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Abstract. The Lambert W function is a multivalued function whose
principal branch has been studied in detail. Non-principal branches, how-
ever, have been much less studied. Here, asymptotic series expansions for
the non-principal branches are obtained, and their properties, including
accuracy and convergence are studied. The expansions are investigated
by mapping circles around singular points in the domain of the func-
tion into the range of the function using the new expansions. Different
expansions apply for large circles around the origin and for small circles.
Although the expansions are derived as asymptotic expansions, some
surprising convergence properties are observed.
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1 Introduction

The Lambert W function owes its current status1 in no small part to computer
algebra systems. Because W allowed algebra systems to return closed-form solu-
tions to problems from all branches of science, computer users, whether mathe-
maticians or non-specialists discovered W in ways that a conventional literature
search could not. One difficulty for users has been that Lambert W is multival-
ued, like arctangent or logarithm, but with an important difference. The branches
of the elementary multivalued functions are trivially related, for example the
branches of arctangent differ by π; similarly, the branches of logarithm differ by
2πi. There are no simple relations, however, between the branches of W , and
each branch must be labelled separately and studied separately.

1.1 Definitions

The branches of the Lambert W function are denoted Wk(z), where k is the
branch index. Each branch obeys [1]

Wk(z)eWk(z) = z , (1)

1 Citations of [1] as of July 2023: Google scholar 7283; Scopus 4588.
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and the different branches are distinguished by the definition

Wk(z) → lnk z for |z| → ∞ . (2)

Here, lnk z denotes the kth branch of logarithm [2], i.e. lnk z = ln z + 2πi, with
ln z as defined in [3]. The way in which condition (2) defines the branches of W
is also illustrated in Fig. 1.

The principal branch W0(z) takes real values for z ≥ −e−1 and has been
extensively studied. For example, the function T (z) = − W0(−z) is the expo-
nential generating function for labelled rooted trees [4]; the convex analysis of
W0 was developed in [5]; it was shown in [6] that W0 is a Bernstein function,
and a Stieltjes function, and its derivative is completely monotonic; a model of
chemical kinetics in the human eye uses W0(x) in [8]. Numerous papers have pro-
posed numerical schemes for bounding or evaluating W0(x) for x ∈ R, a recent
example being [7].

In contrast, non-principal branches k �= 0 have been less studied. They do
have, nonetheless, some applications. The branch W−1(z) takes real values for
−e−1 ≤ z < 0. The real-valued function W−1(− exp(−1 − 1

2z2)) was used in [9]
to obtain a new derivation of Stirling’s approximation to n! and Vinogradov has
presented applications in statistics both for W−1(x) [10] and W0(x) [11].

1.2 Expansions

In [12], de Bruijn obtained an asymptotic expansion for W0(x) when x → ∞;
this was extended to the complex plane in [1]. Having obtained an expansion for
large x, [1] continued by stating

‘A similar but purely real-valued series is useful for the branch W−1(x) for
x < 0. We can get a real-valued asymptotic formula from the above by
using log(−x) in place of Log(z) and log(− log(−x)) in place of log(Log(z)).
[...] This series is not useful for complex x because the branch cuts of the
series do not correspond to those of W .’

We improve upon this point by proposing new, explicit series for all non-principal
branches k �= 0, and testing them numerically.

An important difference between W0 and all other branches is behaviour at
the origin. W0 is analytic at the origin [13], and its Taylor expansion is known
explicitly [13]; in contrast, all other branches are singular at the origin. Our
interest here is to study asymptotic expansions both for |z| → ∞ and, for non-
principal branches, the neglected case |z| → 0.

1.3 Branch Structure

To focus our discussion, we consider the plots shown in Fig. 1. The top set of
axes show values of z in the domain of W (z). The bottom set show values of
Wk, where the branch indicator k is important; that is, the bottom axes show
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Fig. 1. The domains (left axes) and ranges (right axes) of the branches of the Lambert
W function. The branches of W collectively fill all of the complex plane, although
any one branch occupies only a disjoint strip of the plane. Each branch has a domain
consisting of the entire complex plane, although the branch cuts differ according to the
branch. The continuous curves in the range are constructed piecewise by mapping the
circles successively with the different branches.

the ranges2. Although only one set of axes is used to show the domain, this is a
simplification which avoids multiple figures.

There are actually several different domains, coinciding with the different
branches of W . In contrast to more familiar multi-valued functions, such as ln z,
the different branches Wk(z) do not share a single common domain. Specifically,
the singular points and the branch cuts of Wk(z) vary from branch to branch.
In Fig. 1, the different branch cuts for different branches are compressed onto
the negative real axis (of the top set of axes) using dashed and solid lines. For
the principal branch W0, the branch cut consists only of the dashed portion of
the axis, i.e. x ≤ −1/e, and the solid segment is not a branch cut; the point
x = −1/e is the singular point. For the branches k = ±1, there are two branch
cuts, both the dashed line and the solid line; they meet at x = −1/e. It is best to
think of the cuts as distinct, even though they share a singular point and extend
along the same axis. The distinction is that the dashed line for k = −1 maps to
the boundary between W0 and W−1, with the boundary belonging to W−1, while
the solid line maps to the boundary between W1 and W−1, with the boundary
belonging to W−1. Similarly, the dashed line for k = 1 maps to the boundary
between W0 and W1, but now the boundary belongs to W0. In contrast to the
dashed-line cuts, the solid-line cut maps to the boundary between W1 and W−1,
with the boundary belonging to W−1.

The origin is a second singular point for W1 and W−1. For all other branches,
i.e. k ≥ 2 and k ≤ −2, the two cuts merge into a single cut extending along the

2 Note the plural. We regard each branch of Wk as a separate function with its own
domain and range [14].
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whole of the negative real axis, with the point z = −1/e no longer being a
singular point, and only the origin being singular. Two circles, both alike in
dignity3, are plotted in the domain; they are described by the equation z = reiθ

with r = 200 and r = 0.05 and −π < θ ≤ π. The circles are drawn so that one
end of each circle touches the branch cut, while the other end stops short of the
cut. This plotting convention reflects that the θ interval is closed on the top of
the cut, when θ = π.

The bottom axes in Fig. 1 show the ranges of the branches Wk. The branch
boundaries are shown as black dashed lines. The curves plotted are the results
from applying successively W−2,W−1,W0,W1,W2 to the two circles shown in the
top set of axes. The continuous curve in the positive-real half-plane corresponds
to the large circle, while the small circle maps into two curves: the small closed
curve around the origin and the continuous curve in the negative real half-plane.

1.4 Asymptotic Expansions

We briefly summarize Poincaré’s theory of asymptotic expansions [15, Ch.1].
We begin with an example.

g(x) =
∫ ∞

0

e−xt dt

1 + t
=

∫ ∞

0

e−xt(1 − t + t2 − t3 + . . .) dt

=
1
x

− 1!
x2

+
2!
x3

− 3!
x4

+
4!
x5

− . . . (3)

The series in 1/x does not converge for any x, but if we substitute x = 10 into
the equation, we obtain (evaluating the integral using Maple)

∫ ∞

0

e−10t dt

1 + t
= 0.0915633 . . . = 0.1 − 0.01 + 0.002 − 0.0006 + 0.00024 − . . . (4)

Adding the first 4 terms, we obtain the approximation 0.0914, which approxi-
mates the integral with an error 0.00016. Our sum omitted the 5th term, and we
note that its value, 0.00024, bounds the observed error. It is typical of asymptotic
series that the error is bounded by the first omitted term in the sum.

The theory of asymptotic expansions generalizes the functions x−k used in
the example, with a sequence of gauge, or scale, functions {φn(x)} obeying the
condition φn+1(x) = o(φn(x)) as x → ∞. The series formed from these functions,

g(x) =
N∑

n=1

anφn(x) , (5)

has the property that it becomes more accurate as x → ∞. Typically, the error
is bounded by the omitted term φN+1(x). For an asymptotic expansion, the

3 This whimsical Shakespearian reference emphasises the mathematical point that pre-
vious investigations have concentrated on the large circle and neglected the equally
important small circle.
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limit N → ∞ is of less interest than the limit x → ∞, and will not exist for
a non-convergent expansion. This paper uses scale functions φn(z) = 1/ lnn(z).
In order for the functions to decrease with n, we require that | ln z| > 1, which
in turn requires |z| > e or |z| < e−1. Then they form an asymptotic sequence
both in the limit |z| → ∞ and |z| → 0.

1.5 Outline

In Sect. 2, we revisit the derivation of the expansion of W given in [1] for large
arguments, replacing the imprecise notation Log with the precise notation lnk z
defined above. We then use graphical methods to add to earlier treatments by
demonstrating the accuracy of the approximations for the different branches.
Although not all asymptotic expansions are convergent series, the expansions
given here are convergent for some arguments. We show this convergence, but
do not analyse the regions in detail.

In Sect. 3, the main motivation for this paper is taken up: the expansions
for non-principal branches of W around the origin. We show that the key idea
is to define a shifted logarithm which matches the asymptotic behaviour at the
origin. Again we also consider convergence, and we uncover an unexpected result
that several series, although based on different starting assumptions, none the
less converge to correct values. The rates of convergence, however, are different,
with the series based on shifted logarithms being best.

2 de Bruijn Series for Large z

Since the branches of W are defined so that Wk(z) asymptotically approaches
lnk z, we consider Wk(z) = lnk z + v(z), and assume v = o(lnk z). Then (1) gives

(lnk z + v(z)) elnk z+v = (lnk z + v(z)) zev = z .

To leading order, e−v = lnk z, and assuming that v lies in the principal branch
of logarithm, the approximation is (note the different branches of logarithm)

Wk(z) = lnk z − ln0(lnk z) + u(z) . (6)

Neglecting temporarily the u(z) term, we compare in Fig. 2 the one-term and
two-term approximations to W . The line thickening shows where the approxi-
mations think the branch boundaries are. The term lnk z alone is a significant
over-estimate, and the branch boundaries are not close, but two terms, although
under-estimating, are encouragingly closer. Our main interest, however, is the
behaviour after including u(z). Substituting (6) into (1) and introducing

σ =
1

lnk z
, and τ =

ln(lnk z)
lnk z

, (7)

we can show that u obeys (more details of this demonstration are given below)

1 − τ + σu − e−u = 0 . (8)
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Fig. 2. A comparison between the exact value of W and the one-term and two-term
approximations in (6). The dashed curve is the exact value. The straight line to the
right is the one-term approximation; the central portion has been thickened to show
where the approximation thinks the principal branch is. The solid curve to the left is
the two-term approximation.

Equation (8) was solved for u by Comtet [16] as a series in σ:

u =
N∑

n=1

cn
(−σ)n

n!
, (9)

cn =
n∑

m=1

(−1)n−m

[
n

n − m + 1

]
σ−mτm

m!
, (10)

where
[

n
n−m+1

]
is a Stirling Cycle number [17, p. 259], and we have written the

series going to N terms, for later reference. The form of the expansion appears
to be unchanged from the principal branch, but this is because the branch infor-
mation is hidden in the variables σ and τ . The derivation of the expansion is
for an asymptotic series, as defined in Sect. 1.4. Such series are not necessarily
convergent4, but in [19], the series (6) together with (9) was studied for x ∈ R

and the series was shown to converge for x > e. The question naturally arises of
where the series for principal and non-principal branches converge for z ∈ C.

Since we are dealing with the accuracy and convergence of series on multi-
ple domains of z and for multiple branches of W , we wish to avoid analyzing
each branch separately and being tempted to present multiple repetitious plots
of results. We thus use the plot shown in Fig. 3 to summarize our findings. The
plot accumulates maps of the large circle shown above in Fig. 1 under successive
branches Wk; these plots are compared with maps made by the corresponding
series approximation (9) using 2 terms of the summation. The contours corre-

4 Indeed, some authors define an asymptotic series as one that does not converge [18].
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spond to circles of radii r = 50, 10, 5, 3, 1, e−1. In each case the dashed curve is
W and the solid curve is the series approximation.

In Fig. 3, we focus first on the approximation for the principal branch, indi-
cated by the red curves. We see that for r > 3, the accuracy is acceptable,
and improves for larger r, as expected. Since we are considering an asymptotic
approximation, we fix the number of terms in the summation to 2, and consider
changes with r. We note in particular that the exact and approximate curves for
r = 50 are practically indistinguishable to the human eye. We can also inves-
tigate the convergence of the series. For r > 10 we can take more terms of
the summation and observe improved accuracy (data not shown), indicating the
series is convergent for larger r values (as well as asymptotic). For smaller values
of r, the series loses accuracy, and in parallel fails to converge, the extraneous
curves swamping the figure. Therefore, for r < 3 we plot only the values of W0

and remove the distraction of the failed approximations.
Both the W curves and the approximations are smooth across the branch

boundaries. This reflects the properties that

Wk(−x) = lim
y↑0

Wk+1(−x + iy) , for x < −1/e , and (11)

lnk(−x) = lim
y↑0

lnk+1(−x + iy) , for x < 0 . (12)

This does not ensure that the boundaries between the branches of W and of
the approximations agree, although they approach each other with improved
accuracy.

For branches k �= 0, we observe something that is unexpected, namely, that
the approximations show evidence of remaining accurate for all values of r down
to r = e−1. Indeed, the series appear convergent. This is difficult to justify graph-
ically, but can be checked by extended summation for values where graphical evi-
dence is weakest. In Table 1 we calculate approximations to W−1(−1/e) = −1
and W−1(−0.4) using increasing numbers of terms in the sum. Adding up large
numbers of terms in a sum can require additional intermediate precision for
accuracy. For the table, Maple’s default 10-digit accuracy had to be increased to
30 decimal digits for sums of more than 50 terms. The numerical results indicate
convergence, but do not constitute a proof.

3 de Bruijn Series for Small z

A new feature associated with the analysis around the origin is the disappearance
from the asymptotic analysis of the principal branch. Figure 4 shows a plot of
values of Wk computed on a circle of radius r = 1

20 and centred at the origin.
The principal branch, shown in red, is the small closed curve around the origin,
while all other branches form the continuous curve on the far left. It is important
to note a difference between W0 and W−1. The real values of W0 occur in the
middle of its range, or to put it another way, the real values of W0 do not coincide
with the branch boundaries. In contrast, the real values of W−1 occur on one
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Fig. 3. A systematic test of expansion (9), using two terms of the summation. Each
continuous curve is a concatenation of mappings of the same large circle using succes-
sively the various branches of W and of its approximations. The dashed curves are the
exact values of Wk while the solid curves are the approximations. The contours corre-
spond to circles of radii, from right to left, r = 50, 10, 5, 3, 1, e−1. The approximations
to the principal branch for r < 3 are so bad that they distract from the plots and have
been omitted. For non-principal branches, all approximations are plotted.

of its branch boundaries. We want this difference to be reflected, if possible, in
the asymptotic forms we use. As in the previous section, the leading asymptotic
term is logarithm, and the problem is to match the branches of the logarithm
term to W−1, and more generally to all Wk for k �= 0. Two possible asymptotic
approximations are shown in Fig. 4 as the vertical lines to the right of the curve
showing the values of W . The right-most line is the approximation lnk z which
was already used for the previous section. Since W−1(−0.01) = −6.473, i.e.
purely real, but ln(−0.01) = −4.605 + πi and ln−1(−0.01) = −4.605 − πi, it
is clear that the approximations that worked well in the previous section, do
not work here. For this reason, we introduce what we call a ‘shifted log’ by the
definition

Lk(z) = lnk z − sgn(k)iπ , for k �= 0 . (13)

We see that for this function L−1(−0.01) = −4.605, and so is purely real where
W−1 is real. This function is plotted in Fig. 4 as the straight line in between the
other two contours. Notice that W−1(−e−1) = −1, and L−1(−e−1) = −1 also.
Of course, W−1(z) is not differentiable at z = −e−1, but L−1(z) is differentiable,
showing that more terms in the series will be needed for numerical accuracy.
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Table 1. Numerical tests of convergence for the expansion (9). The row N = ∞ refers
to the value of W that the series is trying to reach. The series appears convergent,
although painfully slowly.

N value for x = −e−1 value for x = −0.4

∞ −1 −0.9441 − 0.4073 i

40 −1.1568 − 0.1565 i −0.9665 − 0.3495 i

70 −1.1190 − 0.1188 i −0.9259 − 0.3800 i

100 −1.0997 − 0.0996 i −0.9232 − 0.4055 i

160 −1.0789 − 0.0788 i −0.9448 − 0.4183 i

Having matched the leading-order behaviour of Wk using the shifted loga-
rithm, we repeat the approach used above of substituting into WeW = z.

(Lk(z) + v(z)) exp(Lk(z) + v(z)) = (Lk(z) + v(z)) (−z) exp(v(z)) = z

v(z) = − ln(−Lk(z)) + u(z) .

It might seem that u will follow a pattern like ln(ln(−Lk)), but this is not so.

(Lk(z) − ln(−Lk(z)) + u)) exp(Lk(z) − ln(−Lk(z)) + u))

= (Lk(z) − ln(−Lk(z)) + u)
−z

−Lk(z)
exp(u) = z .

Rearranging gives

1 − ln(−Lk(z))
Lk(z)

+
u

Lk(z)
− e−u = 0 . (14)

Thus, if we redefine σ, τ by

σ =
1

Lk(z)
and τ =

ln(−Lk(z))
Lk(z)

, (15)

we can return to (8) and (9).
It is remarkable that the fundamental relation (8), originally derived for the

principal branch, has now reappeared twice: once for any branch (|z| � 1) and
now for |z| 	 e−1. Since (13) was chosen so that it is purely real where W−1 is
real, we first compare plots for −e−1 ≤ x < 0. Figure 5 compares W−1(x) with
two approximations, sum 9 for N = 0 and for N = 3. They are most accurate
near x = 0 as expected.

Figure 6 shows a comparison in the complex plane for branches from k = −2
to k = 2. The contours are maps of small circles of radii r = 0.25, 0.15, 0.05.
The series approximation was limited to N = 1 in order to obtain a visible
separation of the exact and approximate contours. Recall that smaller values
of r correspond to contours further to the left.
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Fig. 4. A comparison of possible asymptotic approximations to Wk for small circles
around the origin. The dashed curve shows Wk(z) for k �= 0. The two vertical lines show
the two candidates: lnk z is the right-most line and was used for large circles; the new
shifted logarithm is the left line. The lines are sectioned into thick and thin segments.
These show the branches of the approximations. The branches of lnk z are seen to be not
aligned with the boundaries of W , shown by the horizontal dashed lines. In contrast,
the branches of the shifted logarithm are closer to the boundaries of the branches of
W . Note that W−1(x) and the shifted logarithm are both purely real (although not
equal, alas) for the same range of arguments, namely real and in the interval [−e−1, 0).
For completeness, the map of the principal branch is also shown (around the origin),
to emphasize that it does not participate in the asymptotic behaviour.

Fig. 5. Plots of W−1(x) and approximations based on (9) together with (15). The solid
line shows W−1; the dashed line shows (9) for N = 0; the dotted line shows N = 3.
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Fig. 6. Comparison of Wk, k �= 0 and (9) using (15). The series uses N = 1 in order
to separate the function and the approximation. The boundary between k = −1 and
k = 1 is the negative real axis both for the function and for the approximation.

4 A Surprising Convergence

The approximation (7) used for |z| � 1 was discarded for |z| 	 −e−1 because
the branch boundaries were not aligned with the function near negative infinity.
One could expect therefore that its accuracy would be bad, or wrong, or it would
possibly return values for branches not requested. It is therefore surprising that
in spite of starting from dismal estimates, the approximation manages to achieve
results of reasonable accuracy. In Table 2, a comparison is made between series
(9) based on (15) with the rejected series based on (7). Out of curiosity, we have
tabulated the competing approximations when summed to one-term, two-terms
and four-terms. The preferred series always performs better, but the other series
also achieves good accuracy. As stated several times, (15) has the advantage of
returning real values when W−1 is real, so we stick to our preferred series and
do not pursue further discussion of this point.

5 A Further Variation

We briefly comment on a variation on the above series which can lead to more
accurate estimates. We introduce a parameter during the derivation of the fun-
damental relation. During the derivation of (6), we considered the equation
lnk z + v = e−v, and argued that v is of smaller asymptotic order than lnk z. We
thus neglected it on the left side of the equation and solved lnk z = e−v for v.
We can note, however, that a constant is also of lower asymptotic order than
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Table 2. Comparison of series (9) combined with (7) and then with (15). The vari-
ous approximations are printed in adjacent columns for easy comparison. The errors
reported in the last two columns report the errors in the 4-term summations.

x k Wk lnk x Lk(x) Eq. (7) N = 0 Eq. (15) N = 0

−0.1 −1 −3.58 −2.30− πi −2.30 −3.66− 0.94i −3.15

−0.01 −1 −6.47 −4.61− πi −4.61 −6.32− 0.60i −6.13

−0.1 −2 −4.45− 7.31i −2.30− 3πi −2.30− 2πi −4.58− 7.61i −4.20− 7.50i

−0.01 −2 −6.90− 7.08i −4.61− 3πi −4.61− 2πi −6.96− 7.40i −6.66− 7.22i

x k Wk Eq. (7) N = 2 Eq. (15) N = 2 Error (7) Error (15)

−0.1 −1 −3.577 −3.405− 0.127i −3.591 0.213 0.013

−0.01 −1 −6.473 −6.416 + 0.035i −6.481 0.066 0.008

−0.1 −2 −4.449− 7.307i −4.448− 7.314i −4.442− 7.305i 0.0074 0.0071

−0.01 −2 −6.896− 7.081i −6.891− 7.086i −6.894− 7.079i 0.0069 0.0039

lnk z, and instead of neglecting v, estimate the v on the left by a constant p:
thus lnk z + p = e−v. We now have the approximation

Wk,dB(z, p) = lnk(z) − ln(p + lnk(z)) + u .

Substituting in WeW = z leads now to the equation

(lnk z − ln(p + lnk z) + u)
1

p + lnk z
= e−u . (16)

A simple manipulation allows us to convert this equation into yet another man-
ifestation of the fundamental relation (8).

(lnk z + p − p − ln(p + lnk z) + u)
1

p + lnk z
= 1 − p + ln(p + lnk z)

lnk z + p
+

u

p + lnk z
.

Thus, remarkably, we have

1 − τ + σu − e−u = 0 , and σ =
1

p + lnk z
, τ =

p + ln(p + lnk z)
lnk z + p

. (17)

The contours in Fig. 3 would correspond to p = 0. The effect of p is greatest
in the principal branch, where the approximation for the circle of radius r = 3
improves between the two figures, and for r ≤ 1, the approximations for p = 1
are good enough to be plotted (but still not good). The approximations for
non-principal branches are little changed by the parameter.

6 Concluding Remarks

It was pointed out in Fig. 1 that the singular point zc = −e−1 is the place where
different branch cuts meet. The point’s singular nature is reflected in the drop
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in the accuracy of the various series seen above. It is interesting to extend the
summation of the series to large numbers of terms so as to reach zc, but it is
not practical. The three branches k = 0 and k = ±1 share an expansion in
the variable

√
2(ez + 1) [1], and for obtaining numerical values when z is in the

neighbourhood of zc, that expansion is much more convenient.
By concentrating the discussion on plots of the ranges of Wk, we have been

able to condense the information more efficiently that by presenting results in
the domains of the functions. We think this is a fruitful way to discuss multi-
valued functions. Contrast Fig. 1 with the usual treatment in reference books of
functions such as logarithm or arctangent. The books always present plots of the
branch cuts in the domain, but never the ranges. The need to understand ranges
is heightened by the fact that the ranges of Wk are not trivially related to each
other, in contrast to the way in which ln1 z is only 2πi different from ln0 z.

This paper has not attempted to supply formal proofs of the convergence
properties of the series studied here. The aim has been to establish the correct
forms of the expansions, and to demonstrate numerically their properties. Some
of the surprising observations made here remain open problems, and invite both
more detailed numerical investigation and formal analytical work.

References

1. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the
Lambert W function. Adv. Comp. Math. 5(4), 329–359 (1996)

2. Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the Lambert
W function. Math. Scientist 21, 1–7 (1996)

3. Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions
(2023). https://dlmf.nist.gov/. Accessed 15 June 2023

4. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Disc.
Math. 75, 167–215 (1989)

5. Borwein, J.M., Lindstrom, S.B.: Meetings with Lambert W and other special func-
tions in optimization and analysis. Pure Appl. Funct. Anal. 1(3), 361–396 (2016)

6. Kalugin, G.A., Jeffrey, D.J., Corless, R.M., Borwein, P.B.: Stieltjes and other inte-
gral representations for functions of Lambert W. Integral Transf. Spec. Funct.
23(8), 581–593 (2012)

7. Iacono, R., Boyd, J.P.: New approximations to the principal real-valued branch of
the Lambert W-function. Adv. Comput. Math. 43, 1403–1436 (2017)

8. Mahroo, O.A.R., Lamb, T.D.: Recovery of the human photopic electroretinogram
after bleaching exposures: estimation of pigment regeneration kinetics. J. Physiol.
554(2), 417–437 (2004)

9. Marsaglia, G., Marsaglia, J.C.W.: A new derivation of Stirling’s approximation to
n!. Am. Math. Monthly 97(9), 826–829 (1990)

10. Vinogradov, V.: On Kendall-Ressel and related distributions. Stat. Prob. Lett. 81,
1493–1501 (2011)

11. Vinogradov, V.: Some utilizations of Lambert W function in distribution theory.
Commun. Stat. Theory Methods 42, 2025–2043 (2013)

12. de Bruijn, N.G.: Asymptotic Methods in Analysis. North-Holland (1961)

https://dlmf.nist.gov/


212 J. Imre and D. J. Jeffrey

13. Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert W
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