
Computing GCDs of Multivariate
Polynomials over Algebraic Number

Fields Presented with Multiple
Extensions

Mahsa Ansari(B) and Michael Monagan

Department of Mathematics, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada
{mansari,mmonagan}@sfu.ca

Abstract. Let Q(α1, · · · , αn) be an algebraic number field. In this
paper, we present a modular gcd algorithm for computing the monic
gcd, g, of two polynomials f1, f2 ∈ Q(α1, . . . , αn)[x1, . . . , xk]. To improve
the efficiency of our algorithm, we use linear algebra to find an isomor-
phism between Q(α1, . . . , αn) and Q(γ), where γ is a primitive element of
Q(α1, . . . , αn). This conversion is performed modulo a prime to prevent
expression swell. Next, we use a sequence of evaluation points to convert
the multivariate polynomials to univariate polynomials, enabling us to
employ the monic Euclidean algorithm. We currently use dense inter-
polation to recover x2, . . . , xk in the gcd. In order to reconstruct the
rational coefficients in g, we apply the Chinese remaindering and the
rational number reconstruction. We present an analysis of the expected
time complexity of our algorithm. We have implemented our algorithm
in Maple using a recursive dense representation for polynomials.

Keywords: Polynomial greatest common divisors · Modular GCD
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1 Introduction

1.1 Motivation for the Algorithm

Computing the gcd of polynomials is a fundamental problem in Computer Alge-
bra, and it arises as a subproblem in many applications. For instance, com-
puting the gcd of two polynomials plays a prominent role in polynomial fac-
torization [14]. While the Euclidean algorithm is one of the most important
algorithms for computing the gcd of two polynomials, it has a fundamental flaw
for problems arising over R[x] where R is not a finite field, namely, the size of
the coefficients of the remainders in the Euclidean algorithm grows significantly.
Especially, the Euclidean algorithm is slow when the degree of the gcd is much
smaller than the degree of the inputs. The worst case occurs when the gcd of
the inputs is 1. This inefficiency has led computer algebraists to develop mod-
ular gcd algorithms. Collins [3] (for univariate polynomials) and Brown [2] (for
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multivariate polynomials) developed an algorithm to compute gcds by apply-
ing homomorphic reductions and Chinese remaindering. Through homomorphic
reduction, they converted the gcd problem over Z to a simpler domain Zp where
the coefficients do not grow.

Let α and α1, . . . , αn be algebraic numbers. In 1989, Langemyr and MaCal-
lum [7] designed a modular gcd algorithm for Q(α)[x]. In 1989 Smedley [13], using
a different approach, designed a modular gcd algorithm for Q(α)[x1, . . . , xk].
In 1995, Encarnacion [4] used rational number reconstruction [9,18] to make
Langemyr and MaCallum’s algorithm for Q(α)[x] output sensitive. In 2002, Mon-
agan and Van Hoeij [17] generalized Encarnacion’s algorithm to treat polynomi-
als in Q(α1, · · · , αn)[x] for n ≥ 1. In 2009 Li, Moreno Maza and Schost [8] used
the FFT to speed up arithmetic in Q(α1, · · · , αn) modulo a prime in Monagan
and Van Hoeij’s algorithm. State of the art algorithms for computing primi-
tive element representations of triangular sets in softly linear time includes the
works of Poteaux and Schost [11,12]. State of the art algorithms for computing
in algebraic towers in softly linear time includes the work of van der Hoeven and
Lecerf [15,16].

Building upon this previous work, our modular gcd algorithm, called MGCD,
computes the monic gcd of two polynomials f1, f2 ∈ Q(α1, . . . , αn)[x1, . . . , xk]
where n ≥ 1 and k ≥ 1. It is the first modular gcd algorithm that speeds up the
computation by mapping Q(α1, · · · , αn) to Q(γ) where γ is a primitive element.

1.2 Preliminaries

First, we explain relevant details and notations. Let Q(α1, · · · , αn) be our num-
ber field. We build the field L as follows. Let L0 = Q. For i = 1, 2, . . . , n let
Li = Li−1[zi]/〈Mi(zi)〉 where Mi(zi) is the monic minimal polynomial of αi

over Li−1. Let L = Ln. The field L is a Q-vector space of dimension d =
∏n

i=1 di

where di = deg(Mi, zi). Furthermore,

BL = {∏n
i=1(zi)ei | 0 ≤ ei < di}

is a basis of L. Since L ∼= Q(α1, · · · , αn), we can perform computation over
Q(α1, · · · , αn) by replacing α1, . . . , αn with variables z1, . . . , zn, respectively, and
then doing the computation over L. In our algorithm, we suppose that we are
given the minimal polynomials M1(z1), . . . ,Mn(zn) of the algebraic numbers
α1, . . . , αn so that we can construct L. If f =

∑
ei∈Z

k
≥0

aei
Xei ∈ L[x1, . . . , xk],

then aei
=

∑d
j=1 Ceijbj for bj ∈ BL and Ceij ∈ Q. We define the coordi-

nate vector of f w.r.t BL as the vector of dimension d, denoted by [f ]BL
=

[v1, . . . , vd]T , where vj =
∑

ei∈Z
k
≥0

CeijX
ei .

Example 1. We are given the field L = Q[z1, z2]/〈z21 −2, z22 −3〉 with basis BL =
{1, z2, z1, z1z2}. If f = 2z1x+y+z1+z1z2 ∈ L[x, y], then [f ]BL

= [y, 0, 2x+1, 1]T .

Let R be a commutative ring with identity 1 �= 0. Let us fix a monomial ordering
in R[x1, . . . , xk]. Let f ∈ R[x1, . . . , xk] and let lc(f) denote the leading coeffi-
cient of f and lm(f) denote the leading monomial of f . If f = 0 we define
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monic(f) = 0. If f �= 0 and lc(f) is a unit in R then monic(f) = lc(f)−1f .
Otherwise, monic(f) = failed. Let f1, f2 ∈ R[x1, . . . , xk] and suppose a monic
g = gcd(f1, f2) exists. Then g is unique and there exist polynomials p and q such
that f1 = p · g and f2 = q · g. We call p and q the cofactors of f1 and f2.

Example 2. Let L be as in Example 1 and f1 = (z2x+z1y)(x+y) and f2 = (z2x+
z1y)(x − y) be polynomials in L[x, y]. By inspection, z2x + z1y is a gcd(f1, f2).
In lexicographical order with x > y we have lc(f1) = z2, lm(f1) = x2 and the
monic gcd(f1, f2) is x + 1

3z1z2y.

Let LZ = Z[z1, . . . , zn]. For any f ∈ L[x], the denominator of f , denoted by
den(f), is the smallest positive integer such that den(f)f ∈ LZ[x]. In addition,
the associate of f is defined as f̃ = den(h)h where h = monic(f). The semi-
associate of f , denoted by f̌ , is defined as rf , where r is the smallest positive
rational number for which den(rf) = 1.

Example 3. Let L be as in Example 1 and f = 3
2z1x + z2 ∈ L[x]. Then

den(f) = 2, f̌ = 3z1x + 2z2, monic(f) = x + 1
3z1z2 and f̃ = 3x + z1z2.

To improve computational efficiency, in a preprocessing step, our modular gcd
algorithm MGCD first clears fractions by replacing the input polynomials f1
and f2 with their semi-associates. Computing associates can be expensive when
lc(f1) and lc(f2) are complicated algebraic numbers. Thus, we prefer to use semi-
associates instead of associates to remove fractions. Then, MGCD computes
gcd(f1, f2) modulo a sequence of primes.

Definition 1. Let p be a prime such that p �
∏n

i=1 lc(M̌i) · lc(f̌1). Let mi(zi) =
Mi mod p for 1 ≤ i ≤ n. Define Lp = Zp[z1, . . . , zn]/〈m1, . . . ,mn〉.
Lp is a finite ring with pd elements which likely has zero divisors. We give an
example of MGCD to illustrate the treatment of zero-divisors in Lp and to
motivate the use a primitive element.

Example 4. We continue Example 2 where L = Q[z1, z2]/〈z21 − 2, z22 − 3〉, f1 =
(z2x + z1y)(x + y), f2 = (z2x + z1y)(x − y) and g = x + 1

3z1z2y is the monic
gcd(f1, f2). Suppose MGCD picks p = 3. Then m1 = z21 + 1, m2 = z22 and

L3 = Z3[z1, z2]/〈 z21 + 1, z22 〉.

Notice that z2 is a zero divisor in L3. Next, MGCD picks an evaluation point
α ∈ Zp and attempts to compute gcd(f1(x, α), f2(x, α)) in L3[x] using the monic
Euclidean algorithm (MEA) (see [17]). The MEA will try to compute r1 =
monic(f2(x, α)) and then divide r0 = f1(x, α) by r1 but monic(f2(x, α)) fails as
lc(f2(x, α)) = z2 is a zero-divisor in L3. Since MGCD does know whether this is
because of the choice of p or α, it stops the computation of gcd(f1, f2) modulo
p = 3 and tries another prime, for example, p = 5. We have

L5 = Z5[z1, z2]/〈 z21 + 3, z22 + 2 〉.
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Once again, MGCD chooses α ∈ Z5 and computes gcd(f1(x, α), f2(x, α)) in L5[x]
using the MEA. This time lc(f2(x, α)) = z2 is a unit in L5 with inverse 2z2 and
monic(f2(x, α)) succeeds. The MEA also succeeds and outputs g5 = x+2αz1z2.
Notice g5 = g(x, α) mod 5. MGCD repeats this process for more α’s and primes
and recovers g = x + 1

3z1 y using polynomial interpolation for y and Chinese
remaindering and rational number reconstruction [9,18] for the fraction 1

3 .

Most of the computational work in MGCD occurs in the finite ring Lp. To speed
up MGCD we use a primitive element to speed up arithmetic in Lp. We note
that our Maple implementation of MGCD uses 31-bit primes which avoids zero
divisors in Lp with high probability.

1.3 Paper Outline

Our paper is organized as follows. In Sect. 2, we use the fact that Q(α1, . . . , αn)
can be specified as a Q-vector space to compute a primitive element γ for
Q(α1, . . . , αn). We also construct a ring isomorphism φγ between the quotient
rings Lp and L̄p = Zp[z]/〈M(z)〉 where p is a prime and M(z) ∈ Zp[z] is the
minimal polynomial for γ mod p. In our modular gcd algorithm, we apply φγ to
speed up arithmetic in Lp. In Sect. 3, we describe the PGCD algorithm for com-
puting the monic gcd of two polynomials f1, f2 ∈ L̄p[x1, . . . , xk], where k ≥ 2.
We then present our modular gcd algorithm, MGCD. In Sect. 4, we study the
expected time complexity of our MGCD algorithm. Finally, in Sect. 5, we present
an implementation of our algorithm in Maple which uses the recursive dense poly-
nomial data structure described in [17]. We then present a timing benchmark for
running Algorithm MGCD. Our Maple code is available at http://www.cecm.
sfu.ca/∼mmonagan/code/MGCD.

2 Converting Q(α1, . . . , αn) to a Single Extension Q(γ)

The main goal of this section is to identify a primitive element for Q(α1, . . . , αn)
called γ and compute its minimal polynomial. We then proceed to reduce the
computation of finding γ modulo a prime p, which allows us to form the quotient
ring L̄p = Zp[z]/〈M(z)〉 where M(z) is the minimal polynomial of γ modulo p.
Once we have constructed L̄p, we determine the ring isomorphism φγ : Lp −→
L̄p. We use φγ in our MGCD algorithm to map a polynomial over the multiple
extension Lp to its corresponding polynomial over the simple extension L̄p.

2.1 Computing a Primitive Element and its Minimal Polynomial

In order to find a primitive element for Q(α1, . . . , αn), we start by choosing ran-
dom integers C1, . . . , Cn−1 from the interval [1, p), where p is a large prime. Using
these integers, we create a potential primitive element γ = α1 +

∑n
i=2 Ci−1αi.

To determine whether γ is a primitive element or not we use Theorem 1.

http://www.cecm.sfu.ca/~mmonagan/code/MGCD
http://www.cecm.sfu.ca/~mmonagan/code/MGCD
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Theorem 1. Let Q(α1, . . . , αn) have degree d and let C1, . . . , Cn−1 ∈ Z be cho-
sen randomly from [1, p) where p is a large prime. Define γ = α1+

∑n
i=2 Ci−1αi,

and let B be a basis for Q(α1, . . . , αn) as a Q-vector space. Let A be the d × d
matrix whose ith column is [γi−1]B for 1 ≤ i ≤ d. Then, γ is a primitive element
for Q(α1, · · · , αn) ⇐⇒ det(A) �= 0.

Proof. (=⇒) If γ is a primitive element for Q(α1, . . . , αn), then we have [Q(γ) :
Q] = [Q(α1, . . . , αn) : Q] = d. Let BK = {1, γ, . . . , γd−1} be a basis for K =
Q(γ) as a Q-vector space. Since Q(α1, . . . , αn) = K, any element of BK can be
expressed as a linear combination of elements of B. Thus, the d×d linear system

1 = c11b1 + c12b2 + . . . + c1dbd

γ = c21b1 + c22b2 + . . . + c2dbd

. . .

γd−1 = cd1b1 + cd2b2 + . . . + cddbd

has a unique solution. We can form the d×d matrix D, whose ith row is [γi−1]TB
for 1 ≤ i ≤ d. Since the above system of equations has a unique solution, the
matrix D is invertible, and thus det(D) �= 0. On the other hand, D = AT so

0 �= det(D) = det(AT ) = det(A).

(⇐=) Given det(A) �= 0, we can conclude that A is invertible and the linear
system A · q = −[γd]B has a unique solution q = [q1, . . . , qd]T . If we prove that
the polynomial of degree d

M(z) = zd +
d∑

i=1

qiz
i−1

is the minimal polynomial of γ, then [Q(γ) : Q] = [Q(α1, . . . , αn) : Q] = d
which implies that γ is a primitive element as required. By construction, M(z)
is monic, deg(M(z)) = d, and M(γ) = 0. Hence, we only need to prove that
M(z) is irreducible over Q. Suppose that M(z) is reducible. Since Q[z] is a UFD,
M(z) can be expressed as a product of monic irreducible polynomials over Q, i.e.
M(z) = p1(z) · · · pk(z) where each pi(z) ∈ Q[z] is irreducible for 1 ≤ i ≤ n. Since
M(γ) = 0, there exists 1 ≤ i ≤ k such that pi(γ) = 0 which implies that pi(z)
is the minimal polynomial of γ. Let deg(pi(z)) = h so {1, γ, . . . , γh−1} forms a
basis for Q(γ). Hence, {1, γ, . . . , γd−1} ⊆ Span({1, γ, . . . , γh−1}) where h < d.
That is, the set {1, γ, . . . , γd−1} is a linearly dependant set, equivalently, the
matrix A has two or more linearly dependent columns which means det(A) = 0.
This contradicts the assumption that det(A) �= 0. Therefore, M(z) must be
irreducible over Q, and hence it is the minimal polynomial of γ.

We can employ Theorem 1 to compute the minimal polynomial of the prim-
itive element γ.
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Corollary 1. Under the assumptions of Theorem 1, if det(A) �= 0 and q =
[q1, . . . , qd]T be the solution of the linear system A · q = −[γd]B, the polynomial
M(z) = zd +

∑d
i=1 qiz

i−1 is the minimal polynomial of γ.

Proof. Corollary 1 follows directly from the proof of Theorem 1.

We present Algorithm 1, LAminpoly, which is used to verify if γ = α1 +∑n
i=2 Ci−1αi, where Ci ∈ Z for 2 ≤ i ≤ n, is a primitive element for

Q(α1, . . . , αn). LAminpoly can be run over two different ground fields: F = Q

and F = Zp, where p is a prime. If LAminpoly does not fail over F = Q, accord-
ing to Theorem 1 and Corollary 1, γ is a primitive element for Q(α1, . . . , αn)
and the output M(z) is the minimal polynomial of γ. In the following example,
we execute the LAminpoly algorithm over F = Q.

Algorithm 1: LAminpoly
Input: A list of the minimal polynomials [M1(z1), . . . , Mn(zn)], the ground field

F over which the computation is performed, and
γ = z1 + C1z2 + . . . + Cn−1zn where Ci ∈ Z for 1 ≤ i ≤ n − 1

Output: Either a message “FAIL” or a polynomial M(z) ∈ F [z] such that
M(γ) = 0, the matrix A and A−1 .

1 BL = { ∏n
i=1(zi)

ei 0 ≤ ei < di } s.t di = deg(Mi(zi)) // A basis for L
2 d =

∏n
i=1 di

3 Initialize A to be a d × d zero matrix over F .
4 g0 = 1
5 for i = 1 to d do
6 Set column i of A to be [gi−1]BL

7 gi = γ · gi−1

8 if det(A) = 0 then
9 return(FAIL)

10 Compute A−1

11 Solve the d × d linear system A · q = −[gd]BL for q

12 Construct the polynomial M(z) := q1 + q2z + . . . + qdzd−1 + zd

13 return( M(z), A, A−1 )

Example 5. Let M1(z1) = z21 − 2 be the minimal polynomial of
√

2 over Q and
M2(z2) = z22 − 3 be the minimal polynomial of

√
3 over Q[z1]/〈z21 − 2〉. Let

L = Q[z1, z2]/〈z21 − 2, z22 − 3〉. Let C1 = 1 so that γ = z1 + z2. We wish to test
if γ is a primitive element. Let BL = {1, z2, z1, z1z2} and BK = {1, z, z2, z3} be
the bases for L and K = Q[z]/〈M(z)〉 respectively, where M(z) is the minimal
polynomial of γ. Let ai = [γi]BL

be the coordinate vector of γi relative to BL

for 0 ≤ i ≤ 4. Then we have

a0, a1, a2, a3, a4 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
1
1
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

5
0
0
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
9
11
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

49
0
0
20

⎤

⎥
⎥
⎦ .
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The coefficient matrix A is the 4×4 matrix containing a0, a1, a2, a3 as its columns

A =

⎡

⎢
⎢
⎣

1 0 5 0
0 1 0 9
0 1 0 11
0 0 2 0

⎤

⎥
⎥
⎦ , A−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 − 5
2

0 11
2 − 9

2 0

0 0 0 1
2

0 − 1
2

1
2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

As det(A) = −4, we conclude that C1 = 1 is an appropriate constant and
γ = z1 + z2 is a primitive element. The next step is to compute M(z). Applying
Corollary 1 we have q = A−1(−a4) = [1, 0,−10, 0]T thus M(z) = z4 − 10z2 + 1.

If we execute Algorithm 1 over F = Zp, then we can use the resulting poly-
nomial M(z) and matrix A to construct L̄p = Zp[z]/〈M(z)〉 such that Lp

∼= L̄p.
However, if we execute LAminpoly over F = Zp, it is likely that one or more of
mi will be reducible over Zp[z1, . . . , zi−1]/〈m1, . . . ,mi−1〉 in which case M(z) is
reducible over Zp. We give an example.

Example 6. Let M1(z1) = z21 − 2 and M2(z2) = z22 − 3 and L =
Q[z1, z2]/〈M1,M2〉. Let p = 113, F = Zp, C1 = 101 and Lp = Z113[z1, z2]/〈z21 +
111, z22 + 110〉. Lp is not a field since m1 = (z1 + 51)(z1 + 62) in Lp. Let
BLp

= {1, z2, z1, z1z2}. Applying LAminpoly for γ = z1 + 101z2 ∈ Lp we have

A =

⎡

⎢
⎢
⎣

1 0 95 0
0 101 0 55
0 1 0 55
0 0 89 0

⎤

⎥
⎥
⎦ .

Since det(A) �= 0, we solve the system Aq = −[γ4]BLp
and construct the gen-

erator polynomial M(z) = z4 + 36z2 + 32. M(z) factors over Zp as M(z) =(
z2 + 11z + 22

) (
z2 + 102z + 22

)
so L̄p = Zp[z]/〈M(z)〉 is not a field.

Remark 1. In MGCD, we choose a prime p and C1, . . . , Cn−1 ∈ [1, p) at random.
Then we call algorithm LAminpoly with F = Zp and γ = z1 +C1z2 + . . . Cn−1zn

in Lp. If LAminpoly returns FAIL, because the failure may be due to the choice
of p or C1, . . . , Cn−1, MGCD selects a new prime p and a new set of random
integers C1, . . . , Cn−1 ∈ [1, p) and calls LAminpoly again.

2.2 The Isomorphism φγ

We are now well-equipped to introduce the isomorphism φγ : Lp −→ L̄p.
Let BLp

= {∏n
i=1(zi)ei s.t 0 ≤ ei < di} and BL̄p

= {1, z, z2, . . . , zd−1} be
bases for Lp and L̄p, respectively. Let C : Lp −→ Zd

p be a bijection such that
C(a) = [a]BLp

and D : L̄p −→ Zd
p be another bijection such that D(b) = [b]BL̄p

.
Define φγ : Lp −→ L̄p such that φγ(a) = D−1(A−1 · C(a)), where A is the
matrix obtained from the LAminpoly algorithm over F = Zp. The inverse of φγ

is φ−1
γ : L̄p −→ Lp such that φ−1

γ (b) = C−1(A · D(b)).
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Lemma 1. If det(A) �= 0, then the mapping φγ defined above is a ring isomor-
phism.

Proof. Since A−1 exists and both C and D are bijections, we can conclude that
φγ is well-defined and bijective. Additionally, if γ = z1+C1z2+· · ·+Cn−1zn is the
element obtained from the LAminpoly algorithm, then φ−1

γ can be expressed as
an evaluation homomorphism that substitutes z for z1+C1z2+. . .+Cn−1zn. The
fact that φ−1

γ is a homomorphism implies that φγ is also a ring homomorphism.

Isomorphism φγ induces the natural isomorphism φγ : Lp[x1, . . . , xk] −→
L̄p[x1, . . . , xk]. The following example illustrates how we can compute φγ(f) for
f ∈ Lp[x1, . . . , xk].

Example 7. Given the quotient rings Lp = Z113[z1, z2]/〈z21 + 111, z22 + 110〉 and
L̄p = Z113[z]/〈z4 + 36z2 + 32〉 from Example 6, we aim to compute φγ(f) where
f = 2x1z1 + x2 + z1z2 ∈ Lp[x1, x2]. Let BLp

= {1, z2, z1, z1z2} and A be the
matrix computed in Example 6. We have [f ]Lp

= [x2, 0, 2x1, 1]T and

b = A−1 · [f ]BLp
= [x2 + 84, 61x1, 80, 77x1]

T

as the coordinate vector of φγ(f) relative to BL̄p
= {1, z, z2, z3}. Consequently,

φγ(f) = x2 + 84 + 61x1z + 80z2 + 77x1z
3 ∈ L̄p[x1, x2].

3 The Modular Gcd Algorithm

Modular gcd algorithms for Q(α1, · · · , αn)[x] work by computing the gcd modulo
a sequence of primes and applying Chinese remaindering and rational number
reconstruction to recover the rational coefficients of the gcd. However, not all
primes can be used. Our modular gcd algorithm for Q(α1, · · · , αn)[x1, . . . , xn]
applies Theorem 2 below to identify the primes that cannot be used. In Theo-
rem 2, R′ may have zero-divisors. Examples 8 and 9 illustrate this.

Theorem 2. Let R and R′ be commutative rings with 1 �= 0 and φ : R −→
R′ be a ring homomorphism. Let f1 and f2 be two non-zero polynomials in
R[x1, . . . , xk]. Let us fix a monomial ordering on R[x1, . . . , xk]. Suppose that
the monic g = gcd(f1, f2) and the monic gφ = gcd(φ(f1), φ(f2)) exist. If
φ(lc(f1)) �= 0, then

(i) lm(gφ) ≥ lm(g) and
(ii) If lm(gφ) = lm(g), then gφ = φ(g).

Proof. (i) Let p, q ∈ R[x1, . . . , xk] be the cofactors of f1 and f2, respectively.
That is, f1 = p · g and f2 = q · g. Using the ring homomorphism property
of φ, we have φ(f1) = φ(p) · φ(g) and φ(f2) = φ(q) · φ(g). By assump-
tion, φ(lc(f1)) �= 0 which implies that φ(f1) �= 0. Furthermore, since
φ(lc(g)) = φ(1) = 1, we have φ(g) �= 0. Thus, φ(g) is a common factor of
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φ(f1) and φ(f2), and hence φ(g) | gφ. In other words, there exists a non-zero
polynomial h ∈ R′[x1, . . . , xk] such that gφ = h ·φ(g). If lc(h) · lc(φ(g)) = 0,
then lc(h) · 1 = 0, which implies that lc(h) = 0, contradicting the assump-
tion that h �= 0. Accordingly, lm(gφ) = lm(h) · lm(φ(g)) which implies
that lm(gφ) ≥ lm(φ(g)). Moreover, since φ(lc(g)) = φ(1) = 1, we have
lm(φ(g)) = lm(g) and hence lm(gφ) ≥ lm(φ(g)) = lm(g).

(ii) To prove the second part, we use the fact that gφ = h ·φ(g) and the assump-
tion that lm(gφ) = lm(g) to conclude that lm(h) = 1. Thus, h is a constant
and since both φ(g) and gφ are monic, h = 1. Hence, gφ = φ(g).

3.1 PGCD

Algorithm PGCD (see Algorithm 2) computes the monic gcd(f1, f2), where
f1, f2 ∈ L̄p[x1, . . . , xk] for k ≥ 1. We use evaluation and dense interpolation
as in [2]. PGCD is recursive. When k = 1 we employ the monic Euclidean
algorithm [17] to find gcd(f1, f2) ∈ L̄p[x1]. Otherwise, PGCD reduces f1, f2
to polynomials in L̄p[x1, . . . , xk−1] by evaluating xk = bk where bk is chosen
randomly from Zp. Then, PGCD computes

gcd(f1(x1, x2, . . . , xk−1, bk), f2(x1, x2, . . . , xk−1, bk))

recursively. Subsequently, PGCD interpolates xk in g. It interpolates xk incre-
mentally until the interpolated polynomial H does not change. The condition in
line 30 implies this.

Let R = L̄p[xk] and R′ = L̄p. We define the evaluation homomorphism
φxk=b : R[x1, . . . , xk−1] −→ R′[x1, . . . , xk−1] such that φxk=b(f) = f(b). The
chosen evaluation points may cause several problems, including the possibility
of hitting a zero divisor. Here, we identify four types of evaluation points.

Definition 2. We consider f1 and f2 as polynomials in L̄p[xk][x1, . . . , xk−1] so
that lc(f1) ∈ L̄p[xk] and lm(f1) is a monomial in x1, . . . , xk−1. Assume that the
monic g = gcd(f1, f2) exists. Let b ∈ Zp be an evaluation point. We distinguish
the following cases:

– Lc-bad Evaluation Points. We call b an lc-bad evaluation point
if lc(f1)(b)=0.

– Zero-Divisor Evaluation Points. If b is not an lc-bad evaluation point,
and the monic Euclidean algorithm (see [17]) tries to invert a zero-divisor
in L̄p, for the evaluated f1 and f2 at xk = b, then b is called a zero-divisor
evaluation point.

– Unlucky Evaluation Points. Assume the monic gcd(φxk=b(f1),φxk=b(f2)),
denoted by gb, exists. We call b an unlucky evaluation point if lm(gb) > lm(g).

– Good Evaluation Points. If b is neither lc-bad, unlucky, nor zero-divisor
evaluation point, we call b a good evaluation point.



10 M. Ansari and M. Monagan

Theorem 3. Let φxk=b : R[x1, . . . , xk−1] −→ R′[x1, . . . , xk−1] be the evaluation
homomorphism, where R = L̄p[xk] and R′ = L̄p. Let f1, f2 ∈ R[x1, . . . , xk−1]
and b ∈ Zp. Suppose that

g = monic(gcd(f1, f2))
gb = monic(gcd(φxk=b(f1), φxk=b(f2)))
h = monic(φxk=b(g))

all exist. If b is a good evaluation point, then h = gb.

Proof. If b is a good evaluation point, then it is not lc-bad. Thus, we can infer
that φxk=b(lc(f1)) �= 0. By a similar argument as in the proof of Theorem 2, we
can conclude that h is a common factor of φxk=b(f1) and φxk=b(f2) so h | gb.
In other words, there is a non-zero polynomial t ∈ R′[x1, . . . , xk−1] such that
gb = t · h. Since h is monic, the same justification in Theorem 2 leads us to
conclude that lm(gb) ≥ lm(h). On the other hand, by the definition of a good
evaluation point, b is not an unlucky evaluation point. Thus, we can conclude
that lm(gb) = lm(h). Finally, by part (ii) of Theorem 2, we have h = gb.

Remark 2. 1. If prime p is chosen to be sufficiently large, the possibility of the
PGCD failing is low.

2. If PGCD tries to invert a zero-divisor in L̄p, we abort PGCD and return
control to MGCD and choose a new prime.

3. As we do not know lm(g) in advance, there is a question as to how we can
detect unlucky evaluation points. We only keep images gi with the least lm(gi)
and discard the others. See lines 24 to 29 of Algorithm 2, PGCD.

4. Although lc-bad evaluation points can be ruled out in advance, we cannot
detect zero-divisor or unlucky evaluation points beforehand. Therefore, we
will end up calling the monic Euclidean algorithm in L̄p[x1] with zero-divisor,
unlucky, and good evaluation points.

Example 8. Let g = (6z+3)(y+2)x, f1 = g·(x+z+1), and f2 = g·(x+2y+z+10)
be two polynomials in L̄11[x, y] listed in the lexicographic order with x > y where
L̄11 = Z11[z]/〈z2 + 8〉. By inspection, we can see that the monic gcd(f1, f2) =
(y + 2)x. In this example, y = 9 is an lc-bad evaluation point, y = 1 is an
unlucky evaluation point, and y = 0 is a zero-divisor evaluation point since
z2 + 8 mod 11 = (z + 6)(z + 5) and lc(f1(x, 0)) = z + 6.

Let f be a polynomial in L̄p[x1, . . . , xk]. Let Xk = [x1, . . . , xk−1]. The content
of f w.r.t Xk, denoted by cont(f,Xk) is the monic gcd of coefficients of f in Xk
which is a polynomial in L̄p[xk]. The primitive part of f , w.r.t X, is defined
as pp(f,Xk) = f/cont(f,Xk). PGCD uses the property

gcd(f1, f2) = gcd(cont(f1,Xk), cont(f2,Xk)) · gcd(pp(f1,Xk),pp(f2,Xk)).
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Algorithm 2: PGCD
Input: f1, f2 ∈ L̄p[x1, . . . , xk]
Output: gcd(f1, f2) ∈ L̄p[x1, . . . , xk] or FAIL

1 Xk := [x1, . . . , xk−1] prod := 1 if k = 1 then
2 H := gcd(f1, f2) ∈ L̄p[x1] return(H)

3 c := gcd(cont(f1, Xk), cont(f2, Xk)) ∈ L̄p[xk] if c = FAIL then
4 return(FAIL)

5 f1p = pp(f1, Xk) and f2p = pp(f2, Xk) if f1p = FAIL or f2p = FAIL then
6 return(FAIL)

7 Γ := gcd(lc(f1p , Xk), lc(f2p , Xk)) ∈ L̄p[xk] if Γ = FAIL then
8 return(FAIL)

9 while true do
10 Take a new random evaluation point, j ∈ Zp, which is not lc-bad.

F1j := f1p(x1, . . . , xk−1, xk = j) and F2j := f2p(x1, . . . , xk−1, xk = j)
Gj := PGCD(F1j , F2j , p) ∈ L̄p[x1, . . . , xk−1] // lc(Gj) = 1 in lex

order with x1 > x2 > . . . > xk−1

11 if Gj = FAIL then
12 return(FAIL)

13 lm := lm(Gj , Xk) // in lex order with x1 > x2 > . . . > xk−1

14 Γj := Γ (j) ∈ Zp

15 gj := Γj · Gj // Solve the leading coefficient problem

16 if prod = 1 or lm < least then
// First iteration or all the previous evaluation points were

unlucky.

17 least, H, prod := lm, gj , xk − j

18 else
19 if lm > least then

// j is an unlucky evaluation point

20 Go back to step 12.

21 else if lm = least then
// Interpolate xk in the gcd H incrementally

22 Vj := prod(xk = j)−1 · (gj − H(xk = j)) H := H + Vj · prod
prod := prod · (xk − j)

23 if deg(prod, xk) > deg(H, xk) + 1 then
24 H := pp(H, Xk)

// Test if H is the gcd of f1 and f2.
25 Choose b2, . . . , bk ∈ Zp at random such that lc(H)(x1, b2, . . . , bk) �= 0

A, B, C := f1(x1, b2, . . . , bk), f2(x1, b2, . . . , bk), H(x1, b2, . . . , bk) if C | A
and C | B then

26 return(c · H)

For k > 1 algorithm PGCD recursively computes monic images of the gcd in
L̄p[x1, . . . , xk−1]. Let β1, . . . , βj ∈ Zp be the evaluation points chosen by PGCD.
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To recover the leading coefficient of g in xk, we follow Brown [2] and scale by
Γ (xk) = gcd(lc(f1,Xk), lc(f2,Xk)) evaluated at the current evaluation point
xk = βj . Thus, after interpolating the gcd H we have lc(H,Xk) = Γ (xk).

The interpolation of xk in PGCD lines 27–29 is based on the Newton form
for H, namely, H = V1 + V2(xk − β1) + · · · + Vj

∏j−1
i=1 (xk − βi) where Vi ∈

L̄p[x1, . . . , xk−1] for 1 ≤ i ≤ j. To compute the new H from the previous H we
need only compute Vj .

In the final phase of PGCD, we need to verify whether the primitive part
of H is the gcd of pp(f1,Xk) and pp(f2,Xk). To do this, we reduce the poly-
nomials f1, f2, and H to univariate polynomials in L̄p[x1] by evaluating them
at x2 = b2, . . . , xk = bk, where b2, . . . , bk are chosen at random from Zp until
lc(H)(x1, b1, . . . , bk) �= 0. Then, we check if the evaluated H divides the eval-
uated f1 and f2. If this is the case, then H is the gcd of f1 and f2 with high
probability. Hence, PGCD is a Monte Carlo algorithm. Alternatively, if we do
the division test in L̄p[x1, . . . , xk] rather than in L̄p[x1], then PGCD would be a
Las Vegas algorithm. However, in this case, the complexity of PGCD would be
dominated by the cost of the divisions in L̄p[x1, . . . , xk].

3.2 MGCD

The MGCD algorithm, as presented in Algorithm 3, is a Monte Carlo algorithm
for computing the monic g = gcd(f1, f2) where f1, f2 ∈ L[x1, . . . , xk]. MGCD
begins with a preprocessing step where the input polynomials, f1, f2, and the
minimal polynomials M1, . . . ,Mn are replaced with their semi-associates. Let φp

denote the modular homomorphism, that is, φp(f) = f mod p. MGCD chooses
a prime p and applies φp to map the coefficients in L to Lp. Subsequently,
it employs the isomorphism φγ to convert the polynomials over Lp to their
corresponding polynomials over L̄p. Then MGCD calls PGCD to find the monic
gcd in L̄p[x1, . . . , xk]. Let Gp be the output of PGCD. If Gp = FAIL, either p is
a zero-divisor prime or the PGCD algorithm encounters a zero-divisor evaluation
point. In both cases, the algorithm goes back to step 4 to choose a new prime.
In step 14, Gp ∈ L̄p[x1, . . . , xk] will be converted to its corresponding polynomial
over Lp. Applying Theorem 2, MGCD just keeps the gcd images Gp with the
least leading monomial for Chinese remaindering. For instance, if Gpi

is the
output of PGCD at the ith iteration, and if lm(Gpi

) > lm(Gpi−1), then pi is an
unlucky prime and we simply ignore its result Gpi

and choose another prime.
After Chinese remaindering, MGCD employs rational number reconstruction

(RNR) [9,18] to recover the coefficients of the potential gcd in L. Failure in the
RNR call means the product of the primes is not large enough to recover the
rational coefficients. If RNR does not fail, then we follow the same strategy as
in PGCD to verify if H could be the gcd of f1 and f2 or not.

Remark 3. For the efficiency of the MGCD algorithm, it is necessary to apply φp

before φγ . This eliminates expression swell in Q.
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Algorithm 3: MGCD
Input: f1, f2 ∈ L[x1, . . . , xk] where L = Q[z1, . . . , zn]/〈M1(z1), . . . , Mn(zn)〉
Output: gcd(f1, f2)

1 M := 1

2 f1 := f̌1 and f2 := f̌2 // Clear fractions

3 while true do
4 Choose a new random prime p, that is not, lc-bad.
5 Choose C1, . . . , Cn−1 ∈ [1, p) at random and set γ = z1 +

∑n
i=2 Ci−1zi

6 Call Algorithm 1 with inputs [φp(M̌1), . . . , φp(M̌n)], Zp and φp(γ) to
compute M(z), A, and A−1

7 if Algorithm 1 fails then
8 Go back to step 4

// Apply Algorithm 2 to get the monic gcd over L̄p

9 Gp = PGCD(φγ(φp(f1)), φγ(φp(f2))) ∈ L̄p[x1, . . . , xk]
10 if Gp= FAIL then

// p is a zero-divisor prime or PGCD has encountered a

zero-divisor evaluation point.

11 Go back to step 4.

12 if deg(Gp) = 0 then
13 return(1)

// Convert Gp ∈ L̄p to its corresponding polynomial over Lp

14 Gp := φ−1
γ (Gp)

15 lm := lm(Gp) w.r.t lexicographic order with x1 > x2 . . . > xk

16 if M = 1 or lm < least // First iteration or all the previous

primes were unlucky.

17 then
18 G, least, M := Gp, lm, p

19 else
20 if lm = least then
21 Using CRT, compute G′ ≡ G mod M and G′ ≡ Gp mod p
22 set G = G′ and M = M · p

23 else if lm > least then
// p is an unlucky prime

24 Go back to step 4

25 H := Rational Number Reconstruction of G mod M
26 if H �= FAIL then
27 Choose a new prime q and b2, . . . , bn ∈ Zq at random such that

lc(H)(x1, b2, . . . , bk) �= 0
28 A, B, C := f1(x1, b2, . . . , bk), f2(x1, b2, . . . , bk), H(x1, b2, . . . , bk)

// A, B, C are polynomials in Lq[x1]
29 if C | A and C | B then
30 return(H)
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In step 4 of the Algorithm 3, we choose a prime to reduce inputs modulo it.
However, not all the primes result in the successful reconstruction of the monic
gcd. We distinguish five types of primes in the following definition.

Definition 3. Let f1, f2 ∈ L[x1, . . . , xk] and p be a prime. We distinguish the
following cases:

– Lc-bad Prime: If p divides lc(f̌1) or any lc(M̌1(z1)), . . . , lc(M̌n(zn)), then
we call p an lc-bad prime.

– Det-bad Prime: If det(A) mod p = 0, where A is the coefficient matrix of
powers of γ obtained from the LAminpoly algorithm, then p is called a det-bad
prime.

– Zero-Divisor Prime: If p is neither an lc-bad nor a det-bad prime and the
PGCD algorithm fails for p, in steps 4, 6, 8, 10, 31, then p is called a zero-
divisor prime.

– Unlucky Prime: Let gp = gcd(φp(f̌1), φp(f̌2)). If lm(gp) > lm(gcd(f1, f2)),
then we call p an unlucky prime. Considering Theorem 2, the results of these
primes must be ignored.

– Good Prime: If prime p is not an lc-bad, det-bad, unlucky, or zero-divisor
prime, we define it as a good prime.

Theorem 4. Let f1, f2 ∈ L[x1, . . . , xk] and g be the monic gcd(f1, f2). If p is a
good prime and the monic gcd(φp(f1), φp(f2)), gp, exists, then gp = φp(g).

Proof. If p is good then p is not lc-bad so we may apply Theorem 2 with R = L
and R′ = Lp so lm(gp) ≥ lm(g). But p is not unlucky so lm(gp) = lm(g). By part
(ii) of Theorem 2 we have gp = φp(g) as required.

Example 9. Let L = Q[z, w]/〈z2−2, w2−3〉, and f1 = (x+w)(5x+2w+z)xw and
f2 = (x + w)(5x + 9w + z) be polynomials in L[x]. By inspection, gcd(f1, f2) =
(x + w). In this example p = 5 is an lc-bad prime, p = 7 is an unlucky prime,
and p = 3 is a zero-divisor prime since w2 − 3 mod 3 = w2.

4 Complexity

Let H(f) denote the height of f ∈ L[x1, . . . , xk] which is the magnitude of
the largest integer coefficient of f̌ . Let #f denote the number of terms of f .
Let f1, f2 ∈ L[x1, · · · , xk] and g be the monic gcd(f1, f2). The quantities involved
in the running time of the MGCD algorithm are as follows:

– N is the number of good primes needed to reconstruct the monic gcd g
– Tf = max(#f1,#f2) and Tg = #g
– M = log maxn

i=1 H(m̌i) and C = log max(H(f̌1),H(f̌2)).
– D = maxk

i=1 max(deg(f1, xi),deg(f2, xi)) and d = [L : Q].

We assume that multiplication and inverses in L̄p cost O(d2) as our implemen-
tation currently uses classical quadratic polynomial arithmetic.
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Theorem 5. The expected time complexity of our MGCD algorithm is

O(N(M + CTf )d + Nd2(d + Tf + Tg) + Nd2Dk+1 + N2dTg)

Proof. In the MGCD algorithm, the most dominant operations are as follows:

1. Modular homomorphism: The MGCD algorithm reduces the minimal
polynomials M̌1, . . . , M̌n and the input polynomials f̌1 and f̌2 mod a prime.
For N primes this costs O(N(M + CTf )d).

2. φγ isomorphism: The time complexity of building the matrix A is O(d3),
and the running time complexity of applying φγ to the Tf non-zero terms of
f1 and f2 for N primes is O(Nd2Tf ). Additionally, let Gp be the output of
the PGCD algorithm in step 9. The time complexity of calling φ−1

γ for Gp in
step 14 for N primes is O(Nd2Tg).

3. PGCD: Brown’s PGCD algorithm [2] does O(Dk+1) arithmetic operations in
Zp. Accordingly, our PGCD algorithm does O(Dk+1) arithmetic operations
in L̄p each of which costs O(d2). Overall, our PGCD costs O(d2Dk+1). The
dominating step is the O(Dk−1) calls to the monic Euclidean algorithm in
L̄p[x1] each of which does O(D2) arithmetic operations in L̄p.

4. CRT and RNR: Reconstructing O(dTg) rational coefficients in step 21 and
25 costs O(N2) each hence O(N2dTg) in total.

The theorem follows by adding the four costs explained above.

Remark 4. Theorem 5 describes the cost of our implementation of algorithms
MGCD and PGCD. We are currently working on replacing Brown’s dense inter-
polation with a sparse interpolation approach. In the case where we interpolate
g (when lc(g, x1) = gcd(lc(f1, x1), lc(f2, x1))), the number of calls to the monic
Euclidean algorithm in L̄p[x1] is reduced from O(Dk−1) to O(kDTg) using Zip-
pel’s algorithm from [19] and O(Tg) using Hu and Monagan’s algorithm [6]. The
latter is based on the work of Ben-Or and Tiwari [1] and others.

5 Implementation

We have implemented algorithms MGCD and PGCD in Maple [10]. We use
the recursive dense data structure from [17] to represent elements of L =
Q(α1, · · · , αn) and polynomials in L[x1, . . . , xk]. See Fateman [5] for a com-
parison of the recursive dense data structure with other sparse polynomial data
structures. The rpoly command below converts from Maple’s polynomial repre-
sentation to the recursive dense representation. For usability, this representation
is automatically converted back to Maple’s polynomial representation for display.
In Maple [ 1, 2, 3 ] is a Maple lists which is a read only array.

> f:=rpoly(2*x^2+3*x*y^2,[x,y]);

f := 2x2 + 3xy2
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> lprint(f); # print the actual data value

POLY NOMIAL( [0, [x, y], []], [0, [0, 0, 3], [2]] )

As it is shown, the POLYNOMIAL data structure has two fields.

– The first, [0, [x, y], [ ]], is the ring. The first entry, 0, indicates the characteristic
of the ring. The second entry, [x, y], is the list of variables. The third entry
[ ], which is an empty list, indicates that there are no extensions.

– The second field, [0, [0, 0, 3], [2]], represents the polynomial recursively. To do
so, it uses the fact that Q[x1, . . . , xk] ∼= Q[xk][xk−1] . . . [x1]. In this example,
x is the main variable and rpoly maps f ∈ Q[x, y] to f := 2x2 + (3y2)x ∈
Q[y][x]. Consequently, the entries 0, [0, 0, 3], [2] are the coefficients of x0, x1,
and x2, and correspond to 0, 0 + 0 · y + 3y2, and 2 respectively.

Example 10. Let L = Q[z, w]/〈z2 − 2, w2 − 3〉 and f = 2x3 + 3xy2 − 5wz + 4.
In the following we construct the field of L, the polynomial f ∈ L[x, y], and
compute φ7(f)(x, 2).

> L:=rring([z,w],[z^2-2,w^2-3]); # L=Q[z,w]/<z^2-2,w^2-3>

L := [0, [z, w], [[[−2], 0, [1]], [−3, 0, 1]]]

> Lxy:=rring(L,[x,y]); # Construct L[x,y] from L

Lxy := [0, [x, y, z, w], [[[−2], 0, [1]], [−3, 0, 1]]]

> f:=rpoly(2*x^3+3*x*y^2-5*z*w+2*z^2,Lxy);

f := 2x3 + 3xy2 − 5wz + 4 mod < z2 − 2, w2 − 3 >

> getpoly(f); # The recursive dense representation of f

[[[[4], [0,−5]]], [0, 0, [[3]]], 0, [[[2]]]]

> g := phirpoly(f,7); # Apply the modular homomorphism with p = 7

g := 2x3 + 3xy2 + 2wz + 4 mod 〈z2 + 5, w2 + 4, 7〉
> h := evalrpoly(g,y=2);

h := 2x3 + 2wz + 5x + 4 mod 〈z2 + 5, w2 + 4, 7〉
> getring(h); # The ring Lp[x]

[7, [x, z, w], [[[5], 0, [1]], [4, 0, 1]]]

> getpoly(h);

[[[4], [0, 2]], [[5]], 0, [[2]]]
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5.1 Maple Implementation

In this section, we demonstrate an application of our MGCD algorithm. First,
we construct the field of L = Q[z, w]/〈z2 − 2, w2 − 3〉. Then, we convert two
polynomials f1 and f2 from Maple’s native representation to the recursive dense
representation and compute their gcd using MGCD. MGCD prints all the used
primes, lc-bad, zero-divisor, unlucky, and det-bad primes. We tell MGCD to start
with a very small prime, 5, for illustrative purposes only. By default MGCD uses
31 bit primes. This is because for polynomial arithmetic in Zp[x], Maple uses
hardware integer arithmetic for Zp for primes less than 231.5, otherwise Maple
uses GMP’s multi-precision integer arithmetic which is a lot slower.

> L:=rring([z,w],[z^2-2,w^2-3]):
> Lxy:=rring(L,[x,y]):
> f1:=rpoly((w+5)*(x+y+w)*(14*x+2*w+z),Lxy);

f1 := (14w + 70) x2 + ((14w + 70) y + (w + 5) z + 80w + 48) x

+ ((w + 5) z + 10w + 6) y + (5w + 3) z + 6w + 30 mod 〈w2 − 3, z2 − 2〉

> f2:=rpoly((x+y+w)*(x+2*w+z),Lxy);

f2 := x2 + (y + 3w + z)x + (2w + z) y + zw + 6 mod 〈w2 − 3, z2 − 2〉
> mgcd:=MGCD(f1,f2,5);

MGCD:prime=5
gamma:=4*w+z and M(z)=z^4+1
p=5 is a ZD prime ZD=z^2+3
MGCD:prime=7
p=7 is an lc-bad prime
MGCD:prime=11
gamma:=3*w+z and M(z)=z^4+8*z^2+9
p=11 is a ZD prime ZD=z^2+8*z+3
MGCD:prime=13
gamma:=z+10*w and M(z)=z^4+7*z^2+1
MGCD:prime=17
gamma:=z+13*w and M(z)=z^4+2*z^2+8
p=17 and All the previous primes were unlucky
MGCD:prime=19
gamma:=z+17*w and M(z)=z^4+10*z^2+5

mgcd := x + y + w mod 〈z2 − 2, w2 − 3〉
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5.2 Benchmark

We give one benchmark for gcd computations in L[x, y] where the number field
L = Q(

√
2,

√
3,

√
5,

√
7,

√
11) has degree 32. In the Table 1, the input polyno-

mials f1 and f2 have degree d in x and y and their gcd g has degree 2 in x
and y.

Table 1. Computation timings in CPU seconds for gcds in the ring L[x, y] where
L = Q(

√
2,

√
3,

√
5,

√
7,

√
11).

d New MGCD Old MGCD

time LAMP PGCD time PGCD

4 0.119 0.023 0.027 0.114 0.100

6 0.137 0.016 0.034 0.184 0.156

8 0.217 0.018 0.045 0.330 0.244

10 0.252 0.018 0.087 0.479 0.400

12 0.352 0.018 0.078 0.714 0.511

16 0.599 0.017 0.129 1.244 1.008

20 0.767 0.017 0.161 1.965 1.643

24 1.103 0.019 0.220 2.896 2.342

28 1.890 0.023 0.358 4.487 3.897

32 2.002 0.020 0.392 5.416 4.454

36 2.461 0.017 0.595 6.944 5.883

40 3.298 0.019 0.772 9.492 7.960

Column New MGCD is the time for our new algorithm using a primitive
element and computing over L̄p. Column Old MGCD is the time for MGCD
if we do not use a primitive element and compute over Lp. Column LAMP is
the time spent in Algorithm LAminpoly. For both algorithms, column PGCD
is the time spent in Algorithm PGCD. The speedup gained by using φγ is seen
by comparing columns PGCD. These preliminary timings show a speedup of
PGCD of a factor of 10 which is promising. The benchmark was run on an Intel
Gold 6342 CPU running at 2.8 GHz. We used Maple 2022. For the details of the
benchmark, see http://www.cecm.sfu.ca/∼mmonagan/code/MGCD .

6 Conclusion and Future Work

Let f1, f2 ∈ Q(α1, · · · , αn)[x1, . . . , xn], and let g be their monic gcd. We have
designed a multivariate modular gcd algorithm, MGCD, to compute g. For
each prime p chosen by MGCD, to speed up the coefficient arithmetic in
Q(α1, · · · , αn) mod p, we use a primitive element γ modulo p.

http://www.cecm.sfu.ca/~mmonagan/code/MGCD
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For future work, we need to compute the probability that MGCD obtains
an incorrect answer, as well as the probabilities of getting unlucky, zero-divisor,
lc-bad primes, and evaluation points. For arithmetic in L̄p = Zp[z]/〈M(z)〉,
our Maple implementation currently uses classical O(d2) algorithms where
d = deg(M). For large d, we can speed up multiplication in L̄p by using fast
multiplication and division for Zp[z].
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