where s is a natural number that satisfies (pe)s ⊂ qe in K(U)[Y ].
Let NTqe be the set of all partial differential operators ψ =

∑
β∈N�,|β|<s cβ∂β

(cβ ∈ K(U)[Y ]), such that the commutator [ψ, y] = ψy−yψ ∈ Ns−1(Ie) for each
y ∈ Y and ψ(fj) ∈ pe for j = 1, 2, . . . , r. Then,

(i) g ∈ K(U)[Y ], ψ(g) ∈ pe for all ψ ∈ NTqe ⇐⇒ g ∈ qe in K(U)[Y ].
(ii) Further, one can choose ψ1, ψ2, . . . , ψt ∈ NTqe such that

g ∈ K(U)[Y ], ψk(g) ∈ pe for k = 1, 2, . . . , t ⇐⇒ g ∈ qe.

Proof. As we describe in Sect. 3.2, Ie, qe and pe are zero dimensional ideals in
K(U)[Y ] and Noetherian operators of the primary ideal qe ⊂ K(U)[Y ] can be
determined by Ie. Since it can be regarded as the same setting of Theorem 2,
this lemma holds. ��

By combining Proposition 1 and Lemma 6, we have the following corollary.

Corollary 1. Using the same notation as in Lemma 6, then, the set NTqe is a
finite dimensional vector space over the field K(U)[Y ]/pe.

Definition 6. Using the same notation as in Lemma 6, let 	 be a term order
on Term({∂y|y ∈ Y }). Let NBqe be a basis of the vector space NTqe over the
field K(U)[Y ]/pe such that

for all ψ ∈ NBqe ,hc(ψ) = 1,ht(ψ) /∈ ht(NBqe \{ψ}) and ht(ψ) /∈ LL(NBqe).

Then, the basis is called a reduced basis NBqe of the vector space NTqe over
K(U)[Y ]/pe w.r.t. 	.
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For ψ ∈ K(U)[Y ][{∂y|y ∈ Y }] (or f ∈ K(U)[Y ]), we define dlcm(ψ) (or
dlcm(f)) as the least common multiple of all denominators of coefficients in K(U)
of ψ (or f). For instance, set ψ = xy∂2

x∂2
y+ 1

u2 x∂x∂2
y+ 4

w∂y in K(u,w)[x, y][∂x, ∂y],
then dlcm(ψ) = u2w. Hence, dlcm(ψ) · ψ is in (K[u,w][x, y])[∂x, ∂y].

Theorem 3. Using the same notation as in Lemma 6, the following holds.

(i) g ∈ K[X], ψ(g) ∈ p ⊂ K[X] for all ψ ∈ NTqe ∩ K[X][∂] ⇐⇒ g ∈ q in
K[X].

(ii) One can choose ψ1, ψ2, . . . , ψ� ∈ NTqe ∩ K[X][∂] such that

g ∈ K[X], ψk(g) ∈ p ⊂ K[X] for k = 1, 2, . . . , � ⇐⇒ g ∈ q ⊂ K[X].

Proof. (i) (⇒) For g ∈ K[X], assume that ψ(g) ∈ p ⊂ K[X] for all ψ ∈ NTqe ∩
K[X][∂]. As we have p ⊂ pe, by Lemma 6, g ∈ qe in K(U)[Y ]. Thus, by Lemma 2,
g ∈ qe ∩ K[X] = qec = q.
(⇐) For g ∈ K[X], assume that g ∈ q in K[X]. As we have q ⊂ qe, thus by
Lemma 6, for all ψ ∈ NTqe ∩K[X][∂] ⊂ NTqe , ψ(g) ∈ pe in K[X]. By Lemma 2,
g ∈ pe ∩ K[X] = pec = p.
(ii) Since Lemma 6 holds, there exist ψ1, ψ2, . . . , ψt ∈ NTqe such that “g ∈
K[X] ⊂ K(U)[Y ], ψk(g) ∈ pe for k = 1, 2, . . . , t if and only if g ∈ qe”. Let us
consider the finitely many partial differential operators

dlcm(ψ1)ψ1,dlcm(ψ2)ψ2, . . . ,dlcm(ψt)ψt.

Note that (dlcm(ψk)ψk)(g) ∈ K[X][∂] (k = 1, 2, . . . , t), (dlcm(ψk)ψk)(g) ⊂ pe ∩
K[X][∂] = pec = p and g ∈ qe ∩ K[X] = qec = q. As K(U) is a field,

g ∈ K[X], (dlcm(ψk))(g) ∈ p for k = 1, 2, . . . , t if and only if g ∈ q

holds. ��
Let {ϕ1, . . . , ϕt} be a basis of the vector space NTqe . Then, by the proof

of Theorem 3, dlcm(ϕ1)ϕ1, . . . ,dlcm(ϕt)ϕt become Noetherian operators of q ⊂
K[X]. Thus, we need an algorithm for computing a basis of the vector space
NTqe where qe is zero dimensional in K(U)[Y ]. Since Lemma 6 is essentially the
same as Theorem 2, we can naturally generalize the algorithm for computing
Noetherian operators of zero dimensional ideals to that of positive dimensional
ideals.

Before describing the main algorithm, we give the following lemma and
corollaries for efficiency. Note that these facts follow from Lemma 6 because
if ψ ∈ NTqe , then the commutator [ψ, y] ∈ NTqe for each y ∈ Y .

Lemma 7. Using the same notation as in Lemma 6, let 	 be a term order on
Term({∂y|y ∈ Y }) and |Y | = �. If ∂α /∈ NTqe . Then, for all ∂λ ∈ {∂α+γ |γ ∈ N

�},
∂λ /∈ ht(NTqe).

Let M be a set of terms of Term({∂y|y ∈ Y }). We define the neighbors of M
as Neighbor(M,Y ) = {∂λ∂y|∂λ ∈ M,y ∈ Y }. The following corollary that is the
generalization of Corollary 1 of [16] is useful to compute possible candidates of
head terms of NTqe .
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Corollary 2. Using the same notation as in Lemma 6, let 	 be a term order on
Term({∂y|y ∈ Y }) and λ = (λ1, . . . , λ�) ∈ N

�. Let Λ
(λ)
q = {∂λ′ ∈ ht(NTqe)|∂λ 	

∂λ′}. If ∂λ ∈ ht(NTqe), then for each 1 ≤ i ≤ �, ∂λ−ei is in Λ
(λ)
q , provided

λi ≥ 1.

If ∂λ ∈ ht(NTqe), then by Corollary 2, there is a possibility that an element
of Neighbor({∂λ}, Y ) belongs to ht(NTqe). The following algorithm computes
possible candidates of head terms of the vector space NTqe w.r.t. a term order
	 on Term({∂y|y ∈ Y }) where Y is a subset of X.

Sub-algorithm (Headcandidate)
Specification: Headcandidate(Y, ∂τ ,	, Λ,FL)
Making new candidates for head terms.
Input: Y : set of variables in X (|Y | = �), ∂τ ∈ Term({∂y|y ∈ Y }),

	: a term order on Term({∂y|y ∈ Y }), Λ = {∂α ∈ ht(NTqe)|∂τ 	 ∂α}
FL: set of Term({∂y|y ∈ Y }) such that ∀∂α ∈ FL, ∂α /∈ Λ.

Output: CT: set of new candidates for head terms.
BEGIN
CT ← ∅; B ← Neighbor({∂τ}, Y ); B ← B\(B ∩ {∂α+γ | ∂α ∈ FL, γ ∈ N

�});
while B �= ∅ do

select ∂τ ′
= ∂(τ ′

1,τ ′
2,...,τ ′

�) from B; B ← B\{∂τ ′};
for each i from 1 to � do Flag ← 1;

if τ ′
i �= 0 then
if ∂τ ′−ei /∈ Λ then Flag ← 0; break; end-if

end-if
end-for
if Flag = 1 then CT ← CT ∪{∂τ ′}; end-if

end-while
return CT;
END

The following corollary that is the generalization of Corollary 2 of [16] is
utilized to compute the candidates of lower terms.

Corollary 3. Using the same notations as in Corollary 2, let Γqe denote the set

of lower terms in NTqe and Γ
(λ)
q =

{
∂λ′ ∈ Γqe

∣∣
∣ ∂λ 	 ∂λ′

}
.

If ∂λ = ∂(λ1,...,λi,...,λ�) ∈ Γqe , then for each i = 1, 2, . . . , �, ∂λ−ei is in Γ
(λ)
q ∪Λ

(λ)
q ,

provided λi ≥ 1.

The algorithm Noether decides head terms of a reduced basis NBqe of the
vector space NTqe from bottom to up w.r.t. a term order 	 on Term({∂y|y ∈ Y }).
The algorithm consists of three main blocks, computing candidates for head
terms (Headcandidate), computing for candidate of lower terms and solving
a system of linear equations. For each block, the algorithm makes use of several
sets as intermediate data. We fix the meaning of the sets as follows.
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• CT is a set of candidates of head terms w.r.t. ≺.
• CL is a set of candidates of lower terms for some ∂λ ∈ CT.
• FL is a set of terms that do not belong to ht(NBqe) w.r.t. ≺.

The Sub-algorithm “DetermineP” that is utilized in Algorithm 1, determines
indeterminates cτ s that are coefficients of the partial differential operators ψ.

Remark 1. Let I = 〈f1, . . . , fr〉 ⊂ K[X] and q a primary component of the
minimal primary decomposition of I such that the dimension of I is equal to
that of q. Let U be a MIS modulo

√
q = p and Y = X\U . If a partial differential

operator ψ is in the reduced basis NBqe of the vector space NTqe w.r.t. a term
order 	, then ψ satisfies the following condition (N (∗))

(N (∗)) “ψ(fi) ∈ pe in K(U)[Y ] and [ψ, y] ∈ SpanK(U)[Y ]/pe(NBqe)”

where 1 ≤ i ≤ r and y ∈ Y .
It is clear that 1 ∈ SpanK(U)[Y ]/pe(NBqe), and hence, by Corollary 2, {∂y|y ∈

Y } becomes a set of candidates of the head terms.

Remark 2. It is reported that algorithms, published in [1,15,22], for computing a
prime decomposition of the radical

√
I are much faster than those for computing

primary decomposition of a polynomial ideal I in K[X]. One can utilized the
algorithms for computing a prime component of

√
I. In fact, the MIS modulo

√
I

can be also obtained as a by-product when we compute the prime component.

Algorithm 1 (Noether)

Specification: Noether({f1, f2, . . . , fr}, p, U, Y,	)
Computing Noetherian operators for a primary component q of the primary
decomposition of 〈f1, f2, . . . , fr〉 where

√
q = p.

Input: {f1, f2, . . . , fr} ⊂ K[X],
p: associate prime ideal of a primary component q of the minimal
primary decomposition of 〈f1, f2, . . . , fr〉 s.t. U is a MIS modulo p,
U ⊂ X: MIS modulo 〈f1, f2, . . . , fr〉,
Y := X\U , (|Y | = �), 	 : term order on Term({∂y|y ∈ Y }).

Output: NB: a (reduced) basis of the vector space NTqe .
BEGIN
NB ← {1}; CT ← {∂y|y ∈ Y }; CL ← ∅; FL ← ∅; EE ← ∅;

while CT �= ∅ do
∂λ ← Take the smallest element in CT w.r.t. 	; CT ← CT \{∂λ};
E ← {∂γ ∈ EE |∂λ 	 ∂γ}; EE ← EE \E;
EL ← {∂(γ1,...,γ�) ∈ E|∂(γ1,...,γ�)−ei ∈ ht(NB) ∪ LL(NB), provided γi ≥ 1};
CL ← CL ∪EL;
ψ ← ∂λ +

∑
∂τ ∈CL cτ∂τ ; /* (cτ s are indeterminates) */

ψ′ ← DetermineP({f1, . . . , fr}, ψ, p,NB, {cτ |∂τ ∈ CL}, U, Y );
if ψ′ �= 0 then

NB ← NB ∪ {ψ′};
CT ← Headcandidate(Y, ∂λ,	,ht(NB),FL) ∪ CT;
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EE ← (Neighbor(LL(ψ′)) ∪ EE) \CL;
else

FL ← FL∪{∂λ}; CL ← CL ∪{∂λ};
end-if

end-while
return NB ;
END

Sub-algorithm (DetermineP)

Specification: DetermineP({f1, f2, . . . , fr}, ψ, p,NB, {cτ |τ ∈ CL}, U, Y )
Determining cτ s that are coefficients of the partial differential operator ψ.
Input: {f1, f2, . . . , fr}, ψ, p,NB, {cτ |τ ∈ CL}, U , Y : described in Algorithm 1.
Output: ψ′: if ψ′ = 0, then ψ is not a Noetherian operator of qi, otherwise ψ′

is a Noetherian operator of qi where ht(ψ′) = ht(ψ).
BEGIN
L ← ∅; C ← NB; Y ′ ← Y ; i ← 1; {ϕ1, ϕ2, . . . , ϕs} ← NB; /* |NB | = s */
for each i from 1 to s do

g ← Compute the normal form of ψ(fi) w.r.t. pe in K(U)[Y ];
if g �= 0 then

L ← L ∪ {g = 0};
end-if

end-for
while Y ′ �= ∅ do

Select y from Y ′; Y ′ ← Y ′\{y}; bi ← [ψ, y]; C ← C ∪ {bi}; i ← i + 1;
end-while
v= (∂α1 ∂α2 · · · ∂α�) ← Make a vector from Term(C) = {∂α1, · · · , ∂α�};
M ← Get the � × (s + |Y |) matrix that satisfies (ϕ1 · · · ϕs b1 · · · b|Y |) =vM ;(
Es · · ·
0 A

)
← Reduce M by elementary operations of matrix over K(U)[Y ]/pe;

L ← L ∪ {a′ = 0 | a′ is an entry of the matrix A};
if the system of linear equations L has no solution over K(U)[Y ]/pe then

return 0;
else

ψ′ ← Get the (unique) solution of L and substitute the solution into cτ s of ψ;
return dlcm(ψ′)ψ′;

end-if
END

In the sub-algorithm DetermineP, Es is the identity matrix of size s.
Then, it is known that A is the zero matrix if and only if b1, b2, . . . , b|Y | ∈
SpanK(U)[Y ]/pe(NB). Hence, the sub-algorithm checks the condition (N (∗)) (see
Remark 1). Notice that the Sub-algorithm, consists of linear algebra techniques
except for computing a normal form of ψ(fi) w.r.t. pe in K(U)[X].

The correctness and termination follow from Theorem 3 and Corollary 1.
As Algorithm 1 is essentially the same as the case of zero dimensional ideal, we
omit the proof. We refer the readers to [16, Theorem 6] for details.



282 K. Nabeshima and S. Tajima

Example 2. Let I = 〈f1, f2, f3〉 ⊂ Q[x, y, z] where f1 = x6z + 9x4yz + x4z +
27x2y2z + 6x2yz + 27y3z + 9y2z, f2 = x6 + 6x4y + 9x2y2 + z2, f3 = z3. Then,
the prime decomposition of

√
I is

√
I = 〈x2 + 3y, z〉 ∩ 〈x, z〉.

Let us consider the first prime ideal p = 〈x2 + 3y, z〉, then a MIS modulo p
is {y}. Let 	 be the total degree lexicographic term order with ∂x 	 ∂z.
We execute Noether({f1, f2, f3}, pe, {y}, {x, z},	) where pe is the extension of
p to Q(y)[x, z].

(0) Set NB = {1}, CT = {∂z, ∂x} and CL = FL = EE = ∅.
(1) Take the smallest element ∂z in CT and update CT to {∂x}. Since CL =

EE = ∅, there does not exist possible candidates of the lower terms. Set
ψ = ∂z and check the conditions (N (∗)) i.e. execute the sub-algorithm
DetermineP, then
ψ(f1) = x6 + 9x4y + x4 + 27x2y2 + 6x2y + 27y3 + 9y2 ∈ pe,
ψ(f2) = z ∈ pe, ψ(f3) = 3z2 ∈ pe,
[ψ, x] = 0 ∈ SpanQ(y)[x,z]/pe(NB), [ψ, z] = 1 ∈ SpanQ(y)[x,z]/pe(NB).
Hence, ψ satisfies the condition (N (∗)). Renew NB as {1, ∂z} and CT as

{∂x} ∪ Headcandidate
(
{x, z}, ∂z,	,ht(NB), ∅

)
= {∂x, ∂2

z , ∂x∂z}.

(2) Take the smallest element ∂x in CT and update CT to {∂2
z , ∂x∂z}. Since

CL = EE = ∅, there does not exist possible candidates of the lower terms.
Set ψ = ∂x and check the conditions (N (∗)), then
ψ(f1) = 6x5z + 36x3yz + 4x3z + 54xy2z + 12xyz ∈ pe,
ψ(f2) = 6x5 + 24x3y + 18xy2 ∈ pe, ψ(f3) = 0 ∈ pe,
[ψ, x] = 1 ∈ SpanQ(y)[x,z]/pe(NB), [ψ, z] = 0 ∈ SpanQ(y)[x,z]/pe(NB).
Hence, ψ satisfies the condition (N (∗)). Renew NB as {1, ∂z, ∂x} and CT as

{∂2
z , ∂x∂z} ∪ Headcandidate

(
{x, z}, ∂x,	,ht(NB), ∅

)
= {∂2

z , ∂x∂z, ∂
2
x}.

(3) Take the smallest element ∂2
z in CT and update CT to {∂x∂z, ∂

2
x}. Since

CL = EE = ∅, there does not exist possible candidates of the lower terms.
Set ψ = ∂2

z and check the conditions (N (∗)), then
ψ(f1) = 0 ∈ pe, ψ(f2) = 2 /∈ pe, ψ(f3) = 2z ∈ pe.
Hence, ψ does not satisfy the condition (N (∗)). Update FL = {∂2

z} and
CL = {∂2

z}.
(4) Take the smallest element ∂x∂z in CT and update CT to {∂2

x}. Set ψ =
∂x∂z + c(0,2)∂

2
z where c(0,2) is an indeterminate. Then,

ψ(f1) = 6x5 + 36x3y + 4x3 + 54xy2 + 12xy ∈ pe,
ψ(f2) = 2c(0,2), ψ(f3) = 2c(0,2)z ∈ pe, [ψ, x] = ∂z ∈ SpanQ(y)[x,z]/pe(NB),
[ψ, z] = ∂x + 2c(0,2)∂z ∈ SpanQ(y)[x,z]/pe(NB).
Hence, when c(0,2) ≡ 0 (mod pe), then ψ satisfies the condition (N (∗)). Set
c(0,2) = 0, and renew NB as {1, ∂z, ∂x, ∂x∂z} and CT as

{∂2
x} ∪ Headcandidate

(
{x, z}, ∂x∂z,	,ht(NB),FL

)
= {∂2

x, ∂2
x∂z}.
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(5) Take the smallest element ∂2
x in CT and update CT to {∂2

x∂z}. Set ψ =
∂2

x + c(0,2)∂
2
z where c(0,2) is an indeterminate. Then,

ψ(f1) = 30x4z + 108x2yz + 12x2z + 54y2z + 12yz ∈ pe,
ψ(f2) = 30x4 + 72x2y + 18y2 + 2c(0,2), ψ(f3) = 2c(0,2)z ∈ pe,
[ψ, x] = 2∂x ∈ SpanQ(y)[x,z]/pe(NB), [ψ, z] = 2c(0,2)∂z ∈
SpanQ(y)[x,z]/pe(NB).
Hence, when c(0,2) ≡ −36y2 (mod pe), then ψ = ∂2

x − 36y2∂2
z satisfies the

condition (N (∗)). Set c(0,2) = −36y2, and renew NB as {1, ∂z, ∂x, ∂x∂z, ∂
2
x −

36y2∂2
z} and CT as

{∂2
x∂z} ∪ Headcandidate

(
{x, z}, ∂2

x,	,ht(NB),FL
)

= {∂2
x∂z, ∂

3
x}.

Update EE = {∂x∂2
z , ∂3

z}.
(6) Take the smallest element ∂2

x∂z in CT and update CT to {∂3
x}. Since EE =

E = EL, thus CL = {∂x∂2
z , ∂3

z , ∂2
z}. Set

ψ = ∂2
x∂z + c(1,2)∂x∂2

z + c(0,3)∂
3
z + c(0,2)∂

2
z

where c(1,2), c(0,3), c(0,2) are indeterminates. Then,
ψ(f1) = 30x4 + 108x2y + 12x2 + 54y2 + 12y /∈ pe,
ψ(f2) = 2c(0,2), ψ(f3) = 6c(0,2)z + 6c(0,3).
Hence, ψ does not satisfy the condition (N (∗)). Update FL = {∂2

x∂z, ∂
2
z} and

CL = {∂2
x∂z, ∂x∂2

z , ∂3
z , ∂2

z}.
(7) Take the smallest element ∂3

x in CT and update CT to ∅. Set

ψ = ∂3
x + c(2,1)∂

2
x∂z + c(1,2)∂x∂2

z + c(0,3)∂
3
z + c(0,2)∂

2
z

where c(2,1), c(1,2), c(0,3), c(0,2) are indeterminates. Then,
ψ(f1) ≡ −24c(2,1)y (mod pe), ψ(f2) ≡ −216xy + 2c(0,2) (mod pe),
ψ(f3) ≡ 6c(0,3) (mod pe),
[ψ, x] = 3∂2

x + 2c(2,1)∂x∂z + c(1,2)∂
2
z ,

[ψ, z] = c(2,1)∂
2
x + 2c(1,2)∂x∂z + 3c(0,3)∂

2
z + 2c(0,2)∂z.

Thus,

(1, ∂z, ∂x, ∂x∂z, ∂
2
x − 36y2∂2

z , [ψ, x], [ψ, z]) = (1, ∂z, ∂x, ∂x∂z, ∂2
x, ∂2

z )A

where

A =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0
0 0 0 1 0 2c(2,1) 2c(1,2)

0 0 0 0 1 3 c(2,1)

0 0 0 0 −36y2 c(1,2) 3c(0,3)

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.
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By the Gaussian elimination method, we obtain

A −→

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0
0 0 0 1 0 2c(2,1) 2c(1,2)

0 0 0 0 1 3 c(2,1)

0 0 0 0 0 c(1,2) + 108y2 3c(0,3) + 36y2c(2,1)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

We have the following system of linear equations over Q(y)[x, y]/pe

−24c(2,1)y = 0,−216xy + 2c(0,2) = 0, 6c(0,3) = 0, c(1,2) + 108y2 = 0,
3c(0,3) + 36y2c(2,1) = 0.

Hence, we have the solution {c(2,1) = 0, c(1,2) = −108y2, c(0,3) = 0, c(0,2) =
108xy}. Therefore, we obtain ψ = ∂3

x − 108y2∂x∂2
z + 108xy∂2

z . Renew NB as
{1, ∂z, ∂x, ∂x∂z, ∂

2
x − 36y2∂2

z , ∂3
x − 108y2∂x∂2

z + 108xy∂2
z} and CT as

Headcandidate
(
{x, z}, ∂3

x,	,ht(NB),FL
)

= {∂4
x}.

Update EE = {∂2
x∂2

z , ∂x∂3
z}.

(8) Take the smallest element ∂4
x in CT and update CT to ∅. Since EL = ∅, set

ψ = ∂4
x + c(2,1)∂

2
x∂z + c(1,2)∂x∂2

z + c(0,3)∂
3
z + c(0,2)∂

2
z

where c(2,1), c(1,2), c(0,3), c(0,2) are indeterminates. Then,
ψ(f1) ≡ −24c(2,1)y (mod pe), ψ(f2) ≡ −936y + 2c(0,2) (mod pe),
ψ(f3) ≡ 6c(0,3) (mod pe).
Thus, we get c(2,1) = 0, c(0,2) = 468y, c(0,3) = 0. Furthermore,
[ψ, x] = 4∂3

x + 2c(2,1)∂x∂z + c(1,2)∂
2
z = 4∂3

x + c(1,2)∂
2
z ,

[ψ, z] = c(2,1)∂
2
x +2c(1,2)∂x∂z +3c(0,3)∂

2
z +2c(0,2)∂z = 2c(1,2)∂x∂z +2c(0,2)∂z.

Thus,

(1, ∂z, ∂x, ∂x∂z, ∂
2
x − 36y2∂2

z , ∂3
x − 108y2∂x∂2

z + 108xy∂2
z , [ψ, x], [ψ, z])

= (1, ∂z, ∂x, ∂x∂z, ∂2
x, ∂2

z , ∂3
x, ∂x∂2

z )B

where

B =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 2c(1,2)

0 0 0 0 1 0 0 0
0 0 0 0 −36y2 108xy c(1,2) 0
0 0 0 0 0 1 4 0
0 0 0 0 0 −108y2 0 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.
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By the Gaussian elimination method, we obtain

B −→

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 2c(1,2)

0 0 0 0 1 0 0 0
0 0 0 0 0 1 4 0
0 0 0 0 0 0 c(1,2) − 432xy 0
0 0 0 0 0 0 432y2 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The system of linear equations {c(1,2) − 432xy = 0, 432y2 = 0} does not
have any solution. Thus, ψ does not satisfy the condition (N (∗)). Update
FL = {∂4

x, ∂2
x∂z, ∂

2
z}.

Now, we stop computing because of CT = ∅. Hence,

1, ∂z, ∂x, ∂x∂z, ∂
2
x − 36y2∂2

z , ∂3
x − 108y2∂x∂2

z + 108xy∂2
z

are Noetherian operators of the primary component, whose radical is p, of I.
In Fig. 1, an element of ht(NB) is displayed as ◦ and an element of FL is

displayed as ∗.

Fig. 1. Elements of ht(NB) and FL

Algorithm 1 is implemented in the computer algebra system Risa/Asir [17].
One can download the source codes from the following website:

https://www.rs.tus.ac.jp/∼nabeshima/softwares.html.

When we input the second prime ideal 〈x, z〉 to the Risa/Asir implementation,
then it outputs 1, ∂x as the Noetherian operators.

4.2 Comparisons

In [4], the computer algebra system Macaulay2 [9] package NoetherianOperators,
that implements another algorithm for computing Noetherian operators intro-
duced in [3], is published. Let us compare an output of our Risa/Asir implemen-
tation with that of the Macaulay2 implementation.

Let f = x5+5x4y+10x3y2+10x2y3+x2z2+5xy4+2xyz2+xz3+y5+y2z2 ∈
Q[x, y, z] and J = 〈∂f

∂x , ∂f
∂y , ∂f

∂z 〉. Then, J is a primary ideal with
√

J = 〈x+ y, z〉,
and {y} is a MIS modulo J .

https://www.rs.tus.ac.jp/~nabeshima/softwares.html
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Macaulay2 implementation returns the following Noetherian operators of J
if we input J .
{
1, ∂z, ∂x, ∂x∂z, ∂2

x, 3y∂2
x∂z + 2∂2

z , ∂3
x,

(−162y2 − 36)∂4
x + (240y3 + 540y)∂3

x∂z − 1620∂2
x∂z + (4860y2 + 1080)∂x∂2

z

+4860y∂2
z

}
,

where ∂x := ∂
∂x , ∂z := ∂

∂z .
Our Risa/Asir implementation returns the following Noetherian operators of

J if we input J .
{

1, ∂z, ∂x, ∂x∂z, ∂2
x, y∂2

x∂z +
2
3
∂2

z , ∂3
x, y∂4

x + 15y2∂3
x∂z − 30y∂x∂2

z − 30∂2
z

}
.

As is evident from the outputs above, the output of our Risa/Asir imple-
mentation is simpler than that of Macaulay2. This is because Algorithm 1
returns a reduced basis of the finite dimensional vector space NTqe over
Q(y)[x, z]/〈x + y, z〉. In contract, the output of Macaulay2 contains a redun-
dant term ∂2

x∂z. This is one of advantages of Algorithm 1.
Next, we give results of benchmark tests. All results in this paper have been

computed on a PC with [OS: Ubuntu Linux, CPU: Intel(R) Core(TM) i9-7900X
CPU @ 3.30 GHz, RAM: 128 GB]. The time is given in CPU-seconds. In Table 1,
“>10m” means it takes more than 10 min.

Note that as the Macaulay2 implementation [4] allows only a primary ideal
as the input, thus we use the following eight positive-dimensional primary ide-
als in Q[x, y, z] (or Q[x, y, z, w]) for the comparisons. We use the total degree
lexicographic term order with ∂x 	 ∂y 	 ∂z (or ∂x 	 ∂y, ∂x 	 ∂z).

1. F1 = {x8 + 4x6y + 6x4y2 + 4x2y3 + y4, z4 + 2z2 + 1} ⊂ Q[x, y, z],
√〈F1〉 =

〈x2 + y, z2 + 1〉, and a MIS modulo
√〈F1〉 is {y}.

2. F2 = {3x2+(y2+z)7, 7(y2+z)6x+10(y2+z)9, x3+(y2+z)7x+(y2+z)10} ⊂
Q[x, y, z],

√〈F2〉 = 〈x, y2 + z〉, and a MIS modulo
√〈F2〉 is {z}.

3. F3 = {3(x + z2 + 1)2y + y6, (x + z2 + 1)3 + 6(x + z2 + 1)y5 + 10y9, (x + z2 +
1)3y + (x + z2 + 1)y6 + y10} ⊂ Q[x, y, z],

√〈F3〉 = 〈y, x + z2 + 1〉, and a MIS
modulo

√〈F3〉 is {z}.
4. F4 = {3(x + y)2(z2 + w) + (z2 + w)8 + (z2 + w)7, (x + y)3 + 8(x + y)(z2 +

w)7 + 7(x + y)(z2 + w)6 + 9(z2 + w)8, (x + y)3(z2 + w) + (x + y)(z2 + w)8 +
(x + y)(z2 + w)7 + (z2 + w)9} ⊂ Q[x, y, z, w],

√〈F4〉 = 〈x + y, z2 + w〉, and a
MIS modulo

√〈F4〉 is {y, z}.
5. F5 = {3(x2 + z2)2 + (y + z)11, 11(y + z)10(x2 + z2) + 19(y + z)18 + 17(y +

z)16, ((x2 + z2)3 + (x2 + z2)(y + z)11 + (y + z)17 + (y + z)19)2} ⊂ Q[x, y, z],√〈F5〉 = 〈x2 + z2, y + z〉, and a MIS modulo
√〈F5〉 is {z}.

6. F6 = {(3(x+w)2+y10+y9)2, ((10y9+9y8)(x+w)+13y12+(z2+w)2)2, y(z2+
w), (x+w)3+(x+w)y11+y17+y19} ⊂ Q[x, y, z, w],

√〈F6〉 = 〈x+w, y, z2+w〉,
and a MIS modulo

√〈F6〉 is {w}.
7. F7 = {4(x2 + z)3 +2(y + z)5(x2 + z)+ y7, (5(y + z)4(x2 + z)2 +7(y + z)6(x2 +

z)+12(y+z)11)3, (x2+z)4+(y+z)5(x2+z)2+(y+z)7(x2+z)+(y+z)12} ⊂
Q[x, y, z],

√〈F7〉 = 〈x2 + z, y + z〉, and a MIS modulo
√〈F7〉 is {z}.
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8. F8 = {3(2x2+z)2(y2+2)+(y2+2)13+(y2+2)12+(y2+2)11, (2x2+z)3+13(2x2+
z)(y2+2)12+12(2x2+z)(y2+2)11+11(2x2+z)(y2+2)10+15(y2+2)14, ((2x2+
z)3(y2+2)+(y2+2)15+(2x2+z)(y2+2)12+(2x2+z)(y2+2)13)2} ⊂ Q[x, y, z],√〈F8〉 = 〈y2 + 2, 2x2 + z〉, and a MIS modulo

√〈F8〉 is {z}.

In the benchmark tests, we use the Macaulay2 implementation with Strategy
= > ”MacaulayMatrix” and our Risa/Asir implementation with computing an
associate prime and a MIS, namely, the CPU time of “New implementation
(Risa/Asir)”, in Table 1, contains the sum of the computation times of

√〈Fi〉1,
a MIS modulo

√〈Fi〉 and Algorithm 1 for each i ∈ {1, 2, . . . , 8}.

Table 1. Comparisons of Noetherian operators

Problem Macaulay2 New implementation (Risa/Asir) (Algorithm 1)

1 0.280 0.0156

2 11.389 0.1875

3 5.898 0.03125

4 27.816 0.0180

5 >10 m 0.8288

6 >10 m 1.172

7 >10 m 2.922

8 >10 m 4.875

As is evident from Table 1, our new implementation is much faster in com-
parison with Macaulay2 implementation because Algorithm 1 mainly consists of
linear algebra techniques. This is one of the big advantages of the new algorithm.

4.3 Computing Noetherian Representations

Here we introduce an algorithm for computing a Noetherian representation that
can be regarded as an alternative primary ideal decomposition of a polyno-
mial ideal. As we described in Sect. 3 and Sect. 4.1, Noetherian operators encode
primary components of a polynomial ideal. Thus, they can be utilized to char-
acterize an ideal.

Definition 7. Let I be an ideal in K[X], I = q1 ∩ q2 ∩ · · · ∩ qt a pri-
mary decomposition of I where qi is a primary ideal for 1 ≤ i ≤ t. Let
NBi ⊂ K(Ui)[Yi][{∂y|y ∈ Yi}] be a basis of the vector space NTqi

e where Ui

is a MIS modulo qi and Yi = X\Ui. Then,

{(
√
q1,NB1, U1), (

√
q2,NB2, U2), . . . , (

√
qt,NBt, Ut)}

is called a Noetherian representation of I and written as Noether(I).
1 A function noro pd.prime dec [15], that computes a prime decomposition of a radical

ideal, is available in a program file noro pd.rr that is contained in the OpenXM
package [20].
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By combining an algorithm for computing a prime decomposition of
√

I [1,15,
22], Lemma 3, 4, 5 and Algorithm 1, we can construct an algorithm for computing
Noether(I) without computing a primary decomposition of I. The following
algorithm is based on Gianni-Trager-Zacharias algorithm [10] of computing a
primary ideal decomposition.

Algorithm 2 (noetherian-rep)

Specification: noetherian-rep(F )
Computing Noetherian representation of 〈F 〉.
Input: F ⊂ K[X].
Output: NR = {(p1,NB1, U1), . . . , (pt,NBt, Ut)}: Noetherian representation of

〈F 〉.
BEGIN
Flag ← 1; NR ← ∅;
while Flag = 1 do

{p1, . . . , pk} ← ⋂k
i=1 pi is the minimal prime decomposition of

√〈F 〉; (∗)
pmax ← Select a maximal dimensional prime ideal pmax from {p1, . . . , pk};
U ← Compute a MIS modulo pmax; Y ← X\U ;
	b← Set a block term order with U 
 Y ;
M ← {p ∈ {p1, . . . , pk}|dim(p) = dim(pmax), U is a MIS modulo p};
	← Set a term order on Term({∂y|y ∈ Y });
while M �= ∅ do

pm ← Select p form M ; M ← M\{pm};
NB ← Noether(F, pm, U, Y,	);
NR ← NR ∪ {(pm,NB, U)};

end-while
if Y �= ∅ then

G ← Compute a Gröbner basis of 〈F 〉 w.r.t. 	b in K[U, Y ] = K[X];
h ← LCM{hc(g)|g ∈ G} where G is regarded as a subset of K[U ][Y ];
if h is a constant then

Flag ← 0;
else

s ← Compute a natural number with 〈H〉 : h∞ = 〈H〉 : hs;
F ← {F ∪ {hs}};

end-if
else

Flag ← 0;
end-if

end-while
return NR;
END

As we mentioned in Remark 2, in general, an algorithm for computing a prime
decomposition of the radical

√
I, at (∗), is much faster that that for computing

primary decomposition of a polynomial ideal I in K[X].
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Theorem 4. Algorithm 2 terminates and outputs correctly.

Proof. By utilizing Lemma 5, we have 〈F 〉 = 〈F ∪ {hs1
1 }〉 ∩ (〈F 〉 : hs1

1 ) where
h1 = LCM{hc(g)|g ∈ G ⊂ K[U1][Y1]}, G is a Gröbner basis of 〈F 〉 w.r.t. a
block term order with U1 
 Y1 on Term(X) in K[X], U1 is a MIS modulo 〈F 〉,
Y1 = X\U1 and s1 is a natural number that satisfying 〈F 〉 : h∞

1 = 〈F 〉 : hs1
1 .

In the second while-loop, a Noetherian representation of 〈F 〉 : hs1
1 is obtained

because of Lemma 3 and 4. Renew F2 := F ∪{hs1
1 }. Again, by utilizing Lemma 6,

we have 〈F2〉 = 〈F2 ∪ {hs2
2 }〉 ∩ (〈F2〉 : hs2

2 ) where h2 = LCM{hc(g)|g ∈ G2 ⊂
K[U2][Y2]}, G2 is a Gröbner basis of 〈F2〉 w.r.t. a block term order with U2 
 Y2

on Term(X) in K[X], U2 is a MIS modulo 〈F2〉, Y2 = X\U2 and s2 is a natural
number satisfies 〈F2〉 : h∞

2 = 〈F2〉 : hs2
2 . In the second while-loop, a Noetherian

representation of 〈F2〉 : hs2
2 is obtained by the same reason above. We repeat

the same procedure until hi becomes a constant (i ∈ N). Then, the union NR
of all triples is a Noetherian representation of the input ideal 〈F 〉 because of
〈F 〉 = (∩t

i=2(〈Fi〉 : hsi
i ))∩ (〈F 〉 : hs1

1 ). As K[X] is a Noetherian ring, the number
t is finite. Thus, Algorithm 2 terminates and outputs correctly. ��

We illustrate the algorithm with the following example.

Example 3. Let us consider the ideal I of Example 2, again. As we described
in Example 2, we have

√
I = 〈x2 + 3y, z〉 ∩ 〈x, z〉 as the prime decomposition

of
√

I. Since {y} is the MIS modulo 〈x2 + 3y, z〉 and 〈x, z〉, thus M = {〈x2 +
3y, z〉, 〈x, z〉}. We have NR = {(〈x2 + 3y, z〉,NB, {y}), (〈x, z〉, {1, ∂z}, {y})} in
Example 2.

The reduced Gröbner basis G of I w.r.t. a block term order with {x, z} 
 {y}
is G = {z3, (3y +1)x4z +(18y2 +6y)x2z +27y3z +9y2z, x6 +6yx4 +9y2x2 + z2}
in Q[x, y, z]. Then, h = LCM{hc(g)|g ∈ G ⊂ Q[y][x, z]} = 3y + 1 in Q[y] and
〈F 〉 : h∞ = 〈F 〉 : h. We set F ′ = {3y + 1} ∪ {f1, f2, f3}. In this case, 〈F ′〉 is zero
dimensional, namely, the MIS modulo 〈F ′〉 is the empty set.

The prime decomposition of
√〈F ′〉 is

√
〈F ′〉 = 〈x, 3y + 1, z〉 ∩ 〈x − 1, 3y + 1, z〉 ∩ 〈x + 1, 3y + 1, z〉.

Thus, for each prime ideal, Algorithm 1 outputs the reduced basis of the vector
space as follows:

NZ = {(〈x, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
z − ∂2

z , ∂3
x − 3∂x∂2

z}, ∅),
(〈x − 1, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂

2
x − 4∂2

z , ∂3
x − 12∂x∂2

z − 36∂2
z}, ∅),

(〈x + 1, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
x − 4∂2

z , ∂3
x − 12∂x∂2

z + 36∂2
z}, ∅)}.

Therefore, Noether(I) = NR ∪ NZ.
We remark that bases of the primary ideals that are associated to (〈x2+3y, z〉,

NB ∅), (〈x − 1, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
x − 4∂2

z , ∂3
x − 12∂x∂2

z − 36∂2
z} ∅) and

(〈x+1, 3y+1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
x−4∂2

z , ∂3
x−12∂x∂2

z +36∂2
z} ∅) are the following

q1, q2, q3. respectively.



290 K. Nabeshima and S. Tajima

q1 = {z3, x4z + 6x2yz + 9y2z, 9x4y2 + 54x2y3 − x2z2 + 81y4 − 6yz2,
x6 + 6x4y + 9x2y2 + z2},

q2 = {3y+1, z3, 4x2−3xz2−8x+4z2+4, x2z−2xz+z, 12x3−32x2+28x+z2−8},
q3 = {3y+1, z3, 4x2+3xz2+8x+4z2+4, x2z+2xz+z, 12x3+32x2+28x−z2+8}.

Since we can check 〈q1〉 ⊂ 〈q2〉 and 〈q1〉 ⊂ 〈q3〉, thus q2 and q3 are redundant,
namely, the following is also a Noetherian representation of 〈F 〉:

Noether(I) = NR ∪ {(〈x, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
z − ∂2

z , ∂3
x − 3∂x∂2

z}, ∅)}.

The Noetherian representation above corresponds to the minimal primary
decomposition of I.

Since we adapt the Gianni-Trager-Zacharias algorithm [10] of computing a
primary decomposition, there is a possibility that the output of Algorithm 2 con-
tains redundant components, like the above. After obtaining the decomposition,
it is possible to delete the redundant components by checking the inclusions.

In Sect. 6 of [16], an algorithm for computing generators of a zero dimensional
primary ideal q from a triple (p,NB, ∅) is introduced where q is p-primary and NB
is a basis of the vector space NTq in K[X][∂]. Even if q is not zero dimensional,
we can utilize the algorithm for computing generators of qe in K(U)[Y ] where
U is a MIS of q and Y = X\U . As qec = q, generators of q can be obtained
by the algorithm that is published in [16]. Actually, in Example 3, q1, q2, q3
were computed by the algorithm. Therefore, by combining Algorithm 3 and the
algorithm for computing generators (and techniques of [15]), one can construct
an algorithm for computing a minimal primary decomposition of a polynomial
ideal I ⊂ K[X] and the Noetherian representation Noether(I), simultaneously.
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