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Abstract. This paper deals with the stability and zero-Hopf bifurcation
of the Lorenz–Stenflo system by using methods of symbolic computation.
Stability conditions on the parameters of the system are derived by using
methods of solving semi-algebraic systems. Using the method of algorith-
mic averaging, we provide sufficient conditions for the existence of one
limit cycle bifurcating from a zero-Hopf equilibrium of the Lorenz–Stenflo
system. Some examples are presented to verify the established results.
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1 Introduction and Main Results

In 1963, Edward Lorenz introduced a simplified mathematical chaotic model for
atmospheric convection [1]. The chaotic model is a system of three ordinary dif-
ferential equations now known as the Lorenz system. Since then, the research on
dynamical behaviors of the Lorenz system and its generalizations has attracted
great interest of scholars from various fields; the essence of chaos, characteristics
of the chaotic system, bifurcations, and routes to chaos have been extensively
studied (see [2–5] for instance).
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Hyperchaos, as a dynamic behavior, is far more complex and has a greater
potential than chaos in some non-traditional engineering and technological appli-
cations. It is well known that the minimal number of dimensions in which
continuous-time hyperchaos can occur is 4; therefore, 4D autonomous differ-
ential systems are of main interest for research and applications of hyperchaos,
especially 4D Lorenz-type hyperchaotic systems. In 1996, Stenflo [6] derived a
system to describe the evolution of finite amplitude acoustic gravity waves in a
rotating atmosphere. The Lorenz–Stenflo system is described by

ẋ = a(y − x) + dw,

ẏ = cx − y − xz,

ż = −bz + xy,

ẇ = −x − aw,

(1)

where a, b, c, and d are real parameters; a, c, and d are the Prandtl, the Rayleigh,
and the rotation numbers, respectively, and b is a geometric parameter. This
system is rather simple and reduces to the classical Lorenz system when the
parameter associated with the flow rotation, d, is set to zero. System (1) is
chaotic as a = 1, b = 0.7, c = 25, and d = 1.5. Figure 1 shows the phase
portraits of the system in 3D spaces.

This paper focuses on symbolic and algebraic analysis of stability and zero-
Hopf bifurcation for the Lorenz–Stenflo system (1). We remark that, in the past
few decades, symbolic methods have been explored extensively in terms of the
qualitative analysis of dynamical systems (see [7–14] and the references therein).
It should be mentioned that the zero-Hopf bifurcation of a generalized Lorenz–
Stenflo system was already studied by Chen and Liang in [15]. However, the
authors did not notice that the Lorenz–Stenflo system itself can exhibit a zero-
Hopf bifurcation. The main goal of this paper is to fill this gap. Moreover, we
study the zero-Hopf bifurcation of the Lorenz–Stenflo system in a parametric way
by using symbolic methods. We recall that a (complete) zero-Hopf equilibrium of
a 4D differential system is an isolated equilibrium point p0 such that the Jacobian
matrix of the system at p0 has a double zero and a pair of purely imaginary
eigenvalues. There are many studies of zero-Hopf bifurcations in 3D differential
systems (see [16–21] and the references therein). The zero-Hopf bifurcations of
hyperchaotic Lorenz systems can be found in [5,22]. Actually, there are very few
results on the n-dimensional zero-Hopf bifurcation with n > 3. Our objective
here is to study how many limit cycles can bifurcate from a zero-Hopf equilibrium
of system (1) by using the averaging method. Unlike the usual analysis of zero-
Hopf bifurcation, by means of symbolic computation, we would like to compute
a partition of the parametric space of the involved parameters such that, inside
every open cell of the partition, the system can have the maximum number of
limit cycles that bifurcate from a zero-Hopf equilibrium.

On the number of equilibria of the Lorenz–Stenflo system, we recall from
[6] that system (1) can have three equilibria, including the origin E0 =
(x = 0, y = 0, z = 0, w = 0) and the two equilibria
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Fig. 1. The phase portraits of system (1) in different 3D projection spaces: a = 1,
b = 0.7, c = 25, d = 1.5

E± =

(
x = −aw, y = −a2 + d

a
w, z =

a2 + d

b
w2, w = ±

√
b(a2c − a2 − d)

a2(a2 + d)

)

if b(a2c−a2−d)
a2(a2+d) > 0. Otherwise, the origin is the unique equilibrium of the system.

In fact, the above results can be easily verified by computing the Gröbner basis
of the polynomial set {ẋ, ẏ, ż, ẇ} with respect to the lexicographic term ordering
determined by x � y � z � w.

The first goal of this paper is to study conditions on the parameters under
which the Lorenz–Stenflo system (1) has a prescribed number of stable equilib-
rium points. Our result on this question is the following, and its proof can be
found in Sect. 3.

Proposition 1. The Lorenz–Stenflo system (1) can not have three stable equi-
librium points; it has two stable equilibrium points if [a = 1] and one of the
following two conditions

C1 = [T1 < 0, 0 < T2, 0 < T3, T4 < 0, T5 < 0, 0 < T6],
C2 = [0 < T1, T2 < 0, 0 < T3, 0 < T4, T5 < 0, 0 < T6]

(2)
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holds; and it has one stable equilibrium point if [a = 1] and one of the following
five conditions

C3 = [0 < T1, 0 < T2, 0 < T3, T5 < 0, 0 < T6],
C4 = [0 < T1, 0 < T2, T3 < 0, T4 < 0, T6 < 0],
C5 = [0 < T1, 0 < T2, 0 < T3, 0 < T4, 0 < T5, 0 < T6],
C6 = [0 < T1, 0 < T2, 0 < T3, T4 < 0, 0 < T5, 0 < T6],
C7 = [0 < T1, 0 < T2, 0 < T3, T4 < 0, 0 < T5, T6 < 0]

(3)

holds. The explicit expressions of Ti are the following:

T1 = b, T2 = d − c + 1, T3 = d + 1,

T4 = bc − cd + d2 + 2 d + 1,

T5 = −bcd + bd2 − 3 bc − 2 bd − 3 b − 12 d − 12,

T6 = b2c + 2 b2d − bcd + bd2 + 2 b2 + 10 bd + 9 b + 6 d + 6.

Remark 1. We remark that the condition [a = 1] is used to facilitate the com-
putation of the resulting semi-algebraic system (see Sect. 3) since the algebraic
analysis usually involves heavy computation; see [8,9].

Example 1. Let

(a, b, c, d) =
(
1,

1
4
,−56,−29

)
∈ C4.

Then the Lorenz–Stenflo system (1) becomes

ẋ = y − x − 29w, ẏ = −56x − y − xz,

ż = −1
4
z + xy, ẇ = −x − w.

(4)

Its three equilibria are: p1 = (0, 0, 0, 0), p2 = (12 ,−14,−28,− 1
2 ) and p3 =

(− 1
2 , 14,−28, 1

2 ). System (4) has only one stable equilibrium point p1; see Fig. 2
(a); (b).

Example 2. Let

(a, b, c, d) =
(
1,

1
4
,
55
32

,−27
64

)
∈ C2.

Then the Lorenz–Stenflo system (1) becomes

ẋ = y − x − 27
64

w, ẏ =
55
32

x − y − xz,

ż = −1
4
z + xy, ẇ = −x − w.

(5)

Its three equilibria are:

p1 = (0, 0, 0, 0), p2 = (
1
74

√
2701,

1
128

√
2701,

73
64

,− 1
74

√
2701)

and p3 = (− 1
74

√
2701,− 1

128

√
2701, 73

64 , 1
74

√
2701). System (5) has two stable equi-

libria p2 and p3; see Fig. 2 (c); (d).
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Fig. 2. Numerical simulations of local stability of the Lorenz–Stenflo system for the
choice of parameter values given in Examples 1 and 2

Our second goal of this paper is to investigate the bifurcation of periodic
solutions at the (complete) zero-Hopf equilibrium (that is, an isolated equilib-
rium with double zero eigenvalues and a pair of purely imaginary eigenvalues) of
system (1). In the following, we characterize the periodic orbits bifurcating from
the zero-Hopf equilibrium E0 = (0, 0, 0, 0) of system (1). The main techniques
are based on the first order averaging method and some algebraic methods, such
as the Gröbner basis [23] and real root classifications [24]. The techniques used
here for studying the zero-Hopf bifurcation can be applied in theory to other
high dimensional polynomial differential systems.

In the next proposition, we characterize when the equilibrium point E0 =
(0, 0, 0, 0) is a zero-Hopf equilibrium.

Proposition 2. The origin E0 is a zero-Hopf equilibrium of the Lorenz–Stenflo
system (1) if the conditions 2a + 1 = 0, b = 0, 3c − 4 > 0 and 12d − 1 > 0 hold.
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We consider the vector (a, b, c, d) given by

a = −1
2

+ εa1, b = εb1,

c =
4
3
(β2 + 1) + εc1, d =

1
3
β2 +

1
12

+ εd1,

(6)

where ε �= 0 is a sufficiently small parameter, the constants β �= 0, a1, b1, c1,
and d1 are all real parameters. The next result gives sufficient conditions for the
bifurcation of a limit cycle from the origin when it is a zero-Hopf equilibrium.

Theorem 1. For the vector given by (6) and |ε| > 0 sufficiently small, system
(1) has, up to the first order averaging method, at most 1 limit cycle bifurcates
from the origin, and this number can be reached if one of the following two
conditions holds:

C8 = [b1 < 0, 8β2a1 − 4 a1 + 3 c1 − 12 d1 < 0] ∧ C̄,

C9 = [0 < b1, 0 < 8β2a1 − 4 a1 + 3 c1 − 12 d1] ∧ C̄,
(7)

where C̄ = [β �= 0, b1 �= 0, a1 �= 0, 4β2 + 1 �= 0, 8β2a1 − 4 a1 + 3 c1 − 12 d1 �= 0].
Moreover, the only limit cycle that exists (under the condition C8 or C9) is
unstable.

Theorem 1 shows that the Lorenz–Stenflo system (1) can have exactly 1 limit
cycles bifurcating from the origin if the condition in (7) holds. In the following,
we provide a concrete example of system (1) to verify this established result.

Corollary 1. Consider the special family of the Lorenz–Stenflo system

ẋ =
(
ε +

1
2

)
(x − y) +

(
ε +

5
12

)
w,

ẏ =
(
ε +

8
3

)
x − xz − y,

ż = xy + εz,

ẇ = −x +
(
ε +

1
2

)
w.

(8)

This system has exactly 1 limit cycle (x(t, ε), y(t, ε), z(t, ε), w(t, ε)) bifurcating
from the origin by using the first order averaging method, namely,

x(t, ε) =
5
12

ε
(
X̄3 − R̄ cos t

)
+ O(ε2),

y(t, ε) =
9
5
ε
(
2X̄3 − R̄ cos t − R̄ sin t

)
+ O(ε2),

z(t, ε) = εX̄4 + O(ε2),

w(t, ε) =
1
6
ε
(
5X̄3 − R̄ cos t + 2R̄ sin t

)
+ O(ε2),

where (R̄, X̄3, X̄4) is a real solution of a semi-algebraic system (see Sect. 5).
Moreover, the limit cycle is unstable.
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The rest of this paper is organized as follows. In Sect. 2, we recall the averag-
ing method that we shall use for proving the main results. Section 3 is devoted
to prove Proposition 1. The proofs of Proposition 2 and Theorem 1 are given
in Sect. 4, and the proof of Corollary 1 is presented in Sect. 5. The paper is
concluded with a few remarks.

2 Preliminary Results

The averaging method is one of the best analytical methods to study limit cycles
of differential systems in the presence of a small parameter ε. The first order
averaging method introduced here was developed in [25]. Recently, this theory
was extended to an arbitrary order in ε for arbitrary dimensional differential
systems, see [26]. More discussions on the averaging method, including some
applications, can be found in [27,28].

We deal with differential systems in the form

ẋ = εF (t,x) + ε2R(t,x, ε), (9)

with x ∈ D ⊂ R
n, D a bounded domain, and t ≥ 0. Moreover we assume that

F (t,x) and R(t,x, ε) are T -periodic in t.
The averaged system associated to system (9) is defined by

ẏ = εf0(y), (10)

where

f0(y) =
1
T

∫ T

0

F (s,y)ds. (11)

The next theorem says under what conditions the equilibrium points of the
averaged system (10) provide T -periodic orbits for system (9).

Theorem 2. We consider system (9) and assume that the functions F , R,
DxF , D2

xF and DxR are continuous and bounded by a constant M (independent
of ε) in [0,∞) × D, with −ε0 < ε < ε0. Moreover, we suppose that F and R are
T -periodic in t, with T independent of ε.

(i) If p ∈ D is an equilibrium point of the averaged system (10) such that

det(Dxf0(p)) �= 0 (12)

then, for |ε| > 0 sufficiently small, there exists a T -periodic solution x(t, ε)
of system (9) such that x(0, ε) → p as ε → 0.

(ii) If the equilibrium point y = p of the averaged system (10) has all its eigen-
values with negative real part then, for |ε| > 0 sufficiently small, the corre-
sponding periodic solution x(t, ε) of system (9) is asymptotically stable and,
if one of the eigenvalues has positive real part x(t, ε), it is unstable.
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The proof of Theorem 2 can be found in [25,28]. It follows from Lemma 1 of
[26] that the expression of the limit cycle associated to the zero y∗ of f0(y) can
be described by

x(t,y∗, ε) = y∗ + O(ε). (13)

The averaging method allows to find periodic solutions for periodic non-
autonomous differential systems (see (9)). However, here we are interested in
using it for studying the periodic solutions bifurcating from a zero-Hopf equilib-
rium point of the autonomous differential system (1). The steps for doing that
are the following.

(i) First we must identify the conditions for which the system has a zero-Hopf
equilibrium (see Proposition 2).

(ii) We write the linear part of the resulting system (plugging in the conditions
obtained in (i)) at the origin in its real Jordan normal form by linear change
of variables (x, y, z, w) �→ (U, V,W,Z).

(iii) We scale the variables by setting (U, V,W,Z) = (εX1, εX2, εX3, εX4),
because the zero-Hopf bifurcation and the averaging method needs such
a small parameter ε, and write the differential system in the form(

dR
dt , dθ

dt ,
dX3
dt , dX4

dt

)
where (X1,X2,X3,X4) = (R cos θ,R sin θ,X3,X4).

(iv) We take the angular variable θ as the new independent variable of the dif-
ferential system. Obtaining a 3-dimensional periodic non-autonomous system
dR
dθ = · · · , dX3

dθ = · · · , dX4
dθ = · · · in the variable θ. In this way the differential

system is written into the normal form of the averaging method for studying
the periodic solutions.

(v) Going back through the change of variables we get the periodic solutions
bifurcating from the zero-Hopf equilibrium of system (1).

Remark 2. A symbolic Maple program for the realization of certain steps on zero-
Hopf bifurcation analysis of polynomial differential systems is developed in [29].
The program can be used for computing the higher-order averaged functions of
nonlinear differential systems. The source code of the Maple program is available
at https://github.com/Bo-Math/zero-Hopf. More details on the outline of the
program, including some applications, can be found in [29].

3 Stability Conditions of the Lorenz–Stenflo System

The goal of this section is to prove Proposition 1. Let (x̄, ȳ, z̄, w̄) be the equi-
librium point of the Lorenz–Stenflo system (1). Namely, we have the algebraic
system

Ψ = {a(ȳ − x̄) + dw̄ = 0, cx̄ − ȳ − x̄z̄ = 0, −bz̄ + x̄ȳ = 0, −x̄ − aw̄ = 0}. (14)

The Jacobian matrix of the Lorenz–Stenflo system evaluated at (x̄, ȳ, z̄, w̄) is
given by ⎛

⎜⎜⎝
−a a 0 d

−z̄ + c −1 −x̄ 0
ȳ x̄ −b 0

−1 0 0 −a

⎞
⎟⎟⎠ ,

https://github.com/Bo-Math/zero-Hopf
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and the characteristic polynomial of this matrix can be written as

P (λ) = t0λ
4 + t1λ

3 + t2λ
2 + t3λ + t4,

where

t0 = 1, t1 = 2 a + b + 1,

t2 = a2 + 2 ab − ac + az̄ + x̄2 + 2 a + b + d,

t3 = a2b − a2c + a2z̄ − abc + abz̄ + 2 ax̄2 + ax̄ȳ + a2 + 2 ab + bd + d,

t4 = −a2bc + a2bz̄ + a2x̄2 + a2x̄ȳ + a2b + dx̄2 + bd.

By Routh–Hurwitz’s stability criterion (e.g., [30]), (x̄, ȳ, z̄, w̄) is a stable equilib-
rium point if the following algebraic system is satisfied

D1 = t1 = 2 a + b + 1 > 0,

D2 = det
(

t1 t0
t3 t2

)
= 2 a3 + 4 a2b − a2c + a2z̄ + 2 ab2 − ax̄ȳ + bx̄2 + 4 a2 + 4 ab

− ac + 2 ad + az̄ + b2 + x̄2 + 2 a + b > 0,

D3 = det

⎛
⎝ t1 t0 0

t3 t2 t1
0 t4 t3

⎞
⎠ = −7 a3bc + 2 abd − 4 a2bc − 2 a3b2c + 8 a2bd − ab2c

− 3 a4bc + a3bc2 − a2b3c − a2x̄2ȳ2 + 2 ad2 + a3c2 + 2 a3 +
(
a4 + a3b + a3

+ a2b
)
z̄2 +

(
2 a5 + 3 a4b − 2 a4c + 2 a3b2 − 2 a3bc + a2b3 + 5 a4 + 7 a3b

− 2 a3c + 2 a3d + 3 a2b2 − 2 a2bc + 3 a2bd + ab3 + 3 a3 + 4 a2b + a2d + ab2

+ abd + ad
)
z̄ + (2 ab + 2 a) x̄4 +

(
4 a3b − 2 a3c + 4 a2b2 − a2bc − ab2c

+ 4 a3 + 8 a2b − 3 a2c + 4 ab2 − abc − 4 abd + 4 a2 + 4 ab − 4 ad
)
x̄2 + 4 a4

+ 2 a5 − abcd +
(−a2b + a2

)
x̄ȳz̄ − 3 a2bcd − 2 a5c + a4c2 + 2 a5b + 4 a4b2

+ 2 ab3 + 4 a2d + 2 ab2 + 2 ad + 8 a4b − 5 a4c + 10 a3b2 − 3 a3c + 4 a3d

+ 8 a2b2 + 10 a3b + 4 a2b + 4 a2b3 − ab3c + 2 ab3d − a2cd + 2 ab2d + 2 abd2

+
( − 2a4 − a3b + a2b2 + a2bc − a3 − a2c + 2a2d + ab2 − abd + a2 + ab

− ad
)
x̄ȳ + 4 a3bd − 2 a3cd − 3 a2b2c + 4 a2b2d + a2bc2 + 2 a3b3 +

( − 2 a2

+ ab + a
)
x̄3ȳ +

(
2 a3 + a2b + ab2 + 3 a2 + ab

)
x̄2z̄ − acd > 0,

D4 = t4 = −a2bc + a2bz̄ + a2x̄2 + a2x̄ȳ + a2b + dx̄2 + bd > 0. (15)

Combining (14) and (15), we see that the Lorenz–Stenflo system has a prescribed
number (say k) of stable equilibrium points if the following semi-algebraic system
has k distinct real solutions:{

a(ȳ − x̄) + dw̄ = 0, cx̄ − ȳ − x̄z̄ = 0, −bz̄ + x̄ȳ = 0, −x̄ − aw̄ = 0,
D1 > 0, D2 > 0, D3 > 0, D4 > 0,

(16)

where x̄, ȳ, z̄, and w̄ are the variables. The above semi-algebraic system may
be solved by the method of discriminant varieties of Lazard and Rouillier [31]
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(implemented as a Maple package by Moroz and Rouillier), or the method of
Yang and Xia [24] for real solution classification (implemented as a Maple pack-
age DISCOVERER by Xia [32]; see also the recent improvements in [33] as well
as the Maple package RegularChains[SemiAlgebraicSetTools]). However, in the
presence of several parameters, the Yang–Xia method may be more efficient than
that of Lazard–Rouillier, see [8].

Note that system (16) contains four free parameters a, b, c, d, and the total
degree of the involved polynomials is 4, which makes the computation very dif-
ficult. In order to obtain simple sufficient conditions for system (16) to have a
prescribed number of stable equilibrium points, the computation is done under
the constraint [a = 1]. By using DISCOVERER or RegularChains, we obtain
that system (16) has exactly two distinct real solutions with respect to the vari-
ables x̄, ȳ, z̄, w̄ if the condition C1 or C2 in (2) holds, and it has only one real
solution if one of the conditions in (3) holds; system (16) can not have three
distinct real solutions. This ends the proof of Proposition 1.

4 Zero-Hopf Bifurcation of the Lorenz–Stenflo System

This section is devoted to the proofs of Proposition 2 and Theorem 1.

Proof (Proof of Proposition 2). The characteristic polynomial of the linear
part of the Lorenz–Stenflo system at the origin E0 is

p(λ) = λ4 + (2 a + b + 1) λ3 +
(
a2 + 2 ba − ac + 2 a + b + d

)
λ2

+
(
a2b − a2c − abc + a2 + 2 ba + db + d

)
λ − a2bc + a2b + db.

(17)

Imposing that p(λ) = λ2(λ2 + β2) with β �= 0, we obtain a = − 1
2 , b = 0,

3c − 4 = 12d − 1 = 4β2 > 0. This completes the proof.

Proof (Proof of Theorem 1). Consider the vector defined by (6), then the
Lorenz–Stenflo system becomes

ẋ =
(

−1
2

+ εa1

)
(y − x) +

(
1
3
β2 +

1
12

+ εd1

)
w,

ẏ =
(

4
3
(β2 + 1) + εc1

)
x − y − xz,

ż = −εb1z + xy,

ẇ = −x −
(

−1
2

+ εa1

)
w.

(18)

We need to write the linear part of system (18) at the origin in its real Jordan
normal form ⎛

⎜⎜⎝
0 −β 0 0
β 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (19)
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when ε = 0. For doing that, we perform the linear change of variables
(x, y, z, w) �→ (U, V,W,Z) given by

x = −
(
4β2 + 1

)
U

12β2
+

(
4β2 + 1

)
W

12β2
,

y = −
(
4β2 + 1

)
U

9β2
−

(
4β2 + 1

)
V

9β
+

(
β2 + 1

) (
4β2 + 1

)
W

9β2
,

z = βZ,

w = − U

6β2
+

V

3β
+

(
4β2 + 1

)
W

6β2
.

(20)

In these new variables (U, V,W,Z), system (18) becomes a new system which
can be written as (U̇ , V̇ , Ẇ , Ż). By computing the second order Taylor expansion
of expressions in this new system, with respect to ε, about the point ε = 0,
we obtain

U̇ = −βV +
1
4β

(UZ − WZ) + εF1,1(U, V,W,Z),

V̇ = βU +
1
2
(ZW − ZU) + εF1,2(U, V,W,Z),

Ẇ =
1
4β

(ZU − ZW ) + εF1,3(U, V,W,Z),

Ż =

(
4β2 + 1

)2
108β5

(
U2 + (β2 + 1)W 2 − (β2 + 2)UW + β(UV − V W )

)
− εb1Z,

(21)
where

F1,1 =
1

3β (4β2 + 1)
(
16β4a1 + 8β2a1 − 12β2d1+ a1 − 6 d1

)
V − 1

12β2

(
16β4a1

+ 20β2a1 + 24β2d1 + 4 a1 − 3 c1 + 12 d1
)
W +

1
12β2 (4β2 + 1)

(
16β4a1

+ 20β2a1 − 12 c1β
2 + 24β2d1 + 4 a1 − 3 c1 + 12 d1

)
U,

F1,2 = − 1
4β2 + 1

(
4β2a1 + a1 − 2 d1

)
V − c1 − 2 d1

2β
W +

4β2c1 + c1 − 2 d1
2β (4β2 + 1)

U,

F1,3 =
1

3β (4β2 + 1)
(
4β2a1 + a1 − 6 d1

)
V − 1

12β2

(
16β2a1 + 4 a1 − 3 c1

+ 12 d1
)
W +

1
12β2 (4β2 + 1)

(
16β2a1 − 12 c1β

2 + 4 a1 − 3 c1 + 12 d1
)
U.

After doing step (iii) and step (iv) (see Sect. 2), we write the differential
system (21) into the normal form of the averaging method. By computing the
first order averaged functions f0(y) in (11) (where y = (R,X3,X4)), we obtain
f0(y) = (f1,1(y), f1,3(y), f1,4(y)), where
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f1,1(y) = − R

24β3
f̄1,1(R,X3,X4),

f1,3(y) = − 1
12β3

f̄1,3(R,X3,X4),

f1,4(y) =
1

216β6
f̄1,4(R,X3,X4),

(22)

with

f̄1,1(R,X3,X4) = 8β2a1 − 3βX4 − 4a1 + 3c1 − 12d1,

f̄1,3(R,X3,X4) = X3

(
16β2a1 + 3βX4 + 4a1 − 3c1 + 12d1

)
,

f̄1,4(R,X3,X4) =
(
16β4 + 8β2 + 1

)
R2 +

(
32β6 + 48β4 + 18β2 + 2

)
X2

3

− 216β5X4b1.

It is obvious that system (22) can have at most one real solution with R > 0.
Hence, system (18) can have at most one limit cycle bifurcating from the origin.
Moreover, the determinant of the Jacobian of (f1,1, f1,3, f1,4) is

D1(R,X3,X4) = det

⎛
⎜⎝

∂f1,1
∂R

∂f1,1
∂X3

∂f1,1
∂X4

∂f1,3
∂R

∂f1,3
∂X3

∂f1,3
∂X4

∂f1,4
∂R

∂f1,4
∂X3

∂f1,4
∂X4

⎞
⎟⎠ =

1
10368β11

· D̄1(R,X3,X4),

where

D̄1(R,X3,X4) = −4608β8a1
2b1 + 1152β6a1

2b1 − 864β6a1b1c1 + 3456β6a1b1d1

+ 576β4a1
2b1 − 864β4a1b1c1 + 3456β4a1b1d1 + 324β4b1c1

2 − 2592β4b1c1d1

+ 5184β4b1d1
2 +

(
256β6a1 + 192β4a1 − 48β4c1 + 192β4d1 + 48β2a1

− 24β2c1 + 96β2d1 + 4a1 − 3c1 + 12d1
)
R2 + 324β6X2

4b1 +
( − 256β8a1

− 256β6a1 − 96β6c1 + 384β6d1 + 48β4a1 − 144β4c1 + 576β4d1 + 56β2a1

− 54β2c1 + 216β2d1 + 8a1 − 6c1 + 24d1
)
X2

3 + (864β7a1b1 + 864β5a1b1

− 648β5b1c1 + 2592β5b1d1)X4 +
(
96β7 + 144β5 + 54β3 + 6β

)
X4X3

2

+ (48β5 + 24β3 + 3β)X4R
2.

It follows from Theorem 2 that system (18) can have one limit cycle bifur-
cating from the origin if the semi-algebraic system has exactly one real solution:{

f̄1,1(R,X3,X4) = f̄1,3(R,X3,X4) = f̄1,4(R,X3,X4) = 0,
R > 0, D̄1(R,X3,X4) �= 0, β �= 0 (23)

where R, X3, and X4 are the variables. Using DISCOVERER (or the package
RegularChains[SemiAlgebraicSetTools] in Maple), we find that system (18) has
exactly one real solution if and only if the one of the conditions C8 and C9 in (7)
holds.
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Remark that the stability conditions of the limit cycle may be derived by
using the Routh–Hurwitz criterion to the characteristic polynomial of the Jaco-
bian matrix of (f1,1, f1,3, f1,4). In other words, more constraints on the prin-
cipal diagonal minors of the Hurwitz matrix should be added to the algebraic
system (23). By using similar techniques we can verify that the resulting semi-
algebraic system has no real solution with respect to the variables R, X3, X4.
Hence, we complete the proof of Theorem 1.

5 Zero-Hopf Bifurcation in a Special Lorenz–Stenflo
System

Since the proof of Corollary 1 is very similar to that of Theorem 1, we omit some
steps in order to avoid some long expressions.

The corresponding differential system
(

dR
dt , dθ

dt ,
dX3
dt , dX4

dt

)
(step (iii) in

Sect. 2) associated to system (8) now becomes

dR

dt
= ε

[ 1
60

(−30R cos θX4 − 154R cos θ + 30X3X4 + 30X3) sin θ

+
1
4

R cos2 θX4 − 103
60

R cos2 θ − 1
4

cos θX3X4

+
7
12

cos θX3 +
7
5

R
]

+ O(ε2),

dθ

dt
= 1 + ε

[ 1
60R

( − 15R cos θX4 + 103R cos θ + 15X3X4 − 35X3

)
sin θ

+
1

60R

( − 30R cos2 θX4 − 154R cos2 θ + 30 cos θX3X4 + 30 cos θX3

+ 172R
)]

+ O(ε2),

dX3

dt
= ε

[
− 1

4
X3X4 +

1
4
R cos θX4 +

11
12

X3 − 23
60

R cos θ − 11
15

R sin θ
]

+ O(ε2),

dX4

dt
= ε

[ 1
108

(
25 cos θR2 − 25RX3

)
sin θ +

25
108

R2 cos2 θ − 25
36

R cos θX3

+
25
54

X2
3 + X4

]
+ O(ε2).

(24)
Hence, we have the normal form of averaging (step (iv) in Sect. 2)

dR

dθ
=

dR/dt

dθ/dt
,

dX3

dθ
=

dX3/dt

dθ/dt
,

dX4

dθ
=

dX4/dt

dθ/dt
. (25)

In order to find the limit cycles of system (8), we must study the real roots of
the first order averaged functions

f1,1(R,X3,X4) =
1
8

X4R +
13
24

R,

f1,3(R,X3,X4) = −1
4

X4X3 +
11
12

X3,

f1,4(R,X3,X4) =
25
216

R2 +
25
54

X2
3 + X4.

(26)
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Moreover, the determinant of the Jacobian of (f1,1, f1,3, f1,4) is

D1(R,X3,X4) = − 1
32

X2
4 − 1

48
X4 +

25
864

X2
3X4 +

143
288

+
325
2592

X2
3

+
25

3456
R2X4 − 275

10368
R2.

(27)

Using the built in Maple command RealRootIsolate (with the option ‘abserr’=
1/1010) to the semi-algebraic system{

f1,1(R,X3,X4) = 0, f1,3(R,X3,X4) = 0, f1,4(R,X3,X4) = 0,
R > 0, D1(R,X3,X4) �= 0,

(28)

we obtain a list of one real solution:[
R̄ ≈ 6.1185 ∈

[6265
1024

,
50127
8192

]
, X̄3 = 0, X̄4 = −13

3

]
.

This verifies that system (8) has exactly one limit cycle bifurcating from the
origin. Now we shall present the expression of the limit cycle. The limit cycles Λ
of system (25) associated to system (8) and corresponding to the zero (R̄, X̄3, X̄4)
given by (28) can be written as {(R(θ, ε),X3(θ, ε),X4(θ, ε)), θ ∈ [0, 2π]}, where
from (13) we have

Λ :=

⎛
⎝ R(θ, ε)

X3(θ, ε)
X4(θ, ε)

⎞
⎠ =

⎛
⎝ R̄

X̄3

X̄4

⎞
⎠ + O(ε). (29)

Moreover, the eigenvalues of the Jacobian matrix

⎛
⎜⎝

∂f1,1
∂R

∂f1,1
∂X3

∂f1,1
∂X4

∂f1,3
∂R

∂f1,3
∂X3

∂f1,3
∂X4

∂f1,4
∂R

∂f1,4
∂X3

∂f1,4
∂X4

⎞
⎟⎠ at the

point (R̄, X̄3, X̄4) are about (−0.6546509493, 1.6546509493, 2). We have the
corresponding limit cycles Λ is unstable.

Further, in system (24), the limit cycle Λ writes as⎛
⎜⎜⎝

R(t, ε)
θ(t, ε)

X3(t, ε)
X4(t, ε)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

R̄
t

X̄3

X̄4

⎞
⎟⎟⎠ + O(ε). (30)

Finally, going back through the changes of variables, (X1,X2,X3,X4) �→
(R cos θ,R sin θ,X3,X4), (U, V,W,Z) �→ (εX1, εX2, εX3, εX4), and (x, y, z, w)
�→ (U, V,W,Z) given by (20), we have for system (8) the limit cycle:

x(t, ε) =
5
12

ε
(
X̄3 − R̄ cos t

)
+ O(ε2),

y(t, ε) =
9
5
ε
(
2X̄3 − R̄ cos t − R̄ sin t

)
+ O(ε2),

z(t, ε) = εX̄4 + O(ε2),

w(t, ε) =
1
6
ε
(
5X̄3 − R̄ cos t + 2R̄ sin t

)
+ O(ε2).

(31)

This completes the proof of Corollary 1.
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6 Conclusions

In this paper, using symbolic computation, we analyzed the conditions on the
parameters under which the Lorenz–Stenflo differential system has a prescribed
number of (stable) equilibrium points. Sufficient conditions for the existence
of one limit cycle bifurcating from the origin of the Lorenz–Stenflo system are
derived by making use of the averaging method, as well as the methods of real
solution classification. The special family of the Lorenz–Stenflo system (8) was
provided as a concrete example to verify our established result. The algebraic
analysis used in this paper is relatively general and can be applied to other n-
dimensional differential systems. The zero-Hopf bifurcation of limit cycles from
the equilibrium point (other than the origin) of the Lorenz–Stenflo system is
also worthy of study. We leave this as a future problem.
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Int. J. Bifurc. Chaos 30, 2050170 (2020)

18. Sang, B., Huang, B.: Zero-Hopf bifurcations of 3D quadratic Jerk system. Mathe-
matics 8, 1454 (2020)

19. Tian, Y., Huang, B.: Local stability and Hopf bifurcations analysis of the
Muthuswamy-Chua-Ginoux system. Nonlinear Dyn. (2), 1–17 (2022). https://doi.
org/10.1007/s11071-022-07409-3

20. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer, New York (1993). https://doi.org/10.1007/
978-1-4612-1140-2

21. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (2004)
22. Llibre, J., Candido, M.R.: Zero-Hopf bifurcations in a hyperchaotic Lorenz system

II. Int. J. Nonlinear Sci. 25, 3–26 (2018)
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