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Abstract. The problem on the rotation of a dynamically asymmetric
rigid body around a fixed point is considered. The body is fixed inside
a spherical shell, which a ball and a disk adjoin to. The equations of
motion of the mechanical system in the case of absence of external forces
admit two additional first integrals and these are completely integrable.
The nonintegrable case, when potential forces act upon the system, is also
considered. The qualitative analysis of the equations of motion is done in
the both cases: stationary sets are found and their Lyapunov stability is
studied. A mechanical interpretation for the obtained solutions is given.
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1 Introduction

The problem considered in this paper goes back to the Chaplygin work [1] of
rolling a dynamically asymmetric balanced ball along a horizontal plane without
slipping. The integrability of the system was revealed by Chaplygin with the help
of its explicit reduction to quadratures. A sufficient number of works are devoted
to the Chaplygin problem and its integrable generalizations (see, e.g., [2]). One
of them is investigated in the paper. In [3] the generalization of system [2] is
given. The motion of a dynamically asymmetric rigid body around fixed point
O is considered (see Fig. 1). The body is rigidly enclosed in a spherical shell,
the geometrical center of which coincides with the fixed point of the body. One
ball and one disk adjoin to the spherical shell. It is supposed that slipping at
a contact point of the ball with the shell is absent. The disk – nonholonomic
hinge – concerns the external surface of the spherical shell. The centers of the
balls and the axis of the disk are fixed in space. The study of dynamics of such
systems is of interest, e.g., for robotics in the problems of the design and control
of mobile spherical robots (see., e.g., [4]). The motion of the mechanical system
is described by the differential equations [3]
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Fig. 1. The rigid body enclosed in a spherical shell, which a ball and a disk adjoin to.

Iω̇ = Iω × ω + Rγ × N + μE + MQ, D1ω̇1 = D1ω1 × ω + R1γ × N,

γ̇ = γ × ω, Ė = E × ω, (1)

and the equations of constraints

Rω × γ + R1ω1 × γ = 0, (ω,E) = 0. (2)

Here ω = (ω1, ω2, ω3), R is the angular velocity of the body and the radius of the
spherical shell, ω1 = (ω11 , ω12 , ω13), R1 is the angular velocity and the radius
of the adjoint ball, γ = (γ1, γ2, γ3) is the unit vector of the axis connecting
the fixed point with the center of the adjoint ball, E = (e1, e2, e3) is the vector
of the normal to the plane containing the fixed point and the axis of the disk,
I = diag(A,B,C) is the inertia tensor of the body, D1 is the inertia tensor of the
adjoint ball, N= (N1, N2, N3), μ are indefinite factors related to the reactions
of constraints (2), MQ is the moment of external forces. One supposes that the
position of the vectors E and γ with respect to each other is arbitrary.

By means of the equations of constraints (2) the differential Eqs. (1) are
reduced to the form [3]:

Iω̇ + Dγ × (ω̇ × γ) = Iω × ω + μE + MQ, γ̇ = γ × ω, Ė = E × ω, (3)

where D = R2

R2
1
D1.

The indefinite factor μ is found from the condition that the derivative of the
2nd relation (2) in virtue of differential Eqs. (3) is equal to zero.

If the body is subject to external forces, e.g., potential ones

MQ = γ × ∂U

∂γ
+ E × ∂U

∂E
,
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where U = U(γ,E) is the potential energy of external forces, Eqs. (3) admit the
following first integrals

2H = (IQ ω,ω) + 2U(γ,E) = 2h, V1 = (γ,γ) = 1, V2 = (E,E) = 1,

V3 = (γ,E) = c1, V4 = (ω,E) = 0 (4)

and are nonintegrable in the general case. Here IQ = I + D − Dγ ⊗ γ, γ ⊗ γ =
[cij ], c11 = γ2

1 , c12 = γ1γ2, . . .
In the case of the absence of external forces (U = 0) and (E × γ) �= 0, Eqs.

(3) have two additional first integrals

F1 = (K,E × γ), F2 = (K,E × (E × γ)),

where K = IQ ω − (IQ ω,E)E, and then system (3) is completely integrable.

2 Problem Statement

The qualitative analysis of the problem under consideration was not conducted
so far. In the present work, the qualitative analysis of the equations of motion
(3) on the invariant set defined by the relation V4 = 0 (4) is done. We find
invariant sets of various dimension from the necessary conditions of extremum
of the first integrals of the problem (or their combinations) and study their
Lyapunov stability. The sets found in this way are called stationary ones. The
stationary sets of zero dimension are known as stationary solutions, while the
positive dimension sets are called stationary invariant manifolds (IMs).

We use the Routh–Lyapunov method [5] and some its generalizations [6] for
the study of the problem. The computer analysis of the problem is mainly done
symbolically. Computer algebra system (CAS) Mathematica and the software
package [7] written in the language of this system are applied to solve com-
putational problems. With the help of the package, the stability of the found
solutions is investigated.

The paper is organized as follows. In Sect. 2 and 3, we describe finding sta-
tionary sets both in the case of absence of external forces and when potential
forces act upon the mechanical system. Solutions obtained in these sections corre-
spond to equilibria of the mechanical system. In Sect. 4, solutions corresponding
to pendulum-type motions are presented. In Sect. 5, the stability of the found
solutions is analyzed. In Sect. 6, we give some conclusions.

3 On Stationary Sets in the Case of Absence of External
Forces

The equations of motion (3) in an explicit form on the invariant set V4 = 0 when
U = 0 are written as
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ω̇1 = − 1
σ1

[
D((A − B)(B + D)γ3ω̄2 − (A − C)(C + D)γ2ω3) γ1ω1

+(B − C)((C + D)(B + D − Dγ2
2) − D(B + D)γ2

3) ω̄2ω3 + μ [(C + D)

×((B + D)e1 + Dγ2(e2γ1 − e1γ2)) + D(B + D)γ3(e3γ1 − e1γ3)]
]
,

ω̇3 = − 1
σ1

[
(A − B)((B + D)(A + D − Dγ2

1) − D(A + D) γ2
2)ω1ω̄2

−D((A − C)(A + D)γ2ω1 − (B − C)(B + D)γ1ω̄2) γ3ω3 + μ [D(A + D)

×γ2 (e2γ3 − e3γ2) + (B + D)(e3(A + D − Dγ2
1) + De1γ1γ3)]

]
,

γ̇1 = −γ3ω̄2 + γ2ω3, γ̇2 = γ3ω1 − γ1ω3, γ̇3 = −γ2ω1 + γ1ω̄2,

ė1 = −e3ω̄2 + e2ω3, ė2 = e3ω1 − e1ω3, ė3 = −e2ω1 + e1ω̄2, (5)

where ω̄2 = − e1ω1+e3ω3
e2

,

μ = − 1
σ2

[
(A−B)((B + D)(A + D) e3 + D(B + D)γ1(γ3e1−e3γ1)

+D(A + D)γ2(γ3e2 − e3γ2))ω1ω̄2

−(A − C)(e2(A + D)(C + D) + D(C + D)γ1(e1γ2 − e2γ1)
+D(A + D)γ3(e3γ2 − e2γ3))ω1ω3 + (B − C)((B + D)(C + D)e1

+D(C + D)γ2(e2γ1 − e1γ2) + D(B + D)γ3(e3γ1 − e1γ3)) ω̄2ω3

]
,

σ1 = D((B+D)(C+D) γ2
1 + (A+D)(C + D) γ2

2 + (A+D)(B+D) γ2
3)

−(A + D)(B + D)(C + D),
σ2 = (B + D)(C + D) e21 + (A + D)(C + D) e22 + (A + D)(B + D) e23

−D[(C + D)(e2γ1 − e1γ2)2 + (B + D)(e3γ1 − e1γ3)2

+(A + D)(e3γ2 − e2γ3)2],

Equations (5) admit the following first integrals:

2H = (A + D − Dγ2
1)ω2

1 + (B + D − Dγ2
2) ω̄2

2 + (C + D − Dγ2
3)ω2

3

−2D(γ1γ2ω1ω̄2 + γ1γ3ω1ω3 + γ2γ3ω̄2ω3) = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = e21 + e22 + e23 = 1,

V3 = e1γ1 + e2γ2 + e3γ3 = c1,

F1 = −(A + D)(e3γ2 − e2γ3)ω1 + (B + D)(e3γ1 − e1γ3) ω̄2

−(C + D)(e2γ1 − e1γ2)ω3 = c2,

F2 = [e1 (A + D − 2Dγ2
1)(e2γ2 + e3γ3) − γ1(A (e22 + e23)

−D((e22 + e23)(γ
2
1 − 1) + (e3γ2 − e2γ3)2 + e21(γ

2
2 + γ2

3)))]ω1

+[e2 (B + D − 2Dγ2
2)(e1γ1 + e3γ3) − γ2(B (e21 + e23)

−D((e21 + e23)(γ
2
2 − 1) + (e3γ1 − e1γ3)2 + e22(γ

2
1 + γ2

3)))] ω̄2

+[e3 (e1γ1 + e2γ2)(C + D − 2Dγ2
3) − γ3(C (e21 + e22)

−D((e2γ1 − e1γ2)2 + e23(γ
2
1 + γ2

2) + (e21 + e22)(γ
2
3 − 1)))]ω3 = c3. (6)
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Here F1, F2 are the additional integrals of the 3rd and 5th degrees, respectively.
As was remarked above, the stationary conditions for the first integrals of

the problem (or their combinations) are used to obtain solutions of interest for
us. In the problem under consideration, because of rather high degrees of the
first integrals, another approach [8] turned out to be more effective for seeking
the desired solutions: first, obtain the desired solutions from the equations of
motion, and, then, find the conditions on the parameters of the problem under
which these solutions satisfy the stationary equations for the first integrals.

Obviously, Eqs. (5) have the solution ω1 = ω3 = 0. These relations together
with the integrals V1 = 1, V2 = 1 define the invariant manifold (IM) of codimen-
sion 4 for the equations of motion (5). It is easy to verify by direct calculation
according to the IM definition. The equations of the IM are written as:

ω1 = ω3 = 0, e21 + e22 + e23 = 1, γ2
1 + γ2

2 + γ2
3 = 1. (7)

With the help of maps on IM (7)

ω1 = ω3 = 0, γ1 = ±
√

1 − γ2
2 − γ2

3 , e1 = ±
√

1 − e22 − e23, (8)

we find that the integral V3 takes the form

e2γ2 + e3γ3 ±
√

1 − γ2
2 − γ2

3

√
1 − e22 − e23 = c1

on this IM. Thus, IM (7) exists for any angles between the vectors E and γ, i.e.,
it is the family of IMs.

The differential equations γ̇2 = 0, γ̇3 = 0, ė2 = 0, ė3 = 0 on IM (7) have the
family of solutions:

γ2 = γ0
2 = const, γ3 = γ0

3 = const, e2 = e02 = const, e3 = e03 = const. (9)

The latter relations together with the IM equations determine four families
of solutions for the equations of motion (5)

ω1 = ω3 = 0, e1 = ±
√

1 − e02
2 − e02

2
, e2 = e02, e3 = e03, γ1 =

√
1 − γ0

2
2 − γ0

2
2
,

γ2 = γ0
2, γ3 = γ0

3;

ω1 = ω3 = 0, e1 = ±
√

1 − e02
2− e02

2
, e2 = e02, e3 = e03, γ1 = −

√
1 − γ0

2
2 − γ0

2
2
,

γ2 = γ0
2, γ3 = γ0

3 (10)

that can be verified by substituting the solutions into these equations. Here
e02, e

0
3, γ0

2, γ
0
3 are the parameters of the families. Evidently, the solutions belong

to IM (7).
From a mechanical point of view, the elements of the families of solutions

(10) correspond to equilibria of the mechanical system under study.
Using the stationary equations

∂K1/∂ω1 = 0, ∂K1/∂ω3 = 0, ∂K1/∂γj = 0, ∂K1/∂ej = 0 (j = 1, 2, 3)
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for the integral 2K1 = 2λ0H − λ1(V1 − V2)2 − λ2F1F2 (λi = const), it is not
difficult to show that this integral takes a stationary value both on IM (7) and
solutions (10). For this purpose, it is sufficient to substitute expressions (8) (or
(10)) into the above equations. These become identity.

Directly, from differential Eqs. (5), it is also easy to obtain the following their
solutions:

ω1 = ω3 = 0, e1 = ±γ1, e2 = ±γ2, e3 = ±γ3. (11)

Relations (11) together with the integral V1 = 0 define two IMs of codimen-
sion 6 of differential Eqs. (5) that is verified by direct computation according to
the IM definition. The equations of these IMs have the form:

ω1 = ω3 = 0, e1 ∓ γ1 = 0, e2 ∓ γ2 = 0, e3 ∓ γ3 = 0, γ2
1 + γ2

2 + γ2
3 = 1. (12)

On substituting expressions (12) into the stationary conditions for the inte-
gral

2K2 = 2λ0H − λ1V1 − λ2V2 − 2λ3V3 − 2λ4F1 − 2λ5F2 (λi = const)

we find the values λ2 = λ1, λ3 = ∓λ1 under which the integral K2 assumes a
stationary value on IMs (12).

The integrals K1 and K2 (under the corresponding values of λ2, λ3) are used
for obtaining the sufficient conditions of stability of the above solutions.

The differential equations γ̇2 = 0, γ̇3 = 0 on each IMs (12) have the following
family of solutions: γ2 = γ0

2 = const, γ3 = γ0
3 = const. Thus, geometrically, in

space R8, two-dimensional surface corresponds to each of IMs (12), each point
of which is a fixed point of the phase space.

The integral V3 takes the values ±1 on IMs (12). Thus, IMs (12) correspond
to the cases when the vectors E and γ are parallel or opposite in direction.

4 On Stationary Sets in the Case of the Presence
of External Forces

Let the mechanical system under study be under the influence of external poten-
tial forces with the potential energy U = (a,γ) + (b,E), where a = (a1, a2, a2),
b = (b1, b2, b2) are the indefinite factors. In this case, the equations of motion
(3) on the invariant set V4 = 0 are written as:
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ω̇1 = − 1
σ1

[
D((A − B)(B + D)γ3ω̄2 − (A − C)(C + D)γ2ω3) γ1ω1

+(B − C)((C + D)(B + D − Dγ2
2) − D(B + D)γ2

3) ω̄2ω3 + μ [(C + D)
×((B + D)e1 + Dγ2(e2γ1 − e1γ2)) + D(B + D)γ3(e3γ1 − e1γ3)]
+((C + D)(B + D − Dγ2

2) − D(B + D)γ2
3)MQ1 + D(C + D)γ1γ2MQ2

+D(B + D)γ1γ3MQ3

]
,

ω̇3 = − 1
σ1

[
(A − B)((B + D)(A + D − Dγ2

1) − D(A + D) γ2
2)ω1ω̄2

−D((A − C)(A + D)γ2ω1 − (B − C)(B + D)γ1ω̄2) γ3ω3 + μ [D(A + D)
×γ2 (e2γ3 − e3γ2) + (B + D)(e3(A + D − Dγ2

1) + De1γ1γ3)]
+Dγ3((B + D)γ1MQ1 + (A + D)γ2MQ2) + ((B + D)(A+D−Dγ2

1)

−D(A + D)γ2
2)MQ3

]
,

γ̇1 = −γ3ω̄2 + γ2ω3, γ̇2 = γ3ω1 − γ1ω3, γ̇3 = −γ2ω1 + γ1ω̄2,

ė1 = −e3ω̄2 + e2ω3, ė2 = e3ω1 − e1ω3, ė3 = −e2ω1 + e1ω̄2, (13)

where μ = − 1
σ2

[
(A−B)((B + D)(A + D) e3 + D(B + D) γ1

×(γ3e1 − e3γ1) + D(A + D)γ2(γ3e2 − e3γ2))ω1ω̄2

−(A − C)(e2(A + D)(C + D) + D(C + D)γ1(e1γ2 − e2γ1)
+D(A + D)γ3(e3γ2 − e2γ3))ω1ω3 + (B − C)((B+D)(C+D) e1

+D(C + D)γ2(e2γ1 − e1γ2) + D(B + D)γ3(e3γ1 − e1γ3)) ω̄2ω3

−((C + D)((B + D)e1 + Dγ2(e2γ1 − e1γ2))
+D(B + D)γ3(e3γ1 − e1γ3))MQ1 − ((C + D)((A + D)e2
+Dγ1(e1γ2 − e2γ1)) + D(A + D)γ3(e3γ2 − e2γ3))MQ2

−(D(A + D)γ2(e2γ3 − e3γ2) + (B + D)((A + D)e3

+Dγ1(e1γ3 − e3γ1)))MQ3

]
.

MQ1 = b3e2−b2e3 + a3γ2−a2γ3, MQ2 = −b3e1 + b1e3−a3γ1+a1γ3,

MQ3 = b2e1 − b1e2 + a2γ1 − a1γ2.

Here ω̄2, σ1, σ2 have the same values as in Sect. 2.
The first integrals of Eqs. (13):

2H = (A + D − Dγ2
1)ω2

1 + (B + D − Dγ2
2) ω̄2

2 + (C + D − Dγ2
3)ω2

3

−2D(γ1γ2ω1ω̄2 + γ1γ3ω1ω3 + γ2γ3ω̄2ω3) + a1γ1 + a2γ2 + a3γ3

+b1e1 + b2e2 + b3e3 = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = e21 + e22 + e23 = 1,

V3 = e1γ1 + e2γ2 + e3γ3 = c1. (14)
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We shall seek solutions of differential Eqs. (13) of the following type:

ω1 = ω3 = 0, e1 = e01, e2 = e02, e3 = e03, γ1 = γ0
1 , γ2 = γ0

2 , γ3 = γ0
3 , (15)

where e02, e03, γ0
2 , γ0

3 are some constants, and e01 = ±
√

1 − e0
2

2 − e0
2

3 ,

γ0
1 = ±

√
1 − γ02

2 − γ02
3 .

On substituting (15) into Eqs. (13) these take the form:

μ̄ [(C + D)((B + D) e01 + Dγ0
2(e02γ

0
1 − e01γ

0
2)) + D(B + D)γ0

3(e03γ
0
1 − e01γ

0
3)]

+((C + D)(B + D − Dγ02

2 ) − D(B + D)γ02

3 )M̄Q1 + D(C + D)γ0
1γ0

2M̄Q2

+D(B + D)γ0
1γ0

3M̄Q3 = 0,

μ̄ [D(A + D)γ0
2 (e02γ

0
3 − e03γ

0
2) + (B + D)(e03(A + D − Dγ02

1 ) + De01γ
0
1γ0

3)]

+Dγ0
3((B + D)γ0

1M̄Q1 + (A + D)γ0
2M̄Q2) + ((B + D)(A + D − Dγ02

1 )

−D(A + D)γ02

2 )M̄Q3 = 0. (16)

Here μ̄ =
1
σ̄2

[
[(C + D)((B + D) e01 + Dγ0

2(e02γ
0
1 − e01γ

0
2)) + D(B + D)

×γ0
3(e03γ

0
1 − e01γ

0
3)] M̄Q1 + [(C+D)((A + D) e02 + Dγ0

1(e01γ
0
2−e02γ

0
1))

+D(A + D)γ0
3(e03γ

0
2 − e02γ

0
3)] M̄Q2 + [D(A + D)γ0

2(e02γ
0
3 − e03γ

0
2)

+(B + D)((A + D)e03 + Dγ0
1(e01γ

0
3 − e03γ

0
1))] M̄Q3

]
,

σ̄2 = (B + D)(C + D) e0
2

1 + (A + D)(C + D) e0
2

2 + (A + D)(B + D) e0
2

3

−D[(C + D)(e02γ
0
1 − e01γ

0
2)2 + (B + D)(e03γ

0
1 − e01γ

0
3)2

+(A + D)(e03γ
0
2 − e02γ

0
3)2], M̄Q1 = b3e

0
2 − b2e

0
3 + a3γ

0
2 − a2γ

0
3 ,

M̄Q2 = −b3e
0
1 + b1e

0
3 − a3γ

0
1 + a1γ

0
3 , M̄Q3 = b2e

0
1 − b1e

0
2 + a2γ

0
1 − a1γ

0
2 .

Equations (16) are linear with respect to ai, bi (i = 1, 2, 3). Considering them
as unknowns, we find, e.g., b2, b3, as the expressions of a1, a2, a3, b1, e0i , γ

0
i :

b2 =
1

e01(e
02
1 + e0

2

2 + e0
2

3 )
(b1e02(e

02

1 + e0
2

2 + e0
2

3 ) + a3(e01e
0
3γ

0
2 − e02e

0
3γ

0
1)

−a2((e0
2

1 + e0
2

2 )γ0
1 + e01e

0
3γ

0
3) + a1((e0

2

1 + e0
2

2 )γ0
2 + e02e

0
3γ

0
3)),

b3 =
1

e01(e
02
1 + e0

2

2 + e0
2

3 )
(b1e03(e

02

1 + e0
2

2 + e0
2

3 ) − a3((e0
2

1 + e0
2

3 )γ0
1 + e01e

0
2γ

0
2)

+a2e
0
2(e

0
1γ

0
3 − e03γ

0
1) + a1(e02e

0
3γ

0
2 + (e0

2

1 + e0
2

3 )γ0
3)). (17)

Assuming e03 = e02, γ0
3 = γ0

2 and a2 = a3 = 0, we obtain γ0
2 = −(b1e02 ±

b2

√
1 − 2e0

2

2 )/a1 from the 1st relation (17). The 2nd relation (17) under the
above value of γ0

2 takes the form b3 = b2. So, when a2 = a3 = 0, b3 = b2, we
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have 4 families of solutions of differential Eqs. (13):

ω1 = ω3 = 0, e1 = −
√

1 − 2e02
2
, e2 = e3 = e02, γ1 = ∓

√
a2
1 − 2z21
a1

,

γ2 = − z1
a1

, γ3 = − z1
a1

;

ω1 = ω3 = 0, e1 =
√

1 − 2e02
2
, e2 = e3 = e02, γ1 = ±

√
a2
1 − 2z22
a1

,

γ2 = − z2
a1

, γ3 = − z2
a1

. (18)

Here z1 = b1e
0
2 + b2

√
1 − 2e02

2, z2 = b1e
0
2 − b2

√
1 − 2e02

2, and e02 is the parameter
of the families.

The integral V3 takes the form −(2e02z1 ±
√

1 − 2e0
2

2

√
a2
1 − 2z21)/a1 = c1

on the first two families of solutions (18), and on the last two families, it is

−(2e02z2 ∓
√

1 − 2e0
2

2

√
a2
1 − 2z22)/a1 = c1. Thus, solutions (18) exist under any

angles between vectors E and γ.
From a mechanical point of view, the elements of the families of solutions

(18) correspond to the equilibria of the mechanical system under study.
From the stationary conditions

∂Φ/∂ω1 = 0, ∂Φ/∂ω3 = 0, ∂Φ/∂γj = 0, ∂Φ/∂ej = 0 (j = 1, 2, 3)

of the integral 2Φ = 2λ0H − λ1V1 − λ2V2 − 2λ3V3 we find the constraints on λi,
under which the first two families of solutions (18) satisfy these conditions:

λ0 = −
e02

√
a2
1 − 2z21 ±

√
1 − 2e0

2

2 z1

a2
1e

0
2

, λ2 =
b1z1 ∓ b2

√
a2
1 − 2z21

a2
1e

0
2

, λ3 =
z1

a1e02
.

Having substituted the latter expressions into the integral Φ, we have:

2Φ1,2 = ∓
2(e02

√
a2
1 − 2z21 ±

√
1 − 2e0

2

2 z1)

a2
1e

0
2

H − V1 − b1z1 ∓ b2
√

a2
1 − 2z21

a2
1e

0
2

V2

− 2z1
a1e02

V3. (19)

By the same way, we find the integrals taking a stationary value on the
elements of the last two families of solutions (18):

2Φ3,4 = ±
2(e02

√
a2
1 − 2z22 ±

√
1 − 2e0

2

2 z2)

a2
1e

0
2

H − V1 − b1z2 ± b2
√

a2
1 − 2z22

a2
1e

0
2

V2

− 2z2
a1e02

V3.
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5 On Pendulum-Like Motions

In the problem under consideration, we could not obtain solutions corresponding
to permanent rotations of the mechanical system. These motions are typical of
rigid body dynamics. Basing on the analysis of the equations of motion (5) and
(13), one can suppose that there are no such solutions. However, under the action
of external potential forces the mechanical system can perform pendulum-like
oscillations.

When a2 = a3 = b1 = 0, the relations

ω3 = 0, γ1 = ±1, γ2 = γ3 = e1 = 0 (20)

define two IMs of codimension 5 of the equations of motion (13).
The differential equations on these IMs are written as

ω̇1 =
b3e2 − b2e3

A
, ė2 = e3ω1, ė3 = −e2ω1

and describe the pendulum-like oscillations of the body with a fixed point relative
to the axis Ox in the frame rigidly attached to the body.

The integral V3 on IMs (20) is equal to zero identically that corresponds to
the case of orthogonal vectors γ, E. The integral Ψ = (V1 − 1)V3 assumes a
stationary value on IMs (20).

Let us consider another similar solution for equations (13). It is the IM of
codimension 3:

ω1 = γ3 = e3 = 0. (21)

This solution exists for a3 = b3 = 0.
The differential equations on IM (21)

ω̇3 =
b2e1 − b1e2 + a2γ1 − a1γ2

C + D
,

γ̇1 = γ2ω3, γ̇2 = −γ1ω3, ė1 = e2ω3, ė2 = −e1ω3

describe the pendulum-like oscillations of the body relative to the axis Oz. The
motions exist under any angle between the vectors γ, E, because the integral V3

on IM (21) takes the form: e1γ1 + e2γ2 = c1. So, it is the family of IMs.

6 On the Stability of Stationary Sets

In this Section, we investigate the stability of the above found solutions on the
base of the Lyapunov theorems on the stability of motion. To solve the prob-
lems, which often arise in the process of the analysis, the software package [7]
written in Mathematica language is applied. In particular, the package gives a
possibility to obtain the equations of the first approximation and their charac-
teristic polynomial, using the equations of motion and the solution under study
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as input data, and then, to conduct the analysis of the polynomial roots, bas-
ing on the criteria of asymptotic stability of linear systems. When the problem
of stability is solved by the Routh–Lyapunov method, the package, using the
solution under study and the first integrals of the problem as input data, con-
structs a quadratic form and the conditions of its sign-definiteness in the form of
the Sylvester inequalities. Their analysis is performed by means of Mathematica
built-in functions, e.g., Reduce, RegionPlot3D.

6.1 The Case of Absence of External Forces

Let us investigate the stability of one of IMs (12), e.g.,

ω1 = ω3 = 0, e1 − γ1 = 0, e2 − γ2 = 0, e3 − γ3 = 0, γ2
1 + γ2

2 + γ2
3 = 1,

using the integral 2K21 = 2λ0H−λ1(V1+V2−2V3)−2λ4F1−2λ5F2 for obtaining
its sufficient conditions.

We use the maps

ω1 = 0, ω3 = 0, e1 = ±z, e2 = γ2, e3 = γ3, γ1 = ±z

on this IM. From now on, z =
√

1 − γ2
2 − γ2

3 .
Introduce the deviations:

y1 = ω1, y2 = ω3, y3 = e1 − z, y4 = e2 − γ2, y5 = e3 − γ3, y6 = γ1 − z.

The 2nd variation of the integral K21 on the set defined by the first variations
of the conditional integrals

δV1 = ±2z y6 = 0, δV2 = 2(γ2y4 + γ3y5 ± z y3) = 0,

δV3 = γ2y4 + γ3y5 ± z (y3 + y6) = 0,

is written as:

2δ2K21 = α11y
2
1 + α12y1y2 + α22y

2
2 + α33y

2
3 + α34y3y4 + α24y2y4 + α13y1y3

+α23y2y3 + α14y1y4 + α44y
2
4 ,

where

α11 =
((A − B) γ2

2 + (B + D)(1 − γ2
3))λ0

2γ2
2

, α12 = ± (B + D) γ3zλ0

γ2
2

,

α22 =
((C + D) γ2

2 + (B + D) γ2
3)λ0

2γ2
2

, α33 =
(γ2

2 − 1)λ1

2γ2
3

, α34 = ∓γ2 λ1z

γ2
3

,

α24 =
( (C + D) γ2

γ3
+

(B + D) γ3
γ2

)
λ6 ∓ (B − C) zλ5, α44 = − (γ2

2 + γ2
3)λ1

2γ2
3

,

α13 = ∓ ((A − B) γ2
2 + B + D) zλ5

γ2γ3
− (A + D)λ6,

α23 = − 1
γ2γ3

((B + D) γ3λ5 ∓ (C + D) γ2zλ6) + (B − C) γ2λ5,

α14 = − 1
γ2γ3

(((B + D) + (A − B) γ2
2 ∓ (B + D) γ3zλ6) γ2λ5) − (A − B) γ3λ5.
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The conditions of sign-definiteness of the quadratic form δ2K21

Δ1 =
(γ2

2 − 1)λ1

γ2
3

> 0, Δ2 =
λ2
1

γ2
3

> 0,

Δ3 =
λ1

γ2
2γ2

3

[((C + D) γ2
2 + (B + D) γ2

3)λ0λ1 + ((C + D)2 γ2
2 + ((B + D)2

−(B − C)2 γ2
2) γ2

3)(λ2
5 + λ2

6)] > 0,

Δ4 =
1

γ2
2γ2

3

((C + D)(B + D + (A − B)γ2
2) + (A − C)(B + D)γ2

3)

×[λ2
0λ

2
1 + (B + C + 2D + (A − B) γ2

2 + (A − C) γ2
3)λ0λ1(λ2

5 + λ2
6)

+((C+D)(B+D +(A−B) γ2
2)+(A−C)(B+D) γ2

3)(λ2
5+λ2

6)
2] > 0. (22)

are sufficient for the stability of the IM under study.
The differential equations γ̇2 = 0, γ̇3 = 0 on IMs (12) have the family of

solutions:

γ2 = γ0
2 = const, γ3 = γ0

3 = const. (23)

Thus, each of IMs (12) can be considered as a family of IMs, where γ0
2 , γ0

3

are the parameters of the family.
Let γ0

3 = γ0
2 and λ5 = λ6 = λ1. Taking into consideration (23) and the above

constraints, inequalities (22) take the form:

(γ02

2 − 1)λ1

γ02
2

> 0,
λ2
1

γ02
2

> 0,

λ2
1

γ02
2

((B + C + 2D)λ0 + 2((B + D)2 + (C+D)2−(B−C)2γ02

2 )λ1) > 0,

λ2
1

γ04
2

((B + D)(C + D) + ((A − D)(B + C) + 2(AD − BC)) γ02

2 )

×(λ2
0 + 2(B + C + 2D − (B + C − 2A) γ02

2 )λ0λ1 + 4((B + D)(C + D)

+((A − D)(B + C) + 2(AD − BC)) γ02

2 )λ2
1) > 0.

With the help of the built-in function Reduce, we find the conditions of com-
patibility of the latter inequalities:

A > B > C > 0 and A < B + C, D > 0 and[((
λ0 > 0 and

(
σ1 < λ1 < σ2 − σ3

4
or σ2 +

σ3

4
< λ1 < 0

)
and

(
− 1 < γ0

2 < − 1√
2

or
1√
2

< γ0
2 < 1

))
or

(
λ0 > 0 and σ2 +

σ3

4
< λ1 < 0 and

(
− 1√

2
≤ γ0

2 < 0 or 0 < γ0
2 ≤ 1√

2

))]
.
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Here

σ1 =
(B + C + 2D)λ0

2((B − C)2γ02
2 − (B2 + C2 + 2BD + 2D(C + D)))

,

σ2 =
((B + C + 2D − (B + C − 2A)γ02

2 )λ0

4((2BC + (B + C)D − A(B + C + 2D))γ02
2 − (B + D)(C + D))

,

σ3 =

√
(B − C)2 − 2(B − C)2γ02

2 + (B + C − 2A)2γ04
2 λ0

(B + D)(C + D) + (A(B + C + 2D) − 2BC − (B + C)D)γ02
2

.

The constraints on the parameter γ0
2 give the sufficient conditions of stability

for the elements of the family of IMs. The constraints imposed on the parameters
λ0, λ1 isolate a subfamily of the family of the integrals K21 , which allows one to
obtain these sufficient conditions. The analysis of stability of the 2nd IM of IMs
(12) is done analogously.

Let us investigate the stability of IM (7), using the integral 2K1 = 2λ0H −
λ1(V1 − V2)2 − λ2F1F2 for obtaining sufficient conditions. The analysis is done
in the map ω1 = 0, ω3 = 0, γ1 = −z1, e1 = −z2 on this IM. From now on,
z1 =

√
1 − γ2

2 − γ2
3 , z2 =

√
1 − e22 − e23.

In order to reduce the amount of computations we restrict our consideration
by the case when the following restrictions are imposed on the geometry of mass
of the mechanical system: A = 3C/2, B = 2C, D = C/2.

Introduce the deviations from the unperturbed solution:

y1 = ω1, y2 = ω2, y3 = γ1 + z1, y4 = e1 + z2.

The 2nd variation of the integral K1 in the deviations on the set

δV1 = −2z1y3 = 0, δV2 = −2z2y4 = 0

has the form: 2δ2K1 = β11y
2
1 + β12y1y2 + β22y

2
2 , where β11, β12, β22 are the

expressions of C, γ2, γ3, e2, e3. These are bulky enough and presented entirely in
Appendix.

Taking into consideration that γ2 = γ0
2 = const, γ3 = γ0

3 = const, e2 = e02 =
const, e3 = e03 = const (9) on IM (7), and introducing the restrictions on the
parameters γ0

3 = γ0
2 , e03 = e02, we write the conditions of positive definiteness of

the quadratic form 2δ2K1 (the Sylvester inequalities) as follows:
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Δ1 = 2[
√

1 − 2e0
2

2 (γ02

2 + e0
2

2 (1 − 4γ02

2 ))

−2e02γ
0
2(1 − 2e0

2

2 )
√

1 − 2γ02
2 ] z + 1 > 0,

Δ2 = − 1
e0

2

2

(
8γ02

2 + e0
2

2 (6 − 32γ02

2 ) − 15 − 16e02

√
1 − 2e0

2

2 γ0
2

√
1 − 2γ02

2

+2
(
2e02γ

0
2(1 − 2e0

2

2 )(15 − 14e0
2

2 − 16γ02

2 (1 − 4e0
2

2 ))
√

1 − 2γ02
2 +

√
1 − 2e0

2

2

×(3e0
2

2 (2e0
2

2 − 5) − (120e0
4

2 − 106e0
2

2 + 15) γ02

2

+8(32e0
4

2 − 16e0
2

2 + 1) γ04

2 )
)
z +

(
γ04

2 (15 − 8γ02

2 )2

+4e02

√
1 − 2e0

2

2 γ0
2

√
1 − 2γ02

2 (15−14e0
2

2 −16(1 − 4e0
2

2 ) γ02

2 )

×(3e0
2

2 (2e0
2

2 − 5) − (120e0
4

2 − 106e0
2

2 + 15) γ02

2 + 8(32e0
4

2 − 16e0
2

2 + 1) γ04

2 )

+e0
2

2 (9e0
2

2 (5 − 2e0
2

2 )2 − 2(1504e0
6

2 − 4508e0
4

2 + 3420e0
2

2 − 675) γ02

2

+4(8736e0
6

2 − 17264e0
4

2 + 9761e0
2

2 − 1785)γ04

2 − 32(3840e0
6

2 − 5312e0
4

2

+2300e0
2

2 − 325) γ06

2 − 4096(1 − 4e0
2

2 )2(1 − 2e0
2

2 ) γ08

2 )
)
z2

)
> 0. (24)

Here z = Cλ2, λ0 = 1.
The system of inequalities (24) has been solved graphically. The built-in func-

tion RegionPlot3D is used. The region, in which the inequalities have common
values, is shown in Fig. 2 (dark region). Thus, when the values of the parameters
z, e02, γ

0
2 lie in this region, the IM under study is stable.

6.2 The Case of the Presence of External Forces

In this Subsection, we analyze the stability of the elements of the families of
solutions (18). Let us investigate one of the first two families, e.g.,

ω1 = ω3 = 0, e1 = −
√

1 − 2e02
2
, e2 = e3 = e02, γ1 = −

√
a2
1 − 2z2

a1
,

γ2 = − z

a1
, γ3 = − z

a1
, (25)

where z = b1e
0
2 + b2

√
1 − 2e02

2.
The integral

2Φ1=−
2(e02

√
a2
1−2z2+

√
1 − 2e0

2

2 z)

a2
1e

0
2

H−V1− b1z − b2
√

a2
1− 2z2

a2
1e

0
2

V2 − 2z

a1e02
V3

is used for obtaining the sufficient conditions.
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Fig. 2. The region of stability of the IM for γ0
2 ∈ [− 1√

2
, 1√

2
],e02 ∈ (0, 1√

2
], z ∈ (0, 3]

In the deviations

y1 = e1 +
√

1 − 2e0
2

2 , y2 = e2 − e02, y3 = e3 − e02, y4 = γ1 +

√
a2
1 − 2z2

a1
,

y5 = γ2 +
z

a1
, y6 = γ3 +

z

a1
, y7 = ω1, y8 = ω2

on the linear manifold

δH =b1y1 + b2(y2 + y3) + a1y4=0, δV1=− 2
a1

(
z(y5 + y6)+

√
a2
1−2z2 y4

)
=0,

δV2 = 2(e02 (y2 + y3) −
√

1 − 2e0
2

2 y1) = 0,

δV3 = e02(y5 + y6) −
√

1 − 2e0
2

2 y4 − 1
a1

(
z(y2 + y3) +

√
a2
1 − 2z2 y1

)
= 0

the 2nd variation of the integral Φ1 has the form: δ2Φ1 = Q1 + Q2, where

Q1 =
1

2a2
1e

03
2

(
(3b2e

0
2

√
1−2e0

2

2 −b1(1 − 4e0
2

2 )) z + b2(1 − e0
2

2 )
√

a2
1 − 2z2

−a2
1e

0
2

)
y2
1+

1
a2
1e

02
2

(√
1 − 2e0

2

2 (b1z−b2

√
a2
1−2z2)−

√
a2
1−2z2z

)
y1y2

+
1

a2
1e

0
2

(
b2

√
a2
1−2z2−b1z

)
y2
2+

1
a1e0

2

2

(
e02

√
a2
1−2z2−

√
1−2e0

2

2 z
)

y1y6
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+
2z

a1e02
y2y6 − y2

6 ,

Q2 = −B + C + 2D

2a2
1e

0
2

(√
1 − 2e0

2

2 z + e02

√
a2
1 − 2z2

)
y2
8

+
(B + D)

√
1 − 2e0

2

2

a2
1e

02
2

(√
1 − 2e0

2

2 z + e02

√
a2
1 − 2z2

)
y7y8

− 1
2a4

1e
03
2

(
a2
1[(Ae0

2

2 + B(1 − 2e0
2

2 ))(
√

1 − 2e0
2

2 z + e02

√
a2
1 − 2z2)

+D

√
1 − 2e0

2

2 ((1 − 4e0
2

2 ) z + e02

√
1 − 2e0

2

2

√
a2
1 − 2z2)]

−D [(1 − 8e0
2

2 )(b31e
03

2

√
1 − 2e0

2

2 + b32(1 − 2e0
2

2 )2 + 3b1b2e
0
2(1 − 2e0

2

2 ) z)

+e02(3 − 8e0
2

2 )
√

a2
1 − 2z2 z2]

)
y2
7 .

The analysis of sign-definiteness of the quadratic forms Q1 and Q2 was done
for the case when b1 = 0 and A = 3C/2, B = 2C, D = C/2. Under these
restrictions on the parameters, the conditions of negative definiteness of the
quadratic forms Q1 and Q2 are respectively written as:

Δ1 = −1 < 0, Δ2 = − 1
a2
1e

02
2

(
b2(b2(1 − 2e0

2

2 ) + e02

√
a2
1 − 2b22(1 − 2e0

2

2 ))
)

> 0,

Δ3 =
b2

a4
1e

05
2

(
2b2e

0
2 (a2

1(1 − 3e0
2

2 ) − b22 (16e0
4

2 − 14e0
2

2 + 3))

+
√

a2
1 − 2b22(1 − 2e0

2

2 ) (a2
1e

02

2 + b22(16e0
4

2 − 10e0
2

2 + 1))
)

< 0 (26)

and

Δ1 = − 2C

a2
1e

0
2

(
b2 (1 − 2e0

2

2 ) + e02

√
a2
1 − 2b22(1 − 2e0

2

2 )
)

< 0,

Δ2 =
C2

a6
1e

04
2

(
3a4

1e
02

2 (5 − 2e0
2

2 ) − 8b42 (1 − 2e0
2

2 )2(32e0
4

2 − 16e0
2

2 + 1)

+a2
1b

2
2 (15 − 4e0

2

2 (60e0
4

2 − 83e0
2

2 + 34)) − 2b2e
0
2 (1 − 2e0

2

2 )

×(a2
1 (14e0

2

2 −15) + 16b22 (8e0
4

2 −6e0
2

2 +1))
√

a2
1−2b22(1−2e0

2

2 )
)

> 0. (27)

Taking into consideration the conditions for solutions (25) to be real

a1 �= 0 and
(
e02 = ± 1√

2
or

(
− 1√

2
< e02 <

1√
2

and − σ1 ≤ b2 ≤ σ1

))
(28)

under the above restrictions on the parameters b1, A,B,D, inequalities (26) and
(27) are compatible when the following conditions
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a1 �= 0, C > 0 and
((

b2 < 0, σ2 < e02 ≤ 1√
2

)
or

(
b2 > 0, − 1√

2
≤ e02 < −σ2

))
(29)

hold.

Here σ1 =

√
a2
1

2(1 − 2e0
2

2 )
, σ2 =

√
b22

a2
1 + 2b22

.

The latter conditions are sufficient for the stability of the elements of the fam-
ily of solutions under study. Let us compare them with necessary ones which we
shall obtain, using the Lyapunov theorem on stability in linear approximation [9].

The equations of the 1st approximation in the case considered are written
as:

ẏ1 = 2e02y8 − √
z1 y7, ẏ2 = e02y7 +

√
z1 y8, ẏ3 =

(
e02 − 1

e02

)
y7 +

√
z1 y8,

ẏ4 =
b2
a1

(z1
e02

y7 − 2
√

z1 y8

)
, ẏ5 =

1
a1

(√
a2
1 − 2b22z1 y8 − b2

√
z1 y7

)
,

ẏ6 =
1
a1

(√
a2
1 − 2b22z1 (e02 y8 − √

z1 y7)
e02

+ b2
√

z1 y7

)
,

ẏ7 =
1
z2

(
16a2

1b2e
02

2 (y3 − y2) + 2a2
1e

0
2

√
z1 (5a1y5 − 2b2y1 − 3a1y6)

)
,

ẏ8 =
1
z2

(
2a2

1[b2 (4e0
2

2 − 5) y1 + 5a1y5 + a1e
02

2 (3y6 − 7y5)]

+10a2
1b2e

0
2

√
z1 (y3 − y2) + 2b22z1 (4e0

2

2 − 1)(a1 (y5 + y6) − 2b2y1)

−4b2e
0
2z1

√
a2
1 − 2b22z1 (a1 (y5 + y6) − 2b2y1)

)
. (30)

Here z1 = 1−2e0
2

2 , z2 = C(3a2
1(2e0

2

2 −5)−8b2z1 (b2 (4e0
2

2 −1)−2e02
√

a12 − 2b22z1)).
The characteristic equation of system (30) has the form:

λ4 (λ4 + α1λ
2 + α2) = 0, (31)

where

α1 =
4C

z22

(
a4
1e

0
2 [2b2 (251e0

2

2 − 122e0
4

2 − 137) + 3(10e0
4

2 − 33e0
2

2 + 20)
√

a2
1 − 2b22z1] + 8b42z

2
1 [(64e0

4

2 −24e0
2

2 + 1)
√

a2
1 − 2b22z1−2b2e

0
2 (64e0

4

2 −40e0
2

2

+5)] − a2
1b

2
2z1 [(432e0

4

2 − 518e0
2

2 + 47)
√

a2
1 − 2b22z1 − 2b2e

0
2 (560e0

4

2 − 706e0
2

2

+173)]
)
,
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α2 =
1
z22

(
(8a4

1b
2
2 (240e0

6

2 − 408e0
4

2 + 206e0
2

2 − 19) + 12a6
1 (4e0

2

2 (e0
2

2 − 3)

+5) − 64a2
1b

4
2 (64e0

6

2 − 80e0
4

2 + 24e0
2

2 − 1) z1) − 8a2
1b2e

0
2

√
a2
1 − 2b22z1

×(a2
1(56e0

4

2 − 110e0
2

2 + 53) − 8b22 (32e0
4

2 − 32e0
2

2 + 5) z1)
)
.

The roots of the bipolynomial in the round brackets are purely imaginary
when the conditions

α1 > 0, α2 > 0, α2
1 − 4α2 > 0

hold.
Taking into consideration (28), the latter inequalities are hold under the

following constraints imposed on the parameters C, a1, b2, e
0
2:

C > 0 and
[
a1 < 0 and

(((
b2 <

3a1√
2

or
3a1√

2
< b2 <

a1√
2

)
and

ρ1
2

≤ e02 ≤ 1√
2

)
or

(
b2 =

3a1√
2

and
ρ1
2

≤ e02 <
1√
2

)
or

(
b2 =

a1√
2

and

−ρ1
2

< e02 ≤ 1√
2

)
or

( a1√
2

< b2 < 0 and ρ2 < e02 ≤ 1√
2

))]
or

C > 0 and
[
a1 > 0 and

((
0 < b2 <

a1√
2

and − 1√
2

≤ e02 < −ρ2

)
or

(( a1√
2

< b2 <
3a1√

2
or b2 >

3a1√
2

)
and − 1√

2
≤ e02 ≤ −ρ1

2

)
or

(
b2 =

a1√
2

and − 1√
2

≤ e02 < −ρ1
2

)
or

(
b2 =

3a1√
2

and

− 1√
2

< e02 ≤ −ρ1
2

))]
. (32)

Here ρ1 =

√
2b22 − a2

1

b22
, ρ2 =

√
a2
1 + b22 −

√
b22 (2a2

1 + 5b22)
2a2

1 + 4b22
.

The analysis of zero roots of characteristic Eq. (31) was done by the technique
applied in [10]. The analysis shown that the characteristic equation has zero roots
with simple elementary divisors. Whence it follows, the elements of the family
of solutions under study are stable in linear approximation when conditions
(32) hold. Comparing them with (29), we conclude that the sufficient conditions
are close to necessary ones. The analogous result has been obtained for the 2nd
family of solutions. Instability was proved for the rest of the families of solutions.

7 Conclusion

The qualitative analysis of the differential equations describing the motion of
the nonholonomic mechanical system has been done. The solutions of these
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equations, which correspond to the equilibria and pendulum-like motions of the
mechanical system, have been found. The Lyapunov stability of the solutions
has been investigated. In some cases, the obtained sufficient conditions were
compared with necessary ones. The analysis was done nearly entirely in sym-
bolic form. Computational difficulties were in the main caused by the problem of
bulky expressions: the differential equations are rather bulky, and the first inte-
grals of these equations are the polynomials of the 2nd–5th degrees. Computer
algebra system Mathematica was applied to solve computational problems. The
results presented in this work show the efficiency of the approach used for the
analysis of the problem as well as computational tools.

Appendix

β11 = (4e22)
−1C

[
((e23 − 1)(γ2
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2
2 + 20γ2
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,
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