
François Boulier · Matthew England ·
Ilias Kotsireas · Timur M. Sadykov ·
Evgenii V. Vorozhtsov (Eds.)

LN
CS

 1
41

39

Computer Algebra
in Scientific Computing
25th International Workshop, CASC 2023
Havana, Cuba, August 28 – September 1, 2023
Proceedings

Lecture Notes in Computer Science 14139
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

François Boulier · Matthew England ·
Ilias Kotsireas · Timur M. Sadykov ·
Evgenii V. Vorozhtsov
Editors

Computer Algebra
in Scientific Computing
25th International Workshop, CASC 2023
Havana, Cuba, August 28 – September 1, 2023
Proceedings

Editors
François Boulier
University of Lille, CRIStAL
Villeneuve d’Ascq, France

Ilias Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

Evgenii V. Vorozhtsov
Institute of Theoretical and Applied
Mechanics
Novosibirsk, Russia

Matthew England
Coventry University
Coventry, UK

Timur M. Sadykov
Plekhanov Russian University of Economics
Moscow, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-41723-8 ISBN 978-3-031-41724-5 (eBook)
https://doi.org/10.1007/978-3-031-41724-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6663-719X
https://orcid.org/0000-0003-2126-8383
https://orcid.org/0000-0003-2753-8399
https://orcid.org/0000-0001-5729-3420
https://orcid.org/0000-0003-0741-2318
https://doi.org/10.1007/978-3-031-41724-5

Preface

One of the main goals of the InternationalWorkshops on Computer Algebra in Scientific
Computing, which started in 1998 and since then have been held annually, is the timely
in-depth presentation of progress in allmajor disciplines of ComputerAlgebra (CA). The
second goal of the CASCWorkshops is to bring together both researchers in theoretical
computer algebra and engineers as well as other allied professionals applying computer
algebra tools for solving problems in industry and in various branches of scientific
computing.

CASC 2023 in Havana, Cuba

This year, the 25th CASC conference was organized by the Cuban Society ofMathemat-
ics and Computing and the Institute of Cryptography of the University of Havana (UH).
A few years ago, symbolic computing and computer algebra were almost non-existent
in Cuba, but today there are several groups of professors and researchers who success-
fully apply the methods and systems of computer algebra to solve various teaching and
research tasks. The Programming and Algorithms courses include an introduction to
the Python library for symbolic mathematics, SymPy. The Mathematical Analysis and
Algebra courses use this knowledge to illustrate advanced concepts in their topics. The
Mechanics of Materials research group has used Computer Algebra Systems (CASs),
such as Maplesoft’s Maple and WolframMathematica, for the management of ten-
sors and for computations in the calculation of effective properties of composite materi-
als using the asymptotic homogenization method. The Numerical Analysis and Imaging
research group has also used the high-precision arithmetic capabilities of Maple in
numerical inversions of the Laplace transform for oil well flow problems. In the field of
Computer Science and Data Science, various CAS or CAS-type software libraries are
used. In these cases, libraries like SymPy or Octave are the most common. Software
or software libraries that directly or indirectly use CAS-type libraries, especially in the
field of machine learning, are also employed.

The Computational Algebra research group at Universidad de Oriente (the Eastern
University in the city of Santiago de Cuba, a thousand kilometers away from Havana)
works on the study of Gröbner Basis representations associated with linear codes and
generalizations, and other related structures such as the set of leading words and the
weakly ordered ideal of the linear code. In relation to Cryptography, block encryption
attack methodologies have been designed using a genetic algorithm. For this purpose,
a collection of programs has been developed in the GAP system that has been called
Gröbner Bases for Linear Algebra of Linear Codes, in which a Möller-type algorithm
has been implemented to calculate Gröbner representations associated with group code
ideals. Group codes include linear codes, binarymatroids, and lattice codes. On the other
hand, the Maple system has been used to implement block cipher attack methodolo-
gies adapting genetic algorithms to this context. At the Center for Complex Systems

vi Preface

and Statistical Physics in the UH School of Physics, computer simulations (especially
the discrete element method) are used for computational experiments in various fields
including biologically oriented Physics.

Participation Options and Reviewing

This year, theCASC InternationalWorkshophad two categories of participation: (1) talks
with accompanying full papers to appear in these proceedings, and (2) talks with accom-
panying extended abstracts for distribution locally at the conference only. The latter was
for work either already published, or not yet ready for publication, but in either case still
new and of interest to the CASC audience. The former was strictly for new and original
research results or review articles, ready for publication.

All submissions received a minimum of three reviews by either program committee
members or nominated external reviewers. Reviewing was conducted using the single-
blind system, with reviewers anonymous but authors not. The whole PC was invited to
comment and debate on all papers after reviews were received. For these proceedings,
29 manuscripts were submitted, which received an average of 3.17 reviews each. After
the thorough reviewing process and debates, and in some cases an additional round of
peer review, 21 revised papers were accepted for publication in this volume.

Invited Talks

Along with the contributed talks, CASC 2023 had two invited speakers.
The invited talk of George Labahn was on the topic of normal forms of integer

matrices. Normal forms for integer matrices, such as Hermite and Smith normal forms,
have a long history both in terms of algorithms for computation and use in applications.
In this talk, a number of algorithms were discussed including two recent approaches for
fast Smith normal form computation along with a new algorithm for computation of the
Hermite normal form. The new notion of Smith Massager, a relaxed version of a right
Smith multiplier, which plays an important role in all three algorithms, was introduced.

The invited talk of Roberto Mulet was devoted to the problem of the performance
of local search algorithms for K-SAT problems in random graphs. K-SAT is one of the
most studied NP-complete problems. Early in this century a new version of this prob-
lem received a lot of attention. In this version, the K-SAT Problem is defined through
a bipartite random graph. Variables and logical clauses form the nodes of the graph
and they are connected if the variable belongs to the clause. The main parameter of the
problem is α = M /N , which is the ratio between the number of clauses and the number
of variables. When α is small the problem is satisfiable; when α is large it is unsatis-
fiable. However, for intermediate values of α, the problem becomes statistically hard.
Theoretical results, obtained using techniques from the statistical physics of disordered
systems, predict a range of α in which most K-SAT problems are still satisfiable, but
where local search algorithms cannot find a solution. The talk reviewed these results and
tested them showing the actual performance of three different local search algorithms
on this problem. The concluding part presented analytical approximations derived from
a microscopic theory for the dynamics of these algorithms.

Preface vii

Overview of Selected Papers

The CASC 2023 program covered a wide range of topics. Polynomial algebra, which is
at the core of computer algebra, was represented by contributions devoted to the devel-
opment of new root-squaring algorithms for finding the roots of univariate polynomials,
a new algorithm for solving parametric linear systems where the entries of the matrix are
polynomials in several parameters with integer coefficients, two new variants of Bézout
subresultants for several univariate polynomials, computing GCDs of multivariate poly-
nomials with the aid of a modular algorithm and isomorphisms, the efficient computa-
tion of quotients in non-commutative polynomial rings with the CASMaple, a recently
developed algebraic framework for computation with non-commutative polynomials,
and the effective algorithm for computing Noetherian operators of positive dimensional
ideals. Polynomial computer algebra was also the foundation of the contributions to the
present proceedings that exposed a new algorithm for finding the Frobenius distance in
the matrix space from a given square matrix to the set of defective matrices, which are
the complex matrices with multiple eigenvalues, and a novel approach for handling the
intersection of two plane curves defined by rational parametrization involving univariate
polynomials.

The development of the theory of Gröbner bases and their computer implementation
is an outstanding achievement of the twentieth century in the field of polynomial algebra,
which also strongly affected the development of Algebraic Geometry. In the present
volume, Gröbner bases were used in the development ofmodular methods for computing
Gröbner bases for triangular decomposition, in the stability and zero-Hopf bifurcation
analysis of the Lorenz–Stenflo system, and in the study of the complexity of linear
algebra operations. ComprehensiveGröbner systemswere applied for inverse kinematics
computation and path planning of a manipulator.

Two papers were devoted to the applications of symbolic-numerical algorithms for
solving with the aid of the CASMaple the problem of heavy ion collisions in an optical
model with a complex potential and for solving with the aid of the CASMathematica
the Poisson equation in polar coordinates.

Applications of computer algebra systems in mechanics were represented by the
following themes: qualitative analysis of the equations of motion of a nonholonomical
mechanical system with the aid of the CAS Mathematica and the study of internal
gravity solitary waves in shallow water with the aid of symbolic computations.

The remaining topics included the computation of range functions of any conver-
gence order and their amortized complexity analysis, the investigation of non-principal
branches of the Lambert W function with the aid of asymptotic expansions, the use

viii Preface

of the Risch algorithm for symbolic integration to create a dataset of elementary inte-
grable expressions, and the application of computer algebra for generating all differential
invariants in differential geometry of Euclidean surfaces in three-dimensional space.

July 2023 François Boulier
Matthew England

Ilias Kotsireas
Timur M. Sadykov

Evgenii V. Vorozhtsov

Acknowledgments

We want to thank all the members of the CASC 2023 Program Committee for their
thorough work in selecting and preparing the technical program. We also thank the
external referees who provided reviews as a part of this process.

We are grateful to the members of the technical support team headed by Timur
Sadykov for their extensive work on the preparation of the camera-ready files for this
volume. We owe our deepest gratitude to Dmitry Lyakhov (King Abdullah University
of Science and Technology, Kingdom of Saudi Arabia), the publicity chair of the event,
for the management of the conference web page (see http://www.casc-conference.org/.)
and for the design of the conference poster.

Our particular thanks are due to the members of the CASC 2023 local organizing
committee at the University of Havana, in particular Luis Ramiro Piñeiro Díaz, Valentina
Badía Albanés, and Alejandro Piad Morffis, who ably handled the local arrangements.
In addition, Luis Ramiro Piñeiro kindly provided us with the above information about
computer algebra activities at the University of Havana and at Universidad de Oriente.

Finally, we acknowledge the sponsorship of the CARGO Lab, based in Waterloo,
Ontario, Canada, which contributed to the success of CASC 2023 in Havana.

http://www.casc-conference.org/

Organization

General Chairs

François Boulier Université de Lille, France
Ilias Kotsireas Wilfrid Laurier University, Canada
Timur M. Sadykov Plekhanov Russian University of Economics,

Russia

Program Committee Chairs

Matthew England Coventry University, UK
Chenqi Mou Beihang University, China
Evgenii V. Vorozhtsov Khristianovich Institute of Theoretical and

Applied Mechanics, Russia

Program Committee

Tulay Ayyildiz Akoglu Karadeniz Technical University, Turkey
François Boulier University of Lille, France
Changbo Chen Chinese Academy of Sciences, China
Jin-San Cheng Academy of Mathematics and Systems Science,

China
Victor F. Edneral Lomonosov Moscow State University, Russia
Matthew England Coventry University, UK
Jaime Gutierrez University of Cantabria, Spain
Sergey Gutnik Moscow State Inst. of International Relations,

Russia
Amir Hashemi Isfahan University of Technology, Iran
Gabriela Jeronimo University of Buenos Aires, Argentina
Rui-Juan Jing Jiangsu University, China
Fatma Karaoglu Gebze Technical University, Turkey
Ilias Kotsireas Wilfrid Laurier University, Canada
Wen-Shin Lee University of Stirling, UK
François Lemaire University of Lille, France
Viktor Levandovskyy University of Kassel, Germany
Marc Moreno Maza University of Western Ontario, Canada
Dominik L. Michels KAUST, Saudi Arabia

xii Organization

Chenqi Mou Beihang University, China
Sonia Perez-Diaz Universidad de Alcalá, Spain
Veronika Pillwein JKU Linz, Austria
Alexander Prokopenya Warsaw University of Life Sciences, Poland
Hamid Rahkooy University of Oxford, UK
Daniel Robertz RWTH Aachen, Germany
Timur Sadykov Plekhanov Russian University, Russia
Svetlana Selivanova KAIST, South Korea
Ekaterina Shemyakova University of Toledo, USA
Thomas Sturm CNRS, France
Bertrand Teguia Tabuguia Max Planck Institute for Mathematics in the

Sciences, Germany
Akira Terui University of Tsukuba, Japan
Ali Kemal Uncu University of Bath, UK, and Austrian Academy of

Sciences RICAM, Austria
Jan Verschelde University of Illinois, USA
Evgenii V. Vorozhtsov Khristianovich Institute of Theoretical and

Applied Mechanics, Russia

Local Organization

Luis Ramiro Piñeiro Díaz University of Havana, Cuba
Valentina Badía Albanés University of Havana, Cuba
Alejandro Piad Morffis University of Havana, Cuba

Publicity Chair

Dmitry Lyakhov KAUST, Saudi Arabia

Advisory Board

Wolfram Koepf Universität Kassel, Germany
Ernst W. Mayr Technische Universität München, Germany
Werner M. Seiler Universität Kassel, Germany

Website

http://casc-conference.org/.
(Webmaster: Timur Zhukov)

http://casc-conference.org/

Abstracts of Invited Talks

Normal Forms of Integer Matrices

George Labahn

Cheriton School of Computer Science, University of Waterloo, Ontario N2L-2T6,
Waterloo, Canada

glabahn@uwaterloo.ca

Abstract.Normal forms for integer matrices, such as Hermite and Smith
normal forms, have a long history both in terms of algorithms for com-
putation and use in applications. In this talk we discuss a number of
algorithms including two recent approaches for fast Smith normal form
computation along with a new algorithm for computation of the Hermite
normal form. The new notion of Smith Massager, a relaxed version of a
right Smith multiplier, plays an important role in all three algorithms.

Keywords: Hermite form · Smith form · Matrix multiplication

1 Introduction

Let A ∈ Zn×n be a nonsingular integer matrix. There are two well known normal forms
corresponding to transforming A into triangular and diagonal form. For triangularization
one has the (row) Hermite normal formH where one has a unimodular matrixU ∈ Zn×n

such that

H = UA =

⎡
⎢⎢⎢⎣

h1 h12 · · · h1n
h2 · · · h2n

. . .
...

hn

⎤
⎥⎥⎥⎦

with all the entries of H being nonnegative, and with off-diagonal entries h*j being
strictly smaller than the diagonal entry hj in the same column. The Hermite normal
form of A is unique (as is U since A is nonsingular) with its existence dating back to
Hermite [12] in 1851. The matrixU represents the row operations required to put A into
the triangular form. There are also other variations such as lower triangular or column
rather than row forms (with the unimodular matrix U then being on the right).

In the case of diagonalization, there is the Smith normal form S where one has
unimodular matrices U , V ∈ Zn×n with

xvi G. Labahn

UAV = S =

⎡
⎢⎢⎢⎣

S1
S2

. . .

Sn

⎤
⎥⎥⎥⎦ ∈ Zn×n

and where si|si+1 for all i. The Smith normal form dates back to Smith [20] in 1861,
with U and V describing the row and column operations transforming A into diagonal
form. In this case the multipliers U ,V are not unique.

The Hermite and Smith forms have numerous applications. This includes solving
systems of linear and linear diophantine equations [7], integer programming [19] and
determining rational invariants and rewriting rules of scaling invariants [13], to name
just a few. In the latter application, the Hermite forms transform the integer exponents
of multivariate terms. The Smith form applied to a matrix of relations for an abelian
group tells how to classify the group into a direct sum of cyclic groups [8,18]. Other
applications include those in combinatorics [21] and integration quadrature rules [17].

History of Computation: Algorithms for computing the Hermite normal forms were
initially based on triangularizing the input matrix using variations of Gaussian elimina-
tion that used the extended Euclidean algorithm to eliminate entries below the diagonal.
However, such methods can be prone to exponential expression swell, that is, the prob-
lem of rapid growth of intermediate integer operands. The first algorithm which was
provably polynomial time was given by [16]. This was followed by an algorithm of [7]

which gave a running time of
(
n6log ||A||)1+o(1)

bit operations1, with ‖A‖ denoting the

largest entry of A in absolute value [9,14,11] later improved these to
(
n4log ||A||)1+o(1)

.

New algorithms in [24] and then [22] subsequently reduced this to
(
nω+1log ||A||)1+o(1)

bit operations. Here ω is the exponent of matrix multiplication, with ω < 2.37286 being
the current best known upper bound given by [1].

Early algorithms for Smith form computation such as [20] and [6]were alsomodelled
on Gaussian elimination where greatest common divisors and the associated solutions
of linear diophantine equations replaced division. These have been replaced by faster
methods including those of . Recent fast methods includes that of and [15,22]. The latter
algorithm computes both the Smith form and unimodular multiplier matrices U and V
satisfying AV = US while the former computes the Smith form S alone. It does this by
combining a LasVegas algorithm for computing the characteristic polynomial with ideas

of, to obtain aMonte Carlo algorithm for the Smith form in time
(
n2.695591log ‖A‖)1+o(1)

assuming the currently best upper bound for ω.

Recent Results. A natural goal for many computations on integer matrices is to design
algorithms that have about the same cost asmultiplying together twomatrices of the same
dimension and size of entries as the input matrix, a target complexity therefore being
(nωlog ||A||)1+o(1) bit operations. Examples where this has been the case include a Las

1 The exponent 1 + o(1) indicates some missing logn and loglog ||A|| factors

Normal Forms of Integer Matrices xvii

Vegas probabilistic algorithm for determinant computation [23] and a recent determinis-
tic algorithm for integer linear system solving by [2], both of which utilize a “dimension
× precision ≤ invariant” compromise.

In the case of Smith form there are two new algorithms, both probabilistic of
Las Vegas type. The algorithm in [3] computes only the Smith form while the sec-
ond algorithm in [4], computes both the Smith form and its multiplier, both in time
(nωlog ‖A‖)1+o(1). The latter is somewhat surprising as the Smith form with multiplier
problem has long been considered to be more challenging than just computing the Smith
form alone, at least in practical computations. This is somewhat similar to comparing
the problem of solving an Extended Euclidean problem for computing a gcd versus just
solving the gcd problem alone.

In the case of Hermite forms the reduction to matrix multiplication has not been
achieved. However there is a new Las Vegas algorithm for Hermite form computation

[5] with running time bounded by
(
n3log ||A||)1+o(1)

using standard integer and matrix
arithmetic, giving the first significant improvement in the computational complexity of
computing the Hermite form in the last 25 years.

In this talk we give some details on how these recent new algorithms for Hermite,
Smith and Smith with multiplier problems.

References

1. Alman, J.,Williams,V.V.:A refined lasermethod and fastermatrixmultiplication. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 522–539 (2021)

2. Birmpilis, S., Labahn, G., Storjohann, A.: Deterministic reduction of integer non-
singular linear system solving to matrix multiplication, In: Proceedings of the 2019
on International Symposium on Symbolic and Algebraic Computation: ISSAC’19,
pages 58-65, New York, NY, USA, ACM (2019)

3. Birmpilis, S., Labahn, G., Storjohann, A.: A Las Vegas algorithm for computing
the Smith form of a nonsingular integer matrix. In : Proceedings of the 2019 on
International Symposium on Symbolic and Algebraic Computation: ISSAC’20,
pages 38-45, New York, NY, USA, ACM (2020)

4. Birmpilis, S., Labahn, G., Storjohann, A.: A fast algorithm for computing the Smith
normal form with multipliers for a nonsingular integer matrix. J. Symbolic Comput.
116, 146–182 (2023)

5. Birmpilis, S., Labahn, G., Storjohann, A.: A cubic algorithm for computing the
Hermite normal form of a nonsingular integer matrix (2023). https://arxiv.org/abs/
2209.10685

6. Bradley, G.H.: Algorithm and bound for the greatest common divisor of n integers.
Commun. ACM 13(7):433–436, July 1970.

7. Chou, T.-W.J., Collins, G.E.: Algorithms for the solutions of systems of linear
diophantine equations. SIAM J. Comput. 11, 687–708 (1982)

8. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer-Verlag
(1996). https://doi.org/10.1007/978-3-662-02945-9

9. Domich, P.D., Kannan, R., Trotter, L.E.: Jr. ermite normal form computation using
modulo determinant arithmetic. Math. Oper. Res. 12(1), 50–59 (1987)

https://arxiv.org/abs/2209.10685
https://doi.org/10.1007/978-3-662-02945-9

xviii G. Labahn

10. Giesbrecht, M.: Fast computation of the Smith form of a sparse integer matrix.
Comput. Complex. 10(1), 41–69 (2001)

11. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. J. Amer. Math. Soc. 2, 837–850 (1989)

12. Hermite, C.: Sur l’introduction des variables continues dans la théorie des nombres.
J. Reine Angew. Math., 41, 191–216 (1851)

13. Hubert, E., Labahn, G.: Scaling invariants and symmetry reduction of dynamical
systems. Found. Comput. Math. 13(4), 479–516 (2013)

14. Iliopoulos, C.S.: Worst-case complexity bounds on algorithms for computing the
canonical structure of finite abelian groups and the Hermite and Smith normal forms
of an integer matrix. SIAM J. Comput. 18(4), 658–669 (1989)

15. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput.
Complex. 13(3–4), 91–130 (2005)

16. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

17. Lyness, J.N., Keast, P.: Application of the smith normal form to the structure of
lattice rules. SIAM J. Matrix Anal. Appl. 16 (1), 218–231 (1995)

18. Newman, M.: The Smith normal form. Linear Algebra Appl. 254, 367–381 (1997)
19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons

(1998)
20. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Phil.

Trans. Roy. Soc. London, 151, 293–326 (1861)
21. Stanley, R.: Smith normal form in combinatorics. J. Comb. Theory Series A 144,

476–495 (2016)
22. Storjohann, A.: Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal

Institute of Technology, ETH–Zurich, 2000.
23. Storjohann,A.: The shifted number system for fast linear algebra on integermatrices.

J. Complex. 21(4), 609–650 (2005). Festschrift for the 70th Birthday of Arnold
Schönhage.

24. Storjohann, A., Labahn, G.: Asymptotically fast computation of Hermite nor-
mal forms of integer matrices. In: Lakshman, Y.N., eds., In Proceedings of the
1996 international symposium on Symbolic and algebraic computation: ISSAC’96,
pp. 259–266. ACM Press, New York (1996)

On the Performance of Local Search Algorithms
for K-SAT Problems in Random Graphs

Roberto Mulet

University of Havana, Cuba
mulet@fisica.uh.cu

K-SAT is one of the most studied NP-complete problems. Early this century a new
version of this problem received a lot of attention. In this version the K-SAT is defined
through a bipartite random graph. Variables and logical clauses form the nodes of the
graph and they are connected if one variable belongs to one clause. The main parameter
of the problem is α = M /N the ratio between the number of clauses and the number of
variables. When α is small the problem is satisfiable, when α is large it is unsatisfiable.
However, for intermediate values ofα the problembecomes statistically hard.Theoretical
results, obtained using techniques from the statistical physics of disordered systems,
predict a range of α in which most K-SAT problems are still satisfiable, but where
local search algorithms can’t find a solution. In this talk I will review these results and
test them showing the actual performance of three different local search algorithms on
this problem. I will conclude by presenting analytical approximations, derived from a
microscopic theory, for the dynamics of these algorithms.

Contents

Computing GCDs of Multivariate Polynomials over Algebraic Number
Fields Presented with Multiple Extensions . 1

Mahsa Ansari and Michael Monagan

Generating Elementary Integrable Expressions . 21
Rashid Barket, Matthew England, and Jürgen Gerhard

How to Automatise Proofs of Operator Statements: Moore–Penrose
Inverse; A Case Study . 39

Klara Bernauer, Clemens Hofstadler, and Georg Regensburger

AModularAlgorithm forComputing the Intersectionof aOne-Dimensional
Quasi-Component and a Hypersurface . 69

Alexander Brandt, Juan Pablo González Trochez, Marc Moreno Maza,
and Haoze Yuan

Certified Study of Internal Solitary Waves . 90
André Galligo and Didier Clamond

Root-Squaring for Root-Finding . 107
Soo Go, Victor Y. Pan, and Pedro Soto

Symbolic-Numerical Algorithm for Solving the Problem of Heavy Ion
Collisions in an Optical Model with a Complex Potential . 128

A. A. Gusev, O. Chuluunbaatar, V.L. Derbov, R.G. Nazmitdinov,
S.I. Vinitsky, P.W. Wen, C.J. Lin, H. M. Jia, and L. L. Hai

On the Complexity of Linear Algebra Operations over Algebraic Extension
Fields . 141

Amir Hashemi and Daniel Lichtblau

Range Functions of Any Convergence Order and Their Amortized
Complexity Analysis . 162

Kai Hormann, Chee Yap, and Ya Shi Zhang

Stability and Zero-Hopf Bifurcation Analysis of the Lorenz–Stenflo
System Using Symbolic Methods . 183

Bo Huang, Xiaoliang Li, Wei Niu, and Shaofen Xie

xxii Contents

Non-Principal Branches of Lambert W. A Tale of Two Circles 199
Jacob Imre and David J. Jeffrey

On the Qualitative Analysis of the Equations of Motion of a Nonholonomic
Mechanical System . 213

Valentin Irtegov and Tatiana Titorenko

Solving Parametric Linear Systems Using Sparse Rational Function
Interpolation . 233

Ayoola Jinadu and Michael Monagan

On the Distance to the Nearest Defective Matrix . 255
Elizaveta Kalinina, Alexei Uteshev, Marina Goncharova,
and Elena Lezhnina

Effective Algorithm for Computing Noetherian Operators of Positive
Dimensional Ideals . 272

Katsusuke Nabeshima and Shinichi Tajima

On the Structure and Generators of Differential Invariant Algebras 292
Peter J. Olver

An Algorithm for the Intersection Problem of Planar Parametric Curves 312
Ling Tan, Bo Li, Bingwei Zhang, and Jin-San Cheng

A Symbolic-Numeric Method for Solving the Poisson Equation in Polar
Coordinates . 330

Evgenii V. Vorozhtsov

Two Variants of Bézout Subresultants for Several Univariate Polynomials 350
Weidong Wang and Jing Yang

Efficient Quotients of Non-commutative Polynomials . 370
Stephen M. Watt

Inverse Kinematics and Path Planning of Manipulator Using Real
Quantifier Elimination Based on Comprehensive Gröbner Systems 393

Mizuki Yoshizawa, Akira Terui, and Masahiko Mikawa

Author Index . 421

Computing GCDs of Multivariate
Polynomials over Algebraic Number

Fields Presented with Multiple
Extensions

Mahsa Ansari(B) and Michael Monagan

Department of Mathematics, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada
{mansari,mmonagan}@sfu.ca

Abstract. Let Q(α1, · · · , αn) be an algebraic number field. In this
paper, we present a modular gcd algorithm for computing the monic
gcd, g, of two polynomials f1, f2 ∈ Q(α1, . . . , αn)[x1, . . . , xk]. To improve
the efficiency of our algorithm, we use linear algebra to find an isomor-
phism between Q(α1, . . . , αn) and Q(γ), where γ is a primitive element of
Q(α1, . . . , αn). This conversion is performed modulo a prime to prevent
expression swell. Next, we use a sequence of evaluation points to convert
the multivariate polynomials to univariate polynomials, enabling us to
employ the monic Euclidean algorithm. We currently use dense inter-
polation to recover x2, . . . , xk in the gcd. In order to reconstruct the
rational coefficients in g, we apply the Chinese remaindering and the
rational number reconstruction. We present an analysis of the expected
time complexity of our algorithm. We have implemented our algorithm
in Maple using a recursive dense representation for polynomials.

Keywords: Polynomial greatest common divisors · Modular GCD
algorithms · Algebraic number fields · Primitive elements

1 Introduction

1.1 Motivation for the Algorithm

Computing the gcd of polynomials is a fundamental problem in Computer Alge-
bra, and it arises as a subproblem in many applications. For instance, com-
puting the gcd of two polynomials plays a prominent role in polynomial fac-
torization [14]. While the Euclidean algorithm is one of the most important
algorithms for computing the gcd of two polynomials, it has a fundamental flaw
for problems arising over R[x] where R is not a finite field, namely, the size of
the coefficients of the remainders in the Euclidean algorithm grows significantly.
Especially, the Euclidean algorithm is slow when the degree of the gcd is much
smaller than the degree of the inputs. The worst case occurs when the gcd of
the inputs is 1. This inefficiency has led computer algebraists to develop mod-
ular gcd algorithms. Collins [3] (for univariate polynomials) and Brown [2] (for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 1–20, 2023.
https://doi.org/10.1007/978-3-031-41724-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_1

2 M. Ansari and M. Monagan

multivariate polynomials) developed an algorithm to compute gcds by apply-
ing homomorphic reductions and Chinese remaindering. Through homomorphic
reduction, they converted the gcd problem over Z to a simpler domain Zp where
the coefficients do not grow.

Let α and α1, . . . , αn be algebraic numbers. In 1989, Langemyr and MaCal-
lum [7] designed a modular gcd algorithm for Q(α)[x]. In 1989 Smedley [13], using
a different approach, designed a modular gcd algorithm for Q(α)[x1, . . . , xk].
In 1995, Encarnacion [4] used rational number reconstruction [9,18] to make
Langemyr and MaCallum’s algorithm for Q(α)[x] output sensitive. In 2002, Mon-
agan and Van Hoeij [17] generalized Encarnacion’s algorithm to treat polynomi-
als in Q(α1, · · · , αn)[x] for n ≥ 1. In 2009 Li, Moreno Maza and Schost [8] used
the FFT to speed up arithmetic in Q(α1, · · · , αn) modulo a prime in Monagan
and Van Hoeij’s algorithm. State of the art algorithms for computing primi-
tive element representations of triangular sets in softly linear time includes the
works of Poteaux and Schost [11,12]. State of the art algorithms for computing
in algebraic towers in softly linear time includes the work of van der Hoeven and
Lecerf [15,16].

Building upon this previous work, our modular gcd algorithm, called MGCD,
computes the monic gcd of two polynomials f1, f2 ∈ Q(α1, . . . , αn)[x1, . . . , xk]
where n ≥ 1 and k ≥ 1. It is the first modular gcd algorithm that speeds up the
computation by mapping Q(α1, · · · , αn) to Q(γ) where γ is a primitive element.

1.2 Preliminaries

First, we explain relevant details and notations. Let Q(α1, · · · , αn) be our num-
ber field. We build the field L as follows. Let L0 = Q. For i = 1, 2, . . . , n let
Li = Li−1[zi]/〈Mi(zi)〉 where Mi(zi) is the monic minimal polynomial of αi

over Li−1. Let L = Ln. The field L is a Q-vector space of dimension d =
∏n

i=1 di

where di = deg(Mi, zi). Furthermore,

BL = {∏n
i=1(zi)ei | 0 ≤ ei < di}

is a basis of L. Since L ∼= Q(α1, · · · , αn), we can perform computation over
Q(α1, · · · , αn) by replacing α1, . . . , αn with variables z1, . . . , zn, respectively, and
then doing the computation over L. In our algorithm, we suppose that we are
given the minimal polynomials M1(z1), . . . ,Mn(zn) of the algebraic numbers
α1, . . . , αn so that we can construct L. If f =

∑
ei∈Z

k
≥0

aei
Xei ∈ L[x1, . . . , xk],

then aei
=

∑d
j=1 Ceijbj for bj ∈ BL and Ceij ∈ Q. We define the coordi-

nate vector of f w.r.t BL as the vector of dimension d, denoted by [f]BL
=

[v1, . . . , vd]T , where vj =
∑

ei∈Z
k
≥0

CeijX
ei .

Example 1. We are given the field L = Q[z1, z2]/〈z21 −2, z22 −3〉 with basis BL =
{1, z2, z1, z1z2}. If f = 2z1x+y+z1+z1z2 ∈ L[x, y], then [f]BL

= [y, 0, 2x+1, 1]T .

Let R be a commutative ring with identity 1 �= 0. Let us fix a monomial ordering
in R[x1, . . . , xk]. Let f ∈ R[x1, . . . , xk] and let lc(f) denote the leading coeffi-
cient of f and lm(f) denote the leading monomial of f . If f = 0 we define

Computing the GCDs of Multivariate Polynomials 3

monic(f) = 0. If f �= 0 and lc(f) is a unit in R then monic(f) = lc(f)−1f .
Otherwise, monic(f) = failed. Let f1, f2 ∈ R[x1, . . . , xk] and suppose a monic
g = gcd(f1, f2) exists. Then g is unique and there exist polynomials p and q such
that f1 = p · g and f2 = q · g. We call p and q the cofactors of f1 and f2.

Example 2. Let L be as in Example 1 and f1 = (z2x+z1y)(x+y) and f2 = (z2x+
z1y)(x − y) be polynomials in L[x, y]. By inspection, z2x + z1y is a gcd(f1, f2).
In lexicographical order with x > y we have lc(f1) = z2, lm(f1) = x2 and the
monic gcd(f1, f2) is x + 1

3z1z2y.

Let LZ = Z[z1, . . . , zn]. For any f ∈ L[x], the denominator of f , denoted by
den(f), is the smallest positive integer such that den(f)f ∈ LZ[x]. In addition,
the associate of f is defined as f̃ = den(h)h where h = monic(f). The semi-
associate of f , denoted by f̌ , is defined as rf , where r is the smallest positive
rational number for which den(rf) = 1.

Example 3. Let L be as in Example 1 and f = 3
2z1x + z2 ∈ L[x]. Then

den(f) = 2, f̌ = 3z1x + 2z2, monic(f) = x + 1
3z1z2 and f̃ = 3x + z1z2.

To improve computational efficiency, in a preprocessing step, our modular gcd
algorithm MGCD first clears fractions by replacing the input polynomials f1
and f2 with their semi-associates. Computing associates can be expensive when
lc(f1) and lc(f2) are complicated algebraic numbers. Thus, we prefer to use semi-
associates instead of associates to remove fractions. Then, MGCD computes
gcd(f1, f2) modulo a sequence of primes.

Definition 1. Let p be a prime such that p �
∏n

i=1 lc(M̌i) · lc(f̌1). Let mi(zi) =
Mi mod p for 1 ≤ i ≤ n. Define Lp = Zp[z1, . . . , zn]/〈m1, . . . ,mn〉.
Lp is a finite ring with pd elements which likely has zero divisors. We give an
example of MGCD to illustrate the treatment of zero-divisors in Lp and to
motivate the use a primitive element.

Example 4. We continue Example 2 where L = Q[z1, z2]/〈z21 − 2, z22 − 3〉, f1 =
(z2x + z1y)(x + y), f2 = (z2x + z1y)(x − y) and g = x + 1

3z1z2y is the monic
gcd(f1, f2). Suppose MGCD picks p = 3. Then m1 = z21 + 1, m2 = z22 and

L3 = Z3[z1, z2]/〈 z21 + 1, z22 〉.

Notice that z2 is a zero divisor in L3. Next, MGCD picks an evaluation point
α ∈ Zp and attempts to compute gcd(f1(x, α), f2(x, α)) in L3[x] using the monic
Euclidean algorithm (MEA) (see [17]). The MEA will try to compute r1 =
monic(f2(x, α)) and then divide r0 = f1(x, α) by r1 but monic(f2(x, α)) fails as
lc(f2(x, α)) = z2 is a zero-divisor in L3. Since MGCD does know whether this is
because of the choice of p or α, it stops the computation of gcd(f1, f2) modulo
p = 3 and tries another prime, for example, p = 5. We have

L5 = Z5[z1, z2]/〈 z21 + 3, z22 + 2 〉.

4 M. Ansari and M. Monagan

Once again, MGCD chooses α ∈ Z5 and computes gcd(f1(x, α), f2(x, α)) in L5[x]
using the MEA. This time lc(f2(x, α)) = z2 is a unit in L5 with inverse 2z2 and
monic(f2(x, α)) succeeds. The MEA also succeeds and outputs g5 = x+2αz1z2.
Notice g5 = g(x, α) mod 5. MGCD repeats this process for more α’s and primes
and recovers g = x + 1

3z1 y using polynomial interpolation for y and Chinese
remaindering and rational number reconstruction [9,18] for the fraction 1

3 .

Most of the computational work in MGCD occurs in the finite ring Lp. To speed
up MGCD we use a primitive element to speed up arithmetic in Lp. We note
that our Maple implementation of MGCD uses 31-bit primes which avoids zero
divisors in Lp with high probability.

1.3 Paper Outline

Our paper is organized as follows. In Sect. 2, we use the fact that Q(α1, . . . , αn)
can be specified as a Q-vector space to compute a primitive element γ for
Q(α1, . . . , αn). We also construct a ring isomorphism φγ between the quotient
rings Lp and L̄p = Zp[z]/〈M(z)〉 where p is a prime and M(z) ∈ Zp[z] is the
minimal polynomial for γ mod p. In our modular gcd algorithm, we apply φγ to
speed up arithmetic in Lp. In Sect. 3, we describe the PGCD algorithm for com-
puting the monic gcd of two polynomials f1, f2 ∈ L̄p[x1, . . . , xk], where k ≥ 2.
We then present our modular gcd algorithm, MGCD. In Sect. 4, we study the
expected time complexity of our MGCD algorithm. Finally, in Sect. 5, we present
an implementation of our algorithm in Maple which uses the recursive dense poly-
nomial data structure described in [17]. We then present a timing benchmark for
running Algorithm MGCD. Our Maple code is available at http://www.cecm.
sfu.ca/∼mmonagan/code/MGCD.

2 Converting Q(α1, . . . , αn) to a Single Extension Q(γ)

The main goal of this section is to identify a primitive element for Q(α1, . . . , αn)
called γ and compute its minimal polynomial. We then proceed to reduce the
computation of finding γ modulo a prime p, which allows us to form the quotient
ring L̄p = Zp[z]/〈M(z)〉 where M(z) is the minimal polynomial of γ modulo p.
Once we have constructed L̄p, we determine the ring isomorphism φγ : Lp −→
L̄p. We use φγ in our MGCD algorithm to map a polynomial over the multiple
extension Lp to its corresponding polynomial over the simple extension L̄p.

2.1 Computing a Primitive Element and its Minimal Polynomial

In order to find a primitive element for Q(α1, . . . , αn), we start by choosing ran-
dom integers C1, . . . , Cn−1 from the interval [1, p), where p is a large prime. Using
these integers, we create a potential primitive element γ = α1 +

∑n
i=2 Ci−1αi.

To determine whether γ is a primitive element or not we use Theorem 1.

http://www.cecm.sfu.ca/~mmonagan/code/MGCD
http://www.cecm.sfu.ca/~mmonagan/code/MGCD

Computing the GCDs of Multivariate Polynomials 5

Theorem 1. Let Q(α1, . . . , αn) have degree d and let C1, . . . , Cn−1 ∈ Z be cho-
sen randomly from [1, p) where p is a large prime. Define γ = α1+

∑n
i=2 Ci−1αi,

and let B be a basis for Q(α1, . . . , αn) as a Q-vector space. Let A be the d × d
matrix whose ith column is [γi−1]B for 1 ≤ i ≤ d. Then, γ is a primitive element
for Q(α1, · · · , αn) ⇐⇒ det(A) �= 0.

Proof. (=⇒) If γ is a primitive element for Q(α1, . . . , αn), then we have [Q(γ) :
Q] = [Q(α1, . . . , αn) : Q] = d. Let BK = {1, γ, . . . , γd−1} be a basis for K =
Q(γ) as a Q-vector space. Since Q(α1, . . . , αn) = K, any element of BK can be
expressed as a linear combination of elements of B. Thus, the d×d linear system

1 = c11b1 + c12b2 + . . . + c1dbd

γ = c21b1 + c22b2 + . . . + c2dbd

. . .

γd−1 = cd1b1 + cd2b2 + . . . + cddbd

has a unique solution. We can form the d×d matrix D, whose ith row is [γi−1]TB
for 1 ≤ i ≤ d. Since the above system of equations has a unique solution, the
matrix D is invertible, and thus det(D) �= 0. On the other hand, D = AT so

0 �= det(D) = det(AT) = det(A).

(⇐=) Given det(A) �= 0, we can conclude that A is invertible and the linear
system A · q = −[γd]B has a unique solution q = [q1, . . . , qd]T . If we prove that
the polynomial of degree d

M(z) = zd +
d∑

i=1

qiz
i−1

is the minimal polynomial of γ, then [Q(γ) : Q] = [Q(α1, . . . , αn) : Q] = d
which implies that γ is a primitive element as required. By construction, M(z)
is monic, deg(M(z)) = d, and M(γ) = 0. Hence, we only need to prove that
M(z) is irreducible over Q. Suppose that M(z) is reducible. Since Q[z] is a UFD,
M(z) can be expressed as a product of monic irreducible polynomials over Q, i.e.
M(z) = p1(z) · · · pk(z) where each pi(z) ∈ Q[z] is irreducible for 1 ≤ i ≤ n. Since
M(γ) = 0, there exists 1 ≤ i ≤ k such that pi(γ) = 0 which implies that pi(z)
is the minimal polynomial of γ. Let deg(pi(z)) = h so {1, γ, . . . , γh−1} forms a
basis for Q(γ). Hence, {1, γ, . . . , γd−1} ⊆ Span({1, γ, . . . , γh−1}) where h < d.
That is, the set {1, γ, . . . , γd−1} is a linearly dependant set, equivalently, the
matrix A has two or more linearly dependent columns which means det(A) = 0.
This contradicts the assumption that det(A) �= 0. Therefore, M(z) must be
irreducible over Q, and hence it is the minimal polynomial of γ.

We can employ Theorem 1 to compute the minimal polynomial of the prim-
itive element γ.

6 M. Ansari and M. Monagan

Corollary 1. Under the assumptions of Theorem 1, if det(A) �= 0 and q =
[q1, . . . , qd]T be the solution of the linear system A · q = −[γd]B, the polynomial
M(z) = zd +

∑d
i=1 qiz

i−1 is the minimal polynomial of γ.

Proof. Corollary 1 follows directly from the proof of Theorem 1.

We present Algorithm 1, LAminpoly, which is used to verify if γ = α1 +∑n
i=2 Ci−1αi, where Ci ∈ Z for 2 ≤ i ≤ n, is a primitive element for

Q(α1, . . . , αn). LAminpoly can be run over two different ground fields: F = Q

and F = Zp, where p is a prime. If LAminpoly does not fail over F = Q, accord-
ing to Theorem 1 and Corollary 1, γ is a primitive element for Q(α1, . . . , αn)
and the output M(z) is the minimal polynomial of γ. In the following example,
we execute the LAminpoly algorithm over F = Q.

Algorithm 1: LAminpoly
Input: A list of the minimal polynomials [M1(z1), . . . , Mn(zn)], the ground field

F over which the computation is performed, and
γ = z1 + C1z2 + . . . + Cn−1zn where Ci ∈ Z for 1 ≤ i ≤ n − 1

Output: Either a message “FAIL” or a polynomial M(z) ∈ F [z] such that
M(γ) = 0, the matrix A and A−1 .

1 BL = { ∏n
i=1(zi)

ei 0 ≤ ei < di } s.t di = deg(Mi(zi)) // A basis for L
2 d =

∏n
i=1 di

3 Initialize A to be a d × d zero matrix over F .
4 g0 = 1
5 for i = 1 to d do
6 Set column i of A to be [gi−1]BL

7 gi = γ · gi−1

8 if det(A) = 0 then
9 return(FAIL)

10 Compute A−1

11 Solve the d × d linear system A · q = −[gd]BL for q

12 Construct the polynomial M(z) := q1 + q2z + . . . + qdzd−1 + zd

13 return(M(z), A, A−1)

Example 5. Let M1(z1) = z21 − 2 be the minimal polynomial of
√

2 over Q and
M2(z2) = z22 − 3 be the minimal polynomial of

√
3 over Q[z1]/〈z21 − 2〉. Let

L = Q[z1, z2]/〈z21 − 2, z22 − 3〉. Let C1 = 1 so that γ = z1 + z2. We wish to test
if γ is a primitive element. Let BL = {1, z2, z1, z1z2} and BK = {1, z, z2, z3} be
the bases for L and K = Q[z]/〈M(z)〉 respectively, where M(z) is the minimal
polynomial of γ. Let ai = [γi]BL

be the coordinate vector of γi relative to BL

for 0 ≤ i ≤ 4. Then we have

a0, a1, a2, a3, a4 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
1
1
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

5
0
0
2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

0
9
11
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

49
0
0
20

⎤

⎥
⎥
⎦ .

Computing the GCDs of Multivariate Polynomials 7

The coefficient matrix A is the 4×4 matrix containing a0, a1, a2, a3 as its columns

A =

⎡

⎢
⎢
⎣

1 0 5 0
0 1 0 9
0 1 0 11
0 0 2 0

⎤

⎥
⎥
⎦ , A−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 − 5
2

0 11
2 − 9

2 0

0 0 0 1
2

0 − 1
2

1
2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

As det(A) = −4, we conclude that C1 = 1 is an appropriate constant and
γ = z1 + z2 is a primitive element. The next step is to compute M(z). Applying
Corollary 1 we have q = A−1(−a4) = [1, 0,−10, 0]T thus M(z) = z4 − 10z2 + 1.

If we execute Algorithm 1 over F = Zp, then we can use the resulting poly-
nomial M(z) and matrix A to construct L̄p = Zp[z]/〈M(z)〉 such that Lp

∼= L̄p.
However, if we execute LAminpoly over F = Zp, it is likely that one or more of
mi will be reducible over Zp[z1, . . . , zi−1]/〈m1, . . . ,mi−1〉 in which case M(z) is
reducible over Zp. We give an example.

Example 6. Let M1(z1) = z21 − 2 and M2(z2) = z22 − 3 and L =
Q[z1, z2]/〈M1,M2〉. Let p = 113, F = Zp, C1 = 101 and Lp = Z113[z1, z2]/〈z21 +
111, z22 + 110〉. Lp is not a field since m1 = (z1 + 51)(z1 + 62) in Lp. Let
BLp

= {1, z2, z1, z1z2}. Applying LAminpoly for γ = z1 + 101z2 ∈ Lp we have

A =

⎡

⎢
⎢
⎣

1 0 95 0
0 101 0 55
0 1 0 55
0 0 89 0

⎤

⎥
⎥
⎦ .

Since det(A) �= 0, we solve the system Aq = −[γ4]BLp
and construct the gen-

erator polynomial M(z) = z4 + 36z2 + 32. M(z) factors over Zp as M(z) =(
z2 + 11z + 22

) (
z2 + 102z + 22

)
so L̄p = Zp[z]/〈M(z)〉 is not a field.

Remark 1. In MGCD, we choose a prime p and C1, . . . , Cn−1 ∈ [1, p) at random.
Then we call algorithm LAminpoly with F = Zp and γ = z1 +C1z2 + . . . Cn−1zn

in Lp. If LAminpoly returns FAIL, because the failure may be due to the choice
of p or C1, . . . , Cn−1, MGCD selects a new prime p and a new set of random
integers C1, . . . , Cn−1 ∈ [1, p) and calls LAminpoly again.

2.2 The Isomorphism φγ

We are now well-equipped to introduce the isomorphism φγ : Lp −→ L̄p.
Let BLp

= {∏n
i=1(zi)ei s.t 0 ≤ ei < di} and BL̄p

= {1, z, z2, . . . , zd−1} be
bases for Lp and L̄p, respectively. Let C : Lp −→ Zd

p be a bijection such that
C(a) = [a]BLp

and D : L̄p −→ Zd
p be another bijection such that D(b) = [b]BL̄p

.
Define φγ : Lp −→ L̄p such that φγ(a) = D−1(A−1 · C(a)), where A is the
matrix obtained from the LAminpoly algorithm over F = Zp. The inverse of φγ

is φ−1
γ : L̄p −→ Lp such that φ−1

γ (b) = C−1(A · D(b)).

8 M. Ansari and M. Monagan

Lemma 1. If det(A) �= 0, then the mapping φγ defined above is a ring isomor-
phism.

Proof. Since A−1 exists and both C and D are bijections, we can conclude that
φγ is well-defined and bijective. Additionally, if γ = z1+C1z2+· · ·+Cn−1zn is the
element obtained from the LAminpoly algorithm, then φ−1

γ can be expressed as
an evaluation homomorphism that substitutes z for z1+C1z2+. . .+Cn−1zn. The
fact that φ−1

γ is a homomorphism implies that φγ is also a ring homomorphism.

Isomorphism φγ induces the natural isomorphism φγ : Lp[x1, . . . , xk] −→
L̄p[x1, . . . , xk]. The following example illustrates how we can compute φγ(f) for
f ∈ Lp[x1, . . . , xk].

Example 7. Given the quotient rings Lp = Z113[z1, z2]/〈z21 + 111, z22 + 110〉 and
L̄p = Z113[z]/〈z4 + 36z2 + 32〉 from Example 6, we aim to compute φγ(f) where
f = 2x1z1 + x2 + z1z2 ∈ Lp[x1, x2]. Let BLp

= {1, z2, z1, z1z2} and A be the
matrix computed in Example 6. We have [f]Lp

= [x2, 0, 2x1, 1]T and

b = A−1 · [f]BLp
= [x2 + 84, 61x1, 80, 77x1]

T

as the coordinate vector of φγ(f) relative to BL̄p
= {1, z, z2, z3}. Consequently,

φγ(f) = x2 + 84 + 61x1z + 80z2 + 77x1z
3 ∈ L̄p[x1, x2].

3 The Modular Gcd Algorithm

Modular gcd algorithms for Q(α1, · · · , αn)[x] work by computing the gcd modulo
a sequence of primes and applying Chinese remaindering and rational number
reconstruction to recover the rational coefficients of the gcd. However, not all
primes can be used. Our modular gcd algorithm for Q(α1, · · · , αn)[x1, . . . , xn]
applies Theorem 2 below to identify the primes that cannot be used. In Theo-
rem 2, R′ may have zero-divisors. Examples 8 and 9 illustrate this.

Theorem 2. Let R and R′ be commutative rings with 1 �= 0 and φ : R −→
R′ be a ring homomorphism. Let f1 and f2 be two non-zero polynomials in
R[x1, . . . , xk]. Let us fix a monomial ordering on R[x1, . . . , xk]. Suppose that
the monic g = gcd(f1, f2) and the monic gφ = gcd(φ(f1), φ(f2)) exist. If
φ(lc(f1)) �= 0, then

(i) lm(gφ) ≥ lm(g) and
(ii) If lm(gφ) = lm(g), then gφ = φ(g).

Proof. (i) Let p, q ∈ R[x1, . . . , xk] be the cofactors of f1 and f2, respectively.
That is, f1 = p · g and f2 = q · g. Using the ring homomorphism property
of φ, we have φ(f1) = φ(p) · φ(g) and φ(f2) = φ(q) · φ(g). By assump-
tion, φ(lc(f1)) �= 0 which implies that φ(f1) �= 0. Furthermore, since
φ(lc(g)) = φ(1) = 1, we have φ(g) �= 0. Thus, φ(g) is a common factor of

Computing the GCDs of Multivariate Polynomials 9

φ(f1) and φ(f2), and hence φ(g) | gφ. In other words, there exists a non-zero
polynomial h ∈ R′[x1, . . . , xk] such that gφ = h ·φ(g). If lc(h) · lc(φ(g)) = 0,
then lc(h) · 1 = 0, which implies that lc(h) = 0, contradicting the assump-
tion that h �= 0. Accordingly, lm(gφ) = lm(h) · lm(φ(g)) which implies
that lm(gφ) ≥ lm(φ(g)). Moreover, since φ(lc(g)) = φ(1) = 1, we have
lm(φ(g)) = lm(g) and hence lm(gφ) ≥ lm(φ(g)) = lm(g).

(ii) To prove the second part, we use the fact that gφ = h ·φ(g) and the assump-
tion that lm(gφ) = lm(g) to conclude that lm(h) = 1. Thus, h is a constant
and since both φ(g) and gφ are monic, h = 1. Hence, gφ = φ(g).

3.1 PGCD

Algorithm PGCD (see Algorithm 2) computes the monic gcd(f1, f2), where
f1, f2 ∈ L̄p[x1, . . . , xk] for k ≥ 1. We use evaluation and dense interpolation
as in [2]. PGCD is recursive. When k = 1 we employ the monic Euclidean
algorithm [17] to find gcd(f1, f2) ∈ L̄p[x1]. Otherwise, PGCD reduces f1, f2
to polynomials in L̄p[x1, . . . , xk−1] by evaluating xk = bk where bk is chosen
randomly from Zp. Then, PGCD computes

gcd(f1(x1, x2, . . . , xk−1, bk), f2(x1, x2, . . . , xk−1, bk))

recursively. Subsequently, PGCD interpolates xk in g. It interpolates xk incre-
mentally until the interpolated polynomial H does not change. The condition in
line 30 implies this.

Let R = L̄p[xk] and R′ = L̄p. We define the evaluation homomorphism
φxk=b : R[x1, . . . , xk−1] −→ R′[x1, . . . , xk−1] such that φxk=b(f) = f(b). The
chosen evaluation points may cause several problems, including the possibility
of hitting a zero divisor. Here, we identify four types of evaluation points.

Definition 2. We consider f1 and f2 as polynomials in L̄p[xk][x1, . . . , xk−1] so
that lc(f1) ∈ L̄p[xk] and lm(f1) is a monomial in x1, . . . , xk−1. Assume that the
monic g = gcd(f1, f2) exists. Let b ∈ Zp be an evaluation point. We distinguish
the following cases:

– Lc-bad Evaluation Points. We call b an lc-bad evaluation point
if lc(f1)(b)=0.

– Zero-Divisor Evaluation Points. If b is not an lc-bad evaluation point,
and the monic Euclidean algorithm (see [17]) tries to invert a zero-divisor
in L̄p, for the evaluated f1 and f2 at xk = b, then b is called a zero-divisor
evaluation point.

– Unlucky Evaluation Points. Assume the monic gcd(φxk=b(f1),φxk=b(f2)),
denoted by gb, exists. We call b an unlucky evaluation point if lm(gb) > lm(g).

– Good Evaluation Points. If b is neither lc-bad, unlucky, nor zero-divisor
evaluation point, we call b a good evaluation point.

10 M. Ansari and M. Monagan

Theorem 3. Let φxk=b : R[x1, . . . , xk−1] −→ R′[x1, . . . , xk−1] be the evaluation
homomorphism, where R = L̄p[xk] and R′ = L̄p. Let f1, f2 ∈ R[x1, . . . , xk−1]
and b ∈ Zp. Suppose that

g = monic(gcd(f1, f2))
gb = monic(gcd(φxk=b(f1), φxk=b(f2)))
h = monic(φxk=b(g))

all exist. If b is a good evaluation point, then h = gb.

Proof. If b is a good evaluation point, then it is not lc-bad. Thus, we can infer
that φxk=b(lc(f1)) �= 0. By a similar argument as in the proof of Theorem 2, we
can conclude that h is a common factor of φxk=b(f1) and φxk=b(f2) so h | gb.
In other words, there is a non-zero polynomial t ∈ R′[x1, . . . , xk−1] such that
gb = t · h. Since h is monic, the same justification in Theorem 2 leads us to
conclude that lm(gb) ≥ lm(h). On the other hand, by the definition of a good
evaluation point, b is not an unlucky evaluation point. Thus, we can conclude
that lm(gb) = lm(h). Finally, by part (ii) of Theorem 2, we have h = gb.

Remark 2. 1. If prime p is chosen to be sufficiently large, the possibility of the
PGCD failing is low.

2. If PGCD tries to invert a zero-divisor in L̄p, we abort PGCD and return
control to MGCD and choose a new prime.

3. As we do not know lm(g) in advance, there is a question as to how we can
detect unlucky evaluation points. We only keep images gi with the least lm(gi)
and discard the others. See lines 24 to 29 of Algorithm 2, PGCD.

4. Although lc-bad evaluation points can be ruled out in advance, we cannot
detect zero-divisor or unlucky evaluation points beforehand. Therefore, we
will end up calling the monic Euclidean algorithm in L̄p[x1] with zero-divisor,
unlucky, and good evaluation points.

Example 8. Let g = (6z+3)(y+2)x, f1 = g·(x+z+1), and f2 = g·(x+2y+z+10)
be two polynomials in L̄11[x, y] listed in the lexicographic order with x > y where
L̄11 = Z11[z]/〈z2 + 8〉. By inspection, we can see that the monic gcd(f1, f2) =
(y + 2)x. In this example, y = 9 is an lc-bad evaluation point, y = 1 is an
unlucky evaluation point, and y = 0 is a zero-divisor evaluation point since
z2 + 8 mod 11 = (z + 6)(z + 5) and lc(f1(x, 0)) = z + 6.

Let f be a polynomial in L̄p[x1, . . . , xk]. Let Xk = [x1, . . . , xk−1]. The content
of f w.r.t Xk, denoted by cont(f,Xk) is the monic gcd of coefficients of f in Xk
which is a polynomial in L̄p[xk]. The primitive part of f , w.r.t X, is defined
as pp(f,Xk) = f/cont(f,Xk). PGCD uses the property

gcd(f1, f2) = gcd(cont(f1,Xk), cont(f2,Xk)) · gcd(pp(f1,Xk),pp(f2,Xk)).

Computing the GCDs of Multivariate Polynomials 11

Algorithm 2: PGCD
Input: f1, f2 ∈ L̄p[x1, . . . , xk]
Output: gcd(f1, f2) ∈ L̄p[x1, . . . , xk] or FAIL

1 Xk := [x1, . . . , xk−1] prod := 1 if k = 1 then
2 H := gcd(f1, f2) ∈ L̄p[x1] return(H)

3 c := gcd(cont(f1, Xk), cont(f2, Xk)) ∈ L̄p[xk] if c = FAIL then
4 return(FAIL)

5 f1p = pp(f1, Xk) and f2p = pp(f2, Xk) if f1p = FAIL or f2p = FAIL then
6 return(FAIL)

7 Γ := gcd(lc(f1p , Xk), lc(f2p , Xk)) ∈ L̄p[xk] if Γ = FAIL then
8 return(FAIL)

9 while true do
10 Take a new random evaluation point, j ∈ Zp, which is not lc-bad.

F1j := f1p(x1, . . . , xk−1, xk = j) and F2j := f2p(x1, . . . , xk−1, xk = j)
Gj := PGCD(F1j , F2j , p) ∈ L̄p[x1, . . . , xk−1] // lc(Gj) = 1 in lex

order with x1 > x2 > . . . > xk−1

11 if Gj = FAIL then
12 return(FAIL)

13 lm := lm(Gj , Xk) // in lex order with x1 > x2 > . . . > xk−1

14 Γj := Γ (j) ∈ Zp

15 gj := Γj · Gj // Solve the leading coefficient problem

16 if prod = 1 or lm < least then
// First iteration or all the previous evaluation points were

unlucky.

17 least, H, prod := lm, gj , xk − j

18 else
19 if lm > least then

// j is an unlucky evaluation point

20 Go back to step 12.

21 else if lm = least then
// Interpolate xk in the gcd H incrementally

22 Vj := prod(xk = j)−1 · (gj − H(xk = j)) H := H + Vj · prod
prod := prod · (xk − j)

23 if deg(prod, xk) > deg(H, xk) + 1 then
24 H := pp(H, Xk)

// Test if H is the gcd of f1 and f2.
25 Choose b2, . . . , bk ∈ Zp at random such that lc(H)(x1, b2, . . . , bk) �= 0

A, B, C := f1(x1, b2, . . . , bk), f2(x1, b2, . . . , bk), H(x1, b2, . . . , bk) if C | A
and C | B then

26 return(c · H)

For k > 1 algorithm PGCD recursively computes monic images of the gcd in
L̄p[x1, . . . , xk−1]. Let β1, . . . , βj ∈ Zp be the evaluation points chosen by PGCD.

12 M. Ansari and M. Monagan

To recover the leading coefficient of g in xk, we follow Brown [2] and scale by
Γ (xk) = gcd(lc(f1,Xk), lc(f2,Xk)) evaluated at the current evaluation point
xk = βj . Thus, after interpolating the gcd H we have lc(H,Xk) = Γ (xk).

The interpolation of xk in PGCD lines 27–29 is based on the Newton form
for H, namely, H = V1 + V2(xk − β1) + · · · + Vj

∏j−1
i=1 (xk − βi) where Vi ∈

L̄p[x1, . . . , xk−1] for 1 ≤ i ≤ j. To compute the new H from the previous H we
need only compute Vj .

In the final phase of PGCD, we need to verify whether the primitive part
of H is the gcd of pp(f1,Xk) and pp(f2,Xk). To do this, we reduce the poly-
nomials f1, f2, and H to univariate polynomials in L̄p[x1] by evaluating them
at x2 = b2, . . . , xk = bk, where b2, . . . , bk are chosen at random from Zp until
lc(H)(x1, b1, . . . , bk) �= 0. Then, we check if the evaluated H divides the eval-
uated f1 and f2. If this is the case, then H is the gcd of f1 and f2 with high
probability. Hence, PGCD is a Monte Carlo algorithm. Alternatively, if we do
the division test in L̄p[x1, . . . , xk] rather than in L̄p[x1], then PGCD would be a
Las Vegas algorithm. However, in this case, the complexity of PGCD would be
dominated by the cost of the divisions in L̄p[x1, . . . , xk].

3.2 MGCD

The MGCD algorithm, as presented in Algorithm 3, is a Monte Carlo algorithm
for computing the monic g = gcd(f1, f2) where f1, f2 ∈ L[x1, . . . , xk]. MGCD
begins with a preprocessing step where the input polynomials, f1, f2, and the
minimal polynomials M1, . . . ,Mn are replaced with their semi-associates. Let φp

denote the modular homomorphism, that is, φp(f) = f mod p. MGCD chooses
a prime p and applies φp to map the coefficients in L to Lp. Subsequently,
it employs the isomorphism φγ to convert the polynomials over Lp to their
corresponding polynomials over L̄p. Then MGCD calls PGCD to find the monic
gcd in L̄p[x1, . . . , xk]. Let Gp be the output of PGCD. If Gp = FAIL, either p is
a zero-divisor prime or the PGCD algorithm encounters a zero-divisor evaluation
point. In both cases, the algorithm goes back to step 4 to choose a new prime.
In step 14, Gp ∈ L̄p[x1, . . . , xk] will be converted to its corresponding polynomial
over Lp. Applying Theorem 2, MGCD just keeps the gcd images Gp with the
least leading monomial for Chinese remaindering. For instance, if Gpi

is the
output of PGCD at the ith iteration, and if lm(Gpi

) > lm(Gpi−1), then pi is an
unlucky prime and we simply ignore its result Gpi

and choose another prime.
After Chinese remaindering, MGCD employs rational number reconstruction

(RNR) [9,18] to recover the coefficients of the potential gcd in L. Failure in the
RNR call means the product of the primes is not large enough to recover the
rational coefficients. If RNR does not fail, then we follow the same strategy as
in PGCD to verify if H could be the gcd of f1 and f2 or not.

Remark 3. For the efficiency of the MGCD algorithm, it is necessary to apply φp

before φγ . This eliminates expression swell in Q.

Computing the GCDs of Multivariate Polynomials 13

Algorithm 3: MGCD
Input: f1, f2 ∈ L[x1, . . . , xk] where L = Q[z1, . . . , zn]/〈M1(z1), . . . , Mn(zn)〉
Output: gcd(f1, f2)

1 M := 1

2 f1 := f̌1 and f2 := f̌2 // Clear fractions

3 while true do
4 Choose a new random prime p, that is not, lc-bad.
5 Choose C1, . . . , Cn−1 ∈ [1, p) at random and set γ = z1 +

∑n
i=2 Ci−1zi

6 Call Algorithm 1 with inputs [φp(M̌1), . . . , φp(M̌n)], Zp and φp(γ) to
compute M(z), A, and A−1

7 if Algorithm 1 fails then
8 Go back to step 4

// Apply Algorithm 2 to get the monic gcd over L̄p

9 Gp = PGCD(φγ(φp(f1)), φγ(φp(f2))) ∈ L̄p[x1, . . . , xk]
10 if Gp= FAIL then

// p is a zero-divisor prime or PGCD has encountered a

zero-divisor evaluation point.

11 Go back to step 4.

12 if deg(Gp) = 0 then
13 return(1)

// Convert Gp ∈ L̄p to its corresponding polynomial over Lp

14 Gp := φ−1
γ (Gp)

15 lm := lm(Gp) w.r.t lexicographic order with x1 > x2 . . . > xk

16 if M = 1 or lm < least // First iteration or all the previous

primes were unlucky.

17 then
18 G, least, M := Gp, lm, p

19 else
20 if lm = least then
21 Using CRT, compute G′ ≡ G mod M and G′ ≡ Gp mod p
22 set G = G′ and M = M · p

23 else if lm > least then
// p is an unlucky prime

24 Go back to step 4

25 H := Rational Number Reconstruction of G mod M
26 if H �= FAIL then
27 Choose a new prime q and b2, . . . , bn ∈ Zq at random such that

lc(H)(x1, b2, . . . , bk) �= 0
28 A, B, C := f1(x1, b2, . . . , bk), f2(x1, b2, . . . , bk), H(x1, b2, . . . , bk)

// A, B, C are polynomials in Lq[x1]
29 if C | A and C | B then
30 return(H)

14 M. Ansari and M. Monagan

In step 4 of the Algorithm 3, we choose a prime to reduce inputs modulo it.
However, not all the primes result in the successful reconstruction of the monic
gcd. We distinguish five types of primes in the following definition.

Definition 3. Let f1, f2 ∈ L[x1, . . . , xk] and p be a prime. We distinguish the
following cases:

– Lc-bad Prime: If p divides lc(f̌1) or any lc(M̌1(z1)), . . . , lc(M̌n(zn)), then
we call p an lc-bad prime.

– Det-bad Prime: If det(A) mod p = 0, where A is the coefficient matrix of
powers of γ obtained from the LAminpoly algorithm, then p is called a det-bad
prime.

– Zero-Divisor Prime: If p is neither an lc-bad nor a det-bad prime and the
PGCD algorithm fails for p, in steps 4, 6, 8, 10, 31, then p is called a zero-
divisor prime.

– Unlucky Prime: Let gp = gcd(φp(f̌1), φp(f̌2)). If lm(gp) > lm(gcd(f1, f2)),
then we call p an unlucky prime. Considering Theorem 2, the results of these
primes must be ignored.

– Good Prime: If prime p is not an lc-bad, det-bad, unlucky, or zero-divisor
prime, we define it as a good prime.

Theorem 4. Let f1, f2 ∈ L[x1, . . . , xk] and g be the monic gcd(f1, f2). If p is a
good prime and the monic gcd(φp(f1), φp(f2)), gp, exists, then gp = φp(g).

Proof. If p is good then p is not lc-bad so we may apply Theorem 2 with R = L
and R′ = Lp so lm(gp) ≥ lm(g). But p is not unlucky so lm(gp) = lm(g). By part
(ii) of Theorem 2 we have gp = φp(g) as required.

Example 9. Let L = Q[z, w]/〈z2−2, w2−3〉, and f1 = (x+w)(5x+2w+z)xw and
f2 = (x + w)(5x + 9w + z) be polynomials in L[x]. By inspection, gcd(f1, f2) =
(x + w). In this example p = 5 is an lc-bad prime, p = 7 is an unlucky prime,
and p = 3 is a zero-divisor prime since w2 − 3 mod 3 = w2.

4 Complexity

Let H(f) denote the height of f ∈ L[x1, . . . , xk] which is the magnitude of
the largest integer coefficient of f̌ . Let #f denote the number of terms of f .
Let f1, f2 ∈ L[x1, · · · , xk] and g be the monic gcd(f1, f2). The quantities involved
in the running time of the MGCD algorithm are as follows:

– N is the number of good primes needed to reconstruct the monic gcd g
– Tf = max(#f1,#f2) and Tg = #g
– M = log maxn

i=1 H(m̌i) and C = log max(H(f̌1),H(f̌2)).
– D = maxk

i=1 max(deg(f1, xi),deg(f2, xi)) and d = [L : Q].

We assume that multiplication and inverses in L̄p cost O(d2) as our implemen-
tation currently uses classical quadratic polynomial arithmetic.

Computing the GCDs of Multivariate Polynomials 15

Theorem 5. The expected time complexity of our MGCD algorithm is

O(N(M + CTf)d + Nd2(d + Tf + Tg) + Nd2Dk+1 + N2dTg)

Proof. In the MGCD algorithm, the most dominant operations are as follows:

1. Modular homomorphism: The MGCD algorithm reduces the minimal
polynomials M̌1, . . . , M̌n and the input polynomials f̌1 and f̌2 mod a prime.
For N primes this costs O(N(M + CTf)d).

2. φγ isomorphism: The time complexity of building the matrix A is O(d3),
and the running time complexity of applying φγ to the Tf non-zero terms of
f1 and f2 for N primes is O(Nd2Tf). Additionally, let Gp be the output of
the PGCD algorithm in step 9. The time complexity of calling φ−1

γ for Gp in
step 14 for N primes is O(Nd2Tg).

3. PGCD: Brown’s PGCD algorithm [2] does O(Dk+1) arithmetic operations in
Zp. Accordingly, our PGCD algorithm does O(Dk+1) arithmetic operations
in L̄p each of which costs O(d2). Overall, our PGCD costs O(d2Dk+1). The
dominating step is the O(Dk−1) calls to the monic Euclidean algorithm in
L̄p[x1] each of which does O(D2) arithmetic operations in L̄p.

4. CRT and RNR: Reconstructing O(dTg) rational coefficients in step 21 and
25 costs O(N2) each hence O(N2dTg) in total.

The theorem follows by adding the four costs explained above.

Remark 4. Theorem 5 describes the cost of our implementation of algorithms
MGCD and PGCD. We are currently working on replacing Brown’s dense inter-
polation with a sparse interpolation approach. In the case where we interpolate
g (when lc(g, x1) = gcd(lc(f1, x1), lc(f2, x1))), the number of calls to the monic
Euclidean algorithm in L̄p[x1] is reduced from O(Dk−1) to O(kDTg) using Zip-
pel’s algorithm from [19] and O(Tg) using Hu and Monagan’s algorithm [6]. The
latter is based on the work of Ben-Or and Tiwari [1] and others.

5 Implementation

We have implemented algorithms MGCD and PGCD in Maple [10]. We use
the recursive dense data structure from [17] to represent elements of L =
Q(α1, · · · , αn) and polynomials in L[x1, . . . , xk]. See Fateman [5] for a com-
parison of the recursive dense data structure with other sparse polynomial data
structures. The rpoly command below converts from Maple’s polynomial repre-
sentation to the recursive dense representation. For usability, this representation
is automatically converted back to Maple’s polynomial representation for display.
In Maple [1, 2, 3] is a Maple lists which is a read only array.

> f:=rpoly(2*x^2+3*x*y^2,[x,y]);

f := 2x2 + 3xy2

16 M. Ansari and M. Monagan

> lprint(f); # print the actual data value

POLY NOMIAL([0, [x, y], []], [0, [0, 0, 3], [2]])

As it is shown, the POLYNOMIAL data structure has two fields.

– The first, [0, [x, y], []], is the ring. The first entry, 0, indicates the characteristic
of the ring. The second entry, [x, y], is the list of variables. The third entry
[], which is an empty list, indicates that there are no extensions.

– The second field, [0, [0, 0, 3], [2]], represents the polynomial recursively. To do
so, it uses the fact that Q[x1, . . . , xk] ∼= Q[xk][xk−1] . . . [x1]. In this example,
x is the main variable and rpoly maps f ∈ Q[x, y] to f := 2x2 + (3y2)x ∈
Q[y][x]. Consequently, the entries 0, [0, 0, 3], [2] are the coefficients of x0, x1,
and x2, and correspond to 0, 0 + 0 · y + 3y2, and 2 respectively.

Example 10. Let L = Q[z, w]/〈z2 − 2, w2 − 3〉 and f = 2x3 + 3xy2 − 5wz + 4.
In the following we construct the field of L, the polynomial f ∈ L[x, y], and
compute φ7(f)(x, 2).

> L:=rring([z,w],[z^2-2,w^2-3]); # L=Q[z,w]/<z^2-2,w^2-3>

L := [0, [z, w], [[[−2], 0, [1]], [−3, 0, 1]]]

> Lxy:=rring(L,[x,y]); # Construct L[x,y] from L

Lxy := [0, [x, y, z, w], [[[−2], 0, [1]], [−3, 0, 1]]]

> f:=rpoly(2*x^3+3*x*y^2-5*z*w+2*z^2,Lxy);

f := 2x3 + 3xy2 − 5wz + 4 mod < z2 − 2, w2 − 3 >

> getpoly(f); # The recursive dense representation of f

[[[[4], [0,−5]]], [0, 0, [[3]]], 0, [[[2]]]]

> g := phirpoly(f,7); # Apply the modular homomorphism with p = 7

g := 2x3 + 3xy2 + 2wz + 4 mod 〈z2 + 5, w2 + 4, 7〉
> h := evalrpoly(g,y=2);

h := 2x3 + 2wz + 5x + 4 mod 〈z2 + 5, w2 + 4, 7〉
> getring(h); # The ring Lp[x]

[7, [x, z, w], [[[5], 0, [1]], [4, 0, 1]]]

> getpoly(h);

[[[4], [0, 2]], [[5]], 0, [[2]]]

Computing the GCDs of Multivariate Polynomials 17

5.1 Maple Implementation

In this section, we demonstrate an application of our MGCD algorithm. First,
we construct the field of L = Q[z, w]/〈z2 − 2, w2 − 3〉. Then, we convert two
polynomials f1 and f2 from Maple’s native representation to the recursive dense
representation and compute their gcd using MGCD. MGCD prints all the used
primes, lc-bad, zero-divisor, unlucky, and det-bad primes. We tell MGCD to start
with a very small prime, 5, for illustrative purposes only. By default MGCD uses
31 bit primes. This is because for polynomial arithmetic in Zp[x], Maple uses
hardware integer arithmetic for Zp for primes less than 231.5, otherwise Maple
uses GMP’s multi-precision integer arithmetic which is a lot slower.

> L:=rring([z,w],[z^2-2,w^2-3]):
> Lxy:=rring(L,[x,y]):
> f1:=rpoly((w+5)*(x+y+w)*(14*x+2*w+z),Lxy);

f1 := (14w + 70) x2 + ((14w + 70) y + (w + 5) z + 80w + 48) x

+ ((w + 5) z + 10w + 6) y + (5w + 3) z + 6w + 30 mod 〈w2 − 3, z2 − 2〉

> f2:=rpoly((x+y+w)*(x+2*w+z),Lxy);

f2 := x2 + (y + 3w + z)x + (2w + z) y + zw + 6 mod 〈w2 − 3, z2 − 2〉
> mgcd:=MGCD(f1,f2,5);

MGCD:prime=5
gamma:=4*w+z and M(z)=z^4+1
p=5 is a ZD prime ZD=z^2+3
MGCD:prime=7
p=7 is an lc-bad prime
MGCD:prime=11
gamma:=3*w+z and M(z)=z^4+8*z^2+9
p=11 is a ZD prime ZD=z^2+8*z+3
MGCD:prime=13
gamma:=z+10*w and M(z)=z^4+7*z^2+1
MGCD:prime=17
gamma:=z+13*w and M(z)=z^4+2*z^2+8
p=17 and All the previous primes were unlucky
MGCD:prime=19
gamma:=z+17*w and M(z)=z^4+10*z^2+5

mgcd := x + y + w mod 〈z2 − 2, w2 − 3〉

18 M. Ansari and M. Monagan

5.2 Benchmark

We give one benchmark for gcd computations in L[x, y] where the number field
L = Q(

√
2,

√
3,

√
5,

√
7,

√
11) has degree 32. In the Table 1, the input polyno-

mials f1 and f2 have degree d in x and y and their gcd g has degree 2 in x
and y.

Table 1. Computation timings in CPU seconds for gcds in the ring L[x, y] where
L = Q(

√
2,

√
3,

√
5,

√
7,

√
11).

d New MGCD Old MGCD

time LAMP PGCD time PGCD

4 0.119 0.023 0.027 0.114 0.100

6 0.137 0.016 0.034 0.184 0.156

8 0.217 0.018 0.045 0.330 0.244

10 0.252 0.018 0.087 0.479 0.400

12 0.352 0.018 0.078 0.714 0.511

16 0.599 0.017 0.129 1.244 1.008

20 0.767 0.017 0.161 1.965 1.643

24 1.103 0.019 0.220 2.896 2.342

28 1.890 0.023 0.358 4.487 3.897

32 2.002 0.020 0.392 5.416 4.454

36 2.461 0.017 0.595 6.944 5.883

40 3.298 0.019 0.772 9.492 7.960

Column New MGCD is the time for our new algorithm using a primitive
element and computing over L̄p. Column Old MGCD is the time for MGCD
if we do not use a primitive element and compute over Lp. Column LAMP is
the time spent in Algorithm LAminpoly. For both algorithms, column PGCD
is the time spent in Algorithm PGCD. The speedup gained by using φγ is seen
by comparing columns PGCD. These preliminary timings show a speedup of
PGCD of a factor of 10 which is promising. The benchmark was run on an Intel
Gold 6342 CPU running at 2.8 GHz. We used Maple 2022. For the details of the
benchmark, see http://www.cecm.sfu.ca/∼mmonagan/code/MGCD .

6 Conclusion and Future Work

Let f1, f2 ∈ Q(α1, · · · , αn)[x1, . . . , xn], and let g be their monic gcd. We have
designed a multivariate modular gcd algorithm, MGCD, to compute g. For
each prime p chosen by MGCD, to speed up the coefficient arithmetic in
Q(α1, · · · , αn) mod p, we use a primitive element γ modulo p.

http://www.cecm.sfu.ca/~mmonagan/code/MGCD

Computing the GCDs of Multivariate Polynomials 19

For future work, we need to compute the probability that MGCD obtains
an incorrect answer, as well as the probabilities of getting unlucky, zero-divisor,
lc-bad primes, and evaluation points. For arithmetic in L̄p = Zp[z]/〈M(z)〉,
our Maple implementation currently uses classical O(d2) algorithms where
d = deg(M). For large d, we can speed up multiplication in L̄p by using fast
multiplication and division for Zp[z].

Acknowledgment. This work was supported by Maplesoft and the National Science
and Engineering Research Council (NSERC) of Canada.

References

1. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polyno-
mial interpolation. In: Proceedings of STOC 1988, pp. 301–309. ACM (1988)

2. Brown, W.S.: On Euclid’s algorithm and the computation of polynomial greatest
common divisors. J. ACM 18, 478–504 (1971)

3. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. J. ACM
14, 128–142 (1967)

4. Encarnación, M.J.: Computing GCDs of polynomials over algebraic number fields.
J. Symb. Comput. 20, 299–313 (1995)

5. Fateman, R.: Comparing the speed of programs for sparse polynomial multiplica-
tion. SIGSAM Bull. 37(1), 4–15 (2003)

6. Jiaxiong, H., Monagan, M.: A fast parallel sparse polynomial GCD algorithm.
Symb. Comput. 105(1), 28–63 (2021)

7. Langemyr, L., McCallum, S.: The computation of polynomial greatest common
divisors over an algebraic number field. J. Symb. Comput. 8(5), 429–448 (1989)

8. Lin, X., Maza, M.M., Schost, É.: Fast arithmetic for triangular sets: from theory
to practice. J. Symb. Comput. 44(7), 891–907 (2009)

9. Monagan, M.: Maximal quotient rational reconstruction: an almost optimal algo-
rithm for rational reconstruction. In: Proceedings of ISSAC 2004, pp. 243–249.
ACM (2004)

10. Monagan, M., et al.: Maple 8 Introductory Programming Guide (2003)
11. Poteaux, A., Schost, É.: Modular composition modulo triangular sets and applica-

tions. Comput. Complex. 22, 463–516 (2013)
12. Poteaux, A., Schost, É.: On the complexity of computing with zero-dimensional

triangular sets. J. Symb. Comput. 50, 110–138 (2013)
13. Smedley, T.: A new modular algorithm for computation of algebraic number poly-

nomial GCDs. In: Proceedings of ISSAC 1989, pp. 91–94. ACM (1989)
14. Trager, B.M.: Algebraic factoring and rational function integration. In: Proceedings

of the Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC
1976, pp. 219–226. ACM (1976)

15. van der Hoeven, J., Lecerf, G.: Accelerated tower arithmetic. J. Complex. 55,
101402 (2019)

16. van der Hoeven, J., Lecerf, G.: Directed evaluation. J. Complex. 60, 101498 (2020)
17. van Hoeij, M., Monagan, M.: A modular GCD algorithm over number fields pre-

sented with multiple extensions. In: Proceedings of the 2002 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2002, pp. 109–116. ACM
(2002)

20 M. Ansari and M. Monagan

18. Wang, P., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational numbers.
SIGSAM Bull. 16(2), 2–3 (1982)

19. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73

https://doi.org/10.1007/3-540-09519-5_73

Generating Elementary Integrable
Expressions

Rashid Barket1 , Matthew England1(B) , and Jürgen Gerhard2

1 Coventry University, Coventry, UK
{barketr,matthew.england}@coventry.ac.uk

2 Maplesoft, Waterloo, Canada
jgerhard@maplesoft.com

Abstract. There has been an increasing number of applications of
machine learning to the field of Computer Algebra in recent years, includ-
ing to the prominent sub-field of Symbolic Integration. However, machine
learning models require an abundance of data for them to be successful
and there exist few benchmarks on the scale required. While methods to
generate new data already exist, they are flawed in several ways which
may lead to bias in machine learning models trained upon them. In this
paper, we describe how to use the Risch Algorithm for symbolic integra-
tion to create a dataset of elementary integrable expressions. Further, we
show that data generated this way alleviates some of the flaws found in
earlier methods.

Keywords: Computer algebra · Symbolic integration · Machine
learning · Data generation

1 Introduction

1.1 Machine Learning and Computer Algebra

A key feature of a Computer Algebra System (CAS) is its exactness: when
prompted for a calculation, a CAS is expected to return the exact answer (or no
answer if the calculation is not feasible), as opposed to an approximation to an
answer. Due to this restraint, it seems as though Machine Learning (ML) and
Computer Algebra do not work well together due to the probabilistic nature of
ML: no matter how well-trained an ML model is, it can never guarantee perfect
predictions. However, rather than trying to use ML to predict a calculation in
place of a CAS, we can instead use ML in conjunction with a CAS to help opti-
mize and/or select the symbolic computation algorithms implemented within.
Such a combination of ML and symbolic computation preserves the unique selling
point of a CAS. The earliest examples of such ML for CAS optimisation known to
the authors are: Hunag et al. [3] which used a support vector machine to choose
the variable ordering for cylindrical algebraic decomposition; and Kuipers et al.
[5] which used a Monte-Carlo tree search to find the representation of polyno-
mials that are most efficient to evaluate.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 21–38, 2023.
https://doi.org/10.1007/978-3-031-41724-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_2&domain=pdf
http://orcid.org/0000-0002-9104-4281
http://orcid.org/0000-0001-5729-3420
https://doi.org/10.1007/978-3-031-41724-5_2

22 R. Barket et al.

1.2 Symbolic Integration Meta-Algorithms

Our interest is the integrate function of a CAS, which takes an integrand and
produces an integral (either definite or indefinite). In most CASs, and certainly in
Maple where the authors focus their work, the integrate function is essentially a
meta-algorithm: it accepts a mathematical expression as an input, does some pre-
processing on the expression, and then passes the processed problem to one of a
selection of available sub-algorithms. In Maple, the function will try a list of such
sub-algorithms in turn until one is found that can integrate the expression, in
some cases first querying a guard as to whether that sub-algorithm is applicable
to the input in question. If none of these methods work, the function simply
returns the input back as an unevaluated integral (implying that Maple cannot
integrate it).

Currently, as of Maple 2023, these sub-algorithms for int are tried in the
same pre-set order for every input, and int outputs the answer of the first sub-
algorithm that works. There are currently 11 sub-algorithms to choose from. The
list of sub-algorithms is available on the Maple help page1 for the function.

The first motivation to use ML is to improve the integrate function’s effi-
ciency. A similar approach was taken by Simpson et al. [9] for the resultant
function (see Definition 3 later). After applying a neural network to classify
which algorithm (of four possible choices) to use, the authors test their model
on a random sample of several thousand inputs. Maple’s existing meta-algorithm
took 37,783 s to finish its computations, whereas the sub-algorithm choices from
the neural network took only 12,097 s – a significant improvement with a 68%
decrease in runtime. There were also gains against Mathematica with a 49%
decrease in runtime. We hope to achieve similar results with the integrate func-
tion.

The second motivation to use ML is in optimizing the output. To gain a better
understanding of this, consider what happens in Fig. 1 when you integrate the
function f(x) = x sin(x) in Maple and ask it to try all possible sub-algorithms.
When f(x) is integrated, there are three successful outputs that come from
three different sub-algorithms. Each output is expressed differently but are all
mathematically correct and equivalent. We wish to choose the simplest output,
which in this case is

∫
f(x) = sin(x) − x cos(x).

1.3 Motivation

The goal of the data generation method described in this paper is to be able
to produce many integrable expressions to train a ML model on. There is not
enough benchmark/real-world data to train a model on, hence why these data
generation methods are needed. There does currently exists data generation
methods. Lample & Charton [6] produce three methods for developing integrable
expressions: FWD, BWD, and IBP (described in detail in Sect. 2.1). These meth-
ods have drawbacks which the data generation method we propose will handle.

1 www.maplesoft.com/support/help/maple/view.aspx?path=int%2fmethods+.

www.maplesoft.com/support/help/maple/view.aspx?path=int%2fmethods+

Generating Elementary Integrable Expressions 23

Fig. 1. The output of
∫
x sin(x) from each successful sub-algorithm. The main out-

put chosen in this case is the shortest expression chosen by an ML model, from sub-
algorithm 2.

The FWD method, which generates a random expression and calculates its
integral, tends to produce short integrands and long integrals. Furthermore,
the FWD method will typically not have an elementary integral. This is espe-
cially evident for longer randomly generated expressions and/or expressions with
denominators. This means the FWD method will take numerous attempts before
finding a valid (integrand, integral) pair. The BWD method, which generates an
expression and calculates its derivative, has the opposite problem of long inte-
grands and short integrals. The IBP, or integration by parts method, produces
expressions that are too similar (meaning that the expressions only differ by
their coefficients) which is discussed in Sect. 2.1. Hence, a dataset of (integrand,
integral) pairs is needed for this method to work.

We propose generating (integrand, integral) pairs based on the Risch Algo-
rithm. For one, the method will always produce an elementary integrable expres-
sion, something FWD cannot guarantee. This data generation method also does
not have the issue of varied lengths between the integrands and integrals because
of various parameters available from the data generation method, alleviating the
length issues in the FWD and BWD methods. Lastly, this method does not
require a dataset of known integrals and also does not produce expressions too
similar to the rest of the dataset, which IBP suffers from. Data generation based
on the Risch algorithm produces a variety of non-trivial, unique expressions
that current data generation methods do not offer. Further discussion of current
methods and the new method presented are discussed in Sects. 2.1 and 5.

1.4 Contributions and Plan

This paper will focus on how to generate sufficient data for our planned applica-
tion of ML. In Sect. 2, we overview the existing methods of data generation for
the problem that we found in the literature, explaining why they are not suit-
able alone for our needs. Then in Sect. 3, we review the classical Risch algorithm
which will be the basis of our new data generation method introduced in Sect. 4
which identifies constructive conditions for an integrand to be elementary inte-

24 R. Barket et al.

grable. We finish in Sect. 5 with a discussion on the advantages of this approach
over the existing methods and what future steps still need to be undertaken.

2 Existing Datasets and Data Generation Methods

An important aspect of a successful ML model is that it is generalisable. That
is, the model should perform well on all inputs it receives and not just inputs
that look very similar to the training data. There are existing datasets and data
generation methods for symbolic integration. However, each comes with its own
sets of limitations that prevent an ML model trained on them to generalise well
on all real-world data.

2.1 Deep Learning for Symbolic Mathematics

In their paper (with the same name of this subsection), Lample and Charton [6]
experiment on using deep learning to perform the tasks of symbolic integration
and solving ordinary differential equations directly. To achieve this, they used a
seq2seq model − a neural network architecture used in natural language process-
ing for mapping sequences of tokens (usually words to another such sequence)
− in the form of a transformer2.

There are different classes of integrals that can be output based on its com-
plexity.

Definition 1 (Elementary Function). A function, that is, defined as the
sum, product, root, or composition of finitely many polynomial, rational, trigono-
metric, hyperbolic, and exponential functions (and their inverses) is considered
elementary.

An elementary function that, when integrated, produces an elementary func-
tion is said to be elementary integrable. Most expressions one encounters in a
first-year calculus class will be elementary integrable. An example of an expres-
sion that is not elementary integrable is f(x) = 1

log x . When f(x) is integrated,
the result usually produced is li(x), a non-elementary function known as the
Logarithmic Integral special function3.

The authors of [6] created a novel way of generating data to train a trans-
former. Expressions are viewed as trees, where the internal nodes are operators
or function names (+, sin, etc.), and the leaves are constants and variables as
exemplified in Fig. 2. An algorithm is developed to generate trees of varying
length so that these expressions can be used for training the model. They added
structure to the trees in the form of restriction on internal nodes and leaves such
that every random tree created is a valid symbolic expression.

They treated this as a supervised learning problem, generated the following
three methods to take such symbolic expressions and produced labelled training
pairs:
2 the same model which is the basis for ChatGPT.
3 https://dlmf.nist.gov/6.2.

https://dlmf.nist.gov/6.2

Generating Elementary Integrable Expressions 25

– FWD: Integrate an expression f through a CAS to get F and add the pair
(f, F) to the dataset.

– BWD: Differentiate an expression f to get f ′ and add the pair (f ′, f) to the
dataset.

– IBP: Given two expressions f and g, calculate f ′ and g′. If
∫

f ′g is known
then the following holds (integration-by-parts):

∫
fg′ = fg −

∫
f ′g.

Thus we add the pair (fg′, fg − ∫
f ′g) to the dataset.

While these three methods can generate plenty of elementary integrable
expressions, they come with many limitations that can cause an ML model to
overfit on the training data. For both the FWD and BWD methods, they tend
to create expressions with patterns in the length. For FWD, the integrand is
on average shorter than the resulting integral. BWD suffers from the opposite
problem: long integrands and short integrals. Individually, these cause problems
when training the transformer as the model is fitted too closely to these pat-
terns, leading to overfitting. For example, the results from Lample & Charton
show that when a model is trained on only FWD data and tested on BWD data,
it only achieves an accuracy of 17.2%, and similar results are shown for training
on BWD and testing on FWD. They of course train the model on all three data
generation methods, but it is not clear if this addresses all the overfitting or
simply encodes both sets of patterns.

Fig. 2. Tree representation for 3x2 + cos(2x) − 1 and 2 + 3 × (5 + 2) from [6]. With
some restrictions as to how the trees are constructed, there is a one-to-one mapping
between an expression and its tree.

26 R. Barket et al.

Furthermore, these data generation methods suffer from producing expres-
sions that are far too similar between the training and testing data. Piotrowski
et al. [7] perform a simple analysis of substituting all coefficients with a sym-
bolic CONST token. They examine how many expressions show up in the training
set that are also the same in the testing set modulo constant and sign. For the
FWD, BWD, and IBP methods, the percentage of unique data were 35%, 75%
and 24%, respectively. A key principle of machine learning is that the testing
data should be independent of the training data but this casts doubt on whether
this is possible through the partition of a dataset containing such similar exam-
ples. This may be considered an example of ML “data leakage”. Data leakage is
a significant issue in machine learning. It happens when the training data we
use contains the information that the model is trying to predict. This can result
in unpredictable and poor predictions once the model is deployed.

2.2 Other Existing Datasets

Currently, there are not that many (public) benchmark datasets in the field of
symbolic integration, or indeed Computer Algebra more broadly. Maplesoft, the
developer of Maple, has an in-house test suite of integrable functions that they
use to ensure software quality is maintained when making changes to int. There
are 47,745 examples in the Maple test suite. Of these, only 8,174 had elementary
integrands with elementary integrals which we currently study. We provide some
information from the remaining (integrand, integral) pairs in Table 1.

Table 1. A summary of the (integrand, integral) pairs in the Maple test suite (total
8174). We only kept functions with elementary integrands which had elementary inte-
grals

Integrand Integral

Average Number of Operands 2.59 6.52
Largest Number of Operands 16 300
Is a Polynomial 996 1221
Average Polynomial Degree 1.80 2.79
Largest Polynomial Degree 199 200
Contains Exponentials 932 1072
Contains Logarithms 756 3136
Contains Trig or Arctrig functions 2080 2512
Contains Radicals 2024 2274
Contains Complex Numbers 558 685

This number of examples would not be sufficient to train a deep learning
model; for reference, Lample and Charton [6] have access to 88 million exam-
ples in Deep Learning for symbolic Mathematics. One great property about the
Maple dataset is that it was partly developed as a continuous response to feature
requests and bug reports that users would make when using int in Maple. Thus,

Generating Elementary Integrable Expressions 27

it can be said to represent the range of examples of interest to Maple users. Using
this dataset to evaluate any models trained would help provide evidence that the
model generalizes well for our planned use.

Rich et al. [8] developed a Rule-Based Integrator, more commonly known as
RUBI. RUBI integrates an expression by applying a collection of symbolic inte-
gration rules in a systematic way. Along with RUBI, the authors have compiled
a dataset of 72,000 integration problems. There are 9 different main categories
of functions that exist in the dataset with many examples coming from various
textbooks and papers. Similar to the Maple test suite, this dataset would be
good for evaluating a model but due to the size of the dataset, it would not be
sufficient for training a model, at least not a deep learning based model. We thus
use the rest of our paper to describe a new method.

3 The Risch Algorithm

The data generation method in this paper is based on the Risch algorithm. To
explain the entire Risch algorithm would need us to introduce a lot of theory
before even getting to the algorithm explanation. Instead, we will focus on the
key parts of the algorithm to help the reader get an intuitive understanding of
how it works and refer to [2] or [4, Ch. 11, 12] for a more detailed explanation.

For the Risch algorithm to work, we allow elementary extensions over a dif-
ferential field K. A differential field is a field with the derivative operator D
such that D(a + b) = D(a) + D(b) and D(ab) = aD(b) + bD(a). A constant c is
defined as Dc = 0. We usually write the derivative Da = a′.

Let G be an extension field of a differential field F . For an element θ ∈ G,
We say that G is an elementary extension of F if θ is one of the following:

1. logarithmic: θ = log(u), u ∈ F .
2. exponential: θ = eu, u ∈ F .
3. algebraic: ∃p ∈ F such that p(θ) = 0.

An arbitrary amount of extensions are allowed. Rather than using G to rep-
resent the extension, we instead denote Fn−1 = K(θ1, · · · , θn−1) as the previous
differential field and Fn = Fn−1(θn) as the current elementary extension. Typi-
cally, we have K = Q(x) as the base differential field.

This paper will focus solely on logarithmic and exponential extensions.
We now introduce Liouville’s theorem that states exactly what the form of the
integral will be, if it exists.

Theorem 1 (Liouville’s Theorem: Thm 5.5.1 in [2]). Let K be a differen-
tial field and f ∈ K. Let E be an elementary extension of K. If

∫
f ∈ E exists,

then there are v0, · · · , vm ∈ K and constants c0, · · · , cm ∈ K such that

∫
f = v0 +

m∑

i=0

ci log(vi).

28 R. Barket et al.

Liouville’s Theorem gives an explicit representation for the integral of f if it is
elementary integrable. The Risch algorithm and the subsequent algorithms for
computing an integral are based on Liouville’s Theorem. The Risch algorithm
will divide the input into two different parts. Then, the integral for both parts
will take the form of Theorem 1.
Risch Algorithm (Chap. 12 in [4]): Let Fn = Fn−1(θn) be a differential field
of characteristic 0 where θn is elementary over Fn−1, and θ′

i �= 0, 1 ≤ i ≤ n. For
any rational function f = g/b with respect to θn, you can divide the numerator
with remainder g = Pb + R where degθn

(R) < degθn
(b), and have f = P + R

b .
If f is elementary integrable, it follows that

∫
f =

∫
P +

∫
R
b . We call P the

polynomial part and R
b the rational part. We study these two parts for the rest of

the section and then develop ways to generate elementary integrable expressions
from both these parts in Sect. 4.

3.1 The Rational Part

Suppose we wish to integrate R
b , R, b ∈ F = K(x)(θ1, · · · , θn). There are two

algorithms used to compute this integral: Hermite Reduction and the Trager-
Rothstein (TR) method. Which algorithm is used depends on whether the
denominator b is square-free or not.

Definition 2 (Square-free). We say a ∈ K[x] is square-free if a has no
repeated factors i.e. �b ∈ K[x] such that deg(b) > 0 and b2|a. Equivalently,
gcd(a, a′) = 1

When our denominator is not square-free, we use Hermite Reduction.

Theorem 2 (Hermite Reduction: Thm 5.3.1 in [2]). Suppose we want to
integrate

∫
R
b , where R,b ∈ F [θ] and degθ(R) < degθ(b). Use the square-free

factorization b = b1b
2
2 · · · bk

k where bi is square-free. Let T = b/bk
k. Let σ and τ

be the solutions to the diophantine equation

σb′
kT + τbk = R.

Then Hermite reduction tells us that
∫

R

b
=

−σ(k − 1)
bk−1
k

+
∫

τ + σ′
k−1T
b
bk

.

The main part to notice is that the resulting integral on the right hand side
of the equation has a denominator, that is, at least one degree less than the
input denominator (because we divide b with its highest degree factor bk). This
algorithm is used recursively until the resulting integral’s denominator has degree
one, allowing us to conclude that it is square-free. When this point is reached
then the TR-method is used on the remaining integral. This method makes use
of the following tool from computational algebra.

Definition 3 (Resultant). Suppose we have the following two polynomials
with roots αi and βj , αm �= 0 �= βn:

Generating Elementary Integrable Expressions 29

A = a0 + · · · + amxm = am

m∏

i=1

(x − αi),

B = b0 + · · · + bnxn = bn

n∏

j=1

(x − βj).

Then their resultant is defined as resx(A,B) = (−1)mnbm
n an

m

n∏

j=1

m∏

i=1

(βj − αi).

This implies that

1. res(A,B) = ±res(B,A)
2. res(A,BC) = res(A,B)res(A,C)

for all nonzero polynomials A,B,C.

Note that the resultant can be calculated without finding the roots of each
polynomial by using Sylvester’s Matrix described on page 285 of [4].

Given an integral with square free denominator
∫

R
b , we define the Trager-

Rothstein resultant polynomial (TR-resultant) as resθ(R−zb′, b). We will forego
the details of the rest of the algorithm and focus on a key theorem involving the
TR-resultant polynomial.

Theorem 3 (Thm 12.7 in [4]). Suppose we are integrating
∫ R(x)

b(x) , where R(x),

b(x) ∈ F [x] and b(x) is square-free. Then we have that
∫ R(x)

b(x) is elementary
integrable if and only if all the roots in z of the TR-resultant are constants.

Theorem 3 is the key theorem that tells us whether a rational expression will be
elementary integrable or not, either in application to itself if the denominator is
square free, or in application to the final integral from Hermite reduction if not.
This theorem will also be the key theorem to create the data generation method
for rational expressions.

3.2 The Polynomial Part

Suppose we are integrating P , a polynomial in F [θ]. We again only focus on
logarithmic and exponential extensions from our field. There are two different
procedures to integrate P based on if the extension is logarithmic or exponential.

Logarithmic Extension: Let P = p0+p1θ+· · ·+plθ
m where θ = log(u), u, pi ∈

Fn−1. It can then be shown that

∫
p0 + · · · + pmθm = q0 + · · · + qm+1θ

m+1 +
k∑

i=1

ci log(vi), (1)

where qm+1 ∈ K, qi ∈ Fn−1(1 ≤ i ≤ m), cj ∈ K, vj ∈ Fn−1(1 ≤ j ≤ k). The idea
behind integrating P is to differentiate Eq. (1) and then equate the coefficients
of like powers of θ to solve for each qi. The details of this can be found in [4,
page 540].

30 R. Barket et al.

Exponential Extension: The exponential case is similar to the logarithmic
case, however a couple of adjustments need to be made. The first adjustment is
that polynomial exponents are allowed to be negative for exponential extensions.
Thus, P = p−lθ

−l + · · · + p0 + · · · + pmθm and Eq. (1) becomes:

∫
p−lθ

−l+ · · ·+p0+ · · ·+pmθm = q−lθ
−l+ · · ·+q0+ · · ·+qmθm+

k∑

i=1

ci log(vi).

(2)
Note that in Eq. (2), the answer has a highest degree of m instead of m+ 1.

4 Data Generation Based on the Risch Algorithm

In order to generate elementary integrable expressions, we will do what the Risch
algorithm does as an initial step: generate polynomial expressions and rational
expressions separately. Polynomial expressions and rational expressions can then
be combined together through the additive property of integrals. We first focus
our attention on the simpler case: the polynomial part. Then, we will show how
to generate rational expressions.

4.1 Polynomial Integrable Expressions

Generating polynomial expressions (in θ) that are elementary integrable requires
choosing the coefficients qi from Eq. (1) or (2) ourselves. We differentiate the
equation and equate coefficients of like powers of θ, resulting in a system of
differential equations. The randomly chosen qi’s are substituted into this system
to generate the integrable expression.

It turns out that this is no better than just using the BWD method, i.e., we
select a random polynomial in θ with random coefficients in Fn−1 and take its
derivative. This is not as general as it could be; one would also have to generate a
random integrable expression in the smaller field Fn−1. For the sake of simplicity,
we omit this step here, which could be done recursively or by using the BWD
method. We provide a small example of the BWD method for polynomials in θ
to show how the data is generated.

Example 1. Suppose we want to generate a degree 2 polynomial in Q(x)[θ] where
θ = ln(1x). The coefficients in θ must be in the previous field Q(x). For simplicity,
the logarithms in Eq. (1) are omitted. The following coefficients are generated
randomly:

– q0 = −7 + 8x + 2
x

– q1 = −5 + 4x − 6
x

– q2 = 1 + 2x

which results in the polynomial

P = (1 + 2x) ln
(
1
x

)2

+
(

−5 + 4x − 6
x

)

ln
(
1
x

)

− 7 + 8x +
2
x

.

Generating Elementary Integrable Expressions 31

When differentiated, we get

P ′ = 2 ln
(
1
x

)2

+
(

−2 (1 + 2x)
x

+ 4 +
6
x2

)

ln
(
1
x

)

− −5 + 4x − 6
x

x
+ 8 − 2

x2

and the pair (P ′, P) is added to our dataset.

4.2 Rational Integrable Expressions

As we will see in a moment, generating rational integrable expressions is more
complex than the polynomial case. We will introduce some strategies to generate
integrable expressions with square-free denominators (using the TR-method) as
well as non square-free denominators (using a combination of Hermite reduction
and the TR-method). Note that most of the examples shown here will be using
the extension θ = log(u) as this is the harder case to solve. However, extensions
with θ = eu will also appear in the dataset produced.

Square-Free Denominators: In the normal use of the TR-method, the input
is a rational elementary function R

b such that degθ(R) < degθ(b) and b is square-
free. The method then outputs the elementary integral of R

b , or fails if Theorem 3
does not hold. Our goal is to discover polynomials R, b ∈ F [θ] such that R

b is
guaranteed to be elementary integrable. The main idea behind the process is to
fulfill the conditions of Theorem 3 so that we know for sure that the expression
is elementary integrable. To accomplish this, the general outline is as follows.

1. Randomly generate the denominator b in its square-free factorization, and
keep that fixed.

2. Create a partial fraction decomposition where the denominators are all fac-
tors of b, and the numerators are polynomials in θ of degree 1 less than the
denominator, with symbolic coefficients.

3. Compute the TR-resultant.
4. The symbolic coefficients of R must be chosen in a way that ensures the roots

of the resultant are constant.
(a) If the resultant only has factors of degree 2 or less, solve directly for the

roots and set each root equal to a constant.
(b) Otherwise, the resultant has irreducible factors of degree 3 or higher.

Divide the resultant by the leading coefficient to make it monic. Then,
the symbolic coefficients must be chosen in such a way that each coefficient
of this is constant.

We first put our input into partial fraction form with symbolic coefficients
because when the resultant is calculated, the TR-resultant factors in a way
similar to how b factors (See Definition 3). We can see this with the following
example.

32 R. Barket et al.

Example 2. Let b = θ4 − 2θ3 − 2θ2 − 2θ − 3 where θ = log(x), F = Q(x)(log(x))
and we have only done a single extension so n = 1. We wish to discover a class
of numerators R so that R

b integrates.

– Note that b factors into b = (θ + 1)(θ − 3)(θ2 + 1).
– We create the partial fraction representation of our input:

a(x)
θ + 1

+
b(x)
θ − 3

+
c(x)θ + d(x)

θ2 + 1
,

where a, b, c, d ∈ Fn−1 = Q(x).
– The factored form of the TR-resultant of R

b is

−(a(x)x − z)(b(x)x − z)(c(x)2x2 − 4c(x)xz + d(x)2x − 2d(x)xz + xz2 + 4z2).

– Recall that by Theorem 3, we need the roots of the resultant to be constant.
Setting each factor of the resultant equal to a constant and solving for the
symbolic coefficients, we get that a(x) = C1

x , b(x) = C2
x , c(x) = C3

x , and
d(x) = C4

x for any C1, C2, C3, C4 ∈ Q.
– Therefore, R

b = C1
x(θ+1) + C2

x(θ−3) + C3θ+C4
x(θ2+1) is elementary integrable for any

choice of those constants. We find that:

∫
R

b
=

C3 log
(
log(x)2 + 1

)

2
+ C4 arctan(log(x))

+ C1 log(log(x) + 1) + C2 log(log(x) − 3) .

In Example 2, take note that the factored form of the resultant is similar to
the factored form of the denominator b: that is, the degree in z of each factor
of the resultant is the same as the degree in θ of each factor of b. As well, each
symbolic coefficient in the numerator of each partial fraction were also the same
unknowns that show up in each factor of the resultant.

Example 2 only had linear and quadratic irreducible factors. These are quite
easy to solve by just isolating the unknown or using the quadratic formula.
In general, degree 3 and higher irreducible factors in the resultant will be much
harder to solve. Trying to solve for the roots of an irreducible degree 3 resultant
means using the Cardano formula, which produces huge answers for the root.
We find that when trying to equate any of the roots to a constant and solving
for the conditions of R like in Example 2, the expression size blows up and the
solution starts to involve many radicals. Since radicals do not lie within our field,
the symbolic coefficients then need to be chosen in a way such that the radicals
disappear which adds an extra layer of complexity. The formulae size is even
worse in degree 4 and then there is not even any such formula in surds for higher
degree. So instead when the resultant has factors of degree higher than two, we
look at two alternative options: assume the numerator to be of a specific form or
analyse the resultant qualitatively to figure out the conditions of the numerator.
We show the former with the following example.

Generating Elementary Integrable Expressions 33

Example 3. Suppose θ = ln(x), F = Q(x)(ln(x)) and b = x(θ3 − x). Note that b
is square-free in F . The first step is to create a partial fraction decomposition
with denominator b and symbolic coefficients for the numerator. Let

R

b
=

a(x)θ2 + b(x)θ + c(x)
x(θ3 − x)

.

The TR-resultant is computed as
(−x3 − 27x2

)
z3 +

(
27x2a(x) + 9x2b(x) + 3x2c(x)

)
z2

+
(
−9x2a(x)2 − 3x2a(x) b(x) − 9xb(x) c(x) − 3xc(x)2

)
z

+ a(x)3 x2 + 3a(x) b(x) c(x)x − b(x)3 x + c(x)3 .

Finding the solution to the roots explicitly produces huge expressions for
a(x), b(x) and c(x) and involve radicals outside our field. Instead, we assume the
form of the symbolic coefficients to find a set of solutions. We will assume they
are quadratic polynomials (an arbitrary choice). Let

• a(x) = a2x
2 + a1x + a0,

• b(x) = b2x
2 + b1x + b0,

• c(x) = c2x
2 + c1x + c0,

for ai, bi, ci ∈ Q, 0 ≤ i ≤ 2. Since the resultant is cubic in z, it will have three
roots. First, substitute the assumed form of the three coefficients into the resul-
tant. Note the leading coefficient of the resultant is (−x3 − 27x2). Then, let our
resultant be equal to

(−x3 − 27x2)(z − r0)(z − r1)(z − r2), r1, r2, r3 ∈ Q.

Consider the equation formed by setting the TR-resultant computed earlier equal
to the form just above. Let us move the terms to one side so we have an expression
equal to 0. We may now solve for each coefficient of z to be 0 giving the following
solution

{a0 = 3c1 , a1 = 0, a2 = 0, b0 = 0, b1 = 0, b2 = 0,
c0 = 0, c1 = c1 , c2 = 0, r1 = c1 , r2 = c1 , r3 = c1}.

This can now be substituted into R to produce
∫

R

b
=

∫
3c1 ln(x)2 + c1x

x(ln(x)3 + x)
= c1 ln

(
ln(x)3 + x

)
.

In Example 3, we assumed a particular form for the symbolic coefficients
to find a solution. This is a quick way to find a set of solutions, however this

34 R. Barket et al.

does not mean we have found all the solutions like with the linear and quadratic
cases. Instead, we should try to fulfill the conditions of 4(b). That is, the symbolic
coefficients are chosen in a way such that all of the coefficients of the TR-resultant
are constant. To see why this is true, we give an informal proof.

Let the TR-resultant be f ∈ K[z]. We can assume f is monic because if it
were not, we will divide out the leading coefficient from the resultant to make f
monic. Let F be the algebraic closure of K(x), so that f ∈ F [z]. Factor f over F
to get f =

∏
i(z − ai), ai ∈ F . Each ai is a root of f . If we want the roots ai

to be constant, they should belong to the algebraic closure K̄. In that case, the
coefficients of f should also belong to K̄ because they are the polynomials of ai,
and they belong to K[x] because of how we defined f . Thus, they belong to
K̄ ∩ K[x] which is K. Therefore, f must have constant coefficients for the roots
to be constant.

Non Square-Free Denominators: When computing the elementary integral
of a rational function R

b , the first step is to check whether b is square free or not.
Similarly, what technique used to generate an elementary integrable expression
depends on whether the fixed denominator b starts as square-free or not. Let us
now assume b is not square-free, so the TR-method cannot be used currently. We
first set up the problem just as with the square-free case: put b in partial frac-
tion form and set symbolic coefficients for each partial fraction. The difference is
that before, we would invoke the TR-method. However, b is not square free yet.
Thus, we use Theorem 2, Hermite Reduction, recursively until we get a result-
ing integral whose denominator is square-free. Then, we use Theorem 3 just as
before to find the conditions on R that make the whole expression R

b elementary
integrable. The main benefit of non square-free denominators is that there will
be more choices of freedom in choosing the symbolic coefficients compared to
the square-free case. This is shown with the example below.

Example 4. Let θ = log(x) and F = Q(x)(log(x)). Let

b = θ3 + 2xθ2 + x2θ + θ2 + 2xθ + x2.

We wish to find all R ∈ F such that R
b is elementary integrable. As with The-

orem 2, we first compute the square-free factorization of b to find b = (θ +
1)(θ + x)2. The partial fraction representation in this case will be

R

b
=

a(x)
(θ + 1)

+
b(x)

(θ + x)
+

c(x)
(θ + x)2

and we wish to find a, b, c ∈ Fn−1 that makes the entire expression elementary
integrable. Since b is not square-free, one iteration of Hermite Reduction is done
to produce:
∫

R

b
= − c(x)x

(1 + x) (θ + x)

+

∫
(a(x) + b(x)) θ + a(x)x + b(x) +

(
(d

dx c(x))x
1+x + c(x)

1+x − c(x)x

(1+x)2

)

(θ + 1)

(θ + 1) (θ + x)
.

Generating Elementary Integrable Expressions 35

Let us focus on the resulting integral: the denominator is (θ+1)(θ+x) which
is now square-free. Thus, Hermite Reduction is no longer needed and instead,
the TR-method is used on it. When the resultant is calculated and the roots
of the TR-resultant are solved for (so that Theorem 3 is true), we get that the
distinct roots are:

{

xa(x) ,
x

((
d
dxc(x)

)
x2 + b(x)x2 +

(
d
dxc(x)

)
x + 2b(x)x + b(x) + c(x)

)

x3 + 3x2 + 3x + 1

}

.

Setting the first root to a constant is trivial to solve: a(x) = C1
x , C1 ∈ Q. The sec-

ond root condition contains the unknowns b(x) and c(x). This can also be set
equal to a constant and then solved for b(x) obtaining

b(x) =
− (

d
dxc(x)

)
x2 − c(x)x + C2

x
,C2 ∈ Q.

This means c(x) can be any function from Fn−1. Let us demonstrate this by
trying some values that are arbitrarily chosen:
• C1 = 2 =⇒ a(x) = 2

x

• C2 = 4 and c(x) = x2 + 1
5x =⇒ b(x) = −10x4+5x3+60x2+61x+20

5x(1+x)2

• R
b = 2

x(ln(x)+1) +
−10x4+5x3+60x2+61x+20

5x(1+x)2(ln(x)+x)
+ x2+ 1

5x
(ln(x)+x)2

• Then when we integrate R
b , we get:

∫
R

b
= − 5x3 + 1

5 (1 + x) (ln(x) + x)
+ 2 ln(ln(x) + 1) + 4 ln(ln(x) + x) .

Example 4 gives us a much stronger freedom of choice because unlike with the
square-free case, we actually get that our coefficient c(x) can be any function in
Fn−1. This effectively means that we have three choices of freedom: one for a(x)
(the choice of the constant C1), one for b(x) (the choice of C2), and one for c(x)
(any expression in the previous field). In contrast, the only choices of freedom
we had in the square-free case were the constants. Additionally, Example 4 had
one functional degree of freedom c(x) since one factor from the denominator b
was quadratic. In general, we will have more functional degrees of freedom for
higher degree factors in the denominator.

5 Discussion

The Risch algorithm is an integral part of any CAS (pun intended). This data
generation method discusses how to create expressions that are guaranteed to be
elementary integrable by using the Risch algorithm. To understand the benefit
of this data generation method, we create a simple dataset of 10,000 (integrand,
integral) pairs. To compare against our dataset, we take a sample of 10,000
data points from each of the FWD, BWD, and IBP datasets. Of the 10,000
we created, a third comes from generating polynomial expressions in Sect. 4.1,
another third comes from generating rational expressions from Sect. 4.2, and the
final third comes from combining the two sections together (similar to how the
Risch algorithm separates the two parts from each other).

36 R. Barket et al.

5.1 Risch Data Generation Benefits

One criticism of the data generation method in [6] was that there were pat-
terns within how the expressions are made, specifically in the FWD and BWD
datasets. Recall from Sect. 2, the BWD method produced long integrands and
short integrals whereas the FWD had the opposite problem. We take a closer
look by examining the lengths of the integrands and integrals in their testing
datasets. Note that the authors represent the mathematical expression in prefix
(or normal Polish) notation. The length is then just the number of tokens from
this representation. The lengths of the (integrand, integral) pairs are shown for
all three data methods in Fig. 3.

Fig. 3. Lengths of the Integrands and Integrals from the three test datasets in [6] as
well as our generated dataset.

Based on Fig. 3, we can see quite the difference in lengths from the FWD
and BWD methods. Suppose we consider an (integrand, integral) pair close in
length if the absolute value between the length of the integrand and integral
is less than 10. For the FWD and BWD methods, only 29% and 9% of pairs
were considered close respectively. The IBP and Risch methods do considerably

Generating Elementary Integrable Expressions 37

better at generating close pairs with 65% and 86% of pairs being considered
close respectively. As mentioned earlier in Sect. 2, the presence of these patterns
mean that there is a risk of bias in an ML model trained on such data. Recall
also from Sect. 2 how much of the data only differed by the choice of constants
in the expression, making IBP a weaker generation method.

However, because of the choices of freedom we have in making our integrable
expressions from the Risch algorithm, we can alleviate the two problems shown.
This is true for both the polynomial expressions, the rational expressions, and
a combination of the two. The only patterns present in our dataset are those
required for the expression to be elementary integrable.

With the dataset generated, Fig. 3d shows the lengths of the produced
(integrand, integral) pairs through the Risch algorithm in prefix notation.
Figure 3d shows that the lengths between the integrands and integrals are much
more evenly distributed, fixing the problem of the FWD and BWD datasets.
Recall that the FWD method is also not able to generate (integrand, integral
pairs) often, leading to a slow data generation method. Our method guarantees
integrands that are elementary integrable 100% of the time, making it more
efficient. Furthermore, we do the same analysis of examining the dataset by sub-
stituting the integer coefficients with a CONST token, and find that 97% of the
data remains unique. The reason it did not reach 100% is due to data generated
in Sect. 4.2, the rational square-free case. The choices of freedom in this case is
usually only the choice of the constant. Some randomly generated denomina-
tors happened to be the same through chance and since the solutions only differ
by a constant, they end up being the same when replaced with a CONST token.
If wanted, these can be removed from the dataset.

5.2 Future Work

We have presented a novel method of creating elementary integrable functions.
However, there is much work that could still be done. Bronstein [2], when
first introducing the Risch algorithm, separates the algorithm into four differ-
ent cases: logarithmic transcendental, exponential transcendental, pure algebraic
and mixed algebraic/transcendental cases. So far, we have only explored the first
two cases. It would be beneficial to understand the latter two cases as radicals
are something that should not be excluded from the dataset. To understand the
latter two cases, one can read [1] or [10]. As with the present paper, the idea
would be to find the conditions in the polynomial and rational cases that make
the entire expression elementary integrable.

Furthermore, the current data generation method proposed can be further
explored in a number of ways. For one, towers of extensions (i.e. Fn, n ≥ 2)
have only been considered for polynomial expressions thus far. This can also be
done with the rational expression generation method to create a greater variety
of elementary integrable expressions. Also, working with irreducible cubic and
higher degree polynomials (in θ) for the rational case should further be examined.
We have shown that when we assume the form of the numerator (Example 3), we
can find solutions. However, it would be desirable to find all possible numerators

38 R. Barket et al.

that make the entire expression integrable. The key to this would be examining
the TR-resultant and instead of explicitly solving for the roots, qualitatively
analysing the resultant and figuring out the conditions of the generic coefficients
would help overcome the computational cost of explicitly solving for the solution
as discussed at the end of Sect. 4.2.

Acknowledgements. The authors would like to thank James Davenport and Gregory
Sankaran for helpful discussion on conditions around constant roots of polynomials.
They would also like to thank John May for help understanding Maple’s integration
command and testing data and the anonymous reviewers for their comments which
improved the paper.

Matthew England is supported by EPSRC Project EP/T015748/1, Pushing Back
the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition (DEWCAD).
Rashid Barket is supported on a scholarship provided by Maplesoft and Coventry
University.

References

1. Bronstein, M.: Integration of elementary functions. J. Symb. Comput. 9(2), 117–
173 (1990). https://doi.org/10.1016/S0747-7171(08)80027-2

2. Bronstein, M.: Symbolic Integration I: Transcendental Functions, Algorithms and
Computation in Mathematics, vol. 1. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-662-03386-9

3. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the
variable ordering for cylindrical algebraic decomposition. In: Watt, S.M., Daven-
port, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI),
vol. 8543, pp. 92–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08434-3_8

4. Geddes, K.O., Czapor, S.R. Labahn, G.: Algorithms for Computer Algebra.
Springer, New York (1992). https://doi.org/10.1007/b102438

5. Kuipers, J., Ueda, T., Vermaseren, J.: Code optimization in FORM. Comput. Phys.
Commun. 189, 1–19 (2015). https://doi.org/10.1016/j.cpc.2014.08.008

6. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: Proceed-
ings of the International Conference on Learning Representations (ICLR) (2020).
https://doi.org/10.48550/arxiv.1912.01412

7. Piotrowski, B., Urban, J., Brown, C.E., Kaliszyk, C.: Can neural networks learn
symbolic rewriting? In: Proceedings of the Artificial Intelligence and Theorem
Proving (AITP) (2019). https://doi.org/10.48550/arXiv.1911.04873

8. Rich, A., Scheibe, P., Abbasi, N.: Rule-based integration: an extensive system of
symbolic integration rules. J. Open Source Softw. 3(32), 1073 (2018). https://doi.
org/10.21105/joss.01073

9. Simpson, M.C., Yi, Q., Kalita, J.: Automatic algorithm selection in computa-
tional software using machine learning. In: 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), pp. 355–360 (2016). https://doi.
org/10.1109/ICMLA.2016.0064

10. Trager, B.M.: Integration of algebraic functions. Ph.D. thesis, Massachusetts Insti-
tute of Technology (1984). https://dspace.mit.edu/handle/1721.1/15391

https://doi.org/10.1016/S0747-7171(08)80027-2
https://doi.org/10.1007/978-3-662-03386-9
https://doi.org/10.1007/978-3-662-03386-9
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/b102438
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.48550/arxiv.1912.01412
https://doi.org/10.48550/arXiv.1911.04873
https://doi.org/10.21105/joss.01073
https://doi.org/10.21105/joss.01073
https://doi.org/10.1109/ICMLA.2016.0064
https://doi.org/10.1109/ICMLA.2016.0064
https://dspace.mit.edu/handle/1721.1/15391

How to Automatise Proofs of Operator
Statements: Moore–Penrose Inverse;

A Case Study

Klara Bernauer1, Clemens Hofstadler2(B), and Georg Regensburger2

1 Johannes Kepler University Linz, Linz, Austria
2 Institute of Mathematics, University of Kassel, Kassel, Germany
{clemens.hofstadler,regensburger}@mathematik.uni-kassel.de

Abstract. We describe a recently developed algebraic framework for
proving first-order statements about linear operators by computations
with noncommutative polynomials. Furthermore, we present our new
SageMath package operator_gb, which offers functionality for automa-
tising such computations. We aim to provide a practical understanding of
our approach and the software through examples, while also explaining
the completeness of the method in the sense that it allows to find alge-
braic proofs for every true first-order operator statement. We illustrate
the capability of the framework in combination with our software by a
case study on statements about the Moore-Penrose inverse, including
classical facts and recent results, presented in an online notebook.

Keywords: Linear operators · First-order statements · Semi-decision
procedure · Noncommutative polynomials

1 Introduction

In its section on the Moore-Penrose inverse, the Handbook of Linear Algebra [20,
Sec. I.5.7] lists, besides the defining identities of the Moore-Penrose inverse (1),
a number of classical facts:

1. Every A ∈ C
m×n has a unique pseudo-inverse A†.

2. If A ∈ R
m×n, then A† is real.

3. If A ∈ C
m×n [. . .] has a full rank decomposition A = BC [. . .], then A† can

be evaluated using A† = C∗(B∗AC∗)−1B∗.
4. If A ∈ C

m×n [. . .] has an SVD A = UΣV ∗, then its pseudo-inverse is A† =
V Σ†U∗ [. . .].
...

The second author was supported by the Austrian Science Fund (FWF): P32301.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 39–68, 2023.
https://doi.org/10.1007/978-3-031-41724-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_3

40 K. Bernauer et al.

Now, imagine the following task: Prove as many of these facts as possible,
using only the defining identities and no additional references. Trying to do this
by hand is a non-trivial task for any non-expert. However, a recently devel-
oped framework [17,29] allows to reduce proving such statements to computa-
tions with noncommutative polynomials, which can be fully automated, using
for example our newly developed software package operator_gb. These poly-
nomial computations yield algebraic proofs that are not only valid for matrices
but for any setting where the statement can be formulated (e.g., linear operators
on Hilbert spaces, homomorphisms of modules, C∗-algebras, rings, etc.). Based
on this, starting only from the defining equations, the first author was able to
prove a majority of the facts on the Moore-Penrose inverse in the Handbook in
a fully automated way in form of her Bachelor’s thesis [1]. Various examples of
automated proofs of matrix and operator identities based on computations with
noncommutative polynomials are also given in [30,31].

In this paper, we describe this approach of using computer algebra to automa-
tise the process of proving first-order statements of matrices or linear operators
like the ones listed above. The goal of the paper is twofold. Firstly, readers will be
able to gain a practical understanding of the framework by reading Sect. 2 and 3,
learning how to translate operator statements into polynomial computations and
how to use the software to compute algebraic proofs. In Sect. 2, we also discuss
previous work on using noncommutative polynomials for proving operator iden-
tities. Secondly, we explain that the framework allows to prove every universally
true first-order operator statement using the semi-decision Procedure 1, showing
that the approach is complete in this sense.

In particular, in Sect. 5, we give a self-contained description of the framework
developed in [17], with a particular focus on applicability. We focus on the simple,
yet in practice most common, case of so-called ∀∃-statements, which drastically
reduces the complexity of the presentation compared to [17] where arbitrary
first-order formulas are treated. We note that this is in fact no restriction as
any first-order formula can be transformed into an equivalent ∀∃-formula using
the concept of Herbrandisation and Ackermann’s reduction, as detailed in [17,
Sec. 2.2, 2.3].

We also present our new SageMath package operator_gb1, which provides
functionality for Gröbner basis computations in the free algebra, similar to [21].
In addition, our package offers dedicated methods for automatising the proofs of
operator statements. Most importantly, it provides methods for finding elements
of specific form in polynomial ideals [16]. This not only allows to automatically
prove existential statements, but also to effectively model many properties of
operators (e.g., conditions on ranges and kernels, injectivity and surjectivity,
cancellability properties, etc.). For further details, we refer to Sect. 4, and to
Appendix A for the corresponding commands.

Finally, in Sect. 6, we illustrate the capability of the framework in combi-
nation with our software in form of a case study on statements regarding the
Moore-Penrose inverse. We have successfully automated the proofs of a variety

1 Available at https://github.com/ClemensHofstadler/operator_gb.

https://github.com/ClemensHofstadler/operator_gb

How to Automatise Proofs of Operator Statements 41

of theorems, ranging from the classical facts in the Handbook [20, Sec. I.5.7]
over important characterisations of the reverse order law for the Moore-Penrose
inverse [6] to very recent improvements of Hartwig’s triple reverse order law [5]
that were found with the help of our software. We have assembled a Jupyter
notebook containing the automated proofs of all statements, which is available
at https://cocalc.com/georeg/Moore-Penrose-case-study/notebook.

2 From Operator Identities to Noncommutative
Polynomials

In 1920, E.H. Moore [23] generalised the notion of the inverse of a matrix from
nonsingular square matrices to all, also rectangular, matrices. This generalised
inverse, by Moore also called “general reciprocal”, was later rediscovered by Roger
Penrose [26], leading to the now commonly used name Moore-Penrose inverse.

Moore established, among other main properties, existence and uniqueness of
his generalised inverse and justified its application to linear equations. However,
Moore’s work was mostly overlooked during his lifetime due to his peculiar and
complicated notations, which made his results inaccessible for all but very dedi-
cated readers. In contrast, Penrose characterised this generalised inverse by four
simple identities, yielding the following definition: The Moore-Penrose inverse of
a complex matrix A is the unique matrix B satisfying the four Penrose identities

ABA = A, BAB = B, B∗A∗ = AB, A∗B∗ = BA, (1)

where P ∗ denotes the Hermitian adjoint of a complex matrix P . Typically, the
Moore-Penrose inverse of A is denoted by A†.

Using the Penrose identities, and their adjoint versions that follow, makes
basic computations involving the Moore-Penrose inverse very simple. For exam-
ple, uniqueness can be showed as follows. If B and C both satisfy (1), then

B = BAB = BACAB = BACB∗A∗ = BC∗A∗B∗A∗

= BC∗A∗ = BAC = A∗B∗C = A∗C∗A∗B∗C
= A∗C∗BAC = CABAC = CAC = C.

(2)

At the end of the last century, people realised that matrix identities, or
more generally identities of linear operators, can be modelled by noncommuta-
tive polynomials, and that computations like (2) can be automated using alge-
braic computations involving such polynomials. For example, in the pioneering
work [12,13] polynomial techniques were used to simplify matrix identities in
linear systems theory, and in [11] similar methods allowed to discover operator
identities and to solve matrix equations.

Noncommutative polynomials are elements in a free (associative) algebra
R〈X〉 with coefficients in a commutative ring R with unity and noncommuta-
tive indeterminates in a (typically finite) set X. Monomials are given by words
over X, that is elements in the free monoid 〈X〉, and multiplication is given by

https://cocalc.com/georeg/Moore-Penrose-case-study/notebook

42 K. Bernauer et al.

concatenation of words. In particular, indeterminates still commute with coeffi-
cients, but not with each other.

Intuitively, a matrix or operator identity B = C, or equivalently B − C = 0,
can be identified with the polynomial f(b, c) = b − c. More generally, identities
of composite operators can be translated into noncommutative polynomials by
introducing a noncommutative indeterminate for each basic non-zero operator,
and by uniformly replacing each operator by the respective indeterminate in the
difference of the left and right hand side of each identity. Potentially present zero
operators are simply replaced by the zero in R〈X〉.

For example, to express the Penrose identities (1), we introduce indetermi-
nates a, b, a∗, b∗ to represent the matrices A,B, and their adjoints, and form the
polynomials

aba − a, bab − b, b∗a∗ − ab, a∗b∗ − ba. (3)

With this, the computation (2) corresponds to the polynomial statement

b − c = − (bab − b) − b(aca − a)b − bac(b∗a∗ − ab) − b(c∗a∗ − ac)b∗a∗

− bc∗(a∗b∗a∗ − a∗) + b(c∗a∗ − ac) − (a∗b∗ − ba)c − (a∗c∗a∗ − a∗)b∗c
+ a∗c∗(a∗b∗ − ba)c + (a∗c∗ − ca)bac + c(aba − a)c + (cac − c).

(4)

This shows that b − c can be represented as a two-sided linear combination of
the polynomials encoding that B and C satisfy the Penrose identities for A.

Remark 1. To model the involution ∗ on the polynomial level, we introduce an
additional indeterminate for the adjoint of each basic operator and simplify all
operator expressions using the following identities before translating them into
polynomials.

(P + Q)∗ = P ∗ + Q∗, (PQ)∗ = Q∗P ∗, (P ∗)∗ = P. (5)

Furthermore, whenever an identity P = Q holds, then so does the adjoint iden-
tity P ∗ = Q∗, and these additional identities have to be translated into poly-
nomials as well. Thus, to express that B is the Moore-Penrose inverse of A on
the polynomial level, we have to add to (3) the polynomials corresponding to
the adjoint identities. Since the last two Penrose identities are self-adjoint, this
yields the two additional elements a∗b∗a∗ − a∗ and b∗a∗b∗ − b∗. We note that
these additional polynomials can be essential for proofs and also appear in (4).

Algebraically, the relation (4) means that the polynomial b−c lies in the (two-
sided) ideal generated by the polynomials encoding that B and C are Moore-
Penrose inverses of A. We call such a representation of an ideal element in terms
of the ideal’s generators a cofactor representation.

It is always the case, that, if an operator identity follows from given identities
by arithmetic operations with operators (i.e., addition, composition, and scal-
ing), then the polynomial corresponding to this identity is contained in the ideal.

How to Automatise Proofs of Operator Statements 43

However, not all polynomials that lie in the ideal correspond to valid operator
identities, because, in contrast to computations with actual operators, compu-
tations with polynomials are not restricted and all sums and products can be
formed. Obviously, elements of the ideal that do not comply with the formats of
the matrices (or, more generally, the domains and codomains of the operators)
cannot correspond to identities of operators. Thus, a priori, when proving an
operator identity by verifying ideal membership like in (4), one has to ensure
that every term appearing in a cofactor representation respects the restrictions
imposed by the operators.

Algorithmically, ideal membership of commutative polynomials can be
decided by Buchberger’s algorithm [3] computing a Gröbner basis of the ideal.
In contrast, ideal membership of noncommutative polynomials is only semi-
decidable in general. This is a consequence of the undecidability of the word
problem. More precisely, verifying ideal membership of noncommutative poly-
nomials is always possible, using a noncommutative analog of Buchberger’s algo-
rithm [22,24] to enumerate a (possibly infinite) Gröbner basis. However, disprov-
ing ideal membership is generally not possible. Nevertheless, if a polynomial can
be verified to lie in an ideal, then, as a byproduct, a cofactor representation of
the polynomial in terms of the generators can be obtained. This representation
serves as a certificate for the ideal membership and can be checked independently.

Our SageMath software package operator_gb allows to certify ideal mem-
bership of noncommutative polynomials by computing cofactor representations.
We illustrate its usage to compute the representation given in (4). To generate
the polynomials encoding the Penrose identities, the package provides the com-
mand pinv. Furthermore, it allows to automatically add to a set of polynomials
the corresponding adjoint elements, using the command add_adj.

load the package
sage: from operator_gb import *

create free algebra
sage: F.<a, b, c, a_adj, b_adj, c_adj> = FreeAlgebra(QQ)

generate Moore-Penrose equations for b and c
sage: Pinv_b = pinv(a, b, a_adj, b_adj)
sage: Pinv_c = pinv(a, c, a_adj, c_adj)
add the corresponding adjoint statements
sage: assumptions = add_adj(Pinv_b + Pinv_c)

form a noncommutative ideal
sage: I = NCIdeal(assumptions)

verify ideal membership of the claim
sage: proof = I.ideal_membership(b-c)

print the found cofactor representation

44 K. Bernauer et al.

sage: pretty_print_proof(proof, assumptions)

b-c = (-c + c*a*c) + b*c_adj*(-a_adj + a_adj*b_adj*a_adj)

- b*a*c*(-a*b + b_adj*a_adj) - b*(-a + a*c*a)*b

+ b*(-a*c + c_adj*a_adj) - b*(-a*c + c_adj*a_adj)*b_adj*a_adj

- (-b + b*a*b) + (-c*a + a_adj*c_adj)*b*a*c

- (-a_adj + a_adj*c_adj*a_adj)*b_adj*c + c*(-a + a*b*a)*c

- (-b*a + a_adj*b_adj)*c + a_adj*c_adj*(-b*a + a_adj*b_adj)*c

Remark 2. The computed representation is equal to (4) up to a reordering of
summands.

The correctness of a computed cofactor representation can be verified easily
by expanding it, which only requires basic polynomial arithmetic. Our package
allows to do this using the command expand_cofactors.

reusing the assumptions and proof from above
sage: expand_cofactors(proof, assumptions)

b - c

The pioneering work mentioned above exploited the fact that the opera-
tions used in the noncommutative version of Buchberger’s algorithm respect the
restrictions imposed by domains and codomains of operators, cf. [12, Thm. 25]
or [31, Thm. 1]. Thus, using Buchberger’s algorithm, proving an operator identity
can be reduced to verifying ideal membership of the corresponding polynomial.

Only recently it was observed that in fact any verification of ideal member-
ship, even one that does not comply with the domains and codomains of the
operators, allows to deduce a correct statement about linear operators, provided
that all initial polynomials correspond to actual operator identities [29]. This
implies that the verification of the ideal membership can be done completely
independently of the operator context.

In particular, this also means that the cofactor representation given in (4)
immediately yields the uniqueness statement of the Moore-Penrose inverse of a
complex matrix. Moreover, since the polynomial computation is independent of
the concrete operator context, this representation also proves a corresponding
statement in every setting where it can be formulated. For example, we imme-
diately obtain an analogous result for bounded linear operators between Hilbert
spaces or for elements in C∗-algebras. In fact, the most general setting, that is,
covered by the polynomial computation is that of morphisms in a preadditive
semicategory.

How to Automatise Proofs of Operator Statements 45

Definition 1. A semicategory C (also called semigroupoid) consists of

– a class Ob(C) of objects;
– for every two objects U, V ∈ Ob(C), a set Mor(U, V) of morphisms from U

to V ; for A ∈ Mor(U, V), we also write A : U → V ;
– for every three objects U, V,W ∈ Ob(C), a binary operation ◦ : Mor(V,W) ×

Mor(U, V) → Mor(U,W) called composition of morphisms, which is associa-
tive, that is, if A : V → W , B : U → V , C : T → U , then A ◦ (B ◦ C) =
(A ◦ B) ◦ C;

A semicategory C is called preadditive if every set Mor(U, V) is an abelian group
such that composition of morphisms is bilinear, that is,

A ◦ (B + C) = (A ◦ B) + (A ◦ C) and (A + B) ◦ C = (A ◦ C) + (B ◦ C),

where + is the group operation.

A semicategory can be thought of as a collection of objects, linked by arrows
(the morphisms) that can be composed associatively. Preadditive semicategories
have the additional property that arrows with the same start and end can be
added, yielding an abelian group structure, that is, compatible with the composi-
tion of morphisms. Formally, a (preadditive) semicategory is just a (preadditive)
category without identity morphisms. For further information, see for exam-
ple [8, Sec. 2] or [33, App. B]. We also note that the words object and morphism
do not imply anything about the nature of these things. Intuitively, however,
one can think of objects as sets and of morphisms as maps between those sets.

We list some classical examples of preadditive semicategories.

Example 1. In the following, R denotes a ring (not necessarily with 1).

1. The ring R can be considered as a preadditive semicategory with only one
object, and thus, only a single set of morphisms consisting of the underlying
abelian group of R. Composition of morphisms is given by the ring multipli-
cation.

2. The set Mat(R) of matrices with entries in R can be considered as a preaddi-
tive category by taking as objects the sets Rn for all positive natural numbers
n and letting Mor(Rn, Rm) = Rm×n. Composition is given by matrix multi-
plication.

3. The category R-Mod of left modules over R is a preadditive semicategory.
Here, objects are left R-modules and morphisms are module homomorphisms
between left R-modules. As a special case, we see that K-Vect, the category
of vector spaces over a field K, is a preadditive semicategory. Note that the
objects in these categories form proper classes and not sets.

4. More generally, every preadditive category is a preadditive semicategory, thus
so are, in particular, abelian categories.

Using preadditive semicategories, we can summarise the discussion of this
section in the following theorem. In Sect. 5, we provide with Theorem 4 a theo-
retical justification for this conclusion. In the following, we identify each identity

46 K. Bernauer et al.

of morphisms P = Q with the noncommutative polynomial p−q using the trans-
lation described above. Furthermore, for noncommutative polynomials f1, . . . , fr,
we denote by (f1, . . . , fr) the (two-sided) ideal generated by f1, . . . , fr, consisting
of all two-sided linear combinations of the fi’s with polynomials as coefficients.

Theorem 1. An identity S = T of morphisms in a preadditive semicategory
follows from other identities A1 = B1, . . . , An = Bn if and only if the ideal
membership of noncommutative polynomials s − t ∈ (a1 − b1, . . . , an − bn) holds
in the free algebra Z〈X〉.

Thus, based on Theorem 1 and the representation (4), we can conclude this
section with the following result concerning the uniqueness of the Moore-Penrose
inverse. To this end, we recall that a semicategory is involutive if it is equipped
with an involution ∗ that sends every morphism A : U → V to A∗ : V → U and
that satisfies (5).

Theorem 2. Let A be a morphism in an involutive preadditive semicategory.
If there exist morphisms B and C satisfying (1), then B = C.

Thus far, our software package only supports computations in the free alge-
bra Q〈X〉. To ensure that the computations are also valid over Z〈X〉, as required
by Theorem 1, one has to check whether all coefficients that appear in the com-
puted cofactor representation are in fact integers. The following routine certify
builds a user-friendly wrapper around the ideal membership verification that also
includes these checks. It raises a warning if non-integer coefficients appear in the
computed cofactor representation.

sage: F.<a, b, c, a_adj, b_adj, c_adj> = FreeAlgebra(QQ)
sage: Pinv_b = pinv(a, b, a_adj, b_adj)
sage: Pinv_c = pinv(a, c, a_adj, c_adj)
sage: assumptions = add_adj(Pinv_b + Pinv_c)
sage: proof = certify(assumptions, b-c)
Computing a (partial) Gröbner basis and reducing the claim...

Done! Ideal membership of all claims could be verified!

Remark 3. We note that the computed proof is the same as that computed by
the ideal_membership routine before.

In many situations, all involved identities are of the form P = Q, where P
and Q are compositions of basic operators or zero, as, for example, in case of the
Penrose identities (1). In such cases, all involved polynomials are binomials of
the form p− q, where p and q are monomials in 〈X〉 or zero. For these scenarios,
certify is guaranteed to compute a cofactor representation with integer coef-
ficients, provided that one exists. However, for arbitrary polynomials, it could
happen that certify only discovers a cofactor representation with rational coef-
ficients, even if an alternative representation with integer coefficients exists. We
note, however, that in all the examples we have considered thus far, this situation
has never occurred.

How to Automatise Proofs of Operator Statements 47

3 Treating Existential Statements

Theorem 1 provides a method to verify whether an operator identity follows
from other identities by checking ideal membership of noncommutative polyno-
mials. Although this technique is useful for proving various non-trivial state-
ments, it still has its limitations. Specifically, it does not cover existential state-
ments that arise, for example, when solving operator equations. This type of
statement requires a slightly extended approach and cannot be proven solely
by checking ideal membership. In this section, we discuss how to treat exis-
tential statements. As an illustrative example, we consider the existence of the
Moore-Penrose inverse for complex matrices. More precisely, we show that every
complex matrix has a Moore-Penrose inverse, using polynomial computations.

In more general settings (e.g., bounded linear operators on Hilbert spaces, C∗-
algebras), not every element has a Moore-Penrose inverse. Therefore, a crucial
step in proving the desired statement is to characterise the fact that we are
considering (complex) matrices. In particular, since the polynomial framework
can only deal with identities of operators, we have to express this fact in terms
of identities. One possibility to do this is via the singular value decomposition,
which implies that, for every complex matrix A, there exist matrices P,Q with

PA∗A = A and AA∗Q = A. (6)

For example, if A = UΣV ∗ is a singular value decomposition of A, then P =
Q = UΣ+V ∗ is a possible choice, where Σ+ is obtained from Σ by replacing
the non-zero diagonal entries by their reciprocals, and thus satisfies ΣΣ+Σ∗ =
Σ∗Σ+Σ = Σ. Using this property of matrices, we can formalise the statement
we consider in this section as the first-order formula

∀A,P,Q ∃B : (PA∗A = A ∧ AA∗Q = A) =⇒ (1).

In the polynomial framework, the only possibility to prove such an existen-
tial statement is to derive an explicit expression for the existentially quantified
objects. Once such an explicit expression is obtained, the statement can be refor-
mulated as a basic statement concerning identities, to which Theorem 1 can be
applied.

For our example, this means finding an expression for B in terms of A,P,Q
and their adjoints, modulo the assumptions (6). Algebraically, this corresponds
to finding a polynomial b = b(a, p, q, a∗, p∗, q∗) such that the elements (3), rep-
resenting the Penrose identities (1), lie in the ideal generated by

pa∗a − a, aa∗q − a, a∗ap∗ − a∗, q∗aa∗ − a∗, (7)

encoding the assumptions (6).
Through the use of Gröbner basis techniques, it is possible to employ a

number of heuristics for finding elements of certain form in noncommutative
polynomial ideals [16]. One such approach involves introducing a dummy variable
x for the desired expression b. With this dummy variable, we consider the ideal I

48 K. Bernauer et al.

generated by the assumptions (in our example given by (7)) and by the identities
that b shall satisfy, but with b replaced by x (in our example these are the Moore-
Penrose identities (3) for x). Every polynomial of the form x−b′ in I corresponds
to a candidate expression b′ for b, and by applying the elimination property of
Gröbner bases [2], we can systematically search for such candidate expressions.
Our software package offers a user-friendly interface that simplifies the process
of searching for expressions of this nature.

sage: F.<a,p,q,a_adj,p_adj,q_adj,x,x_adj> = FreeAlgebra(QQ)
sage: assumptions = add_adj([a - p*a_adj*a, a - a*a_adj*q])
sage: Pinv_x = add_adj(pinv(a, x, a_adj, x_adj))
sage: I = NCIdeal(Pinv_x + assumptions)
sage: I.find_equivalent_expression(x)

[- x + a_adj*q*x, - x + a_adj*p*x,

- x + a_adj*q*p_adj, - x + a_adj*x_adj*x]

Three out of the four candidate expressions for b found by the heuristic still
contain the dummy variable x or its adjoint, and are thus useless. However, the
third polynomial x − a∗qp∗ shows that b = a∗qp∗ is a desired representation.
We use our software to show that b satisfies the Moore-Penrose equations under
the assumptions (7).

sage: MP_candidate = a_adj * q * p_adj
sage: MP_candidate_adj = p * q_adj * a
sage: claims = pinv(a, MP_candidate, a_adj, MP_candidate_adj)
sage: proof = certify(assumptions, claims)
Computing a (partial) Gröbner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

We note that, here, claims is a list consisting of four polynomials, one for
each of the four Penrose identities. In such cases, certify verifies the ideal
membership of each element in the list and returns a list, here assigned to proof,
providing a cofactor representation for each polynomial in claims.

Thus, we can conclude that every complex matrix A has a Moore-Penrose
inverse A†, given by A† = A∗QP ∗ with P,Q as in (6). More generally, by Theo-
rem 1, we have proven the following statement.

Theorem 3. Let A be a morphism in an involutive preadditive semicategory.
If there exist morphisms P and Q satisfying (6), then A has a Moore-Penrose
inverse A†, given by A† = A∗QP ∗.

Remark 4. Typically, under the assumptions (6) the Moore-Penrose inverse is
expressed by the formula A† = Q∗AP ∗, cf. [28, Lem. 3]. We note that this
expression is equivalent to ours, and can be found using our software by changing
the monomial order underlying the polynomial computation.

How to Automatise Proofs of Operator Statements 49

sage: I.find_equivalent_expression(x,
....: order=[[q,q_adj,a,a_adj,p,p_adj],[x,x_adj]])[0]

- q_adj*a*p_adj + x

This gets to show that the output of the polynomial heuristics depends strongly
on several parameters, and in particular, on the used monomial order.

We could prove Theorem 3 by explicitly constructing an expression for the
existentially quantified operator. This now raises the question whether this is
always possible or whether we just got lucky in this example. Herbrand’s theo-
rem [4,14], a fundamental result in mathematical logic, provides an answer to
this question. It states that such an explicit representation always exists and
can be constructed as a polynomial expression in terms of the basic operators
appearing in the statement, provided that the operator statement is true in
every preadditive semicategory. We refer to Theorem 5 for the precise state-
ment. Thus, by enumerating all such polynomial expressions, we are guaranteed
to find a correct instantiation if the considered statement is correct.

Of course, naively enumerating all possible polynomial expressions quickly
becomes infeasible. Therefore, it is important to have good heuristics that allow
to systematically search for suitable candidate expressions. Our software package
implements, apart from the heuristic described above, several such techniques
for finding polynomials of special form in noncommutative ideals. We refer to
Appendix A for further information and the corresponding commands. Most
importantly, it provides methods for finding factorisations of given operators.
This allows to effectively model many properties of operators, including condi-
tions on ranges and kernels, as well as injectivity and surjectivity, or more gener-
ally, cancellability properties. In the following section, we discuss how properties
like these can be treated within the framework.

4 Treating Common Properties

4.1 Real Matrices

A property that appears regularly in matrix statements, especially in combina-
tion with the Hermitian adjoint A∗, is that of having matrices over the reals.
It can be encoded by decomposing the Hermitian adjoint A∗ into an entry-
wise complex conjugation, denoted by AC , followed by a transposition, that is,
A∗ = (AC)T . With this, a matrix A being real can be expressed algebraically by
the identity A = AC , exploiting the fact that the conjugate of a real number is
the number itself.

To model the complex conjugation and the transposition on the polyno-
mial level, we proceed analogous to modelling the involution (see Remark 1).
We introduce additional variables aC and aT for the complex conjugate and the
transpose, respectively, of each basic operator A. Additionally, for every assump-
tion P = Q, we have to translate, next to the corresponding adjoint identity

50 K. Bernauer et al.

P ∗ = Q∗, now also the transposed identity PT = QT as well as the conjugated
identity PC = QC into polynomials. These additional identities first have to be
simplified using the following rules that relate the different function symbols to
each other.

(P + Q)α = Pα + Qα, (Pα)β =

{
P if α = β

P γ if α �= β
,

(PQ)C = PCQC , (PQ)δ = QδP δ,

with α, β, γ, δ ∈ {∗, C, T} such that γ �= α, β and δ �= C.
As an illustrative example, we consider the statement that the Moore-Penrose

inverse B of a real matrix A is real as well. With the help of our software package,
it can be proven as follows.

sage: F.<a, a_tr, a_c, a_adj, b, b_tr, b_c, b_adj> =
FreeAlgebra(QQ)

the basic assumptions
sage: Pinv_b = add_adj(pinv(a, b, a_adj, b_adj))
the transposed and conjugated assumptions
sage: Pinv_b_tr = [a_tr*b_tr*a_tr - a_tr, b_tr*a_tr*b_tr - b_tr,
....: a_tr*b_tr - b_c*a_c, b_tr*a_tr - a_c*b_c]
sage: Pinv_b_c = [a_c*b_c*a_c - a_c, b_c*a_c*b_c - b_c]
assumption that a is real
sage: a_real = [a - a_c, a_tr - a_adj]

sage: assumptions = Pinv_b + Pinv_b_tr + Pinv_b_c + a_real
sage: proof = certify(assumptions, b - b_c)
Computing a (partial) Gröbner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

4.2 Identity Operators

Next, we discuss how to handle identity matrices or operators. While zero oper-
ators have a natural translation into the zero polynomial, identity operators
cannot be directly mapped to the multiplicative identity 1 in the free algebra, as
this would constitute a many-to-one mapping and a loss of information. We note
that this is not an issue when mapping all zero operators to the zero polynomial,
as the zero polynomial does not affect any polynomial computations.

Instead, identity operators have to be treated like any other basic operator,
which means introducing a new indeterminate iu for every identity operator IU

and explicitly adding the identities satisfied by IU to the assumptions. In par-
ticular, these are the idempotency of IU , the fact that IU is self-adjoint, and the
identities AIU = A and IUB = B for all basic operators A,B for which these
expressions are well-defined.

We illustrate the handling of identity operators in the next section.

How to Automatise Proofs of Operator Statements 51

4.3 Injectivity, Surjectivity, and Full Matrix Ranks

Injectivity and surjectivity of operators appear regularly as properties in state-
ments. They can be encoded by exploiting the following classical fact.

Lemma 1. Let U, V be non-empty sets. A function A : U → V is

1. injective if and only if A has a left inverse B : V → U ;
2. surjective if and only if A has a right inverse C : V → U .

Thus, an assumption of injectivity of an operator A can be encoded via
the identity BA = IU , where B is a new operator that does not satisfy any
additional hypotheses and IU is the identity on U . Analogously, surjectivity
of A corresponds to the identity AC = IV . For proving injectivity or surjectivity
of an operator in our setting, we have to show the existence of a left or right
inverse by finding an explicit expression for such an operator.

As a special case of the discussion above, we also obtain a way to encode the
property of a matrix having full row or column rank. This follows from the fact
that a matrix A has full row rank if and only if the associated linear function is
surjective, which, by Lemma 1, is the case if and only if A has a right inverse.
Dually, A has full column rank if and only if A has a left inverse.

To illustrate the handling of full rank assumptions as well as of identity
matrices, we consider the statement: If A = BC is a full rank decomposition of a
matrix A, i.e., B has full column rank and C has full row rank, then A† = C†B†.
Using the software, it can be proven as follows.

sage: F.<a, b, c, i, u, v, x, y, z, a_adj, b_adj, c_adj, i_adj,
....: u_adj, v_adj, x_adj, y_adj, z_adj> = FreeAlgebra(QQ)

sage: Pinv_a = pinv(a, x, a_adj, x_adj)
sage: Pinv_b = pinv(b, y, b_adj, y_adj)
sage: Pinv_c = pinv(c, z, c_adj, z_adj)
full ranks encoded via one-sided inverses
sage: rank_decomp = [a - b*c, u*b - i, c*v - i]
encode identity i
sage: id = [i*i - i, i - i_adj, b*i - b, i*y - y, i*c - c,
....: z*i - z, i*u - u, v*i - v]

sage: assumptions = add_adj(Pinv_a + Pinv_b + Pinv_c +
....: rank_decomp + id)
sage: claim = x - z*y
sage: proof = certify(assumptions, claim)
Computing a (partial) Groebner basis and reducing the claims...

Starting iteration 5...
Done! Ideal membership of all claims could be verified!

52 K. Bernauer et al.

Remark 5. We note that the certify routine (more precisely, the Gröbner basis
computation underlying this command) is an iterative procedure. By default, the
package informs about the computational progress of this procedure by printing
an update message Starting iteration n... every fifth iteration, see also
Sect. A.1.

4.4 Range Inclusions

Another common class of properties are conditions on ranges and kernels, like the
inclusion of ranges R(A) ⊆ R(B) of operators A,B. In case of linear operators
over a field, such a range inclusion can be translated into the existence of a
factorisation A = BX for some operator X. We note that, in Hilbert and Banach
spaces, this is the well-known factorisation property in Douglas’ lemma [7].

Thus, also facts like R(A†) = R(A∗) can be treated within the framework
by finding explicit factorisations of A† and A∗ in terms of the other. Using our
software, such factorisations can be found easily. We refer to Sect. A.5 for the
available heuristics to do this, and to [16] for a more thorough explanation of
these techniques.

sage: F.<a, a_adj, a_dag, a_dag_adj> = FreeAlgebra(QQ)
sage: Pinv_a = add_adj(pinv(a, a_dag, a_adj, a_dag_adj))
sage: I = NCIdeal(Pinv_a)
R(A^\dag) \subseteq R(A^*)
sage: I.find_equivalent_expression(a_dag, prefix=a_adj,
....: heuristic=’naive’)

[- a_dag + a_adj*a_dag_adj*a_dag]

R(A^*) \subseteq R(A^\dag)
sage: I.find_equivalent_expression(a_adj, prefix=a_dag,
....: heuristic=’naive’)

[- a_adj + a_adj*a*a_dag]

5 Logical Framework

In the following, we describe the theory developed in [17] from a practical point
of view, focusing on ∀∃-statements. For the reduction from arbitrary first-order
formulas to this case, as well as for all proofs and additional resources, we refer
to the corresponding sections in [17].

To model statements about linear operators, or more generally about mor-
phisms in preadditive semicategories, we consider a subset of many-sorted first-
order logic. Many-sorted first-order logic extends classical first-order logic by

How to Automatise Proofs of Operator Statements 53

assigning a sort to each term. These sorts allow to represent objects from differ-
ent universes and restrict which expressions can be formed. In our context, they
are used to represent domains and codomains of operators.

To formally introduce operator statements, we fix an enumerable set of object
symbols Ob = {v1, v2, . . . }. We call a pair (u, v) ∈ Ob×Ob a sort. We also fix
an enumerable set of variables {x1, x2, . . . } as well as, for each sort (u, v), a zero
constant 0u,v. Furthermore, we fix a sort function σ mapping each variable x to
a sort σ(x) ∈ Ob×Ob and each zero constant 0u,v to σ(0u,v) = (u, v). Intu-
itively, variables correspond to basic operators and the zero constants model
distinguished zero operators. The images of these symbols under the sort func-
tion σ represent their domains and codomains.

Using these basic symbols, we can construct terms, and building upon that,
operator statements. Note that the following definition also extends the sort
function from variables and constants to terms.

Definition 2. A term is any expression that can be built up inductively using
the following rules:

1. each variable x is a term of sort σ(x);
2. each zero constant 0u,v is a term of sort (u, v);
3. if s, t are terms of sort σ(s) = σ(t), then s+t is a term of sort σ(s+t) := σ(s);
4. if s, t are terms of sort σ(s) = (v, w), σ(t) = (u, v), then st is a term of sort

σ(st) := (u,w).

Terms are simply all noncommutative polynomial expressions that can be
formed from the variables and the zero constants under the restrictions imposed
by the sort function. They correspond to all operators that can be formed from
the basic operators with the arithmetic operations of addition and composition.

Definition 3. An operator statement is a first-order formula that can be built
up inductively using the following rules:

1. if s, t are terms of sort σ(s) = σ(t), then s = t is an operator statement;
2. if ϕ is an operator statement, then so is ¬ϕ;
3. if ϕ,ψ are operator statements, then so is ϕ ∗ ψ for ∗ ∈ {∨,∧,→};
4. if ϕ is an operator statement, then so is Px : ϕ for any variable x and

P ∈ {∃,∀}.
Remark 6. We consider ∧ and ∨ as associative and commutative operations, i.e.,
ϕ∧ (ψ ∧ρ) = (ϕ∧ψ)∧ρ and ϕ∧ψ = ψ ∧ϕ, and analogously for ∨. Furthermore,
we abbreviate ¬(s = t) by s �= t in the following.

We recall some standard definitions and notation. In the last point of
Definition 3, P is called the quantifier of x and ϕ is the scope of Px. If all
variables occurring in an operator statement ϕ are in the scope of a quantifier,
then ϕ is closed. We abbreviate a block of consecutive equally quantified variables
Px1Px2 . . . Pxk, with P ∈ {∃,∀}, by Px1 . . . xk, or simply by Px. Furthermore,
to indicate the scope of a quantifier, we also write Px : ϕ(x).

54 K. Bernauer et al.

An operator statement without any quantifiers is called quantifier-free. More-
over, any operator statement of the form ∀x : ϕ(x) (resp. ∃x : ϕ(x)) with ϕ
quantifier-free is called universal (resp. existential), and any operator statement
of the form ∀x∃y : ϕ(x,y) with ϕ quantifier-free is a ∀∃-operator statement.

An interpretation I allows to interpret an operator statement ϕ as a state-
ment about morphisms in a preadditive semicategory C. It assigns to each
object symbol u ∈ Ob an object I(u) ∈ Ob(C) and to each variable x of sort
σ(x) = (u, v) a morphism I(x) : I(u) → I(v). Each zero constant 0u,v is mapped
to the zero morphism in the abelian group Mor(I(u), I(v)). This ensures that
the terms in ϕ are translated into well-formed morphisms in C. Then ϕ can
be evaluated to a truth value by interpreting the boolean connectives and the
quantifiers like in classical first-order logic.

Definition 4. An operator statement ϕ is universally true if ϕ evaluates to true
under all possible interpretations in every preadditive semicategory C.

Note that an interpretation of ϕ depends implicitly on the sort function σ,
and thus, so does the semantic evaluation of ϕ. An operator statement may be
universally true w.r.t. one sort function but not w.r.t. another sort function. For
instance, statements that hold for square matrices may not hold for rectangular
matrices. Therefore, we should only refer to universal truth w.r.t. a specific sort
function. For the sake of brevity, we assume a fixed sort function σ and disregard
this dependency in the following.

Remark 7. For a formal definition of interpretation and universal truth of oper-
ator statements, we refer to [17, Sec. 2.1.2].

In the remainder of this section, we characterise universal truth of operator
statements by ideal membership of noncommutative polynomials. To this end,
we recall that every quantifier-free operator statement ϕ can be transformed into
a logically equivalent formula of the form

m∧
i=1

⎛
⎝ ni∨

j=1

ai,j �= bi,j ∨
n′
i∨

k=1

si,k = ti,k

⎞
⎠ . (8)

In the above formula, either of the two disjunctions can also be empty, i.e.,
it is possible that either ni = 0 or n′

i = 0, but not both.
We recall that a formula of the form (8) is in conjunctive normal form

(CNF) [27]. It is a conjunction of clauses, where a clause is a disjunction of
equalities and disequalities. A formula can have several CNFs. One way to obtain
a CNF of a quantifier-free operator statement ϕ is to apply to ϕ exhaustively
each of the following sets of rewrite rules, in the given order:

1. Eliminate implications: ψ1 → ψ2 � ¬ψ1 ∨ ψ2

2. Move ¬ inwards (i.e., compute a negation normal form):

¬¬ψ � ψ ¬(ψ1 ∧ ψ2) � ¬ψ1 ∨ ¬ψ2 ¬(ψ1 ∨ ψ2) � ¬ψ1 ∧ ¬ψ2

How to Automatise Proofs of Operator Statements 55

3. Distribute ∨ over ∧: ψ ∨ (ψ1 ∧ ψ2) � (ψ ∨ ψ1) ∧ (ψ ∨ ψ2)

We note that the above rules apply modulo associativity and commutativity
of ∧,∨. This process yields a unique normal form, which we denote by CNF(ϕ).
Also note that this transformation preserves the semantics of ϕ, that is, CNF(ϕ)
is logically equivalent to ϕ.

Based on the conjunctive normal form, we define a translation of operator
statements into ideal theoretic statements. This process is called idealisation. We
first discuss the special case of clauses. To this end, we associate to each equality
s = t or disequality s �= t of terms the noncommutative polynomial s − t using
the same translation as for identities of operators described in Sect. 2.

Definition 5. Let C =
∨n

j=1 aj �= bj∨
∨n′

k=1 sk = tk be a clause. The idealisation
I(C) of C is the following predicate considered as a statement in the free algebra
Z〈X〉:

I(C) :≡ sk − tk ∈ (a1 − b1, . . . , an − bn) for some 1 ≤ k ≤ n′.

To motivate this definition, write C in the equivalent form
∧

j aj = bj →∨
k sk = tk. This shows that C is true if and only if at least one of the identities

sk = tk can be derived from all the aj = bj . Precisely this fact is described by
I(C).

The process of idealisation extends to universal operator statements as fol-
lows.

Definition 6. Let ϕ = ∀x : ψ(x) be a universal operator statement. The ideal-
isation I(ϕ) of ϕ is the predicate

I(ϕ) :≡
∧

C clause
of CNF(ψ)

I(C).

The following theorem links the universal truth of universal operator state-
ments to their idealisation.

Theorem 4 ([17, Thm. 27]). A universal operator statement ϕ is universally
true if and only if the idealisation of ϕ is true.

Remark 8. Theorem 4 is a formalisation of the informal Theorem 1. It is a
generalisation of [29, Thm. 32], which only considers a restricted form of universal
operator statements and only provides a sufficient condition for the universal
truth of the operator statement.

Theorem 4 reduces universal truth of universal operator statements to the
verification of finitely many polynomial ideal memberships. Since the latter prob-
lem is semi-decidable, this immediately yields a semi-decision procedure for uni-
versal truth of this kind of statements.

In the following, we describe how to treat operator statements involving exis-
tential quantifiers. Although the subsequent results can be phrased for arbitrary

56 K. Bernauer et al.

first-order formulas, we focus on the more practical and important case of closed
∀∃-operator statements. It is worth noting that any operator statement can be
transformed into a logically equivalent formula of this form. For more informa-
tion on this conversion, we refer to [17, Sec. 2.2 and 2.3].

The following result is an adaptation of one of the most fundamental theorems
of mathematical logic, Herbrand’s theorem [14], to our setting. It essentially
allows to eliminate existential quantifiers, reducing the treatment of ∀∃-operator
statements to universal ones. To state the theorem, we recall the concept of
Herbrand expansion. The Herbrand expansion H(ϕ) of a closed ∀∃-operator
statement ϕ = ∀x∃y1, . . . , yk : ψ(x,y) is the set of all instantiations of the
existentially quantified variables of ϕ, that is,

H(ϕ) := {ψ(x, t1, . . . , tk) | ti terms only involving x s.t. σ(ti) = σ(yi)} .

We note that H(ϕ) is an infinite yet enumerable set of quantifier-free operator
statements.

Theorem 5. A closed ∀∃-operator statement ϕ = ∀x∃y : ψ(x,y) is universally
true if and only if there exist finitely many ϕ1(x), . . . , ϕn(x) ∈ H(ϕ) such that
the universal operator statement ∀x :

∨n
i=1 ϕi(x) is universally true.

Remark 9. Theorem 5 is a special case of the more general [17, Cor. 15]. It can
also be found in [4] for classical unsorted first-order logic.

The following steps give an overview on how Herbrand’s theorem can be
used algorithmically to reduce the treatment of a closed ∀∃-operator statement
ϕ to a universal one. They can be considered as an adaptation of Gilmore’s
algorithm [9].

1. Let ϕ1, ϕ2, . . . be an enumeration of H(ϕ).
2. Let n = 1.
3. Form the formula ψn = ∀x :

∨n
i=1 ϕi(x).

4. If the idealisation I(ψn) is true, then ϕ is universally true. Otherwise, increase
n by 1 and go to step 3.

Since first-order logic is only semi-decidable, we cannot expect to obtain an
algorithm that terminates on any input. The best we can hope for is a semi-
decision procedure that terminates if and only if an operator statement ϕ is
universally true. However, the steps above, as phrased now, still have a subtle
flaw that stops them from even being a semi-decision procedure.

The conditional check in step 4 requires to decide certain ideal memberships.
While verifying ideal membership of noncommutative polynomials is always pos-
sible in finite time, disproving it is generally not. Consequently, verifying that
the condition in step 4 is false is generally not possible in finite time. In cases
where this is required, the procedure cannot terminate – even if ϕ is indeed
universally true.

To overcome this flaw and to obtain a true semi-decision procedure, we have
to interleave the computations done for different values of n. Procedure 1 shows

How to Automatise Proofs of Operator Statements 57

one way how this can be done. It essentially follows the steps described above,
except that it only performs finitely many operations to check if I(ψn) is true
for each n.

Procedure 1: Semi-decision procedure for verifying operator statements
Input: A closed ∀∃-operator statement ϕ
Output: true if and only if ϕ is universally true; otherwise infinite loop

1 ϕ1, ϕ2, . . . ← an enumeration of H(ϕ);
2 for n ← 1, 2, . . . :
3 ψn ← ∀x :

∨n
i=1 ϕi(x) ;

4 for k ← 1, . . . , n :
5 if I(ψk) = true can be verified with n operations of an ideal

membership semi-decision procedure :
6 return true;

Line 5 of Procedure 1 contains the term operation of a procedure. Thereby
we mean any (high- or low-level) set of instructions of the procedure that can
be executed in finite time.

Theorem 6 ([17, Thm. 36]). Let ϕ be a closed ∀∃-operator statement. Proce-
dure 1 terminates and outputs true if and only if ϕ is universally true.

Remark 10. Procedure 1 is a special case of the more general semi-decision pro-
cedure [17, Proc. 2] that allows to treat arbitrary operator statements.

6 Case Study

For our case study, we considered the first 25 facts in the section on the Moore-
Penrose inverse in the Handbook of Linear Algebra [20, Sec. I.5.7]. Among these
25 statements, we found that five cannot be treated within the framework, as
they contain properties that cannot be expressed in terms of identities of oper-
ators (e.g., properties of the matrix entries, norms, or statements that require
induction). Additionally, three statements can only be partially handled for the
same reason. The remaining 17 statements, along with those parts of the three
statements mentioned before that can be treated within the framework, can all
be translated into polynomial computations and proven fully automatically with
the help of our software. The corresponding polynomial computations take place
in ideals generated by up to 70 polynomials in up to 18 indeterminates. The
proof of each statement takes less than one second and the computed cofactor
representations, certifying the required ideal memberships, consist of up to 226
terms.

As part of our case study, we also examined Theorems 2.2–2.4 in [6], which
provide several necessary and sufficient conditions for the reverse order law
(AB)† = B†A† to hold, where A,B are bounded linear operators on Hilbert
spaces with closed ranges. Our software can automatically prove all of these
statements in less than five seconds altogether, yielding algebraic proofs that

58 K. Bernauer et al.

consist of up to 279 terms. We note that, in contrast to the original proofs in [6],
which rely on matrix forms of bounded linear operators that are induced by some
decompositions of Hilbert spaces, our proofs do not require any structure on the
underlying spaces except basic linearity and a certain cancellability assumption.
This implies that our proofs generalise the results from bounded operators on
Hilbert spaces to morphisms in arbitrary preadditive semicategories, meeting
the cancellability requirement.

Finally, our case study contains fully automated proofs of Theorem 2.3
and 2.4 in the recent paper [5], which provide necessary and sufficient conditions
for the triple reverse order law (ABC)† = C†B†A† to hold, where A,B,C are
elements in a ring with involution. These results, which provide several improve-
ments of Hartwig’s classical triple reverse order law [10], were motivated and
partly discovered by a predecessor of our software package [15]. Our new soft-
ware can automate all aspects of the proofs, relying heavily on the heuristics
for finding polynomials of special form in ideals. We note that, while an initial
implementation of our package took several days to complete the computations
required for proving these theorems, the version discussed here now performs the
task in approximately 15 s. The assumptions in the proof of Theorem 2.3 consist
of up to 24 polynomials in 22 indeterminates and the computed cofactor repre-
sentations certifying the ideal membership have up to 80 terms. The software
also allows for easy experimentation with relaxing the assumptions of a theorem.
This led us, among other simplifications, to discover that a condition in the orig-
inal theorem [10] requiring equality of certain ranges R(A∗AP) = R(Q∗) can be
replaced with the weaker condition of a range inclusion R(A∗AP) ⊆ R(Q∗).

Acknowledgements. We thank the anonymous referees for their careful reading and
valuable suggestions which helped to improve the presentation of this work.

A The Software Package Operator_gb

In this appendix, we give an introduction to the functionality provided by the
SageMath package operator_gb for Gröbner basis computations in the free
algebra, with a particular focus on methods that facilitate proving statements
about linear operators. We assume that readers are already familiar with Sage-
Math and, for reading Sect. A.4 and A.5, with the theory of Gröbner bases in
the free algebra. For further information on these topics, we refer to [32] and
to [25,34], respectively.

At the time of writing, the package is still under development and not part of
the official SageMath distribution. The current version, however, can be down-
loaded from https://github.com/ClemensHofstadler/operator_gb and installed
as described on the webpage. The code can then be loaded into a SageMath
session by the following command.

sage: from operator_gb import *

https://github.com/ClemensHofstadler/operator_gb

How to Automatise Proofs of Operator Statements 59

For now, the package only offers functionality for computations over the coef-
ficient domain Q. In the future, we will extend the functionality to other (finite)
fields and subsequently also to coefficient rings such as Z. Furthermore, we also
plan on integrating noncommutative signature-based Gröbner algorithms [18]
and, based on them, newly developed methods to compute cofactor representa-
tions of minimal length [19].

A.1 Certifying Operator Statements

The basic use-case of the package is to compute proofs of operator statements
by certifying ideal membership of noncommutative polynomials. To this end, the
package provides the command certify(assumptions, claim), which allows to
certify whether a noncommutative polynomial claim lies in the ideal generated
by a list of polynomials assumptions.

For example, to certify that abc − d lies in the ideal generated by ab − d and
c − 1, proceed as follows.

sage: F.<a,b,c,d> = FreeAlgebra(QQ)
sage: assumptions = [a*b - d, c - 1]
sage: proof = certify(assumptions, a*b*c - d)
Computing a (partial) Groebner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

Remark 11. Note that noncommutative polynomials are entered using the
FreeAlgebradata structure provided by SageMath.

The computed proof provides a cofactor representation of claim in terms of
the elements in assumptions. More precisely, it is a list of tuples (ai, ji, bi) with
terms ai, bi in the free algebra and integers ji such that

claim =
|proof|∑

i=1

ai · assumptions[ji] · bi.

The package provides a pretty_print_proof command to visualise the proof
in form of a string. It also allows to expand a cofactor representation using the
command expand_cofactors.

sage: proof

[(1,0,c), (d,1,1)]

sage: pretty_print_proof(proof, assumptions)

-d + a*b*c = (-d + a*b)*c + d*(-1 + c)

60 K. Bernauer et al.

sage: expand_cofactors(proof, assumptions)

-d + a*b*c

Remark 12. The certify command also checks if the computed cofactor repre-
sentation is valid over Z as well, i.e., if all coefficients that appear are integers.
If this is not the case, it produces a warning, but still continues the computation
and returns the result.

It is also possible to give certify a list of polynomials as claim. In this case,
a cofactor representation of each element in claim is computed.

sage: claims = [a*b*c - d, a*b - c*d]
sage: proof = certify(assumptions, claims)
Computing a (partial) Groebner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!
sage: pretty_print_proof(proof[0], assumptions)

-d + a*b*c = (-d + a*b)*c + d*(-1 + c)

sage: pretty_print_proof(proof[1], assumptions)

a*b - c*d = (-d + a*b) - (-1 + c)*d

If ideal membership cannot be verified, certify returns False. This outcome
can occur because of two reasons. Either claim is simply not contained in the
ideal generated by assumptions, or certify, which is an iterative procedure,
had not been run for enough iterations to verify the ideal membership. To avoid
the latter situation, certify can be passed an optional argument maxiter to
determine the maximal number of iterations it is run. By default this value is
set to 10.

sage: assumptions = [a*b*a - a*b]
sage: claim = a*b^20*a - a*b^20
sage: certify(assumptions, claim)
Computing a (partial) Groebner basis and reducing the claims...

Starting iteration 5...
Starting iteration 10...
Failed! Not all ideal memberships could be verified.

False

How to Automatise Proofs of Operator Statements 61

sage: proof = certify(assumptions, claim, maxiter=20)
Computing a (partial) Groebner basis and reducing the claims...

Starting iteration 5...
Starting iteration 10...
Starting iteration 15...
Done! Ideal membership of all claims could be verified!

Remark 13. Ideal membership in the free algebra is undecidable in general.
Thus, we can also not decide whether the number of iterations of certify was
simply too low or whether claim is really not contained in the ideal.

A.2 Useful Auxiliary Functions for Treating Operator Statements

The package provides some auxiliary functions which help in constructing poly-
nomials that commonly appear when treating operator statements.

– pinv(a, b, a_adj, b_adj): generate the polynomials (3) encoding the four
Penrose identities for a with Moore-Penrose inverse b and respective adjoints
a_adj and b_adj.

– adj(f): compute the adjoint f∗ of a polynomial f. Each variable x is replaced
by x_adj. Note that all variables x and x_adj have to be defined as generators
of the same FreeAlgebra.

– add_adj(F): add to a list of polynomials F the corresponding adjoint ele-
ments.

A.3 Quivers and Detecting Typos

When encoding operator identities, the resulting polynomials can become quite
intricate and it can easily happen that typos occur. To detect typos, it can
help to syntactically check if entered polynomials correspond to correctly trans-
lated operator identities, respecting the restrictions imposed by the domains and
codomains. To this end, the package allows to encode the domains and codomains
in form of a directed labelled multigraph, called (labelled) quiver.

U V W

A

D

B

C

Fig. 1. Quiver encoding domains and codomains of operators

Computationally, a quiver is given by a list of triplets (u, v, a), where u and v
can be any symbols that encode the domain U and the codomain V of the basic

62 K. Bernauer et al.

operator A and a is the indeterminate representing A. For example, a quiver
encoding the situation of operators A,B,C,D on spaces U, V,W as in Fig. 1,
can be constructed as follows.

sage: F.<a,b,c,d> = FreeAlgebra(QQ)
sage: Q = Quiver([(’U’,’V’,a), (’V’,’W’,b), (’W’,’V’,c),

(’V’,’U’,d)])
sage: Q

Labelled quiver with 3 vertices in the labels {a, b, c, d}

One can easily check if a polynomial is compatible with the situation of
operators encoded by a quiver.

sage: Q.is_compatible(a*b + c*d)

False

sage: Q.is_compatible(a*d + c*b)

True

A quiver can be handed as an optional argument to certify, which then
checks all input polynomials for compatibility with the given quiver and raises
an error if required.

sage: assumptions = [a*d, c*b]
typo in the claim, c*b -> b*c
sage: claim = a*d - b*c
sage: certify(assumptions, claim, quiver=Q)

ValueError: The claim a*d - b*c is not compatible with the quiver

A.4 Gröbner Basis Computations

Behind the scenes, the certify command computes Gröbner bases in the free
algebra. In this section, we present the methods of the package that allow to do
such computations.

How to Automatise Proofs of Operator Statements 63

Ideals and Monomial Orders. The main data structure provided by the
package is that of a (two-sided) ideal in the free algebra, called NCIdeal. Such
an ideal can be constructed from any finite set of noncommutative polynomials.

sage: F.<x,y,z> = FreeAlgebra(QQ)
sage: gens = [x*y*z - x*y, y*z*x*y - y]
sage: NCIdeal(gens)

NCIdeal (-x*y + x*y*z, -y + y*z*x*y) of Free Algebra on

3 generators (x, y, z) over Rational Field with x < y < z

Attached to an NCIdeal also comes a monomial order w.r.t. which further
computations are done. By default, this is a degree left lexicographic order,
where the indeterminates are sorted as in the parent FreeAlgebra. The order of
the variables can be individualised by providing a list as an optional argument
order. Furthermore, by providing a list of lists, block orders (also known as
elimination orders) can be defined. The order within each block is still degree
left lexicographic and blocks are provided in ascending order.

sage: NCIdeal(gens, order=[y,x,z])

NCIdeal (-x*y + x*y*z, -y + y*z*x*y) of Free Algebra on

3 generators (x, y, z) over Rational Field with y < x < z

sage: NCIdeal(gens, order=[[y,x],[z]])

NCIdeal (-x*y + x*y*z, -y + y*z*x*y) of Free Algebra on

3 generators (x, y, z) over Rational Field with y < x « z

Gröbner Bases and Normal Forms. For computing Gröbner bases, the
class NCIdeal provides the method groebner_basis with the following optional
arguments:

– maxiter (default: 10): Maximal number of iterations executed.
– maxdeg (default: ∞): Maximal degree of considered ambiguities.
– trace_cofactors (default: True): If cofactor representations of each Gröbner

basis element in terms of the generators should be computed.
– criterion (default: True): If Gebauer-Möller criteria [34] should be used to

detect redundant ambiguities.
– reset (default: True): If all internal data should be reset. If set to False, this

allows to continue previous (partial) Gröbner basis computations.

64 K. Bernauer et al.

– verbose (default: 0): ‘Verbosity’ value determining the amount of information
about the computational progress that is printed.

sage: F.<x,y> = FreeAlgebra(QQ)
sage: gens = [x*y*x - x*y, y*x*x*y - y]
sage: I = NCIdeal(gens)
sage: G = I.groebner_basis(); G

[- x*y + x*y*x, - y + y*x2*y, - y + y*x, - x*y + x*y2,

- x*y + x*y2*x, - y + y2, - y + y3]

We note that the polynomials output by the groebner_basis routine are
not SageMath noncommutative polynomials but our own NCPolynomials.
They provide similar functionality as the native data structure (basic arith-
metic, equality testing, coefficient/monomial extraction), but can additionally
also store a cofactor representation. In particular, the elements output by the
groebner_basis command all hold a cofactor representation w.r.t. the genera-
tors of the NCIdeal.

sage: f = G[2]
sage: pretty_print_proof(f.cofactors(), I.gens())

-y + y*x = y*x*(-x*y + x*y*x) + (-y + y*x2*y) - (-y + y*x2*y)*x

Remark 14. To convert an NCPolynomial back into SageMath’s native data
structure, our class provides the method to_native. Conversely, to convert a
SageMath noncommutative polynomial f into an NCPolynomial, one can use
NCPolynomial(f).

The package also allows to interreduce a set of NCPolynomials using the
command interreduce.

sage: interreduce(G)

[- y + y*x, - y + y2]

To compute the normal form of an element f w.r.t. the generators of an
NCIdeal, the class provides the method reduced_form. The output of this
method is an NCPolynomial g holding a cofactor representation of the differ-
ence f - g w.r.t. the generators of the NCIdeal The method reduced_form
accepts the same optional arguments as groebner_basis.

sage: f = I.reduced_form(y^2 - y); f

How to Automatise Proofs of Operator Statements 65

0

sage: pretty_print_proof(f.cofactors(), I.gens())

-y + y2 = (-y + y*x2*y) - y*x*(-x*y + x*y*x)*y - (-y + y*x2*y)*y

- y*x*(-x*y + x*y*x)*x*y + (-y + y*x2*y)*x2*y

sage: I.reduced_form(y^2)

y

A.5 Heuristics for Finding Polynomials of Certain Form

One of the main functionalities provided by the package are dedicated
heuristics for systematically searching for polynomials of certain form
in an NCIdeal. To this end, the class NCIdeal provides the method
find_equivalent_expression(f), which searches for elements of the form f -
g with arbitrary g in an NCIdeal. It accepts the following optional arguments:

– All optional arguments that also groebner_basis accepts with the same
effects.

– order: A monomial order w.r.t. which the computation is executed. The
argument has to be provided like a custom order when defining an NCIdeal
(see Sect. A.4).

– heuristic (default: ‘groebner’): Determines the heuristic used. Available are
• ‘naive’: Try exhaustively all monomials m up to a degree bound and check

if f - m is in the ideal.
• ‘groebner’: Enumerate a Gröbner basis and search in the Gröbner basis

for suitable elements containing f.
• ‘subalgebra’: Intersect the two-sided ideal with a subalgebra to find suit-

able elements.
• ‘right-ideal’/‘left-ideal’: Intersect the two-sided ideal with a right/left

ideal to find suitable elements.
– prefix (default: None): A term p providing the prefix of g, i.e., the heuristic

looks for elements of the form f - p*h with arbitrary h (required for heuristic
‘right-ideal’).

– suffix (default: None): A term s providing the suffix of g, i.e., the heuristic
looks for elements of the form f - h*s with arbitrary h (required for heuristic
‘left-ideal’).

– degbound (default: 5): Some heuristics only compute up to a fixed degree
bound. This argument allows to change this degree bound.

– quiver (default: None): Use a quiver to restrict the search space only to
polynomials that are compatible with this quiver.

66 K. Bernauer et al.

sage: F.<a,b,c,d> = FreeAlgebra(QQ)
sage: gens = [a*b*a-a,b*a*b-b,a*b-c*d,b*a-d*c,c*d*c-c,d*c*d-d]
sage: I = NCIdeal(gens)
sage: I.find_equivalent_expression(a*b)

[-a*b + c*d]

sage: I.find_equivalent_expression(a*b, heuristic=’naive’,
....: suffix=b)

[a*b - c*d*a*b]

sage: I.find_equivalent_expression(a*b, heuristic=’right-ideal’,
....: prefix=a*b)

[- a*b + a*b*c*d, - a*b + a*b*a*b]

Additionally, the class NCIdeal provides methods for applying cancellability.

– I.apply_left_cancellability(a, b): Search for elements of the form
a*b*f in I and return b*f.

– I.apply_right_cancellability(a, b): Search for elements of the form
f*a*b in I and return f*a.

Both methods can be given an optional argument heuristic to determine the
used search heuristic. Available are ‘subalgebra’, ‘one-sided’, and ‘two-sided’
(default: ‘subalgebra’).

sage: I.apply_left_cancellability(c, a)

[- a + a*b*a, - a2 + a*d*c*a]

#verify ideal membership to check correctness of result
sage: I.reduced_form(c*(-a^2 + a*d*c*a))

0

sage: I.apply_right_cancellability(a*b, d*a,
....: heuristic=’two-sided’, maxiter=5)

[- a*b + a*b*a*b, - a*b + c*d*a*b]

#verify ideal membership to check correctness of result
sage: I.reduced_form((-a*b + c*d*a*b)*c*d)

0

How to Automatise Proofs of Operator Statements 67

References

1. Bernauer, K.: Algebraic and automated proofs for Moore-Penrose inverses. Bach-
elor’s thesis, Johannes Kepler University Linz, Austria (2021)

2. Borges, M.A., Borges, M.: Groebner bases property on elimination ideal in the
noncommutative case. London Math. Soc. Leture Note Ser. 1(251), 323–327 (1998)

3. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-
klassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Univer-
sity of Innsbruck, Austria (1965)

4. Buss, S.R.: On Herbrand’s theorem. In: Leivant, D. (ed.) LCC 1994. LNCS,
vol. 960, pp. 195–209. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60178-3_85

5. Cvetković-Ilić, D.S., Hofstadler, C., Hossein Poor, J., Milošević, J., Raab, C.G.,
Regensburger, G.: Algebraic proof methods for identities of matrices and operators:
improvements of Hartwig’s triple reverse order law. Appl. Math. Comput. 409,
126357 (2021)

6. Djordjević, D.S., Dinčić, N.Č: Reverse order law for the Moore-Penrose inverse. J.
Math. Anal. Appl. 361(1), 252–261 (2010)

7. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on
Hilbert space. Proc. Am. Math. Soc. 17(2), 413–415 (1966)

8. Garraway, W.D.: Sheaves for an involutive quantaloid. Cah. Topol. Géom. Différ.
Catég. 46(4), 243–274 (2005)

9. Gilmore, P.C.: A proof method for quantification theory: its justification and real-
ization. IBM J. Res. Dev. 4(1), 28–35 (1960)

10. Hartwig, R.E.: The reverse order law revisited. Linear Algebra Appl. 76, 241–246
(1986)

11. Helton, J.W., Stankus, M.: Computer assistance for “discovering” formulas in sys-
tem engineering and operator theory. J. Funct. Anal. 161(2), 289–363 (1999)

12. Helton, J.W., Stankus, M., Wavrik, J.J.: Computer simplification of formulas in
linear systems theory. IEEE Trans. Automat. Control 43(3), 302–314 (1998)

13. Helton, J.W., Wavrik, J.J.: Rules for computer simplification of the formulas in
operator model theory and linear systems. In: Feintuch, A., Gohberg, I. (eds.)
Nonselfadjoint Operators and Related Topics. OT, vol. 73, pp. 325–354. Springer,
Cham (1994). https://doi.org/10.1007/978-3-0348-8522-5_12

14. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sity of Paris (1930)

15. Hofstadler, C., Raab, C.G., Regensburger, G.: Certifying operator identities via
noncommutative Gröbner bases. ACM Commun. Comput. Algebra 53(2), 49–52
(2019)

16. Hofstadler, C., Raab, C.G., Regensburger, G.: Computing elements of certain form
in ideals to prove properties of operators. Math. Comput. Sci. 16(17) (2022)

17. Hofstadler, C., Raab, C.G., Regensburger, G.: Universal truth of operator state-
ments via ideal membership. arXiv preprint arXiv:2212.11662 (2022)

18. Hofstadler, C., Verron, T.: Signature Gröbner bases, bases of syzygies and cofactor
reconstruction in the free algebra. J. Symb. Comput. 113, 211–241 (2022)

19. Hofstadler, C., Verron, T.: Short proofs of ideal membership. arXiv preprint
arXiv:2302.02832 (2023)

20. Hogben, L.: Handbook of Linear Algebra, 2nd edn. CRC Press, Boca Raton (2013)
21. Levandovskyy, V., Schönemann, H., Abou Zeid, K.: Letterplace - a subsystem

of Singular for computations with free algebras via letterplace embedding. In:
Proceedings of ISSAC 2020, pp. 305–311 (2020)

https://doi.org/10.1007/3-540-60178-3_85
https://doi.org/10.1007/3-540-60178-3_85
https://doi.org/10.1007/978-3-0348-8522-5_12
http://arxiv.org/abs/2212.11662
http://arxiv.org/abs/2302.02832

68 K. Bernauer et al.

22. Mikhalev, A.A., Zolotykh, A.A.: Standard Gröbner-Shirshov bases of free algebras
over rings. I. Free associative algebras. Int. J. Algebra Comput. 8(6), 689–726
(1998)

23. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math.
Soc. 26, 394–395 (1920)

24. Mora, F.: Groebner bases for non-commutative polynomial rings. In: Calmet, J.
(ed.) AAECC 1985. LNCS, vol. 229, pp. 353–362. Springer, Heidelberg (1986).
https://doi.org/10.1007/3-540-16776-5_740

25. Mora, T.: Solving Polynomial Equation Systems IV: Volume 4, Buchberger Theory
and Beyond, vol. 158. Cambridge University Press (2016)

26. Penrose, R.: A generalized inverse for matrices. Math. Proc. Cambridge Philos.
Soc. 51(3), 406–413 (1955)

27. Prestwich, S.: CNF encodings. In: Handbook of Satisfiability, pp. 75–97. IOS Press
(2009)

28. Puystjens, R., Robinson, D.W.: The Moore-Penrose inverse of a morphism with
factorization. Linear Algebra Appl. 40, 129–141 (1981)

29. Raab, C.G., Regensburger, G., Hossein Poor, J.: Formal proofs of operator identi-
ties by a single formal computation. J. Pure Appl. Algebra 225(5), 106564 (2021)

30. Schmitz, L.: Varieties over Module Homomorphisms and their Correspondence to
free Algebras. Master’s thesis, RWTH Aachen (2021)

31. Schmitz, L., Levandovskyy, V.: Formally verifying proofs for algebraic identities
of matrices. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol.
12236, pp. 222–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53518-6_14

32. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.8) (2023). https://www.sagemath.org

33. Tilson, B.: Categories as algebra: an essential ingredient in the theory of monoids.
J. Pure Appl. Algebra 48(1), 83–198 (1987)

34. Xiu, X.: Non-commutative Gröbner bases and applications. Ph.D. thesis, Uni-
versity of Passau, Germany (2012). http://www.opus-bayern.de/uni-passau/
volltexte/2012/2682/

https://doi.org/10.1007/3-540-16776-5_740
https://doi.org/10.1007/978-3-030-53518-6_14
https://doi.org/10.1007/978-3-030-53518-6_14
https://www.sagemath.org
http://www.opus-bayern.de/uni-passau/volltexte/2012/2682/
http://www.opus-bayern.de/uni-passau/volltexte/2012/2682/

A Modular Algorithm for Computing
the Intersection of a One-Dimensional
Quasi-Component and a Hypersurface

Alexander Brandt(B) , Juan Pablo González Trochez, Marc Moreno Maza,
and Haoze Yuan

Department of Computer Science, The University of Western Ontario,
London, Canada

{abrandt5,jgonza55,hyuan46}@uwo.ca, moreno@csd.uwo.ca

Abstract. Computing triangular decompositions of polynomial systems
can be performed incrementally with a procedure named Intersect. This
procedure computes the common zeros (encoded as regular chains) of a
quasi-component and a hypersurface. As a result, decomposing a polyno-
mial system into regular chains can be achieved by repeated calls to the
Intersect procedure. Expression swell in Intersect has long been observed
in the literature. When the regular chain input to Intersect is of positive
dimension, intermediate expression swell is likely to happen due to spu-
rious factors in the computation of resultants and subresultants.

In this paper, we show how to eliminate this issue. We report on
its implementation in the polynomial system solver of the BPAS (Basic
Polynomial Algebra Subprogram) library. Our experimental results illus-
trate the practical benefits. The new solver can process various systems
which were previously unsolved by existing implementations of regu-
lar chains. Those implementations were either limited by time, memory
consumption, or both. The modular method brings orders of magnitude
speedup.

Keywords: Polynomial system solving · Triangular decomposition ·
Modular method · Regular chains · Intersection · Quasi-component

1 Introduction

Since the early works of Ritt [35], Wu [42], and Yang and Zhang [45], the Char-
acteristic Set Method has been extended and improved by many researchers.
This effort has produced more powerful decomposition algorithms, and now
applies to different types of polynomial systems or decompositions: paramet-
ric algebraic systems [18,22,44], differential systems [8,19,26], difference sys-
tems [24], unmixed decompositions and primary decomposition [38] of poly-
nomial ideals, intersection multiplicities [31], cylindrical algebraic decomposi-
tion [16,28], quantifier elimination [17], parametric [44] and non-parametric [14]
semi-algebraic systems. Today, triangular decomposition algorithms are avail-
able in several software packages [4,13,40,41,43]. Moreover, they provide
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 69–89, 2023.
https://doi.org/10.1007/978-3-031-41724-5 4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_4&domain=pdf
http://orcid.org/0000-0002-1294-9710
https://doi.org/10.1007/978-3-031-41724-5_4

70 A. Brandt et al.

back-engines for computer algebra system front-end solvers, such as Maple’s
solve command.

Despite of their successful application in various areas (automatic theorem
proving, dynamical systems, program verification, to name a few), solvers based
on triangular decompositions are sometimes put to challenge with input polyno-
mial systems that appear to be easy to solve by other methods, based on Gröbner
bases. Of course, one should keep in mind that different solvers may have differ-
ent specifications, not always easy to compare. Nevertheless, for certain classes of
systems, say zero-dimensional systems, one can expect that a triangular decom-
position on one hand, and the computation of a lexicographical Gröbner basis
(followed by the application of Lazard’ s Lextriangular algorithm [29]) on the
other, produce essentially the same thing.

While the development of modular methods for computing Gröbner bases
took off in the 1980’s thanks to Traverso [39] and Faugère [23], with follow-up
works by Arnold [1] and others, the development of such methods for triangular
decompositions started only in 2005 with the paper [21] by Dahan, Moreno Maza,
Schost, Wu and Xie. This latter method computes a triangular decomposition
Δ of a zero-dimensional polynomial system V (F) over the rational numbers by

1. first computing a triangular decomposition, say Δp, of that system modulo a
sufficiently large prime number p;

2. transforming Δp into a canonical triangular decomposition of V (F mod p),
called the equiprojectable decomposition, Ep of V (F mod p); and

3. finally, lifting Ep (using the techniques of Schost [37]) into the equiprojectable
decomposition of V (F).

Hence, this method helps to control the effect of expression swell at the level of
the numerical coefficients, which resulted in a significant efficiency improvement
on a number of famous test systems. However, this modular method has no
benefits on expression swell when expression swell manifests as an (unnecessary)
inflation on the number of terms. This phenomenon is generally caused by the
so-called extraneous or spurious factors in resultants, which have been studied
in the case of Dixon resultants [27]. Most algorithms for computing triangular
decompositions compute iterated resultants, either explicitly or implicitly.

In broad terms, the iterated resultant res(f, T) between f and a regular
chain1 T ⊆ k[X1 < . . . Xn] encodes conditions for the hypersurface V (f) and
the quasi-component W (T) to have a non-empty intersection.

To be precise, we recall some of the results in Sect. 6 of [15]. Assume that
T is a zero-dimensional regular chain. We denote by VM (T) the multiset of the
zeros of T , where each zero of T appears a number of times equal to its local
multiplicity as defined in Chap. 4 of [20]. If T is normalized, that is, the initial
of every polynomial in T is a constant, then we have:

res(f, T) =
∏

α∈VM (T)

f(α).

1 See Sect. 2 for a review of regular chain theory, including definitions of the terms
quasi-component, initial, etc.

A Modular Algorithm for Computing the Intersection 71

This Poisson Formula tells us that, if T is normalized, then res(f, T) is “fully
meaningful”. In other words, it does not contain extraneous factors. Now, let us
relax the fact that T is normalized. For i = 1, . . . , n, we denote respectively by
ti, hi, ri: (1) the polynomial of T whose main variable is Xi, (2) the initial of ti,
(3) the iterated resultant res({t1, . . . , ti−1}, hi). In particular, we have r1 = h1.
We also define: (1) en = deg(f,Xn), (2) fi = res({ti+1, . . . , tn}, f), for 0 ≤ i ≤
n − 1, (3) ei = deg(fi, xi), for 1 ≤ i ≤ n − 1. Then, res(T, f) is given by:

he1
1

⎛

⎝
∏

β1∈VM (t1)

h2(β1)

⎞

⎠
e2

· · ·
⎛

⎝
∏

βn−1∈VM (t1,...,tn−1)

hn(βn−1)

⎞

⎠
en

⎛

⎝
∏

α∈VM (T)

f(α)

⎞

⎠

From that second Poisson formula, we can see that all factors but the rightmost
one (that is, the one from the first Poisson formula) are extraneous. Indeed, in the
intersection V (f) ∩ W (T) there are no points cancelling the initials h2, . . . , hn.

These observations generalize to regular chains of positive dimension (just
seeing the field k as a field of rational functions) and can explain how the cal-
culation of iterated resultants can cause expression swells in triangular decom-
position algorithms. To deal with that problem, the authors of [15] study a few
trivariate systems consisting of a polynomial f(X1,X2,X3) and a regular chain
T = {t2(X1,X2), t3(X1,X2,X3)}. They compute res(T, f) by

1. specializing X1 at sufficiently many well-chosen values a,
2. computing R(a) := res(N(a), f(a)) where f(a) = f(a,X2,X3) and N(a) is

the normalized regular chain generating the ideal 〈t2(a,X2), t3(a,X2,X3)〉 in
k[X2,X3], and

3. combining the R(a)’s and applying rational function reconstruction.

The numerator of the reconstructed fraction is essentially the desired non-extra-
neous factor of res(T, f).

In this paper, we extend the ideas of [15] so that one can actually compute
V (f) ∩ W (T) and not just obtain conditions on the existence of those common
solutions for f and T . Computing such intersections is the core routine of the
incremental triangular decomposition method initiated by Lazard in [28] and
further developed by Chen and Moreno Maza [15,33]. Consequently, we have
implemented the proposed techniques and measured the benefits that they bring
to the solver presented in [4].

We stress the fact that our objective is to optimize the Intersect algorithm [15]
for computing intersections of the form V (f)∩W (T). Moreover, one of the main
applications of our work in this area is to support algorithms in differential alge-
bra, as in the articles [10,11]. With the challenges of that application2 in mind
and noting the success obtained in applying regular chain theory to differential
algebra, our approach to optimize the Intersect algorithm must remain free of
(explicit) Gröbner basis computations.

2 The differential ideal generated by finitely many differential polynomials is generally
not finitely generated, when regarded as an algebraic ideal.

72 A. Brandt et al.

We observe that if Gröbner basis computations are to be used to support
triangular decompositions, efficient algorithms exist since the 1990’s. As shown
in [34], applying Lazard’ s Lextriangular to the lexicographical Gröbner basis
G(F) of a zero-dimensional polynomial ideal 〈F 〉 produces a triangular decom-
position of the algebraic variety V (F) in a time which is negligible comparing
to that of computing G(F). This efficiency follows from the structure of a lexi-
cographical Gröbner basis as stated by the Gianni-Kalkbrener theorem [29].

The presentation of our modular method for computing V (f)∩W (T) is ded-
icated to the case where T is one-dimensional. The cases where T is of dimension
higher than one are work in progress but not reported here. Our approach to
the design of such a modular method is as follows.

In Sect. 3, we identify hypotheses under which V (f)∩W (T) is given by a sin-
gle zero-dimensional regular chain C, such that V (f)∩W (T) = W (C) holds. We
call those hypotheses genericity assumptions because C is shape lemma in the
sense of [7]. In Sect. 4, we develop a modular method which computes C, if the
genericity assumptions hold, and detects which assumption does not hold other-
wise. One intention of that algorithm is that, whenever a genericity assumption
fails, one should be able to recycle the computations performed by the modular
method, in order to finish the computations, see Sect. 5 for details. Section 6
gathers some notes about a preliminary implementation of the modular algo-
rithm presented in Sect. 4. The experimentation, reported in Sect. 7, contains
very promising results. Indeed, our solver based on this modular method can
process various systems which were previously unsolved by our solver (without
the modular method) and unsolved by the RegularChains library of Maple.

2 Preliminaries

This section is a short review of concepts from the theory of regular chains and
triangular decompositions of polynomial systems. Details can be found in [15].
This paper also relies on the theory of subresultants and we refer the unfamiliar
reader to the concise preliminaries section of [5].

Polynomials. Throughout this paper, let k be a perfect field, K be its algebraic
closure, and k[X] be the polynomial ring over k with n ordered variables X =
X1 < · · · < Xn. Let p ∈ k[X] \ k. Denote by mvar(p), init(p), and mdeg(p),
respectively, the greatest variable appearing in p (called the main variable of p),
the leading coefficient of p w.r.t. mvar(p) (called the initial of p), and the degree
of p w.r.t. mvar(p) (called the main degree of p). For F ⊆ k[X], we denote by
〈F 〉 and V (F) the ideal generated by F in k[X] and the algebraic set of Kn

consisting of the common roots of the polynomials of F , respectively.

Triangular Sets. Let T ⊆ k[X] be a triangular set, that is, a set of non-constant
polynomials with pairwise distinct main variables. Denote by mvar(T) the set
of main variables of the polynomials in T . A variable v ∈ X is called algebraic
w.r.t. T if v ∈ mvar(T), otherwise it is said free w.r.t. T . For v ∈ mvar(T), we
denote by Tv and T−

v (resp. T+
v) the polynomial f ∈ T with mvar(f) = v and the

A Modular Algorithm for Computing the Intersection 73

polynomials f ∈ T with mvar(f) < v (resp. mvar(f) > v). Let hT be the product
of the initials of the polynomials of T . We denote by sat(T) the saturated ideal
of T : if T = ∅ holds, then sat(T) is defined as the trivial ideal 〈0〉, otherwise it is
the ideal 〈T 〉 : h∞

T . The quasi-component W (T) of T is defined as V (T) \V (hT).
For f ∈ k[X], we define Z(f, T) := V (f) ∩ W (T). The Zariski closure of W (T)
in Kn, denoted by W (T), is the intersection of all algebraic sets V ⊆ Kn such
that W (T) ⊆ V holds; moreover we have W (T) = V (sat(T)). For f ∈ k[X], we
denote by res(f, T) the iterated resultant of f w.r.t. T , that is: if f ∈ k or T = ∅
then f itself, else res(res(f, Tv, v), T−

v) if v ∈ mvar(T) and v = mvar(f) hold, or
res(f, T−

v) otherwise.

Regular Chains, Triangular Decomposition. A triangular set T ⊆ k[X] is
a regular chain if either T is empty, or letting v be the largest variable occurring
in T , the set T−

v is a regular chain, and the initial of Tv is regular (that is, neither
zero nor a zero divisor) modulo sat(T−

v). Let H ⊆ k[X]. The pair [T,H] is a
regular system if each polynomial in H is regular modulo sat(T). The dimension
of T , denoted by dim(T), is by definition, the dimension of its saturated ideal
and, as a property, equals n−|T |, where |T | is the number of elements of T . If T
has dimension zero, then T generates sat(T) and we have V (T) = W (T).

The saturated ideal sat(T) enjoys important properties, in particular the
following, proved in [9]. Let U1, . . . , Ud be all the free variables of T . Then sat(T)
is unmixed of dimension d. Moreover, we have sat(T) ∩ k[U1, . . . , Ud] = 〈0〉.
Another property is the fact that a polynomial p belongs to sat(T) if and only if
p reduces to 0 by pseudo-division w.r.t. T , see [6]. Last but not least, a polynomial
p is regular modulo sat(T) if and only if we have res(p, T) 	= 0.

Specialization and Border Polynomial. Let [T,H] be a regular system of
k[X]. Let U = U1, . . . , Ud be the free variables of T . Let a = (a1, . . . , ad) ∈ Kd.
We say that [T,H] specializes well at a if:

(i) for each t ∈ T the polynomial init(t) is not zero modulo the ideal 〈U1 −
a1, . . . , Ud − ad〉; and

(ii) the image of [T,H] modulo 〈U1 − a1, . . . , Ud − ad〉 is a regular system.

Let BT,H be the primitive and square-free part of the product of all res(h, T)
for h ∈ H ∪ {hT }. We call BT,H the border polynomial of [T,H]. From the spe-
cialization property of sub-resultants, one derives the following [32]: The system
[T,H] specializes well at a ∈ Kd if and only if BT,H(a) 	= 0 holds.

Normalized Regular Chain. The regular chain T ⊆ k[X] is said to be nor-
malized if, for every v ∈ mvar(T), none of the variables occurring in init(Tv)
is algebraic w.r.t. T−

v . Let d = dim(T), Y = mvar(T), and U = U1, . . . , Ud be
X \Y . Then, T normalized means that for every t ∈ T we have init(t) ∈ k[U]. It
follows that if T is normalized, then T is a lexicographical Gröbner basis of the
ideal that T generates in k(U)[Y] (that is, over the field k(U) of rational func-
tions), and we denote by nf(p, T) the normal form of a polynomial p ∈ k(U)[Y]
w.r.t. T as a Gröbner basis. Importantly, if T is normalized and has dimension
zero, then init(t) ∈ k for every t ∈ T .

74 A. Brandt et al.

Regular GCD. Let T ⊆ k[X] be a regular chain. Let i be an integer with
1 ≤ i ≤ n. Let p, t ∈ k[X] \ k be polynomials with the same main variable Xi,
and g ∈ k or g ∈ k[X] with mvar(g) ≤ Xi. Assume that:

1. Xi > Xj holds for all Xj ∈ mvar(T); and
2. both init(p) and init(t) are regular w.r.t. sat(T).

For the residue class ring k[X1, . . . , Xi−1]/
√

sat(T), denote its total ring of frac-
tions as A. Note that A is isomorphic to a direct product of fields. We say that
g is a regular GCD of p, t w.r.t. T whenever the following conditions hold:

(G1) the leading coefficient of g in Xi is invertible in A;
(G2) g belongs to the ideal generated by p and t in A[Xi]; and
(G3) if deg(g,Xi) > 0, then g divides both p and t in A[Xi], that is, both

prem(p, g) and prem(t, g) belong to
√

sat(T).

When Conditions (G1), (G2), (G3) and deg(g,Xi) > 0 hold:

(G4) if mdeg(g) = mdeg(t), then
√

sat(T ∪ t) =
√

sat(T ∪ g) and W (T ∪ t) ⊆
Z(hg, T ∪ t) ∪ W (T ∪ g) ⊆ W (T ∪ t);

(G5) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is a regular chain and
we have
(a)

√
sat(T ∪ t) =

√
sat(T ∪ g) ∩ √

sat(T ∪ q) and
(b) W (T ∪ t) ⊆ Z(hg, T ∪ t) ∪ W (T ∪ g) ∪ W (T ∪ q) ⊆ W (T ∪ t);

(G6) W (T ∪ g) ⊆ V (p); and
(G7) V (p) ∩ W (T ∪ t) ⊆ W (T ∪ g) ∪ V (p, hg) ∩ W (T ∪ t) ⊆ V (p) ∩ W (T ∪ t).

Intersect and Regularize. Let p ∈ k[X] and let T ⊆ k[X] be a regular chain.
The function Intersect(p, T) computes regular chains T1, . . . , Te such that: V (p)∩
W (T) ⊆ W (T1)∪ · · ·∪W (Te) ⊆ V (p)∩W (T). The function call Regularize(p, T)
computes regular chains T1, . . . , Te such that: (1) for each i = 1, . . . , e, either
p ∈ sat(Ti) holds or p is regular w.r.t. sat(Ti); and (2) we have W (T) = W (T1)∪
· · · ∪ W (Te), and mvar(T) = mvar(Ti) holds for i = 1, . . . , e.

Triangular Decomposition. Let F ⊆ k[X]. The regular chains T1, . . . , Te

of k[X] form a triangular decomposition of V (F) in the sense of Kalkbrener
(resp. Wu and Lazard) whenever we have V (F) =

⋃e
i=1 W (Ti) (resp. V (F) =⋃e

i=1 W (Ti)). Hence, a triangular decomposition of V (F) in the sense of Wu
and Lazard is necessarily a triangular decomposition of V (F) in the sense of
Kalkbrener, while the converse is not true. Note that a triangular decomposition
can thus be computed from repeated calls to Intersect; see [15].

3 Genericity Assumptions

Let k be a field of characteristic zero or a prime field of sufficiently large charac-
teristic, where that latter condition will be specified later. Let f, t2, . . . , tn ∈ k[X]
be non-constant polynomials in the ordered variables X = X1 < · · · < Xn.

A Modular Algorithm for Computing the Intersection 75

Assume that T := {t2, . . . , tn} is a regular chain with mvar(ti) = Xi for
2 ≤ i ≤ n. Assume also mvar(f) = Xn. Our goal is to compute the intersection
V (f)∩W (T) in the sense of the function call Intersect(f, T), as specified in Sect. 2.
We shall show that, under some assumptions, one can compute a regular chain
C ⊆ k[X] so that C is zero-dimensional and we have: V (f) ∩ W (T) = W (C).

For convenience, we define rn := f . Regarding tn and rn as polynomials in
(k[X1, . . . , Xn−1])[Xn], let S(tn, rn,Xn) be the subresultant chain of tn and rn,
if mdeg(tn) ≥ mdeg(rn), or the subresultant chain of rn and tn otherwise. Let
S0(tn, rn,Xn) and S1(tn, rn,Xn) be the subresultants of index 0 and 1 from
S(tn, rn,Xn). We let

rn−1 := S0(tn, rn,Xn) and gn := S1(tn, rn,Xn).

Continuing in this manner, for 2 ≤ i ≤ n − 1, let S(ti, ri,Xi) be the sub-
resultant chain of ti and ri (resp. ri and ti) regarded as polynomials in
(k[X1, . . . , Xi−1])[Xi] if mdeg(ti) ≥ mdeg(ri) (resp. mdeg(ti) < mdeg(ri)) holds.
Let S0(ti, ri,Xi) and S1(ti, ri,Xi) be the subresultants of index 0 and 1 from
S(ti, ri,Xi). We let

ri−1 := S0(ti, ri,Xi) and gi := S1(ti, ri,Xi).

To make the problem generic, we assume the following:

Hypothesis 1: ri 	∈ k and mvar(ri) = Xi, for 1 ≤ i ≤ n − 1 (1)
Hypothesis 2: gi 	∈ k, for 2 ≤ i ≤ n, (2)
Hypothesis 3: C := {s, g2, . . . gn} is a regular chain, (3)
Hypothesis 4: (∀i ∈ {2, . . . , n}) res(init(ti), {s, g2, . . . , gi−1}) 	= 0, (4)

where s is the squarefree part of s := r1, that is, s/gcd(s,der(s)). Hypothesis 3
has a number of consequences which, essentially, rephrase the fact that C is
a regular chain. Proposition 1 gathers those consequences. Building on that,
Proposition 2 yields Eq. (5) which plays a key role in our method for computing
Intersect(f, T).

Proposition 1. The polynomials s, g2, . . . gn are non-constant and have main
variables X1, X2, . . . , Xn, respectively. Moreover, the initial of gi is invertible
modulo the ideal 〈s, g2, . . . , gi−1〉 generated by s, g2, . . . , gi−1 in k[X1, . . . , Xi−1].

Hypothesis 4 expresses the fact that the initial of the polynomial ti is invert-
ible modulo the ideal 〈s, g2, . . . , gi−1〉, for i = 2 · · · n. We note that from Hypoth-
esis 4, the set {s, g2, . . . , gi−1, ti} is also a regular chain, for 2 ≤ i ≤ n.

Proposition 2. Fix an integer i such that 2 ≤ i ≤ n holds. Then, the polyno-
mial gi is a regular GCD of ri and ti modulo the regular chain {s, g2, . . . , gi−1}.
Moreover, we have:

V (s, g2, . . . , gi−1, ri, ti) = V (s, g2, . . . , gi−1, gi). (5)

76 A. Brandt et al.

Proof. We first prove that gi is a regular GCD of ri and ti modulo the regular
chain {s, g2, . . . , gi−1}. Since {s, g2, . . . , gi−1, gi} is a regular chain, Property (G1)
of a regular GCD clearly holds. We prove (G2). Subresultant theory tells us that
there exist polynomials ui, vi ∈ k[X1, . . . , Xi] so that we have: uiri + viti = gi.
Let Ai be the total ring of fractions of k[X1, . . . , Xi]/〈s, g2, . . . , gi〉. Since s is
squarefree and since mdeg(g2) = · · · = mdeg(gi−1) = 1, the ring Ai−1 is actually
a direct product of fields which tells us that gi is the GCD (in the sense of a
Euclidean domain) of ri and ti over each of those fields. Therefore, Property
(G2) holds. In particular, both ri and ti belong to the ideal generated by gi in
Ai−1[Xi]. Thus, there exist polynomials qri

, qti ∈ Ai−1[Xi] so that the following
hold in Ai−1[Xi]: ri = qri

gi and ti = qtigi. Every polynomial p ∈ Ai−1[Xi] can be
written as the fraction of a polynomial n ∈ k[X1, . . . , Xi] over a polynomial d ∈
k[X1, . . . , Xi−1] so that d is invertible modulo 〈s, g2, . . . , gi−1〉. Therefore, there
exist polynomials in Ai−1[Xi], that we denote again qri

and qti for convenience,
so that the following hold in k[X1, . . . , Xi]: ri ≡ qri

gi mod 〈s, g2, . . . , gi−1〉 and
ti ≡ qtigi mod 〈s, g2, . . . , gi−1〉. From the above, it is clear that gi pseudo-divides
(actually divides) both ri and ti modulo 〈s, g2, . . . , gi−1〉. Therefore, Property
(G3) holds and we have proved that gi is a regular GCD of ri and ti modulo
the regular chain {s, g2, . . . , gi−1}. The second claim of this proposition follows
from the first one and Lemma 1.

Lemma 1. Fix an integer i such that 2 ≤ i ≤ n holds. Let ĝi ∈ k[X1, . . . , Xi]
be a non-constant polynomial with mvar(ĝi) = Xi. Assume that ĝi is a regular
GCD of ri and ti modulo the regular chain {s, g2, . . . , gi−1}. Then, we have:

V (s, g2, . . . , gi−1, ri, ti) = V (s, g2, . . . , gi−1, ĝi). (6)

Proof. We denote by Ti the regular chain {s, g2, . . . , gi−1, ti}. It follows from
Property (G7) of a regular GCD that: V (ri) ∩ W (Ti) ⊆ W ({s, g2, . . . , gi−1, ĝi})
∪ V (ri, hĝi

) ∩ W (Ti) ⊆ V (ri) ∩ W (Ti). Since hĝi
, the initial of ĝi, is invert-

ible modulo 〈s, g2, . . . , gi−1〉, we have: V (ri, hĝi
) ∩ W (Ti) = ∅. Since V (Ti) and

V ({s, g2, . . . , gi−1, ĝi}) are both zero-dimensional, we have: V (s, g2, . . . , gi−1, ti)
= W (Ti) = W (Ti) and V (s, g2, . . . , gi−1, ĝi) = W ({s, g2, . . . , gi−1, ĝi}). There-
fore, we have: V (ri, s, g2, . . . , gi−1, ti) = V (s, g2, . . . , gi−1, ĝi).

Theorem 1 tells us that, under our genericity assumptions, the result of
Intersect(f, T) is given by the regular chain C = {s, g2, . . . , gn}.

Theorem 1. With our four Hypotheses 1, 2, 3 and 4, we have:

V (f, t2, . . . , tn) = V (s, g2, . . . , gn). (7)

Proof. This follows immediately from Proposition 2 and Lemma 2.

Lemma 2. For each integer i, such that 2 ≤ i ≤ n holds, let ĝi ∈ k[X1, . . . , Xi]
be a non-constant polynomial with mvar(ĝi) = Xi so that ĝi is a regular GCD of
ri and ti w.r.t. the regular chain {s, ĝ2, . . . , ĝi−1}. Then, we have:

V (f, t2, . . . , tn) = V (s, ĝ1, . . . , ĝn). (8)

A Modular Algorithm for Computing the Intersection 77

Algorithm 1. GenericIntersectDimOne

Require: (f, T) as in Theorem 1. Recall: f �∈ k and mvar(f) = Xn.
Ensure: C as in Theorem 1.
1: rn := f
2: for i := n . . . 1 do
3: ri−1 := S0(ti, ri, Xi)
4: gi := S1(ti, ri, Xi)
5: if ri−1 ∈ k or mvar(ri−1) �= Xi−1 then
6: throw Hypothesis 1 not met
7: if gi ∈ k then
8: throw Hypothesis 2 not met
9: s:= squareFreePart(r1)

10: C := {s, g2, . . . gn}
11: if C is not a regular chain then
12: throw Hypothesis 3 not met
13: for i := 2 ... n do
14: if hi is not regular w.r.t. C then
15: throw Hypothesis 4 not met
16: return C

Proof. Since rn = f and since ri−1 belongs to the ideal generated by ri and ti,
we have: V (f, t2, . . . , tn) = V (r1, t2, r2, . . . , tn, rn). Since s is the squarefree part
of s = r1, we also have: V (f, t2, . . . , tn) = V (s, t2, r2, . . . , tn, rn). With repeated
application of Lemma 1, we deduce: V (f, t2, . . . , tn) = V (s, ĝ1, . . . , ĝn).

Algorithm 1 summarizes the results of this section. Note that Algorithm 1
computes Intersect(f, T) only if Hypotheses 1, 2, 3, 4 hold, and throws an excep-
tion otherwise. The general task of computing Intersect(f, T) can be achieved by
the algorithms presented in [15]. In fact, these exceptions can be caught by a
wrapper algorithm, which can then call the general Intersect procedure. More-
over, one can attach to these exceptions the data already computed by Algo-
rithm 1 so that the wrapper algorithm can avoid unnecessary computations. We
will return to the handling of the exceptions of Algorithm 1 in Sect. 5.

4 The Modular Method

We use the same notations as in Sect. 3. The objective of this section is to turn
Algorithm 1 into a modular algorithm where:

1. we evaluate f and T at sufficiently many values of X1 so that:
(a) T specializes well at X1 = a to a zero-dimensional regular chain T (a),
(b) T (a) is replaced with a normalized regular chain Na generating the same

ideal,
(c) the images of gn, . . . , g2, r1 at X1 = a are computed efficiently; and

2. the polynomials gn, . . . , g2, r1 are reconstructed from their images by means
of interpolation and rational function reconstruction.

78 A. Brandt et al.

Let ri(a) be the polynomial ri evaluated at X1 = a and ti(a) be the polynomial
from Na with main variable Xi. The benefit of this modular algorithm is that
the computation of the subresultants S0(ti(a), ri(a),Xi) and S1(ti(a), ri(a),Xi)
avoid the expression swell described in Sect. 1. Indeed, the regular chain Na is
normalized. This modular algorithm leads to the usual questions:

1. Can all computed modular images be combined in order to retrieve the desired
result, or are there some specializations that must be discarded?

2. If so, how do we detect those specializations that must be discarded?
3. How many modular images do we need in order to obtain the desired result?

We detail the answers to these three questions in the following three sub-
sections, respectively. Luckily, there are only finitely many bad specializations
which must be discarded.

4.1 The Fumber of Bad Specializations is Finite

Let a ∈ k and let Φa be the evaluation homomorphism from k[X1, . . . , Xn] to
k[X2, . . . , Xn] which evaluates X1 at a. Recall that C stands for {s, g2, . . . , gn}.
Assume that a is not a root of the border polynomial BC ∈ k[X1] of C. Therefore,
for 2 ≤ i ≤ n, the polynomial Φa(ti) is not constant and has main variable Xi.
Moreover, the set {Φa(t2), . . . , Φa(tn)} is a zero-dimensional regular chain in
k[X2, . . . , Xn]. Let S(Φa(ti), Φa(ri),Xi) be the subresultant chain of Φa(ti) and
Φa(ri) regarded as polynomials in (k[X2, . . . , Xi−1])[Xi]. From this subresultant
chain, let S0(Φa(ti), Φa(ri),Xi) and S1(Φa(ti), Φa(ri),Xi) be the subresultants
of index 0 and 1.

Proposition 3. With Hypothesis 1, there exists a finite subset D(f, T) ⊆ k such
that, for all a 	∈ D(f, T), for all 2 ≤ i ≤ n, we have:

Φa(gi) = S1(Φa(ti), Φa(ri),Xi), and Φa(r1) = S0(Φa(t2), Φa(r2),X2).

Proof. Fix i ∈ N such that 2 ≤ i ≤ n From Hypothesis 1, we have ri 	∈ k and
mvar(ri) = Xi. Using the lexicographical term order induced by X2 < · · · < Xi,
let ci−1 be the leading coefficient of ri regarded as a multivariate polynomial in
k[X1][X2, . . . , Xi], such that ci−1 ∈ k[X1]. If a is not a root of ci−1 then Φa(ri)
and ri have the same degree in Xi. Since BT (a) 	= 0, the polynomials Φa(ti)
and ti have the same degree in Xi too. It follows from the specialization property
of subresultants that Φa(gi) and S1(Φa(ti), Φa(ri),Xi) are equal. Therefore, the
desired set is: D(f, T) = {a ∈ k | (BT · c1 · · · cn−1)(a) = 0}, which is finite.

4.2 Number of Bad Specializations and Other Degree Estimates

We start by giving an estimate of the cardinality of D(f, T) based on considera-
tions directly derived from subresultant theory. This estimate is pessimistic and,
in a second phase, we will revisit it to derive a modular algorithm computing
the regular chain C = {s, g2, . . . , gn}, as stated in Theorem 1.

A Modular Algorithm for Computing the Intersection 79

Let d
(n)
i be the maximum of the degrees of f, tn, . . . , t2 w.r.t. Xi, for 1 ≤

i ≤ n. Using the determinantal formulation of subresultants, it follows that the
degree of any subresultant of S(tn, rn,Xn) w.r.t. Xi, for 1 ≤ i ≤ n−1, is bounded
over by deg(tn,Xn) deg(rn,Xi) + deg(rn,Xn) deg(tn,Xi) ≤ 2d

(n)
n d

(n)
i =: d

(n−1)
i .

Using again the determinantal formulation, it follows that the degree of any
subresultant of S(tn−1, rn−1,Xn−1) w.r.t. Xi for 1 ≤ i ≤ n − 2, is bounded over
by deg(tn−1,Xn−1) deg(rn−1,Xi) + deg(rn−1,Xn−1) deg(tn−1,Xi), yielding

d
(n−2)
i := d

(n)
n−1d

(n−1)
i + d

(n−1)
n−1 d

(n)
i = 2d(n)n d

(n)
i (d(n)i + d

(n)
n−1).

Continuing, the degree of any subresultant of S(tn−j , rn−j ,Xn−j) w.r.t. Xi for
1 ≤ i ≤ n − j, is bounded above by d

(n−j−1)
i = d

(n)
n−jd

(n−j)
i + d

(n−j)
n−j d

(n)
i . To

obtain a concise result, let d be the maximum of d
(n)
1 , . . . , d

(n)
n . Then, we have

d
(n−1)
i = 2d2, d

(n−2)
i = 4d3 and d

(n−j−1)
i = 2j+1dj+2, for 0 ≤ j ≤ n − 2.

Returning to the polynomial BT ·c1 · · · cn−1, we are now ready to estimate its
degree. First, we note that deg(cn−j−1) ≤ d

(n−j−1)
i , thus we have deg(cn−j−1) ≤

2j+1dj+2. Second, let hi be the initial of ti, for 2 ≤ i ≤ n. The border polynomial
BT of the regular chain T is the product of the iterated resultants res(hi, T), for
2 ≤ i ≤ n. Observe that, in the above discussion, the degree estimates d

(n−j−1)
i

remain valid when we replace f by each of h2, . . . , hn. Therefore, we have:
deg(BT) = deg(res(h2, T))+· · ·+deg(res(hn, T)) ≤ (n−1)d(1)1 = (n− 1)2n−1dn.
Finally, we deduce: deg(BT c1 · · · cn−1) ≤ (n − 1)2n−1dn + 2n−1dn + · · · + 2d2 ≤
n2ndn+1.

Proposition 4. With the hypotheses and notations of Proposition 3, the cardi-
nality of D(f, T) is at most n2ndn+1, where d is the maximum partial degree of
f, t2, . . . , tn in any variable X1, . . . , Xn.

Of course, this estimate is not sharp, particularly if the product of the par-
tial degrees d

(n)
1 , . . . , d

(n)
n exceeds the total degree of either f or tn. There-

fore, in order to design a modular method for computing the regular chain
C = {s, g2, . . . , gn} of Theorem 1, by means of an evaluation and interpolation
strategy, we take advantage of the Bézout inequality (see Theorem 3 in [36]).
Since V (f, t2, . . . , tn) is a zero-dimensional affine variety, the number of its ele-
ments is bounded over by the product of the total degrees of the polynomials
f, t2, . . . , tn, that we denote by B(f, t2, . . . , tn). Thus, the degree of the univariate
polynomial s ∈ k[X1] cannot exceed B(f, t2, . . . , tn).

Furthermore, assume that the call Intersect(f, T) (with T = {t2, . . . , tn})
was made as part of the triangular decomposition of a zero-dimensional system,
say {f1, . . . , fm}. Then, one can use the Bézout bound B(f1, . . . , fm) instead of
B(f, t2, . . . , tn), since the former is likely to be (much) smaller than the latter.

In fact, any bound B on the number of points of V (f1, . . . , fm) can be used
as an upper bound for deg(s). Moreover, our experimentation suggests that the
degrees of the univariate polynomials c1, . . . , cn−1 are not likely to exceed the
degree of r1. Hence, the number of specializations X1 = a which do not cancel

80 A. Brandt et al.

the border polynomial BC but cancel one of c1, . . . , cn−1 are likely to be bounded
over by (n − 1)B. Therefore, using nB + 1 specializations X1 = a is likely to be
sufficient for computing s, assuming that we have a practically efficient criterion
for avoiding the specialization cancelling BC . This latter observation leads us
to the algorithm of Sect. 4.3. In fact, we shall see that, in practice, the quantity
nB + 1 can often be reduced to 2B + 1 or 3B + 1, even when n > 3 holds.

4.3 A Modular Algorithm

In addition to the strategy presented in Sect. 4, the other key ingredients of our
modular algorithm are the following ones: (1) Monagan’s probabilistic strategy
for computing resultants via evaluation and interpolation [30], (2) the small
prime modular algorithm for computing the GCD of two univariate polynomials
over Z, see Chap. 6 in [25], and (3) rational function reconstruction, see Sect. 5.7
in [25].

Algorithm 2 takes as input the same arguments f and T as Algorithm 1.
In addition, Algorithm 2 takes three other arguments B, s,D which are positive
integers with the following respective roles:

1. B is an estimate of the degree of r1.
2. e controls the behavior of Monagan’s probabilistic strategy: once 2B + e + 1

images (of the polynomials gn, . . . , g2, r1) are computed then the recombi-
nation of the first 2B + 1 images is compared to the recombination of the
first 2B + e + 1; if they are equal, then rational function reconstruction is
attempted. If rational function reconstruction fails, then e more images are
collected and the next comparison uses the first 2B + e + 1 and the first
2B + 2e + 1 images, and so on.

3. D is an estimate for the number of bad specializations defined in Sect. 4.1.

As we shall see, if B is an upper bound for the degree of r1, and if D is
an upper bound for the number of bad specializations, then the algorithm is
deterministic, otherwise it is probabilistic.

In practice, a smaller B and a small e makes the algorithm check for termi-
nation (in the sense Monagan’s probabilistic strategy) more frequently, which
may have an impact on performance, positive or negative. In practice, if B is
believed to be a sharp estimate for deg(r1), then e can be small, even a small
percentage of B, without negative performance impact. Similarly, a smaller D
makes the algorithm check earlier whether C has the required properties, that
is, whether Hypotheses 2, 3, 4 hold or not. This may also have an impact on
performance, positive or negative. In practice, if B is believed to be a sharp
estimate for deg(r1), then D can be small, say a percentage of B.

Algorithm 2 uses two simple sub-procedures specified below:

– InitializeImageCollection initializes A and G to the empty list, and d to a list
of n zeros. A will store the evaluation points and G the corresponding images
of gn, . . . , g2, r1.

A Modular Algorithm for Computing the Intersection 81

Algorithm 2. ModularGenericIntersectDimOne
Require: (f, T, B, e, D), where f, T are as in Theorem 1 with f �∈ k and mvar(f) = Xn, B

is a positive integer which estimates deg(r1), e is a positive integer, and D estimates the
number of bad specializations.

Ensure: C as in Theorem 1, provided Hypotheses 1, 2, 3 and 4 are met, otherwise an exception

is raised.

1: a := Random(); P := {a} � a random element of k used as a seed
2: M := 2B + 1 � Twice the bound is necessary for rational function reconstruction

3: c := 0 � counts the number of specializations used so far
4: b := 0 � counts the number of bad specializations met so far

5: (A, G, d) := InitializeImageCollection(f, T)
6: CM := {}; CM+e := {}
7: while c < M + e + D do

8: (a, T (a), f(a), P) := FindCandidateSpecialization(f, T, P)

9: c := c + 1

10: i := n
11: ri(a) := f(a)
12: Na := Normalize(T (a)) � normalize the regular chain

13: ti(a) := Polynomial(Xi, Na) � The poly. of Na with main var. Xi

14: while i > 1 do

15: ri−1(a) := S0(ti(a), ri(a), Xi)
16: if ri−1 ∈ k or mvar(ri−1) < Xi−1 then

� Bad specialization or Hypothesis 1 not met

17: b := b + 1; Goto Line 8

18: if #A > 0 and deg(ri−1(a), Xi−1) > d[i − 1] then
� Every specialization in A is bad

19: b := b +#A; Goto Line 5

20: if #A > 0 and deg(ri−1(a), Xi−1) < d[i − 1] then
� The specialization X1 = a is bad

21: b := b + 1; Goto Line 8

22: d[i − 1] = deg(ri−1(a), Xi−1)
23: gi(a) := S1(ti(a), ri(a), Xi)
24: i := i − 1

25: G := Append(G, [gn(a), . . . , g2(a), r1(a)])
26: A := Append(A, a)
27: if #A = M and CM = {} then

28: CM := Interpolate(A, G, X1) � Recover X1 in gn, . . . , g2, r2

29: if #A = M + e and CM+s = {} then
30: CM+e := Interpolate(A, G, X1)

31: if CM = CM+e �= {} and c > D then � If M and M + e images produce the same
recombination and those are expected to have the correct degrees

32: C := RationalFunctionReconstruction(CM , A, X1)
33: if C �= Failure then

34: if one of gn, . . . , g2 is constant then
35: throw Hypothesis 2 not met
36: if C is not a regular chain then

37: throw Hypothesis 3 not met
38: if one of h2, . . . , hn is not regular w.r.t. C then

39: throw Hypothesis 4 not met
40: return (C)

41: M := M + e ; CM := CM+e ; CM+e := {}
42: throw Hypothesis 1 not met

82 A. Brandt et al.

– FindCandidateSpecialization(f, T,P): (1) randomly chooses a ∈ k such that
a 	∈ P, a does not cancel BT and init(f), and (2) returns f and T specialized
at X1 = a. Finally, P is replaced with P ∪ {a}.

To avoid the use of a couple more sub-procedures (which would have many
arguments and complicated specifications), the pseudo-code of Algorithm 2 uses
Goto statements in three places:

– At Line 19, the Goto statement forces the algorithm to resume from Line 5,
thus discarding all images that have been computed up to that point.

– At Lines 17 and 21, the Goto statement forces the algorithm to resume from
Line 8, thus discarding the image that is currently being computed.

A few more observations about the pseudo-code of Algorithm 2:

– Between Lines 14 and 24, the while-loop is used to compute and collect the
images of gn, . . . , g2, r1 for X1 = a.

– Between Lines 7 and 41, the main loop is located. Each iteration of that
loop starts with the selection of a new specialization point. If the images of
gn, . . . , g2, r1 at that specification are successfully collected, then the algo-
rithm checks whether the desired result has been reached. When this is not
the case, more images may be computed. Note that this while-loop runs until
c ≥ M + s + D holds, or until an exception is raised, or until the result is
returned. The quantity M is replaced by M + s during the loop. However, as
we shall see in Theorem 2 the algorithm always terminates.

Finally, note that pseudo-code uses two counters c and b. They, respectively,
count the total number of specializations used and the number of bad special-
izations hit during the execution of the algorithm. The counter b is not used by
the algorithm, but it is an interesting information that the algorithm can return.

Theorem 2. Algorithm 2 always terminates. This is a probabilistic algorithm
for computing the regular chain C as defined in Theorem 1, if Hypotheses 1, 2,
3, and 4 all hold, or detecting which Hypothesis does not hold, otherwise. If the
input arguments B and D are upper bounds for deg(r1) and the number of bad
specifications, respectively, then the algorithm is deterministic.

Proof. We first prove termination. Suppose that Hypothesis 1 does not hold.
Then, the while-loop between Lines 14 and 24 will never succeed in reaching
i = 0. Indeed, each time this while-loop is entered the Goto statement at Line 17
will force the algorithm to exit this while-loop and resume at Line 8. As a result,
the counter c will reach the bound M + s + D of the outer while-loop (between
Lines 7 and 41) and the algorithm will terminate by throwing the exception
Hypothesis 1 not met.

Suppose now that Hypothesis 1 holds. Then, the while-loop between Lines
14 and 24 will exit before reaching i = 0 if and only if bad specializations are
discovered:

1. at Line 19, because all previous specializations were bad,
2. or at Line 21, because the current specialization is bad.

A Modular Algorithm for Computing the Intersection 83

Thus, when the while-loop between Lines 14 and 24 reaches i = 0, a new image of
(gn, . . . , g2, r1) is added to G. Once the total number of images of (gn, . . . , g2, r1)
is greater than or equal to M + e and D, the algorithm:

1. tests at Line 31 whether the recombination of those images has stabilized,
and, if so,

2. attempts rational function reconstruction at Line 32, and, if successful,
3. checks whether Hypotheses 2, 3 and 4 all hold

When the condition c > D holds, the current recombination of the images of
gn, . . . , g2, r1 are believed to have the correct degrees. And, in fact, they do
have the correct degrees whenever D is an upper bound for the number of bad
specializations. Now, if c ≤ D holds or if rational function reconstruction fails,
the value of M is replaced by M + e, and thus the while-loop bound M + e + D
is increased. Nevertheless, after combining sufficiently images of gn, . . . , g2, r1
(not using bad specializations) both conditions CM = CM+e and c > D will
be true together, and, moreover, rational function reconstruction will succeed.
Consequently, the section of code between Lines 34 and 40 will be entered and,
therefore, the algorithm will terminate. Clearly, if the input arguments B and D
are upper bounds for deg(r1) and the number of bad specifications, respectively,
then the Algorithm 2 satisfies its specifications in a deterministic way.

5 Relaxing the Hypotheses

The previously described modular method works well to avoid expression swell
and makes certain problems tractable, see Sect. 7. However, when one of the
Hypotheses 1, 2, 3 or 4 does not hold, the algorithm will fail to produce a result.
We take this section to sketch how a wrapper algorithm handles the cases where
Algorithm 2 throws an exception.

When Hypothesis 1 Fails. If ri ∈ k or mvar(ri) 	= Xi, for some i, three cases
must be considered. First, if ri = 0 then the polynomials ri+1 and ti+1 have a
GCD with a positive degree in Xi. Let us call this GCD d. The computations thus
split into two cases: d 	= 0 and d = 0. This leads, in principle, to two recursive
calls to the Intersect algorithm; see [15]: one to compute the intersection of f
and {t2, . . . , ti, ti+1/d, ti+2, . . . , tn} and one to compute the intersection of f and
{t2, . . . , ti, d, ti+2, . . . , tn}. We note that the first one may be attempted by our
modular algorithm. Meanwhile in the second one, we have ri+1 null modulo
sat(T), thus the computations performed in the original call can be recycled in
order to complete Intersect(f, T). Second, if ri ∈ k \ {0} then V (f) ∩ W (T) = ∅
and the empty set should be returned. Third, If mvar(ri) 	= Xi, say mvar(ri) =
Xj for j < i. Then, one simply needs to “skip” computing the subresultant chain
of ri and ti and instead compute the subresultant chain between ri and tj with
respect to Xj . Then, the corresponding gi−1, . . . , gj+1 are set to be ti−1, . . . , tj+1,
respectively.

When Hypothesis 2 Fails. If one of the g2, . . . , gn is constant, say gi, then a
regular GCD for ri and ti can be found using a subresultant of index higher than

84 A. Brandt et al.

1 from S(ri, ti,Xi). Since Algorithm 2 has computed S(ri, ti,Xi) (by computing
modular images of it), one can recycle the computations performed by that
algorithm in order to obtained a regular GCD for ri and ti.

When Hypothesis 3 Fails. When this happens, the set C := {s̄, g2, . . . , gn} is
not a regular chain. As in the previous case, one of the polynomials g2, . . . , gn,
say gi, fails to be a regular GCD of ri and ti modulo 〈s̄, g2, . . . , gi−1〉. Here again,
one can recycle the modular images S(ri, ti,Xi) to obtain a correct regular GCD.

Recovering from the failure of Hypotheses 2 or 3 can be accomplished by
means of a task-pool scheme where each task consists of an integer i and a
proposed regular chain C ′. The general idea is to process the regular chain
“bottom-up”, replacing any offending gi with a new regular GCD, and splitting
computations as necessary. For gi to be a regular GCD of ri and ti modulo
〈s̄, g2, . . . , gi−1〉, init(gi) must be regular modulo 〈s̄, g2, . . . , gi−1〉; this can easily
be checked with a call to the function Regularize.

As soon as we hit a gi such that its initial is not regular modulo Ci :=
〈s̄, g2, . . . , gi−1〉, the regular chain Ci is split in two (or more) regular chains Ci,1

and Ci,2. For one of these regular chains, say Ci,1, we have that the initial of
gi is regular modulo Ci,1. This implies that in this particular branch of the
computations, gi is a regular GCD of ri and ti. For the second branch, gi is
zero modulo Ci,2 and thus gi is not a regular GCD of ri and ti. Hence, we
need to replace gi with the next non-zero polynomial in the subresultant chain
between ri and ti, say g′

i. We replace the previous task with two new ones: one in
which we want to check the regularity of the initial of gi+1, . . . , gn modulo Ci,1,
and another one in which we want to check the regularity of g′

i, gi+1, . . . , gn

modulo Ci,2. A task is considered complete once gn is found to be regular. We
repeat this process until the task pool is empty.

When Hypothesis 4 Fails. Lastly, consider Hypothesis 4. This hypothesis
says that the resulting regular chain C := {s̄, g2, . . . , gn} must maintain the
inequalities defined by the initials of the polynomials ti in the regular chain T ,
that is, none of those initials must vanish on V (f) ∩ W (T). Hypothesis 4 fails
if and only if (at least) one of the init(ti)’s is not invertible modulo the ideal
〈s̄, g2, . . . , gn〉. Rectifying this issue is handled easily by a call to Regularize. Let ti
be a polynomial whose initial is not regular modulo 〈C〉. Since C, after passing
Hypothesis 3, is a regular chain, one can call Regularize(init(ti), C) to compute
regular chains C1, . . . , Ce such that init(ti) is either regular or zero modulo Cj .
Then, one simply discards any Cj for which init(ti) is zero. A similar “discarding
process” is applied by the CleanChain procedure in the non-modular case [15].

6 Implementation

In the preceding sections we have discussed a modular algorithm based on
evaluation-interpolation. In fact, we employ two separate modular methods.
In practice, triangular decompositions are often performed over the rational
numbers. Thus, k should be Q in all of the previous algorithms.

A Modular Algorithm for Computing the Intersection 85

Algorithm 2 is actually implemented and executed over a finite field. Our
implementation is written in the C programming language as part of the BPAS
Library [2] and follows [3] for its implementation of sparse multivariate polyno-
mials over the rationals and finite fields. Moreover, our implementation actually
implements a wrapper function, as detailed in Sect. 5. This function is able to
catch the exceptions of Hypotheses 2, 3, or 4, recover from them, and produce
a correct output. The implementation does not yet handle when Hypothesis 1
fails, instead falling back to the non-modular implementation of Intersect in
BPAS [4,12]. This is left to future work.

The implementation of Algorithm 2 is broken into three main phases: com-
puting subresultants, interpolation and reconstruction of the regular chain C (see
Sect. 3 for notations), and lifting the coefficients from a finite field to Q. Inter-
polation and rational function reconstruction are standard algorithms. Thus, we
describe the other two main parts.

Subresultants are computed in three different ways depending of the degrees
of the input polynomials. All three methods are detailed in [5]. First, an opti-
mized version of Ducos’ subresultant chain algorithm handles the general case.
Second, when degrees are high, one can compute each subresultant itself using
evaluation-interpolation. We can evaluate the variables X2, . . . , Xi−1, compute
strictly univariate subresultants, and then recover the true subresultants through
interpolation. We implement this multivariate evaluation-interpolation using a
multi-dimensional truncated Fourier transform (TFT). Third, when computa-
tions are univariate (either when computing s̄ or as univariate images in the
evaluation-interpolation scheme), one can use an algorithm based on Half-GCD
to compute only the subresultants of index 0 and 1 rather than the entire sub-
resultant chain.

Recovering the rational number coefficients is an implementation of the tech-
nique based on Hensel-lifting described in [21]. With an implementation of this
Hensel lifting for triangular sets, notice that a modular algorithm for a zero-
dimensional intersect is immediate. Algorithm 2 can be transformed to compute
the intersection between f and a zero-dimensional regular chain T as follows.
Working modulo a prime p, do not specialize any variables and directly normal-
ize T . Compute the iterated subresultants of f and T , do not interpolate any
variables, and directly construct C. Then, perform Hensel lifting to reconstruct
the coefficients of C over Q. This method is very effective in practice to reduce
expression swell in the coefficients, as we describe next.

7 Experimentation and Discussion

Our experimentation was collected on a desktop running 20.04.1-Ubuntu with an
Intel Core i7-7700K processor at 4.20GHz, and 16GB DDR4 memory at 2.4 GHz.
We first show that the modular method is effective in practice to significantly
reduce the computational time of computing a triangle decomposition, and even
solves some polynomial systems which were infeasible for previous solvers.

Table 1 summarizes these results by describing the structure of these well-
known systems, as well as the execution time to solve the system using the

86 A. Brandt et al.

Table 1. Running times of Maple vs. BPAS(non-modular) vs. BPAS(modular)

System Number of
Variables

Number of
Equations

Bézout
Bound

Number of
Solutions

Maple
Time (s)

BPAS(non-modular)
Time (s)

BPAS(modular)
Time (s)

noon5 5 5 243 233 1.46 0.61 0.42

eco8 8 8 1458 64 N/A N/A 60.63

Cassou-Nogues 4 4 1344 16 1.43 5.60 0.42

childDraw-2 10 10 256 42 12.70 2.83 2.48

Issac97 4 4 16 16 156.33 101.16 1.92

Themos-net-2 6 6 32 24 55.10 57.60 1.37

Uteshev-Bikker 4 4 36 36 N/A N/A 362.97

Theomes-net-3 5 5 32 24 54.93 57.01 1.36

Noonburg-5 5 5 243 233 2011.24 314.72 6.43

cohn2 4 4 900 Positive
Dimension

145.39 1322.98 1315.34

rabno 9 9 36000 16 3.77 2.97 2.97

tangents0 6 6 64 24 3.69 2.40 0.39

Cassou-Nogues-2 4 4 450 8 N/A N/A 2145.28

Table 2. Runtime analysis of the subroutines of the modular method

System Call
Number

Number of
Evaluations

Bézout
Bound

Time (s) for
Collect Images

Time (s) for
Subresultants

Time (s) for
Interpolation

Time (s) for Time (s) for
Modular Intersect

Time (s) for
Hensel lifting

noon5 1st 161 243 0.01 0.01 0.02 0.00 0.03 0.02

noon5 2nd 161 243 0.00 0.01 0.02 0.00 0.03 0.00

noon5 3rd 161 243 0.00 0.01 0.02 0.00 0.03 0.01

eco8 1st 289 1458 0.07 0.06 0.31 0.12 0.63 2.56

Cassou-Nogues 1st 161 1344 0.02 0.04 0.02 0.01 0.08 0.08

Issac97 1st 161 16 0.01 0.01 0.02 0.00 0.05 0.33

Themos-net-2 1st 161 32 0.02 0.02 0.03 0.01 0.09 0.74

Uteshev-Bikker 1st 193 36 0.02 0.03 0.04 0.01 0.12 58.91

Themos-net-3 1st 161 32 0.02 0.02 0.03 0.01 0.09 0.75

Noonburg-5 1st 257 243 0.02 0.64 1.22 0.01 3.04 2.93

tangents0 1st 161 64 0.02 0.02 0.02 0.00 0.00 0.13

Cassou-Nogues-2 1st 161 450 0.01 0.03 0.02 0.00 0.07 0.04

modular method and not using the modular method, if the latter is possible. The
non-modular implementation is the (serial) version described in [4,12]. As a point
of comparison, we also present the time to compute a triangular decomposition
using the RegularChains library of Maple 2022. In particular, the systems eco8,
Uteshev-Bikker, and Cassou-Nogues-2, could not be solved within two hours of
computation time. However, the modular method allows the first two to be solved
on the order of minutes, and Cassou-Nogues-2 on the order of 10s of minutes.

In Table 2, we describe a detailed analysis of the modular intersect in dimen-
sion one. Observe that the running time for each main task is provided. Addi-
tionally, it is important to mention that in some cases, the number of collected
images is far below the Bézout bound of the input systems. Therefore, this shows
the importance of stabilization techniques in the implementation.

Among our works-in-progress is, of course, is the adaptation and implementa-
tion of this modular method for Intersect(f, T) for T in dimension higher than 1.
This is necessary in order to tackle even harder polynomial systems. Moreover,
recovering from cases where Hypothesis 1 fails must also be implemented.

A Modular Algorithm for Computing the Intersection 87

References

1. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput.
35(4), 403–419 (2003)

2. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (2023). https://
www.bpaslib.org

3. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M.: Algorithms and data
structures for sparse polynomial arithmetic. Mathematics 7(5), 441 (2019)

4. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization
of triangular decompositions: techniques and implementation. J. Symb. Comput.
115, 371–406 (2023)

5. Asadi, M., Brandt, A., Moreno Maza, M.: Computational schemes for subresultant
chains. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC
2021. LNCS, vol. 12865, pp. 21–41. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85165-1 3

6. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28(1–2), 105–124 (1999)

7. Becker, E., Mora, T., Marinari, M.G., Traverso, C.: The shape of the shape lemma.
In: MacCallum, M.A.H. (ed.) Proceedings of ISSAC 1994, pp. 129–133. ACM
(1994)

8. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a
finitely generated differential ideal. In: Proceedings of the International Symposium
on Symbolic and Algebraic Computation, pp. 158–166. ACM (1995)

9. Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangular
systems and the D5 principle. In: Proceedings of the Transgressive Computing
(2006)

10. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for rad-
icals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput.
20(1), 73–121 (2009)

11. Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic
sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010)

12. Brandt, A.: The design and implementation of a high-performance polynomial
system solver. Ph.D. thesis, University of Western Ontario (2022)

13. Chen, C., et al.: Computing the real solutions of polynomial systems with the
regularchains library in maple. ACM Commun. Comput. Algebra 45(3/4) (2011)

14. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Trian-
gular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

15. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

16. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical
algebraic decompositions. In: Feng, R., Lee, W., Sato, Y. (eds.) Computer Mathe-
matics, pp. 199–221. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43799-5 17

17. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decom-
position based on regular chains. J. Symb. Comput. 75, 74–93 (2016)

18. Chou, S., Gao, X.: Computations with parametric equations. In: Proceedings of
the ISSAC 1991, pp. 122–127 (1991)

19. Chou, S., Gao, X.: A zero structure theorem for differential parametric systems. J.
Symb. Comput. 16(6), 585–596 (1993)

https://www.bpaslib.org
https://www.bpaslib.org
https://doi.org/10.1007/978-3-030-85165-1_3
https://doi.org/10.1007/978-3-030-85165-1_3
https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1007/978-3-662-43799-5_17

88 A. Brandt et al.

20. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. UTM, Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

21. Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques
for triangular decompositions. In: Proceedings of the International Symposium on
Symbolic and Algebraic Computation, pp. 108–115 (2005)

22. Dong, R., Lu, D., Mou, C., Wang, D.: Comprehensive characteristic decomposition
of parametric polynomial systems. In: Proceedings of the International Symposium
on Symbolic and Algebraic Computation, pp. 123–130. ACM (2021)

23. Faugère, J.C.: Résolution des systèmes d’équations algébriques. Ph.D. thesis, Uni-
versité Paris 6 (1994)

24. Gao, X., van der Hoeven, J., Yuan, C., Zhang, G.: Characteristic set method for
differential-difference polynomial systems. J. Symb. Comput. 44(9) (2009)

25. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

26. Hu, Y., Gao, X.S.: Ritt-Wu characteristic set method for Laurent partial differential
polynomial systems. J. Syst. Sci. Complex. 32(1), 62–77 (2019)

27. Kapur, D., Saxena, T.: Extraneous factors in the Dixon resultant formulation. In:
Proceedings of the ISSAC 1997, pp. 141–148. ACM (1997)

28. Lazard, D.: A new method for solving algebraic systems of positive dimension.
Discret. Appl. Math. 33(1–3), 147–160 (1991)

29. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2),
117–132 (1992)

30. Monagan, M.B.: Probabilistic algorithms for computing resultants. In: Proceedings
of the ISSAC, pp. 245–252. ACM (2005)

31. Moreno Maza, M., Sandford, R.: Towards extending Fulton’s algorithm for comput-
ing intersection multiplicities beyond the bivariate case. In: Boulier, F., England,
M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp.
232–251. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1 14

32. Moreno Maza, M., Xia, B., Xiao, R.: On solving parametric polynomial systems.
Math. Comput. Sci. 6(4), 457–473 (2012)

33. Moreno Maza, M.: On triangular decompositions of algebraic varieties. Technical
report. TR 4/99, NAG Ltd, Oxford, UK (1999). Presented at the MEGA-2000
Conference

34. Maza, M.M., Rioboo, R.: Polynomial GCD computations over towers of alge-
braic extensions. In: Cohen, G., Giusti, M., Mora, T. (eds.) AAECC 1995. LNCS,
vol. 948, pp. 365–382. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60114-7 28

35. Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1966)
36. Schmid, J.: On the affine Bezout inequality. Manuscr. Math. 88(1), 225–232 (1995)
37. Schost, É.: Degree bounds and lifting techniques for triangular sets. In: Proceedings

of the ISSAC 2002, pp. 238–245. ACM (2002)
38. Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of poly-

nomial ideals. J. Symb. Comput. 22(3), 247–277 (1996)
39. Traverso, C.: Gröbner trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS,

vol. 358, pp. 125–138. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-
51084-2 12

40. Wang, D.K.: The Wsolve package. www.mmrc.iss.ac.cn/∼dwang/wsolve.html
41. Wang, D.M.: Epsilon 0.618. http://wang.cc4cm.org/epsilon/index.html
42. Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Res.

Preprints 1, 2–12 (1987)

https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-030-85165-1_14
https://doi.org/10.1007/3-540-60114-7_28
https://doi.org/10.1007/3-540-60114-7_28
https://doi.org/10.1007/3-540-51084-2_12
https://doi.org/10.1007/3-540-51084-2_12
www.mmrc.iss.ac.cn/~dwang/wsolve.html
http://wang.cc4cm.org/epsilon/index.html

A Modular Algorithm for Computing the Intersection 89

43. Xia, B.: DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun.
Comput. Algebra 41(3), 102–103 (2007)

44. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a
class of inequality-type theorems. Sci. China Ser. F Inf. Sci. 44(1), 33–49 (2001)

45. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. In: Artificial Intelligence in Mathematics,
pp. 147–156. Oxford University Press (1994)

Certified Study of Internal Solitary Waves

André Galligo(B) and Didier Clamond

Université Côte d’Azur, CNRS, LJAD UMR 7351 and INRIA,
Parc Valrose, 06108 Nice, France

{andre.galligo,didier.clamond}@univ-cotedazur.fr

Abstract. We apply computer algebra techniques and drawing with a
guaranteed topology of plane curves, to the study of internal gravity
solitary waves in shallow water, relying on an improved framework of
the Serre-Green-Naghdi equations. By a differential elimination process,
the study reduces to describing the solutions of a special type of ordinary
non linear first order differential equation, depending on parameters. The
analysed constraints imply a reduction of the allowed configurations, and
we can provide a topological classification of the phase plane curves. So,
special behaviors are detected even if they appear in tiny domain of the
parameter space. The paper is illustrated with examples and pictures.

Keywords: Serre-Green-Naghdi equations · Internal gravity solitary
waves · Ordinary non linear first order differential equation · Drawing
with a guaranteed topology

1 Introduction

Computer algebra has made tremendous progresses in the last 6 decades and
has been successfully applied in numerous other fields. We note that very often
Symbolic computations are used to provide useful close form formulas to deal
with precise objects. Such an example is the exact expression, relying on the
“sech” function, computed by Maple for a soliton of the KDV equation. See
the corresponding “Maplesoft” entry (https://www.maplesoft.com) which also
explains:

“A solitary wave, or soliton, is a wave-packet that propagates through space
without a change in its shape. Such a phenomenon can be observed on the surface
of shallow water, as first described by John Scott Russell in 1844 in his “Report
on Waves”. This phenomenon is not only studied in hydrodynamics, but also e.g.
in fiber optics, neuroscience and particle physics. Furthermore, there are various
realizations of solitary waves.”

However, researchers in applied fields may need symbolic computations for
more “open” qualitative questions, e.g. in designing their models. Therefore it is
useful that researchers in Computer algebra collaborate with them and under-
stand their approaches, in order to tackle arising technical challenges.

In this article, we will prove that the introduction of new parameters in
the (classical in Fluid Mechanics) two-layer SGN Partial Differential Equations,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 90–106, 2023.
https://doi.org/10.1007/978-3-031-41724-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_5&domain=pdf
https://www.maplesoft.com
https://doi.org/10.1007/978-3-031-41724-5_5

Certified Study of Internal Solitary Waves 91

designed to improve dispersion characteristics, allow a special type of soliton
called slugs. These slugs are observed in the “real word” but are not solutions of
the classical equations.

This phenomena appears only for some choices of parameters which are not
obvious and that we delimited thanks to symbolic computations, inspired by
our previous works [5,6]. So, we apply computer algebra techniques, certified
drawing (with a guaranteed topology) of plane curves, to an important problem
in fluid dynamics.

Internal waves are omnipresent in geophysical and industrial contexts, as
they appear at the interface between two media with different densities. This
situation can be stable only if the layer with the heavy fluid lies below the light
one. Otherwise, it would lead to the so-called Rayleigh-Taylor instability [8]. We
consider situations where the smaller density is comparable to the heavy one,
more precisely, an idealised situation where two liquid layers are bounded from
below and above by rigid impermeable horizontal surfaces, the so-called rigid lid
approximation. Additionally, the fluids are assumed to be perfect and the waves
are long compared to both layer thicknesses. The celebrated SerreGreenNaghdi
(SGN) type model [11] was first derived for internal waves in [9,10] to approxi-
mately model this situation. A variational derivation of the SGN equations was
given in [1] and their multi-symplectic structure was highlighted in [4].

These equations are fully nonlinear but only weakly dispersive. Consequently,
some attempts were made to improve the dispersion introducing a free parameter
into SGN equations using various tricks [3]. In this study, the same goals are
achieved by manipulating the Lagrangian density instead of working directly
with the equations.

In “real life” internal gravity waves, one observes slugs, which are solitary
waves with special profiles, see the illustration in Fig. 1 and a recent survey
in applied fluid dynamics [2]. However, these kind of waves are not obtain as
solutions of the classical SGN equations. Therefore, a natural question to rise is:
can we obtain similar steady waves solutions for our improved SGN equations,
(with theses profiles) for a controlled choice of parameters? Our study answers
positively, explains the different behaviors and provides the tools for a practical
classification of all possible cases.

Our methodology is rather general and could be extended (at the cost of
more technicality) to deal with the situations where the lids are not horizontal.

The article is organised as follows. In Sect. 2, we present a variational deriva-
tion of classical two-layer SGN equations and modify this system by introducing
free parameters into the model. The approach is similar to the one used in [7] for
surface waves. The steady solutions to the classical and improved SGN equations
are studied in Sect. 3. In Sect. 4, we simplify the expressions and notations, and
perform symbolic computations. In Sect. 5, we provide a partition of the param-
eters space, crucial for our analysis. Section 6 presents the local and the global
phase plane analysis. Section 7 sketches typical examples, while Sect. 8 presents
an explicit example of a slug wave solution of the improved SGN equations.
Finally, the main conclusions and perspectives are outlined.

92 A. Galligo and D. Clamond

Fig. 1. Slug and its representation.

Fig. 2. Definition sketch.

2 Improved Serre-Like Model

We consider a two-dimensional irrotational flow of an incompressible fluid strat-
ified in two homogeneous layers of densities ρj (j = 1, 2). The lower layer is
labeled with subscripts 1 and the upper one with subscripts 2; for obvious physi-
cal reasons, we consider ρ1 > ρ2 ≥ 0. The fluid is bounded below by a horizontal
impermeable bottom at y = −d1 and above by a rigid lid at y = d2, y being the
upward vertical coordinate such that y = η(x, t) is the equation of the interface
and y = 0 is the equation of the still interface level. The lower and upper total
thicknesses are, respectively,

h1 = d1 + η and h2 = d2 − η, so h1 + h2 = d1 + d2 = D is a constant.
x is the horizontal coordinate, t is the time, g is the downward acceleration

due to gravity and surface tensions are neglected.
Finally, we denote uj = (uj , vj) the velocity fields in the j-th layer. See Fig. 2.
In order to model long waves in shallow layers with rigid horizontal bottom

and lid, one can consider the shallow water ansatz

u1(x, y, t) ≈ ū1(x, t), v1(x, y, t) ≈ − (y + d1) ū1x,

u2(x, y, t) ≈ ū2(x, t), v2(x, y, t) ≈ − (y − d2) ū2x,

Certified Study of Internal Solitary Waves 93

and the Serre-like (i.e., fully nonlinear, weakly dispersive) approximate equations
of the Euler–Lagrange equations for the Lagrangian density

L = K − V

+ ρ1 { h1t + [h1 ū1]x } φ1 + ρ2 { h2t + [h2 ū2]x } φ2,

where φj are Lagrange multipliers and where K and V satisfy

2K = ρ1

(
h1 ū 2

1 +
h 3
1 ū 2

1x

3

)
+ ρ2

(
h2 ū 2

2 +
h 3
2 ū 2

2x

3

)
,

2V = (ρ1 − ρ2) g h 2
1 + ρ2 g D2,

and are respectively, the kinetic and potential energies (V is measured from the
bed y = −d1).

An improved Lagrangian density is obtained using two parameters βj ,
j = 1, 2.

L ∗ = K ∗ − V ∗

+ ρ1 { h1t + [h1 ū1]x } φ1 + ρ2 { h2t + [h2 ū2]x } φ2,

where (omitting an additional constant in the definition of V ∗)

2K ∗ = ρ1 h1 ū 2
1 + ρ2 h2 ū 2

2

+
(
1
3 + 1

2β1

)
ρ1 h 3

1 ū 2
1x +

(
1
3 + 1

2β2

)
ρ2 h 3

2 ū 2
2x

+ 1
2 h1 h2

(
β1 ρ2 h1 ū 2

2x + β2 ρ1 h2 ū 2
1x

)
,

2V ∗ = (ρ1 − ρ2) g h 2
1 + 1

2 (ρ1 − ρ2) g
(
β1h

2
1 + β2h

2
2

)
h 2
1x.

3 Steady Motions

We consider steady motions, i.e. the frame of reference moving with the wave
the motion is independent of the time t. Therefore, h1 = h1(x), ūj = ūj(x) and
φj = Φj(x)− 1

2Bjt where Bj are Bernoulli constants (see [7] for explanations on
the time dependence of φj).

Calling −cj the mean velocity in the j-th layer, the mass conservation yields

ū1 = − c1 d1
h1

, ū2 = − c2 d2
h2

, c1 d1 + c2 d2 = −Q.

Thus, cj is the wave phase velocity observed in the frame of reference without
mean flow in the j-th layer, and cj > 0 if the fluid travels toward the increasing
x-direction in a ‘fixed’ frame of reference.

For steady flows, the Euler–Lagrange equations for the Lagrangian L ∗ imply

94 A. Galligo and D. Clamond

ρ1 B1 − ρ2 B2 =

(ρ1 − ρ2) g
{
2h1 − (β1h1 − β2h2)h 2

1x − (β1h
2
1 + β2h

2
2)h1xx

}
+ ρ1 c 2

1 d 2
1 h−2

1 − ρ2 c 2
2 d 2

2 h−2
2

− ρ1 c 2
1 d 2

1 h−4
1

{(
1 + 3

2β1

)
h 2
1 + 1

2β2h2 (h2 − 2h1)
}

h 2
1x

+ ρ2 c 2
2 d 2

2 h−4
2

{(
1 + 3

2β2

)
h 2
2 + 1

2β1h1 (h1 − 2h2)
}

h 2
1x

+ ρ1 c 2
1 d 2

1 h−2
1

{(
2
3 + β1

)
[h1 h1x]x + β2

[
h−1
1 h 2

2 h1x

]
x

}
+ ρ2 c 2

2 d 2
2 h−2

2

{(
2
3 + β2

)
[h2 h1x]x + β1

[
h−1
2 h 2

1 h1x

]
x

}
.

The (constant) left-hand side is determined averaging its right-hand side.
For solitary waves hj(±∞) = dj and ūj(±∞) = −cj , one gets

ρ1 B1 − ρ2 B2 = 2 (ρ1 − ρ2) g d1 + ρ1 c 2
1 − ρ2 c 2

2 .

After multiplication by h1x and integration, one obtains

(ρ1 B1 − ρ2 B2) h1 =

C + (ρ1 − ρ2) g

{
h 2
1 − β1 h 2

1 + β2 h 2
2

2
h 2
1x

}

+
2∑

j=1

ρj c 2
j d 2

j

h 3
j

{
h 2

j

3
+

β1 h 2
1 + β2 h 2

2

2

}
h 2
1x − ρj c 2

j d 2
j

hj
,

where C is an integration constant determined averaging the equation.
For solitary waves, we have

C = (ρ1 − ρ2) g d 2
1 + 2 ρ1 c 2

1 d1 + ρ2 c 2
2 (d2 − d1).

In that case and with h1 = d1 + η(x) and h2 = d2 − η(x), the previous ordinary
differential equation can be rewritten

(
d η

dx

)2

=
6 (d1 + η)2 (d2 − η)2 η2N (η)

D(η)
, (1)

where N and D are two polynomials of degree two and eight,

N (η) =
{
ρ1d2c

2
1 + ρ2d1c

2
2 − (ρ1 − ρ2)gd1d2

}
+

{
(ρ1 − ρ2)g(d1 − d2) − ρ1c

2
1 + ρ2c

2
2

}
η + (ρ1 − ρ2)gη2,

Certified Study of Internal Solitary Waves 95

and

D(η) =

2 (d1 + η)2 (d2 − η)2
{
ρ1d

2
1 d2c

2
1 + ρ2d1d

2
2 c 2

2 − (
ρ1c

2
1 d 2

1 − ρ2c
2
2 d 2

2

)
η
}

− 3
(
β1d

2
1 + β2d

2
2

) {
(ρ1 − ρ2)gd1d2 − ρ1c

2
1 d2 − ρ2c

2
2 d1

}
d 2
1 d 2

2

+ 3
{
(10β1 + β2)d 3

1 − 15(2β1 + β2)d 2
1 d2 + 15(β1 + 2β2)d1d 2

2

−(β1 + 10β2)d 3
2

}
(ρ1 − ρ2)gη5 − 3(β1 + β2)

(
ρ1c

2
1 d 2

1 − ρ2c
2
2 d 2

2

)
η5

+ 3
{
(10β1 + 3β2)d 2

1 − 15(β1 + β2)d1d2 + (3β1 + 10β2)d 2
2

}
(ρ1 − ρ2)gη6

+ 3 {(5β1 + 3β2)d1 − (3β1 + 5β2)d2} (ρ1 − ρ2)gη7

+ 3(β1 + β2)(ρ1 − ρ2)gη8.

Our study concentrates on solitary waves.

4 Algebraic Analysis and Symbolic Computations

Notations

The previous equations depends on too many parameters for the algebraic com-
putations aimed in this paper. Therefore, for the sake of simplicity, from now on
without loss of generality, we choose dimensionless units such that

ρ1 = g = d1 = 1.

To simplify further the notations we let with ρ < 1,

d :=
d2
d1

; ρ :=
ρ2
ρ1

; p := ηx.

Two important scaling parameters also arise, the Froude numbers, (F1,F2),
with

c21 = F1 > 0, c22 = dF2 > 0.

4.1 Improved SGN

After performing these transformations, we obtain the dimensionless counterpart
of the differential Eq. (1), which now has the following form:

η2
x =

6 (1 + η)2 η2 (d − η)2 N (η)
D(η)

. (2)

The polynomial N can be written either

N (η) = (1 − ρ)(η2 + γη + δ),

γ = −(d − 1) +
(−F1 + ρdF2)

1 − ρ
; δ = −d + d

(F1 + ρF2)
1 − ρ

.

96 A. Galligo and D. Clamond

or equivalently

N (η) = (1 − ρ)(η − d)(η + 1) − (η − d)F1 + (η + 1)ρdF2.

The denominator D(η) is a polynomial of degree 8 with respect to η (see
below). We would like to stress out that the free modeling parameters βj appear
only in the denominator D(η). In the latter, the points on the (p, η) plane sat-
isfying relation (2) with p := ηx = 0 are important for our analysis.

These points are the roots of the numerator of (2) right hand side: they
include η = 0, η = −1, η = d and the two roots of the quadratic polynomial
N (η) to be studied below. We emphasize that if they do not depend on the
parameters β, their multiplicities may depend on β. The fraction in η, N (η)

D(η) ,

is irreducible iff a resultant polynomial in the parameter does not vanish; the
effective analysis of D(η) and of this assumption are done in the next subsection
where we will also consider the conditions on the parameters in order that D
vanishes at η = −1, η = 0 or η = d.

Our classification method will depend on the relative positions of the roots
of N (η) with respect to −1, 0, d which we will analyse in Sect. 5. We assume
that, the derivatives ηx remains finite, this implies that after simplification, the
denominator of (2) does not vanish between −1 and d. This condition could be
checked symbolically, relying on Sturm algorithm, or directly by computing the
real roots for a given choice of parameters.

For fixed (d, ρ), the expressions of δ and γ define an affine change of coordi-
nates which maps lines and parabola to other lines and parabola.

We recall that 1 − ρ > 0 and we have,

N (0) = (1 − ρ)δ = d(F1 + ρF2 − (1 − ρ)) ;

N ′(0) = (1 − ρ)γ = −F1 + ρdF2 − (d − 1)(1 − ρ);

N (−1) = (1 − ρ)(1 − γ + δ) = (d + 1)F1

N ′(−1) = (1 − ρ)(−2 + γ) = −(d + 1)(1 − ρ) − F1 + ρdF2;

N (d) = (1 − ρ)(d2 + dγ + δ) = d(d + 1)ρF2

N ′(d) = (1 − ρ)(2d + γ) = (d + 1)(1 − ρ) − F1 + ρdF2.

The solution of N (0) = N ′(0) = 0 is

[F1 =
1 − ρ

d + 1
, F2 =

d(1 − ρ)
(d + 1)ρ

]

while the solution of N (−1) = N ′(−1) = 0 is

[F1 = 0 , F2 =
(d + 1)(1 − ρ)

ρd
]

and the solution of N (d) = N ′(−d) = 0 is

[F1 = (d + 1)(1 − ρ) , F2 = 0].

Certified Study of Internal Solitary Waves 97

4.2 Expressions Related to D, with β1 and β2

Here, the expressions of D is given in dimension less units, it is a polynomial of
degree 1 in F1 and F2 and degree 8 in η,

D(η) = 2 (1 + η)2 (d − η)2
{
dF1 + ρd 3 F2 − (F1 − ρ F2d

3
)
η
}

− 3
(
β1 + β2d

2
)
(1 − ρ − F1 − ρ F2)d 3

+ 3
{
(10β1 + β2) − 15(2β1 + β2)d + 15(β1 + 2β2)d 2

−(β1 + 10β2)d 3
}

(1 − ρ)η5 − 3(β1 + β2)
(F1 − ρF2d

3
)
η5

+ 3
{
(10β1 + 3β2) − 15(β1 + β2)d + (3β1 + 10β2)d 2

}
(1 − ρ)η6

+ 3 {(5β1 + 3β2) − (3β1 + 5β2)d} (1 − ρ)η7 + 3(β1 + β2)(1 − ρ)η8.

We deduce

D(0) = d3[2(F1 + ρd2F2) − 3(β1 + β2d
2)(1 − ρ − F1 − ρF2)].

and notice that D(−1) and D(d), vanish when β1 = β2 = 0,

D(−1) = 3F1(β1d
3 + β2d

5 + β1 + β2) + 3ρF2β2(1 − d2)d3+

3(1 − ρ)[5β1 + (18β1 − 5β2)d − (12β1 + 21β2)d2 + (β1 + 10β2)d3].

D(d) = 3F1(1 − d2)d3β1 + 3ρF2d
3[(β1 + β2d

2 + (β1 + β2)d5)]

3(1 − ρ)[β1(−d3 + 10d5 − 20d6 + 5d7) + β2(9d5 − 12d6 + 18d7 + 16d8)].

We computed the resultant between D and N . It is a large expression, a
polynomial in (F1,F2) of degree 9, easily stored in a computer file, but displaying
this general expression is not material for our article.

4.3 Illustrative Case

To illustrate our graphics, we choose some values for β1, β2, d, ρ, and specialise
our formulas.D becomes Ds, N becomes N s. Here we choose β1 = 0.2, β2 =
0.1, d = 2, ρ = 0.5 then

N s(η) = 0.5(η2 − (1 − 2F2 + F1)η + 4F2 + 4F1 − 2.

Ds(η) = 0.45η8 − 1.35η7 − 0.45η6 + (−2.9F1 + 11.60F2 + 2.25)η5+

(8F1 − 8F2)η4 + (−2F1 − 40F2)η3 + (−20F1 + 8F2)η2+
(8F1 + 64F2)η + 30.4F1 + 39.20F2 − 7.20.

We deduce

98 A. Galligo and D. Clamond

Ds(0) = 30.4F1 + 39.20F2 − 7.20 ; Ds′(0) = 8F1 + 64F2;

Ds(−1) = −8.1F1 + 15.3F2 + 3.6 ; Ds′(−1) = −4.5F1 + 18F2 + 0.9;

Ds(2) = −14.4F1 + 122.4F2 − 21.6 ; Ds′(2) = −4.5F1 + 18F2 + 0.9.

These two last lines in the parameter space (F1,F2) intersect (approximately)
at an admissible point

[F1 = 0.01111111111,F2 = 0.1777777778].

We notice that the conditions Ds(2) = 0 and Ds′(2) < 0, that we will consider
in a next section, correspond to the half-line defined by Ds(2) = 0 and F1 >
0.01111111111, F2 > 0.1777777778.

4.4 Classical SGN, i.e., β1 = β2 = 0

In the classical (i.e. not improved) SGN equations, we have β1 = 0 β2 = 0, the
polynomial N does not change but the previous expressions simplify as follows.

D becomes a new polynomial of degree 5 instead of 8 which factors

D = 2(1 + η)2(d − η)2((F2d
3ρ − F1)η + ρd3F2 + dF1),

while the expression of η2
x becomes after simplification

η2
x =

3 η2 N (η)
(F2d3ρ − F1)η + ρd3F2 + dF1

, (3)

the denominator is now a polynomial of degree one in η, DC := (F2d
3ρ−F1)η +

ρd3F2 + dF1.
We notice that more simplifications could appear when DC(0) = 0 i.e. when

F1 = −ρd2F2, but this is not allowed since F1 and F2 should be positive.
The resultant of N and DC is a polynomial RC(F1,F2) of degree 3. It is

divisible by F2 since when F2 = 0 both N and DC vanish at η = d. When this
resultant vanishes, we can simplify N

DC and replace it by a polynomial in η of
degree 1, whose root can be computed by noticing that the sum of the two roots
of N is −γ.

We display the specialisation of RC for (d = 2, ρ = 0.5)

RC(d=2,ρ=0.5) = −3F2(2F2
1 − 4F2

2 − 7F1F2 − 4.5F1 + 4.5F2).

5 Partition of the Parameters Space

In this subsection we classify the parameters space (F1,F2) with respect to the
possible position of the real roots of N with respect to −1, 0, d.

We recall that N has no real root iff its discriminant is negative, i.e., Δ :=
4δ − γ2 < 0, in the parameters space. This relation describes the interior of a

Certified Study of Internal Solitary Waves 99

parabola, while the parabola itself corresponds to the cases when N has a real
double root.

We recall that N (−1) = 0 means F1 = 0, N (d) = 0 means F2 = 0 and
N (0) = 0 means F1 + ρF2 − (1 − ρ) = 0, and that we already computed the
intersections of these lines with the parabola defined by the discriminant.

We are mainly interested by the partition of the complementary of these sets
in R2, into the following semi algebraic open sets and their borders, that we
design by roman numbers from I to IV in the graphics of Fig. 3.

1. N has no root in the interval [−1, d] i.e., Δ < 0 or N ′(−1) > 0, or N ′(d) < 0;
2. N has 2 roots in] − 1, 0[i.e., N (0) > 0,N ′(−1) < 0,N ′(0) > 0;
3. N has 2 roots in]0, d[i.e., N (0) > 0,N ′(0) < 0,N ′(d) > 0;
4. N has 1 root in] − 1, 0[and one in]0, d[, i.e., N (0) < 0.

Notice that the partition is only delimited by a parabola and 3 lines. Since the
graphical aspect of the partitions does not change when (d, ρ) varies, we only
present the graphics for d = 2, ρ = 0.5 in Fig. 3. Then, the intersections of the
three lines with the parabola are the points [0, 3

2], [32 , 0], [16 , 1
3].

Fig. 3. Partition of the parameters space.

6 Phase Plane Analysis

We are now ready for the phase plane analysis of Eq. (2). Since the internal
solitary wave is bounded by −1 ≤ η ≤ d, we also assume that the derivative
p = ηx is also bounded, i.e., D does not vanish (or only to decrease the multi-
plicities of the roots of the numerator of the fraction). Therefore the topology
of the phase plane curve defined by (2) in the (p, η)-plane can be deduced from
the local analysis near the axis p = 0.

100 A. Galligo and D. Clamond

6.1 Local Analysis

We provide a case by case study of the situations at the values where p vanishes,
i.e., at η = −1, η = 0, η = d and at the roots of the polynomial N , of degree 2,
already considered at the previous section.

Let us start by a simple observation on the “shapes” of the solutions of the
differential equation y′2 = ym. If m = 2 we get an exponential. While, up to a
constant and a sign, if m = 0 we get y = x; if m = 1 we get y = x2

4 ; if m = 3 we
get y = −4

x2 ; if m = 4 we get y = −1
x . Our local analysis for ηx = 0 must focus

near the points x at infinity for η = 0, and near the points x finite for η equals
−1, 0, d or the roots of N .

Near η = 0.

– If N (0)
D(0) > 0 then

η2
x � η2d2(d + 1)2

N (0)
D(0)

can be locally solved into η � k exp(±αx), where α = d(d + 1)
√

N (0)
D(0) .

This local solution is admissible, since it corresponds to a solitary wave, with
an exponential decay when x tends to ±∞. It is not admissible if this happens
for a finite value of x.

– If N (0) = 0 and N ′(0) �= 0, and D(0) �= 0 then

η2
x � η3d2(d + 1)2

N ′(0)
D(0)

can be locally solved into η � ±(αx+β)−2, where α, and β are two numbers.
This local solution is admissible, since it corresponds to a solitary wave with
an algebraic decay when x tends to ±∞. It is not admissible if this is happens
for a finite value of x.

– If N (0) = 0 and N ′(0) = 0 and D(0) > 0 then

η2
x � η4d2(d + 1)2

2(1 − ρ)
D(0)

can be locally solved into η � ±(αx+β)−1, where α, and β are two numbers.
This local solution is admissible, since it corresponds to a solitary wave with
an algebraic decay when x tends to ±∞. It is not admissible if this is happens
for a finite value of x.

– If N (0) �= 0 and D(0) = 0, and D′(0) �= 0 then

η2
x � ηd2(d + 1)2

N (0)
D′(0)

can be locally solved into η � ±(αx + β)2, where α, and β are two numbers.
This cannot happen near x = ±∞, hence it is not admissible.

Certified Study of Internal Solitary Waves 101

Near η = d , or near η = −1.

By symmetry of the roles of the two walls, it is enough to analyse what
happens near η = d. We proceed exactly like near η = 0 but for finite values
of x, also the wave is allowed to not reach the level η = d.

Notice that N (d) = d(d + 1)ρF2 > 0.

– If D(d) = 0 and D′(d) < 0, then

η2
x � (η − d)d2(d + 1)2

N (d)
D′(d)

can be locally solved into η−d � −(αx+β)2, where α, and β are two numbers.
It is admissible.

– If D(d) = 0 and and D′(d) = 0 and D′′(d) �= 0, then ηx does not vanish at
η = −1.

– If D(d) �= 0, this situation is not admissible.

Near a double root of N in]0,d [.
Call a this double root, assumed in]0, d[or similarly in] − 1, 0[.

– If D(a) = 0 and D′(a) < 0, then

η2
x � (η − a)a2(d − a)2(a + 1)2

2(1 − ρ)
D′(a)

which can be locally solved into η − a � (αx + β)2, where α, and β are two
numbers. It is admissible.

– If D(a) �= 0, this situation is not admissible.
– If D(a) = 0 and and D′(a) = 0 and D′′(a) �= 0, then ηx does not vanish at

η = a.

Near a simple root of N .
Call a this simple root.

– If D(a) �= 0 and N ′(a)
D(a) < 0 then

η2
x � (η − a)a2(d − a)2(a + 1)2

N ′(a)
D(a)

can be locally solved into η−a � −(αx+β)2, where α, and β are two numbers.
It is admissible.

– If D(a) = 0 and and D′(a) �= 0, then ηx does not vanish at η = a.

102 A. Galligo and D. Clamond

6.2 Global Analysis

The task is to determine the admissible solitary waves with profile η(x) or equiv-
alently paths (η(x), p(x)) in the phase space where p stands for ηx, starting from
x = −∞, η = 0, p = 0 and ending at x = ∞, η = 0, p = 0 which obey the
local constraints of the previous subsection. In the half sector where p > 0 (resp.
p < 0), η(x) must increase (resp. decrease). Before ending at x = ∞, a priori the
path is allowed to loop several times, following admissible sub paths, but this
situation will not happen in our setting.

Since in the classification of admissible profiles, η = −1 and η = d play
symmetric roles, to avoid redundancy, we will present only half of the admissible
cases.

So, we start from the point (0, 0) (corresponding to x = −∞) in the (η, p)
plane, and end at the same point. The path goes up on the right till it reaches a
value of η where p = 0 then we rely on the local analysis for the next move, and
so on. The classification relies on the partition presented in the previous section.

From the local analysis, we deduce that there are only 3 allowed loops in the
(η, p) plane, we denoted them Λ1, Λ2, Λ3:

– Λ1 starts at (0, 0) and loops smoothly around a point (0, a) between (0, 0)
and (0, d).

– Λ2 starts at (0, 0) and loops smoothly around the point (0, d).
– Λ3 starts at (0, 0) and goes up to a point (p1, d) then travel left to the point

(−p2, d) then goes back to (0, 0).

Note that the path Λ3 gives rise to a non smooth solitary wave.
We can also consider another generalised situation where the loops Λ2 and

Λ3 are allowed to “pause” on a segment [x1, x2] of the x axis when they arrive
at (0, d). This will give rise to a so called slug solitary wave (see example 2bis
below).

Improved SGN
Now let see to what constraints on the parameters corresponds each of theses

paths for improved SGN equations.

– Λ1 corresponds to a generic case: the parameters associated to the open
domains III, IV, in the parameter space, and the condition that the roots
between 0 and d do not disappear, i.e., the fraction does not simplify.

– Λ2 corresponds to special situations when D(d) = 0,D′(d) < 0 and there are
no root of N between 0 and d, i.e. the parameters associated to the open
domains I, and II.

– Λ3 corresponds to more special situations when D(d) = 0, D′(d) = 0,D′′(d) �=
0 and there are no root of N between 0 and d, i.e. the parameters associated
to the open domains I and II.

Certified Study of Internal Solitary Waves 103

Classical SGN
For classical SGN, i.e., β1 = β2 = 0, the conditions are different

– Λ1 corresponds to two generic cases. Either the parameters are associated to
the open domain III in the image parameter space, or they are associated to
IV with the additional condition that the roots of N between 0 and d do not
disappear, i.e. DC(a) �= 0. This last condition is generically satisfied since it
is implied by the non vanishing the resultant between N and DC.

– Λ2 cannot happen in this context.
– Λ3 corresponds to a generic situation when there are no root of N between 0

and d, i.e., the parameters associated to the open domains I and II.

7 An Explicit Example of Slug

We fix the same first parameters d = 2, ρ = 0.1, β1 = 0.2, β2 = 0.1, as in our
previous illustrative example.

Following our analysis, we expect a slug wave solution of the improved two-
layer Serre–Green–Naghdi model, for parameters [F1, 10,F2] satisfying the fol-
lowing conditions:

– [F1, 10,F2] lies on the half-line defined by Ds(2) = −14.4F1 + 122.4F2 −
21.6 = 0 and Ds′(2) = −4.5F1 + 18F2 + 0.9 < 0;

– N∫ has no root in [0, 2];
– D∫ has no root in [0, 2].

We illustrate the two first conditions on Fig. 4 they define a new half-line, starting
at the intersection point between the first line and the parabola, approximately
F1 = 0.54,F2 = 0.24.

Fig. 4. Half-line domain for a slug.

104 A. Galligo and D. Clamond

We chose
F1 = 0.6,F2 = 0.2470588235.

Then the polynomials N and D in Eq. 2 become (in factored form):

N (η) = 0.5η2 − 0.8529411765η + 0.4470588235.

and

D(η) = 0.45(η − 2.00000000035639)(η − 2.24323907282581)

(η2 + 2.11640966529855η + 1.16068410277303)

(η2 + 1.98358517862098η + 2.30370705616395)

(η2 − 2.85675577073733η + 3.83909639362947)

As expected η = 2 is a root of the polynomial D(η), and then we can divide
it by (η − 2). Hopefully there are no other root in [0, d].

Then, as expected the phase profile in Fig. 5 is of type Λ2.

Fig. 5. A slug in the phase plane

We also pictured the wave, that we computed by integrating numerically the
corresponding ODE 2, in the physical space in Fig. 6.

Fig. 6. The slug in the physical plane

Certified Study of Internal Solitary Waves 105

8 Conclusion

In this paper, as in [5], we have presented for the computer algebra community,
an application to actual problem coming from the fluid mechanics community.

It is devoted to the study of a dispersive system of equations, which governs
the dynamics of long waves taking place at the interface between two immiscible
fluids, with a simplifying rigid lid assumption. More precisely in our variant of
the two-layer Serre–Green–Naghdi model, which is known to possess excellent
nonlinear properties, the dispersion relation had be improved.

We rely on Computer algebra to precise the study by analyzing nonlinear
travelling solitary wave solutions of our model. More precisely, adapted coor-
dinates changes, geometric interpretation and computations of resultants and
discriminants, certified graph drawing allow us to provide a classification of all
the possible shapes of the phase diagram curves and all possible solitary waves.
The travelling wave solutions are described using the phase plane analysis lan-
guage. Namely, we determine the regimes where one has localized slug solitary
waves. This model can be used to study internal waves with higher physical
accuracy and with a larger stability limit.

A similar study, with the same methodology can be developed with the same
equation but other boundary conditions corresponding to the so called bores,
i.e., η(−∞) = 0 but η(+∞) �= 0. One can also extend the study to singular
waves as we did in [6].

Acknowledgements. We thank our colleague Denys Dutykh for useful discussions
and his important involvement in a preliminary version of this work four years ago.

References

1. Barros, R., Gavrilyuk, S., Teshukov, V.M.: Dispersive nonlinear waves in two-layer
flows with free surface. I. Model derivation and general properties. Stud. Appl.
Math. 119(3), 191–211 (2007)

2. Thaker, J., Banerjee, J.: Characterization of two-phase slug flow sub-regimes using
flow visualization. J. Pet. Sci. Eng. 135, 561–576 (2015)

3. Castro-Orgaz, O., Hager, W.H.: Boussinesq and Serre type models with improved
linear dispersion characteristics: applications. J. Hydraul. Res. 53(2), 282–284
(2015)

4. Chhay, M., Dutykh, D., Clamond, D.: On the multi-symplectic structure of the
Serre- Green-Naghdi equations. J. Phys. A Math. Theor. 49, 03LT01 (2016)

5. Clamond, D., Dutykh, D., Galligo, A.: Algebraic method for constructing singular
steady solitary waves: a case study. Proc. R. Soc. Lond. A 472, 20160194 (2016)

6. Clamond, D., Dutykh, D., Galligo, A.: Computer algebra applied to a solitary
waves study. In: ISSAC’15, ACM Proceedings (2015)

7. Clamond, D., Dutykh, D., Mitsotakis, D.: Conservative modified Serre-Green-
Naghdi equations with improved dispersion characteristics. Commun. Nonlinear
Sci. Numer. Simul. 45, 245–257 (2017)

8. Glimm, J., Grove, J., Sharp, D.H.: A critical analysis of Rayleigh-Taylor growth
rates. J. Comput. Phys. 169, 652–677 (2001)

106 A. Galligo and D. Clamond

9. Mal’tseva, Z.L.: Unsteady long waves in a two-layer fluid. Dinamika Sploshn. Sredy
93(94), 96–110 (1989)

10. Miyata, M.: Long internal waves of large amplitude. In: Horikawa, K., Maruo, H.
(eds.) Nonlinear Water Waves. International Union of Theoretical and Applied
Mechanics. Springer, Berlin, Heidelberg (1988). https://doi.org/10.1007/978-3-
642-83331-1_44

11. Serre, F.: Contribution à l’étude des écoulements permanents et variables dans les
canaux. Houille Blanche 8, 374–388 (1953)

https://doi.org/10.1007/978-3-642-83331-1_44
https://doi.org/10.1007/978-3-642-83331-1_44

Root-Squaring for Root-Finding

Soo Go2(B), Victor Y. Pan1,2, and Pedro Soto3

1 Department of Computer Science,
Lehman College of the City University of New York, Bronx, NY 10468, USA

victor.pan@lehman.cuny.edu
2 Ph.D. Programs in Mathematics and Computer Science,
The Graduate Center of the City University of New York,

New York, NY 10016, USA
sgo@gradcenter.cuny.edu

3 The Mathematical Institute, University of Oxford, Oxford, UK
pedro.soto@maths.ox.ac.uk

http://comet.lehman.cuny.edu/vpan

Abstract. The root-squaring iterations of Dandelin (1826), Lobachev-
sky (1834), and Gräffe (1837) recursively produce the coefficients of poly-
nomials ph(x) whose zeros are the 2hth powers of the zeros of an input
polynomial p(x) for h = 1, 2, 3, . . . The iterations have been the main
tool for univariate polynomial root-finding in the 19th century and well
beyond but became obsolete later because of severe numerical stabil-
ity problems observed already in a few iterations. To circumvent this
deficiency we apply root-squaring to Newton’s Inverse Ratios p′(x)/p(x)
and compute no coefficients of p(x) or ph(x) for h > 0, assuming that
p(x) is a black box polynomial, represented by an oracle or subroutine for
its evaluation rather than by its coefficients. Accordingly, our algorithm
accelerates root-squaring for a polynomial p(x) that can be evaluated
fast as well as for polynomial tc,ρ(x) = p(x−c

ρ
) for a complex number

c and a positive ρ by performing root-squaring without computing the
coefficients of tc,ρ(x). Our extensive experiments demonstrate efficiency
of application of our algorithms to estimation of extremal root radii,
that is, the maximal and minimal distances from a point on the complex
plane to the zeros of p(x). This is a well-known ingredient of various effi-
cient polynomial root-finders, immediately extended to deciding whether
a fixed disc on the complex plane contains any zero of p(x). The latter
decision, called exclusion test for a disc, is the basic step of all efficient
root-finders using subdivision iterations, in particular, of the recent poly-
nomial root-finder by the second author, made nearly optimal due to a
distinct application of root-squaring iterations.

Keywords: Symbolic-numeric computing · Root-finding · Polynomial
algorithms · Computer algebra

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 107–127, 2023.
https://doi.org/10.1007/978-3-031-41724-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_6

108 S. Go et al.

1 Introduction

1.1 Polynomial Root-Finding

Given a polynomial p(x) with complex coefficients p0, p1, . . . , pd such that

p(x) = pdx
d + pd−1x

d−1 + · · · + p0 = pd

d∏

j=1

(x − zj), pd �= 0, (1)

we seek its complex zeros z1, . . . , zd, that is, the roots of the polynomial equa-
tion p(x) = 0, within a fixed tolerance ε = 1/2b. This problem of univariate
polynomial root-finding has venerable history of four millennia [17] and is highly
important for Computer Algebra in Scientific Computing.

1.2 Classical Root-Squaring Iterations

The DLG root-squaring iterations proposed by Dandelin in 1826 and indepen-
dently by Lobachevsky in 1834 and Gräffe in 1837 (see [10]) have been the dom-
inant approach to polynomial root-finding in the 19th century and well beyond.
The iterations are recursively defined as follows.

p0(x) :=
1
pd

p(x), ph+1(x) := (−1)dph(
√

x)ph(−
√

x), h = 0, 1, . . . (2)

For each h, the hth DLG iteration squares the zeros z
(h)
j of ph(x) and the root

radii r
(h)
j := |z(h)j |, j = 1, . . . , d, that is,

ph(x) :=
d∑

i=0

p
(h)
i xi =

d∏

j=1

(x − z
(h)
j), z

(h)
j = z2

h

j , j = 1, . . . , d. (3)

Hence Vieta’s formulas imply that z
(h)
j = z2

h

j ≈ −p
(h)
d−j+1

p
(h)
d−j

, if maxi>j |zi| < |zj | <

mini<j |zi| and if 2h is large enough.

1.3 Related Works on Root-Squaring and Its Applications

In his pioneering works [7,8] Grau studied computer implementation of DLG
iterations and presented a pseudocode for root-finding algorithm based on Eq. 2.

Malajovich and Zubelli in [20,21] recognized severe numerical instability of
the DLG iterations and proposed an ingenious remedy, which they called re-
normalization, based on performing root-squaring in polar coordinates.

The resulting algorithm (they called it tangent Gräffe method) was still
slower than some competing methods for approximation of the zeros of p and
even of the root radii, but in [13] van der Hoeven and Monagan proved its high
efficiency for factorization of a polynomial in finite fields.

Root-Squaring for Root-Finding 109

Bialas and Górecki in [2] studied DLG-based root-finders for fractional-order
polynomials, i.e., generalized polynomials that have rational exponents. In [12]
van der Hoeven applied the DLG formulae to polynomial root-counting. Grenet,
van der Hoeven, and Lecerf in [9] applied the DLG formulae to polynomial root-
finding in finite fields. Complex polynomial root-finders of [24,25,29] involve
DLG iterations for root radii approximation and strengthening isolation of the
unit circle {x : |x| = 1} from external zeros of p(x).

1.4 The Two Nearly Optimal Polynomial Root-Finders

Extensive study of polynomial root-finding in the 1980s and 1990s has culmi-
nated at ACM STOC 1995 with the root-finder of [22] (see also [23,24,26])
that approximated all zeros of any polynomial p(x) within 1/2b in Boolean time
(b + d)d2 and in Boolean time (b + d)d in the case of polynomials whose zeros
are pairwise isolated from each other. Both bounds are optimal up to poly-
logarithmic factors in d + b. In simple terms, the solution is nearly as fast as
accessing input coefficients with the precision required for the root-finding task.

The algorithm, however, is quite involved, and its implementation still seems
to be hard, although by now not as formidable as in 2002. Various non-optimal
polynomial root-finders have been implemented (see MATLAB “roots”, Maple
“solve”, MPSolve, and CCluster). In particular, the complex polynomial root-
finder of [5] has been implemented in [16] and then greatly accelerated in [14,15]
by means of incorporating some novel techniques and sub-algorithms of [29]
(some of them appeared in [27,28,30]), which presented the second nearly opti-
mal polynomial root-finder.1 Unlike its predecessor of [22–24,26] the root-finder
of [29] is rather easy to implement and promises to become user’s choice polyno-
mial root-finder, unless it is outperformed by a slower but better implemented
root-finder.

Unlike the root-finders of [5,6,22–24,26] and other known fast ones, the
nearly optimal algorithms of [29] can be applied to a black box polynomial p(x),
given by an oracle (black box subroutine) for its evaluation rather than by its
coefficients. This enables additional acceleration of root-finding for the highly
important class of the polynomials that can be evaluated fast such as the Man-
delbrot polynomials p := pk(x), where p0 := 1, p1(x) := x, pi+1(x) := xp2i (x)+1,
i = 0, 1, . . . , k, d = 2k −1, and the sums of a small number of shifted monomials,
e.g., p := α(x − a)d + β(x − b)d + γ(x − c)d for six constants a, b, c, α, β, and γ.

The root-finders of [29] are accelerated variants of the classical subdivision
iterations [11,25,31,32], extensively applying soft inclusion/exclusion (e/i) test.
For a fixed pair of complex number c and positive ρ such a test decides whether
the disc D(c, ρ) = {x : |x − c| ≤ ρ} contains no zero of p(x) or whether a little
larger concentric disc contains any zero of p.2 The test itself can be immedi-

1 Becker et al. in [5,6] claimed that their two root-finders are also nearly optimal, but
[29] clarifies that those of [22–24,26] are faster by a factor of d.

2 Both criteria can hold simultaneously, but a soft test stops as soon as at least one
of them is verified.

110 S. Go et al.

ately reduced to approximation of the smallest root radius rd(c, p), denoting the
minimal distance to the zeros of p(x) from the center c of the disc.

1.5 Our Contribution

We compute rd(c, p) based on our novel algorithm for DLG iterations.3 In con-
trast to their classical version, we recursively square the zeros of p(x) but avoid
computing the coefficients of ph(x) and only compute its values and the values of
Newton’s Inverse Ratio NIRph

(x) := p′
h(x)

ph(x)
for h = 0, 1, . . . Hence with its incor-

poration the nearly optimal algorithms of [29] can still be applied to a black box
polynomial and supports its nearly optimal performance.

Our method is novel and fast, maintains numerical stability in a large number
of iterations, and in contrast to the previous efficient estimators of extremal root-
radii and to the previous e/i tests, our algorithm can be applied to the polynomial
tc,ρ(x) = p(x−c

ρ) for any complex number c and positive ρ without computing
the coefficients of tc,ρ(x).

We implemented and tested our algorithm; it turned out that for the task
of estimation of the extremal root radii of polynomials of degree d ≤ 160, we
often perform at or above the level of MPSolve narrowed to that task, that is, we
compute the root radii within a scalar factor about as fast as MPSolve for d ≤ 160
and outperform it4 more and more significantly or even dramatically as the
degree d grows above 160. (See the test results for Chrm, Kir1, Mig1, Sendra,
Spiral in the Appendix). Since approximation of the smallest root radius from
an arbitrary complex point immediately enables e/i test, our work should help
significantly enhance implementation of the nearly optimal polynomial root-
finders of [29].

1.6 Organization of Our Paper

In the next section we recall some background material. In Sect. 3 we present and
analyze our main algorithm. In Sect. 4 and the Appendix we cover our numerical
experiments. Short Sect. 5 is devoted to conclusion.

2 Background and Motivation

2.1 Definitions

– We write roots for “the roots of the equation p(x) = 0” and enumerate them
in non-increasing order of their absolute values: |z1| ≥ |z2| ≥ · · · ≥ |zd|.

3 By applying our algorithms to the reverse polynomial xdp(1/x) we immediately
extend them to approximation of the largest root radius r1(c, p).

4 MPSolve is celebrated as user’s choice library of subroutines for approximation of
all the d zeros of a polynomial p(x), but we outperform it where it is narrowed to
approximation of extremal root radii of polynomials of degrees exceeding 160.

Root-Squaring for Root-Finding 111

– ri(c, p) denotes the ith smallest distance from a complex number c to the zeros
of p(x). For brevity, we write ri := ri(0, p) := |zi|, so that r1 ≥ r2 ≥ · · · ≥ rd.

– For a complex number c and a positive ρ, Taylor’s shifts of the variable, or
translation, together with scaling, map polynomials, discs and circles:

x �−→ y =
x − c

ρ
, p(x) �−→ tc,ρ(y) := p

(x − c

ρ

)
, (4)

D(c, ρ) := {x : |x − c| ≤ ρ} �−→ D(0, 1),

C(c, ρ) := {x : |x − c| = ρ} �−→ C(0, 1).

– Define Newton’s ratio (NR) and Newton’s Inverse Ratio (NIR) of p(x) as

NRp(x) :=
p(x)
p′(x)

and NIRp(x) :=
p′(x)
p(x)

.

– Define the reverse polynomial of p(x) as follows,

prev(x) := xdp

(
1
x

)
= pd + pd−1x + · · · + p0x

d. (5)

Unless p0 = 0 it has zeros 1
z1

, 1
z2

, ..., 1
zd

such that | 1
z1

| ≤ | 1
z2

| ≤ · · · ≤ | 1
zd

|.
– Write i :=

√
−1.

2.2 Extension of the DLG Iterations

Extend the DLG recursive formula to the NIR as follows:

p′
h+1(x) =

1
2
√

x

(
p′

h(
√

x)ph(−
√

x) − ph(
√

x)p′
h(−

√
x)

)
,

p′
h+1(x)

ph+1(x)
=

1
2
√

x

(
p′

h(
√

x)
ph(

√
x)

− p′
h(−

√
x)

ph(−
√

x)

)
, (6)

for h = 0, 1, . . . , or equivalently,

NIRph+1(x) =
1

2
√

x

(
NIRph

(
√

x) + NIRph
(−

√
x)

)
, h = 0, 1, . . . (7)

Based on Eq. 7 compute NIRph
(x) by means of the evaluation of NIRp(x) at all

2hth roots of x, and of performing in addition some arithmetic operations to
combine the computed values.

112 S. Go et al.

2.3 NIRp , Root-Squaring, and Estimation of Extremal Root Radii

Since p′(x) =
∑d

i=1

∏
j �=i(x − zj), it follows that

NIRp(x) =
p′(x)
p(x)

=
∑

j

1
x − zj

(8)

and consequently

NIRp(0) = −
d∑

j=1

1
zj

, NIRprev(0) = −
d∑

j=1

zj . (9)

This implies the following bounds on the extremal root radii

rd ≤ d/ |NIRp(0)| , r1 ≥ 1
d

|NIRprev(0)| . (10)

By extending these bounds to the polynomials ph(x) and ph,rev(x) obtain

rd ≤ (d/|NIRph
(0)|)1/2h

, r1 ≥
(
1
d
|NIRph,rev(0)|

)1/2h

. (11)

The bounds tend to become sharper as h increases, as we show in Fig. 1 for
Wilkinson’s polynomial p(x) =

∏d
i=1(x − i) for d = 20, whose extremal zeros

are equal to the root radii, z1 = r1 = 20 and zd = rd = 1; their approximation
of (11) converged fast in our tests.

Approximations (11) are extremely poor for the worst case inputs such as
p(x) = xd − vd with v �= 0. In this case NIRp(0) = NIRprev(0) = 0, implying the
trivial bounds rd < ∞ and r1 ≥ 0, while actually r1 = rd = |v|.

We run into this problem wherever NIRp(x) = 0 or NIRprev(x) = 0. Rotation
of the variable Ra : p(x) �→ t0,a(x) = p(ax) for |a| = 1 does not fix the problem,
but shifts Tc : p(x) �→ tc,1(x) = p(x − c) for c �= 0 can fix it, thus enhancing
the power of the estimates. Bounds (11) for a sufficiently large h are very good
for MANY (that is, a very large class of) polynomials, although not for ANY
polynomial, e.g., not for p(x) = xd − vd, v �= 0. Indeed, Eq. 8 implies that

1
rd(c, p)

≤ 1
d

∣∣∣∣
p′(c)
p(c)

∣∣∣∣ =
1
d

∣∣∣∣∣∣

d∑

j=1

1
c − zj

∣∣∣∣∣∣
,

and so approximation to the root radius rd(c, p) is poor if and only if severe can-
cellation occurs in the summation of the d roots, and similarly for the approxima-
tion of r1(c, p); we have very rarely observed such cancellation in our extensive
experiments. By applying our simple alternative recipe of Sect. 4.3 we closely
approximate the extremal root radii of various polynomials such as xd − vd that
resist such estimates based on the DLG iterations.

Root-Squaring for Root-Finding 113

Fig. 1. Extremal root radii bounds for the Wilkinson’s Polynomial of degree 20, com-
puted by using Eq. 11

2.4 NIRp , Root-Squaring, and Recent E/i Tests

The root-finders of [29] bypass this problem for most important application –
to e/i tests. Namely, first apply map (4) to reduce e/i test for any disc D(c, ρ)
where #(D) ≤ m, for a fixed m and 1 ≤ m ≤ d, to the test for the unit disc
D = D(0, 1). Next recall (see, e.g., [1]) that #(D) = 1

2πi

∫
C(0,1)

p′(x)
p(x) dx, that is,

the integer #(D) is the average of NIR(x) on the unit circle C(0, 1).
The paper [29] proves that this integer is less than 1 (and hence is 0)

if |NIR(x)| ≤ 1
2
√

q at q > m equally spaced points of C(0, 1) but also for any
q ≥ 1 with a high probability if |NIR(x)| ≤ 1/dν for any large constant ν under
the model of random roots of p(x) and for random choice of x on C(0, 1).

Under these conditions paper [29] certifies exclusion at a low cost, but not
so if a computed value v = |NIR(x)| exceeds 1, say. Could we certify σ-soft
inclusion for σ <

√
2 in this case? Not really, bound (10) would only imply that

rd ≤ d/v ≤ d, thus certifying d-soft inclusion.
Now root-squaring comes to rescue. We apply the same e/i test to the polyno-

mial ph(x) for a sufficiently large integer h of order log(log(d)). If v = |NIRph
(x)|

is small, we can still certify exclusion for the polynomial ph(x), but then also for
p(x) because #(D) is the same for both ph(x) and p(x).

Unless the value v is small, paper [29] proves that #(D(0, σ)) > 0 for σ =
(d/v)1/2h

, and then σ < 1.2 for sufficiently large integers h of order log(d).

114 S. Go et al.

The paper [29] extends these observations to devise root-finders running in
expected Boolean time which is optimal, up to poly-logarithmic factors. With
probability 1 a random x is non-zero, and we avoid troubles with the computation
of NIRph

(0) at root-squaring.5
In sum, our generalization of DLG iterations together with some additional

recipes enable fast approximation of extremal root radii of a black box polyno-
mial; this is immediately extended to devising e/i tests, which are a basic step
of nearly optimal subdivision root-finders of [29].

2.5 Recovery of Complex Roots

Given r2
h

d and r2
h

1 , we can readily compute the radii rd and r1 by computing
the 2hth roots of these quantities. In addition, we can recover zj from yj :=

z
(h)
j = z2

h

j as follows: check whether p(y1/2h

j) = 0 for each of 2h candidates y
1/2h

j

and weed out up to 2h −1 “false” candidates. 2h tests are expensive if 2h is large,
but by extending the descending process of [23] we can manage with only 2h
tests by recursively applying the following recipe for i = h − 1, . . . , 1, 0: given a
zero z

(i+1)
j of pi+1(x), select one of the two candidates ±(z(i+1)

j)1/2 for being a
zero of pi(x); then decrease i by 1 and repeat until i vanishes.

3 Our Root-Squaring Algorithm

3.1 Implementation Details

In this section we present our algorithm for computing NIRph
(x).

There are two main stages, in which the computations first travel down and
then back up the rational root tree. The downward traversal (Fig. 2a) splits the
evaluation of NIRph

(x) into 2h evaluations of NIRp(x) and the upward traversal
(Fig. 2b) combines the values according to the recursive formula (7).

We use Polar Representation of Evaluation Points.

Polar Representation of Evaluation Points. Evaluating NIRph
(x) at

x = x0, first approximate complex number x0 in polar coordinate (γ, θ) such
that

γ = |x0|, θ =
s

t
≈ 1

2πi
ln

(
x0

|x0|

)

for some nonnegative integers s and t, t �= 0 and x0 ≈ γ exp(2πiθ).

5 We can approximate NIRph(0) as limx→0 NIRph(x) for x = |x| exp(φi), |x| converging
to 0, and a random value φ in the range [0, 2π), but this is more costly than just
computing NIR(x) for x �= 0.

Root-Squaring for Root-Finding 115

Fast compute the square roots of an exponential with fractional exponents:
√

exp
(
2πi

a

b

)
=

{
exp

(
2πi a

2b

)
if a mod b �≡ 0,

1 if a mod b ≡ 0.
(12)

Efficiently perform negation operation as follows:

− exp
(
2πi

a

b

)
=

{
exp

(
2πi 2a+b

2b

)
if a mod b �≡ 0,

−1 if a mod b ≡ 0.
(13)

Recursively apply this strategy to quickly generate the 2h nodes at the hth
level of the tree, which are the values NIRpk

(x) for

x = γ1/2h

exp
(
2πi

s�

t2h

)
, � = 0, ..., 2h − 1,

being 2h equally spaced points on the circle C(0, γ1/2h

).
Algorithm 1 computes the recursive angle splitting, and Algorithm 2 shows

how the points of evaluation are recovered from the fractions.

Remark 1. In our implementation, we choose t to be a power of 2, so that t = 2ε

for some positive integer ε. Then NIRp(x) is evaluated at the points x of the form
γ1/2k

exp
(
2πi sh

2ε+k

)
. This enables us to control the precision of approximation

and to apply fast divisions by 2.

Combining Evaluations. A key ingredient in the upward traversal through
the rational root tree portion of our algorithm is our combination of the eval-
uations of NIRpk

at these nodes, as in Eq. 7; we perform recursion by applying
dynamic programming. Algorithm 3 specifies recursive recombination of the NIR
evaluations via dynamic programming.

The algorithm first computes NIRp(x
k

2h) = p′(x
k

2h)/p(x
k

2h), k = 0, ..., 2h −1,
for the base layer of the recursion Eq. 7, in the line “NIR[0][j] := p′(root[j])

p(root[j]) ”.
Then it recursively combines the computed values via dynamic program-
ming until it finally computes NIRp(h)(x), as stated in line “NIR[i +
1][j]:=NIR[i][2j]−NIR[i][2j+1]

2 root[2j] ”; the desired output NIRph
(x) is returned in the line

“NIR[h][0]”.

Remark 2. Roots is called at every level of the recombination process in this
presentation of the algorithm, but we can save memory by modifying Algorithm 2
to store all nodes in a single array in one call that generates the root tree.

116 S. Go et al.

Algorithm 1. Circle_Roots_Rational_Form(s, t, k)
Require: s and t that represent the angle of a complex number and number k of

recursions to be performed
Ensure: a list of pairs representing the fractional part of all kth roots of exp

(
2πi s

t

)

if s mod t ≡ 0 then
a, b := 1, 1

else
a, b := s, 2t

end if
if a mod b ≡ 0 then

c, d := 1, 2
else

c, d := 2r + s, 2s
end if
if k == 1 then

return [(a, b),(c, d)]
else if k != 0 then

left := Circle_Roots_Rational_Form(a, b, k − 1)
right := Circle_Roots_Rational_Form(c, d, k − 1)
return left ∪ right

else
return [(s, t)]

end if

Algorithm 2. Roots(γ, s, t, k)
Require: γ ≥ 0, integers s, t, and k, k ≥ 0

Ensure: list of 2k equally spaced points on the circle C(0, γ1/2k

)
root_tree := Circle_Roots_Rational_Form(s, t, k)
circ_root := [exp

(
2πia

b

)
for (a, b) in root_tree]

roots := [γ1/2k ·root for root in circ_root]
return roots

3.2 Analysis

Correctness

Lemma 1. If p(0) �= 0, then limx→0 DLG(p, p′, h, x) is well-defined.

Proof. Induction on Eq. 6 yields that ph(0) �= 0 if p(0) �= 0, and so it suffices to
consider the behavior of the numerator in Eq. 6.

L’Hopital’s rule implies the lemma where h = 1 or where
√

x divides the
numerator of p′

h(
√

x)

ph(
√

x)
even where h �= 1. Otherwise, ph(

√
x) = c0+ c1

√
x + ...+

ck(
√

x)k for some ci with c0 �= 0, but then

Root-Squaring for Root-Finding 117

Algorithm 3. DLG_Rational_Form(p, p′, γ, s, t, k)
Require: a polynomial p(x), the derivative p′(x) of p(x), a positive integer k, γ ≥ 0,

two integers s and t
Ensure: NIRpk(x) evaluated at x = γ exp(2πi s

t
)

root := Roots(γ, s, t, k)
for j = 0, ..., 2k − 1 do

NIR[0][j] := p′(root[j])
p(root[j])

end for
for i = 0, ..., k − 1 do

for j = 0, ..., 2k−i − 1 do
NIR[i + 1][j]:=NIR[i][2j]−NIR[i][2j+1]

2 root[2j]

end for
root := Roots(γ, s, t, k − 1 − i)

end for
return NIR[k][0]

Algorithm 4. DLG(p, p′, h, x, ε)
Require: a polynomial p, its derivative p′, a positive integer h, γ ≥ 0, a point of

evaluation x ∈ C, and a positive integer ε defining a desired binary precision
Ensure: NIRph(x) up to precision ε

θ := 1
2πi

ln(x)
t := 2ε

s := �θ · t�
γ := |x|
return DLG_Rational_Form(p, p′, γ, s, t, h)

Algorithm 5. DLG_Root_Radius(p, p′, prev, p′
rev, h, ε, ε′)

Require: polynomials p and prev, their derivatives p′ and p′
rev, number of squarings h,

an integer ε for determining the radius of the circle on which we choose evaluation
points, and an integer that determines the binary precision ε′ for the angle of the
point

Ensure: bounds r̃d and r̃1 on the extremal root radii of p with r̃d ≥ rd and r̃1 ≤ r1
Choose a point x on the unit circle C(0, 1) at random under the uniform probability
distribution.
d := deg(p)

r̃d :=
(
d/

∣
∣DLG(p, p′, h, x · 2−ε, ε′)

∣
∣)1/2h

r̃1 :=
(∣∣DLG(prev, p

′
rev, h, x · 2−ε, ε′)

∣∣ /d
)1/2h

return r̃d, r̃1

p′
h+1(

√
x)

ph+1(
√

x)
=

1
2
√

x

(
p′

h(
√

x)
ph(

√
x)

− p′
h(−

√
x)

ph(−
√

x)

)

=
1

2
√

x

b0c0 +
√

x · N1(
√

x) − b0c0 − √
x · N2(

√
x)

p′
h(

√
x)p′

h(−
√

x)

=
1
2

N1(
√

x) − N2(
√

x)
p′

h(
√

x)p′
h(−

√
x)

118 S. Go et al.

Fig. 2. traversal of the rational root tree

for some polynomials N1 and N2 with b0 = p′
h(0). Therefore, once again, the

limit at zero is well-defined.

Lemma 2. For a complex number x with a rational angle s
t , i.e., x =

|x| exp
(
2πi s

t

)
for some integers s and t, Algorithm 1 correctly computes the

roots in Eq. 7.

Proof. Equations 12 and 13 give the base case, and the theorem follows by
induction.

Theorem 1. If p(0) �= 0, then Algorithm 5 computes the bounds given by Eq. 11
with probability 1 under both random root and random coefficient models.

Proof. Apply Lemma 1 and recall that p(x) has only finitely many d zeros.

Complexity

Theorem 2. One can compute NIRph
(x) at a single point x �= 0 at the cost of

computing all the 2hth roots of x, evaluation of NIR(x) at these roots, 2h − 1
subtractions, and 2h − 1 divisions by these roots, and as many divisions by 2.

Proof. The computational tree for Algorithm 3 is a binary tree with 2h+1 − 1
nodes. The tree has 2h leaves corresponding to the base case for the recursive
computation, which consists of one evaluation of NIRp; the recombination of the
individual computations via Algorithm 3 requires 2h −1 subtractions and 2h −1
divisions to compute the top node shown in Fig. 2b.

Root-Squaring for Root-Finding 119

4 Experimental Results

4.1 Setup

In this section we present the results of our numerical experiments for Algo-
rithm 5, which we implemented by applying the DLG root-squaring to Newton’s
Inverse Ratios. The algorithm estimated the minimal root radius of standard test
polynomials (from the MPSolve software [3,4], which is user’s choice polynomial
root-finder). We compute NIR(x) = p′(x)/p(x) for p(x) given as a function and
compute p′(x) with a built-in routine (mpmath.diff) using the [default] option
for numerical differentiation.

We use the formula
Errrd

=
|r̃d − rd|

|rd|
to measure the accuracy of the estimates r̃d by the relative error Errrd

in com-
parison to the extremal roots obtained by MPSolve. Here rd and r̃d denote the
root radii output by MPSolve and in our estimate, respectively, for the same set
of polynomials. All estimates r̃d were computed using Python 3.9.6 on MacOS
12.5 with Apple M2 chip (8-core CPU) and 16 GB memory.

We used the mpmath python package to control the arithmetic precision.
We evaluated p(x) by using the mpmath.polyval command in the case of dense
representation and combinations of mpmath arithmetic commands (power, fmul,
and fadd) in the case of sparse representation.

We computed with 200 decimals, which is equivalent to the 668-bit binary
precision. The points of evaluation for NIRph

were chosen randomly from the cir-
cle C(0, 2−b), for b = 634. These points are close to the origin but still significant
enough to avoid zeroing out during the computations.6

The most important application of our work is in the nearly optimal poly-
nomial root-finders of [29], where we need to apply root-squaring iterations to
NIR(x) for random x on a fixed circle, but we tested our root-squaring in the
even more challenging and more difficult case where x = 0.

4.2 Our Findings

Overall the test results indicate that our root radii approximation is quite accu-
rate where p(x) has no roots extremely close to zero, and we observed this
for many polynomial families already for relatively small h = �log log(d)� + ν,
ν = 0, 1, 2, involving evaluation of NIRp at order of log(d) points x.

In Fig. 3 we display a small portion of our results to show their overarch-
ing trend for h = �log log d�, . . . , �log log d� + 2. The first row are Errrd

of the
Chebyshev, Curz, and Wilkinson polynomials of varying degrees, the second row
shows overall runtime of our computations.

6 The code used for these tests is available in the files DLG_alg.py and
benchmark.py in the repository https://github.com/PedroJuanSoto/Root-Squaring-
For-Root-Finding/.

https://github.com/PedroJuanSoto/Root-Squaring-For-Root-Finding/
https://github.com/PedroJuanSoto/Root-Squaring-For-Root-Finding/

120 S. Go et al.

Fig. 3. Accuracy of the bounds on rd computed using NIRph for various polynomial
families and h = O(log log d)

The Appendix covers tests for almost all polynomials of the MPSolve test
suite specified in https://numpi.dm.unipi.it/mpsolve-2.2/mpsolve.pdf.

The relative errors for the minimal root radius estimates r̃d are less than 1
for roots lying away from the origin by more than 10−20. That is, the difference
between the minimal root radius bound we compute and rd tends to be less than
|zd|, i.e., r̃d − rd ≤ rd. In view of Eq. 11, we obtain the crude heuristic bound
rd ≤ r̃d ≤ 2rd if rd > 10−20.

The relative errors tend to decrease as degree of the polynomial p(x) grow,
which may seem to be counter-intuitive at first glance. However, this can occur
where we perform extra root-squaring iterations for p(x) of higher degree as
the step function �log log d� increases with d. E.g., for d = 160, �log log d� = 3,
whereas for d = 320, �log log d� = 4. (Recall that the estimates tend to get
sharper as h grows.)

Some notable exceptions to this performance include the known worst case
input nroots and nrooti of the form p(x) = xd − 1 and p(x) = xd − i, respec-
tively (see Sect. 2.3). The ratio of

∣∣∣ p(0)
p′(0)

∣∣∣ is infinite, and so our estimates for the
minimal root radius tend to be much larger than the actual root radius. Likewise,
the algorithm outputs a lower estimate close to 0 for r1. In the next subsection,
however, we greatly improve these estimates by applying an alternative estimator
for extremal root radii (See Table 1).

The runtime of the computations reflects the exponential growth of the num-
ber of evaluations, which is order of 2h for h iterations as the degree of the
polynomial p(x) increases.

https://numpi.dm.unipi.it/mpsolve-2.2/mpsolve.pdf

Root-Squaring for Root-Finding 121

4.3 Alternative Bounds on Extremal Root Radii

Suppose p(x) is monic. Then the factorization in Eq. (1) implies that |p(0)| =∏d
i=1 |xj |, and so rd ≤ |p(0)|1/d ≤ r1, which provides simple estimates for r1

and rd. If p(x) is not monic, we can obtain the leading coefficient by computing
pd = limR→∞ p(R)/Rd and then scale p(x) by this number. Once we obtain r̃1
and r̃d by running Algorithm 5, we refine these estimates by using the formulas

r̃1 = max{r̃1, |p(0)/pd|
1
d }, r̃d = min{r̃d, |p(0)/pd|

1
d }. (14)

In particular, this strategy is effective for the worst case input xd −vd, v �= 0,
with r1 = rd = |v|. Whereas the NIR-based estimates are trivial: r̃d = ∞ and
r̃1 = 0, the refinement outputs the exact value of the extremal root radii at a
low cost of two evaluations of NIR and performing few additional arithmetic
operations. Table 1 shows the resulting improvement of our estimates for rd.

Table 1. Examples of improvements gained by using Eq. 14

Polynomial Family d rd Errrd

Before After

easy 100 0.949 0.718 0.028
400 0.983 0.416 0.00351
1600 0.995 0.526 4.33e-6

exp 100 28.9 1.31e+6 0.315
200 56.8 7.27e+5 0.318
400 113.0 1.03 0.32

nrooti 100 1.0 1.7e+746 2.75e-14
400 1.0 2.88e+713 9.73e-14
1600 1.0 9.19e+2942 6.9e-13
6400 1.0 9.48e+11860 2.86e-12

nroots 100 1.0 1.7e+746 1.81e-14
400 1.0 2.88e+713 1.18e-13
1600 1.0 9.19e+2942 1.01e-12
6400 1.0 9.48e+11860 2.85e-12

5 Conclusion

The DLG classical root-squaring iterations are practically useless because of
severe problems of numerical stability, but we avoid these problems by applying
the iterations to Newton’s Inverse Ratio of a black box polynomial. In this way,
we yield additional acceleration in the important case where an input polynomial
can be evaluated fast. Furthermore, this enables fast and numerically safe shifts

122 S. Go et al.

and scaling of the variable x, while in the known subdivision root-finders those
operations are most expensive and are prone to numerical stability problems.
In our extensive tests our algorithm runs fast and closely approximates the
extremal (that is, the smallest and the largest) root radii for a very large class of
input polynomials. This implies valuable support for the implementation of soft
e/i tests, which are the basis of nearly optimal subdivision root-finders of [29].

A Additional Tables

In this section, we present more detailed information about the results of
our numerical tests of Algorithm 5 with settings described in Sect. 4, with
200-decimal (668-bit) precision and the points of evaluation chosen randomly
from the circle C(0, 2−634). We estimate the minimal radius rd (computed via
MPSolve)7 and relative error Errrd

as well as the number h = �log log d� of iter-
ations used and the runtime of both our implementation and of MPSolve. These
polynomials cover a large portion of the unisolve test suite of MPSolve soft-
ware package. The descriptions of the polynomials can be found in the MPSolve
documentation.8

Our implementation is done entirely in Python, whereas the MPSolve pack-
age is written in C. Even with accounting for the extra overhead due to using
Python, our runtimes are often competitive, in that our computations finish at
the same time or earlier. Furthermore, as the polynomial degrees increase, the
runtime of MPSolve starts to exceed our runtime dramatically, and this occurs
for polynomials of degrees as low as 160. That effect is particularly well demon-
strated in the results for the Kir1, Mig1, and Partition families.

Moreover, the rough heuristic expectation that Errrd
< 1 if rd > 10−20 in

Sect. 4.2 is well supported by these figures.

Polynomial
Family

d h rd Errrd Our
Runtime

MPSolve
Runtime

Chebyshev 20 3 0.0785 0.333 0.006 0.003
40 3 0.0393 0.454 0.010 0.006
80 3 0.0196 0.586 0.017 0.016
160 3 0.00982 0.729 0.033 0.089
320 4 0.00491 0.373 0.148 0.301

Chrm_a 21 3 1.0 0.343 0.006 0.003
85 3 1.0 0.608 0.019 0.019
341 4 0.884 0.498 0.160 0.494

7 MPSolve has been devised for approximation of all d zeros of p(x), but we apply it
to our narrow task of estimation of extremal root-radii.

8 https://numpi.dm.unipi.it/mpsolve-2.2/mpsolve.pdf.

https://numpi.dm.unipi.it/mpsolve-2.2/mpsolve.pdf

Root-Squaring for Root-Finding 123

Polynomial
Family

d h rd Errrd Our
Runtime

MPSolve
Runtime

Chrm_c 11 2 1.27 0.35 0.002 0.003
43 3 1.02 0.817 0.010 0.008
683 4 0.519 0.522 0.317 4.921

Chrm_d 20 3 1.3 0.257 0.006 0.005
22 3 1.0 0.421 0.006 0.009
84 3 1.1 0.587 0.019 0.024
340 4 0.741 0.386 0.157 0.658
342 4 0.897 0.414 0.161 1.258

curz 20 3 0.452 0.34 0.006 0.003
40 3 0.379 0.71 0.010 0.007
80 3 0.318 0.557 0.018 0.013
160 3 0.271 0.83 0.035 0.050

easy 100 3 0.949 0.718 0.644 0.005
200 3 0.971 0.832 0.640 0.008
400 4 0.983 0.416 1.461 0.015
800 4 0.991 0.468 1.459 0.055
1600 4 0.995 0.526 1.456 0.176
3200 4 0.997 0.59 1.460 2.857

geom1 10 2 1.0 0.778 0.002 0.002
15 2 1.0 0.968 0.003 0.003
20 3 1.0 0.454 0.006 0.003
40 3 1.0 0.586 0.011 0.004

geom2 10 2 1.0e-18 0.778 0.002 0.003
15 2 1.0e-28 0.968 0.003 0.003

geom3 10 2 9.54e-7 0.777 0.002 0.003
20 3 9.09e-13 0.454 0.006 0.003

geom4 10 2 4.0 0.777 0.002 0.003
20 3 4.0 0.454 0.006 0.003
40 3 4.0 0.586 0.010 0.003
80 3 4.0 0.729 0.018 0.006

hermite 20 3 0.245 0.333 0.006 0.003
40 3 0.175 0.454 0.010 0.004
80 3 0.124 0.586 0.017 0.010
160 3 0.0877 0.729 0.033 0.039
320 4 0.062 0.373 0.145 0.194

124 S. Go et al.

Polynomial
Family

d h rd Errrd Our
Runtime

MPSolve
Runtime

kam1 7 2 3.0e-12 0.368 0.004 0.003
7 2 3.0e-40 0.368 0.004 0.002

kam2 9 2 1.73e-6 0.225 0.005 0.003
9 2 1.73e-20 0.225 0.005 0.003

kam3 9 2 1.73e-6 0.225 0.005 0.007
9 2 1.73e-20 0.225 0.005 0.003

kats 256 3 0.137 0.886 0.053 0.483
kir1 8 2 0.5 0.000244 0.005 0.008

44 3 0.5 4.43e-5 0.010 0.024
84 3 0.5 2.32e-5 0.100 7.542
164 3 0.5 1.19e-5 0.201 100.163

kir1_mod 44 3 0.5 0.000983 0.011 0.009
84 3 0.498 0.00364 0.100 0.071
164 3 0.496 0.00735 0.200 17.281

laguerre 20 3 0.0705 0.454 0.006 0.004
40 3 0.0357 0.586 0.010 0.006
80 3 0.018 0.729 0.018 0.017
160 3 0.00901 0.886 0.034 0.066
320 4 0.00451 0.434 0.151 0.409

legendre 20 3 0.0765 0.333 0.006 0.003
40 3 0.0388 0.454 0.010 0.01
80 3 0.0195 0.586 0.017 0.013
160 3 0.00979 0.729 0.032 0.053
320 4 0.0049 0.373 0.142 0.296

lsr 24 3 1.0e-20 0.251 0.007 0.007
52 3 1.0e-20 0.639 0.019 0.003
224 3 1.0e-20 0.654 0.157 0.202
500 4 0.0001 0.377 0.118 0.886
500 4 3.33e-5 0.475 0.062 0.168
500 4 0.0916 0.503 0.054 0.118

mig1 20 3 0.01 0.268 0.011 0.003
50 3 0.00999 0.0622 0.127 0.239
100 3 0.01 0.55 0.010 0.004
100 3 0.01 0.158 0.126 5.398
200 3 0.01 0.69 0.010 0.184
200 3 0.01 0.262 0.129 36.607
500 4 0.01 0.377 0.021 0.828
500 4 0.01 0.19 0.298 849.063

Root-Squaring for Root-Finding 125

Polynomial
Family

d h rd Errrd Our
Runtime

MPSolve
Runtime

mult 15 2 0.869 0.447 0.016 0.006
20 3 0.01 0.162 0.006 0.009
68 3 0.25 0.504 0.150 0.052

partition 199 3 0.0182 0.938 0.043 0.039
399 4 0.00914 0.454 0.185 0.099
799 4 0.00458 0.518 0.365 0.381
1599 4 0.00229 0.586 0.728 1.743
3199 4 0.00115 0.656 1.485 7.994
6399 4 0.000573 0.729 2.940 45.759
12799 4 0.000287 0.806 5.900 305.707
25599 4 0.000143 0.886 11.66 1967.376

sendra 20 3 0.9 0.388 0.006 0.005
40 3 0.95 0.329 0.010 0.011
80 3 0.975 0.302 0.018 0.031
160 3 0.987 0.289 0.034 0.141
320 4 0.994 0.19 0.157 0.939

sparse 100 3 0.968 0.836 0.009 0.003
400 4 0.969 0.501 0.044 0.013
800 4 0.969 0.568 0.062 0.034
6400 4 0.969 0.785 0.089 2.034

spiral 10 2 1.0 3.30e-7 0.002 0.006
15 2 1.0 2.24e-7 0.003 0.009
20 3 1.0 2.65e-7 0.006 0.016
25 3 1.0 2.14e-7 0.007 0.028
30 3 1.0 1.79e-7 0.009 0.053

toep 128 3 1.31 0.834 0.030 0.023
128 3 0.4 0.708 0.032 0.033

wilk 20 3 1.0 0.453 0.006 0.005
40 3 1.0 0.585 0.010 0.008
80 3 1.0 0.728 0.018 0.021
160 3 1.0 0.885 0.034 0.118
320 4 1.0 0.434 0.150 0.673

wilk_mod 30 3 1.0 0.529 0.008 0.005

126 S. Go et al.

References

1. Ahlfors, L.: Complex Analysis. McGraw-Hill series in Mathematics, McGraw-Hill,
New York (2000)

2. Bialas, S., Górecki, H.: Generalization of Vieta’s formulae to the fractional poly-
nomials, and generalizations the method of Gräffe-Lobachevsky. Bull. Pol. Acad.
Sci.-Tech. Sci. 58, 624–629 (2010)

3. Bini, D.A.: Fiorentino, Giuseppe, design, analysis, and implementation of a multi-
precision polynomial rootfinder. Numer. Algorithms 23(2–3), 127–173 (2000)

4. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

5. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: roceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation (ISSAC 2016), pp. 71–78.
ACM Press, New York (2016)

6. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the Pellet test and Newton iteration. J.
Symb. Comput. 86, 51–96 (2018)

7. Grau, A.A.: On the reduction of number range in the use of the Graeffe process.
J. Assoc. Comput. Mach. 10(4), 538–544 (1963)

8. Grau, A.A.: Algorithm 256: modified Graeffe method [C2]. Commun. ACM 8(6),
379–380 (1965)

9. Grenet, B., van der Hoeven, J., Lecerf, G.: Deterministic root-finding over finite
fields using Graeffe transforms. Appl. Algebra Eng. Commun. Comput. 27, 237–
257 (2015)

10. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Am. Math. Monthly 66,
464–466 (1959). https://doi.org/10.2307/2310626

11. Henrici, P.: Applied and Computational Complex Analysis, vol. 1: Power Series,
Integration, Conformal Mapping, Location of Zeros. Wiley, NY (1974)

12. Hoeven, van der, J.V.: Efficient root counting for analytic functions on a disk,
hal-00583139 (2011)

13. van Der Hoeven, J., Monagan, M.: Computing one billion roots using the tangent
Graeffe method. ACM Commun. Comput. Algebra 54(3), 65–85 (2020). https://
doi.org/10.1145/3457341.3457342

14. Imbach, R., Pan, V.Y.: New progress in univariate polynomial root-finding. In:
Proceedings of ISSAC 2020, pp. 249–256 (2020)

15. Imbach, R., Pan, V.Y.: Accelerated subdivision for clustering roots of polyno-
mials given by evaluation oracles. In: Boulier, F., England, M., Sadykov, T.M.,
Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. CASC 2022.
LNCS, vol. 13366, pp. 143–164. Springer, Cham (2022). arXiv:2206.08622, https://
doi.org/10.1007/978-3-031-14788-3_9

16. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8_28

17. Merzbach, U.C., Boyer, C.B.: A History of Mathematics, fifth edn. Wiley, New
York (2011)

18. McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part I, XIX+354
pages. Elsevier (2007). ISBN: 044452729X; ISBN13: 9780444527295

https://doi.org/10.2307/2310626
https://doi.org/10.1145/3457341.3457342
https://doi.org/10.1145/3457341.3457342
http://arxiv.org/abs/2206.08622
https://doi.org/10.1007/978-3-031-14788-3_9
https://doi.org/10.1007/978-3-031-14788-3_9
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-319-96418-8_28

Root-Squaring for Root-Finding 127

19. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part 2
(XXII + 718 pages). Elsevier (2013)

20. Malajovich, G., Zubelli, J.P.: Tangent Graeffe iteration. Numer. Math. 89, 749–782
(1999)

21. Malajovich, G., Zubelli, J.P.: On the geometry of Graeffe iteration. J. Complex.
17(3), 541–573 (2001). https://doi.org/10.1006/jcom.2001.0585

22. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proceedings of the 27th Annual ACM
Symposium on Theory of Computing (STOC’95), pp. 741–750. ACM Press, New
York (1995)

23. Pan, V.Y.: Optimal and nearly optimal algorithms for approximating polynomial
zeros. Comput. Math. (with Applications) 31(12), 97–138 (1996)

24. Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM
Rev. 39(2), 187–220 (1997)

25. Pan, V.Y.: Approximation of complex polynomial zeros: modified quadtree
(Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–
264 (2000)

26. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization
and rootfinding. J. Symb. Comput. 33(5), 701–733 (2002). Proc. version in Proc.
ISSAC’01, 253–267, ACM Press, New York (2001)

27. Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M.,
Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019.
LNCS, vol. 11661, pp. 393–411. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26831-2_26

28. Pan, V.Y.: Acceleration of subdivision root-finding for sparse polynomials. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020.
LNCS, vol. 12291, pp. 461–477. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60026-6_27

29. Pan, V.Y.: Good news for polynomial root-finding and matrix eigen-solving. arXiv
1805.12042, last revised in 2023

30. Pan, V.Y., Go, S., Luan, Q., Zhao, L.: Fast approximation of polynomial zeros and
matrix eigenvalues. In: Proceedings of the 13th International Symposium on Algo-
rithms and Complexity (CIAC 2023), Mavronicolas, M. (ed.), LNCS, vol. 13898,
pp. 336–352. Springer Nature, Switzerland, AG (2023)

31. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of
polynomials. J. Complex. 3(2), 90–113 (1987)

32. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamen-
talsatz der Algebra und Grundlagen der Mathematik. Mathematische Zeitschrift
20, 131–151 (1924)

https://doi.org/10.1006/jcom.2001.0585
https://doi.org/10.1007/978-3-030-26831-2_26
https://doi.org/10.1007/978-3-030-26831-2_26
https://doi.org/10.1007/978-3-030-60026-6_27
https://doi.org/10.1007/978-3-030-60026-6_27

Symbolic-Numerical Algorithm for Solving
the Problem of Heavy Ion Collisions
in an Optical Model with a Complex

Potential

A. A. Gusev1,2(B) , O. Chuluunbaatar1,3 , V.L. Derbov4 ,
R.G. Nazmitdinov1,2 , S.I. Vinitsky1,5 , P.W. Wen6 , C.J. Lin6,7 ,

H.M. Jia6, and L.L. Hai8

1 Joint Institute for Nuclear Research, 141980 Dubna, Russia
gooseff@jinr.ru

2 Dubna State University, 141982 Dubna, Russia
3 Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences,

13330 Ulaanbaatar, Mongolia
4 Chernyshevsky Saratov National Research State University, Saratov, Russia

5 Peoples’ Friendship University of Russia (RUDN University),
117198 Moscow, Russia

6 China Institute of Atomic Energy, 102413 Beijing, China
7 College of Physics and Technology & Guangxi Key Laboratory of Nuclear Physics

and Technology, Guangxi Normal University, 541004 Guilin, China
8 Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam

Abstract. We present an original algorithm in the MAPLE system
for solving the scattering problem in single-channel approximation of
the coupled-channel method of the optical model (OM) described by
a second-order ordinary differential equation (ODE) with a complex-
valued potential and regular boundary conditions. The complex-valued
potential consists of the known real part, which is a sum of the nuclear
potential, the Coulomb potential, and the centrifugal potential, and the
imaginary part, which is a product of the unknown coupling constant
g(E), depending on the collision energy E of a pair of ions, and the
derivative of the real part of the known nuclear potential with respect to
the ODE independent variable.

The presented algorithm implements the solution of the inverse prob-
lem, i.e., calculates the unknown coupling constant g(E) and scattering
matrix S(g(E), E) from condition |S(g(E), E)|2 = 1− |T (E)|2 by means
of the secant method. The required amplitudes of transmission T (E) and
reflection R(E) subject also to the condition |R(E)|2 = 1 − |T (E)|2 of
the model with incoming wave boundary conditions (IWBCs) are pre-
viously calculated by the standard MAPLE implemented KANTBP 4M
program.

The algorithm provides a one-to-one correspondence between the OM
with a complex-valued potential and the model of IWBCs with a real-
valued potential.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 128–140, 2023.
https://doi.org/10.1007/978-3-031-41724-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_7&domain=pdf
http://orcid.org/0000-0003-4897-6128
http://orcid.org/0000-0001-5010-0593
http://orcid.org/0000-0001-5450-3963
http://orcid.org/0000-0003-0489-7858
http://orcid.org/0000-0003-3078-0047
http://orcid.org/0000-0003-4507-8090
http://orcid.org/0000-0002-3988-6756
https://doi.org/10.1007/978-3-031-41724-5_7

Symbolic-Numerical Algorithm for Solving the Heavy Ion Collisions Problem 129

The efficiency of the proposed approach is shown by solving numer-
ically the scattering problem and calculating the reference fusion cross
section for a pair of heavy ions 16O+144Sm in the single-channel approx-
imation of the close-coupling method.

Keywords: Symbolic-numerical algorithm · Optical model with
complex-valued potential · Incoming wave boundary conditions model ·
Heavy ion collision problem

1 Introduction

In the coupled-channel (CC) method for describing sub-barrier reactions with
heavy ions, the scattering problem is solved for a system of second-order ordinary
differential equations (ODEs) with complex-valued optical model (OM) poten-
tials and the ODE solutions subjected to regular boundary conditions (BCs).
This approach has started from [1–3] and was continued in [4–6].

The alternative incoming wave boundary condition (IWBC) model uses real-
valued potentials, each of them being a sum of a short-range nuclear potential
of interaction between two heavy particles, a long-range real Coulomb poten-
tial, and a long-range real centrifugal potential [7–13]. In the IWBC model, to
formulate correctly the Robin BCs with the correct set of threshold energies in
the coupled channel method, it was required to diagonalize the coupling matrix
of the effective potentials of coupled channels at the potential minimum point
inside the potential barrier [14–16]. Such a formulation of the IWBCs with diag-
onalization of the potential channel coupling matrix at the minimum point inside
the potential barrier was reported in recent papers [17,18] and implemented in
the KANTBP 3.0, KANTBP 3.1 programs [19,20].

This circumstance allowed us to return to considering the OM with the
complex-valued potential [2]. For simplicity, it is specified by the real-valued
spherical Wood–Saxon nuclear potential and the imaginary part of the surface
nuclear potential of the OM given as a product of the unknown coupling con-
stant and derivative of the known nuclear potential with respect to the ODE
independent variable, which is sufficient for low collision energies [21].

In the OM with a complex-valued potential, one of the main problems is to
find the coupling constant parameter, which depends on the collision energy of
two heavy ions. The problem of including the imaginary part into the nuclear
potential is traditionally solved by fitting the coupling constant value to the
experimental data on the cross section of the reaction, which depends on the
collision energy of the pair of heavy ions.

To specify the real part of the nuclear potential, it is sufficient to use the
well-known tabulated parameters of the Wood–Saxon nuclear potential and its
multipole deformation in the collective nuclear model [22], which correspond to
the experimental data on the reaction cross sections depending on the collision
energy [23]. Thus, to calculate the coupling constants for the imaginary part of
the nuclear potential in OMs, it is sufficient to construct an algorithm that uses

130 A. A. Gusev et al.

as the initial data the transmission and reflection coefficients of the IWBC model
previously calculated by the KANTBP 4M program [24] implementing the finite
element method in MAPLE [25].

This paper presents an original algorithm implemented in the MAPLE system
for calculating the parameter g(E) > 0, the coupling constant of the imaginary
part of the complex-valued potential depending on the collision energy E of a
pair of ions, in the OM of the scattering problem described by the second-order
ODEs with complex-valued potential using the KANTBP 4M program.

In OM, the coupling constant g(E) > 0 is calculated from the condition

1 − |SL(g(E), E)|2 = |TL(E)|2,
where SL(g(E), E) is the scattering matrix depending on g(E) and E, and
TL(E) is the transmission amplitude depending only on E of the IWBC model
with the real-valued potential. The scattering matrix SL(g(E), E) is determined
by solving the ODE subject to regular BCs of a scattering problem for the
OM with complex-valued potential with given g(E). The transmission ampli-
tude TL(E) = T IWBC

L (E) is extracted from the solution of the ODE subject
to IWBC. Thus, the proposed algorithm provides a one-to-one correspondence
between the OM with a complex-valued potential and the IWBC model with a
real-valued potential announced in the pioneer paper [1].

The efficiency of the proposed algorithm is shown by solving the scattering
problem and calculating the reference fusion cross section of a pair of heavy ions
16O+144Sm in the single-channel approximation of the coupled-channel method
with the complex-valued potential.

The paper is organized as follows. In Sect. 2, we formulate the OM in the
single-channel approximation. Section 3 presents the OM algorithm. Section 4
presents a numerical example, in which the solutions of the scattering problem
and the reference cross section for the fusion of a pair of heavy ions 16O+144Sm
and the coupling constant of the imaginary part of the surface nuclear poten-
tial are calculated. In Conclusion, the main results are summarized and further
prospects for applying the proposed approach are outlined.

2 Optical Model and IWBC Model in the Single-Channel
Approximation

First, we compare the single-channel approximation of the OM [2] and the IWBC
model [10,20] without nuclear deformation coupling described by the equation

(
− �

2

2μ
�r + V (g, r) − E

)
Ψ(r) = 0, (1)

where Ψ(r) = r−1
∑

Lm ΨL(r)Y m
L (θ, ϕ), Y m

L (θ, ϕ) is a spherical harmonic [21],
and ΨL(r) satisfies the radial equation

(
− �

2

2μ
d2

dr2
+ VL(g, r) − E

)
ΨL(r) = 0. (2)

Symbolic-Numerical Algorithm for Solving the Heavy Ion Collisions Problem 131

In the OM and IWBC model, the radial wave function ΨL(r) is subjected to dif-
ferent BCs in the boundary points of different intervals r ∈ [rmin

L , rmax
L] presented

in Sect. 3.
For the OM in Eq. (2), VL(g, r) is the complex-valued potential given by a

sum of four terms:

VL(g, r) = V (g, r) +
�
2

2μ
L(L + 1)

r2

= VN (r) − ıg(E)
dVN (r)

dr
+ V̄C(r) +

�
2

2μ
L(L + 1)

r2
, (3)

namely, the real-valued nuclear Woods–Saxon potential

VN (r) = − V0

1 + exp((r − R0)/a)
, (4)

the imaginary part of the surface nuclear potential including the unknown real-
valued coupling constant g(E) depending on collision energy E

− ıg(E)
dVN (r)

dr
, (5)

the Coulomb potential [26] describing the interaction of the projectile charge ZP

with the target charge ZT , uniformly distributed over a ball of radius RC

depending on the masses of the projectile AP and the target AT , and parame-
ter R00

V̄C(r) = ZP ZT

{
1/r, r ≥ RC ,
(3R2

C − r2)/(2R3
C), r < RC ,

(6)

RC = R0 = R00(A
1/3
P + A

1/3
T).

The last term in Eq. (3) is a rotation centrifugal potential.
For solving a scattering problem in the IWBC model in Eq. (2), the complex-

valued potential VL(g, r) is replaced to the real-valued potential VL(r) deter-
mined by the following:

VL(r) = VL

(
g = 0,max

(
r, rmin

L

))
, (7)

where the value of rmin
L depends on the angular momentum L and is determined

by the condition

E > V min
L = VL

(
g = 0, rmin

L

)
,

dV min
L (g = 0, r)

dr

∣∣∣∣
r=rmin

L

= 0. (8)

The value of Lmax is restricted by the limited value of the incident energy E in
the entrance channel: E = VL(rmin

L), where VL(rmin
L) is the potential minimum,

L = 0, . . . , Lmax.

132 A. A. Gusev et al.

Fig. 1. OM potential V (x, z) = �V (g, r) in the xz-plane (a) and VL(g, r) and its
components at g = 1 and L = 0 (b) for a pair of heavy ions 16O+144Sm

Fig. 2. Real and imaginary parts of the potentials VL(g, r) of OM (a) and the real-
valued potential VL(r) of IWBC model (b) for a pair of heavy ions 16O+144Sm

In the IWBC model, the nuclear potential VN (r) having a constant value of
VN (r = rmin

L) for r ≤ rmin
L , the value of rmin

L is determined by the condition (8).
In Fig. 1 (a), we show the real part �V (g, r) of the OM potential in the

xz-plane. Figure 1 (b) shows the components of the potential VL(g, r) at L = 0
and g = 1. The real and imaginary parts of the potentials VL(g, r) and VL(r)
for 16O+144Sm are shown in Fig. 2 (a) for the OM model and in Fig. 2 (b) for
the IWBC model, respectively.

The parameters of the problem for the 16O+144Sm reaction are:

AP = 16, AT = 144.0, ZP = 8, ZT = 62, μ = AP AT /(AP + AT);
V0 = 105 MeV, R00 = 1.1 fm, A0 = 0.75 fm;

R0 = R00(A
1/3
P + A

1/3
T) in the zeroth approximation.

3 The Optical Model Algorithm

The following algorithm calculates the unknown coupling constant g(E) > 0 for
a given value of energy E from the condition

1 − |SL(g(E), E)|2 = |TL(E)|2.

Symbolic-Numerical Algorithm for Solving the Heavy Ion Collisions Problem 133

The transmission TL(E) amplitude and the reflection RL(E) amplitude and
the eigenfunction ΨL(r) are calculated in advance by numerically solving the
ODE (2) with the real-valued potential VL(r) from (7) subject to IWBCs for a
given value of energy E. The scattering matrix SL(g(E), E) and eigenfunction
ΨL(r) are calculated by numerically solving the ODE (2) subject to regular BCs
of a scattering problem for the OM with complex-valued potential VL(g(E), r)
from (3) with given g(E).

Algorithm OMCCG.

Input E ∈ {E1, . . . , En} is a grid of real values of collision energies E.
Step 1. Finding the parameter g(E) > 0 on the grid E ∈ {E1, . . . , En} by the

secant method with a given tolerance 0 < ε � 1 � (10−8, 10−13).
Step 1.1. We put g = 0 and calculate G0 = −|TL(Ei)|2 using Algorithm

IWBCM.
Step 1.2. We choose the initial values of g0 = {0, i = 1, 2; g(Ei−2), i =

3, 4, . . . , n}, g1 = {10−4, i = 1; g(Ei−1), i = 2, 3, . . . , n}, and calcu-
late

G1 = 1 − |SL(g1, Ei)|2 − |TL(Ei)|2,
where SL(g1, Ei) is computed using the OM algorithm and the value
of |TL(Ei)|2 is calculated at Step 1.1.

Step 1.3. For k = 1, 2, . . . while |gk − gk−1| > ε: we put

gk+1 = gk − Gk
gk − gk−1

Gk − Gk−1
,

and calculate

Gk+1 = 1 − |SL(gk+1, Ei)|2 − |TL(Ei)|2.

Step 1.4. The fusion cross section σfus(E) is calculated using the formula

σfus(E) =
∑
L=0

σL
fus(E), σL

fus(E) =
π

k2
(2L + 1)(1 − |SL(g,E)|2). (9)

Output. Sets g(E), ΨL(r), SL(g,E), and σL
fus(E) of scattering states at the given

real energy E: on the grid E ∈ {E1, . . . , En} in the OM.

End of Algorithm OMCCG

Algorithm IWBCM.

Input r = [rmin
L , rmax

L] is the interval of independent variable of ODE of the
IWBC model; E is the collision energy; VL(r) is the real-valued poten-
tial from (7).
Solving the scattering problem for Eq. (2) of the IWBC model with the
real-valued potential VL(r) from (7) and Robin BC at the boundary
points of the interval r = [rmin

L , rmax
L],

134 A. A. Gusev et al.

dΨL(r)
dr

= R(r)ΨL(r), R(r) =
dΨas

L (r)
dr

1
Ψas

L (r)
(10)

which follows from the asymptotic solution [20]

Ψas
L (rmin

L) =
exp(−ıKr)√

K
T IWBC

L (E), K =

√
2μ
�2

√
E − VL(rmin

L), (11)

Ψas
L (rmax

L) =
1√
k
(Ĥ−

L (kr)−Ĥ+
L (kr)RIWBC

L (E)), k =

√
2μ
�2

√
E.

Here Ĥ±
L (kr) are the normalized outgoing and incoming Coulomb par-

tial wave functions,

Ĥ±
L (kr) = [±ıFL(η, kr) + GL(η, kr)] exp(∓ıδC

L) (12)

and FL(η, kr) and GL(η, kr) are the regular and irregular Coulomb par-
tial wave functions, η = kZP ZT e2/(2E) is the Sommerfeld parameter,
δC
L = argΓ (L + 1 + ıη) is the Coulomb phase shift [27,28].

Calculating ΨL(r), TL(E) ≡ T IWBC
L (E) and RL(E) ≡ RIWBC

L (E),
testified to the following condition:

|TL(E)|2 + |RL(E)|2 = 1.

Output. ΨL(r) and TL(E), and RL(E) of scattering states at the given real
energy E in the IWBC model.

End of Algorithm IWBCM

Algorithm OM

Input. KeyOM = 0 is computing scattering states; KeyOM = 1 is computing
metastable states;
r = [r0L, rmax

L] is the interval of the independent variable of ODE (2) of
the IWBC model; E is the collision energy; g(E) is the given coupling
constant depending on E; VL(g(E), r) is the real-valued potential from
(3).
If KeyOM = 0 then go to 1 else go to 2 fi.

1. Solving the scattering problem for Eq. (2) with respect to Ψ(r) and
SL(g,E) of the OM with the complex-valued potential VL(g, r) (3) for
a given value of g(E) calculated at Step 1.3 of OMCCG algorithm and
mixed BCs at the boundary points of interval r ∈ [r0L, rmax

L]:
the Neumann BC at r = r0L,

dΨas
L (r)
dr

∣∣∣∣
r=r0

L

= 0, r0L ≤ rmin
L ,

and the Robin BC at r = rmax
L ,

dΨL(r)
dr

= R(r)ΨL(r), R(r) =
dΨas

L (r)
dr

1
Ψas

L (r)

Symbolic-Numerical Algorithm for Solving the Heavy Ion Collisions Problem 135

Fig. 3. Collision energy dependence of the parameter g(E), the fusion probability
P L
fus = |TL(E)|2, the reflection (scattering) coefficient |RL(E)|2 = |SL(g(E), E)|2, as

well as the smooth fusion partial cross section σL
fus(E) (in mb) of sub-barrier fusion

reaction for a pair of heavy ions 16O+144Sm for L = 0 (a) and L = 5 (b)

which follows from the asymptotic solution [20]

Ψas
L (rmax

L) =
Ĥ−

L (kr) − Ĥ+
L (kr)SL(g,E)√
k

.

2. Calculating the eigenfunctions ΨLν(r) and the complex-valued eigenen-
ergies EM

L,ν of metastable states at a given value g(E) > 0 calculated at
Step 1.3 of OMCCG algorithm with the outgoing wave at the boundary
point r = rmax

L [29],

Ψas
Lν(r

max
L) =

1√
k

Ĥ+
L (kr)OOM

L (EM
L,ν), k =

√
2μ
�2

√
EM

L,ν ,

where OOM
L (EM

L,ν) is the amplitude of outgoing wave.
Output. ΨL(r) and SL(g,E) of scattering states at the given real energy E in

the OM or eigenfunctions ΨLν(r) and complex eigenenergies EM
L,ν of

metastable states in the OM.

End of Algorithm OM
Remark. Instead of the Neumann BC, one can use also the Robin BC r = r0L,

which follows from the regular asymptotic solution

Ψas
L (r0L) =

rL+1 exp(−ıKr)√
K

AOM
L (E), K =

√
2μ
�2

√
E − VL(r0L),

where AOM
L (E) is a normalization factor.

4 Benchmark Calculations

An example of sub-barrier fusion reaction for a pair of heavy ions 16O+144Sm
is numerically studied using the IWBC model and the OM. To solve the scat-
tering problem and to calculate the metastable states, we use the KANTBP 4M
program [24] implementing the finite element method in MAPLE [25].

136 A. A. Gusev et al.

Fig. 4. Eigenfunctions Ψ0(r) = ΨL(r) of scattering states of sub-barrier fusion reaction
for a pair of heavy ions 16O+144Sm at a non resonance energy of E = 61 MeV, L = 0.
IWBC (a) in comparison with OM at g = 0 (b) and g = 0.00429 (c)

Fig. 5. Eigenfunctions Ψ0(r) = ΨL(r) of the OM scattering states of sub-barrier fusion
reaction for a pair of heavy ions 16O+144Sm at L = 0 in the vicinity of resonance
(the second peak of g(E) in Fig. 3), E = Eres ≈ 57.7330 MeV at g = 0.001 (b) and
E = Eres ≈ 57.7375 MeV at g = 0 (e), in comparison with the eigenfunctions of
scattering states at E = Eres ± 0.1 MeV (a,c,d,f)

Figure 3 illustrates the collision energy dependence of the parameter g(E),
the fusion probability PL

fus = |TL(E)|2, the reflection (scattering) coefficient
|RL(E)|2 = |SL(g(E), E)|2, as well as the smooth fusion partial cross section
σL
fus(E) (in mb) at L = 0 (a) and L = 5 (b). The resonance structure of the cou-

pling constant g(E) is seen, which testifies for the existence of metastable states,
manifesting themselves as resonances in the elastic scattering in the interval of
energies E ∈ [52, 68] MeV.

Figure 4 (a) shows the eigenfunctions of the IWBC scattering states for
comparison with OM ones at g = 0 (Fig. 4 (b)) and at g = 0.00429 (Fig. 4 (c))
for a non-resonance energy of E = 61 MeV. At first glance, these functions have
similar behavior, but the real part of the IWBC function has v = 18 nodes in the
interval r ∈ [0, 10] and the transmission coefficient equal to |T0|2 = 0.411 that
corresponds to a partial transmission, whereas the OM function has v = 17 nodes
in the interval r ∈ [0, 10] and the transmission coefficient equal to |T0|2 = 0, i.e.,
|R0|2 = 1, which corresponds to a total reflection.

Symbolic-Numerical Algorithm for Solving the Heavy Ion Collisions Problem 137

Fig. 6. Eigenfunctions Ψ0(r) = ΨLν(r) of the three metastable states at L = 0 and
ν = 16, 17, 18 with complex energies EL,ν = Eν : E16 = 53.773 − 0.012ı (a), E17 =
57.732 − 0.013ı (b) and E18 = 61.162 − 0.166ı (c) at g = 0.001 in the vicinity of
the first, second, and third peaks of g(E), in comparison with three metastable states
E16 = 53.773 − 10−6ı (d), E17 = 57.732 − 0.001ı (e) and E18 = 61.163 − 0.155ı (f) at
g = 0 for a pair of heavy ions 16O+144Sm

Note that the IWBC function is calculated in the interval r ∈ [rmin
L , rmax

L]
with Robin BCs. Here we continue this function over the interval r ∈ (0, rmin

L]
using its asymptotic behavior (10). The latter is known because the nuclear
potential VN (r) = VN (rmin

L) in this interval, as shown by horizontal lines in
Fig. 2 (b). However, in all papers exploiting the IWBC model, the behavior of
wave functions in this interval is not discussed. This is because of the difference
in the definition of potentials and BCs in these two models. Indeed, the OM
potential is prolonged till the vicinity r0L � rmin

L and the regular Neumann BC
are used at r0L, while in the IWBC model, the potential is cut off at r = rmin

L and
the Robin BC is used at this point. To compensate for this principal difference,
the imaginary part of the optical potential is switched on with the help of the
initially unknown coupling constant g(E) > 0. The corresponding scattering
state eigenfunction of OM at g = 0.00429 has the same v = 17 nodes in the
interval r ∈ [0, 10] and yields the transmission coefficient |T0|2 = 0.412, as shown
in Fig. 4 (c).

This observation gave us an opportunity to propose the above algorithm, in
which the agreement of OM and IWBC wave functions at L = 0 is achieved
by solving an inverse problem, namely, by calculating the unknown coupling
constant g(E) from the reflection R0(E) and transmission T0(E) amplitudes,
determined in advance together with the required wave functions of the IWBC
model.

The resonance peaks of g(E) correspond to the appearance of metastable
states with complex energy EM

L,ν at �EM
L,ν < 0, such that the real part of a

metastable state energy is close to the resonance scattering energy Eres ≈ �EM
L,ν .

The eigenfunctions of scattering states with the resonance energy Eres ≈ 57.73
at g = 0.001 and g = 0 in the vicinity of the second peak of g(E) are shown

138 A. A. Gusev et al.

Table 1. The complex energy EM
L,ν = �EM

L,ν + ı�EM
L,ν of metastable states and the

corresponding shape resonance energies Eres ≈ �EM
L,ν of scattering problem OM at

L = 0, g = 0 and g = gres for a pair of heavy ions 16O+144Sm

ν EM
L,ν(g = 0) Eres(g = 0) g = gres EM

L,ν(g = gres) Eres(g = gres)

16 53.7731 − 10−6ı 53.7729 5 · 10−13 53.7731 − 1.2 · 10−6ı 53.7731
17 57.7328 − 0.0012ı 57.7326 1 · 10−7 57.7328 − 0.0012ı 57.7329
18 61.1639 − 0.1558ı 61.0675 0.0023 61.1614 − 0.1801ı 61.1645

in Figs. 5 (b) and 5 (e), and for the near-resonance energy Eres ± 0.1 in Fig. 5.
At g = 0.001 and g = 0, the resonance eigenfunctions, in contrast to the non-
resonance ones, are localized in the potential well. At g(E) > 0, the degree of
localization is less than at g = 0. Three metastable states correspond to three
peaks of g(E) in Fig. 3 (a), as shown in Fig. 6. So, at g(E) > 0, the absolute
value of the imaginary part of energy is larger than at g = 0. We show in
Table 1 the complex energy EM

L,ν of metastable states and corresponding shape
resonance energies Eres ≈ �EM

L,ν of the elastic scattering at L = 0 and g = 0,
and g(E) > 0. One can see that the imaginary parts of energy �EM

L,ν increase
with increasing value of the coupling constant g(E) > 0, that means decreasing
a life time of metastable states.

5 Conclusions

The algorithm implemented in the MAPLE system for solving the scattering
problem for a second-order ordinary differential equation of the OM with a
complex-valued potential and regular BCs is presented. The complex-valued
potential is a sum of the known real part of the potential, which includes the
nuclear potential, the Coulomb potential, and the centrifugal potential, and the
imaginary part of the potential, represented as a product of the unknown cou-
pling constant parameter g(E) depending on the collision energy E of a pair
of ions and the derivative of the real part of the known nuclear potential with
respect to the independent variable of the ODE.

The algorithm implements the solution of the inverse problem: the calculation
of the unknown coupling constant g(E) by means of secant method using as
input the amplitudes of reflection R(E) and transmission T (E) of the model
with IWBCs, calculated in advance using the standard MAPLE-implemented
program KANTBP 4M [24]. The proposed algorithm is shown to provide one-
to-one correspondence between the OM with a complex-valued potential and the
model of IWBCs with a real-valued potential.

The efficiency of the proposed approach was illustrated by a numerical exam-
ple of solving the scattering problem of a pair of heavy ions 16O+144Sm in the
single-channel approximation of the coupled-channel method of the test desk
given in Ref. [20]. The behavior of the coupling constant g(E) is shown to pos-
sess a resonance structure that corresponds to the existence of metastable states,
that manifest themselves as resonances in the elastic scattering in the region of
energy, where the fusion cross section smoothly increases.

Symbolic-Numerical Algorithm for Solving the Heavy Ion Collisions Problem 139

A generalization of the algorithm over the solution of the scattering problem
in OM for a system of second-order ODEs using the updated KANTBP 4M and
KANTBP 3.1 programs will allow a description of the experimental data on the
cross section for deep sub-barrier fusion of a pair of heavy ions. We hope that
the proposed algorithm will provide a wider application of the extended OM in
a description of sub-barrier reactions of heavy ions.

Acknowledgments. The present research benefited from computational resources of
the HybriLIT heterogeneous platform of the JINR. This publication has been sup-
ported by the Russian Foundation for Basic Research and Ministry of Education, Cul-
ture, Science and Sports of Mongolia (the grant 20-51-44001) and the Peoples’ Friend-
ship University of Russia (RUDN) Strategic Academic Leadership Program, project
No.021934-0-000. This research is funded by Ho Chi Minh City University of Educa-
tion Foundation for Science and Technology (grant No. CS.2021.19.47).

OCH acknowledges financial support from the Ministry of Education and Science
of Mongolia (grant No. ShuG 2021/137). The work of PWW, CJL, and HMJ is sup-
ported by the National Key R&D Program of China (Contract No. 2022YFA1602302),
the National Natural Science Foundation of China (Grants Nos. 12235020, 12275360,
12175314, 12175313, and U2167204), the Leading Innovation Project (Grant No.
LC192209000701), and the project supported by the Directors Foundation of Depart-
ment of Nuclear Physics, China Institute of Atomic Energy (12SZJJ-202305).

References

1. Feshbach, H., Porter, C.E., Weisskopf, V.F.: Model for nuclear reactions with neu-
trons. Phys. Rev. 96, 448–464 (1954)

2. Buck, B., Stamp, A.P., Hodgson, P.E.: The excitation of collective states by inelas-
tic scattering the extended optical model. Phil. Mag. J. Theor. Exp. Appl. Phys.
8, 1805–1826 (1963)

3. Tamura, K.: Analyses of the scattering of nuclear particles by collective nuclei in
terms of the coupled-channel calculation. Rev. Mod. Phys. 37, 679–708 (1965)

4. Guenther, P.T., Havel, D.G., Smith, A.B.: Neutron scattering and the optical model
near A = 208 and implications on the inelastic scattering cross section of uranium-
238. Nucl. Sci. Eng. 65, 174–180 (1978)

5. Mişicu, Ş, Esbensen, H.: Signature of shallow potentials in deep sub-barrier fusion
reactions. Phys. Rev. C 75, 034606 (2007)

6. Esbensen, H., Tang, X., Jiang, C.L.: Effects of mutual excitations in the fusion of
carbon isotopes. Phys. Rev. C 84, 064613 (2011)

7. Rawitscher, G.H.: Ingoing wave boundary condition analysis of alpha and deuteron
elastic scattering cross sections. Nucl. Phys. 85, 337–364 (1963)

8. Christensen, P.R., Switkowski, Z.E.: IWB analysis of scattering and fusion cross
sections for the 12C+12C, 13C+16O and 16O+16O reactions for energies near and
below the Coulomb barrier. Nucl. Phys. A 280, 205–216 (1977)

9. Krappe, H.J., Shring, K.M., Nemes, M.C., Rossner, H.: On the interpretation of
heavy-ion sub-barrier fusion data. Z. Phys. A. 314, 23–31 (1983)

10. Hagino, K., Rowley, N., Kruppa, A.T.: A program for coupled-channel calculations
with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun.
123, 143–152 (1999)

140 A. A. Gusev et al.

11. Hagino, K., Takigawa, N.: Subbarrier fusion reactions and many-particle quantum
tunneling. Prog. Theor. Phys. 128, 1061–1106 (2012)

12. Back, B.B., Esbensen, H., Jiang, C.L., Rehm, K.E.: Recent developments in heavy-
ion fusion reactions. Rev. Mod. Phys. 86, 317–360 (2014)

13. Hagino, K., Ogata, K., Moro, A.M.: Coupled-channels calculations for nuclear reac-
tions: from exotic nuclei to super heavy elements. Prog. Part. Nucl. Phys. 125,
103951 (2022)

14. Samarin, V.V., Zagrebaev, V.I.: Channel coupling analysis of initial reaction stage
in synthesis of super-heavy nuclei. Nucl. Phys. A 734, E9–E12 (2004)

15. Zagrebaev, V.I., Samarin, V.V.: Near-barrier fusion of heavy nuclei: coupling of
channels. Phys. Atom. Nucl. 67, 1462–1477 (2004)

16. Zagrebaev, V.: Heavy Ion Reactions at Low Energies. In: Denikin, A., Karpov,
A., Rowley, N. (eds.) Lecture Notes in Physics, vol. 963. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27217-3

17. Wen, P.W., et al.: Near-barrier heavy-ion fusion: role of boundary conditions in
coupling of channels. Phys. Rev. C 101, 014618 (2020)

18. Wen, P.W., Lin, C.J., Nazmitdinov, R.G., Vinitsky, S.I., Chuluunbaatar, O.,
Gusev, A.A., Nasirov, A.K., Jia, H.M., Góźdź, A.: Potential roots of the deep sub-
barrier heavy-ion fusion hindrance phenomenon within the sudden approximation
approach. Phys. Rev. C 103, 054601 (2021)

19. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP
3.0: new version of a program for computing energy levels, reflection and transmis-
sion matrices, and corresponding wave functions in the coupled-channel adiabatic
approach. Comput. Phys. Commun. 185, 3341–3343 (2014)

20. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G., Wen, P.W.,
Lin, C.J.: KANTBP 3.1: a program for computing energy levels, reflection and
transmission matrices, and corresponding wave functions in the coupled-channel
and adiabatic approaches. Comput. Phys. Commun. 278, 108397 (2022)

21. Bohr, A., Mottelson, B.R.: Nuclear Structure. Single Particle Motion. V. I, W.A.
Benjamin. New York, Amsterdam (1969)

22. Bohr, A., Mottelson, B.R.: Nuclear Structure. Nuclear Deformation. V. II, W.A.
Benjamin. New York, Amsterdam (1974)

23. Karpov, A.V., et al.: NRV web knowledge base on low-energy nuclear physics. Nucl.
Instr. Meth. Phys. Res. A 859, 112–124 (2017)

24. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: KANTBP 4M - program
for solving boundary problems of the self-adjoint system of ordinary second order
differential equations. http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.
html. Accessed 17 May 2023

25. https://www.maplesoft.com
26. Takigawa, N., Rumin, T., Ihara, N.: Coulomb interaction between spherical and

deformed nuclei. Phys. Rev. C 61, 044607 (2000)
27. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, NY

(1965)
28. Chuluunbaatar, O., et al.: Calculation of a hydrogen atom photoionization in a

strong magnetic field by using the angular oblate spheroidal functions. J. Phys. A
40, 11485–11524 (2007)

29. Gusev, A.A.: Symbolic-numeric solution of boundary-value problems for the
Schrödinger equation using the finite element method: scattering problem and res-
onance states. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2015. LNCS, vol. 9301, pp. 182–197. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24021-3_14

https://doi.org/10.1007/978-3-030-27217-3
http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.html
http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.html
https://www.maplesoft.com
https://doi.org/10.1007/978-3-319-24021-3_14
https://doi.org/10.1007/978-3-319-24021-3_14

On the Complexity of Linear Algebra
Operations over Algebraic Extension

Fields

Amir Hashemi1,2(B) and Daniel Lichtblau3

1 Department of Mathematical Sciences, Isfahan University of Technology,
84156-83111 Isfahan, Iran

Amir.Hashemi@cc.iut.ac.ir
2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

19395-5746 Tehran, Iran
3 Wolfram Research, 100 Trade Center Dr, Champaign, IL 61820, USA

danl@wolfram.com

Abstract. In this paper, we study the complexity of performing some
linear algebra operations such as Gaussian elimination and minimal poly-
nomial computation over an algebraic extension field. For this, we use
the theory of Gröbner bases to employ linear algebra methods as well as
to work in an algebraic extension. We show that this has good complex-
ity. Finally, we report an implementation of our algorithms in Wolfram
Mathematica and illustrate its effectiveness via several examples.

Keywords: Gaussian elimination · Minimal polynomial · Polynomial
ideals · Gröbner bases · FGLM algorithm · Algebraic extension fields ·
Complexity analysis

1 Introduction

In field theory, a field extension K ⊂ L is called algebraic if every element of L
is a root of some non-zero and monic polynomial over K. In this paper, we are
interested in analysing the complexity of performing some linear algebra opera-
tions over an algebraic extension field L. In this direction, we concentrate only
on carrying out Gaussian elimination on a matrix over L as well as computing
the minimal polynomial of a square matrix over L.

More precisely, assume that f1 ∈ K[x1] is a monic polynomial of degree
d1 ≥ 2 over the field K. Then, additions in K[x1]/〈f1〉 need d1 operations
whereas multiplications require O(d1 log(d1) log(log(d1))) operations. We refer
to [9] for more details. If α1 denotes the class of x1 in K[x1]/〈f1〉, then this
quotient ring is denoted by K[α1]. Doing an induction, assume that for each
2 ≤ i ≤ n, fi is a monic and reduced polynomial of degree di ≥ 2 in xi, over
the ring K[x1, . . . , xi−1]/〈f1, . . . , fi−1〉. Thus, we obtain the multiple algebraic
extension K[x1, . . . , xn]/〈f1, . . . , fn〉 which is denoted by L := K[α1, . . . , αn] for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 141–161, 2023.
https://doi.org/10.1007/978-3-031-41724-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_8

142 A. Hashemi and D. Lichtblau

simplicity. Let D = d1 · · · dn. Performing additions and multiplications in L
require O(D) and O(4nD log(D) log(log(D))) operations respectively; see [23,
Theorem 1] and [18] for more details. Lebreton [22] showed that in the latter
bound the number 4 can be replaced by 3. We will mostly be concerned with
doing linear algebra over L. Unless stated otherwise, we will work with square
matrices of dimension m×m. In prior work, Moreno Maza et al. [26, Theorem 2]
proposed an algorithm to compute the inverse of a matrix over L using

O(4nD(mω+1/2 + nmax{d1, . . . , dn}(ω−1)/2) log(D) log(log(D)))

operations, where ω < 2.3728639 denotes the optimal exponent of matrix multi-
plication (see [2,21]). If in this bound, we remove the term mω+1/2, then one gets
the cost of calculating the inverse of an element in L, see [26, Theorem 1]. Our
focus will be on straightforward but practical implementations of linear algebra
on matrices with elements in L. As such, we will not attempt to use asymptot-
ically fast matrix multiplication (so our exponent will be 3), but much of the
analysis that follows can be carried over to the asymptotic regime.

An important issue that we address in this paper is the computation of
the minimal polynomial of a matrix over an algebraic extension field. The best
deterministic approach to compute the minimal polynomial of an m × m over K
is due to Storjohann [29] (by computing the Frobenius normal form of the matrix)
which needs O(m3) field operations.

Note that in the setting of [9,23,26] (and indeed in much of the litera-
ture), the ideal 〈f1, . . . , fn〉 is generated by a triangular set. In this paper we
instead consider an arbitrary zero-dimensional ideal which is not necessarily rep-
resented by a triangular set, and show how one is able to perform various kinds
of linear algebra computations in L. In consequence, the complexity bounds
that we present may not be comparable with the existing bounds for ideals
generated by triangular sets. If we assume that, for each i, fi is irreducible
over K[x1, . . . , xi]/〈f1, . . . , fi−1〉 then L becomes a field. However this additional
assumption is not required in the sequel, and we can work with L as an exten-
sion ring (in which case we do not always have invertibility of ring elements, and
hence might be unable to make polynomials in the ring monic). We will note
when more restrictive assumptions are being made, such as a field given by a
tower of irreducible algebraic extensions or by a primitive element. In the latter
case, when the base field is prime, computations can be particularly fast, as we
will see in the experimental results.

Since an algebraic extension L can be represented more generally as a quo-
tient of a polynomial ring by a zero-dimensional ideal, Gröbner bases are a basic
tool for doing effective computations in L. Thus, in this paper, by applying par-
ticular tools developed for zero-dimensional Gröbner bases, we investigate the
complexity of performing some linear algebra operations over the field L. We
note that [17] presented an efficient algorithm for computing the minimal poly-
nomial of a matrix over L by using Gröbner bases. In this paper we will discuss
the arithmetic complexity of the method given in [17].

The notion of Gröbner bases as well as the first algorithm for their construc-
tion were introduced by Buchberger in 1965 in his Ph.D. thesis [7,8]. In 1979,

Linear Algebra over Algebraic Extension Fields 143

he improved this algorithm by applying two criteria (known as Buchberger’s
criteria) to remove some of the superfluous reductions, [5]. Later, [14] described
an efficient algorithm to install these criteria on Buchberger’s algorithm. Since
then, several improvements have been proposed to speed-up the computation of
Gröbner bases. In particular, in [13], using linear algebra techniques, the FGLM
algorithm was proposed to convert a Gröbner basis (of a zero-dimensional ideal)
with respect to any term ordering into a Gröbner basis for the same ideal with
respect to another ordering. We exploit FGLM techniques in analyzing worst-
case complexity for algorithms we present in this paper. In [6], Buchberger also
showed how one might employ Gröbner bases to do computations in algebraic
number fields. This general technique plays a role in our implementation section.

The paper [27] also describes a method for computing a matrix minimal
polynomial over a finite field. In contrast to the present work, they count field
operations as units. This is regardless of whether the field is prime or a power of
a prime. The present work, in contrast, accounts for all operations in the base
ring (that is, the rationals or underlying prime field). Thus this also takes into
consideration the complexity of the extension field representation.

The structure of the paper is as follows. Section 2 reviews the basic notations
and terminologies used throughout the paper. In Sect. 3, we discuss the com-
plexity of performing some linear algebra operations over an algebraic extension
field. Section 4 describes implementations of our approach presented in Sect. 3
along with experimental results.

2 Preliminaries

Throughout this article, we use the following notations. Let P = K[x1, . . . , xn] be
the polynomial ring where K is a field. We consider a sequence f1, . . . , fk of non-
zero polynomials in P and the ideal I = 〈f1, . . . , fk〉 generated by this sequence.
We assume that each fi has total degree di ≥ 2. Furthermore, we denote by R
the quotient ring P/I. Any element of this ring is given by [f] := f + I where
f ∈ P.

For us, a term is a power product xα := xα1
1 · · · xαn

n of the variables x1, . . . , xn

where α = (α1, . . . , αn). Let us fix a term ordering ≺. The leading term of a
polynomial f ∈ P, denoted by LT(f), is the greatest term (with respect to ≺)
appearing in f . The coefficient of LT(f) in f is called the leading coefficient of
f and is denoted by LC(f). The product LM(f) := LC(f) · LT(f) is the leading
monomial of f . The leading term ideal of I is defined as LT(I) = 〈LT(f) | 0 	=
f ∈ I〉. For a finite set G ⊂ P, LT(G) denotes the set {LT(g) | g ∈ G}.

A finite subset G ⊂ I is called a Gröbner basis for I with respect to ≺, if
LT(I) = 〈LT(G)〉. A Gröbner basis is called minimal if all leading coefficients
are unity and in addition it contains no redundant elements, that is, no leading
term is divisible by the leading term of a different element. From here on we
assume all Gröbner bases to be minimal. A minimal Gröbner basis is called
reduced if no term in any polynomial in the basis is divisible by the leading term
of a different element. One of the most immediate and important applications

144 A. Hashemi and D. Lichtblau

of Gröbner bases is the following result (which is referred to in the literature as
Macaulay’s theorem) allowing us to find a basis for R as a K-vector space.

Proposition 1 ([11, Proposition 4, page 250]). Let G be a Gröbner basis
of the ideal I ⊂ P. Then, the normal set N(G) := {[u] | u is a term and u /∈
〈LT(G)〉} forms a basis for R as a K-vector space. This is known as the normal
set for the basis G.

By abuse of notation, we will refer to basis elements of N(G) by the minimal
terms that generate them.

It is well-known that the remainder of the division a polynomial f by a
Gröbner basis G with respect to ≺ is unique and is denoted by NFG(f). We shall
notice that NFG provides a K-linear map from P to R and in consequence we
have R = {[NFG(f)] | f ∈ P}. From the finiteness theorem (see [11, Theorem 6,
page 251]), we know that if I is zero-dimensional then N(G) is finite and its
size is the dimension of R as a K-vector space. Subsequently, this size will be
considered as a factor in our complexity analysis. An immediate corollary to the
above proposition is that if the product of terms t1t2 belongs to N(G) then each
factor lies in N(G).

Definition 1 ([15, page 52]). Let I ⊂ P be any zero-dimensional ideal. We
define the degree of I as the cardinality of N(G); and we denote it by deg(I).

Definition 2. Let t be a power product in the normal set N(G) and x be a
variable in the defining ideal. If xt does not lie in N(G) then we call it a boundary
term. The set of all boundary terms associated to G is denoted by B(G).

Since all elements of LT(G) lie in B(G), we see that |G| ≤ |B(G)| ≤ n|N(G)|.
Also recall a simple result in Proposition 2.1 of [13]: each element of B(G) is
either an element of LT(G) or else a product of the form xit where t ∈ B(G).
We refer to [4,11] for more details on the theory of Gröbner bases.

Now let us recall some facts concerning algebraic extension fields. A finite
algebraic extension field L of K is a field K(α1, . . . , αn) where the αi’s are alge-
braic over K. According to Kronecker’s construction, we have the K-algebra
homomorphism

ψ : P → K(α1, . . . , αn)

defined by xi �→ αi. It is well-known that there exist polynomials f1, . . . , fn ∈ P
such that Ker(ψ) = 〈f1, . . . , fn〉. From now on, we denote this ideal by I; it is
a maximal (and zero-dimensional) ideal of P. It is clear that K(α1, . . . , αn) is
isomorphic to K[x1, . . . , xn]/I as a K-algebra (with each αi being the equivalence
class of xi modulo I). For more details on the relation of the Gröbner bases to
the algebraic extension fields, we refer to [1,6].

In the subsequent sections we work with the quotient ring K[x1, . . . , xn]/I
where I is not necessarily represented by a triangular set. Instead it will be
represented by the reduced Gröbner basis G = {g1, . . . , gt} with respect to a
given term ordering ≺. In some cases this might include finding a primitive
element that generates I (in which case there is an obvious equivalence to a

Linear Algebra over Algebraic Extension Fields 145

triangular set representation). We define D to be deg(I) (that is, D is the size
of the normal set). By the well-known Bézout theorem, we have D ≤ dn where
d is the maximum degree of a generating set of I. We give some indication of
the complexity of computing a primitive element that generates I in Sect. 4.
We shall note that in our complexity analysis in the next section, we do not
take into account the complexity of computing the reduced Gröbner basis G.
Dickenstein et al. [12] have shown that if the zero-dimensional ideal I is generated
by polynomials of degree at most d then its reduced Gröbner basis with respect
to ≺ can be computed within the arithmetic complexity dO(n2), see also [16].

For reasons that will be clarified later in this paper, we may also assume
that algebraic extensions have primitive elements, that is, can be generated by a
single algebraic element of the multiplicative group of the field (in practice this
will be a linear combination of the given set of generating elements). See [4,19]
for details regarding computation and use of primitive elements.

A common way of defining an extension field using multiple elements is to
have the i-th element defined as a solution of a monic polynomial fi in the new
variable xi, with coefficients of the non-leading terms being polynomials in the
prior elements. In particular, if {f1, . . . , fn} forms a triangular set then we have
such a representation. In the setting of triangular sets, the size D of the extension
is easily seen to be the product of the degrees of the fi in the corresponding main
variables xi. So we have n ≤ log2(D) or, stated differently, D ≥ 2n (we tacitly
assume no extension elements are trivial, that is, linear combinations of previous
elements, so all generators are algebraic elements of degree at least 2). In the case
that {f1, . . . , fn} is a triangular set, we will refer to the corresponding extension
as a “tower extension”. Note that algebraic fields need not be given as tower
extensions, as the next example shows.

Example 1. The ideal given by the polynomials {x2 + xy + 2, y2 + yz − 3, z2 −
zx + zy + 4x + 3y + 5} is in terms of n = 3 variables and hence 2n = 8. A
Gröbner basis for this ideal is {2004 − 1656z + 83z2 + 210z3 − 90z4 + 61z5 −
3z6 + 3z7, 356844 + 252448y + 202412z − 27327z2 + 35961z3 − 14627z4 +
834z5 − 807z6, − 166836 + 378672x − 205968z − 11873z2 − 58193z3 − 857z4 −
2934z5 + 219z6}. So the normal set has the size D = 7 and this is less than 2n.

3 Complexity Results

In this section, we discuss the complexity analysis of computing the inverse of
an algebraic number as well as performing some of the well-known linear algebra
operations over an algebraic extension field. We assume unless stated otherwise
that the extension field is defined by n algebraic elements and represented by a
Gröbner basis G.

3.1 Multiplication Table

In some of the theorems that follow we will require a fast means of reducing
products of pairs of elements in the normal set N(G) into linear combinations

146 A. Hashemi and D. Lichtblau

of elements in N(G). To this end we create a table of these products and their
corresponding reduced forms. We will assume that table elements can be stored
and found in O(n) time; in implementations this might be accomplished using
for example a hash table on the exponent vectors. Once we have such a table,
every reduction of such a product is O(nD) operations where n is the number
of algebraic elements defining the ideal (this is simply the cost of writing that
many terms).

Given a polynomial p1 of length l1 and a reducing polynomial p2 of length l2,
where terms in p1 are comprised of products of two normal set elements and those
in p2 are only normal set elements, we make the assumption that the reduction
can be performed in O(nl2) steps, that is, the length of the polynomial being
reduced does not matter. In practice this can be achieved for example by using a
dense data structure for the elements in N(G) and hashing all exponent vectors
to locate their position in that structure; we regard this as a preprocessing step.
Since we will also need to look up term reductions after we compute them, we
have another cost of O(nD2). For our purposes we will assume n ≤ D. In the
theorem below we ignore these costs because they are smaller than the actual
complexity. We now give the complexity of computing a multiplication table, as
we will use this in the sequel (in particular in Subsect. 3.2). Moreover, as this is
an extension of the FGLM method of basis conversion [13], it is thus of interest
in its own right.

Theorem 1. Given a reduced Gröbner basis G for an ideal I defined by n alge-
braic elements, with normal set N(G) of size D, we can compute a multiplication
table for all pairs in N(G) in O(D4) arithmetic operations.

Proof. Denote the elements of N(G) as u1, u2, . . . , uD with u1 ≺ u2 ≺ · · · ≺ uD.
We have at most O(D2) distinct power products in the set of product pairs. As
the first step, we order these products. We consider first the elements of N(G),
then the elements of LT(G), next the elements of B(G) \ LT(G) and finally the
remaining term products. For this ordering, we use the same term ordering ≺
as was used for the computation of G. It is well known that sorting a set of
size k comprised of elements of size n in this way is no worse than O(nk log(k)),
so this will not dominate the complexity analysis. Now, we hash this sorted list
of terms and it costs O(nD2) arithmetic operations (for simplicity we can use
e.g. natural numbers 1, 2, 3, . . . as the range of the hash function). Within the
complexity O(n) we can determine whether a term u belongs to LT(G) or not.
The same holds for membership in other subsets of term products. Below, we
keep the normal form of each term in the form b1u1 + · · · + bDuD and assume
that each elements g ∈ G is represented of the form LT(g) − b1u1 + · · · − bDuD.

Now assume that we are given a product u. Then four cases may occur:
Case (1) u ∈ N(G): This case comprises a “base case”, that is, we need no

replacements for them.
Case (2) u ∈ LT(G): Testing for membership in LT(G) is O(n). In this case,

we have the normal form of u with no calculations other than to list the O(D)
terms.

Linear Algebra over Algebraic Extension Fields 147

Case (3) u ∈ B(G) \ LT(G): In this case, we are able to write u as xt for a
variable x and a term t with t ∈ B(G). Since t ≺ u, it already has a rewrite as
a sum of elements in N(G). Thus we have u = xt = x(b1u1 + · · · + bDuD). As
each xui ≺ u we have xui = ci,1u1 + · · ·+ ci,DuD. Thus we can rewrite u at cost
O(n2 + nD + D2). Here the D2 contribution is for the actual rewriting, the n2

is the cost of finding such t ∈ B(G) (we have to check up to n variables, and
each check is O(n) to compute the exponent vector of u/xj and then to do a
lookup on that vector), and the nD component comes from having to locate D
reductions for the xui terms.

Case (4) u /∈ N(G) ∪ B(G): Then we can find a variable x and term t such
that u = xt and t /∈ N(G). Since t ≺ u it already has a reduction and thus we
have u = x(b1u1 + · · · + bDuD) for base ring elements ai and terms ui ∈ N(G).
For each such product we have xui ∈ B(G). Since we already handled terms from
B(G) in case (3), by applying an induction, we have xui = ci,1u1 + · · · + ci,Dud.
Here the main point is also the choice of the variable x. Indeed, any variable x
appearing in u will work, and the corresponding term t = u/x will already have
a reduction due to the order in which we compute these. The cost of finding x
and the lookup cost for the reduction of t are both clearly O(n). Similarly the
cost of finding reductions for the O(D) terms xui is O(nD). Thus we can reduce
u at cost O(n + nD + D2).

As we have O(nD) terms for case (3) and O(D2) terms for case (4), and
n ≤ D, the total cost is bounded by O(D4). �

We shall note that this proof is in essence the same argument as in the
FGLM reference [13], except that, in our paper, we also take into account the
number of generators n. However, since we have n ≤ D the overall complexity
given in [13] does not require this accounting. We remark that this bound is
pessimistic. Indeed, it is commonly the case that |G| is O(D) rather than O(nD).
Also we need not consider elements in B(G) that are not also in the set of
products of pairs in N(G). This is relevant for instance when G is a lexicographic
Gröbner basis and the smallest variable is in general position (so the shape lemma
applies). In this case the set of products is actually O(D) and only one Gröbner
basis reduction is needed since only one element from B(G) appears in the set
of products.

In the special case where we have a tower extension, we can work with a lexi-
cographical ordering. In this case the original polynomials defining the extension
are already a Gröbner basis although possibly not fully reduced. Thus we have
|G| = n, so we can drop a factor of D in the complexity analysis. Also in this
case we have D = d1d2 · · · dn where di is the degree in the extension-generating
variable xi of the ith polynomial fi, and by assumption of nontriviality we have
di ≥ 2. The set of products from N(G) lies in the Minkowski sum of N(G)
with itself, and as the normal set lies in a rectangular prism in Z

n, this sum
has cardinality 2nD ≤ D2. Thus we compute rewrites for strictly fewer than D2

terms in computing the multiplication table. Specifically, for any di ≥ 3 we have
a factor di/2 reduction in the number of operations for the largest component
of the complexity.

148 A. Hashemi and D. Lichtblau

3.2 Algebraic Inverse

Based on the structure of the FGLM algorithm, Noro [28] presented a simple
and effective method for computing the inverse of an algebraic number (another
method is given in [6]). To explain Noro’s method, let N(G) = {b1, . . . , bD}
be a basis for the K-vector space P/I with I = 〈f1, . . . , fn〉 (recall we take
as basis the normal set for a given Gröbner basis G of the extension ideal I).
Furthermore, let σ be an element of K(α1, . . . , αn). There exists a polynomial
f such that f = ψ−1(σ), where ψ is the map from Sect. 2 taking xi to αi.
Then the inverse of σ is

∑D
i=1 ciψ(bi), where the ci’s belong to K and satisfy

∑D
i=1 ciNFG(fbi) = 1.
Let d = deg(f) and τ be the number of non-zero terms of f . To simplify

the final complexity bounds, we assume here and throughout that d and τ are
less than or equal to D. If these inequalities do not hold, then it suffices to
compute the normal form of f with respect to G, and this does not change the
correctness of this approach. These simplifications are considered in the following
subsections.

In the next theorem we assume we have already precomputed a multiplication
table, so that cost is not included in the complexity analysis.

Theorem 2. The arithmetic complexity of computing the inverse of σ is
O(nD3).

Proof. First we form a generic linear combination p of the normal set elements,
that is, p =

∑D
i=1 ciψ(bi). This will be our inverse and so we must determine

values of the parameters. We next multiply by σ at cost O(nD2). We now reduce
σp − 1. Using the precomputed multiplication table (see Theorem 1) we rewrite
each of the O(D2) terms as a linear combination of N(G) at cost O(nD). Thus
the total of reducing this product is O(nD3). We set each coefficient to zero.
This gives a linear system of D equations in D unknowns. The arithmetic cost
of solving is bounded by O(D3) and so the O(nD3) reduction is the dominating
term in the complexity. �
Theorem 3. Keeping the above notations, and assuming our extension is given
by a primitive element, the arithmetic complexity of computing the inverse of σ
is O(D3).

Proof. As before, we form a generic linear combination p =
∑D

i=1 ciψ(bi). Again
we must determine values of the parameters. We next multiply by σ at cost
O(D2). The primitive element representation implies that the product has fewer
than 2D = O(D) distinct terms. We now reduce σp − 1 by the polynomial that
defines our primitive element. Since each reduction of the top monomial reduces
the degree, this entails O(D) reduction steps. As the reducing polynomial has
at most O(D) terms, the complexity of each reducing step is also O(D), so the
total cost of reducing σp − 1 is O(D2). Setting the reduced polynomial to zero
coefficient-wise gives D linear equations in the D unknown parameters. Solving
this system is O(D3) operations in the base field. As this dominates the prior
parts we achieve the claimed bound. �

Linear Algebra over Algebraic Extension Fields 149

We remark that if the field in question is an algebraic extension of a prime
field by a single irreducible polynomial (hence has a primitive element), well
known asymptotically fast methods for computing products and inverses (e.g.
based on Fourier-type transforms and the half-GCD respectively) become quite
practical. In such cases these are in fact what we use. When the base field is a
prime field but the extension is not given by a primitive element, then some of the
linear algebra analysis from the next subsection, which uses the multiplication
table, will still apply for converting to a primitive element representation and
back again.

In the rest of this subsection, we compare our complexity bound presented
in Theorem 2 to the bound that one can obtain using the FGLM techniques. In
doing so, let us recall some useful results regarding the FGLM algorithm, see [13]
for more details. Let I ⊂ P be a zero-dimensional ideal and D := deg(I). The
FGLM algorithm receives as input the reduced Gröbner basis G1 with respect
to ≺1, and outputs the reduced Gröbner basis G2 with respect to another term
ordering ≺2. The main advantage of this algorithm is the use of linear algebra
techniques that make it very efficient in practice. The basic ingredient of this
algorithm is the efficient computation of the normal form of a polynomial with
respect to G1. For this, one needs to construct the matrix corresponding to the
linear map φi : N(G) → N(G) with φi(b�) = NFG1(xib�) for each � where
N(G) = {b1, . . . , bD}. This leads to the construction of the FGLM table T (G) =
(tij�) where tij� denotes the j-coordinate with respect to N(G) of φi(xib�). It
is shown that cost of computing the FGLM table is O(nD3), [13, Proposition
3.1] and this complexity is the dominant factor in the complexity analysis of
transforming G1 to G2.

Theorem 4. The arithmetic complexity of computing the inverse of σ, by using
the FGLM table, is O(nD5).

Proof. Using the Noro’s method, we shall compute NFG(fb�) for an arbitrary
�. For this, we consider the complexity of computing NFG(xib�) where xi is a
variable. Using the FGLM table, it is equal to ti1�b1 + · · · + tiD�bD. One can
see easily that the cost of computing NFG(xrxib�) is O(D2) field operations.
In consequence, the complexity of computing NFG(mb�) is O(ndD2) where m is
a term of degree d. Since f has τ ≤ D terms then the complexity of NFG(fb�) is
O(nD4). Performing these operations for all � has the complexity O(nD5). Note
that the bound O(nD5) includes also the complexity O(nD3) for computing the
FGLM table. Finally, finding the inverse of σ is equivalent to finding the ci’s
such that

∑D
i=1 ciNFG(fbi) = 1 and this has the cost D3, ending the proof. �

Corollary 1. By taking into account the complexity of computing a multipli-
cation table (Theorem 1), the worst-case complexity of computing an algebraic
inverse by using Theorem 2 is O(nD4) which is lower than the corresponding
worst-case bound that one obtains using the FGLM techniques (Theorem 4).

Remark 1. By applying dynamic evaluation and modular techniques, Langemyr
in [20] gave an almost optimal algorithm, i.e. in computing time O(Sδ+1) for all

150 A. Hashemi and D. Lichtblau

δ > 0, where S is the best known a priori bound on the length of the output, for
computing the inverse of σ.

3.3 Gaussian Elimination

In this subsection, we discuss the complexity of performing Gaussian elimination
on a given matrix over K(α1, . . . , αn).

Theorem 5. Let A be a matrix of size s × t over K(α1, . . . , αn). Keeping the
notations presented in Subsect. 3.2, and assuming either that we have a prim-
itive element or that we have precomputed a multiplication table for N(G),
the arithmetic complexity of performing Gaussian elimination on A is given by
O(min(s, t)stnD3).

Proof. We know that for each i, j there exists polynomial fi,j such that fi,j =
ψ−1(A[i, j]). Let d be the maximum of deg(fi,j)’s and τ the maximum number
of non-zero terms of the fi,j ’s. From the above discussion we have n, d, τ ≤ D.
Let Row(i, A) denote the i-th row of A. Assume that we want to reduce the first
column of A by using A[1, 1]. Let σ be A[1, 1]. Now, to perform a row reduction
operation, one can first compute σ−1 (see Theorem 2 and corollaries), multiply
all the entries of Row(1, A) by σ−1 and then expand each entry of σ−1Row(1, A).
Recall the cost of inverting σ was bounded by O(nD3). Then the number of field
operations for this part is O(nD3 + tnD2). Note that σ−1 and each entry in the
first row have length at most D in terms of the elements of N(G), hence all
products have length bounded by D2. Reducing each term in such a product
under the assumption of a table or a primitive element is O(nD) and gives rise
to a result of length O(D), so the full reduction cost is no worse than O(nD3). As
there are t elements to consider, the complexity of making the pivot 1 is O(tnD3)
(and, as with element inversion, using a primitive element can bring this step to
O(tD2) since product lengths become bounded by 2D). Finally, we shall reduce
Row(i, A) with i > 1 by using the new row; i.e. σ−1Row(1, A). The number of
field operations to reduce one row is easily seen to be the same as the step of
making the pivot equal to 1. We shall repeat this operation for i = 2, . . . , s. All
in all, reducing s − 1 rows by the first row costs O(nD3 + tnD3 + (s − 1)tnD3)
which is dominated by O(stnD3). The number of pivots to reduce beneath is
equal to the rank of the matrix, which is bounded by min(s, t) and this ends the
proof. �
We remark that for many purposes one need not make pivots equal to 1, and
so the complexity of inverting an element can be avoided. If we work with a
primitive element extension and also avoid computing inverses then the com-
plexity above is reduced by a factor of nD, to O(min(s, t)stD2), excluding costs
of pre- and post-processing for using a primitive element. If asymptotically fast
methods are used for multiplying algebraic elements, this reduces further to
õ(min(s, t)stD) (where the ”soft-Oh” notation hides logarithmic factors in D).

Linear Algebra over Algebraic Extension Fields 151

3.4 Minimal Polynomial

In this subsection, we analyse the complexity of computing the minimal poly-
nomial of a square matrix over K(α1, . . . , αn) by using the algorithm pre-
sented in [17]. For the reader’s convenience, we recall it here (see Algorithm
1). To explain the complexity of this algorithm, let A be an m × m matrix
over K(α1, . . . , αn). Then for each i, j there exists a polynomial fi,j such that
fi,j = ψ−1(A[i, j]). In order to reduce the complexity, we first replace each fi,j

by its normal form with respect to G. Without loss of generality, assume that
fi,j = NFG(fi,j). Let d be the maximum of deg(fi,j)’s and τ the maximum
number of non-zero terms of the fi,j ’s. In consequence we have n, d, τ ≤ D. Fur-
thermore let p(s) = amsm+am−1s

m−1+ · · ·+a0 be the minimal polynomial of A
where each ai ∈ K(α1, . . . , αn) will be determined. We shall need to compute the
sequence A2, A3, . . . , Am. From p(A) = 0 we can derive m2 algebraic equations
between the ai’s, say g1,1, . . . , gm,m. As we interleave reductions with each step,
it is easy to see that these polynomials have degree at most D (in terms of the
xi’s). In Algorithm 1, |X| denotes the size of a set X.

Algorithm 1 MinPoly

Require: Am×m a non-zero matrix, and G a Gröbner basis for the ideal I
Ensure: The minimal polynomial p(s) of A
1: gi,j :=

∑m
t=0 atA

t[i, j] for i, j = 1, . . . , m
2: J := 〈q1,1, . . . , qm,m〉 where qi,j = NFG(gi,j) for each i and j
3: G1 := A minimal Gröbner basis for I + J with respect to the lexicographical

ordering with xj ≺plex a0 ≺lex · · · ≺lex am for each j
4: � := The highest integer i such that ai appears in a polynomial in G1

5: if a0, . . . , a� ∈ G1 then
6: Return (s�+1)
7: end if
8: r := The integer i with a0, . . . , ai−1 ∈ G1 and ai /∈ G1 (if a0 /∈ G1, set r := 0)
9: G2 := G1|ar=1

10: p := NFG2(x
r + ar+1s

r+1 + · · · + a�s
�)

11: σ := AlgebraicInverse(a�)
12: p := σ · p
13: Return (p)

We note that the costly step of Algorithm 1 is the computation of a Gröbner
basis of the ideal I + J with respect to the mentioned ordering (see the line 2).
Below we present a simple and efficient way to compute such a basis. The first
point is that we need only a minimal Gröbner basis for I + J , rather than
the reduced one. Let qi,j = NFG(gi,j) for each i, j. Order the qi,j ’s from the
highest leading term to the lowest. Assume that q1, . . . , qm2 is this sequence of
polynomials. We want to construct recursively, for each i, the polynomials hi

and h̃i. At the beginning, we let h1 = q1. Suppose that h1 as a polynomial
in terms of the ai’s can be written as p�a� + · · · + p0a0 where p� 	= 0. Since

152 A. Hashemi and D. Lichtblau

[p�] ∈ R is invertible, we let h̃1 = w�h1 where [w�p�] = [1]. Thus, LT(h̃1) = a�.
Now, for each i = 2, . . . , m2, we define hi = NF{h̃1,...,h̃i−1}(qi). Consider hi as a
polynomial in terms of the ai’s of the form hi = pi0ai0 + · · ·+p0a0 where pi0 	= 0.
We know that [pi0] ∈ R is invertible. Define h̃i = wi0hi where [wi0pi0] = [1].
It yields that LT(h̃i) = ai0 .

Proposition 2. G ∪ {h̃1, . . . , h̃m2} \ {0} is a minimal Gröbner basis for I + J .

Proof. Proceeding by induction, we first show that if G ∪ {h̃1, . . . , h̃i−1} forms
a minimal Gröbner basis, then G ∪ {h̃1, . . . , h̃i} is a minimal Gröbner basis for
the ideal it generates. Since we have

gcd(LT(h̃i),LT(h)) = 1 ∀h ∈ G ∪ {h̃1, . . . , h̃i−1}

the claim follows immediately from Buchberger’s first criterion. From the con-
struction of the h̃i’s, it follows that the ideal generated by G∪{h̃1, . . . , h̃m2}\{0}
is equal to I + J , which ends the proof. �
Remark 2. For the proof of the correctness of Algorithm 1, we refer to [17,
Theorem 1]. Our presentation of this algorithm is slightly different from the
original version.

Example 2. In this example we illustrate the above process step by step to com-
pute the minimal polynomial of a given matrix. Let us consider the matrix
presented in [17, Example 2]. We wish to compute the minimal polynomial of
the following matrix over the field Z5(α1, α2) = Z5[x1, x2]/〈x2

1 + 1, x2
2 + x1〉. Let

A =

⎡

⎣
α1 1 0

α1 + α2 2 1
1 3 α1α2 + 1

⎤

⎦ .

It is easy to see that G = {x2
1 + 1, x2

2 + x1} is a Gröbner basis with respect
to x1 ≺lex x2 for the ideal I it generates. Let p(s) = a3s

3 + a2s
2 + a1s + a0 be

a polynomial vanishing on A. Then, with the above notations, we have

q1,1 = a0 + x1a1 + (x1 + x2 + 4)a2 + (2x1x2 + x1 + 2x2 + 4)a3

q1,2 = a1 + (x1 + 2)a2 + (3x1 + x2 + 1)a3

q1,3 = a2 + (x1x2 + x1 + 3)a3

q2,1 = (x1 + x2)a1 + (x1x2 + 2x1 + 2x2)a2 + (x1 + x2)a3

q2,2 = a0 + 2a1 + (x1 + x2 + 2)a2 + (4x1x2 + 4x1 + 4x2 + 3)a3

q2,3 = a1 + (x1x2 + 3)a2 + (4x1x2 + 2x1 + x2)a3

q3,1 = a1 + (x1x2 + 4x1 + 3x2 + 1)a2 + (2x1 + x2 + 3)a3

q3,2 = 3a1 + 3x1x2a2 + (3x1x2 + 2x1 + 3x2 + 3)a3

q3,3 = a0 + (x1x2 + 1)a1 + (2x1x2 + x1 + 4)a2 + (4x1x2 + 3x1 + 4x2 + 4)a3.

Now, we set h1 = q1,1. The coefficient of this polynomial in terms of the ai’s is
2x1x2 + x1 + 2x2 + 4. The inverse of this polynomial is −x1x2 − 3 = 4x1x2 + 2.

Linear Algebra over Algebraic Extension Fields 153

Therefore, h̃1 = (4x1x2 + 2)a0 + (2x1 + x2)a1 + (x1x2 + 2x1 + 3x2 + 2)a2 + a3.
Following the similar approach, we get

h̃2 = (x1x2 + x1 + 4x2 + 3)a0 + (x1x2 + 4x1 + x2 + 4)a1 + a2

h̃3 = (2x1 + 2x2 + 1)a0 + a1.

One observes that h4 = · · · = h9 = 0. Thus G ∪ {h̃1, h̃2, h̃3} is the desired
Gröbner basis for I + J . By the notations used in the algorithm we have r = 0
and � = 3. Putting a0 = 1 in this basis, and computing the normal form of
p(s) with respect to this basis leads to q(s) := (4x1x2 + x1 + 4x2 + 4)s3 +
(4x1 + 3x2)s2 + (3x1 + 3x2 + 4)s + 1. The inverse of 4x1x2 + x1 + 4x2 + 4 is
σ := 2x2 + 2x1. By multiplying q(s) with σ, we get the minimal polynomial
s3 + (4α1α2 + 4α1 + 2)s2 + (2α1α2 + 2α1 + 3α2 + 4)s + 2α1 + 2α2 for A.

Remark 3. We remark that we can emulate linear algebra by computing a mod-
ule Gröbner basis (see for example [24,25]). The ai’s can be seen as defining
the matrix columns (these are sometimes called “tag variables” in the literature,
and no S-polynomials are formed between distinct pairs of these. This can be
enforced either by using a basis algorithm that provides for degree bounds, or
else by the expedient of adding relations that all products of ai pairs vanish.
Computing a module Gröbner basis is one means of implementing the approach
described in the remarks preceding Proposition 2. We use this as one of the
methods in the implementation section.

Remark 4. Following the notations used in Algorithm 1, assume that a0, . . . , a�

belong to G1. Since a�+1 does not appear in G1 then A�+1 = 0 and in turn we
have a0 = · · · = a� = 0. In this case, the minimal polynomial of A is p(s) = s�+1.
For example, if we consider the matrix

A =
[

0 1
0 0

]

over the field Z5(α1, α2) (see the above example) then we have A2 = 02×2 and
in turn G1 = {x2

1 + 1, x2
2 + x1, a0, a1}. Thus, p(s) = s2.

Remark 5. For the efficiency of the algorithm, we can apply Algorithm 1 in an
iterative way by enumerating the matrices I,A,A2, . . . and stopping whenever a
linear dependency is detected.

Theorem 6. Keeping the above notations, and assuming either that we have a
primitive element or that we have precomputed a multiplication table for N(G),
the arithmetic complexity of computing the minimal polynomial of the matrix A
is O(m4nD3).

Proof. As the first step, we shall compute A2, A3, . . . , Am. From linear algebra,
it is well-known that the arithmetic complexity of computing X2 where X is
a matrix of size m × m is bounded by O(m3). However, since the entries of
A are polynomials containing at most D non-zero terms, then we shall take

154 A. Hashemi and D. Lichtblau

into account the cost of expanding the entries of A2. The cost of multiplying
two polynomials in n variables with D terms is O(nD2). Thus, to compute A2,
we need O(m3nD2) field operations. Next we compute the normal form with
respect to G of the entries of A2. Recall from the proof of Theorem 2 that
reducing an individual product in A2 has complexity O(nD3). Therefore the
total complexity of this operation for all entries of A2 is O(m3nD2 + m2nD3).
In consequence, the number of field operations to calculate A2, A3, . . . , Am is
O(m4nD2 + m3nD3). Within this complexity, we obtain the gi,j ’s and each gi,j

has at most D terms. The complexity of the rest of the computation is equivalent
to the cost of performing Gaussian elimination on a matrix of dimensions m2×m,
which we showed in Theorem 5 to be O(m4nD3) and this finishes the proof. �
Remark 6. Assume that p(s) = amsm + am−1s

m−1 + · · · + a0 is the mini-
mal polynomial of the matrix A. It is well-known that if a0 is non-zero then
A is invertible and its inverse can be compute using the equality A−1 =
−a−1

0 (amAm−1 + am−1A
m−2 + · · · + a1). Thus the complexity of Theorem 6

holds true for computing the inverse of A as well. In this case, the determinant
of A is a0.

One of our implementations does division-free linear algebra directly. In this
case Gröbner basis usage is restricted to interleaving extension field reductions
with the matrix operations. We avoid inverting elements in this implementation
(and thus typically do not obtain a monic minimal polynomial). As mentioned
earlier, this helps to reduce the complexity.

We (mostly) avoid a factor of n if we work with a primitive element. The
factor will instead appear in pre- and post-processing steps, where we first replace
the n original defining elements by polynomials in the primitive element, and at
the end reverse this replacement. We will say more about this when we describe
experiments. Another advantage, as noted before, is that we also reduce the
complexity of the linear algebra by a factor of D.

A further probabilistic complexity improvement is to work not with powers
At but instead with Atv where v is a random vector in the base field (this appears
to be a folklore approach and we have not found a definitive reference for its
origin). This gives rise to a Monte Carlo algorithm that reduces the complexity
of the deterministic one by a factor of m. This works reliably when the base field
is either infinite or a prime field, that is, large compared to the matrix dimension.
We remark that similar ideas are used in [27] and in some of the references cited
in that work.

4 Notes on Implementation and Experimental Results

As mentioned earlier, a reasonable way to work with linear algebra over an alge-
braic field is to compute a Gröbner basis over a module, with new variables for
the matrix columns and a Position-over-Term (POT) term ordering to enforce
left-to-right reduction. An implementation of matrix minimal polynomial com-
putation over an algebraic number field can be found in the Wolfram Function
Repository:

Linear Algebra over Algebraic Extension Fields 155

https://resources.wolframcloud.com/FunctionRepository/resources/Matrix
MinimalPolynomial

This way of computing the basis is the one described following Algorithm 1.
There are several ways the computations can be made more efficient than the
most naive implementation would provide. One improvement is to use a degree-
based Gröbner basis for handling the algebraic numbers. This is incorporated
into the overall Gröbner basis computations as follows. In order to do linear
algebra row reduction, the module variables need to be ordered lexicographically,
so we use a block ordering with these ranked highest and lexically between one
another. The variables representing the algebraics defining the extension field
come lexically after the module variables, and are ordered between themselves
by the graded reverse lexicographic (GRL) term order.

Again as noted earlier, sizes (degree and number of terms) in the step of
taking matrix products are controlled by interleaving reductions in each powering
step. When the base field is the rationals Q and n and D are fixed, integer
sizes grow as O(m) (and it is straightforward to show that this is a worst-case
upper bound). Since the arithmetic complexity in terms of matrix dimension
m is O(m4) (again holding all else constant, that is, ignoring the effect of the
algebraic extension), we expect the bit complexity to scale as O(m6) if the bit
sizes are too small to allow for arithmetic operations using asymptotically fast
methods.

4.1 Dependence on Matrix Dimension

In order to assess complexity empirically we conducted a simple experiment.
We construct a family of random examples and time them using the code men-
tioned in the implementation section. Each member of the family is indexed by
dimension, from 6 to 34. Matrix elements are random integers between -5 and
5, except the (1, 1) element is x and the (2, 2) element is y, where (x, y) satisfy
the algebraic relations 9x2 − 2, 8y3 − 3. Timings in seconds are given below.

0.1514 0.2596 0.4203 0.6413 0.9326 1.3277
1.9964 2.7591 3.8360 5.8487 8.0759 11.994
19.174 26.695 39.879 56.576 78.567 108.49
146.50 203.79 264.15 348.10 492.03 643.46
843.17 1091.1 1428.2 1758.3 2319.5

We fit these to polynomials of degree 5, 6, 7 and 8. This is done in a numer-
ically stable way by reweighting the values (dividing by the dimension raised to
the degree of the fit), fitting to a Laurent polynomial, and undoing the effect
of weighting to obtain an ordinary polynomial. We then assess relative errors
between polynomial values vs. computed values.

The maximum percentage relative errors for these four fits, from degree 5
to 8, are 15.8, 7.2, 5.7 and 4.7 respectively. The norms of the relative errors
show a similar drop between degrees 5 and 6, followed by a tapering: they are
(.439, .172, .134, .124). The principal of parsimony argues in favor of degree 6
being optimal.

https://resources.wolframcloud.com/FunctionRepository/resources/MatrixMinimalPolynomial
https://resources.wolframcloud.com/FunctionRepository/resources/MatrixMinimalPolynomial

156 A. Hashemi and D. Lichtblau

4.2 Dependence on Normal Set Size

We now describe experiments to assess complexity in terms of size of the exten-
sion field. For this purpose we chose to control coefficient growth by working in
an algebraic extension of the prime field Z7919. We used straightforward linear
algebra code with division-free row reduction. At each step we interleaved reduc-
tions by the extension field. In one variation we pre-process by (i) computing
a primitive element, (ii) solving for all defining algebraics in as polynomials in
this element, and (iii) replacing them in the matrix by their equivalent primi-
tive element polynomials. When the linear algebra is finished and we have our
polynomial, we post-process by replacing powers of the primitive element with
reduced polynomials in the original extension variables. We remark that we do
not compute algebraic element inverses using this method. This saves a factor
of D in the complexity, at the expense of obtaining a result, that is not monic.
We also use the Monte Carlo probabilistic method since it makes for faster code.
The goal is to show that experiments are consistent with the claimed complexity
being no worse than cubic in D. For this purpose we removed the costly step
of inversion in setting pivots to unity. By also taking advantage of the speed
gain from the Monte Carlo variation, we are able to run the experiments over a
fairly large range of extension degrees (recall that this speed gain applies to the
matrix dimension component of the complexity and not the component due to
D, so this does not interfere with the goal of these particular experiments).

In the first part of this experiment our algebraic extension is given by the
polynomials (3jxj − j, 2jyj+1 − (j +1)) where j varies from 16 to 45. We use the
same input matrix for all extensions. It is comprised of random integers between
-5 and 5, with the (1, 1) element replaced by x and the (1, 2) element replaced
by y. The sizes D of the normal sets, and corresponding timings, are in the table
below.

((272, 2.16) (306, 2.77) (342, 3.57) (380, 4.24) (420, 5.16)
(462, 6.40) (506, 7.90) (552, 9.05) (600, 11.10) (650, 12.79)
(702, 14.91) (756, 18.01) (812, 21.06) (870, 26.24) (930, 29.19)
(992, 36.32) (1056, 37.65) (1122, 41.64) (1190, 50.50) (1260, 63.87)
(1332, 64.01) (1406, 69.76) (1482, 77.50) (1560, 100.1) (1640, 109.6)
(1722, 119.6) (1806, 133.9) (1892, 139.5) (1980, 158.9) (2070, 191.0))

This fits reasonably well to a polynomial quadratic in D: 275.14−1.42894x+
0.004678x2. The largest relative error is under 0.1 (so less than 10%), and the
norm of the vector of relative errors is 0.28. These show but little change when we
use a cubic or higher degree fit. We show a log-log plot of times vs. D, translated
to go through the origin, along with the line y = 2x.

The experimental complexity in this case appears to be not much larger
than O(D2) (in particular, if we adjust the slope in the graph from 2 to 2.2,
we get even closer alignment), and this is better than the predicted value. This
is in part due to the use of an extension that has a sparse Gröbner basis. We
mention also that in this experiment, cost is dominated by the Gröbner basis

Linear Algebra over Algebraic Extension Fields 157

computation and the creation and use of a multiplication table to convert back
from a primitive element to the algebraic elements that originally define the
field extension. A variant of this experiment uses the same extension, but works
with a 20 digit prime modulus. The results were similar, with each data point
typically around 50% slower than the corresponding one with the smaller prime
modulus (Fig. 1).

Fig. 1. Translated log-log plot of normal set size vs. computation times, primitive
element sparse case

Our next experiment uses dense polynomials to define the extension. Leading
terms in the two variables are the same as in the last experiment, but now we
fill in with random coefficients times lesser power products. In this example the
complexities of different steps vary considerably. The main costs (as D increases)
are in (i) computing the primitive element Gröbner basis, (ii) computing the
table of replacements to rewrite powers of the primitive element in terms of the
normal set for the basis using the original variables and (iii) performing the
substitutions at the end (using this table) and expanding the result. Possibly
these are due to specifics of the implementation so we note two details. We
handle (i) using an implementation of the Gröbner walk [10] that has path
perturbation [3]. For (ii) we do repeated reductions of successive powers of the
primitive element and create a substitution table that we apply in (iii) to the
minimal polynomial; this is similar to how we create and utilise a multiplication
table when not working with a primitive element. A log-log plot, now using a
slope of 2.5, suggests an experimental complexity of O(D2.5). A fit indicates that
this gives a smaller relative error (by a factor of 2 or so) than a quadratic.

If we ignore the cost of computing a primitive polynomial for the extension,
translating the input to that form, and translating the result back to a form
expressed in the original field elements, the cost can be seen to be softly linear
in the degree extension D. We show this in Fig. 4, now plotted against a line of
slope 1.1.

If we forego the use of a primitive element then the speed-limiting factors
change. This must happen, since both the cost of computing a primitive element

158 A. Hashemi and D. Lichtblau

that of converting the resulting minimal polynomial to use the original variables
are removed. The new speed bump is in computing the normal set replacements
for products of all pairs of terms in the normal set. This is quite fast for the
case where the Gröbner basis polynomials are sparse; in the case where they
are dense it becomes the bottleneck. The plot in Fig. 3 indicates a plausible
complexity scaling as O(D2) (Fig. 2).

Fig. 2. Translated log-log plot of normal set size vs. computation times, primitive
element dense case plus computing and translating to-from primitive element repre-
sentation

Fig. 3. Translated log-log plot of normal set size vs. computation times, primitive
element dense case linear algebra only

Note that the plausible O(D2) complexity in no way contradicts the more
conservative bounds from the theory presented in the last section, in particular
Theorem 6. These examples have a fixed number of generators at n = 2. Thus
the Minkowski polytope for the sum of normal set elements is O(D) (rather than
O(D2)) and products of algebraic elements are likewise O(D) in length. Hence
we remove two factors of D in the overall complexity analysis.

Linear Algebra over Algebraic Extension Fields 159

Fig. 4. Translated log-log plot of computation times vs. normal set size, dense case
without primitive element

There is another idiosyncrasy of implementation that seems worthy of
remark. Our implementation that uses a Gröbner basis for the linear algebra
step has no need to compute algebraic inverses. Setting pivots to unity happens
automatically as part of the Gröbner computation, as S-polynomials are formed
between leading row elements and the extension-defining polynomials. On the
one hand, this introduces an inefficiency as compared to straight linear alge-
bra. On the other, it appears to vastly reduce coefficient swell in the case where
our base field is the rationals. The practical trade-offs of these implementations
might warrant further study, independent of the theoretical bounds presented in
this work.

Acknowledgements. The authors would like to thank the reviewers for their many
comments on our manuscript that helped us to improve it. The research of the first
author was in part supported by a grant from IPM (No. 14020413).

References

1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases, vol. 3. Ameri-
can Mathematical Society, Providence (1994)

2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplica-
tion. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 522–539. Society for Industrial and Applied Mathematics (2021)

3. Amrhein, B., Gloor, O., Küchlin, W.: On the walk. Theor. Comput. Sci. 187,
179–202 (1997)

4. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Com-
mutative Algebra. In cooperation with Heinz Kredel, Springer, New York (1993).
https://doi.org/10.1007/978-1-4612-0913-3

5. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction
of Gröbner-bases. In: Ng, E.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 3–21.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5 52

https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/3-540-09519-5_52

160 A. Hashemi and D. Lichtblau

6. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory.
In: Multidimensional Systems Theory, Progress, Directions and Open Problems.
Mathematics Application. vol.16, pp. 184–232. D. Reidel Publ. Co. (1985)

7. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität
Innsbruck (1965)

8. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. J.
Symb. Comput. 41(3–4), 475–511 (2006)

9. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary
algebras. Acta Inf. 28(7), 693–701 (1991)

10. Collart, S., Kalkbrener, M., Mall, D., Solernó, P.: Converting bases with the
Gröbner walk. J. Symb. Comput. 24, 465–469 (1997)

11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 3rd edn.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-35651-8

12. Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C.: The membership problem for
unmixed polynomial ideals is solvable in single exponential time. Discrete Appl.
Math. 33(1–3), 73–94 (1991)

13. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

14. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2–3), 275–286 (1988)

15. Hartshorne, R.: Algebraic Geometry. Corr. 8rd printing, vol. 52. Springer, New
York (1977). https://doi.org/10.1007/978-1-4757-3849-0

16. Hashemi, A., Heintz, J., Pardo, L.M., Solernó, P.: Intrinsic complexity for con-
structing zero-dimensional Gröbner Bases. In: Boulier, F., England, M., Sadykov,
T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 245–265.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6 14

17. Hashemi, A., M.-Alizadeh, B.: Computing minimal polynomial of matrices over
algebraic extension fields. Bull. Math. Soc. Sci. Math. Roum. Nouv. Sér. 56(2),
217–228 (2013)

18. van der Hoeven, J., Lecerf, G.: Accelerated tower arithmetic. J. Complexity 55,
26 (2019). id/No 101402

19. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra. II. Springer,
Berlin (2005). https://doi.org/10.1007/3-540-28296-3

20. Langemyr, L.: Algorithms for a multiple algebraic extension II. In: Mattson, H.F.,
Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS, vol. 539, pp. 224–233. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54522-0 111

21. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
ISSAC 2014, pp. 296–303. ACM Press, New York (2014)

22. Lebreton, R.: Relaxed Hensel lifting of triangular sets. J. Symb. Comput. 68, 230–
258 (2015)

23. Li, X., Moreno Maza, M., Schost, É.: Fast arithmetic for triangular sets: from
theory to practice. J. Symb. Comput. 44(7), 891–907 (2009)

24. Lichtblau, D.: Practical computations with Gröbner bases (2009). https://www.
researchgate.net/publication/260165637 Practical computations with Grobner
bases

25. Lichtblau, D.: Applications of strong Gröbner bases over Euclidean domains. Int.
J. Algebra 7(5–8), 369–390 (2013)

https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/978-3-030-60026-6_14
https://doi.org/10.1007/3-540-28296-3
https://doi.org/10.1007/3-540-54522-0_111
https://www.researchgate.net/publication/260165637_Practical_computations_with_Grobner_bases
https://www.researchgate.net/publication/260165637_Practical_computations_with_Grobner_bases
https://www.researchgate.net/publication/260165637_Practical_computations_with_Grobner_bases

Linear Algebra over Algebraic Extension Fields 161

26. Moreno Maza, M., Schost, É., Vrbik, P.: Inversion modulo zero-dimensional regular
chains. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2012. LNCS, vol. 7442, pp. 224–235. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32973-9 19

27. Neunhöffer, M., Praeger, C.E.: Computing minimal polynomials of matrices. LMS
J. Comput. Math. 11, 252–279 (2008)

28. Noro, M.: An efficient implementation for computing Gröbner bases over algebraic
number fields. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151,
pp. 99–109. Springer, Heidelberg (2006). https://doi.org/10.1007/11832225 9

29. Storjohann, A.: An O(n3) algorithm for the Frobenius normal form. In: Proceedings
of the 1998 International Symposium on Symbolic and Algebraic Computation,
ISSAC 1998, Rostock, Germany, 13–15 August 1998, pp. 101–104. ACM Press,
New York (1998)

https://doi.org/10.1007/978-3-642-32973-9_19
https://doi.org/10.1007/978-3-642-32973-9_19
https://doi.org/10.1007/11832225_9

Range Functions of Any Convergence
Order and Their Amortized Complexity

Analysis

Kai Hormann1(B), Chee Yap2, and Ya Shi Zhang2

1 Università della Svizzera italiana, Lugano, Switzerland
kai.hormann@usi.ch

2 Courant Institute, NYU, New York City, USA
yap@cs.nyu.edu, yashi.zhang@nyu.edu

Abstract. We address the fundamental problem of computing range
functions f for a real function f : R → R. In our previous work
[9], we introduced recursive interpolation range functions based on the
Cornelius–Lohner (CL) framework of decomposing f as f = g+R, which
requires to compute g(I) “exactly” for an interval I. There are two prob-
lems: this approach limits the order of convergence to 6 in practice, and
exact computation is impossible to achieve in standard implementation
models. We generalize the CL framework by allowing g(I) to be approxi-
mated by strong range functions g(I; ε), where ε > 0 is a user-specified
bound on the error. This new framework allows, for the first time, the
design of interval forms for f with any desired order of convergence.
To achieve our strong range functions, we generalize Neumaier’s the-
ory of constructing range functions from expressions over a Lipschitz
class Ω of primitive functions. We show that the class Ω is very exten-
sive and includes all common hypergeometric functions. Traditional com-
plexity analysis of range functions is based on individual evaluation on
an interval. Such analysis cannot differentiate between our novel recur-
sive range functions and classical Taylor-type range functions. Empiri-
cally, our recursive functions are superior in the “holistic” context of the
root isolation algorithm Eval. We now formalize this holistic approach
by defining the amortized complexity of range functions over a subdivi-
sion tree. Our theoretical model agrees remarkably well with the empir-
ical results. Among our previous novel range functions, we identified a
Lagrange-type range function L′

3 f as the overall winner. In this paper,
we introduce a Hermite-type range function H

4 f that is even better.
We further explore speeding up applications by choosing non-maximal
recursion levels.

Keywords: Range functions · Root isolation · Interval arithmetic ·
EVAL algorithm · Taylor form · Lagrange form

1 Introduction

Given a real function f : R → R, the problem of tightly enclosing its range
f(I) = {f(x) : x ∈ I} on any interval I is a central problem of interval
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 162–182, 2023.
https://doi.org/10.1007/978-3-031-41724-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_9

Range Functions of Any Convergence Order 163

and certified computations [11,13]. The interval form of f may be1 denoted
f : R → R, where R is the set of compact intervals and f(I) contains the

range f(I). Cornelius & Lohner [3] provided a general framework for constructing
such f . First, choose a suitable g : R → R, such that for any interval I ∈ R, we
can compute g(I) exactly. Then, f(I) = g(I)+Rg(I), where Rg(x) := f(x)−g(x)
is the remainder function. The standard measure for the accuracy of approxi-
mate functions like f is their order of convergence n ≥ 1 on I0 ∈ R, i.e., there
exists a constant C0 > 0, such that dH(f(I), f(I)) ≤ C0w(I)n for all I ⊆ I0,
where dH is the Hausdorff distance on intervals and w(I) := b − a is the width
of I = [a, b]. Suppose Rg has an interval form Rg with convergence order n ≥ 1.
Then,

gf(I) := g(I) + Rg(I) (1)

is an interval form for f with order of convergence n. This is an immediate
consequence of the following theorem.
Theorem A [3, Theorem 4]. The width of the remainder part satisfies

dH(f(I), gf(I)) ≤ w(Rg(I)).

Prior to [3], interval forms with convergence order larger than 2 were unknown.
Cornelius & Lohner showed that there exists g such that Rg has convergence
order up to 6 in practice and up to any n ≥ 1 in theory.

Example 1. Let g(x) be the Taylor expansion of f(x) at x = m up to order n ≥ 1
and Rg(x) =

f(n+1)(ξx)
(n+1)! (x − m)n+1 for some ξx between x and m. Then,

Rg(I) :=
| f (n+1)(I)|
(n + 1)!

(I − m)n+1 (2)

is a range function for Rg(I), where I = [a, b] and m = (a+ b)/2. Assuming that

I ⊆ I0 for some bounded I0, we have | f(n+1)(I)|
(n+1)! = O(1). Therefore, (2) implies

that Rg(I) has convergence order n+1, and so does the range function in (1).

1.1 Why We Must Extend the CL Framework

Unfortunately, there is an issue with the CL framework. To get arbitrary conver-
gence order n ≥ 1, we must compute the exact range g(I) for a polynomial g of
degree n−1. But the endpoints of g(I) might be extrema of g, which are generally
irrational algebraic numbers when n ≥ 4. Hence, we cannot compute the “exact
range g(I)” in any standard implementation models. Standard implementation
models include (i) the IEEE arithmetic used in the majority of implementations,
(ii) the Standard Model of Numerical Analysis [8,17], or (iii) bigNumber pack-
ages such as GMP [7], MPFR [6], and MPFI [14]. In practice, “real numbers” are
represented by dyadic numbers, i.e., rational numbers of the form m2n where
1 Definitions of our terminology are collected in Sect. 1.3.

164 K. Hormann et al.

m,n ∈ Z. So, rational numbers like 1/3 cannot be represented exactly. Even if we
allow arbitrary rational numbers, irrational numbers like

√
2 are not exact. See,

e.g., [20] for an extended discussion of exact computation. In computer algebra
systems, the largest set of real numbers which can be computed exactly are the
algebraic numbers, but we do not include them under “standard implementation
models” because of inherent performance issues.

In [9], we (consciously) used the term “exact computation of g(I)” in a sense
which is commonly understood by interval and numerical analysts, including
Cornelius & Lohner. But first let us address the non-interval case: the “exact
computation of g(x)”. The common understanding amounts to:

g(x) can be computed exactly if g(x) has a closed-form
expression E(x) over a set Ω of primitive operations.

(3)

There is no universal consensus on the set Ω, but typically all real constants,
four rational operations (±,×,÷), and

√· are included. E.g., Neumaier [11, p. 6]
allows these additional operations in Ω:

|·|, sqr , exp, ln, sin, cos, arctan,

where2 sqr denotes squaring. Next, how does the understanding (3) extend to
the exact computation of g(I)? Cornelius & Lohner stated a sufficient condition
that is well-known in interval analysis [3, Theorem 1]:

g(I) can be computed exactly if there is an expression E(x)
for g(x) in which the variable x occurs at most once.

(4)

It is implicitly assumed in (4) that, given an expression E(x) for g(x), we can
compute g(I) by evaluating the interval expression E(I), assuming all the prim-
itive operators in E(x) have exact interval forms. But this theorem has very
limited application, and cannot even compute the exact range of a quadratic
polynomial g(x) = ax2 + bx + c with ab �= 0.

Example 2. To overcome the limitations of (4) in the case of a quadratic poly-
nomial g(x) = ax2+bx+c, we can proceed as follows: first compute x∗ = −b/2a,
the root of g′(x) = 2ax + b. If I = [x, x]), then

g(I) = [min(S),max(S)],

where

S :=

{
{g(x), g(x)}, if x∗ �∈ I,

{g(x∗), g(x), g(x)}, otherwise.

We call this the “endpoints algorithm”, since we directly compute the end-
points of g(I). The details when g is a cubic polynomial are derived and imple-
mented in our previous paper [9, Appendix]. How far can we extend this idea?
Under the common understanding (3), we need two other ingredients:
2 The appearance of sqr may be curious, but that is because he will later define interval

forms of the operations in Ω.

Range Functions of Any Convergence Order 165

(E1) The function g(x) must be exactly computable.
(E2) The roots of g′(x) must be exactly computable.

Note that (E1) is relatively easy to fulfill. For instance, g(x) can be any poly-
nomial. However, (E2) limits g to polynomials of degree at most 5, since the
roots of g′ are guaranteed to have closed form expressions when g′ has degree
at most 4. Cornelius & Lohner appear to have this endpoint algorithm in mind
when they stated in [3, p. 340, Remark 2] that their framework may reach up to
order 6 convergence, namely one more than the degree of g.

1.2 Overview

In Sect. 2, we present our generalized CL framework for achieving range functions
with any order of convergence. In Sect. 3, we provide details for a new family
of recursive range operators3

{ H
4,� : � = 0, 1, . . .

}
with quartic convergence

order and recursion level � ≥ 0, based on Hermite interpolation. In Sect. 4, we
present our “holistic” framework for evaluating the complexity of range functions.
The idea is to amortize the cost over an entire computation tree. Experimental
results are in Sect. 5. They show that in the context of the Eval algorithm, H

4

is superior to our previous favourite L′
3 . The theoretical model of Sect. 4 is also

confirmed by these experiments. Another set of experiments explore the possible
speed improvements by non-maximal convergence levels. We conclude in Sect. 6.

1.3 Terminology and Notation

This section reviews and fixes some terminology. Let f : R
n → R be an n-variate

real-valued function for some n ≥ 0. The arity of f is n. We identify 0-arity
functions with real constants. In this paper, we do not assume that real functions
are total functions. If f is undefined at x ∈ R

n, we write f(x) ↑; otherwise
f(x) ↓. If any component of x is undefined, we also have f(x) ↑. Define the
proper domain of f as dom(f) := {x ∈ R

m : f(x) ↓}. If S ⊆ R
m, then f(S) ↑

if f is undefined at some x ∈ S; otherwise f(S) := {f(x) : x ∈ S}. Define the
magnitude of S ⊆ R as |S| := max{|x| : x ∈ S}. Note that we use bold font
like x to indicate vector variables.

The set of compact boxes in R
n is denoted R

n; if n = 1, we simply write R.
The Hausdorff distance on boxes B,B′ ∈ R

n is denoted dH(B,B′). For n = 1, it
is often denoted q(I, J) in the interval literature. A box form of f is any function
F : R

n → R satisfying two properties: (1) conservative: f(B) ⊆ F (B) for
all B ∈ R

n; (2) convergent : for any sequence (Bi)∞i=0 of boxes converging to
a point, limi→∞ F (Bi) = f(limi→∞ Bi). In general, we indicate box forms by
a prefix meta-symbol “ ”. Thus, instead of F , we write “ f ” for any box form
of f . We annotate with subscripts and/or superscripts to indicate specific box
forms. E.g., if or Lf or L

i f are all box forms of f . In this paper, we mostly

3 Each H
4,� is an operator that transforms any sufficiently smooth function f : R → R

into the range function H
4,�f for f .

166 K. Hormann et al.

focus on n = 1. A subdivision tree is a finite tree T whose nodes are intervals
satisfying this property: if interval [a, b] is a non-leaf node of T , then it has two
children represented by the intervals [a,m] and [m, b]. If I0 is the root of T , we
call the set D = D(T) of leaves of T a subdivision of I0.

Let u = (u0, . . . , um) denote a sequence of m + 1 distinct points, where
the ui’s are called nodes. Let μ = (μ0, . . . , μm), where each μi ≥ 1 is called
a multiplicity. The Hermite interpolant of f at u,μ is a polynomial hf (x) =
hf (x;u,μ) such that hf

(j)(ui) = f (j)(ui) for all i = 0, . . . , m and j = 0, . . . , μi −
1. The interpolant hf (x) is unique and has degree less than d =

∑m
i=0 μi. If

m = 0, then hf (x) is the Taylor interpolant; if μi = 1 for all i, then hf (x) is the
Lagrange interpolant.

2 Generalized CL Framework

In this section, we develop an approach to computing range functions of arbitrary
convergence order. To avoid the exact range computation, we replace g(I) in (1)
by a range function g(I) for g:

f(I) := g(I) + Rg(I). (5)

We now generalize Theorem A as follows.
Theorem B. With f(I) defined as in (5), we have

dH(f(I), f(I)) ≤ dH(g(I), g(I)) + w(Rg(I)).

Proof. Consider the endpoints of the intervals f(I), g(I), and Rg(I) as given
by

f(I) = [f(x), f(x)], g(I) = [g(y), g(y)], Rg(I) = [a, b]

for some x, x, y, y ∈ I and a, b. We can also write

g(I) = [g(y), g(y)] + [ε, ε]

for some ε ≤ 0 ≤ ε. Thus we have

dH(g(I), g(I)) = max{−ε, ε}, (6)
f(I) = [g(y), g(y)] + [ε, ε] + [a, b].

We write the inclusion f(I) ⊆ f(I) in terms of endpoints:

[f(x), f(x)] ⊆ [g(y), g(y)] + [ε, ε] + [a, b].

Hence,

dH(f(I), f(I)) = max
{
f(x) − (

g(y) + ε + a
)
,
(
g(y) + ε + b

) − f(x)
}
.

Range Functions of Any Convergence Order 167

Since w(Rg(I)) = b − a and in view of (6), our theorem follows from

f(x) − (
g(y) + ε + a

) ≤ −ε + (b − a), (7)(
g(y) + ε + b

) − f(x) ≤ ε + (b − a). (8)

To show (7), we have, since f(x) ≤ f(y),

f(x) − (
g(y) + ε + a

) ≤ f(y) − (
g(y) + ε + a

)
=

(
g(y) + Rg(y)

) − (
g(y) + ε + a

)
= Rg(y) − ε − a

≤ −ε + (b − a).

The proof for (8) is similar.

2.1 Achieving Any Order of Convergence

To apply Theorem B, we introduce precision-bounded range functions for g(x),
denoted g(I; ε), where ε > 0 is an extra “precision” parameter. The output
interval is an outer ε-approximation in the sense that g(I) ⊆ g(I; ε) and

dH(g(I), g(I; ε)) ≤ ε.

We also call g(I; ε) a strong box function, since it implies box forms in the
original sense: e.g., a box form of g may be constructed as

g(I) := g(I, w(I)). (9)

The box form in (9) has the pleasing property that w(I) is an implicit precision
parameter.

Returning to the CL Framework, suppose that f = g + Rg, where g has a
strong range function g(I; ε). We now define the following box form of f :

pbf(I) := g(I; ε) + Rg(I), (10)

where ε = | Rg(I)|. The subscript in pb refers to “precision-bound”. To compute
pbf(I), we first compute JR ← Rg(I), then compute Jg ← g(I, |JR|), and

finally return Jg + JR.

Corollary 1. The box form pbf(I) of (10) has the same convergence order as
Rg(I).

For any n ≥ 1, if g(x) is a Hermite interpolant of f of degree n, then Rg(I)
has convergence order n + 1 (cf. Example 1). We have thus achieved arbitrary
convergence order.

Remark 1. Theorem B is also needed to justify the usual implementations of
“exact g(I)” under the hypothesis (3) of the CL framework. Given an expression
E(x) for g(x), it suffices to evaluate it with error at most | Rg(I)|. This can be
automatically accomplished in the Core Library using the technique of “precision-
driven evaluation” [21, Sect. 2].

168 K. Hormann et al.

2.2 Strong Box Functions

Corollary 1 shows that the “exact computation of g(I)” hypothesis of the CL
framework can be replaced by strong box functions of g. We now address the
construction of such functions. We proceed in three stages:

A. Lipschitz Expressions. Our starting point is the theory of evaluations of
expressions over a class Ω of Lipschitz functions, following [11]. Let Ω denote
a set of continuous real functions that includes R as constant functions as well
as the rational operations. Elements of Ω are called primitive functions. Let
Expr(Ω) denote the set of expressions over Ω ∪ X where X = {X1,X2, . . .} is
a countable set of variables. An expression E ∈ Expr(Ω) is an ordered DAG
(directed acyclic graph) whose nodes with outdegree m ≥ 0 are labelled by m-
ary functions of Ω, with variables in X viewed as 0-ary. For simplicity, assume
E has a unique root (in-degree 0). Any node of E induces a subexpression. If E
involves only the variables in X = (X1, . . . , Xn), we may write E(X) for E. We
can evaluate E at a ∈ R

n by substituting X ← a and evaluating the functions
at each node in a bottom-up fashion. The value at the root is E(a) and may
be undefined. If f : R

n → R is a function, we call E an expression for f if the
symmetric difference dom(E)Δdom(f) is a finite set. E.g., if f(x) =

∑n−1
i=0 xi,

then E(X1) = Xn
1 −1

X1−1 is an expression for f , since f(a) = E(a) for a �= 1, but
f(1) = n and E(1) ↑. Similarly, we can define the interval value E(B) at the
box B = (I1, . . . , In) ∈ R

n. If each f in E is replaced by a box form f , we
obtain a box expression E(X).

Following [11, pp. 33, 74], we say that E(X) is Lipschitz at B ∈ R
n if the

following inductive properties hold:

– (Base case) The root of E is labelled by a variable Xi or a constant function.
This always holds.

– (Induction) Let E = f(E1, . . . , Em), where each Ej is a subexpression of
E. Inductively, each Ei is Lipschitz at B. Moreover, f(E1(B), . . . , Em(B)) is
defined and f is Lipschitz4 in a neighbourhood U of (E1(B), . . . , Em(B)) ⊆

R
m.

Theorem C [11, p. 34]. If E(x) is a Lipschitz expression on B0 ∈ R
n,

then there is a vector � = (�1, . . . , �n) of positive constants such that for all
B,B′ ⊆ B0,

dH(E(B), E(B′)) ≤ � ∗ dH(B,B′),

where dH(B,B′) = (dH(I1, I ′
1), . . . , dH(In, I ′

n)) and ∗ is the dot product.

Theorem C can be extended to the box form E(X), and thus E(B) is an
enclosure of E(B). To achieve strong box functions, we will next strengthen
Theorem C to compute explicit Lipschitz constants.
4 The concept of a function f (not expression) being Lipschitz on a set U is standard:

it means that there exists a vector � = (�1, . . . , �m) of positive constants, such that
for all x, y ∈ U ⊆ R

m, |f(x) − f(y)| ≤ � ∗ |x − y| where ∗ is the dot product and
|x − y| = (|x1 − y1|, . . . , |xm − ym|). Call � a Lipschitz constant vector for U .

Range Functions of Any Convergence Order 169

B. Lipschitz+ Expressions. For systematic development, it is best to begin with
an abstract model of computation that assumes f(B) and ∂if(B) are computable.
Eventually, we replace these by f(B) and ∂if(B), and finally we make them
Turing computable by using dyadic approximations to reals. This follows the
“AIE methodology” of [19]. Because of our limited space and scope, we focus on
the abstract model.

Call Ω a Lipschitz+ class if each f ∈ Ω is a Lipschitz+ function in this
sense that f has continuous partial derivatives at its proper domain dom(f) and
both f and its gradient ∇f = (∂1f, . . . , ∂mf) are locally Lipschitz, i.e., for all
a ∈ dom(f), f is Lipschitz on some neighbourhood U of a. Given an expression
E(X) over Ω, we can define ∇E := (∂1E, . . . , ∂nE), where each ∂iE(X) is an
expression, defined inductively as

∂iE(X) =

⎧⎪⎨
⎪⎩
0, if E = const,
δ(i = j), if E = Xj ,∑m

j=1(∂jf)(E1, . . . , Em) · ∂iEj , if E = f(E1, . . . , Em).
(11)

Here, δ(i = j) ∈ {0, 1} is Kronecker’s delta function that is 1 if and only if i = j.
The above definition of E(X) being “Lipschitz at B ∈ R

n” can be naturally
extended to “Lipschitz+ at B ”, i.e., the inductive properties must also hold for
(∂jf)(E1, . . . , Em) as well as ∂iEj (cf. (11)).

C. Strong Box Evaluation. Let f : R
n → R be a Lipschitz+ function. Suppose it

has a strong approximation function f̃ , i.e.,

f̃ : R
n × R>0 → R, (12)

such that |f̃(a; ε)−f(a)| ≤ ε. We show that f has a strong box function. Define
Δ(f,B) := 1

2

∑n
i=1|∂if(B)| · wi(B). Then, for all a ∈ B, we have

|f(a) − f(m(B))| ≤ Δ(f,B)

by the Mean Value Theorem where m(B) is the midpoint of B.

Lemma 1. Let
J = J(B, ε) := [f̃(m(B); ε/4) ± 1

2ε], (13)

where [m±ε] denotes the interval [m−ε,m+ε]. If Δ(f,B) ≤ ε/4, then f(B) ⊆ J
and dH(J, f(B)) < ε.

Motivated by Lemma 1, we say that a subdivision D of B0 is ε-fine if
Δ(f,B) ≤ ε/4 for each B ∈ D. Given an ε-fine subdivision D of B0, let
J(D) :=

⋃
B∈D J(B), where J(B) is defined in (13).

Corollary 2. If D is an ε-fine subdivision of B0, then f(B0) ⊆ J(D) and
dH(f(B0), J(D)) < ε.

170 K. Hormann et al.

Algorithm 1. Fine Subdivision Algorithm
Input: (f, B0, ε)
Output: An ε-fine subdivision D of B0.
1: Let D, Q be queues of boxes, initialized as D ← ∅ and Q ← {B0}.
2: while Q �= ∅ do
3: B ← Q.pop()
4: (J1, . . . , Jn) ← ∇f(B)
5: Δ(f, B) ← ∑n

i=1|Ji| · wi(B)
6: if Δ(f, B) ≤ ε/4 then
7: D.push(B)
8: else
9: i∗ ← argmaxi=1,...,n|Ji| · wi(B)

10: Q.push(bisect(B, i∗)) � bisect dimension i∗

11: Output D

Algorithm 1 shows how to compute an ε-fine subdivision of any given B0.
Note that the value of Δ(f,B) is reduced by a factor less than or equal to
(1 − 1

2n) with each bisection, and therefore the subdivision depth is at most
ln(ε/Δ(f,B0))/ ln(1− 1

2n). This bound is probably overly pessimistic (e.g., |Ji| =
|∂if(B)| is also shrinking with depth). We plan to do an amortized bound of this
algorithm. In any case, we are now able to state the key result.

Theorem D. Let Ω be a Lipschitz+ class, where each f ∈ Ω has a strong
approximation function f̃ as in (12). If E(X) ∈ Expr(Ω) is Lipschitz+ at B ∈

R
n, then the strong box function E(B; ε) is abstractly computable from the f̃ ’s.

Proof (sketch). Use induction on the structure of E(X). The base case is triv-
ial. If E(X) = f(E1, . . . , Em), then, by induction, Ĩi = Ei(B; εi) is abstractly
computable (i = 1, . . . , m). Lemma 1 can be generalized to allow the evaluation
of f(B̃; ε), where B̃ = (Ĩ1, . . . , Ĩm).

Which functions satisfy the requirements of Theorem D? The hypergeometric
functions (with computable parameters) is one of the most extensive class with
Turing-computable strong approximation functions; Johansson [10] describes a
state-of-the-art library for such functions. In [4,5], we focused on the real hyper-
geometric functions and provided a uniform strong approximation algorithm,
with complexity analysis for rational input parameters. In this paper, we need
strong box functions which were not treated in [5,10]; such extensions could
be achieved, because hypergeometric functions are closed under differentiation.
Our Theorem D shows how this is generally achieved under Lipschitz+ Expres-
sions. A complete account of the preceding theory must replace the abstract
computational model by box functions f , finally giving dyadic approximations
˜f following the AIE methodology in [19]. An implementation of this approach
remains future work, and we used the standard model in our experimental results.

Range Functions of Any Convergence Order 171

3 A Practical Range Function of Order 4

In this section, we consider a new recursive range function based on Hermite
interpolation, which will surpass the performance of L′

3 f [9, Sec. 3.1]. Let h0

be the Hermite interpolant of f based on the values and first derivatives at the
endpoints of the interval I = [a, b], i.e., h0 is the unique cubic polynomial with

h0(a) = f(a), h′
0(a) = f ′(a), h0(b) = f(b), h′

0(b) = f ′(b).

With m = (a + b)/2 denoting the midpoint of I, it is not hard to show that h0

can be expressed in centred form as

h0(x) = c0,0 + c0,1(x − m) + c0,2(x − m)2 + c0,3(x − m)3

with coefficients

c0,0 =
f(a) + f(b)

2
− f ′(b) − f ′(a)

4
r, c0,1 = 3

f(b) − f(a)
4r

− f ′(a) + f ′(b)
4

,

c0,2 =
f ′(b) − f ′(a)

4r
, c0,3 =

f ′(a) + f ′(b)
4r2

− f(b) − f(a)
4r3

,

where r = (b − a)/2 is the radius of I. Since the remainder Rh0 = f − h0 can be
written as

Rh0(x) =
ω(x)
4!

f (4)(ξx), ω(x) = (x − a)2(x − b)2,

for some ξx ∈ I, we can upper bound the magnitude of Rh0(I) as

|Rh0(I)| ≤ Ω|f (4)(I)|, Ω =
|ω(I)|
4!

=
r4

24
.

To further upper bound |f (4)(I)|, following [9, Sec. 3], we consider the cubic
Hermite interpolants hj of f (4j) for j = 1, 2, . . . , �:

hj(x) = cj,0 + cj,1(x − m) + cj,2(x − m)2 + cj,3(x − m)3

with coefficients

cj,0 =
f (4j)(a) + f (4j)(b)

2
− f (4j+1)(b) − f (4j+1)(a)

4
r,

cj,1 = 3
f (4j)(b) − f (4j)(a)

4r
− f (4j+1)(a) + f (4j+1)(b)

4
,

cj,2 =
f (4j+1)(b) − f (4j+1)(a)

4r
,

cj,3 =
f (4j+1)(a) + f (4j+1)(b)

4r2
− f (4j)(b) − f (4j)(a)

4r3
.

172 K. Hormann et al.

Denoting the remainder by Rhj
= f (4j) − hj and using the same arguments as

above, we have

|f (4j)(I)| ≤ |hj(I)| + |Rhj
(I)| ≤ |hj(I)| + Ω|f (4j+4)(I)|. (14)

By recursively applying (14), we get

|f (4)| ≤ |h1(I)| + Ω|f (8)(I)|
≤ |h1(I)| + Ω

(|h2(I)| + Ω|f (12)(I)|) ≤ · · ·

≤
�∑

j=1

|hj(I)|Ωj−1 + Ω�| f (4�+4)(I)|,
(15)

resulting in the remainder bound

|Rh0(I)| ≤ S�, S� :=
�∑

j=1

|hj(I)|Ωj + Ω�+1| f (4�+4)(I)|.

Overall, we get the recursive Hermite form of order 4 and recursion level � ≥ 0,
H
4,�f(I) = h0(I) + [−1, 1]S�,

which depends on the 4� + 4 values

f (4j)(a), f (4j+1)(a), f (4j)(b), f (4j+1)(b), j = 0, . . . , �. (16)

If f is analytic and r is sufficiently small, or if f is a polynomial, then S∞ is a
convergent series, and we define H

4 f(I) := H
4,∞f(I) as the maximal recursive

Hermite form. Clearly, if f is a polynomial of degree at most d − 1, then H
4 f =

H
4,�f for � = �d/4� − 1.

To avoid the rather expensive evaluation of the exact ranges hj(I), j =
1, . . . , �, we can use the classical Taylor form for approximating them, resulting
in the cheaper but slightly less tight range function

H′
4,�f(I) = h0(I) + [−1, 1]S′

�,

where

S′
� =

�∑
j=1

(|cj,0| + r|cj,1| + r2|cj,2| + r3|cj,3|
)
Ωj + Ω�+1| f (4�+4)(I)|.

In case we also have to estimate the range of f ′, we can compute the 2� + 2
additional values

f (4j+2)(a), f (4j+2)(b), j = 0, . . . , � (17)

and apply H
4,� to f ′. But we prefer to avoid (17) by re-using the data used for

computing H
4,�f(I) in the following way. A result by Shadrin [15] asserts that

Range Functions of Any Convergence Order 173

the error between the first derivative of f and the first derivative of the Lagrange
polynomial L(x) that interpolates f at the 4 nodes x0, . . . , x3 ∈ I satisfies

|f ′(x) − L′(x)| ≤ |ω′
L(I)|
4!

|f (4)(I)|, x ∈ I,

for ωL(x) =
∏3

i=0(x − xi). As noted by Waldron [18, Addendum], this bound is
continuous in the xi, and so we can consider the limit as x0 and x1 approach a
and x2 and x3 approach b to get the corresponding bound for the error between
f ′ and the first derivative of the Hermite interpolant h0,

|f ′(x) − h′
0(x)| ≤ |ω′(I)|

4!
|f (4)(I)|, x ∈ I.

Since a straightforward calculation gives ω′(I) = 8
9

√
3r3[−1, 1], we conclude

by (15) that

|R′
h0
(I)| ≤ 8

√
3

9
r3

4!
|f (4)(I)| ≤ 8

√
3

9
r3

4!
S�

Ω
=

8
√
3

9r
S�,

resulting in the recursive Hermite forms

H
3,�f

′(I) = h′
0(I)+

8
√
3

9r
[−1, 1]S� and H′

3,�f
′(I) = h′

0(I)+
8
√
3

9r
[−1, 1]S′

�,

which have only cubic convergence, but depend on the same data as H
4,�f(I)

and H′
4,�f(I).

4 Holistic Complexity Analysis of Range Functions

By the “holistic complexity analysis” of f(I), we mean to analyse its cost over
a subdivision tree, not just its cost at a single isolated interval. The cost for a
node of the subdivision tree might be shared with its ancestors, descendants, or
siblings, leading to cheaper cost per node. Although we have the Eval algorithm
[9, Sec. 1.2] in mind, there are many applications where the algorithms produce
similar subdivision trees, even in higher dimensions.

4.1 Amortized Complexity of L′

3 f

We first focus on the range function denoted L′
3 f in [9, Sec. 3.1]. This was

our “function of choice” among the 8 range functions studied in [9, Table 1].
Empirically, we saw that L′

3 has at least a factor of 3 speedup over T
2 . Note

that T
2 was the state-of-the-art range function before our recursive forms; see

the last column of the Tables 3 and 4 in [9]. We now show theoretically that the
speedup is also 3 if we only consider evaluation complexity. The data actually
suggest an asymptotic speedup of at least 3.5—this may be explained by the

174 K. Hormann et al.

fact that L′
3 has order 3 convergence compared to order 2 for T

2 . We now seek
a theoretical account of the observed speedup5.

In the following, let d ≥ 2. Given any f and interval [a, b], our general goal
is to construct a range function f([a, b]) based on d derivatives of f at points
in [a, b]. In the case of L′

3 f([a, b]), we need these evaluations of f and its higher
derivatives:

f (3j)(a), f (3j)(m), f (3j)(b), j = 0, . . . , �d/3� − 1,

where m = (a+ b)/2. That is a total of 3�d/3� derivative values. For simplicity,
assume d is divisible by 3. Then the cost for computing L′

3 f([a, b]) is 3�d/3� = d.
Note that the cost to compute T

2 f(I), the maximal Taylor form of order 2, is
also d. So there is no difference between these two costs over isolated intervals.
But in a “holistic context”, we see a distinct advantage of L′

3 over T
2 : the

evaluation of L′
3 f(I) can reuse the derivative values already computed at the

parent or sibling of I; no similar reuse is available to T
2 .

Given a subdivision tree T , our goal is to bound the cost CL
3 (T) of L′

3 f

on T , i.e., the total number of derivative values needed to compute L′
3 f(I) for

all I ∈ T . We will write CL
3 (n) instead of CL

3 (T) when T has n leaves. This is
because it is n rather than the actual6 shape of T that is determinative for the
complexity. We have the following recurrence

CL
3 (n) =

{
d, if n = 1,
CL

3 (nL) + CL
3 (nR) − d

3 , if n ≥ 2,
(18)

where the left and right subtrees of the root have nL and nR leaves, respectively.
Thus n = nL+nR. Let the intervals I, IL, IR denote the root and its left and right
children. The formula for n ≥ 2 in (18) comes from summing three costs: (1) the
cost d at the root I; (2) the cost CL

3 (nL) but subtracting 2d/3 for derivatives
shared with I; (3) the cost CL

3 (nR) − 2d/3 attributed to the right subtree.

Theorem 1. (Amortized Complexity of L′
3) The cost of computing L′

3 f(I) is

CL
3 (n) = (2n + 1) · d

3 . (19)

Thus, the cost per node is ∼ d/3 asymptotically.

Proof. The solution (19) is easily shown by induction using the recurrence (18).
To obtain the cost per node, we recall that a full binary tree with n leaves has
2n − 1 nodes. So the average cost per node is 2n+1

2n−1 · d
3 ∼ d/3.

This factor of 3 improvement over T
2 is close to our empirical data in [9, Sec. 5].

5 Note that in our Eval application, we must simultaneously evaluate L′
3 f(I) as well

as its derivative L′
2 f ′(I). But it turns out that we can bound the range of f ′ for no

additional evaluation cost.
6 If d is not divisible by 3, we can ensure a total cost of d evaluations per interval of

the tree but the tree shape will dictate how to distribute these evaluations on the
m + 1 nodes.

Range Functions of Any Convergence Order 175

4.2 Amortized Complexity of H
4 f

We do a similar holistic complexity analysis for the recursive range function
H
4,�f(I) from Sect. 3 for any given f and � ≥ 0. According to (16), our recursive

scheme requires the evaluation of 4(� + 1) derivatives of f at the two endpoints
of I. Let d = 4(�+1), so that computing H

4,�f(I) costs d derivative evaluations.
For holistic analysis, let CH

4 (n) denote the cost of computing H
4,�f(I) on a

subdivision tree with n leaves. We then have the recurrence

CH
4 (n) =

{
d, if n = 1,
CH

4 (nL) + CH
4 (nR) − d

2 , if n ≥ 2,
(20)

where nL + nR = n. The justification of (20) is similar to (18), with the slight
difference that the midpoint of an interval J is not evaluated and hence not
shared with the children of J .

Theorem 2. (Amortized Complexity of H
4) The cost of computing H

4,�f(I) is

CH
4 (n) = (n + 1) · d

2 . (21)

Thus, the cost per node is ∼ d/4 asymptotically.

Proof. The solution (21) follows from (20) by induction on n. Since a full binary
tree with n leaves has 2n− 1 nodes, the average cost per node is n+1

2n−1 · d
2 ∼ d/4.

Therefore, we expect a 4-fold speedup of H
4,� when compared to the state-of-

art T
2 , and a 4/3-fold or 33% speedup when compared to L′

3 . This agrees with
our empirical data below.

4.3 Amortized Complexity for Hermite Schemes

We now generalize the analysis above. Recall from Sect. 1.3 that hf (x) =
hf (x;u,μ) is the Hermite interpolant of f with node sequence u = (u0, . . . , um)
and multiplicity μ = (μ0, . . . , μm). We fix the function f : R → R. Assume m ≥ 1
and the nodes are equally spaced over the interval I = [u0, um], and all μi are
equal to h ≥ 1. Then we can simply write h(x; I) for the interpolant on interval I.
Note that h(x; I) has degree less than d := (m + 1)h.

Our cost model for computing f(I) is the number of evaluations of deriva-
tives of f at the nodes of I. Based on our recursive scheme, this cost is exactly
d = (m+1)h since I has m+1 nodes. To amortize this cost over the entire sub-
division tree T , define Nm(T) to be the number of distinct nodes among all the
intervals of T . In other words, if intervals I and J share a node u, then we do not
double count u. This can happen only if I and J have an ancestor-descendant
relationship or are siblings. Let Tn denote a tree with n leaves. It turns out that

176 K. Hormann et al.

Nm(Tn) is a function of n, independent of the shape of Tn. So we simply write
Nm(n) for Nm(Tn). Therefore7 the cost of evaluating the tree Tn is

Ch
d (n) := h · Nm(n), where d = (m + 1)h.

Since Tn has 2n−1 intervals, we define the amortized cost of a recursive Hermite
range function as

C
h

d = lim
n→∞

Ch
d (n)

2n − 1
.

Theorem 3. For a recursive Hermite range function, the number of distinct
nodes, the evaluation cost of Tn, and the amortized cost satisfy

Nm(n) = mn + 1,

Ch
d (n) = h(mn + 1),

C
h

d = 1
2hm = 1

2 (d − h).

Proof. We claim that Nm(n) satisfies the recurrence

Nm(n) =

{
m + 1, if n = 1,
Nm(nL) + Nm(nR) − 1, if 1 < n = nL + nR.

(22)

The base case is clear, so consider the inductive case: the left and right subtrees
of Tn are TnL

and TnR
, where n = nL + nR. Then nodes at the root of Tn are

already in the nodes at the roots of TnL
and TnR

. Moreover, the roots of TnL
and

TnR
share exactly one node. This justifies (22). The solution Nm(n) = mn + 1

is immediate. The amortized cost is limn→∞ Ch
d (n)/(2n − 1), since the tree Tn

has 2n − 1 intervals.

Remark 2. Observe that the amortized complexity C
h

d = d−h
2 is strictly less

than d, the non-amortized cost. For any given d, we want h as large as possible,
but h is constrained to divide d. Hence for d = 4, we choose h = 2. We can
also generalize to allow multiplicities μ to vary over nodes: e.g., for d = 5,
μ = (2, 1, 2).

Remark 3. The analysis of CL
3 (n) and CH

4 (n) appears to depend on whether m
is odd or even. Surprisingly, we avoided such considerations in the above proof.

5 Experimental Results

To provide a holistic application for evaluating range functions, we use Eval,
a simple root isolation algorithm. Despite its simplicity, Eval produces near-
optimal subdivision trees [1,16] when we use T

2 f for real functions with simple
7 The notation “Ch

d (n)” does not fully reproduce the previous notations of CL
3 (n) and

CH
4 (n) (which were chosen to be consistent with L′

3 and H
4). Also, d is implicit in

the previous notations.

Range Functions of Any Convergence Order 177

Table 1. Size of the Eval subdivision tree. Here, Eval is searching for roots in I0 =
[−r(I0), r(I0)].

f r(I0) ET
2 EL′

3 EL′
4 EL′

3,10 EL′
3,15 EL′

3,20 EH
4 EH′

4 EH′
4,10 EH′

4,15 EH′
4,20

T20 319 243 231 243 243 243 239 239 239 239 239
T40 663 479 463 479 479 479 471 479 479 479 479
T80 10 1379 1007 955 1023 1007 1007 967 991 991 991 991
T160 2147 1427 1347 1543 1451 1427 1351 1359 1439 1363 1359
T320 – 2679 2575 3023 2699 2679 2591 2591 2803 2603 2591
H20 283 215 207 215 215 215 199 207 207 207 207
H40 539 423 415 423 423 423 415 419 419 419 419
H80 40 891 679 655 711 679 679 659 683 695 683 683
H160 1435 955 923 1083 959 955 923 927 1023 927 927
H320 – 2459 2415 45287 10423 4419 2455 2499 15967 5195 3119
M21 169 113 109 113 113 113 105 105 105 105 105
M41 339 215 213 215 215 215 219 223 223 223 223
M81

1
683 445 423 507 445 445 427 431 443 431 431

M161 – 905 857 7245 1755 1047 861 861 2663 1079 905
W20 485 353 331 353 353 353 331 335 335 335 335
W40 901 633 613 633 633 633 615 617 617 617 617
W80

1000
1583 1133 1083 2597 1133 1133 1097 1117 1485 1117 1117

W160 – 2005 1935 293509 5073 2005 1959 1993 42413 5289 2817
S100 973 633 609 611 621 625 613 613 595 609 613
S200 10 1941 1281 1221 1211 1227 1237 1231 1231 1165 1187 1201
S400 – 2555 2435 2379 2399 2413 2467 2467 2289 2319 2339

roots; see [9, Secs. 1.2, 1.3] for its description and history. We now implemented
a version of Eval in C++ for range functions that may use any recursion
level (unlike [9], which focused on maximal levels). We measured the size of
the Eval subdivision tree as well as the average running time of Eval with
floating point and rational arithmetic on various classes of polynomials. These
polynomials have varying root structures: dense with all roots real (Chebyshev
Tn, Hermite Hn, and Wilkinson’s Wn), dense with only 2 real roots (Mignotte
cluster M2k+1), and sparse without real roots (Sn). Depending on the fam-
ily of polynomials, we provide different centred intervals I0 = [−r(I0), r(I0)]
for Eval to search in, but always such that all real roots are contained in
I0. Our experimental platform is a Windows 10 laptop with a 1.8GHz Intel
Core i7-8550U processor and 16 GB of RAM. We use two kinds of computer
arithmetic in our testing: 1024-bit floating point arithmetic and multi-precision
rational arithmetic. In rational arithmetic,

√
3 is replaced by the slightly larger

17320508075688773 × 10−16. Our implementation, including data and Makefile
experiments, may be downloaded from the Core Library webpage [2].

178 K. Hormann et al.

Table 2. Average running time of Eval with 1024-bit floating point arithmetic in
seconds.

f r(I0) ET
2 EL′

3 EL′
4 EL′

3,10 EL′
3,15 EL′

3,20 EH
4 EH′

4 EH′
4,10 EH′

4,15 EH′
4,20 σ

(
EH′

4

)
σ
(
EH′

4,15

)
σ
(
EL′

3,15

)

T20 0.0288 0.0152 0.0153 0.0179 0.0212 0.0243 0.0201 0.0157 0.023 0.0274 0.0316 0.97 0.57 0.72
T40 0.19 0.0669 0.0663 0.0723 0.068 0.0726 0.078 0.0637 0.0864 0.0944 0.102 1.05 0.71 0.98
T80 10 1.35 0.379 0.363 0.366 0.386 0.397 0.398 0.327 0.465 0.494 0.49 1.16 0.77 0.98
T160 8.23 1.82 1.71 1.23 1.35 1.45 1.61 1.38 1.56 1.78 2.04 1.31 1.02 1.35
T320 – 12.7 12.1 5.11 5.44 6.19 10.4 9.53 6.68 7.84 9.29 1.33 1.62 2.34
H20 0.0242 0.0127 0.013 0.0149 0.0177 0.0204 0.0159 0.0128 0.0191 0.0226 0.0256 0.99 0.56 0.72
H40 0.15 0.0575 0.058 0.0632 0.0601 0.0652 0.0709 0.0547 0.0862 0.092 0.0923 1.05 0.63 0.96
H80 40 0.881 0.259 0.255 0.26 0.263 0.266 0.273 0.225 0.324 0.349 0.346 1.15 0.74 0.98
H160 5.47 1.22 1.16 0.854 0.872 0.953 1.1 0.972 1.1 1.23 1.38 1.26 1.00 1.4
H320 – 11.6 11.4 77.4 21.2 10.3 9.88 9.21 38.4 15.7 11.3 1.26 0.74 0.55
M21 0.0223 0.00767 0.00726 0.00826 0.0101 0.0123 0.00881 0.0072 0.0104 0.0125 0.0143 1.07 0.61 0.76
M41 0.103 0.032 0.0319 0.0349 0.0325 0.035 0.0391 0.0309 0.0417 0.0444 0.0489 1.03 0.72 0.99
M81

1
0.707 0.169 0.159 0.179 0.168 0.173 0.174 0.14 0.203 0.217 0.214 1.21 0.78 1.01

M161 – 1.2 1.13 5.96 1.68 1.09 1.05 0.898 2.96 1.53 1.62 1.34 0.79 0.72
W20 0.0492 0.0222 0.0201 0.0212 0.0211 0.0211 0.0261 0.0205 0.0256 0.026 0.0256 1.08 0.85 1.05
W40 0.282 0.0873 0.0874 0.096 0.0918 0.0995 0.114 0.0858 0.111 0.112 0.111 1.02 0.78 0.95
W80

1000
1.82 0.426 0.416 0.936 0.449 0.439 0.467 0.38 0.706 0.576 0.562 1.12 0.74 0.95

W160 – 2.74 2.65 257 5.56 2.68 2.52 2.22 49.8 7.52 4.59 1.23 0.37 0.49
S100 1.33 0.351 0.337 0.293 0.331 0.351 0.35 0.286 0.378 0.436 0.461 1.23 0.81 1.06
S200 10 9.55 2.32 2.21 1.2 1.41 1.59 2.02 1.77 1.6 1.98 2.31 1.31 1.18 1.65
S400 – 16.6 15.9 4.89 5.84 6.66 13.4 12.5 6.46 8.28 9.98 1.34 2.01 2.85

We tested eleven versions of Eval that differ by the range functions used
for approximating the ranges of f and f ′; see Tables 1–3. Generally, EX

k,� (X =
T,L′,H,H ′ for Taylor, cheap Lagrange, Hermite, cheap Hermite forms) refers
to using Eval with the corresponding forms of order k and level � (� may be
omitted when the level is maximal). The first three, ET

2 , EL′
3 , EL′

4 , are the state-
of-the-art performers from [9], followed by three non-maximal variants of EL′

3 ,
namely EL′

3,� for � ∈ {10, 15, 20}. The next two, EH
4 and EH′

4 , are based on the

maximal recursive Hermite forms H
4 f and H

3 f ′ and their cheaper variants H′
4 f

and H′
3 f ′, respectively, and the last three derive from the non-maximal variants

of the latter, again for recursion levels � ∈ {10, 15, 20}.
Table 1 reports the sizes of the Eval subdivision trees, which serve as a

measure of the tightness of the underlying range functions. In each row, the
smallest tree size is underlined. As expected, the methods based on range func-
tions with quartic convergence order outperform the others, and in general the
tree size decreases as the recursion level increases, except for sparse polynomials.
It requires future research to investigate the latter. We further observe that the
differences between the tree sizes for EL′

4 and EH′
4 are small, indicating that the

tightness of a range function is determined mainly by the convergence order, but
much less by the type of local interpolant (Lagrange or Hermite). However, as
already pointed out in [9, Sec. 5], a smaller tree size does not necessarily cor-
respond to a faster running time. In fact, EL′

3 was found to usually be almost
as fast as EL′

4 , even though the subdivision trees of EL′
3 are consistently big-

ger than those of EL′
4 .

In Tables 2 and 3 we report the running times for our eleven Eval versions
and the different families of polynomials. Times are given in seconds and aver-
aged over at least four runs (and many more for small degree polynomials). The

Range Functions of Any Convergence Order 179

Table 3. Average running time of Eval with multi-precision rational arithmetic in
seconds.

f r(I0) ET
2 EL′

3 EL′
4 EL′

3,10 EL′
3,15 EL′

3,20 EH
4 EH′

4 EH′
4,10 EH′

4,15 EH′
4,20 σ

(
EH′

4

)
σ
(
EH′

4,15

)
σ
(
EL′

3,15

)

T20 0.0411 0.0223 0.0245 0.0269 0.0325 0.0378 0.0417 0.0233 0.0347 0.0429 0.0505 0.96 0.52 0.69
T40 0.261 0.11 0.111 0.121 0.109 0.117 0.146 0.0959 0.126 0.141 0.156 1.15 0.78 1.01
T80 10 1.76 0.631 0.611 0.62 0.644 0.658 0.824 0.524 0.769 0.805 0.781 1.2 0.78 0.98
T160 11.3 3.14 2.87 2.23 2.36 2.62 3.82 2.41 2.7 2.96 3.36 1.3 1.06 1.33
T320 – 31.8 30.8 13.7 14.1 15.9 36.2 21.8 16.6 18.5 21.8 1.46 1.72 2.25
H20 0.03 0.0169 0.0182 0.0205 0.025 0.0296 0.0239 0.0176 0.0273 0.0338 0.0402 0.96 0.50 0.68
H40 0.185 0.0858 0.0885 0.0956 0.0927 0.106 0.131 0.0844 0.109 0.123 0.136 1.02 0.70 0.93
H80 40 1.1 0.399 0.391 0.41 0.412 0.423 0.541 0.329 0.495 0.523 0.504 1.21 0.76 0.97
H160 7.51 1.99 1.89 1.5 1.51 1.65 2.55 1.47 1.81 1.87 2.13 1.35 1.06 1.32
H320 – 29.5 28.9 303 67 27.7 39.1 20.9 123 40.8 26.2 1.41 0.72 0.44
M21 0.0238 0.0115 0.0119 0.013 0.0154 0.0179 0.015 0.0106 0.0162 0.0198 0.0233 1.09 0.58 0.75
M41 0.124 0.0466 0.0478 0.0529 0.0488 0.0537 0.07 0.0471 0.066 0.0746 0.0847 0.99 0.63 0.96
M81

10
0.947 0.298 0.278 0.321 0.288 0.293 0.381 0.236 0.346 0.359 0.344 1.27 0.83 1.04

M161 – 2.18 2.03 13.6 3.29 2.08 2.64 1.57 5.89 2.62 2.42 1.39 0.83 0.66
W20 0.0652 0.0332 0.0346 0.0344 0.0343 0.0346 0.0491 0.0352 0.0445 0.0442 0.0452 0.94 0.75 0.97
W40 0.431 0.18 0.176 0.182 0.163 0.161 0.225 0.143 0.191 0.195 0.191 1.26 0.92 1.1
W80

1000
2.75 0.846 0.826 1.96 0.877 0.847 1.15 0.708 1.41 1.1 1.09 1.2 0.77 0.97

W160 – 6.28 6.1 932 14.6 6.21 8.22 4.78 155 19 10.6 1.31 0.33 0.43
S100 1.35 0.474 0.457 0.451 0.483 0.477 0.663 0.419 0.603 0.591 0.57 1.13 0.80 0.98
S200 10 12 3.65 3.49 2.28 2.59 2.83 4.79 2.68 2.73 3.13 3.59 1.36 1.17 1.41
S400 – 44.8 42.7 16.4 18.9 21.5 51.8 30 19.6 24.2 28.3 1.50 1.85 2.37

Fig. 1. Speedup σ of EH′
4 with respect to EL′

3 for different families of polynomials and
varying degree: raw (left) and smoothed with moving average over five points (right).

last three columns in both tables report the speedup ratios σ(·) of EH′
4 , EH′

4,15,
and EL′

3,15 with respect to EL′
3 , which was identified as the overall winner in [9].

In Fig. 1, we provide a direct comparison of the Eval version based on our
new range function EH′

4 with the previous leader EL′
3 : for the test polynomials

in our suite, the new function is faster for polynomials of degree greater than
25, with the speedup approaching and even exceeding the theoretical value of
1.33 of Sect. 4.2. In terms of tree size they are similar (differing by less than
5%, Table 1). Hence, EH′

4 emerges as the new winner among the practical range
functions from our collection.

180 K. Hormann et al.

5.1 Non-maximal Recursion Levels

High order of convergence is important for applications such as numerical dif-
ferential equations. But a sole focus on convergence order may be misleading as
noted in [9]: for any convergence order k ≥ 1, a subsidiary measure may be crit-
ical in practice. For Taylor forms, this is the refinement level n ≥ k and for our
recursive range functions, it is the recursion level � ≥ 0. Note that Ratschek [12]
has a notion called “order n ≥ 1” for box forms on rational functions that super-
ficially resembles our level concept. When restricted to polynomials, it diverges
from our notion. In other words, we propose to use8 the pair (k, �) of convergence
measures in evaluating our range functions. In [9] we focused on maximal levels
(for polynomials) after showing that the ˜T

2 (the minimal level Taylor form of
order 2) is practically worthless for the Eval algorithm. We now experimentally
explore the use of non-maximal levels.

Fig. 2. Speedup σ(�) of EL′
3,� (left) and EH′

4,� (right) against their maximal level coun-
terparts with respect to � for polynomials of degree 125 (top) and 250 (bottom) from
different families.

Figure 2 plots the (potential) level speedup factor σ(�) against level � ≥ 0.
More precisely, consider the time for Eval to isolate the roots of a polynomial
8 This is a notational shift from our previous paper, where we indexed the recursion

level by n ≥ 1. Thus, level � in this paper corresponds to n − 1 in the old notation.

Range Functions of Any Convergence Order 181

f in some interval I0. Let k,�f be a family of range functions of order k, but
varying levels � ≥ 0. If Ek,� (resp., Ek) is the running time of Eval using

k,�f (resp., k,∞f), then σ(�) := Ek/Ek,�. Of course, it is only a true speedup
if σ(�) > 1. These plots support our intuition in [9] that minimal levels are
rarely useful (except at low degrees). Most strikingly, the graph of σ(�) shows a
characteristic shape of rapidly increasing to a unique maxima and then slowly
tapering to 1, especially for polynomials f with high degrees. This suggests that
for each polynomial, there is an optimal level to achieve the greatest speedup.
In our tests (see Fig. 2), we saw that both the optimal level and the value of
the corresponding greatest speedup factor depend on f . Moreover, we observed
that the achievable speedup tends to be bigger for EH′

4 than for EL′
3 and that it

increases with the degree of the polynomial f .

6 Conclusions and Future Work

We generalized the CL framework in order to achieve, for the first time, range
functions of arbitrarily high order of convergence. Our recursive scheme for such
constructions is not only of theoretical interest, but are practical as shown by our
implementations. Devising specific “best of a given order” functions like H

4,�f(I)
is also useful for applications.

The amortized complexity model of this paper can be used to analyse many
subdivision algorithms in higher dimensions. Moreover, new forms of range prim-
itives may suggest themselves when viewed from the amortization perspective.

We pose as a theoretical challenge to explain the observed phenomenon of
the “unimodal” behaviour of the σ(�) plots of Fig. 2 and to seek techniques for
estimating the optimal recursion level that achieves the minimum time. More-
over, we would like to better understand why the size of the Eval subdivision
tree increases with � in the case of sparse polynomials (see Table 1), while it
decreases for all other polynomials from our test suite.

Finally, we emphasize that strong box functions have many applications.
Another future work therefore is to develop the theory of strong box functions,
turning the abstract model of Sect. 2.2 into an effective (Turing) model in the
sense of [19].

References

1. Burr, M., Krahmer, F.: SqFreeEVAL: an (almost) optimal real-root isolation algo-
rithm. J. Symb. Comput. 47(2), 153–166 (2012)

2. Core Library homepage: Software download, source, documentation and links
(1999). https://cs.nyu.edu/exact/core_pages/svn-core.html

3. Cornelius, H., Lohner, R.: Computing the range of values of real functions with
accuracy higher than second order. Computing 33(3), 331–347 (1984)

4. Du, Z., Eleftheriou, M., Moreira, J., Yap, C.: Hypergeometric functions in exact
geometric computation. In: Brattka, V., Schoeder, M., Weihrauch, K. (eds.) Pro-
ceedings of 5th Workshop on Computability and Complexity in Analysis, pp. 55–66
(2002)

https://cs.nyu.edu/exact/core_pages/svn-core.html

182 K. Hormann et al.

5. Du, Z., Yap, C.: Uniform complexity of approximating hypergeometric functions
with absolute error. In: Pae, S., Park, H. (eds.) Proceedings of 7th Asian Sympo-
sium on Computer Math, pp. 246–249 (2006)

6. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2), Article 13, 15 (2007). https://www.mpfr.org

7. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Preci-
sion Arithmetic Library, 6.2.1. edn. (2020). https://gmplib.org/

8. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society
for Industrial and Applied Mathematics, Philadelphia (2002)

9. Hormann, K., Kania, L., Yap, C.: Novel range functions via taylor expansions
and recursive lagrange interpolation with application to real root isolation. In:
International Symposium Symbolic and Algebraic Comp. (46th ISSAC), pp. 193–
200 (2021)

10. Johansson, F.: Computing hypergeometric functions rigorously. ACM Trans. Math.
Softw. 45(3), 1–26 (2019)

11. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

12. Ratschek, H.: Centered forms. SIAM J. Num. Anal. 17(5), 656–662 (1980)
13. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Horwood

Publishing Limited, Chichester (1984)
14. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic

and the MPFI library. Reliable Comput. 11(4), 275–290 (2005). https://gitlab.
inria.fr/mpfi/mpfi

15. Shadrin, A.: Error bounds for Lagrange interpolation. J. Approx. Theory 80(1),
25–49 (1995)

16. Sharma, V., Yap, C.: Near optimal tree size bounds on a simple real root isolation
algorithm. In: 37th International Symposium Symbolic and Algebraic Computation
(ISSAC 2012), pp. 319–326 (2012)

17. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia (1997)

18. Waldron, S.F.: Lp-error bounds for Hermite interpolation and the associated
Wirtinger inequalities. J. Constr. Approx. 13(4), 461–479 (1997)

19. Xu, J., Yap, C.: Effective subdivision algorithm for isolating zeros of real systems
of equations, with complexity analysis. In: International Symposium Symbolic and
Algebraic Computation (44th ISSAC), pp. 355–362 (2019)

20. Yap, C.K.: On guaranteed accuracy computation. In: Chen, F., Wang, D. (eds.)
Geometric Computation, Chap. 12, pp. 322–373. World Scientific Publishing Co.,
Singapore (2004)

21. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_24

https://www.mpfr.org
https://gmplib.org/
https://gitlab.inria.fr/mpfi/mpfi
https://gitlab.inria.fr/mpfi/mpfi
https://doi.org/10.1007/978-3-642-15582-6_24

Stability and Zero-Hopf Bifurcation
Analysis of the Lorenz–Stenflo System

Using Symbolic Methods

Bo Huang1, Xiaoliang Li2, Wei Niu3,4(B), and Shaofen Xie5

1 LMIB – School of Mathematical Sciences, Beihang University,
Beijing 100191, China

bohuang0407@buaa.edu.cn
2 School of Business, Guangzhou College of Technology and Business,

Guangzhou 510850, China
3 Ecole Centrale de Pékin, Beihang University, Beijing 100191, China

wei.niu@buaa.edu.cn
4 Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310051, China

5 Academy of Mathematics and Systems Science, The Chinese Academy of Sciences,
Beijing 100190, China

xieshaofen@amss.ac.cn

Abstract. This paper deals with the stability and zero-Hopf bifurcation
of the Lorenz–Stenflo system by using methods of symbolic computation.
Stability conditions on the parameters of the system are derived by using
methods of solving semi-algebraic systems. Using the method of algorith-
mic averaging, we provide sufficient conditions for the existence of one
limit cycle bifurcating from a zero-Hopf equilibrium of the Lorenz–Stenflo
system. Some examples are presented to verify the established results.

Keywords: Averaging method · Limit cycle · Symbolic computation ·
Stability · Zero-Hopf bifurcation

1 Introduction and Main Results

In 1963, Edward Lorenz introduced a simplified mathematical chaotic model for
atmospheric convection [1]. The chaotic model is a system of three ordinary dif-
ferential equations now known as the Lorenz system. Since then, the research on
dynamical behaviors of the Lorenz system and its generalizations has attracted
great interest of scholars from various fields; the essence of chaos, characteristics
of the chaotic system, bifurcations, and routes to chaos have been extensively
studied (see [2–5] for instance).

The work was partially supported by National Natural Science Foundation of China
(No. 12101032 and No. 12131004), Beijing Natural Science Foundation (No. 1212005),
Philosophy and Social Science Foundation of Guangdong (No. GD21CLJ01), Social
Development Science and Technology Project of Dongguan (No. 20211800900692).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 183–198, 2023.
https://doi.org/10.1007/978-3-031-41724-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_10&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_10

184 B. Huang et al.

Hyperchaos, as a dynamic behavior, is far more complex and has a greater
potential than chaos in some non-traditional engineering and technological appli-
cations. It is well known that the minimal number of dimensions in which
continuous-time hyperchaos can occur is 4; therefore, 4D autonomous differ-
ential systems are of main interest for research and applications of hyperchaos,
especially 4D Lorenz-type hyperchaotic systems. In 1996, Stenflo [6] derived a
system to describe the evolution of finite amplitude acoustic gravity waves in a
rotating atmosphere. The Lorenz–Stenflo system is described by

ẋ = a(y − x) + dw,

ẏ = cx − y − xz,

ż = −bz + xy,

ẇ = −x − aw,

(1)

where a, b, c, and d are real parameters; a, c, and d are the Prandtl, the Rayleigh,
and the rotation numbers, respectively, and b is a geometric parameter. This
system is rather simple and reduces to the classical Lorenz system when the
parameter associated with the flow rotation, d, is set to zero. System (1) is
chaotic as a = 1, b = 0.7, c = 25, and d = 1.5. Figure 1 shows the phase
portraits of the system in 3D spaces.

This paper focuses on symbolic and algebraic analysis of stability and zero-
Hopf bifurcation for the Lorenz–Stenflo system (1). We remark that, in the past
few decades, symbolic methods have been explored extensively in terms of the
qualitative analysis of dynamical systems (see [7–14] and the references therein).
It should be mentioned that the zero-Hopf bifurcation of a generalized Lorenz–
Stenflo system was already studied by Chen and Liang in [15]. However, the
authors did not notice that the Lorenz–Stenflo system itself can exhibit a zero-
Hopf bifurcation. The main goal of this paper is to fill this gap. Moreover, we
study the zero-Hopf bifurcation of the Lorenz–Stenflo system in a parametric way
by using symbolic methods. We recall that a (complete) zero-Hopf equilibrium of
a 4D differential system is an isolated equilibrium point p0 such that the Jacobian
matrix of the system at p0 has a double zero and a pair of purely imaginary
eigenvalues. There are many studies of zero-Hopf bifurcations in 3D differential
systems (see [16–21] and the references therein). The zero-Hopf bifurcations of
hyperchaotic Lorenz systems can be found in [5,22]. Actually, there are very few
results on the n-dimensional zero-Hopf bifurcation with n > 3. Our objective
here is to study how many limit cycles can bifurcate from a zero-Hopf equilibrium
of system (1) by using the averaging method. Unlike the usual analysis of zero-
Hopf bifurcation, by means of symbolic computation, we would like to compute
a partition of the parametric space of the involved parameters such that, inside
every open cell of the partition, the system can have the maximum number of
limit cycles that bifurcate from a zero-Hopf equilibrium.

On the number of equilibria of the Lorenz–Stenflo system, we recall from
[6] that system (1) can have three equilibria, including the origin E0 =
(x = 0, y = 0, z = 0, w = 0) and the two equilibria

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 185

Fig. 1. The phase portraits of system (1) in different 3D projection spaces: a = 1,
b = 0.7, c = 25, d = 1.5

E± =

(
x = −aw, y = −a2 + d

a
w, z =

a2 + d

b
w2, w = ±

√
b(a2c − a2 − d)

a2(a2 + d)

)

if b(a2c−a2−d)
a2(a2+d) > 0. Otherwise, the origin is the unique equilibrium of the system.

In fact, the above results can be easily verified by computing the Gröbner basis
of the polynomial set {ẋ, ẏ, ż, ẇ} with respect to the lexicographic term ordering
determined by x � y � z � w.

The first goal of this paper is to study conditions on the parameters under
which the Lorenz–Stenflo system (1) has a prescribed number of stable equilib-
rium points. Our result on this question is the following, and its proof can be
found in Sect. 3.

Proposition 1. The Lorenz–Stenflo system (1) can not have three stable equi-
librium points; it has two stable equilibrium points if [a = 1] and one of the
following two conditions

C1 = [T1 < 0, 0 < T2, 0 < T3, T4 < 0, T5 < 0, 0 < T6],
C2 = [0 < T1, T2 < 0, 0 < T3, 0 < T4, T5 < 0, 0 < T6]

(2)

186 B. Huang et al.

holds; and it has one stable equilibrium point if [a = 1] and one of the following
five conditions

C3 = [0 < T1, 0 < T2, 0 < T3, T5 < 0, 0 < T6],
C4 = [0 < T1, 0 < T2, T3 < 0, T4 < 0, T6 < 0],
C5 = [0 < T1, 0 < T2, 0 < T3, 0 < T4, 0 < T5, 0 < T6],
C6 = [0 < T1, 0 < T2, 0 < T3, T4 < 0, 0 < T5, 0 < T6],
C7 = [0 < T1, 0 < T2, 0 < T3, T4 < 0, 0 < T5, T6 < 0]

(3)

holds. The explicit expressions of Ti are the following:

T1 = b, T2 = d − c + 1, T3 = d + 1,

T4 = bc − cd + d2 + 2 d + 1,

T5 = −bcd + bd2 − 3 bc − 2 bd − 3 b − 12 d − 12,

T6 = b2c + 2 b2d − bcd + bd2 + 2 b2 + 10 bd + 9 b + 6 d + 6.

Remark 1. We remark that the condition [a = 1] is used to facilitate the com-
putation of the resulting semi-algebraic system (see Sect. 3) since the algebraic
analysis usually involves heavy computation; see [8,9].

Example 1. Let

(a, b, c, d) =
(
1,

1
4
,−56,−29

)
∈ C4.

Then the Lorenz–Stenflo system (1) becomes

ẋ = y − x − 29w, ẏ = −56x − y − xz,

ż = −1
4
z + xy, ẇ = −x − w.

(4)

Its three equilibria are: p1 = (0, 0, 0, 0), p2 = (12 ,−14,−28,− 1
2) and p3 =

(− 1
2 , 14,−28, 1

2). System (4) has only one stable equilibrium point p1; see Fig. 2
(a); (b).

Example 2. Let

(a, b, c, d) =
(
1,

1
4
,
55
32

,−27
64

)
∈ C2.

Then the Lorenz–Stenflo system (1) becomes

ẋ = y − x − 27
64

w, ẏ =
55
32

x − y − xz,

ż = −1
4
z + xy, ẇ = −x − w.

(5)

Its three equilibria are:

p1 = (0, 0, 0, 0), p2 = (
1
74

√
2701,

1
128

√
2701,

73
64

,− 1
74

√
2701)

and p3 = (− 1
74

√
2701,− 1

128

√
2701, 73

64 , 1
74

√
2701). System (5) has two stable equi-

libria p2 and p3; see Fig. 2 (c); (d).

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 187

Fig. 2. Numerical simulations of local stability of the Lorenz–Stenflo system for the
choice of parameter values given in Examples 1 and 2

Our second goal of this paper is to investigate the bifurcation of periodic
solutions at the (complete) zero-Hopf equilibrium (that is, an isolated equilib-
rium with double zero eigenvalues and a pair of purely imaginary eigenvalues) of
system (1). In the following, we characterize the periodic orbits bifurcating from
the zero-Hopf equilibrium E0 = (0, 0, 0, 0) of system (1). The main techniques
are based on the first order averaging method and some algebraic methods, such
as the Gröbner basis [23] and real root classifications [24]. The techniques used
here for studying the zero-Hopf bifurcation can be applied in theory to other
high dimensional polynomial differential systems.

In the next proposition, we characterize when the equilibrium point E0 =
(0, 0, 0, 0) is a zero-Hopf equilibrium.

Proposition 2. The origin E0 is a zero-Hopf equilibrium of the Lorenz–Stenflo
system (1) if the conditions 2a + 1 = 0, b = 0, 3c − 4 > 0 and 12d − 1 > 0 hold.

188 B. Huang et al.

We consider the vector (a, b, c, d) given by

a = −1
2

+ εa1, b = εb1,

c =
4
3
(β2 + 1) + εc1, d =

1
3
β2 +

1
12

+ εd1,

(6)

where ε �= 0 is a sufficiently small parameter, the constants β �= 0, a1, b1, c1,
and d1 are all real parameters. The next result gives sufficient conditions for the
bifurcation of a limit cycle from the origin when it is a zero-Hopf equilibrium.

Theorem 1. For the vector given by (6) and |ε| > 0 sufficiently small, system
(1) has, up to the first order averaging method, at most 1 limit cycle bifurcates
from the origin, and this number can be reached if one of the following two
conditions holds:

C8 = [b1 < 0, 8β2a1 − 4 a1 + 3 c1 − 12 d1 < 0] ∧ C̄,

C9 = [0 < b1, 0 < 8β2a1 − 4 a1 + 3 c1 − 12 d1] ∧ C̄,
(7)

where C̄ = [β �= 0, b1 �= 0, a1 �= 0, 4β2 + 1 �= 0, 8β2a1 − 4 a1 + 3 c1 − 12 d1 �= 0].
Moreover, the only limit cycle that exists (under the condition C8 or C9) is
unstable.

Theorem 1 shows that the Lorenz–Stenflo system (1) can have exactly 1 limit
cycles bifurcating from the origin if the condition in (7) holds. In the following,
we provide a concrete example of system (1) to verify this established result.

Corollary 1. Consider the special family of the Lorenz–Stenflo system

ẋ =
(
ε +

1
2

)
(x − y) +

(
ε +

5
12

)
w,

ẏ =
(
ε +

8
3

)
x − xz − y,

ż = xy + εz,

ẇ = −x +
(
ε +

1
2

)
w.

(8)

This system has exactly 1 limit cycle (x(t, ε), y(t, ε), z(t, ε), w(t, ε)) bifurcating
from the origin by using the first order averaging method, namely,

x(t, ε) =
5
12

ε
(
X̄3 − R̄ cos t

)
+ O(ε2),

y(t, ε) =
9
5
ε
(
2X̄3 − R̄ cos t − R̄ sin t

)
+ O(ε2),

z(t, ε) = εX̄4 + O(ε2),

w(t, ε) =
1
6
ε
(
5X̄3 − R̄ cos t + 2R̄ sin t

)
+ O(ε2),

where (R̄, X̄3, X̄4) is a real solution of a semi-algebraic system (see Sect. 5).
Moreover, the limit cycle is unstable.

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 189

The rest of this paper is organized as follows. In Sect. 2, we recall the averag-
ing method that we shall use for proving the main results. Section 3 is devoted
to prove Proposition 1. The proofs of Proposition 2 and Theorem 1 are given
in Sect. 4, and the proof of Corollary 1 is presented in Sect. 5. The paper is
concluded with a few remarks.

2 Preliminary Results

The averaging method is one of the best analytical methods to study limit cycles
of differential systems in the presence of a small parameter ε. The first order
averaging method introduced here was developed in [25]. Recently, this theory
was extended to an arbitrary order in ε for arbitrary dimensional differential
systems, see [26]. More discussions on the averaging method, including some
applications, can be found in [27,28].

We deal with differential systems in the form

ẋ = εF (t,x) + ε2R(t,x, ε), (9)

with x ∈ D ⊂ R
n, D a bounded domain, and t ≥ 0. Moreover we assume that

F (t,x) and R(t,x, ε) are T -periodic in t.
The averaged system associated to system (9) is defined by

ẏ = εf0(y), (10)

where

f0(y) =
1
T

∫ T

0

F (s,y)ds. (11)

The next theorem says under what conditions the equilibrium points of the
averaged system (10) provide T -periodic orbits for system (9).

Theorem 2. We consider system (9) and assume that the functions F , R,
DxF , D2

xF and DxR are continuous and bounded by a constant M (independent
of ε) in [0,∞) × D, with −ε0 < ε < ε0. Moreover, we suppose that F and R are
T -periodic in t, with T independent of ε.

(i) If p ∈ D is an equilibrium point of the averaged system (10) such that

det(Dxf0(p)) �= 0 (12)

then, for |ε| > 0 sufficiently small, there exists a T -periodic solution x(t, ε)
of system (9) such that x(0, ε) → p as ε → 0.

(ii) If the equilibrium point y = p of the averaged system (10) has all its eigen-
values with negative real part then, for |ε| > 0 sufficiently small, the corre-
sponding periodic solution x(t, ε) of system (9) is asymptotically stable and,
if one of the eigenvalues has positive real part x(t, ε), it is unstable.

190 B. Huang et al.

The proof of Theorem 2 can be found in [25,28]. It follows from Lemma 1 of
[26] that the expression of the limit cycle associated to the zero y∗ of f0(y) can
be described by

x(t,y∗, ε) = y∗ + O(ε). (13)

The averaging method allows to find periodic solutions for periodic non-
autonomous differential systems (see (9)). However, here we are interested in
using it for studying the periodic solutions bifurcating from a zero-Hopf equilib-
rium point of the autonomous differential system (1). The steps for doing that
are the following.

(i) First we must identify the conditions for which the system has a zero-Hopf
equilibrium (see Proposition 2).

(ii) We write the linear part of the resulting system (plugging in the conditions
obtained in (i)) at the origin in its real Jordan normal form by linear change
of variables (x, y, z, w) �→ (U, V,W,Z).

(iii) We scale the variables by setting (U, V,W,Z) = (εX1, εX2, εX3, εX4),
because the zero-Hopf bifurcation and the averaging method needs such
a small parameter ε, and write the differential system in the form(

dR
dt , dθ

dt ,
dX3
dt , dX4

dt

)
where (X1,X2,X3,X4) = (R cos θ,R sin θ,X3,X4).

(iv) We take the angular variable θ as the new independent variable of the dif-
ferential system. Obtaining a 3-dimensional periodic non-autonomous system
dR
dθ = · · · , dX3

dθ = · · · , dX4
dθ = · · · in the variable θ. In this way the differential

system is written into the normal form of the averaging method for studying
the periodic solutions.

(v) Going back through the change of variables we get the periodic solutions
bifurcating from the zero-Hopf equilibrium of system (1).

Remark 2. A symbolic Maple program for the realization of certain steps on zero-
Hopf bifurcation analysis of polynomial differential systems is developed in [29].
The program can be used for computing the higher-order averaged functions of
nonlinear differential systems. The source code of the Maple program is available
at https://github.com/Bo-Math/zero-Hopf. More details on the outline of the
program, including some applications, can be found in [29].

3 Stability Conditions of the Lorenz–Stenflo System

The goal of this section is to prove Proposition 1. Let (x̄, ȳ, z̄, w̄) be the equi-
librium point of the Lorenz–Stenflo system (1). Namely, we have the algebraic
system

Ψ = {a(ȳ − x̄) + dw̄ = 0, cx̄ − ȳ − x̄z̄ = 0, −bz̄ + x̄ȳ = 0, −x̄ − aw̄ = 0}. (14)

The Jacobian matrix of the Lorenz–Stenflo system evaluated at (x̄, ȳ, z̄, w̄) is
given by ⎛

⎜⎜⎝
−a a 0 d

−z̄ + c −1 −x̄ 0
ȳ x̄ −b 0

−1 0 0 −a

⎞
⎟⎟⎠ ,

https://github.com/Bo-Math/zero-Hopf

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 191

and the characteristic polynomial of this matrix can be written as

P (λ) = t0λ
4 + t1λ

3 + t2λ
2 + t3λ + t4,

where

t0 = 1, t1 = 2 a + b + 1,

t2 = a2 + 2 ab − ac + az̄ + x̄2 + 2 a + b + d,

t3 = a2b − a2c + a2z̄ − abc + abz̄ + 2 ax̄2 + ax̄ȳ + a2 + 2 ab + bd + d,

t4 = −a2bc + a2bz̄ + a2x̄2 + a2x̄ȳ + a2b + dx̄2 + bd.

By Routh–Hurwitz’s stability criterion (e.g., [30]), (x̄, ȳ, z̄, w̄) is a stable equilib-
rium point if the following algebraic system is satisfied

D1 = t1 = 2 a + b + 1 > 0,

D2 = det
(

t1 t0
t3 t2

)
= 2 a3 + 4 a2b − a2c + a2z̄ + 2 ab2 − ax̄ȳ + bx̄2 + 4 a2 + 4 ab

− ac + 2 ad + az̄ + b2 + x̄2 + 2 a + b > 0,

D3 = det

⎛
⎝ t1 t0 0

t3 t2 t1
0 t4 t3

⎞
⎠ = −7 a3bc + 2 abd − 4 a2bc − 2 a3b2c + 8 a2bd − ab2c

− 3 a4bc + a3bc2 − a2b3c − a2x̄2ȳ2 + 2 ad2 + a3c2 + 2 a3 +
(
a4 + a3b + a3

+ a2b
)
z̄2 +

(
2 a5 + 3 a4b − 2 a4c + 2 a3b2 − 2 a3bc + a2b3 + 5 a4 + 7 a3b

− 2 a3c + 2 a3d + 3 a2b2 − 2 a2bc + 3 a2bd + ab3 + 3 a3 + 4 a2b + a2d + ab2

+ abd + ad
)
z̄ + (2 ab + 2 a) x̄4 +

(
4 a3b − 2 a3c + 4 a2b2 − a2bc − ab2c

+ 4 a3 + 8 a2b − 3 a2c + 4 ab2 − abc − 4 abd + 4 a2 + 4 ab − 4 ad
)
x̄2 + 4 a4

+ 2 a5 − abcd +
(−a2b + a2

)
x̄ȳz̄ − 3 a2bcd − 2 a5c + a4c2 + 2 a5b + 4 a4b2

+ 2 ab3 + 4 a2d + 2 ab2 + 2 ad + 8 a4b − 5 a4c + 10 a3b2 − 3 a3c + 4 a3d

+ 8 a2b2 + 10 a3b + 4 a2b + 4 a2b3 − ab3c + 2 ab3d − a2cd + 2 ab2d + 2 abd2

+
(− 2a4 − a3b + a2b2 + a2bc − a3 − a2c + 2a2d + ab2 − abd + a2 + ab

− ad
)
x̄ȳ + 4 a3bd − 2 a3cd − 3 a2b2c + 4 a2b2d + a2bc2 + 2 a3b3 +

(− 2 a2

+ ab + a
)
x̄3ȳ +

(
2 a3 + a2b + ab2 + 3 a2 + ab

)
x̄2z̄ − acd > 0,

D4 = t4 = −a2bc + a2bz̄ + a2x̄2 + a2x̄ȳ + a2b + dx̄2 + bd > 0. (15)

Combining (14) and (15), we see that the Lorenz–Stenflo system has a prescribed
number (say k) of stable equilibrium points if the following semi-algebraic system
has k distinct real solutions:{

a(ȳ − x̄) + dw̄ = 0, cx̄ − ȳ − x̄z̄ = 0, −bz̄ + x̄ȳ = 0, −x̄ − aw̄ = 0,
D1 > 0, D2 > 0, D3 > 0, D4 > 0,

(16)

where x̄, ȳ, z̄, and w̄ are the variables. The above semi-algebraic system may
be solved by the method of discriminant varieties of Lazard and Rouillier [31]

192 B. Huang et al.

(implemented as a Maple package by Moroz and Rouillier), or the method of
Yang and Xia [24] for real solution classification (implemented as a Maple pack-
age DISCOVERER by Xia [32]; see also the recent improvements in [33] as well
as the Maple package RegularChains[SemiAlgebraicSetTools]). However, in the
presence of several parameters, the Yang–Xia method may be more efficient than
that of Lazard–Rouillier, see [8].

Note that system (16) contains four free parameters a, b, c, d, and the total
degree of the involved polynomials is 4, which makes the computation very dif-
ficult. In order to obtain simple sufficient conditions for system (16) to have a
prescribed number of stable equilibrium points, the computation is done under
the constraint [a = 1]. By using DISCOVERER or RegularChains, we obtain
that system (16) has exactly two distinct real solutions with respect to the vari-
ables x̄, ȳ, z̄, w̄ if the condition C1 or C2 in (2) holds, and it has only one real
solution if one of the conditions in (3) holds; system (16) can not have three
distinct real solutions. This ends the proof of Proposition 1.

4 Zero-Hopf Bifurcation of the Lorenz–Stenflo System

This section is devoted to the proofs of Proposition 2 and Theorem 1.

Proof (Proof of Proposition 2). The characteristic polynomial of the linear
part of the Lorenz–Stenflo system at the origin E0 is

p(λ) = λ4 + (2 a + b + 1) λ3 +
(
a2 + 2 ba − ac + 2 a + b + d

)
λ2

+
(
a2b − a2c − abc + a2 + 2 ba + db + d

)
λ − a2bc + a2b + db.

(17)

Imposing that p(λ) = λ2(λ2 + β2) with β �= 0, we obtain a = − 1
2 , b = 0,

3c − 4 = 12d − 1 = 4β2 > 0. This completes the proof.

Proof (Proof of Theorem 1). Consider the vector defined by (6), then the
Lorenz–Stenflo system becomes

ẋ =
(

−1
2

+ εa1

)
(y − x) +

(
1
3
β2 +

1
12

+ εd1

)
w,

ẏ =
(

4
3
(β2 + 1) + εc1

)
x − y − xz,

ż = −εb1z + xy,

ẇ = −x −
(

−1
2

+ εa1

)
w.

(18)

We need to write the linear part of system (18) at the origin in its real Jordan
normal form ⎛

⎜⎜⎝
0 −β 0 0
β 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (19)

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 193

when ε = 0. For doing that, we perform the linear change of variables
(x, y, z, w) �→ (U, V,W,Z) given by

x = −
(
4β2 + 1

)
U

12β2
+

(
4β2 + 1

)
W

12β2
,

y = −
(
4β2 + 1

)
U

9β2
−

(
4β2 + 1

)
V

9β
+

(
β2 + 1

) (
4β2 + 1

)
W

9β2
,

z = βZ,

w = − U

6β2
+

V

3β
+

(
4β2 + 1

)
W

6β2
.

(20)

In these new variables (U, V,W,Z), system (18) becomes a new system which
can be written as (U̇ , V̇ , Ẇ , Ż). By computing the second order Taylor expansion
of expressions in this new system, with respect to ε, about the point ε = 0,
we obtain

U̇ = −βV +
1
4β

(UZ − WZ) + εF1,1(U, V,W,Z),

V̇ = βU +
1
2
(ZW − ZU) + εF1,2(U, V,W,Z),

Ẇ =
1
4β

(ZU − ZW) + εF1,3(U, V,W,Z),

Ż =

(
4β2 + 1

)2
108β5

(
U2 + (β2 + 1)W 2 − (β2 + 2)UW + β(UV − V W)

)
− εb1Z,

(21)
where

F1,1 =
1

3β (4β2 + 1)
(
16β4a1 + 8β2a1 − 12β2d1+ a1 − 6 d1

)
V − 1

12β2

(
16β4a1

+ 20β2a1 + 24β2d1 + 4 a1 − 3 c1 + 12 d1
)
W +

1
12β2 (4β2 + 1)

(
16β4a1

+ 20β2a1 − 12 c1β
2 + 24β2d1 + 4 a1 − 3 c1 + 12 d1

)
U,

F1,2 = − 1
4β2 + 1

(
4β2a1 + a1 − 2 d1

)
V − c1 − 2 d1

2β
W +

4β2c1 + c1 − 2 d1
2β (4β2 + 1)

U,

F1,3 =
1

3β (4β2 + 1)
(
4β2a1 + a1 − 6 d1

)
V − 1

12β2

(
16β2a1 + 4 a1 − 3 c1

+ 12 d1
)
W +

1
12β2 (4β2 + 1)

(
16β2a1 − 12 c1β

2 + 4 a1 − 3 c1 + 12 d1
)
U.

After doing step (iii) and step (iv) (see Sect. 2), we write the differential
system (21) into the normal form of the averaging method. By computing the
first order averaged functions f0(y) in (11) (where y = (R,X3,X4)), we obtain
f0(y) = (f1,1(y), f1,3(y), f1,4(y)), where

194 B. Huang et al.

f1,1(y) = − R

24β3
f̄1,1(R,X3,X4),

f1,3(y) = − 1
12β3

f̄1,3(R,X3,X4),

f1,4(y) =
1

216β6
f̄1,4(R,X3,X4),

(22)

with

f̄1,1(R,X3,X4) = 8β2a1 − 3βX4 − 4a1 + 3c1 − 12d1,

f̄1,3(R,X3,X4) = X3

(
16β2a1 + 3βX4 + 4a1 − 3c1 + 12d1

)
,

f̄1,4(R,X3,X4) =
(
16β4 + 8β2 + 1

)
R2 +

(
32β6 + 48β4 + 18β2 + 2

)
X2

3

− 216β5X4b1.

It is obvious that system (22) can have at most one real solution with R > 0.
Hence, system (18) can have at most one limit cycle bifurcating from the origin.
Moreover, the determinant of the Jacobian of (f1,1, f1,3, f1,4) is

D1(R,X3,X4) = det

⎛
⎜⎝

∂f1,1
∂R

∂f1,1
∂X3

∂f1,1
∂X4

∂f1,3
∂R

∂f1,3
∂X3

∂f1,3
∂X4

∂f1,4
∂R

∂f1,4
∂X3

∂f1,4
∂X4

⎞
⎟⎠ =

1
10368β11

· D̄1(R,X3,X4),

where

D̄1(R,X3,X4) = −4608β8a1
2b1 + 1152β6a1

2b1 − 864β6a1b1c1 + 3456β6a1b1d1

+ 576β4a1
2b1 − 864β4a1b1c1 + 3456β4a1b1d1 + 324β4b1c1

2 − 2592β4b1c1d1

+ 5184β4b1d1
2 +

(
256β6a1 + 192β4a1 − 48β4c1 + 192β4d1 + 48β2a1

− 24β2c1 + 96β2d1 + 4a1 − 3c1 + 12d1
)
R2 + 324β6X2

4b1 +
(− 256β8a1

− 256β6a1 − 96β6c1 + 384β6d1 + 48β4a1 − 144β4c1 + 576β4d1 + 56β2a1

− 54β2c1 + 216β2d1 + 8a1 − 6c1 + 24d1
)
X2

3 + (864β7a1b1 + 864β5a1b1

− 648β5b1c1 + 2592β5b1d1)X4 +
(
96β7 + 144β5 + 54β3 + 6β

)
X4X3

2

+ (48β5 + 24β3 + 3β)X4R
2.

It follows from Theorem 2 that system (18) can have one limit cycle bifur-
cating from the origin if the semi-algebraic system has exactly one real solution:{

f̄1,1(R,X3,X4) = f̄1,3(R,X3,X4) = f̄1,4(R,X3,X4) = 0,
R > 0, D̄1(R,X3,X4) �= 0, β �= 0 (23)

where R, X3, and X4 are the variables. Using DISCOVERER (or the package
RegularChains[SemiAlgebraicSetTools] in Maple), we find that system (18) has
exactly one real solution if and only if the one of the conditions C8 and C9 in (7)
holds.

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 195

Remark that the stability conditions of the limit cycle may be derived by
using the Routh–Hurwitz criterion to the characteristic polynomial of the Jaco-
bian matrix of (f1,1, f1,3, f1,4). In other words, more constraints on the prin-
cipal diagonal minors of the Hurwitz matrix should be added to the algebraic
system (23). By using similar techniques we can verify that the resulting semi-
algebraic system has no real solution with respect to the variables R, X3, X4.
Hence, we complete the proof of Theorem 1.

5 Zero-Hopf Bifurcation in a Special Lorenz–Stenflo
System

Since the proof of Corollary 1 is very similar to that of Theorem 1, we omit some
steps in order to avoid some long expressions.

The corresponding differential system
(

dR
dt , dθ

dt ,
dX3
dt , dX4

dt

)
(step (iii) in

Sect. 2) associated to system (8) now becomes

dR

dt
= ε

[1
60

(−30R cos θX4 − 154R cos θ + 30X3X4 + 30X3) sin θ

+
1
4

R cos2 θX4 − 103
60

R cos2 θ − 1
4

cos θX3X4

+
7
12

cos θX3 +
7
5

R
]

+ O(ε2),

dθ

dt
= 1 + ε

[1
60R

(− 15R cos θX4 + 103R cos θ + 15X3X4 − 35X3

)
sin θ

+
1

60R

(− 30R cos2 θX4 − 154R cos2 θ + 30 cos θX3X4 + 30 cos θX3

+ 172R
)]

+ O(ε2),

dX3

dt
= ε

[
− 1

4
X3X4 +

1
4
R cos θX4 +

11
12

X3 − 23
60

R cos θ − 11
15

R sin θ
]

+ O(ε2),

dX4

dt
= ε

[1
108

(
25 cos θR2 − 25RX3

)
sin θ +

25
108

R2 cos2 θ − 25
36

R cos θX3

+
25
54

X2
3 + X4

]
+ O(ε2).

(24)
Hence, we have the normal form of averaging (step (iv) in Sect. 2)

dR

dθ
=

dR/dt

dθ/dt
,

dX3

dθ
=

dX3/dt

dθ/dt
,

dX4

dθ
=

dX4/dt

dθ/dt
. (25)

In order to find the limit cycles of system (8), we must study the real roots of
the first order averaged functions

f1,1(R,X3,X4) =
1
8

X4R +
13
24

R,

f1,3(R,X3,X4) = −1
4

X4X3 +
11
12

X3,

f1,4(R,X3,X4) =
25
216

R2 +
25
54

X2
3 + X4.

(26)

196 B. Huang et al.

Moreover, the determinant of the Jacobian of (f1,1, f1,3, f1,4) is

D1(R,X3,X4) = − 1
32

X2
4 − 1

48
X4 +

25
864

X2
3X4 +

143
288

+
325
2592

X2
3

+
25

3456
R2X4 − 275

10368
R2.

(27)

Using the built in Maple command RealRootIsolate (with the option ‘abserr’=
1/1010) to the semi-algebraic system{

f1,1(R,X3,X4) = 0, f1,3(R,X3,X4) = 0, f1,4(R,X3,X4) = 0,
R > 0, D1(R,X3,X4) �= 0,

(28)

we obtain a list of one real solution:[
R̄ ≈ 6.1185 ∈

[6265
1024

,
50127
8192

]
, X̄3 = 0, X̄4 = −13

3

]
.

This verifies that system (8) has exactly one limit cycle bifurcating from the
origin. Now we shall present the expression of the limit cycle. The limit cycles Λ
of system (25) associated to system (8) and corresponding to the zero (R̄, X̄3, X̄4)
given by (28) can be written as {(R(θ, ε),X3(θ, ε),X4(θ, ε)), θ ∈ [0, 2π]}, where
from (13) we have

Λ :=

⎛
⎝ R(θ, ε)

X3(θ, ε)
X4(θ, ε)

⎞
⎠ =

⎛
⎝ R̄

X̄3

X̄4

⎞
⎠ + O(ε). (29)

Moreover, the eigenvalues of the Jacobian matrix

⎛
⎜⎝

∂f1,1
∂R

∂f1,1
∂X3

∂f1,1
∂X4

∂f1,3
∂R

∂f1,3
∂X3

∂f1,3
∂X4

∂f1,4
∂R

∂f1,4
∂X3

∂f1,4
∂X4

⎞
⎟⎠ at the

point (R̄, X̄3, X̄4) are about (−0.6546509493, 1.6546509493, 2). We have the
corresponding limit cycles Λ is unstable.

Further, in system (24), the limit cycle Λ writes as⎛
⎜⎜⎝

R(t, ε)
θ(t, ε)

X3(t, ε)
X4(t, ε)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

R̄
t

X̄3

X̄4

⎞
⎟⎟⎠ + O(ε). (30)

Finally, going back through the changes of variables, (X1,X2,X3,X4) �→
(R cos θ,R sin θ,X3,X4), (U, V,W,Z) �→ (εX1, εX2, εX3, εX4), and (x, y, z, w)
�→ (U, V,W,Z) given by (20), we have for system (8) the limit cycle:

x(t, ε) =
5
12

ε
(
X̄3 − R̄ cos t

)
+ O(ε2),

y(t, ε) =
9
5
ε
(
2X̄3 − R̄ cos t − R̄ sin t

)
+ O(ε2),

z(t, ε) = εX̄4 + O(ε2),

w(t, ε) =
1
6
ε
(
5X̄3 − R̄ cos t + 2R̄ sin t

)
+ O(ε2).

(31)

This completes the proof of Corollary 1.

Stability and Zero-Hopf Bifurcation of the Lorenz-Stenflo System 197

6 Conclusions

In this paper, using symbolic computation, we analyzed the conditions on the
parameters under which the Lorenz–Stenflo differential system has a prescribed
number of (stable) equilibrium points. Sufficient conditions for the existence
of one limit cycle bifurcating from the origin of the Lorenz–Stenflo system are
derived by making use of the averaging method, as well as the methods of real
solution classification. The special family of the Lorenz–Stenflo system (8) was
provided as a concrete example to verify our established result. The algebraic
analysis used in this paper is relatively general and can be applied to other n-
dimensional differential systems. The zero-Hopf bifurcation of limit cycles from
the equilibrium point (other than the origin) of the Lorenz–Stenflo system is
also worthy of study. We leave this as a future problem.

References

1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
2. Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, Strange Attractors;

Applied Mathematical Sciences. Strange Attractors; Applied Mathematical Sci-
ences. Springer, New York (1982). https://doi.org/10.1007/978-1-4612-5767-7

3. Robinson, C.: Nonsymmetric Lorenz attractors from a homoclinic bifurcation.
SIAM J. Math. Anal. 32, 119–141 (2000)

4. Yang, Q., Chen, G., Huang, K.: Chaotic attractors of the conjugate Lorenz-type
system. Int. J. Bifurc. Chaos 17, 3929–3949 (2007)

5. Montiel, L., Llibre, J., Stoica, C.: Zero-Hopf bifurcation in a hyperchaotic Lorenz
system. Nonlinear Dyn. 75, 561–566 (2014)

6. Stenflo, L.: Generalized Lorenz equations for acoustic-gravity waves in the atmo-
sphere. Physica Scripta 53, 83–84 (1996)

7. Wang, D., Xia, B.: Stability analysis of biological systems with real solution clas-
sification. In: Proceedings of ISSAC 2005, pp. 354–361. ACM Press, New York
(2005)

8. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Math. Comput. Sci. 1, 507–539 (2008)

9. Li, X., Mou, C., Niu, W., Wang, D.: Stability analysis for discrete biological models
using algebraic methods. Math. Comput. Sci. 5, 247–262 (2011)

10. Niu, W., Wang, D.: Algebraic analysis of stability and bifurcation of a self-
assembling micelle system. Appl. Math. Comput. 219, 108–121 (2012)

11. Chen, C., Corless, R., Maza, M., Yu, P., Zhang, Y.: An application of regular chain
theory to the study of limit cycles. Int. J. Bifur. Chaos 23, 1350154 (2013)

12. Boulier, F., Han, M., Lemaire, F., Romanovski, V.G.: Qualitative investigation of
a gene model using computer algebra algorithms. Program. Comput. Softw. 41(2),
105–111 (2015). https://doi.org/10.1134/S0361768815020048

13. Boulier, F., Lemaire, F.: Finding first integrals using normal forms modulo differ-
ential regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2015. LNCS, vol. 9301, pp. 101–118. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24021-3 8

14. Huang, B., Niu, W., Wang, D.: Symbolic computation for the qualitative theory
of differential equations. Acta. Math. Sci. 42B, 2478–2504 (2022)

https://doi.org/10.1007/978-1-4612-5767-7
https://doi.org/10.1134/S0361768815020048
https://doi.org/10.1007/978-3-319-24021-3_8
https://doi.org/10.1007/978-3-319-24021-3_8

198 B. Huang et al.

15. Chen, Y., Liang, H.: Zero-zero-Hopf bifurcation and ultimate bound estimation of
a generalized Lorenz-Stenflo hyperchaotic system. Math. Methods Appl. Sci. 40,
3424–3432 (2017)

16. Llibre, J., Buzzi, C.A., da Silva, P.R.: 3-dimensional Hopf bifurcation via averaging
theory. Disc. Contin. Dyn. Syst. 17, 529–540 (2007)

17. Llibre, J., Makhlouf, A.: Zero-Hopf periodic orbits for a Rössler differential system.
Int. J. Bifurc. Chaos 30, 2050170 (2020)

18. Sang, B., Huang, B.: Zero-Hopf bifurcations of 3D quadratic Jerk system. Mathe-
matics 8, 1454 (2020)

19. Tian, Y., Huang, B.: Local stability and Hopf bifurcations analysis of the
Muthuswamy-Chua-Ginoux system. Nonlinear Dyn. (2), 1–17 (2022). https://doi.
org/10.1007/s11071-022-07409-3

20. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer, New York (1993). https://doi.org/10.1007/
978-1-4612-1140-2

21. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (2004)
22. Llibre, J., Candido, M.R.: Zero-Hopf bifurcations in a hyperchaotic Lorenz system

II. Int. J. Nonlinear Sci. 25, 3–26 (2018)
23. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal the-

ory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel,
Dordrecht (1985)

24. Yang, L., Xia, B.: Real solution classifications of parametric semi-algebraic sys-
tems. In: Dolzmann A., Seidl A., Sturm T. (eds.) Algorithmic Algebra and Logic.
Proceedings of the A3L, Norderstedt, Germany, pp. 281–289 (2005)

25. Buicǎ, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer
degree. Bull. Sci. Math. 128, 7–22 (2004)

26. Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theory for finding
periodic solutions via Brouwer degree. Nonlinearity 27, 563–583 (2014)

27. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynam-
ical Systems, 2nd edn. Applied Mathematical Sciences Series Volume 59. Springer,
New York (2007). https://doi.org/10.1007/978-0-387-48918-6

28. Llibre, J., Moeckel, R., Simó, C.: Central configuration, periodic orbits, and hamil-
tonian systems. In: Advanced Courses in Mathematics-CRM Barcelona Series.
Birkhäuser, Basel, Switzerland (2015)

29. Huang, B.: Using symbolic computation to analyze zero-Hopf bifurcations of poly-
nomial differential systems. In: Proceedings of ISSAC 2023, pp. 307–314. ACM
Press, New York (2023). https://doi.org/10.1145/3597066.3597114

30. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: With Applications. Aca-
demic Press, London (1985)

31. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-
put. 42, 636–667 (2007)

32. Xia, B.: DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun.
Comput. Algebra 41, 102–103 (2007)

33. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Trian-
gular decomposition of semi-algebraic systems. J. Symb. Compt. 49, 3–26 (2013)

https://doi.org/10.1007/s11071-022-07409-3
https://doi.org/10.1007/s11071-022-07409-3
https://doi.org/10.1007/978-1-4612-1140-2
https://doi.org/10.1007/978-1-4612-1140-2
https://doi.org/10.1007/978-0-387-48918-6
https://doi.org/10.1145/3597066.3597114

Non-principal Branches of Lambert W. A
Tale of 2 Circles

Jacob Imre and David J. Jeffrey(B)

Department of Mathematics, University of Western Ontario, London, ON, Canada

djeffrey@uwo.ca

Abstract. The Lambert W function is a multivalued function whose
principal branch has been studied in detail. Non-principal branches, how-
ever, have been much less studied. Here, asymptotic series expansions for
the non-principal branches are obtained, and their properties, including
accuracy and convergence are studied. The expansions are investigated
by mapping circles around singular points in the domain of the func-
tion into the range of the function using the new expansions. Different
expansions apply for large circles around the origin and for small circles.
Although the expansions are derived as asymptotic expansions, some
surprising convergence properties are observed.

Keywords: Multivalued functions · Asymptotic expansions · Special
functions · Convergence tests

1 Introduction

The Lambert W function owes its current status1 in no small part to computer
algebra systems. Because W allowed algebra systems to return closed-form solu-
tions to problems from all branches of science, computer users, whether mathe-
maticians or non-specialists discovered W in ways that a conventional literature
search could not. One difficulty for users has been that Lambert W is multival-
ued, like arctangent or logarithm, but with an important difference. The branches
of the elementary multivalued functions are trivially related, for example the
branches of arctangent differ by π; similarly, the branches of logarithm differ by
2πi. There are no simple relations, however, between the branches of W , and
each branch must be labelled separately and studied separately.

1.1 Definitions

The branches of the Lambert W function are denoted Wk(z), where k is the
branch index. Each branch obeys [1]

Wk(z)eWk(z) = z , (1)

1 Citations of [1] as of July 2023: Google scholar 7283; Scopus 4588.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 199–212, 2023.
https://doi.org/10.1007/978-3-031-41724-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_11&domain=pdf
http://orcid.org/0000-0002-2161-6803
https://doi.org/10.1007/978-3-031-41724-5_11

200 J. Imre and D. J. Jeffrey

and the different branches are distinguished by the definition

Wk(z) → lnk z for |z| → ∞ . (2)

Here, lnk z denotes the kth branch of logarithm [2], i.e. lnk z = ln z + 2πi, with
ln z as defined in [3]. The way in which condition (2) defines the branches of W
is also illustrated in Fig. 1.

The principal branch W0(z) takes real values for z ≥ −e−1 and has been
extensively studied. For example, the function T (z) = − W0(−z) is the expo-
nential generating function for labelled rooted trees [4]; the convex analysis of
W0 was developed in [5]; it was shown in [6] that W0 is a Bernstein function,
and a Stieltjes function, and its derivative is completely monotonic; a model of
chemical kinetics in the human eye uses W0(x) in [8]. Numerous papers have pro-
posed numerical schemes for bounding or evaluating W0(x) for x ∈ R, a recent
example being [7].

In contrast, non-principal branches k �= 0 have been less studied. They do
have, nonetheless, some applications. The branch W−1(z) takes real values for
−e−1 ≤ z < 0. The real-valued function W−1(− exp(−1 − 1

2z2)) was used in [9]
to obtain a new derivation of Stirling’s approximation to n! and Vinogradov has
presented applications in statistics both for W−1(x) [10] and W0(x) [11].

1.2 Expansions

In [12], de Bruijn obtained an asymptotic expansion for W0(x) when x → ∞;
this was extended to the complex plane in [1]. Having obtained an expansion for
large x, [1] continued by stating

‘A similar but purely real-valued series is useful for the branch W−1(x) for
x < 0. We can get a real-valued asymptotic formula from the above by
using log(−x) in place of Log(z) and log(− log(−x)) in place of log(Log(z)).
[...] This series is not useful for complex x because the branch cuts of the
series do not correspond to those of W .’

We improve upon this point by proposing new, explicit series for all non-principal
branches k �= 0, and testing them numerically.

An important difference between W0 and all other branches is behaviour at
the origin. W0 is analytic at the origin [13], and its Taylor expansion is known
explicitly [13]; in contrast, all other branches are singular at the origin. Our
interest here is to study asymptotic expansions both for |z| → ∞ and, for non-
principal branches, the neglected case |z| → 0.

1.3 Branch Structure

To focus our discussion, we consider the plots shown in Fig. 1. The top set of
axes show values of z in the domain of W (z). The bottom set show values of
Wk, where the branch indicator k is important; that is, the bottom axes show

Non-principal Branches of Lambert W. A Tale of 2 Circles 201

Fig. 1. The domains (left axes) and ranges (right axes) of the branches of the Lambert
W function. The branches of W collectively fill all of the complex plane, although
any one branch occupies only a disjoint strip of the plane. Each branch has a domain
consisting of the entire complex plane, although the branch cuts differ according to the
branch. The continuous curves in the range are constructed piecewise by mapping the
circles successively with the different branches.

the ranges2. Although only one set of axes is used to show the domain, this is a
simplification which avoids multiple figures.

There are actually several different domains, coinciding with the different
branches of W . In contrast to more familiar multi-valued functions, such as ln z,
the different branches Wk(z) do not share a single common domain. Specifically,
the singular points and the branch cuts of Wk(z) vary from branch to branch.
In Fig. 1, the different branch cuts for different branches are compressed onto
the negative real axis (of the top set of axes) using dashed and solid lines. For
the principal branch W0, the branch cut consists only of the dashed portion of
the axis, i.e. x ≤ −1/e, and the solid segment is not a branch cut; the point
x = −1/e is the singular point. For the branches k = ±1, there are two branch
cuts, both the dashed line and the solid line; they meet at x = −1/e. It is best to
think of the cuts as distinct, even though they share a singular point and extend
along the same axis. The distinction is that the dashed line for k = −1 maps to
the boundary between W0 and W−1, with the boundary belonging to W−1, while
the solid line maps to the boundary between W1 and W−1, with the boundary
belonging to W−1. Similarly, the dashed line for k = 1 maps to the boundary
between W0 and W1, but now the boundary belongs to W0. In contrast to the
dashed-line cuts, the solid-line cut maps to the boundary between W1 and W−1,
with the boundary belonging to W−1.

The origin is a second singular point for W1 and W−1. For all other branches,
i.e. k ≥ 2 and k ≤ −2, the two cuts merge into a single cut extending along the

2 Note the plural. We regard each branch of Wk as a separate function with its own
domain and range [14].

202 J. Imre and D. J. Jeffrey

whole of the negative real axis, with the point z = −1/e no longer being a
singular point, and only the origin being singular. Two circles, both alike in
dignity3, are plotted in the domain; they are described by the equation z = reiθ

with r = 200 and r = 0.05 and −π < θ ≤ π. The circles are drawn so that one
end of each circle touches the branch cut, while the other end stops short of the
cut. This plotting convention reflects that the θ interval is closed on the top of
the cut, when θ = π.

The bottom axes in Fig. 1 show the ranges of the branches Wk. The branch
boundaries are shown as black dashed lines. The curves plotted are the results
from applying successively W−2,W−1,W0,W1,W2 to the two circles shown in the
top set of axes. The continuous curve in the positive-real half-plane corresponds
to the large circle, while the small circle maps into two curves: the small closed
curve around the origin and the continuous curve in the negative real half-plane.

1.4 Asymptotic Expansions

We briefly summarize Poincaré’s theory of asymptotic expansions [15, Ch.1].
We begin with an example.

g(x) =
∫ ∞

0

e−xt dt

1 + t
=

∫ ∞

0

e−xt(1 − t + t2 − t3 + . . .) dt

=
1
x

− 1!
x2

+
2!
x3

− 3!
x4

+
4!
x5

− . . . (3)

The series in 1/x does not converge for any x, but if we substitute x = 10 into
the equation, we obtain (evaluating the integral using Maple)

∫ ∞

0

e−10t dt

1 + t
= 0.0915633 . . . = 0.1 − 0.01 + 0.002 − 0.0006 + 0.00024 − . . . (4)

Adding the first 4 terms, we obtain the approximation 0.0914, which approxi-
mates the integral with an error 0.00016. Our sum omitted the 5th term, and we
note that its value, 0.00024, bounds the observed error. It is typical of asymptotic
series that the error is bounded by the first omitted term in the sum.

The theory of asymptotic expansions generalizes the functions x−k used in
the example, with a sequence of gauge, or scale, functions {φn(x)} obeying the
condition φn+1(x) = o(φn(x)) as x → ∞. The series formed from these functions,

g(x) =
N∑

n=1

anφn(x) , (5)

has the property that it becomes more accurate as x → ∞. Typically, the error
is bounded by the omitted term φN+1(x). For an asymptotic expansion, the

3 This whimsical Shakespearian reference emphasises the mathematical point that pre-
vious investigations have concentrated on the large circle and neglected the equally
important small circle.

Non-principal Branches of Lambert W. A Tale of 2 Circles 203

limit N → ∞ is of less interest than the limit x → ∞, and will not exist for
a non-convergent expansion. This paper uses scale functions φn(z) = 1/ lnn(z).
In order for the functions to decrease with n, we require that | ln z| > 1, which
in turn requires |z| > e or |z| < e−1. Then they form an asymptotic sequence
both in the limit |z| → ∞ and |z| → 0.

1.5 Outline

In Sect. 2, we revisit the derivation of the expansion of W given in [1] for large
arguments, replacing the imprecise notation Log with the precise notation lnk z
defined above. We then use graphical methods to add to earlier treatments by
demonstrating the accuracy of the approximations for the different branches.
Although not all asymptotic expansions are convergent series, the expansions
given here are convergent for some arguments. We show this convergence, but
do not analyse the regions in detail.

In Sect. 3, the main motivation for this paper is taken up: the expansions
for non-principal branches of W around the origin. We show that the key idea
is to define a shifted logarithm which matches the asymptotic behaviour at the
origin. Again we also consider convergence, and we uncover an unexpected result
that several series, although based on different starting assumptions, none the
less converge to correct values. The rates of convergence, however, are different,
with the series based on shifted logarithms being best.

2 de Bruijn Series for Large z

Since the branches of W are defined so that Wk(z) asymptotically approaches
lnk z, we consider Wk(z) = lnk z + v(z), and assume v = o(lnk z). Then (1) gives

(lnk z + v(z)) elnk z+v = (lnk z + v(z)) zev = z .

To leading order, e−v = lnk z, and assuming that v lies in the principal branch
of logarithm, the approximation is (note the different branches of logarithm)

Wk(z) = lnk z − ln0(lnk z) + u(z) . (6)

Neglecting temporarily the u(z) term, we compare in Fig. 2 the one-term and
two-term approximations to W . The line thickening shows where the approxi-
mations think the branch boundaries are. The term lnk z alone is a significant
over-estimate, and the branch boundaries are not close, but two terms, although
under-estimating, are encouragingly closer. Our main interest, however, is the
behaviour after including u(z). Substituting (6) into (1) and introducing

σ =
1

lnk z
, and τ =

ln(lnk z)
lnk z

, (7)

we can show that u obeys (more details of this demonstration are given below)

1 − τ + σu − e−u = 0 . (8)

204 J. Imre and D. J. Jeffrey

Fig. 2. A comparison between the exact value of W and the one-term and two-term
approximations in (6). The dashed curve is the exact value. The straight line to the
right is the one-term approximation; the central portion has been thickened to show
where the approximation thinks the principal branch is. The solid curve to the left is
the two-term approximation.

Equation (8) was solved for u by Comtet [16] as a series in σ:

u =
N∑

n=1

cn
(−σ)n

n!
, (9)

cn =
n∑

m=1

(−1)n−m

[
n

n − m + 1

]
σ−mτm

m!
, (10)

where
[

n
n−m+1

]
is a Stirling Cycle number [17, p. 259], and we have written the

series going to N terms, for later reference. The form of the expansion appears
to be unchanged from the principal branch, but this is because the branch infor-
mation is hidden in the variables σ and τ . The derivation of the expansion is
for an asymptotic series, as defined in Sect. 1.4. Such series are not necessarily
convergent4, but in [19], the series (6) together with (9) was studied for x ∈ R

and the series was shown to converge for x > e. The question naturally arises of
where the series for principal and non-principal branches converge for z ∈ C.

Since we are dealing with the accuracy and convergence of series on multi-
ple domains of z and for multiple branches of W , we wish to avoid analyzing
each branch separately and being tempted to present multiple repetitious plots
of results. We thus use the plot shown in Fig. 3 to summarize our findings. The
plot accumulates maps of the large circle shown above in Fig. 1 under successive
branches Wk; these plots are compared with maps made by the corresponding
series approximation (9) using 2 terms of the summation. The contours corre-

4 Indeed, some authors define an asymptotic series as one that does not converge [18].

Non-principal Branches of Lambert W. A Tale of 2 Circles 205

spond to circles of radii r = 50, 10, 5, 3, 1, e−1. In each case the dashed curve is
W and the solid curve is the series approximation.

In Fig. 3, we focus first on the approximation for the principal branch, indi-
cated by the red curves. We see that for r > 3, the accuracy is acceptable,
and improves for larger r, as expected. Since we are considering an asymptotic
approximation, we fix the number of terms in the summation to 2, and consider
changes with r. We note in particular that the exact and approximate curves for
r = 50 are practically indistinguishable to the human eye. We can also inves-
tigate the convergence of the series. For r > 10 we can take more terms of
the summation and observe improved accuracy (data not shown), indicating the
series is convergent for larger r values (as well as asymptotic). For smaller values
of r, the series loses accuracy, and in parallel fails to converge, the extraneous
curves swamping the figure. Therefore, for r < 3 we plot only the values of W0

and remove the distraction of the failed approximations.
Both the W curves and the approximations are smooth across the branch

boundaries. This reflects the properties that

Wk(−x) = lim
y↑0

Wk+1(−x + iy) , for x < −1/e , and (11)

lnk(−x) = lim
y↑0

lnk+1(−x + iy) , for x < 0 . (12)

This does not ensure that the boundaries between the branches of W and of
the approximations agree, although they approach each other with improved
accuracy.

For branches k �= 0, we observe something that is unexpected, namely, that
the approximations show evidence of remaining accurate for all values of r down
to r = e−1. Indeed, the series appear convergent. This is difficult to justify graph-
ically, but can be checked by extended summation for values where graphical evi-
dence is weakest. In Table 1 we calculate approximations to W−1(−1/e) = −1
and W−1(−0.4) using increasing numbers of terms in the sum. Adding up large
numbers of terms in a sum can require additional intermediate precision for
accuracy. For the table, Maple’s default 10-digit accuracy had to be increased to
30 decimal digits for sums of more than 50 terms. The numerical results indicate
convergence, but do not constitute a proof.

3 de Bruijn Series for Small z

A new feature associated with the analysis around the origin is the disappearance
from the asymptotic analysis of the principal branch. Figure 4 shows a plot of
values of Wk computed on a circle of radius r = 1

20 and centred at the origin.
The principal branch, shown in red, is the small closed curve around the origin,
while all other branches form the continuous curve on the far left. It is important
to note a difference between W0 and W−1. The real values of W0 occur in the
middle of its range, or to put it another way, the real values of W0 do not coincide
with the branch boundaries. In contrast, the real values of W−1 occur on one

206 J. Imre and D. J. Jeffrey

Fig. 3. A systematic test of expansion (9), using two terms of the summation. Each
continuous curve is a concatenation of mappings of the same large circle using succes-
sively the various branches of W and of its approximations. The dashed curves are the
exact values of Wk while the solid curves are the approximations. The contours corre-
spond to circles of radii, from right to left, r = 50, 10, 5, 3, 1, e−1. The approximations
to the principal branch for r < 3 are so bad that they distract from the plots and have
been omitted. For non-principal branches, all approximations are plotted.

of its branch boundaries. We want this difference to be reflected, if possible, in
the asymptotic forms we use. As in the previous section, the leading asymptotic
term is logarithm, and the problem is to match the branches of the logarithm
term to W−1, and more generally to all Wk for k �= 0. Two possible asymptotic
approximations are shown in Fig. 4 as the vertical lines to the right of the curve
showing the values of W . The right-most line is the approximation lnk z which
was already used for the previous section. Since W−1(−0.01) = −6.473, i.e.
purely real, but ln(−0.01) = −4.605 + πi and ln−1(−0.01) = −4.605 − πi, it
is clear that the approximations that worked well in the previous section, do
not work here. For this reason, we introduce what we call a ‘shifted log’ by the
definition

Lk(z) = lnk z − sgn(k)iπ , for k �= 0 . (13)

We see that for this function L−1(−0.01) = −4.605, and so is purely real where
W−1 is real. This function is plotted in Fig. 4 as the straight line in between the
other two contours. Notice that W−1(−e−1) = −1, and L−1(−e−1) = −1 also.
Of course, W−1(z) is not differentiable at z = −e−1, but L−1(z) is differentiable,
showing that more terms in the series will be needed for numerical accuracy.

Non-principal Branches of Lambert W. A Tale of 2 Circles 207

Table 1. Numerical tests of convergence for the expansion (9). The row N = ∞ refers
to the value of W that the series is trying to reach. The series appears convergent,
although painfully slowly.

N value for x = −e−1 value for x = −0.4

∞ −1 −0.9441 − 0.4073 i

40 −1.1568 − 0.1565 i −0.9665 − 0.3495 i

70 −1.1190 − 0.1188 i −0.9259 − 0.3800 i

100 −1.0997 − 0.0996 i −0.9232 − 0.4055 i

160 −1.0789 − 0.0788 i −0.9448 − 0.4183 i

Having matched the leading-order behaviour of Wk using the shifted loga-
rithm, we repeat the approach used above of substituting into WeW = z.

(Lk(z) + v(z)) exp(Lk(z) + v(z)) = (Lk(z) + v(z)) (−z) exp(v(z)) = z

v(z) = − ln(−Lk(z)) + u(z) .

It might seem that u will follow a pattern like ln(ln(−Lk)), but this is not so.

(Lk(z) − ln(−Lk(z)) + u)) exp(Lk(z) − ln(−Lk(z)) + u))

= (Lk(z) − ln(−Lk(z)) + u)
−z

−Lk(z)
exp(u) = z .

Rearranging gives

1 − ln(−Lk(z))
Lk(z)

+
u

Lk(z)
− e−u = 0 . (14)

Thus, if we redefine σ, τ by

σ =
1

Lk(z)
and τ =

ln(−Lk(z))
Lk(z)

, (15)

we can return to (8) and (9).
It is remarkable that the fundamental relation (8), originally derived for the

principal branch, has now reappeared twice: once for any branch (|z| � 1) and
now for |z| 	 e−1. Since (13) was chosen so that it is purely real where W−1 is
real, we first compare plots for −e−1 ≤ x < 0. Figure 5 compares W−1(x) with
two approximations, sum 9 for N = 0 and for N = 3. They are most accurate
near x = 0 as expected.

Figure 6 shows a comparison in the complex plane for branches from k = −2
to k = 2. The contours are maps of small circles of radii r = 0.25, 0.15, 0.05.
The series approximation was limited to N = 1 in order to obtain a visible
separation of the exact and approximate contours. Recall that smaller values
of r correspond to contours further to the left.

208 J. Imre and D. J. Jeffrey

Fig. 4. A comparison of possible asymptotic approximations to Wk for small circles
around the origin. The dashed curve shows Wk(z) for k �= 0. The two vertical lines show
the two candidates: lnk z is the right-most line and was used for large circles; the new
shifted logarithm is the left line. The lines are sectioned into thick and thin segments.
These show the branches of the approximations. The branches of lnk z are seen to be not
aligned with the boundaries of W , shown by the horizontal dashed lines. In contrast,
the branches of the shifted logarithm are closer to the boundaries of the branches of
W . Note that W−1(x) and the shifted logarithm are both purely real (although not
equal, alas) for the same range of arguments, namely real and in the interval [−e−1, 0).
For completeness, the map of the principal branch is also shown (around the origin),
to emphasize that it does not participate in the asymptotic behaviour.

Fig. 5. Plots of W−1(x) and approximations based on (9) together with (15). The solid
line shows W−1; the dashed line shows (9) for N = 0; the dotted line shows N = 3.

Non-principal Branches of Lambert W. A Tale of 2 Circles 209

Fig. 6. Comparison of Wk, k �= 0 and (9) using (15). The series uses N = 1 in order
to separate the function and the approximation. The boundary between k = −1 and
k = 1 is the negative real axis both for the function and for the approximation.

4 A Surprising Convergence

The approximation (7) used for |z| � 1 was discarded for |z| 	 −e−1 because
the branch boundaries were not aligned with the function near negative infinity.
One could expect therefore that its accuracy would be bad, or wrong, or it would
possibly return values for branches not requested. It is therefore surprising that
in spite of starting from dismal estimates, the approximation manages to achieve
results of reasonable accuracy. In Table 2, a comparison is made between series
(9) based on (15) with the rejected series based on (7). Out of curiosity, we have
tabulated the competing approximations when summed to one-term, two-terms
and four-terms. The preferred series always performs better, but the other series
also achieves good accuracy. As stated several times, (15) has the advantage of
returning real values when W−1 is real, so we stick to our preferred series and
do not pursue further discussion of this point.

5 A Further Variation

We briefly comment on a variation on the above series which can lead to more
accurate estimates. We introduce a parameter during the derivation of the fun-
damental relation. During the derivation of (6), we considered the equation
lnk z + v = e−v, and argued that v is of smaller asymptotic order than lnk z. We
thus neglected it on the left side of the equation and solved lnk z = e−v for v.
We can note, however, that a constant is also of lower asymptotic order than

210 J. Imre and D. J. Jeffrey

Table 2. Comparison of series (9) combined with (7) and then with (15). The vari-
ous approximations are printed in adjacent columns for easy comparison. The errors
reported in the last two columns report the errors in the 4-term summations.

x k Wk lnk x Lk(x) Eq. (7) N = 0 Eq. (15) N = 0

−0.1 −1 −3.58 −2.30− πi −2.30 −3.66− 0.94i −3.15

−0.01 −1 −6.47 −4.61− πi −4.61 −6.32− 0.60i −6.13

−0.1 −2 −4.45− 7.31i −2.30− 3πi −2.30− 2πi −4.58− 7.61i −4.20− 7.50i

−0.01 −2 −6.90− 7.08i −4.61− 3πi −4.61− 2πi −6.96− 7.40i −6.66− 7.22i

x k Wk Eq. (7) N = 2 Eq. (15) N = 2 Error (7) Error (15)

−0.1 −1 −3.577 −3.405− 0.127i −3.591 0.213 0.013

−0.01 −1 −6.473 −6.416 + 0.035i −6.481 0.066 0.008

−0.1 −2 −4.449− 7.307i −4.448− 7.314i −4.442− 7.305i 0.0074 0.0071

−0.01 −2 −6.896− 7.081i −6.891− 7.086i −6.894− 7.079i 0.0069 0.0039

lnk z, and instead of neglecting v, estimate the v on the left by a constant p:
thus lnk z + p = e−v. We now have the approximation

Wk,dB(z, p) = lnk(z) − ln(p + lnk(z)) + u .

Substituting in WeW = z leads now to the equation

(lnk z − ln(p + lnk z) + u)
1

p + lnk z
= e−u . (16)

A simple manipulation allows us to convert this equation into yet another man-
ifestation of the fundamental relation (8).

(lnk z + p − p − ln(p + lnk z) + u)
1

p + lnk z
= 1 − p + ln(p + lnk z)

lnk z + p
+

u

p + lnk z
.

Thus, remarkably, we have

1 − τ + σu − e−u = 0 , and σ =
1

p + lnk z
, τ =

p + ln(p + lnk z)
lnk z + p

. (17)

The contours in Fig. 3 would correspond to p = 0. The effect of p is greatest
in the principal branch, where the approximation for the circle of radius r = 3
improves between the two figures, and for r ≤ 1, the approximations for p = 1
are good enough to be plotted (but still not good). The approximations for
non-principal branches are little changed by the parameter.

6 Concluding Remarks

It was pointed out in Fig. 1 that the singular point zc = −e−1 is the place where
different branch cuts meet. The point’s singular nature is reflected in the drop

Non-principal Branches of Lambert W. A Tale of 2 Circles 211

in the accuracy of the various series seen above. It is interesting to extend the
summation of the series to large numbers of terms so as to reach zc, but it is
not practical. The three branches k = 0 and k = ±1 share an expansion in
the variable

√
2(ez + 1) [1], and for obtaining numerical values when z is in the

neighbourhood of zc, that expansion is much more convenient.
By concentrating the discussion on plots of the ranges of Wk, we have been

able to condense the information more efficiently that by presenting results in
the domains of the functions. We think this is a fruitful way to discuss multi-
valued functions. Contrast Fig. 1 with the usual treatment in reference books of
functions such as logarithm or arctangent. The books always present plots of the
branch cuts in the domain, but never the ranges. The need to understand ranges
is heightened by the fact that the ranges of Wk are not trivially related to each
other, in contrast to the way in which ln1 z is only 2πi different from ln0 z.

This paper has not attempted to supply formal proofs of the convergence
properties of the series studied here. The aim has been to establish the correct
forms of the expansions, and to demonstrate numerically their properties. Some
of the surprising observations made here remain open problems, and invite both
more detailed numerical investigation and formal analytical work.

References

1. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the
Lambert W function. Adv. Comp. Math. 5(4), 329–359 (1996)

2. Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the Lambert
W function. Math. Scientist 21, 1–7 (1996)

3. Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions
(2023). https://dlmf.nist.gov/. Accessed 15 June 2023

4. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Disc.
Math. 75, 167–215 (1989)

5. Borwein, J.M., Lindstrom, S.B.: Meetings with Lambert W and other special func-
tions in optimization and analysis. Pure Appl. Funct. Anal. 1(3), 361–396 (2016)

6. Kalugin, G.A., Jeffrey, D.J., Corless, R.M., Borwein, P.B.: Stieltjes and other inte-
gral representations for functions of Lambert W. Integral Transf. Spec. Funct.
23(8), 581–593 (2012)

7. Iacono, R., Boyd, J.P.: New approximations to the principal real-valued branch of
the Lambert W-function. Adv. Comput. Math. 43, 1403–1436 (2017)

8. Mahroo, O.A.R., Lamb, T.D.: Recovery of the human photopic electroretinogram
after bleaching exposures: estimation of pigment regeneration kinetics. J. Physiol.
554(2), 417–437 (2004)

9. Marsaglia, G., Marsaglia, J.C.W.: A new derivation of Stirling’s approximation to
n!. Am. Math. Monthly 97(9), 826–829 (1990)

10. Vinogradov, V.: On Kendall-Ressel and related distributions. Stat. Prob. Lett. 81,
1493–1501 (2011)

11. Vinogradov, V.: Some utilizations of Lambert W function in distribution theory.
Commun. Stat. Theory Methods 42, 2025–2043 (2013)

12. de Bruijn, N.G.: Asymptotic Methods in Analysis. North-Holland (1961)

https://dlmf.nist.gov/

212 J. Imre and D. J. Jeffrey

13. Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert W
function. In: Küchlin, W.W. (ed.) ISSAC 1997: Proceedings of the 1997 Interna-
tional Symposium on Symbolic and Algebraic Computation, pp. 197–204. Associ-
ation of Computing Machinery (1997)

14. Jeffrey, D.J., Watt, S.M.: Working with families of inverse functions. In: Buzzard,
K., Kutsia, T. (eds.) Intelligent Computer Mathematics, vol. 13467 of Lecture
Notes in Computer Science, pp. 1–16. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-031-16681-5 16

15. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, Cambridge
(1974)

16. Comtet, L.: Inversion de yαey et y logα y au moyen des nombres de Stirling. C. R.
Acad. Sc. Paris 270, 1085–1088 (1970)

17. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn.
Addison-Wesley, Boston (1994)

18. Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation. Aca-
demic Press, Cambridge (1973)

19. Jeffrey, D.J., Corless, R.M., Hare, D.E.G., Knuth, D.E.: Sur l’inversion de yaey au
moyen des nombres de Stirling associés. Comptes Rendus Acad. Sci. Paris Serie
I-Mathematique 320(12), 1449–1452 (1995)

https://doi.org/10.1007/978-3-031-16681-5_16
https://doi.org/10.1007/978-3-031-16681-5_16

On the Qualitative Analysis of the
Equations of Motion of a Nonholonomic

Mechanical System

Valentin Irtegov(B) and Tatiana Titorenko

Matrosov Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov street, Irkutsk 664033, Russia

irteg@icc.ru

Abstract. The problem on the rotation of a dynamically asymmetric
rigid body around a fixed point is considered. The body is fixed inside
a spherical shell, which a ball and a disk adjoin to. The equations of
motion of the mechanical system in the case of absence of external forces
admit two additional first integrals and these are completely integrable.
The nonintegrable case, when potential forces act upon the system, is also
considered. The qualitative analysis of the equations of motion is done in
the both cases: stationary sets are found and their Lyapunov stability is
studied. A mechanical interpretation for the obtained solutions is given.

Keywords: Nonholonomic mechanical system · Qualitative analysis ·
Computer algebra

1 Introduction

The problem considered in this paper goes back to the Chaplygin work [1] of
rolling a dynamically asymmetric balanced ball along a horizontal plane without
slipping. The integrability of the system was revealed by Chaplygin with the help
of its explicit reduction to quadratures. A sufficient number of works are devoted
to the Chaplygin problem and its integrable generalizations (see, e.g., [2]). One
of them is investigated in the paper. In [3] the generalization of system [2] is
given. The motion of a dynamically asymmetric rigid body around fixed point
O is considered (see Fig. 1). The body is rigidly enclosed in a spherical shell,
the geometrical center of which coincides with the fixed point of the body. One
ball and one disk adjoin to the spherical shell. It is supposed that slipping at
a contact point of the ball with the shell is absent. The disk – nonholonomic
hinge – concerns the external surface of the spherical shell. The centers of the
balls and the axis of the disk are fixed in space. The study of dynamics of such
systems is of interest, e.g., for robotics in the problems of the design and control
of mobile spherical robots (see., e.g., [4]). The motion of the mechanical system
is described by the differential equations [3]

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 213–232, 2023.
https://doi.org/10.1007/978-3-031-41724-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_12

214 V. Irtegov and T. Titorenko

Fig. 1. The rigid body enclosed in a spherical shell, which a ball and a disk adjoin to.

Iω̇ = Iω × ω + Rγ × N + μE + MQ, D1ω̇1 = D1ω1 × ω + R1γ × N,

γ̇ = γ × ω, Ė = E × ω, (1)

and the equations of constraints

Rω × γ + R1ω1 × γ = 0, (ω,E) = 0. (2)

Here ω = (ω1, ω2, ω3), R is the angular velocity of the body and the radius of the
spherical shell, ω1 = (ω11 , ω12 , ω13), R1 is the angular velocity and the radius
of the adjoint ball, γ = (γ1, γ2, γ3) is the unit vector of the axis connecting
the fixed point with the center of the adjoint ball, E = (e1, e2, e3) is the vector
of the normal to the plane containing the fixed point and the axis of the disk,
I = diag(A,B,C) is the inertia tensor of the body, D1 is the inertia tensor of the
adjoint ball, N= (N1, N2, N3), μ are indefinite factors related to the reactions
of constraints (2), MQ is the moment of external forces. One supposes that the
position of the vectors E and γ with respect to each other is arbitrary.

By means of the equations of constraints (2) the differential Eqs. (1) are
reduced to the form [3]:

Iω̇ + Dγ × (ω̇ × γ) = Iω × ω + μE + MQ, γ̇ = γ × ω, Ė = E × ω, (3)

where D = R2

R2
1
D1.

The indefinite factor μ is found from the condition that the derivative of the
2nd relation (2) in virtue of differential Eqs. (3) is equal to zero.

If the body is subject to external forces, e.g., potential ones

MQ = γ × ∂U

∂γ
+ E × ∂U

∂E
,

On the Qualitative Analysis of the Equations of Motion 215

where U = U(γ,E) is the potential energy of external forces, Eqs. (3) admit the
following first integrals

2H = (IQ ω,ω) + 2U(γ,E) = 2h, V1 = (γ,γ) = 1, V2 = (E,E) = 1,

V3 = (γ,E) = c1, V4 = (ω,E) = 0 (4)

and are nonintegrable in the general case. Here IQ = I + D − Dγ ⊗ γ, γ ⊗ γ =
[cij], c11 = γ2

1 , c12 = γ1γ2, . . .
In the case of the absence of external forces (U = 0) and (E × γ) �= 0, Eqs.

(3) have two additional first integrals

F1 = (K,E × γ), F2 = (K,E × (E × γ)),

where K = IQ ω − (IQ ω,E)E, and then system (3) is completely integrable.

2 Problem Statement

The qualitative analysis of the problem under consideration was not conducted
so far. In the present work, the qualitative analysis of the equations of motion
(3) on the invariant set defined by the relation V4 = 0 (4) is done. We find
invariant sets of various dimension from the necessary conditions of extremum
of the first integrals of the problem (or their combinations) and study their
Lyapunov stability. The sets found in this way are called stationary ones. The
stationary sets of zero dimension are known as stationary solutions, while the
positive dimension sets are called stationary invariant manifolds (IMs).

We use the Routh–Lyapunov method [5] and some its generalizations [6] for
the study of the problem. The computer analysis of the problem is mainly done
symbolically. Computer algebra system (CAS) Mathematica and the software
package [7] written in the language of this system are applied to solve com-
putational problems. With the help of the package, the stability of the found
solutions is investigated.

The paper is organized as follows. In Sect. 2 and 3, we describe finding sta-
tionary sets both in the case of absence of external forces and when potential
forces act upon the mechanical system. Solutions obtained in these sections corre-
spond to equilibria of the mechanical system. In Sect. 4, solutions corresponding
to pendulum-type motions are presented. In Sect. 5, the stability of the found
solutions is analyzed. In Sect. 6, we give some conclusions.

3 On Stationary Sets in the Case of Absence of External
Forces

The equations of motion (3) in an explicit form on the invariant set V4 = 0 when
U = 0 are written as

216 V. Irtegov and T. Titorenko

ω̇1 = − 1
σ1

[
D((A − B)(B + D)γ3ω̄2 − (A − C)(C + D)γ2ω3) γ1ω1

+(B − C)((C + D)(B + D − Dγ2
2) − D(B + D)γ2

3) ω̄2ω3 + μ [(C + D)

×((B + D)e1 + Dγ2(e2γ1 − e1γ2)) + D(B + D)γ3(e3γ1 − e1γ3)]
]
,

ω̇3 = − 1
σ1

[
(A − B)((B + D)(A + D − Dγ2

1) − D(A + D) γ2
2)ω1ω̄2

−D((A − C)(A + D)γ2ω1 − (B − C)(B + D)γ1ω̄2) γ3ω3 + μ [D(A + D)

×γ2 (e2γ3 − e3γ2) + (B + D)(e3(A + D − Dγ2
1) + De1γ1γ3)]

]
,

γ̇1 = −γ3ω̄2 + γ2ω3, γ̇2 = γ3ω1 − γ1ω3, γ̇3 = −γ2ω1 + γ1ω̄2,

ė1 = −e3ω̄2 + e2ω3, ė2 = e3ω1 − e1ω3, ė3 = −e2ω1 + e1ω̄2, (5)

where ω̄2 = − e1ω1+e3ω3
e2

,

μ = − 1
σ2

[
(A−B)((B + D)(A + D) e3 + D(B + D)γ1(γ3e1−e3γ1)

+D(A + D)γ2(γ3e2 − e3γ2))ω1ω̄2

−(A − C)(e2(A + D)(C + D) + D(C + D)γ1(e1γ2 − e2γ1)
+D(A + D)γ3(e3γ2 − e2γ3))ω1ω3 + (B − C)((B + D)(C + D)e1

+D(C + D)γ2(e2γ1 − e1γ2) + D(B + D)γ3(e3γ1 − e1γ3)) ω̄2ω3

]
,

σ1 = D((B+D)(C+D) γ2
1 + (A+D)(C + D) γ2

2 + (A+D)(B+D) γ2
3)

−(A + D)(B + D)(C + D),
σ2 = (B + D)(C + D) e21 + (A + D)(C + D) e22 + (A + D)(B + D) e23

−D[(C + D)(e2γ1 − e1γ2)2 + (B + D)(e3γ1 − e1γ3)2

+(A + D)(e3γ2 − e2γ3)2],

Equations (5) admit the following first integrals:

2H = (A + D − Dγ2
1)ω2

1 + (B + D − Dγ2
2) ω̄2

2 + (C + D − Dγ2
3)ω2

3

−2D(γ1γ2ω1ω̄2 + γ1γ3ω1ω3 + γ2γ3ω̄2ω3) = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = e21 + e22 + e23 = 1,

V3 = e1γ1 + e2γ2 + e3γ3 = c1,

F1 = −(A + D)(e3γ2 − e2γ3)ω1 + (B + D)(e3γ1 − e1γ3) ω̄2

−(C + D)(e2γ1 − e1γ2)ω3 = c2,

F2 = [e1 (A + D − 2Dγ2
1)(e2γ2 + e3γ3) − γ1(A (e22 + e23)

−D((e22 + e23)(γ
2
1 − 1) + (e3γ2 − e2γ3)2 + e21(γ

2
2 + γ2

3)))]ω1

+[e2 (B + D − 2Dγ2
2)(e1γ1 + e3γ3) − γ2(B (e21 + e23)

−D((e21 + e23)(γ
2
2 − 1) + (e3γ1 − e1γ3)2 + e22(γ

2
1 + γ2

3)))] ω̄2

+[e3 (e1γ1 + e2γ2)(C + D − 2Dγ2
3) − γ3(C (e21 + e22)

−D((e2γ1 − e1γ2)2 + e23(γ
2
1 + γ2

2) + (e21 + e22)(γ
2
3 − 1)))]ω3 = c3. (6)

On the Qualitative Analysis of the Equations of Motion 217

Here F1, F2 are the additional integrals of the 3rd and 5th degrees, respectively.
As was remarked above, the stationary conditions for the first integrals of

the problem (or their combinations) are used to obtain solutions of interest for
us. In the problem under consideration, because of rather high degrees of the
first integrals, another approach [8] turned out to be more effective for seeking
the desired solutions: first, obtain the desired solutions from the equations of
motion, and, then, find the conditions on the parameters of the problem under
which these solutions satisfy the stationary equations for the first integrals.

Obviously, Eqs. (5) have the solution ω1 = ω3 = 0. These relations together
with the integrals V1 = 1, V2 = 1 define the invariant manifold (IM) of codimen-
sion 4 for the equations of motion (5). It is easy to verify by direct calculation
according to the IM definition. The equations of the IM are written as:

ω1 = ω3 = 0, e21 + e22 + e23 = 1, γ2
1 + γ2

2 + γ2
3 = 1. (7)

With the help of maps on IM (7)

ω1 = ω3 = 0, γ1 = ±
√

1 − γ2
2 − γ2

3 , e1 = ±
√

1 − e22 − e23, (8)

we find that the integral V3 takes the form

e2γ2 + e3γ3 ±
√

1 − γ2
2 − γ2

3

√
1 − e22 − e23 = c1

on this IM. Thus, IM (7) exists for any angles between the vectors E and γ, i.e.,
it is the family of IMs.

The differential equations γ̇2 = 0, γ̇3 = 0, ė2 = 0, ė3 = 0 on IM (7) have the
family of solutions:

γ2 = γ0
2 = const, γ3 = γ0

3 = const, e2 = e02 = const, e3 = e03 = const. (9)

The latter relations together with the IM equations determine four families
of solutions for the equations of motion (5)

ω1 = ω3 = 0, e1 = ±
√

1 − e02
2 − e02

2
, e2 = e02, e3 = e03, γ1 =

√
1 − γ0

2
2 − γ0

2
2
,

γ2 = γ0
2, γ3 = γ0

3;

ω1 = ω3 = 0, e1 = ±
√

1 − e02
2− e02

2
, e2 = e02, e3 = e03, γ1 = −

√
1 − γ0

2
2 − γ0

2
2
,

γ2 = γ0
2, γ3 = γ0

3 (10)

that can be verified by substituting the solutions into these equations. Here
e02, e

0
3, γ0

2, γ
0
3 are the parameters of the families. Evidently, the solutions belong

to IM (7).
From a mechanical point of view, the elements of the families of solutions

(10) correspond to equilibria of the mechanical system under study.
Using the stationary equations

∂K1/∂ω1 = 0, ∂K1/∂ω3 = 0, ∂K1/∂γj = 0, ∂K1/∂ej = 0 (j = 1, 2, 3)

218 V. Irtegov and T. Titorenko

for the integral 2K1 = 2λ0H − λ1(V1 − V2)2 − λ2F1F2 (λi = const), it is not
difficult to show that this integral takes a stationary value both on IM (7) and
solutions (10). For this purpose, it is sufficient to substitute expressions (8) (or
(10)) into the above equations. These become identity.

Directly, from differential Eqs. (5), it is also easy to obtain the following their
solutions:

ω1 = ω3 = 0, e1 = ±γ1, e2 = ±γ2, e3 = ±γ3. (11)

Relations (11) together with the integral V1 = 0 define two IMs of codimen-
sion 6 of differential Eqs. (5) that is verified by direct computation according to
the IM definition. The equations of these IMs have the form:

ω1 = ω3 = 0, e1 ∓ γ1 = 0, e2 ∓ γ2 = 0, e3 ∓ γ3 = 0, γ2
1 + γ2

2 + γ2
3 = 1. (12)

On substituting expressions (12) into the stationary conditions for the inte-
gral

2K2 = 2λ0H − λ1V1 − λ2V2 − 2λ3V3 − 2λ4F1 − 2λ5F2 (λi = const)

we find the values λ2 = λ1, λ3 = ∓λ1 under which the integral K2 assumes a
stationary value on IMs (12).

The integrals K1 and K2 (under the corresponding values of λ2, λ3) are used
for obtaining the sufficient conditions of stability of the above solutions.

The differential equations γ̇2 = 0, γ̇3 = 0 on each IMs (12) have the following
family of solutions: γ2 = γ0

2 = const, γ3 = γ0
3 = const. Thus, geometrically, in

space R8, two-dimensional surface corresponds to each of IMs (12), each point
of which is a fixed point of the phase space.

The integral V3 takes the values ±1 on IMs (12). Thus, IMs (12) correspond
to the cases when the vectors E and γ are parallel or opposite in direction.

4 On Stationary Sets in the Case of the Presence
of External Forces

Let the mechanical system under study be under the influence of external poten-
tial forces with the potential energy U = (a,γ) + (b,E), where a = (a1, a2, a2),
b = (b1, b2, b2) are the indefinite factors. In this case, the equations of motion
(3) on the invariant set V4 = 0 are written as:

On the Qualitative Analysis of the Equations of Motion 219

ω̇1 = − 1
σ1

[
D((A − B)(B + D)γ3ω̄2 − (A − C)(C + D)γ2ω3) γ1ω1

+(B − C)((C + D)(B + D − Dγ2
2) − D(B + D)γ2

3) ω̄2ω3 + μ [(C + D)
×((B + D)e1 + Dγ2(e2γ1 − e1γ2)) + D(B + D)γ3(e3γ1 − e1γ3)]
+((C + D)(B + D − Dγ2

2) − D(B + D)γ2
3)MQ1 + D(C + D)γ1γ2MQ2

+D(B + D)γ1γ3MQ3

]
,

ω̇3 = − 1
σ1

[
(A − B)((B + D)(A + D − Dγ2

1) − D(A + D) γ2
2)ω1ω̄2

−D((A − C)(A + D)γ2ω1 − (B − C)(B + D)γ1ω̄2) γ3ω3 + μ [D(A + D)
×γ2 (e2γ3 − e3γ2) + (B + D)(e3(A + D − Dγ2

1) + De1γ1γ3)]
+Dγ3((B + D)γ1MQ1 + (A + D)γ2MQ2) + ((B + D)(A+D−Dγ2

1)

−D(A + D)γ2
2)MQ3

]
,

γ̇1 = −γ3ω̄2 + γ2ω3, γ̇2 = γ3ω1 − γ1ω3, γ̇3 = −γ2ω1 + γ1ω̄2,

ė1 = −e3ω̄2 + e2ω3, ė2 = e3ω1 − e1ω3, ė3 = −e2ω1 + e1ω̄2, (13)

where μ = − 1
σ2

[
(A−B)((B + D)(A + D) e3 + D(B + D) γ1

×(γ3e1 − e3γ1) + D(A + D)γ2(γ3e2 − e3γ2))ω1ω̄2

−(A − C)(e2(A + D)(C + D) + D(C + D)γ1(e1γ2 − e2γ1)
+D(A + D)γ3(e3γ2 − e2γ3))ω1ω3 + (B − C)((B+D)(C+D) e1

+D(C + D)γ2(e2γ1 − e1γ2) + D(B + D)γ3(e3γ1 − e1γ3)) ω̄2ω3

−((C + D)((B + D)e1 + Dγ2(e2γ1 − e1γ2))
+D(B + D)γ3(e3γ1 − e1γ3))MQ1 − ((C + D)((A + D)e2
+Dγ1(e1γ2 − e2γ1)) + D(A + D)γ3(e3γ2 − e2γ3))MQ2

−(D(A + D)γ2(e2γ3 − e3γ2) + (B + D)((A + D)e3

+Dγ1(e1γ3 − e3γ1)))MQ3

]
.

MQ1 = b3e2−b2e3 + a3γ2−a2γ3, MQ2 = −b3e1 + b1e3−a3γ1+a1γ3,

MQ3 = b2e1 − b1e2 + a2γ1 − a1γ2.

Here ω̄2, σ1, σ2 have the same values as in Sect. 2.
The first integrals of Eqs. (13):

2H = (A + D − Dγ2
1)ω2

1 + (B + D − Dγ2
2) ω̄2

2 + (C + D − Dγ2
3)ω2

3

−2D(γ1γ2ω1ω̄2 + γ1γ3ω1ω3 + γ2γ3ω̄2ω3) + a1γ1 + a2γ2 + a3γ3

+b1e1 + b2e2 + b3e3 = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = e21 + e22 + e23 = 1,

V3 = e1γ1 + e2γ2 + e3γ3 = c1. (14)

220 V. Irtegov and T. Titorenko

We shall seek solutions of differential Eqs. (13) of the following type:

ω1 = ω3 = 0, e1 = e01, e2 = e02, e3 = e03, γ1 = γ0
1 , γ2 = γ0

2 , γ3 = γ0
3 , (15)

where e02, e03, γ0
2 , γ0

3 are some constants, and e01 = ±
√

1 − e0
2

2 − e0
2

3 ,

γ0
1 = ±

√
1 − γ02

2 − γ02
3 .

On substituting (15) into Eqs. (13) these take the form:

μ̄ [(C + D)((B + D) e01 + Dγ0
2(e02γ

0
1 − e01γ

0
2)) + D(B + D)γ0

3(e03γ
0
1 − e01γ

0
3)]

+((C + D)(B + D − Dγ02

2) − D(B + D)γ02

3)M̄Q1 + D(C + D)γ0
1γ0

2M̄Q2

+D(B + D)γ0
1γ0

3M̄Q3 = 0,

μ̄ [D(A + D)γ0
2 (e02γ

0
3 − e03γ

0
2) + (B + D)(e03(A + D − Dγ02

1) + De01γ
0
1γ0

3)]

+Dγ0
3((B + D)γ0

1M̄Q1 + (A + D)γ0
2M̄Q2) + ((B + D)(A + D − Dγ02

1)

−D(A + D)γ02

2)M̄Q3 = 0. (16)

Here μ̄ =
1
σ̄2

[
[(C + D)((B + D) e01 + Dγ0

2(e02γ
0
1 − e01γ

0
2)) + D(B + D)

×γ0
3(e03γ

0
1 − e01γ

0
3)] M̄Q1 + [(C+D)((A + D) e02 + Dγ0

1(e01γ
0
2−e02γ

0
1))

+D(A + D)γ0
3(e03γ

0
2 − e02γ

0
3)] M̄Q2 + [D(A + D)γ0

2(e02γ
0
3 − e03γ

0
2)

+(B + D)((A + D)e03 + Dγ0
1(e01γ

0
3 − e03γ

0
1))] M̄Q3

]
,

σ̄2 = (B + D)(C + D) e0
2

1 + (A + D)(C + D) e0
2

2 + (A + D)(B + D) e0
2

3

−D[(C + D)(e02γ
0
1 − e01γ

0
2)2 + (B + D)(e03γ

0
1 − e01γ

0
3)2

+(A + D)(e03γ
0
2 − e02γ

0
3)2], M̄Q1 = b3e

0
2 − b2e

0
3 + a3γ

0
2 − a2γ

0
3 ,

M̄Q2 = −b3e
0
1 + b1e

0
3 − a3γ

0
1 + a1γ

0
3 , M̄Q3 = b2e

0
1 − b1e

0
2 + a2γ

0
1 − a1γ

0
2 .

Equations (16) are linear with respect to ai, bi (i = 1, 2, 3). Considering them
as unknowns, we find, e.g., b2, b3, as the expressions of a1, a2, a3, b1, e0i , γ

0
i :

b2 =
1

e01(e
02
1 + e0

2

2 + e0
2

3)
(b1e02(e

02

1 + e0
2

2 + e0
2

3) + a3(e01e
0
3γ

0
2 − e02e

0
3γ

0
1)

−a2((e0
2

1 + e0
2

2)γ0
1 + e01e

0
3γ

0
3) + a1((e0

2

1 + e0
2

2)γ0
2 + e02e

0
3γ

0
3)),

b3 =
1

e01(e
02
1 + e0

2

2 + e0
2

3)
(b1e03(e

02

1 + e0
2

2 + e0
2

3) − a3((e0
2

1 + e0
2

3)γ0
1 + e01e

0
2γ

0
2)

+a2e
0
2(e

0
1γ

0
3 − e03γ

0
1) + a1(e02e

0
3γ

0
2 + (e0

2

1 + e0
2

3)γ0
3)). (17)

Assuming e03 = e02, γ0
3 = γ0

2 and a2 = a3 = 0, we obtain γ0
2 = −(b1e02 ±

b2

√
1 − 2e0

2

2)/a1 from the 1st relation (17). The 2nd relation (17) under the
above value of γ0

2 takes the form b3 = b2. So, when a2 = a3 = 0, b3 = b2, we

On the Qualitative Analysis of the Equations of Motion 221

have 4 families of solutions of differential Eqs. (13):

ω1 = ω3 = 0, e1 = −
√

1 − 2e02
2
, e2 = e3 = e02, γ1 = ∓

√
a2
1 − 2z21
a1

,

γ2 = − z1
a1

, γ3 = − z1
a1

;

ω1 = ω3 = 0, e1 =
√

1 − 2e02
2
, e2 = e3 = e02, γ1 = ±

√
a2
1 − 2z22
a1

,

γ2 = − z2
a1

, γ3 = − z2
a1

. (18)

Here z1 = b1e
0
2 + b2

√
1 − 2e02

2, z2 = b1e
0
2 − b2

√
1 − 2e02

2, and e02 is the parameter
of the families.

The integral V3 takes the form −(2e02z1 ±
√

1 − 2e0
2

2

√
a2
1 − 2z21)/a1 = c1

on the first two families of solutions (18), and on the last two families, it is

−(2e02z2 ∓
√

1 − 2e0
2

2

√
a2
1 − 2z22)/a1 = c1. Thus, solutions (18) exist under any

angles between vectors E and γ.
From a mechanical point of view, the elements of the families of solutions

(18) correspond to the equilibria of the mechanical system under study.
From the stationary conditions

∂Φ/∂ω1 = 0, ∂Φ/∂ω3 = 0, ∂Φ/∂γj = 0, ∂Φ/∂ej = 0 (j = 1, 2, 3)

of the integral 2Φ = 2λ0H − λ1V1 − λ2V2 − 2λ3V3 we find the constraints on λi,
under which the first two families of solutions (18) satisfy these conditions:

λ0 = −
e02

√
a2
1 − 2z21 ±

√
1 − 2e0

2

2 z1

a2
1e

0
2

, λ2 =
b1z1 ∓ b2

√
a2
1 − 2z21

a2
1e

0
2

, λ3 =
z1

a1e02
.

Having substituted the latter expressions into the integral Φ, we have:

2Φ1,2 = ∓
2(e02

√
a2
1 − 2z21 ±

√
1 − 2e0

2

2 z1)

a2
1e

0
2

H − V1 − b1z1 ∓ b2
√

a2
1 − 2z21

a2
1e

0
2

V2

− 2z1
a1e02

V3. (19)

By the same way, we find the integrals taking a stationary value on the
elements of the last two families of solutions (18):

2Φ3,4 = ±
2(e02

√
a2
1 − 2z22 ±

√
1 − 2e0

2

2 z2)

a2
1e

0
2

H − V1 − b1z2 ± b2
√

a2
1 − 2z22

a2
1e

0
2

V2

− 2z2
a1e02

V3.

222 V. Irtegov and T. Titorenko

5 On Pendulum-Like Motions

In the problem under consideration, we could not obtain solutions corresponding
to permanent rotations of the mechanical system. These motions are typical of
rigid body dynamics. Basing on the analysis of the equations of motion (5) and
(13), one can suppose that there are no such solutions. However, under the action
of external potential forces the mechanical system can perform pendulum-like
oscillations.

When a2 = a3 = b1 = 0, the relations

ω3 = 0, γ1 = ±1, γ2 = γ3 = e1 = 0 (20)

define two IMs of codimension 5 of the equations of motion (13).
The differential equations on these IMs are written as

ω̇1 =
b3e2 − b2e3

A
, ė2 = e3ω1, ė3 = −e2ω1

and describe the pendulum-like oscillations of the body with a fixed point relative
to the axis Ox in the frame rigidly attached to the body.

The integral V3 on IMs (20) is equal to zero identically that corresponds to
the case of orthogonal vectors γ, E. The integral Ψ = (V1 − 1)V3 assumes a
stationary value on IMs (20).

Let us consider another similar solution for equations (13). It is the IM of
codimension 3:

ω1 = γ3 = e3 = 0. (21)

This solution exists for a3 = b3 = 0.
The differential equations on IM (21)

ω̇3 =
b2e1 − b1e2 + a2γ1 − a1γ2

C + D
,

γ̇1 = γ2ω3, γ̇2 = −γ1ω3, ė1 = e2ω3, ė2 = −e1ω3

describe the pendulum-like oscillations of the body relative to the axis Oz. The
motions exist under any angle between the vectors γ, E, because the integral V3

on IM (21) takes the form: e1γ1 + e2γ2 = c1. So, it is the family of IMs.

6 On the Stability of Stationary Sets

In this Section, we investigate the stability of the above found solutions on the
base of the Lyapunov theorems on the stability of motion. To solve the prob-
lems, which often arise in the process of the analysis, the software package [7]
written in Mathematica language is applied. In particular, the package gives a
possibility to obtain the equations of the first approximation and their charac-
teristic polynomial, using the equations of motion and the solution under study

On the Qualitative Analysis of the Equations of Motion 223

as input data, and then, to conduct the analysis of the polynomial roots, bas-
ing on the criteria of asymptotic stability of linear systems. When the problem
of stability is solved by the Routh–Lyapunov method, the package, using the
solution under study and the first integrals of the problem as input data, con-
structs a quadratic form and the conditions of its sign-definiteness in the form of
the Sylvester inequalities. Their analysis is performed by means of Mathematica
built-in functions, e.g., Reduce, RegionPlot3D.

6.1 The Case of Absence of External Forces

Let us investigate the stability of one of IMs (12), e.g.,

ω1 = ω3 = 0, e1 − γ1 = 0, e2 − γ2 = 0, e3 − γ3 = 0, γ2
1 + γ2

2 + γ2
3 = 1,

using the integral 2K21 = 2λ0H−λ1(V1+V2−2V3)−2λ4F1−2λ5F2 for obtaining
its sufficient conditions.

We use the maps

ω1 = 0, ω3 = 0, e1 = ±z, e2 = γ2, e3 = γ3, γ1 = ±z

on this IM. From now on, z =
√

1 − γ2
2 − γ2

3 .
Introduce the deviations:

y1 = ω1, y2 = ω3, y3 = e1 − z, y4 = e2 − γ2, y5 = e3 − γ3, y6 = γ1 − z.

The 2nd variation of the integral K21 on the set defined by the first variations
of the conditional integrals

δV1 = ±2z y6 = 0, δV2 = 2(γ2y4 + γ3y5 ± z y3) = 0,

δV3 = γ2y4 + γ3y5 ± z (y3 + y6) = 0,

is written as:

2δ2K21 = α11y
2
1 + α12y1y2 + α22y

2
2 + α33y

2
3 + α34y3y4 + α24y2y4 + α13y1y3

+α23y2y3 + α14y1y4 + α44y
2
4 ,

where

α11 =
((A − B) γ2

2 + (B + D)(1 − γ2
3))λ0

2γ2
2

, α12 = ± (B + D) γ3zλ0

γ2
2

,

α22 =
((C + D) γ2

2 + (B + D) γ2
3)λ0

2γ2
2

, α33 =
(γ2

2 − 1)λ1

2γ2
3

, α34 = ∓γ2 λ1z

γ2
3

,

α24 =
((C + D) γ2

γ3
+

(B + D) γ3
γ2

)
λ6 ∓ (B − C) zλ5, α44 = − (γ2

2 + γ2
3)λ1

2γ2
3

,

α13 = ∓ ((A − B) γ2
2 + B + D) zλ5

γ2γ3
− (A + D)λ6,

α23 = − 1
γ2γ3

((B + D) γ3λ5 ∓ (C + D) γ2zλ6) + (B − C) γ2λ5,

α14 = − 1
γ2γ3

(((B + D) + (A − B) γ2
2 ∓ (B + D) γ3zλ6) γ2λ5) − (A − B) γ3λ5.

224 V. Irtegov and T. Titorenko

The conditions of sign-definiteness of the quadratic form δ2K21

Δ1 =
(γ2

2 − 1)λ1

γ2
3

> 0, Δ2 =
λ2
1

γ2
3

> 0,

Δ3 =
λ1

γ2
2γ2

3

[((C + D) γ2
2 + (B + D) γ2

3)λ0λ1 + ((C + D)2 γ2
2 + ((B + D)2

−(B − C)2 γ2
2) γ2

3)(λ2
5 + λ2

6)] > 0,

Δ4 =
1

γ2
2γ2

3

((C + D)(B + D + (A − B)γ2
2) + (A − C)(B + D)γ2

3)

×[λ2
0λ

2
1 + (B + C + 2D + (A − B) γ2

2 + (A − C) γ2
3)λ0λ1(λ2

5 + λ2
6)

+((C+D)(B+D +(A−B) γ2
2)+(A−C)(B+D) γ2

3)(λ2
5+λ2

6)
2] > 0. (22)

are sufficient for the stability of the IM under study.
The differential equations γ̇2 = 0, γ̇3 = 0 on IMs (12) have the family of

solutions:

γ2 = γ0
2 = const, γ3 = γ0

3 = const. (23)

Thus, each of IMs (12) can be considered as a family of IMs, where γ0
2 , γ0

3

are the parameters of the family.
Let γ0

3 = γ0
2 and λ5 = λ6 = λ1. Taking into consideration (23) and the above

constraints, inequalities (22) take the form:

(γ02

2 − 1)λ1

γ02
2

> 0,
λ2
1

γ02
2

> 0,

λ2
1

γ02
2

((B + C + 2D)λ0 + 2((B + D)2 + (C+D)2−(B−C)2γ02

2)λ1) > 0,

λ2
1

γ04
2

((B + D)(C + D) + ((A − D)(B + C) + 2(AD − BC)) γ02

2)

×(λ2
0 + 2(B + C + 2D − (B + C − 2A) γ02

2)λ0λ1 + 4((B + D)(C + D)

+((A − D)(B + C) + 2(AD − BC)) γ02

2)λ2
1) > 0.

With the help of the built-in function Reduce, we find the conditions of com-
patibility of the latter inequalities:

A > B > C > 0 and A < B + C, D > 0 and[((
λ0 > 0 and

(
σ1 < λ1 < σ2 − σ3

4
or σ2 +

σ3

4
< λ1 < 0

)
and

(
− 1 < γ0

2 < − 1√
2

or
1√
2

< γ0
2 < 1

))
or

(
λ0 > 0 and σ2 +

σ3

4
< λ1 < 0 and

(
− 1√

2
≤ γ0

2 < 0 or 0 < γ0
2 ≤ 1√

2

))]
.

On the Qualitative Analysis of the Equations of Motion 225

Here

σ1 =
(B + C + 2D)λ0

2((B − C)2γ02
2 − (B2 + C2 + 2BD + 2D(C + D)))

,

σ2 =
((B + C + 2D − (B + C − 2A)γ02

2)λ0

4((2BC + (B + C)D − A(B + C + 2D))γ02
2 − (B + D)(C + D))

,

σ3 =

√
(B − C)2 − 2(B − C)2γ02

2 + (B + C − 2A)2γ04
2 λ0

(B + D)(C + D) + (A(B + C + 2D) − 2BC − (B + C)D)γ02
2

.

The constraints on the parameter γ0
2 give the sufficient conditions of stability

for the elements of the family of IMs. The constraints imposed on the parameters
λ0, λ1 isolate a subfamily of the family of the integrals K21 , which allows one to
obtain these sufficient conditions. The analysis of stability of the 2nd IM of IMs
(12) is done analogously.

Let us investigate the stability of IM (7), using the integral 2K1 = 2λ0H −
λ1(V1 − V2)2 − λ2F1F2 for obtaining sufficient conditions. The analysis is done
in the map ω1 = 0, ω3 = 0, γ1 = −z1, e1 = −z2 on this IM. From now on,
z1 =

√
1 − γ2

2 − γ2
3 , z2 =

√
1 − e22 − e23.

In order to reduce the amount of computations we restrict our consideration
by the case when the following restrictions are imposed on the geometry of mass
of the mechanical system: A = 3C/2, B = 2C, D = C/2.

Introduce the deviations from the unperturbed solution:

y1 = ω1, y2 = ω2, y3 = γ1 + z1, y4 = e1 + z2.

The 2nd variation of the integral K1 in the deviations on the set

δV1 = −2z1y3 = 0, δV2 = −2z2y4 = 0

has the form: 2δ2K1 = β11y
2
1 + β12y1y2 + β22y

2
2 , where β11, β12, β22 are the

expressions of C, γ2, γ3, e2, e3. These are bulky enough and presented entirely in
Appendix.

Taking into consideration that γ2 = γ0
2 = const, γ3 = γ0

3 = const, e2 = e02 =
const, e3 = e03 = const (9) on IM (7), and introducing the restrictions on the
parameters γ0

3 = γ0
2 , e03 = e02, we write the conditions of positive definiteness of

the quadratic form 2δ2K1 (the Sylvester inequalities) as follows:

226 V. Irtegov and T. Titorenko

Δ1 = 2[
√

1 − 2e0
2

2 (γ02

2 + e0
2

2 (1 − 4γ02

2))

−2e02γ
0
2(1 − 2e0

2

2)
√

1 − 2γ02
2] z + 1 > 0,

Δ2 = − 1
e0

2

2

(
8γ02

2 + e0
2

2 (6 − 32γ02

2) − 15 − 16e02

√
1 − 2e0

2

2 γ0
2

√
1 − 2γ02

2

+2
(
2e02γ

0
2(1 − 2e0

2

2)(15 − 14e0
2

2 − 16γ02

2 (1 − 4e0
2

2))
√

1 − 2γ02
2 +

√
1 − 2e0

2

2

×(3e0
2

2 (2e0
2

2 − 5) − (120e0
4

2 − 106e0
2

2 + 15) γ02

2

+8(32e0
4

2 − 16e0
2

2 + 1) γ04

2)
)
z +

(
γ04

2 (15 − 8γ02

2)2

+4e02

√
1 − 2e0

2

2 γ0
2

√
1 − 2γ02

2 (15−14e0
2

2 −16(1 − 4e0
2

2) γ02

2)

×(3e0
2

2 (2e0
2

2 − 5) − (120e0
4

2 − 106e0
2

2 + 15) γ02

2 + 8(32e0
4

2 − 16e0
2

2 + 1) γ04

2)

+e0
2

2 (9e0
2

2 (5 − 2e0
2

2)2 − 2(1504e0
6

2 − 4508e0
4

2 + 3420e0
2

2 − 675) γ02

2

+4(8736e0
6

2 − 17264e0
4

2 + 9761e0
2

2 − 1785)γ04

2 − 32(3840e0
6

2 − 5312e0
4

2

+2300e0
2

2 − 325) γ06

2 − 4096(1 − 4e0
2

2)2(1 − 2e0
2

2) γ08

2)
)
z2

)
> 0. (24)

Here z = Cλ2, λ0 = 1.
The system of inequalities (24) has been solved graphically. The built-in func-

tion RegionPlot3D is used. The region, in which the inequalities have common
values, is shown in Fig. 2 (dark region). Thus, when the values of the parameters
z, e02, γ

0
2 lie in this region, the IM under study is stable.

6.2 The Case of the Presence of External Forces

In this Subsection, we analyze the stability of the elements of the families of
solutions (18). Let us investigate one of the first two families, e.g.,

ω1 = ω3 = 0, e1 = −
√

1 − 2e02
2
, e2 = e3 = e02, γ1 = −

√
a2
1 − 2z2

a1
,

γ2 = − z

a1
, γ3 = − z

a1
, (25)

where z = b1e
0
2 + b2

√
1 − 2e02

2.
The integral

2Φ1=−
2(e02

√
a2
1−2z2+

√
1 − 2e0

2

2 z)

a2
1e

0
2

H−V1− b1z − b2
√

a2
1− 2z2

a2
1e

0
2

V2 − 2z

a1e02
V3

is used for obtaining the sufficient conditions.

On the Qualitative Analysis of the Equations of Motion 227

Fig. 2. The region of stability of the IM for γ0
2 ∈ [− 1√

2
, 1√

2
],e02 ∈ (0, 1√

2
], z ∈ (0, 3]

In the deviations

y1 = e1 +
√

1 − 2e0
2

2 , y2 = e2 − e02, y3 = e3 − e02, y4 = γ1 +

√
a2
1 − 2z2

a1
,

y5 = γ2 +
z

a1
, y6 = γ3 +

z

a1
, y7 = ω1, y8 = ω2

on the linear manifold

δH =b1y1 + b2(y2 + y3) + a1y4=0, δV1=− 2
a1

(
z(y5 + y6)+

√
a2
1−2z2 y4

)
=0,

δV2 = 2(e02 (y2 + y3) −
√

1 − 2e0
2

2 y1) = 0,

δV3 = e02(y5 + y6) −
√

1 − 2e0
2

2 y4 − 1
a1

(
z(y2 + y3) +

√
a2
1 − 2z2 y1

)
= 0

the 2nd variation of the integral Φ1 has the form: δ2Φ1 = Q1 + Q2, where

Q1 =
1

2a2
1e

03
2

(
(3b2e

0
2

√
1−2e0

2

2 −b1(1 − 4e0
2

2)) z + b2(1 − e0
2

2)
√

a2
1 − 2z2

−a2
1e

0
2

)
y2
1+

1
a2
1e

02
2

(√
1 − 2e0

2

2 (b1z−b2

√
a2
1−2z2)−

√
a2
1−2z2z

)
y1y2

+
1

a2
1e

0
2

(
b2

√
a2
1−2z2−b1z

)
y2
2+

1
a1e0

2

2

(
e02

√
a2
1−2z2−

√
1−2e0

2

2 z
)

y1y6

228 V. Irtegov and T. Titorenko

+
2z

a1e02
y2y6 − y2

6 ,

Q2 = −B + C + 2D

2a2
1e

0
2

(√
1 − 2e0

2

2 z + e02

√
a2
1 − 2z2

)
y2
8

+
(B + D)

√
1 − 2e0

2

2

a2
1e

02
2

(√
1 − 2e0

2

2 z + e02

√
a2
1 − 2z2

)
y7y8

− 1
2a4

1e
03
2

(
a2
1[(Ae0

2

2 + B(1 − 2e0
2

2))(
√

1 − 2e0
2

2 z + e02

√
a2
1 − 2z2)

+D

√
1 − 2e0

2

2 ((1 − 4e0
2

2) z + e02

√
1 − 2e0

2

2

√
a2
1 − 2z2)]

−D [(1 − 8e0
2

2)(b31e
03

2

√
1 − 2e0

2

2 + b32(1 − 2e0
2

2)2 + 3b1b2e
0
2(1 − 2e0

2

2) z)

+e02(3 − 8e0
2

2)
√

a2
1 − 2z2 z2]

)
y2
7 .

The analysis of sign-definiteness of the quadratic forms Q1 and Q2 was done
for the case when b1 = 0 and A = 3C/2, B = 2C, D = C/2. Under these
restrictions on the parameters, the conditions of negative definiteness of the
quadratic forms Q1 and Q2 are respectively written as:

Δ1 = −1 < 0, Δ2 = − 1
a2
1e

02
2

(
b2(b2(1 − 2e0

2

2) + e02

√
a2
1 − 2b22(1 − 2e0

2

2))
)

> 0,

Δ3 =
b2

a4
1e

05
2

(
2b2e

0
2 (a2

1(1 − 3e0
2

2) − b22 (16e0
4

2 − 14e0
2

2 + 3))

+
√

a2
1 − 2b22(1 − 2e0

2

2) (a2
1e

02

2 + b22(16e0
4

2 − 10e0
2

2 + 1))
)

< 0 (26)

and

Δ1 = − 2C

a2
1e

0
2

(
b2 (1 − 2e0

2

2) + e02

√
a2
1 − 2b22(1 − 2e0

2

2)
)

< 0,

Δ2 =
C2

a6
1e

04
2

(
3a4

1e
02

2 (5 − 2e0
2

2) − 8b42 (1 − 2e0
2

2)2(32e0
4

2 − 16e0
2

2 + 1)

+a2
1b

2
2 (15 − 4e0

2

2 (60e0
4

2 − 83e0
2

2 + 34)) − 2b2e
0
2 (1 − 2e0

2

2)

×(a2
1 (14e0

2

2 −15) + 16b22 (8e0
4

2 −6e0
2

2 +1))
√

a2
1−2b22(1−2e0

2

2)
)

> 0. (27)

Taking into consideration the conditions for solutions (25) to be real

a1 �= 0 and
(
e02 = ± 1√

2
or

(
− 1√

2
< e02 <

1√
2

and − σ1 ≤ b2 ≤ σ1

))
(28)

under the above restrictions on the parameters b1, A,B,D, inequalities (26) and
(27) are compatible when the following conditions

On the Qualitative Analysis of the Equations of Motion 229

a1 �= 0, C > 0 and
((

b2 < 0, σ2 < e02 ≤ 1√
2

)
or

(
b2 > 0, − 1√

2
≤ e02 < −σ2

))
(29)

hold.

Here σ1 =

√
a2
1

2(1 − 2e0
2

2)
, σ2 =

√
b22

a2
1 + 2b22

.

The latter conditions are sufficient for the stability of the elements of the fam-
ily of solutions under study. Let us compare them with necessary ones which we
shall obtain, using the Lyapunov theorem on stability in linear approximation [9].

The equations of the 1st approximation in the case considered are written
as:

ẏ1 = 2e02y8 − √
z1 y7, ẏ2 = e02y7 +

√
z1 y8, ẏ3 =

(
e02 − 1

e02

)
y7 +

√
z1 y8,

ẏ4 =
b2
a1

(z1
e02

y7 − 2
√

z1 y8

)
, ẏ5 =

1
a1

(√
a2
1 − 2b22z1 y8 − b2

√
z1 y7

)
,

ẏ6 =
1
a1

(√
a2
1 − 2b22z1 (e02 y8 − √

z1 y7)
e02

+ b2
√

z1 y7

)
,

ẏ7 =
1
z2

(
16a2

1b2e
02

2 (y3 − y2) + 2a2
1e

0
2

√
z1 (5a1y5 − 2b2y1 − 3a1y6)

)
,

ẏ8 =
1
z2

(
2a2

1[b2 (4e0
2

2 − 5) y1 + 5a1y5 + a1e
02

2 (3y6 − 7y5)]

+10a2
1b2e

0
2

√
z1 (y3 − y2) + 2b22z1 (4e0

2

2 − 1)(a1 (y5 + y6) − 2b2y1)

−4b2e
0
2z1

√
a2
1 − 2b22z1 (a1 (y5 + y6) − 2b2y1)

)
. (30)

Here z1 = 1−2e0
2

2 , z2 = C(3a2
1(2e0

2

2 −5)−8b2z1 (b2 (4e0
2

2 −1)−2e02
√

a12 − 2b22z1)).
The characteristic equation of system (30) has the form:

λ4 (λ4 + α1λ
2 + α2) = 0, (31)

where

α1 =
4C

z22

(
a4
1e

0
2 [2b2 (251e0

2

2 − 122e0
4

2 − 137) + 3(10e0
4

2 − 33e0
2

2 + 20)
√

a2
1 − 2b22z1] + 8b42z

2
1 [(64e0

4

2 −24e0
2

2 + 1)
√

a2
1 − 2b22z1−2b2e

0
2 (64e0

4

2 −40e0
2

2

+5)] − a2
1b

2
2z1 [(432e0

4

2 − 518e0
2

2 + 47)
√

a2
1 − 2b22z1 − 2b2e

0
2 (560e0

4

2 − 706e0
2

2

+173)]
)
,

230 V. Irtegov and T. Titorenko

α2 =
1
z22

(
(8a4

1b
2
2 (240e0

6

2 − 408e0
4

2 + 206e0
2

2 − 19) + 12a6
1 (4e0

2

2 (e0
2

2 − 3)

+5) − 64a2
1b

4
2 (64e0

6

2 − 80e0
4

2 + 24e0
2

2 − 1) z1) − 8a2
1b2e

0
2

√
a2
1 − 2b22z1

×(a2
1(56e0

4

2 − 110e0
2

2 + 53) − 8b22 (32e0
4

2 − 32e0
2

2 + 5) z1)
)
.

The roots of the bipolynomial in the round brackets are purely imaginary
when the conditions

α1 > 0, α2 > 0, α2
1 − 4α2 > 0

hold.
Taking into consideration (28), the latter inequalities are hold under the

following constraints imposed on the parameters C, a1, b2, e
0
2:

C > 0 and
[
a1 < 0 and

(((
b2 <

3a1√
2

or
3a1√

2
< b2 <

a1√
2

)
and

ρ1
2

≤ e02 ≤ 1√
2

)
or

(
b2 =

3a1√
2

and
ρ1
2

≤ e02 <
1√
2

)
or

(
b2 =

a1√
2

and

−ρ1
2

< e02 ≤ 1√
2

)
or

(a1√
2

< b2 < 0 and ρ2 < e02 ≤ 1√
2

))]
or

C > 0 and
[
a1 > 0 and

((
0 < b2 <

a1√
2

and − 1√
2

≤ e02 < −ρ2

)
or

((a1√
2

< b2 <
3a1√

2
or b2 >

3a1√
2

)
and − 1√

2
≤ e02 ≤ −ρ1

2

)
or

(
b2 =

a1√
2

and − 1√
2

≤ e02 < −ρ1
2

)
or

(
b2 =

3a1√
2

and

− 1√
2

< e02 ≤ −ρ1
2

))]
. (32)

Here ρ1 =

√
2b22 − a2

1

b22
, ρ2 =

√
a2
1 + b22 −

√
b22 (2a2

1 + 5b22)
2a2

1 + 4b22
.

The analysis of zero roots of characteristic Eq. (31) was done by the technique
applied in [10]. The analysis shown that the characteristic equation has zero roots
with simple elementary divisors. Whence it follows, the elements of the family
of solutions under study are stable in linear approximation when conditions
(32) hold. Comparing them with (29), we conclude that the sufficient conditions
are close to necessary ones. The analogous result has been obtained for the 2nd
family of solutions. Instability was proved for the rest of the families of solutions.

7 Conclusion

The qualitative analysis of the differential equations describing the motion of
the nonholonomic mechanical system has been done. The solutions of these

On the Qualitative Analysis of the Equations of Motion 231

equations, which correspond to the equilibria and pendulum-like motions of the
mechanical system, have been found. The Lyapunov stability of the solutions
has been investigated. In some cases, the obtained sufficient conditions were
compared with necessary ones. The analysis was done nearly entirely in sym-
bolic form. Computational difficulties were in the main caused by the problem of
bulky expressions: the differential equations are rather bulky, and the first inte-
grals of these equations are the polynomials of the 2nd–5th degrees. Computer
algebra system Mathematica was applied to solve computational problems. The
results presented in this work show the efficiency of the approach used for the
analysis of the problem as well as computational tools.

Appendix

β11 = (4e22)
−1C

[
((e23 − 1)(γ2

2 − 5) − e22(1 − γ2
2 + z2

1) + 2e2γ2z1z2)λ0

+C [(5e53γ2 (3γ
2
3 − z2

1) + e2e
4
3γ3 (43γ

2
2 + 20γ2

3 − 25) + e2γ3 (e
2
2 − 5)

×(5 − 3γ2
2 − γ2

3 + e22 (4γ
2
2 + γ2

3 − 2)) + e2e
2
3γ3(50 − 58γ2

2 − 25γ2
3

+e22 (59γ
2
2 + 17γ2

3 − 27)) + e3γ2 (e
2
2(65 − 37γ2

2 − 46γ2
3) + 5(γ2

2 + 3γ2
3 − 5)

+e42 (36γ
2
2 + 23γ2

3 − 28)) + e33γ2 (e
2
2(37γ

2
2 + 55γ2

3 − 33) − 5(2γ2
2 + 7γ2

3 − 6))) z1
+(e42γ2γ3 (4(1 − γ2

2) − 3γ2
3) + e22γ2γ3 (21γ

2
2 + 16γ2

3 − 25 + e23 (53 − 57γ2
2

−45γ2
3)) − 5γ2γ3 (e

2
3 − 1)(5 − γ2

2 − γ2
3 + e23(3γ

2
2 + 4γ2

3 − 3)) − e32e3 (10 + 36γ4
2

−18γ2
3 + 7γ4

3 + γ2
2 (41γ

2
3 − 46)) + e2e3 (25 − 60γ2

2 + 19γ4
2 + (44γ2

2 − 45)γ2
3

+15γ4
3 − e23 (10 − 29γ2

2 + 19γ4
2 + (53γ2

2 − 35)γ2
3 + 20γ4

3))) z2]λ2

]
,

β22 = (4e22)
−1 C

[
(3e22 + 5e23 − (e3γ2 − e2γ3)

2)λ0 + C [(3e52γ3 (4γ
2
2 + γ2

3 − 1)

+e42e3γ2 (15 − 12γ2
2 + 19γ2

3) − 5e33γ2 (5 − γ2
2 − 3γ2

3 + e23 (γ
2
2 + 4γ2

3 − 1))
+e22e3γ2 (9γ

2
2 − 13γ2

3 − 21 + e23 (24 − 19γ2
2 + 5γ2

3)) + e2e
2
3γ3 (5 + 11γ2

2 − 15γ2
3

+e23 (15 − 21γ2
2 + 20γ2

3)) + e32γ3 (3(3 − 3γ2
2 − γ2

3) + e23 (8 − 3γ2
2 + 21γ2

3))) z1
+(3e42γ2γ3 (3 − 4γ2

2 − 3γ2
3) + e22γ2γ3 (e

2
3(9γ

2
2 − 15γ2

3 − 14) + 3 (γ2
2 + γ2

3 − 3))
+5e23γ2γ3 (5 − γ2

2 − γ2
3 + e23 (3γ

2
2 + 4γ2

3 − 3)) + e32e3(6 + 12γ4
2 + 5γ2

3 − 11γ4
3

−γ2
2 (21 + 13γ2

3)) + e2e3(5γ
2
3 (γ

2
3 − 3) + γ2

2(15 + 2γ2
3) − 3γ4

2 + e23 (13γ
4
2

+γ2
2 (11γ

2
3 − 23) − 5 (γ2

3 + 4γ4
3 − 2)))) z2]λ2

]
,

β12 = (4e22)
−1C

[
2 (e2 (e2γ3 − e3γ2) z1 + (e3 (γ

2
2 − 5) − e2γ2γ3) z2)λ0

+C [2e42e3γ2γ3 (14γ
2
2 + 9γ2

3 − 15) + 10e3γ2γ3 (e
2
3 − 1)(5 − γ2

2 − γ2
3

+e23 (3γ
2
2 + 4γ2

3 − 3)) + 2e52 (3 + 12γ4
2 + γ2

3(γ
2
3 − 4) + γ2

2(11γ
2
3 − 15))

+2e22e3γ2γ3 (29 − 20γ2
2 − 7γ2

3 + e23 (39γ
2
2 + 23γ2

3 − 40)) + e32 (γ
2
3(10 + 3γ2

3)
−24γ4

2 − 15 + γ2
2 (51 − 13γ2

3) + e23 (62γ
4
2 + 2γ2

3 (2γ
2
3 − 19) + 2γ2

2 (31γ
2
3 − 46)

+26)) + e2 (3γ
2
2(γ

2
2 − 5) + (15 − 2γ2

2)γ
2
3 − 5γ4

3 + 4e43 (8γ
2
2 − 5)(γ2

2 + 2γ2
3 − 1)

+e23 (γ
2
2(98 − 53γ2

3) + 5(γ2
3 (2γ

2
3 + 7) − 7) − 35γ4

2)) + 2(2e32e3γ3(7γ
2
2 + γ2

3 − 4)
+e42γ2 (12γ

2
2 + 5γ2

3 − 9) + e2e3γ3 (10 − 13γ2
2 + 4e23(8γ

2
2 − 5) + 5γ2

3)
+5e23γ2 (5 − γ2

2 − 3γ2
3 + e23 (γ

2
2 + 4γ2

3 − 1)) + e22γ2 (15 − 6γ2
2 + 2γ2

3

+e23 (25γ
2
2 + 13γ2

3 − 26))) z1z2]λ2

]
.

232 V. Irtegov and T. Titorenko

References

1. Chaplygin, S.A.: On rolling a ball on a horizontal plane. Matematicheskii Sbornik
1(24), 139–168 (1903)

2. Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups.
Math. Notes 5(44), 810–819 (1988)

3. Borisov, A.V., Mamaev, I.S.: A new integrable system of nonholonomic mechanics.
Dokl. Phys. 60, 269–271 (2015)

4. Alves, J., Dias, J.: Design and control of a spherical mobile robot. J. Syst. Control
Eng. 217, 457–467 (2003)

5. Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected
Works USSR Acad. Sci. 1, 276–319 (1954)

6. Irtegov, V.D., Titorenko, T.N.: On an approach to qualitative analysis of nonlinear
dynamic systems. Numer. Analys. Appl. 1(15), 48–62 (2022)

7. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software Pack-
age for Finding and Stability Analysis of Stationary Sets. Certificate of State Reg-
istration of Software Programs. FGU-FIPS, No. 2011615235 (2011)

8. Irtegov, V., Titorenko, T.: On stationary motions of the generalized Kowalewski
gyrostat and thier stability. In: Gerdt, V.P., et al. (eds.) CASC 2017. LNCS, vol.
10490, pp. 210–224. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
319-66320-3 16

9. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control
55(3), 531–534 (1992)

10. Irtegov, V., Titorenko, T.: On equilibrium positions in the problem of the motion of
a system of two bodies in a uniform gravity field. In: Boulier, F., et al. (eds.) CASC
2022. LNCS, vol. 13366, pp. 165–184. Springer Nature AG, Cham, Switzerland
(2022). https://doi.org/10.1007/978-3-031-14788-3 10

https://doi.org/10.1007/978-3-319-66320-3_16
https://doi.org/10.1007/978-3-319-66320-3_16
https://doi.org/10.1007/978-3-031-14788-3_10

Solving Parametric Linear Systems Using
Sparse Rational Function Interpolation

Ayoola Jinadu(B) and Michael Monagan

Department of Mathematics, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada
{ajinadu,mmonagan}@sfu.ca

Abstract. Let Ax = b be a parametric linear system where the entries
of the matrix A and vector b are polynomials in m parameters with
integer coefficients and A be of full rank n. The solutions xi will be
rational functions in the parameters. We present a new algorithm for
computing x that uses our sparse rational function interpolation which
was presented at CASC 2022. It modifies Cuyt and Lee’s sparse rational
function interpolation algorithm to use a Kronecker substitution on the
parameters. A failure probability analysis and complexity analysis for
our new algorithm is presented. We have implemented our algorithm in
Maple and C. We present timing results comparing our implementation
with a Maple implementation of Bareiss/Edmonds/Lipson fraction free
Gaussian elimination and three other algorithms in Maple for solving
Ax = b.

Keywords: Parametric linear systems · Sparse rational function
interpolation · Kronecker substitution · Failure probability · Black box

1 Introduction

Consider the parametric linear system Ax = b where the coefficient matrix
A ∈ Z[y1, y2, . . . , ym]n×n is of full rank n and b ∈ Z[y1, y2, . . . , ym]n is the right
hand side column vector such that the number of terms in the entries of A and
b denoted by #Aij ,#bi ≤ t and deg(Aij),deg(bi) ≤ d. It is well know that the
solution x is unique since rank(A) = n. In this paper we aim to compute the
solution vector of rational functions

x =
[
x1 x2 · · · xn

]T =
[
f1
g1

f2
g2

· · · fn

gn

]T

(1)

such that fk, gk ∈ Z[y1, y2, . . . , ym], gk �= 0, gk|det(A) and gcd(fk, gk) = 1 for
1 ≤ k ≤ n. Using Cramer’s rule, the solutions of Ax = b are given by

xi =
det(Ai)
det(A)

∈ Z(y1, . . . , ym) (2)

where Ai is the matrix obtained by replacing the i-th column of A with the right
hand side column vector b and det(A) is a polynomial in Z[y1, y2, . . . , ym]. Let
x̃i = xi det(A) be a polynomial in Z[y1, y2, . . . , ym].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 233–254, 2023.
https://doi.org/10.1007/978-3-031-41724-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_13

234 A. Jinadu and M. Monagan

Maple and other computer algebra systems such as Magma have an imple-
mentation of the Bareiss/Edmonds one step fraction free Gaussian elimina-
tion algorithm [2,5] which triangularizes an augmented matrix B = [A|b] to
obtain det(A) as a polynomial in Z[y1, y2, . . . , ym] and then solves for the poly-
nomials x̃i via back substitution using Lipson’s fraction free back formula [8].
Ignoring pivoting, the following pseudo-code of the Bareiss/Edmonds algorithm
and Lipson’s fraction free back substitution formula solves Ax = b:

Algorithm 1: BareissPseudocode
Input: Coefficient matrix A, column vector b with n ≥ 1 and m ≥ 1.
Output: Vector x ∈ Z(y1, y2, . . . , ym)n

1 B := [A|b] ; B0,0 := 1;
2 // fraction free triangularization begins
3 for k = 1, 2, . . . , n − 1 do
4 for i = k + 1, k + 2, . . . , n do
5 for j = k + 1, k + 2, . . . , n + 1 do
6

Bi,j :=
Bk,kBi,j − Bi,kBk,j

Bk−1,k−1
; (3)

7 end do
8 Bi,k := 0;
9 end do

10 end do
11 // fraction free back substitution begins
12 x̃n := Bn,n+1;
13 for i = n − 1, n − 2, . . . , 2, 1 do
14 Ni := Bi,n+1Bn,n − ∑n

j=i+1 Bi,j x̃j ;

15 Di := Bi,i;
16

x̃i :=
Ni

Di
; (4)

17 end do
18 // simplification begins
19 for i = 1, 2, . . . , n do
20 hi = gcd(x̃i, Bn,n);

21 fi :=
x̃i

hi
; gi :=

Bn,n

hi
;

22 xi := fi/gi;
23 end do

Note that the divisions by Bk,k and Di are exact in Z[y1, y2, . . . , ym] and
Bk,k is the determinant of the principle k by k submatrix of A. However there
is an expression swell because at the last major step of triangularizing B when
k = n − 1 where it computes

Bn,n =
Bn−1,n−1Bn,n − Bn,n−1Bn−1,n

Bn−2,n−2
= det(A), (5)

Solving Parametric Linear Systems 235

the numerator polynomial in (5) is the product of determinants

Bn,nBn−2,n−2 ∈ Z[y1, y2, . . . , ym]. (6)

If the original entries Bi,j from the augmented matrix B = [A|b] are sparse
polynomials in many parameters then the numerator polynomial in (5) may be
100 times or more larger than det(A). The same situation also holds for the
polynomials x̃i.

One approach to avoid this expression swell tried by Monagan and Vrbik
[15] computes the quotients of (3) and (4) directly using lazy polynomial arith-
metic. Another approach is to interpolate the polynomials x̃i and det(A) directly
from points using sparse polynomial interpolation algorithms [3,17] and Chinese
remaindering when needed. This approach is described briefly as follows. Pick
an evaluation point α ∈ Z

m
p and solve A(α)x(α) = b(α) mod p for x̃(α) using

Gaussian elimination over Zp and also compute det(A(α)) at the same time.
Provided det(A(α)) �= 0, then x̃i(α) = xi(α) × det(A(α)). Thus we have images
of x̃i and det(A) so we can interpolate them.

To compute x in simplest terms, we compute hi = gcd(x̃i,det(A)) for 1 ≤
i ≤ n and cancel them from x̃i

det(A) to simplify the solutions. However, in practice
there may be a large cancellation in x̃i

det(A) . Our new algorithm will interpolate
xi directly thus avoiding any gcd computations which may be expensive.

Example 1. Consider the following linear system of 21 equations in variables
x1, x2, . . . , x21 and parameters y1, y2, . . . , y5:

x7 + x12 = 1, x8 + x13 = 1, x21 + x6 + x11 = 1, x1y1 + x1 − x2 = 0
x3y2 + x3 − x4 = 0, x11y3 + x11 − x12 = 0, x16y5 − x17y5 − x17 = 0
y3(−x20 + x21) + x21 = 0, y3(−x5 + x6) + x6 − x7 = 0,−x8y4 + x9y3 + x9 = 0
y2(−x10 + x18) + x18 − x19 = 0, y4(x14 − x13) + x14 − x15 = 0

2x3(y2
2 − 1) + 4x4 − 2x5 = 0, 2y2

1(x1 − 1) − 2x10 + 4x2 = 0

2y2
3(x19 − 2x20 + x21) − 2x21 = 0, 2y2

4(x7 − 2x8 + x9) − 2x9 = 0

2x11(y2
3 − 1) + 4x12 − 2x13 = 0, 2y2

4(x12 − 2x13 + x14) − 2x14 + 4x15 − 2x16 = 0

2y2
3(x4 − 2x5 + x6) − 2x6 + 4x7 − 2x8 = 0, 2y2

5(x15 − 2x16 + x17) − 2x17 = 0

2y2
2(−2x10 − x18 − x2) − 2x18 + 4x19 − 2x20 = 0

where the solution of the above system defines a general cubic Beta-Splines in
the study of modelling curves in Computer Graphics.

Using the Bareiss/Edmonds/Lipson algorithm on page 232, we find that
#Bn,n = #det(A) = 1033,#Bn−2,n−2 = 672 and #Bn,nBn−2,n−2 = 14348, so
an expression swell factor of 14348/1033 = 14. Furthermore, we obtain #x̃i,#xi

and the expression swell factor labelled swell for computing x̃i in Table 1.
The Gentleman & Johnson minor expansion algorithm [7] can also be used to

compute the solutions xi by computing n + 1 determinants, namely, the numer-
ators det(Ai) for 1 ≤ i ≤ n (Ai is as defined in (2)) and the denominator

236 A. Jinadu and M. Monagan

Table 1. Number of polynomial terms in x̃i = Ni/Di and xi = fi/gi and expression
swell factor for computing x̃i

1 2 3 4 5 6 7 8 9 10 11

#Ni 586 1,172 1,197 1,827 2,142 1,666 2,072 1,320 1,320 2,650 2,543

#Di 2 3 6 9 9 9 9 9 18 18 27

#x̃i 293 586 504 693 882 686 840 536 424 879 638

swell 2 2 3 3 3 3 3 3 3 3 4

fi 1 2 4 4 4 19 16 8 8 8 2

gi 5 3 10 7 4 22 16 16 26 12 3

12 13 14 15 16 17 18 19 20 21

#Ni 3,490 3,971 5,675 7,410 4,940 7,072 11,793 12,802 11,211 9,620

#Di 36 36 117 153 153 432 672 672 672 672

#x̃i 834 1,033 871 1044 696 348 690 836 693 528

swell 4 4 7 7 7 20 17 15 16 18

fi 1 1 1 1 1 2 14 4 1 1

gi 3 3 5 5 3 3 23 7 4 7

det(A) only once. But then we still have to compute gi = gcd(det(Ai),det(A))
to simplify the solutions xi which is not cheap.

In this work, we interpolate the simplified solutions xi = fi/gi directly using
sparse rational function interpolation. We use a black box representation to
denote any given parametric linear system. That is, a black box BB representing
Ax = b denoted by BB : Z

m
p → Z

n
p is a computer program that takes a prime p

and an evaluation point α ∈ Z
m
p as inputs and outputs x(α) = A−1(α)b(α) ∈ Z

n
p .

The implication of the black box representation of Ax = b is that important
properties of x such as #fk,#gk and their variable degrees are unknown so we
have to find them by interpolation.

Our first contribution is a new algorithm that probes a given black box BB
and uses sparse multivariate rational function interpolation to interpolate the
rational function entries in x modulo primes and then uses Chinese remaindering
and rational number reconstruction to recover its integer coefficients.

Our algorithm for solving Ax = b follows the work of Jinadu and Monagan
in [11] where they modified Cuyt and Lee’s sparse rational function interpola-
tion algorithm to use the Ben-Or/Tiwari interpolation algorithm and Kronecker
substitution on the parameters in order to solve parametric polynomial systems
by computing its Dixon resultant.

Our second contribution is a hybrid Maple + C implementation of our new
algorithm for solving Ax = b and it can be downloaded freely from the web at:
http://www.cecm.sfu.ca/personal/monaganm/code/ParamLinSolve/. Our third
contribution is the failure probability analysis and the complexity analysis of our
algorithm in terms of the number of black box probes required.

This paper is organized as follows. In Sect. 2, we review the sparse multi-
variate rational function algorithm of Cuyt and Lee and we describe how it
should be modified with the use of a Kronecker substitution on the parameters.

http://www.cecm.sfu.ca/personal/monaganm/code/ParamLinSolve/

Solving Parametric Linear Systems 237

Our algorithms are presented in Sect. 3. Section 4 contains the failure probability
analysis and complexity analysis of our algorithm. In Sect. 5, we present timing
results comparing a hybrid Maple+C implementation of our algorithm with a
Maple implementation of the Bareiss/Edmonds/Lipson fraction free Gaussian
elimination algorithm with three other algorithms for solving Ax = b.

2 Sparse Multivariate Rational Function Interpolation

2.1 Cuyt and Lee’s Algorithm

Let K be a field and let f/g ∈ K(y1, . . . , ym) be a rational function such that
gcd(f, g) = 1. Cuyt and Lee’s algorithm [4] to interpolate f/g must be combined
with a sparse polynomial interpolation to interpolate f and g. The first step in
their algorithm is to introduce a homogenizing variable z to form the auxiliary
rational function f(y1z,...,ymz)

g(y1z,...,ymz) which can be written as

f(y1z, . . . , ymz)
g(y1z, . . . , ymz)

=
f0 + f1(y1, . . . , ym)z + · · · + fdeg(f)(y1, . . . , ym)zdeg(f)

g0 + g1(y1, . . . , ym)z + · · · + gdeg(g)(y1, . . . , ym)zdeg(g)

and then normalize it using either constant terms f0 �= 0 or g0 �= 0. However
it is not uncommon to have f0 = g0 = 0. Thus in the case when both constant
terms g0 and f0 are zero, one has to pick a basis shift β ∈ (K \ {0})m such that
g(β) �= 0 and form a new auxiliary rational function as

f̂(y1z, . . . , ymz)
ĝ(y1z, . . . , ymz)

:=
f(y1z + β1, . . . , ymz + βm)
g(y1z + β1, . . . , ymz + βm)

=

∑deg(f)
j=0 f̂j(y1, . . . , ym)zj

∑deg(g)
j=0 ĝj(y1, . . . , ym)zj

.

The introduction of the basis shift β forces the production of a constant term
in f̂/ĝ so that we can normalize it using either f̂0 or ĝ0. Thus we can write

f̂(y1z, . . . , ymz)
ĝ(y1z, . . . , ymz)

=

∑deg(f)
j=0

f̂j(y1,...,ym)zj

ĝ0

1 +
∑deg(g)

j=1
ĝj(y1,...,ym)zj

ĝ0

.

Note that ĝ0 = c̃ × g(β1, β2, . . . , βm) �= 0 for some c̃ ∈ K. If a rational function
f/g is represented by a a black box, we can recover it by densely interpolating
univariate auxiliary rational functions

Â(αj , z) =
f̂0
ĝ0

+ f̂1(α
j)

ĝ0
z + · · · + f̂deg(f)(α)

ĝ0
zdeg(f)

1 + ĝ1(αj)
ĝ0

z + · · · + ĝdeg(g)(αj)

ĝ0
zdeg(g)

∈ Zp(z) for j = 0, 1, 2, · · ·

for α ∈ Z
m
p from the black box and then use the coefficients of Â(αj , z) via sparse

interpolation to recover f/g. In order to densely interpolate Â(αj , z), we use the
Maximal Quotient Rational Function Reconstruction algorithm (MQRFR) [14]
which requires deg(f) + deg(g) + 2 black box probes on z. Note that the use

238 A. Jinadu and M. Monagan

of a basis shift in the formation of the auxiliary rational function destroys the
sparsity of f/g, so its effect has to be removed before f/g can be recovered. This
is done by adjusting the coefficients of the lower degree terms in the numerator
and denominator of Â(αj , z) by the contributions from the higher degree terms
before the sparse interpolation step is performed (See [11, Subroutine 2]).

2.2 Using a Kronecker Substitution on the Parameters

In this work, the Ben-Or/Tiwari algorithm is the preferred sparse polynomial
interpolation algorithm for the Cuyt and Lee’s algorithm because it requires the
fewest number of black box probes. However, in order to interpolate a polynomial
f �= 0 using the Ben-Or/Tiwari interpolation algorithm over Zp, the working
prime p is required to be at least pd

m where pm is the m-th prime and d = deg(f).
Unfortunately, such a prime p may be too large for machine arithmetic if the
total degree d is large. This is the main drawback of using the BenOr/Tiwari
algorithm. Here we review the idea of Jinadu and Monagan from [11] where
they formulated how to use a Kronecker substitution to combat the large prime
problem posed by using the Ben-Or/Tiwari algorithm in Cuyt and Lee’s method.

Definition 2. Let K be an integral domain and let f/g ∈ K(y1, . . . , ym). Let
r = (r1, r2, . . . , rm−1) ∈ Z

m−1 with ri > 0. Let Kr : K(y1, . . . , ym) → K(y) be
the Kronecker substitution

Kr(f/g) =
f(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)
g(y, yr1 , yr1r2 , . . . , yr1r2···rm−1)

∈ K(y).

Let di = max{(deg f, yi),deg(g, yi)} for 1 ≤ i ≤ m. Provided we choose ri > di

for 1 ≤ i ≤ m − 1 then Kr is invertible, g �= 0 and Kr(f/g) = 0 ⇐⇒ f = 0.

Unfortunately, we cannot use the original definition of auxiliary rational func-
tion given by Cuyt and Lee that we reviewed in Subsect. 2.1 to interpolate the
univariate mapped function Kr(f/g). Thus we need a new definition for how to
compute the corresponding auxiliary rational function relative to the mapped
univariate function Kr(f/g), and not the original function f/g itself. Thus using
a homogenizing variable z we define auxiliary rational function

F (y, z) =
f(zy, zyr1 , . . . , zyr1r2···rm−1)
g(zy, zyr1 , . . . , zyr1r2···rm−1)

∈ K[y](z). (7)

As before, the existence of a constant term in the denominator of F (y, z) must
be guaranteed, so we use a basis shift β ∈ (K\{0})m with g(β) �= 0 and formally
define an auxiliary rational function with Kronecker substitution as follows.

Definition 3. Let K be a field and let f/g ∈ K(y1, . . . , ym) such that gcd(f, g) =
1. Let z be the homogenizing variable and let r = (r1, . . . , rm−1) with ri > di =
max{(deg f, yi),deg(g, yi)}. Let Kr be the Kronecker substitution and let β ∈ K

m

be a basis shift. We define

F (y, z, β) :=
fβ(y, z)
gβ(y, z)

=
f(zy + β1, zyr1 + β2, . . . , zyr1r2···rm−1 + βm)
g(zy + β1, zyr1 + β2, . . . , zyr1r2···rm−1 + βm)

∈ K[y](z)

as an auxiliary rational function with Kronecker substitution Kr.

Solving Parametric Linear Systems 239

Notice in the above definition that for β = 0,

F (y, 1, 0) =
f0(y, 1)
g0(y, 1)

= Kr(f/g).

Thus Kr(f/g) can be recovered using the coefficients of zi in F (αi, z, β) for some
evaluation point α ∈ Z

m
p and i ≥ 0. If g has a constant term, then one can use

β = (0, . . . , 0). Also, observe that the degree of Kr(f/g) in y is exponential in m
but deg(F (y, z, β), z) through which Kr(f/g) is interpolated remains the same
and the number of terms and the number of probes needed to interpolate f/g are
the same. To recover the exponents in y we require our input prime p >

∏m
i=1 ri.

3 The Algorithm

Let the polynomials fk and gk of the entries xk = fk

gk
of x be viewed as

fk =
deg(f)∑

i=0

fi,k(y1, y2, . . . , ym) and gk =
deg(g)∑

j=0

gj,k(y1, y2, . . . , ym) (8)

such that i and j are the total degrees of all the polynomial terms in fi,k and
gi,k respectively. For convenience, we write deg(fi,k) = i and deg(gj,k) = j.

Given a black box BB representing Ax = b, we divide the steps to recover x
by our new algorithm (Algorithm4) into seven main steps.

The first step in our algorithm is to obtain the degrees needed to interpolate x.
These include the total degrees deg(fk),deg(gk) for 1 ≤ k ≤ n, which are needed
to densely interpolate the univariate auxiliary rational functions, the maximum
partial degrees max (maxn

k=1(deg(fk, yi),deg(gk, yi))) for 1 ≤ i ≤ m, which are
needed to apply Kronecker substitution and the total degrees of the polynomials
fi,k and gi,k which helps avoid doing unnecessary work when the effect of the
basis shift β is removed in [11, Subroutine 2] (See Lines 1–5 of Algorithm4).
With high probability, we describe how to discover these degrees as follows.

Let p be a large prime. First, pick α, β ∈ (Zp \ {0})m at random, and use
enough distinct points for z selected at random from Zp to interpolate the uni-
variate rational function

hk(z) =
Nk(z)
Dk(z)

=
fk(α1z + β1, . . . , αmz + βm)
gk(α1z + β1, . . . , αmz + βm)

∈ Zp(z),

via probes to the black box such that deg(Nk) = deg(fk) and deg(Dk) = deg(gk)
for 1 ≤ k ≤ n with high probability. Next, pick γ ∈ (Zp\{0})m−1 and θ ∈ Zp\{0}
at random and probe the black box to interpolate the univariate rational function

Hi(z) :=
Hfi

Hgi

=
fk(γ1, . . . , γi−1, θz, γi+1, · · · , γm)
gk(γ1, . . . , γi−1, θz, γi+1, · · · , γm)

∈ Zp(z)

using enough distinct random points for z from Zp. With high probability
deg(Hfi

, z) = deg(fk, yi) and deg(Hgi
, z) = deg(gk, yi) for 1 ≤ i ≤ m.

240 A. Jinadu and M. Monagan

Finally, suppose we have obtained deg(fk),deg(gk) correctly for 1 ≤ k ≤ n.
Then pick α ∈ (Zp \ {0})m at random and use enough random distinct points
for z selected from Zp to interpolate the univariate rational function

Wk(z) =
Nk

Dk

=

∑dfk
j=0 N̄i,k(z)

∑dgk
i=0 D̄i,k(z)

=
fk(α1z, . . . , αmz)
gk(α1z, . . . , αmz)

∈ Zp(z)

where dfk
= deg(Nk) and dgk

= deg(Dk). Now if deg(fk) = dfk
and deg(gk) =

dgk
then deg(fi,k) = deg(N̄i,k) and deg(gi,k) = deg(D̄i,k) with high probability.

But, if there is no constant term in fk or gk then deg(fk) �= dfk
and deg(gk) �= dgk

because ek = deg(gcd(Nk,Dk)) > 0. Since we do not know what ek is, then it
follows that if ek = deg(fk) − dfk

= deg(gk) − dgk
with high probability then

deg(fi,k) = deg(N̄i,k) + ek and deg(gi,k) = deg(D̄i,k) + ek with high probability.

Example 4. Let
f1
g1

=
y3
1 + y1y2
y2
2 + y3

where f3,1 = y3
1 , f2,1 = y1y2, g2,1 = y2

2 and g1,1 = y3. Then

W1(z) =
f1(α1z, α2z, α3z)
g1(α1z, α2z, α3z)

=
α3
1z

3 + α1α2z
2

α2
2z

2 + α3z
=

z(α3
1z

2 + α1α2z)
z(α2

2z + α3)

=
α3
1z

2 + α1α2z

α2
2z + α3

.

Thus deg(f1) = 3 �= df1 = 2 and deg(g1) = 2 �= dg1 = 1. Since e1 = deg(f1) −
df1 = deg(g1) − dg1 = 1, we have that deg(f3,1) = 2 + e1 = 3, deg(f2,1) =
1 + e1 = 2, deg(g2,1) = 1 + e1 = 2 and deg(g1,1) = 0 + e1 = 1.

After obtaining all the degree bounds, the second step in our algorithm is to
probe the black box BB with input evaluation points α ∈ Z

m
p to obtain images

x(α) = A−1(α)b(α) ∈ Z
n
p (See Lines 17–19). The third step is to perform dense

interpolation of auxiliary univariate rational functions labelled as Aj(z) using
the images x(α) = A−1(α)b(α) ∈ Z

n
p (See Lines 23–27).

By design, the fourth step is to determine the number of terms in the lead-
ing term polynomials fdeg(fk),k and gdeg(fk),k and interpolate them via calls to
Subroutine BMStep in Lines 29–30. Next, #fi,k and #gi,k as defined in (8)
are determined by calls to Subroutine RemoveShift in Lines 34–35 where the
effect of the basis shift β �= 0 is removed and the coefficients of the auxil-
iary univariate rational functions Aj(z) are adjusted in order to interpolate fi,k

and gi,k. Note that for each i, the size of the supports #fi,k (or #gi,k) are
unknown and they will be discovered when deg(λ, z) <

#fi,k

2 for some feedback
polynomial λ ∈ Zp[z] which is generated by the Berlekamp-Massey algorithm
[1] in Line 1 of Subroutine BMStep. That is, we compute λ(z) ∈ Zp[z] using

Solving Parametric Linear Systems 241

l = 2, 4, 6, . . . points, the sequence of coefficients in zi from Aj(z) and we wait
until deg(λ(z)) = 1, 2, 3, . . . , t, t, t, . . . , with high probability (See Line 21). This
idea was given by Kaltofen in [13]. With high probability, the t roots of the
feedback polynomial λ over Zp will be used to determine the support of the
polynomials fi,k (or gi,k) and the t sequence of coefficients of zi from the auxil-
iary univariate rational functions Aj(z) will be used to determine the t unknown
coefficients of the polynomial fi,k.

Once fi,k, gi,k modulo a prime have been interpolated, the sixth step in our
algorithm is to apply rational number reconstruction (RNR) on the assembled
vector X = [fk

gk
mod p, 1 ≤ k ≤ n] to get x in Line 42. If RNR process fails

then more primes and images of x are needed to interpolate x using Chinese
remaindering and RNR. Thus, the final step is to call Algorithm 5, an algorithm
similar to Algorithm4, except that the size of the supports and the variable
degrees of the polynomials fi,k and gi,k are now known, and Algorithm5 uses
more primes, RNR and Chinese remaindering to get the solution x.

Subroutine 2: BMStep
Input: P = [Pj ∈ Zp : 1 ≤ j ≤ i, i is even] , α ∈ Zp, shift ŝ ∈ [0, p − 1] and r

which defines the Kronecker substitution Kr.
Output: A non-zero multivariate polynomial F̄ ∈ Zp[y1, y2, . . . , ym] or FAIL.

1 Run the Berlekamp-Massey algorithm[1] on P to obtain λ(z) ∈ Zp[z]; O(i2)
2 if deg(λ, z) = i

2
then return FAIL end // More images are needed

3 Compute the roots of λ in Zp[z] to obtain the monomial evaluations m̂i. Let
m̂ ⊂ Zp be the set of monomial evaluations m̂i and let t = |m̂|; O(t2 log p)

4 if t �= deg(λ, z) then return FAIL end // λ(z) is wrong.
5 Solve αei = m̂i for ei with ei ∈ [0, p − 2] // The exponents are found here.
6 Let M̂ = [yei : i = 1, 2 · · · , t] // These are the monomials
7 F ←VandermondeSolver (m̂, [P1, · · · Pt], ŝ, M̂) // F ∈ Zp[y]; O(t2)
8 F̄ ← K−1

r (F) ∈ Zp[y1, . . . , ym].// Invert the Kronecker map Kr.
9 return F̄

Subroutine 3: VandermondeSolver
Input: Vectors m̂, v ∈ Z

t
p, shift ŝ ∈ [0, p − 2] and monomials [M1, · · · , Mt]

Output: A non-zero polynomial F ∈ Zp[y1, · · · , ym]
1 Let Vij = m̂ŝ+j−1

i for 1 ≤ i, j ≤ t.
// A shifted transposed Vandermonde matrix

2 Solve the shifted transposed Vandermonde system V a = v using Zippel’s O(t2)
algorithm.

3 Compute ai =
ai

m̂ŝ
i

for 1 ≤ i ≤ t.

4 return F =
∑t

i=1 aiMi

242 A. Jinadu and M. Monagan

Algorithm 4: ParamLinSolve
Input: A black box BB : Zm

p → Z
n
p with m ≥ 1.

Output: Vector x ∈ Z(y1, . . . , ym)n or FAIL.
1 Compute total degrees (deg(fk), deg(gk)) for 1 ≤ k ≤ n

2 ek ← deg(fk) + deg(gk) + 2 for 1 ≤ k ≤ n.
3 emax ← maxn

k=1 {ek}
4 Compute (Efk , Egk) where Efk and Egk denote the lists of the total degrees of the

polynomials fik and gik in fk and gk respectively as defined in (8)
5 Dyi ← max

(
maxn

k=1(deg(fk, yi), deg(gk, yi))
)

for 1 ≤ i ≤ m.
6 Initialize ri = Dyi + 1 for 1 ≤ i ≤ m and let r = (r1, r2, . . . , rm−1).

7 Pick a prime p such that p >
∏m

j=1 ri and a basis shift β �= 0 ∈ Z
m
p at random.

// p is the prime to be used by the black box.
8 Let Kr : Zp(y1, y2, . . . , ym) → Zp(y) be the Kronecker substitution Kr(fk/gk)

9 Pick a random shift ŝ ∈ [0, p − 1] and any generator α for Z
∗
p.

10 Let z be the homogenizing variable
11 Pick θ ∈ Z

emax
p at random with θi �= θj for i �= j.

12 M ← ∏emax
i=1 (z − θi) ∈ Zp[z]; . O(e2max)

13 k ← 1

14 for i = 1, 2, · · · while k ≤ n do
15 Ŷi ← (αŝ+i−1, α(ŝ+i−1)r1 , . . . , α(ŝ+i−1)(r1r2···rm−1)).
16 for j = 1, 2, . . . , emax do
17 Zj ← Ŷiθj + β ∈ Z

m
p

18 vj ← BB(Zj) // Here vj = A−1(Zj)b(Zj) ∈ Z
n
p

19 if vj = FAIL then return FAIL end // rank(A(Zj)) < n.
20 end
21 if i /∈ {2, 4, 8, 16, 32, · · ·} then next end
22 for j = 1, 2, . . . , i do
23 Interpolate U ∈ Zp[z] using points (θi, vkj : 1 ≤ j ≤ ek); O(e2k)

24 Aj(z) ← MQRFR(M, U, p);[14] . O(e2k)

25 Let Aj(z) =
Nj(z)

N̂j(z)
∈ Zp(z) // These are the auxiliary functions in z.

26 if deg(Nj) �= deg(fk) or deg(N̂j) �= deg(gk) then return FAIL end

27 Normalize Aj(z) such that N̂j(z) = 1 +
∑deg(N̂)

i=1 aiz
i.

28 end
29 Fk ← BMStep([coeff(Nj , z

deg(fk)) : 1 ≤ j ≤ i], α, ŝ, r); O(i2 + #F 2
k log p)

30 Gk ← BMStep([coeff(N̂j , z
deg(gk)) : 1 ≤ j ≤ i], α, ŝ, r); O(i2 + #G2

k log p)

31 // Here Fk = fdeg(fk),k mod p and Gk = gdeg(gk),k mod p

32 if Fk �= FAIL and Gk �= FAIL then
33 // Subroutine RemoveShift is Subroutine 2 on page 196 in [11].
34 fk ← RemoveShift(Fk, [Ŷ1, . . . , Ŷi], [N1, . . . , Ni], α, ŝ, β, r, Efk)

35 gk ← RemoveShift(Gk, [Ŷ1, . . . , Ŷi], [N̂1, . . . , N̂i], α, ŝ, β, r, Egk)
36 if fk �= FAIL and gk �= FAIL then
37 k ← k + 1 // we have interpolated xk mod p

38 end
39 end
40 end
41 X ← [fk

gk
, 1 ≤ k ≤ n] // Here X = x mod p

42 Apply rational number reconstruction on the coefficients of X mod p to get x

43 if x �= FAIL then return x end
44 return MorePrimes(BB, ((deg(fk), deg(gk)) : 1 ≤ k ≤ n), X, p)

Solving Parametric Linear Systems 243

Algorithm 5: MorePrimes
Input: Black box BB : Zm

q → Z
n
q with m ≥ 1.

Input: Degrees {(deg(fk), deg(gk)) : 1 ≤ k ≤ n} and X = x mod p where p is
the first prime used by Algorithm ParamLinSolve.

Output: Vector x ∈ Z(y1, . . . , ym)n or FAIL.
1 Let ek = deg(fk) + deg(gk) + 2 for 1 ≤ k ≤ n and let emax = max ek.
2 Let B1 = [fdeg(fk)−1,k, . . . , f0,k] and B2 = [gdeg(gk)−1,k, . . . , g0,k] where fi,k, gi,k

are as in (8) and set P = p.

3 Let Nmax = maxn
k=1

{
max

deg(fk)
i=0 {#fi,k}, max

deg(gk)
i=0 {#gi,k}}

}
.

4 do
5 Get a new prime q �= p. // The black box BB uses a new prime q.
6 Pick α, β ∈ (Zq \ {0})m, θ ∈ Z

emax
q and shift ŝ ∈ [1, q − 2] at random.

7 for i = 1, 2, . . . , Nmax do
8 Ŷi ← (αŝ+i−1

1 , αŝ+i−1
2 , . . . , αŝ+i−1

m).
9 for j = 1, 2, . . . , emax do

10 Zj ← Ŷiθj + β ∈ Z
m
p

11 vj ← BB(Zj) // Here vj = A−1(Zj)b(Zj) ∈ Z
n
p

12 if vj = FAIL then return FAIL end // rank(A(Zj)) < n.
13 end
14 end
15 for k = 1, 2, . . . , n do
16 (n̂, M̂) ← (#fdeg(fk),k, supp(fdeg(fk),k)) // supp means support.
17 (n̄, M̄) ← (#gdeg(gk),k, supp(gdeg(gk),k))

18 (m̂, m̄) ← ([M̂i(α) : 1 ≤ i ≤ n̂], [M̄i(α) : 1 ≤ i ≤ n̄]); O(m(n̂ + n̄))
19 if the evaluations m̂i = m̂j or m̄i = m̄j then return FAIL end.
20 M ← ∏ek

i=1(z − θi) ∈ Zq[z]; . O(e2k)
21 for j = 1, 2, . . . , Nmax do
22 Interpolate U ∈ Zp[z] using points (θi, vkj : 1 ≤ j ≤ ek); O(e2k)

23 Bj ← MQRFR(M, U, p)//Bj = Nj(z)/N̂j(z) ∈ Zq(z). O(e2k)

24 Normalize Bj(z) s.t. N̂j(z) = 1 +
∑deg(N̂)

i=1 biz
i.

25 if deg(Nj) �= deg(fk) or deg(N̂j) �= deg(gk) then return FAIL end
26 end
27 Let ai = LC(Nj , z) and let bi = LC(N̂j , z) for 1 ≤ i ≤ Nmax.

28 Fk ←VandermondeSolver(m̂, [a1, . . . , an̂], ŝ, M̂); O(n̂2)
29 Gk ←VandermondeSolver(m̄, [b1, . . . , bn̄], ŝ, M̄); O(n̄2)

30 Fk ←GetTerms(Fk, [Ŷ1, . . . , ŶNmax], [N1, . . . , NNmax], ŝ, α, β, B1)

31 Gk ←GetTerms(Gk, [Ŷ1, . . . , ŶNmax], [N̂1, . . . , N̂Nmax], ŝ, α, β, B2)
32 if Fk = FAIL or Gk = FAIL then return FAIL end
33 end
34 X̂ ← [Fk

Gk
, 1 ≤ k ≤ n] // Here X̂ = x mod q

35 Solve F̂ ≡ X mod P and F̂ ≡ X̂ mod q using Chinese remaindering
36 P ← P × q.

37 Apply rational number reconstruction on coefficients of F̂ mod P to get x

38 if x �= FAIL then return F else (X, p) ← (F̂ , q) end
39 end

244 A. Jinadu and M. Monagan

Subroutine 6: GetTerms
Input: A multivariate polynomial Fk ∈ Zq[y1, . . . , ym], Points α ∈ (Zq \ {0})m,

β ∈ Z
m
q ,a random shift ŝ ∈ [1, q − 2], a list of lower total degree

polynomials B1 = [fdeg(fk)−1,k, . . . , f0,k], list of points
[Ŷj ∈ Z

m
q : 1 ≤ j ≤ Nmax] and list [Nj ∈ Zq[z] : 1 ≤ j ≤ Nmax].

Output: A non-zero polynomial fk ∈ Zq[y1, . . . , ym]
1 (A, fk, d̂) ← (Fk, Fk, deg(Fk)) and set Γ = (0, 0, , . . . , 0) ∈ Z

Nmax
q .

2 D ← [deg(e) : e ∈ B1], M̂ ← [supp(e) : e ∈ B1] // supp means support.
3 for h = 1, 2, . . . , |D| do
4 d ← Dh

5 if β �= 0 then
6 Pick θ ∈ Z

d̂+1
q at random.

7 for j = 1, 2, · · · , Nmax do
8 Zj,t ← A(y1 = Ŷj,1θt + β1, . . . , ym = Ŷj,mθt + βm) for

1 ≤ t ≤ d̂ + 1; . O(m#A + md̂)
9 Interpolate W j ∈ Zq[z] using (θt, Zj,t : 1 ≤ t ≤ d̂ + 1); O(d̂2)

10 Γj ← Γj + W j ; . O(d̂)

11 end
12 end
13 if d �= 0 then
14 P ← [

coeff(Nj , z
d) : 1 ≤ j ≤ Nmax

]

15 if β �= 0 then Pj ← Pj − coeff(Γj , z
d) for 1 ≤ j ≤ Nmax end

16 m̂ ← [M̂i(α) : 1 ≤ i ≤ n̂] where n̂ = #M̂h; . O(mn̂)
17 if any monomial evaluations m̂i = m̂j then return FAIL end.
18 A ← VandermondeSolver(m̂, P, ŝ, M̂h); . O(n̂2)

19 else
20 A ← coeff(N1, z

0) // We use only one point to get the constant term
21 if β �= 0 then A ← A − coeff(Γ1, z

0) end
22 (fk, d̂) ← (fk + A, deg(A) + 1).

23 end
24 end
25 return fk.

4 Analysis

4.1 Failure Probability Analysis

Here we identify all the problems that can occur in our algorithm for solving
parametric linear systems. The proofs in this paper require the Schwartz-Zippel
Lemma [16,17]. We state the lemma and some useful results now.

Lemma 5 (Schwartz-Zippel Lemma). Let K be a field and let f be a non-
zero polynomial in K[y1, y2, . . . , ym]. If α is chosen at random from Fm with
F ⊂ K then Prob[f(α) = 0] ≤ deg(f)

|F | .

Solving Parametric Linear Systems 245

Definition 6. Let f =
∑t

i=1 aiNi ∈ Z[y1, y2, . . . , ym] where ai ∈ Z \ {0}, t =
#f ≥ 1 and Ni is a monomial in variables y1, y2, . . . , ym. The height of f
denoted by ‖f‖∞ is defined as ‖f‖∞= maxt

i=1|ai|. We also define ‖H‖∞=
max (‖fk‖∞, ‖gk‖∞) where H = fk(y1,...,ym)

gk(y1,...,ym) such that gcd(fk, gk) = 1.

Theorem 7 [9, Proposition 2]. Let A be a n×n matrix with Aij ∈ Z[y1, . . . , ym],
#Aij ≤ t and ‖Aij‖∞≤ h. Then ‖det(A)‖∞ < n

n
2 tnhn.

Lemma 8 [6, Lemma 2, page 135]. Let f, g ∈ Z[y1, y2, . . . , ym]. If g|f then
‖g‖∞≤ e

∑m
i=1 deg(f,yi)‖f‖∞ where e is the Euluer number and e ≈ 2.718.

Remark 9. For the rest of this paper, let deg(bj),deg(Aij),deg(fi),deg(gi) ≤ d.
Let #Aij ,#bj ,#fi,#gi ≤ t and let ‖Aij‖∞, ‖bj‖∞≤ h. Let P = {p1, p2, . . . , pN}
be the list of machine primes to be used in our algorithm such that pmin =
minN

i=1{pi} and N is a large positive integer.

We now estimate the height of the entries xk of the solution vector x.

Theorem 10. We have

‖xk‖∞ ≤ enmdn
n
2 tnhn

where e is the Euler number and e ≈ 2.718.

Proof. By Cramer’s rule, the solutions of Ax = b are given by
Rk

R
where Rk

denotes the matrix obtained by replacing the k-th column of the coefficient
matrix A by vector b and R = det(A). Let hk = gcd(Rk, R). Observe that

Rk/hk

R/hk
=

fk

gk
= xk

where gcd(fk, gk) = 1. Therefore fk|Rk and gk|R. By Lemma 8, it follows that

‖gk‖∞ ≤ e
∑m

i=1 deg(R,yi)‖R‖∞≤ e
∑m

i=1 nd‖R‖∞≤ enmd‖R‖∞ (9)

and similarly,
‖fk‖∞ ≤ enmd‖Rk‖∞ (10)

because deg(R, yi) ≤ deg(R) ≤ n × maxn
i=1{deg(Aij)} ≤ nd. Therefore

‖xk‖∞ ≤ max (‖fk‖∞, ‖gk‖∞) ≤ enmd max (‖Rk‖∞, ‖R‖∞) ≤ enmdn
n
2 tnhn

by Theorem 7. �
We remark that the above bound for the height of xk is the worst case bound.

246 A. Jinadu and M. Monagan

4.1.1 Unlucky Primes and Evaluation Points

Definition 11. Let p be a prime. A prime p is said to be unlucky if p|det(A).

Definition 12. Suppose p is not an unlucky prime. Let α ∈ Z
m
p be an evaluation

point. We say that α is unlucky if det(A)(α) = 0.

Lemma 13. Let p be a prime chosen at random from list of primes P . Then

Pr[p is unlucky] ≤ logpmin

(
n

n
2 tnhn

)

N
.

Proof. Let R = det(A) and let c be an integer coefficient of R. The number of
primes p from P that can divide c is at most �logpmin

c�. So

Pr[p | c] ≤ logpmin
c

N
.

By definition, prime p is unlucky ⇐⇒ p|R =⇒ p divides one term in R. So

Pr[p is unlucky] = Pr[p |R] ≤ Pr[p divides one term in R] ≤ logpmin
‖R‖∞

N
.

Using Theorem 7, it follows that Pr[p is unlucky] ≤ logpmin

(
n

n
2 tnhn

)

N
. �

Lemma 14. Let p be a prime chosen at random from the list of primes P . Let
α ∈ Z

m
p be an evaluation point. If p is not an unlucky prime then

Pr[α is unlucky] ≤ nd

p
.

Proof. Using Lemma 5, we have

Pr[α is unlucky] = Pr[det(A)(α) = 0] ≤ deg(det(A))
p

≤ nd

p
.

�

4.1.2 Bad Evaluation Points, Primes and Basis Shift

Definition 15. We say that α ∈ Zp \ {0} is a bad evaluation point
if deg(fβ

k (α, z)) < deg(fk, z) or deg(gβ
k (α, z)) < deg(gk, z) for any k.

Definition 16. We say that β ∈ (Zp \ {0})m is a bad basis shift
if gcd(fk, gk) = 1 but deg(gcd(fβ

k (α, z), gβ
k (α, z))) > 0 for any k.

Definition 17. We say a prime p is bad if p|LC(fβ
k (y, z)) in z or p|LC(gβ

k (y, z))
in z for any k.

Solving Parametric Linear Systems 247

To avoid the occurrence of bad evaluation points with high probability in
Algorithm4, we had to interpolate Fk(αŝ+i, z, β) for some random point ŝ ∈
[0, p−1] instead of Fk(αi, z, β). This is labelled as Aj in Line 25. Line 26 detects
the occurrence of bad evaluation points, a bad basis shift or a bad prime.

Example 18. Let p be a prime and let

f1
g1

=
y1

(y1 + y3)y2
∈ Zp(y1, y2, y3).

Observe that the partial degrees ei = max{deg(f1, yi),deg(g1, yi)} = 1 for 1 ≤
i ≤ 3. For the Kronecker map Kr to be invertible we need ri > ei, so let r = (2, 2).
Thus the mapped function

Kr(f1/g1) =
f(y, y2, y4)
g(y, y2, y4)

=
y

(y + y4)y2
=

y

y3 + y6
.

Since g1 has no constant term, we need a basis shift β ∈ (Zp\{0})3. To interpolate
Kr(f1/g1), we need to densely interpolate F1(αj , z, β) for 1 ≤ j ≤ 4 = 2 × #g1.
Computing F1(α, z, β) directly yields the univariate rational function

F1(α, z, β) =
fβ
1 (α, z)

gβ
1 (α, z)

=
αz + β1

(zα4 + zα + β1 + β3)(zα2 + β2)
.

The Sylvester resultant R = Res(fβ
1 (α, z), gβ

1 (α, z), z) = α2(α3β1 − β3)(αβ1 −
β2) �= 0 since α �= 0 and β = (β1, β2, β3) �= (0, 0, 0). But, if β2 = αβ1 �= 0 or
β3 = α3β1 �= 0 then R(β) = 0 which implies that β is a bad basis shift.

4.1.3 Main Results

Theorem 19. Let Na be greater than the required number of auxiliary rational
function needed to interpolate x and suppose all the degree bounds obtained in
Lines 1–5 of Algorithm4 are correct. Let e be the Euler number where e ≈ 2.718.
Suppose Algorithm4 only needs one prime to interpolate x. If prime p is chosen
at random from P then the probability that Algorithm4 returns FAIL is at most

6Nan2d
(
logpmin

(th
√

n)
)

+ 2Nan2md logpmin
(e)

N
+

2n(1 + d)m
(
Na + t2 + t2d

)
+ 5n2Nad2

p − 1
.

Proof. Recall that emax = maxn
k=1{deg(fk) + deg(gk) + 2} ≤ 4d. Notice that

Pr[vj = FAIL in Line 19] = Pr[prime p or evaluation point Zj in Line 17
is unlucky].

By Lemma 13 and 14, we have that Pr[Algorithm 4 returns FAIL
in Line 19] ≤

emaxnNa

(
nd

p
+

logpmin

(
n

n
2 tnhn

)

N

)

≤ 4n2dNa

(
d

p
+

logpmin
(th

√
n)

N

)
(11)

248 A. Jinadu and M. Monagan

There are three causes of FAIL in Line 26 of Algorithm 4. All three failure
causes (bad evaluation point, bad basis shift and bad prime) are direct conse-
quence of our attempt to interpolate auxiliary rational functions Aj in Line 25.
We will handle the bad evaluation point case first. Let

Δ(y) =
n∏

k=1

LC(fβ
k (y, z))LC(gβ

k (y, z)) ∈ Zp[y].

Notice that the evaluation point αŝ+j−1 in Line 15 is random since ŝ ∈ [0, p − 1]
is random and α is randomly selected in Line 9. Since a basis shift β does not
affect the degree and the leading coefficients of auxiliary rational functions, we
have that if αŝ+j−1 is a bad then Δ(αŝ+j−1) = 0. Thus

Prob[αŝ+j−1 is a bad for 0 ≤ j ≤ Na − 1] ≤ Na deg(Δ)
p − 1

≤ 2Nan(1 + d)m

p − 1
.

Now suppose θj := αŝ+j−1 is not bad for 1 ≤ j ≤ Na. Let w1, w2, · · · wm be new
variables and let

Gkj =
f̂kj

ĝkj

=
fk(θjz + w1, . . . , zθ

(r1r2···rm−1)
j + wm)

gk(θjz + w1, . . . , zθ
(r1r2···rm−1)
j + wm)

∈ Zp(w1, w2, . . . , wm)(z).

Recall that LC(f̂kj
)(β) �= 0 and LC(ĝkj

)(β) �= 0. Let Rkj = Res(f̂kj
, ĝkj

, z) ∈
Zp[w1, w2, . . . , wm] be the Sylvester resultant and

let Δ(w1, w2, . . . , wm) =
Na∏

j=1

n∏

k=1

Rkj . Clearly, β picked at random in Line 7

is a bad basis shift ⇐⇒ Δ(β) = 0 ⇐⇒ deg(gcd(f̂kj
(z, β), ĝkj

(z, β)) > 0
for any k and j. Using Bezout’s bound [9, Lemma 4], we have deg(Rkj) ≤
deg(fk) deg(gk) ≤ d2. Thus

Prob[β is a bad basis shift] = Prob[Δ(β) = 0] ≤ deg(Δ)
p − 1

≤ nd2Na

p − 1
.

Finally, we deal with the bad prime case.
Observe that Prob[prime p is bad] ≤ Prob[p divides 1 term of LC(fk) or
LC(gk)

for 1 ≤ k ≤ n] ≤ n logpmin
(‖fk‖∞‖gk‖∞)

N
.

Using Eqs. (9) and (10), we have Prob[prime p is bad for 1 ≤ j ≤ Na]

≤ Nan logpmin
(enmdn

n
2 tnhn)2

N
≤ 2Nan2

(
logpmin

(th
√

n) + md logpmin
(e)

)

N
.

Solving Parametric Linear Systems 249

Thus Pr[Algorithm 4 returns FAIL in Line 26] is at most

2Nan2
(
logpmin

(th
√

n) + md logpmin
e
)

N
+

2Nan(1 + d)m

p − 1
+

nd2Na

p − 1
. (12)

Since Na is greater than the required number of auxiliary rational function
needed by Algorithm 4 to interpolate x, then Line 2 of Subroutine 2 will never
return FAIL. However the feedback polynomial λ ∈ Zp[z] generated to find the
number of terms in fi,k or gi,k in Line 4 of Subroutine 2 might be wrong so it
will return FAIL which causes Algorithm4 to return FAIL in either Lines 29 or
30 or 34 or 35. By [10, Theorem 2.6], Pr[getting the wrong #fi,k or #gi,k] ≤
∑n

k=1

(∑deg(fk)
i=0 #fi,k(#fi,k+1) deg(Kr(fi,k))+

∑deg(gk)
i=0 #gi,k(#gi,k+1) deg(Kr(gi,k)

)

2(p−1) .

Since #fi,k,#gi,k ≤ t and deg(Kr(fi,k)),deg(Kr(gi,k)) ≤ (1 + d)m, we have

Pr[Algorithm 4 returns FAIL in Lines 29 or 30 or 34 or 35] ≤ 2nt2(1 + d)m+1

p − 1
. (13)

Our result follows by adding (11), (12) and (13). �
Theorem 20. Let Na be greater than the required number of auxiliary rational
functions needed to interpolate x. Let q be a new prime selected at random from
the list of primes P to reconstruct the coefficients of x using rational number
reconstruction. Let e ≈ 2.718 be the Euler number. Then

Pr[Algorithm 5 returns FAIL]

≤ 6Nan2d
(
logpmin

(th
√

n)
)

+ 2Nan2md logpmin
(e)

N
+

7n2d2Na + 4nd2t2

q − 1
.

Proof. Using (11), the probability that Algorithm 5 returns FAIL in Line 12 is
at most

4n2dNa

(
d

q
+

logpmin
(th

√
n)

N

)
(14)

If the monomial evaluations obtained in Line 19 of Algorithm 5 or the monomial
evaluations obtained in Line 17 of Subroutine 6 are not distinct then

Pr[Algorithm 5 returns FAIL in Line 19 or 30 or 31]

≤
n∑

k=1

(
∑deg(fk)

i=0

(
#fi,k

2

)
deg(fi,k) +

∑deg(gk)
i=0

(
#gi,k

2

)
deg(gi,k))

q − 1
≤ 4nd2t2

q − 1
. (15)

Notice that the rational functions Bj obtained in Line 23 are of the form

fβ
k (y1, y2, . . . , ym, z)

gβ
k (y1, y2, . . . , ym, z)

=
fk(y1z + β1, . . . , ymz + βm)
gk(y1z + β1, . . . , ymz + βm)

,

250 A. Jinadu and M. Monagan

and are different from the Aj obtained in Algorithm4 because a Kronecker map
is not used. Let Δ =

∏n
k=1 LC(fβ

k)LC(gβ
k) ∈ Zp[y1, y2, . . . , ym]. Since deg(Δ) ≤

2nd and Na ≥ N̂max, then Prob[Ŷj picked in Line 8 of Algorithm 5 is bad : 0 ≤
j ≤ N̂max − 1] ≤ 2ndNa

q − 1
. Hence Pr[Algorithm 5 returns FAIL in Line 25] ≤

2Nan2
(
logpmin

(th
√

n) + md logpmin
(e)

)

N
+

2ndNa

q − 1
+

nd2Na

q − 1
. (16)

Our result follows by adding (14), (15) and (16). �

4.2 Complexity Analysis

Theorem 21. Let B = [A|b] be a n × (n + 1) augmented matrix such that
#Bij ≤ t and deg(Bij) ≤ d. Suppose that the integer coefficients of the entries
Bij of B are l base C digits long. That is, ‖Bij‖∞≤ Cl. Let prime p chosen
at random from the list of primes P and C < p < 2C. A black box probe costs
O(n2tl + n2mdt + n3) arithmetic operations in Zp.

Proof. Let Bij =
∑t

k=1 akBij,k(y1, . . . , ym). The total cost of computing B
mod p is O(n2tl) since the modular reduction Bij mod p costs O(tl). All mono-
mial evaluations Bijk

(α) can be computed using O(mdt) multiplications and t
multiplications for the product akBijk

(α) ∈ Zp. So, the cost of evaluating B
is O(n2mdt). The cost of solving B(α) over Zp using Gaussian elimination is
O(n3). Thus a black box probe costs O(n2tl + n2mdt + n3). �

Theorem 22. Let N̂max = maxn
k=1(maxdeg(gk)

i=0 {#fi,k},maxdeg(fk)
j=0 {#gi,k})

where fi,k, gi,k, fk, gk is as defined in (8) and let emax = 2 + maxn
k=1{deg(fk) +

deg(gk)}. Let H be maximum of all the integer coefficients of all the polynomials
fk and gk. Then the number of black box probes required by our algorithm to
interpolate the solution vector x is O(emaxN̂max log H).

5 Implementation and Benchmarks

We have implemented our new algorithm in Maple with some parts coded in
C to improve its overall efficiency. The parts coded in C include evaluating an
augmented matrix at integer points modulo prime p, solving the evaluated aug-
mented matrix with integer entries over Zp using Gaussian elimination, finding
and factoring the feedback polynomial produced by the Berlekamp-Massey algo-
rithm, solving a t×t shifted Vandermonde system and performing dense rational
function interpolation using the MQRFR algorithm modulo a prime. Each probe
to the black box is computed using C code and its supports primes up to 63 bits
in length. We have benchmarked our code on a 24 core Intel Gold 6342 processor
with 256 gigabytes of RAM using only 1 core.

Solving Parametric Linear Systems 251

To test the performance of our algorithm, we create the following artificial
problem. Let D ∈ Z[y1, y2, . . . , ym]n×n with rank(D) = n. Let the coefficient
matrix A be a diagonal matrix such that its diagonal entries are non zero poly-
nomials g1, . . . , gn and let the vector b =

[
f1 f2 · · · fn

]T
. Clearly the vector

x =
[

f1
g1

f2
g2

· · · fn

gn

]T

solves Ax = b. But suppose we create a new linear system Wx∗ = c by premul-
tiplying Ax = b by D so that

Wx∗ = (DA)x∗ = Db = c.

Then both parametric systems Ax = b and Wx∗ = c are equivalent. That is,

x∗ = W−1c =
Adj(DA)c
det(DA)

=
Adj(A)Adj(D)Db

det(D) det(A)
=

Adj(A)b
det(A)

= A−1b = x

where Adj denotes the adjoint matrix.
In Table 2 we compare our new algorithm (row ParamLinSolve) with a Maple

implementation of the Bareiss/Edmonds fraction free one step Gaussian elimina-
tion method with Lipson’s fraction formula for back substitution (row Bareiss),
a Maple implementation of the Gentleman & Johnson minor expansion method
(row Gentleman) and using Maple’s commands ReducedRowEchelonForm (row
ReducedRow) and LinearSolve (row LinearSolve) for solving the systems
Wx∗ = c that were created artificially.

The artificial systems Wx∗ = c were created using the following Maple code:

CreateSystem := proc(n,m,T,dT,t,d) local A, D,W,c,b,Y,i;
Y := [seq(y||i,i=1..m)];
D := Matrix(n,n, () -> randpoly(Y,terms=T, degree=dT));
b := Vector[column](n, () -> randpoly(Y, terms =t, degree=d));
i := [seq(randpoly(Y, terms =t, degree=d),i=1..n)];
A := DiagonalMatrix(i);
W,c := D.A, D.b; return W,c,A,D;

end:

The three input systems solved in Table 3 are real systems (Example 1 and
two other systems) which were the motivation for this work. Note that the tim-
ings reported for the real systems in Table 3 are in the columns and not in rows
as in Table 2. The notation ! indicates that Maple was unable to allocate enough
memory to finish the computation and − means unknown in both Tables 2 and
3. The breakdown of the timings for all individual algorithms involved for com-
puting the system named bigsys are reported in Table 4. Column max in Table 3

252 A. Jinadu and M. Monagan

contains the number of terms in the largest polynomial to be interpolated in the
rational functions of the unique solution of a system. Column max in Table 3
contains the number of terms in the largest polynomial to be interpolated in the
rational functions of the unique solution x of a parametric linear system.

The artificial input systems Wx∗ = c were created by generating matrices
D,A and column vector b randomly, with all of their entries in Z[y1, . . . , ym]
where m = 10,deg(Dij) ≤ dT = 5,#Di,j = T ≤ 2 and deg(Aij),deg(bj) ≤ d =
10,#Ai,j ,#bj = t ≤ 5 and rank(A) = rank(D) = n for 3 ≤ n ≤ 10. Using
the Gentleman & Johnson algorithm, we obtain #det(A),#det(D),#det(W)
(rows 2–4 in Table 2) and the total CPU time used to compute each of
them are reported in rows 10–13. We remark that we did not compute the
gcd(det(Ak),det(A)) when the Gentleman & Johnson algorithm was used. As
the reader can see from Table 2, our algorithm performed better than other algo-
rithms for n ≥ 5.

As the reader can see in Table 4, computing the roots of the feedback poly-
nomial for the bigsys system is the dominating cost. This is because the number
of terms in many of the polynomials fi, gi to be interpolated is large. In particu-
lar, it has four polynomials where max(#fi,#gi) > 50, 000 and our root finding
algorithm for computing the roots of λ(z) costs O(t2 log p) where t = deg(λ) is
the number of terms of the fi and gi being interpolated.

Table 2. CPU Timings for solving Wx∗ = c with #fi, #gi ≤ 5 for 3 ≤ n ≤ 10.

n 3 4 5 6 7 8 9 10

#det(A) 125 625 3,125 15,500 59,851 310,796 1,923,985 9,381,213

#det(D) 40 336 3,120 38,784 518,009 8,477,343 156,424,985 –

#det(W) 5,000 209,960 9,741,747 – – – – –

ParamLinSolve 0.079 s 0.176 s 0.154 s 0.211 s 0.220 s 0.239 s 0.259 s 0.317 s

LinearSolve 0.129 s 1.26 s 304.20 s 124200 s ! ! ! !

ReducedRow 0.01 s 0.083 11.05 s 3403.2 s ! ! ! !

Bareiss 2.02 s ! ! ! ! ! ! !

Gentleman 0.040 s 3.19 s 239.40 s ! ! ! ! !

time-det(A) 0 s 0 s 0.003 s 0.08 s 0.898 s 0.703 s 17.03 s 25.32 s

time -det(D) 0 s 0 s 0.007 s 1.21 s 1.39 s 601.8 s 2893.8 s !

time-det(W) 0 s 0.310 s 20.44 s ! ! ! ! !

Table 3. CPU Timings for solving three real parametric linear systems

system names n m max ParamLinSolve Gentleman LinearSolve ReducedRow Bareiss #det(A)

Bspline 21 5 26 0.220 s 2623.8 s 0.021 s 0.026 s 0.500 s 1033
Bigsys 44 48 58240 7776 s ! 17.85 s 1.66 s ! 6037416
Caglar 12 56 23072 1685.57 s NA 1232.40 s 15480.35 s NA 15744
NA=Not Attempted

Solving Parametric Linear Systems 253

Table 4. Breakdown of CPU timings for all individual algorithms involved for solving
bigsys

Time(ms) Percentage

Matrix Evaluation 151.48 s 1.9 %

Gaussian Elimination 110.71 s 1.4 %

Univariate Rational Function Interpolation 706.07 s 9 %

Finding λ ∈ Zp[z] using the Berlekamp-Massey Algorithm 208.25 s 2.6 %

Roots of λ over Zp 4856.96 s 62 %

Solving Vandermonde systems 434.46 s 5.6 %

Multiplication and Addition of Evaluation points 257.40 s 3.3 %

Computing Discrete logarithms 586.64 s 7.6 %

Miscellaneous 464.67 s 9.4 %

Overall Time 7776 s 100 %

References

1. Atti, N.B., Lombardi, H., Diaz-Toca, G.M.: The Berlekamp-Massey algorithm
revisited. AAECC 17(4), 75–82 (2006)

2. Bareiss, E.: Sylvester’s identity and multistep integer-preserving Gaussian elimi-
nation. Math. Comput. 22(103), 565–578 (1968)

3. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polyno-
mial interpolation. In: Proceedings of STOC 2020, pp. 301–309. ACM (1988)

4. Cuyt, A., Lee, W.-S.: Sparse interpolation of multivariate rational functions. J.
Theor. Comput. Sci. 412, 1445–1456 (2011)

5. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl.
Bureau Stand. 718(4), 241–245 (1967)

6. Gelfond, A.: Transcendental and Algebraic Numbers. GITTL, Moscow (1952).
English translation by Leo, F., Boron, Dover, New York (1960)

7. Gentleman, W.M., Johnson, S.C.: The evaluation of determinants by expansion by
minors and the general problem of substitution. Math. Comput. 28(126), 543–548
(1974)

8. Lipson, J.: Symbolic methods for the computer solution of linear equations with
applications to flow graphs. In: Proceedings of SISMC 1968, pp. 233–303. IBM
(1969)

9. Hu, J., Monagan, M.: A fast parallel sparse polynomial GCD algorithm. In: Pro-
ceedings of ISSAC 2016, pp. 271–278. ACM (2016)

10. Hu, J.: Computing polynomial greatest common divisors using sparse interpolation.
Ph.D. thesis, Simon Fraser University (2018)

11. Jinadu, A., Monagan, M.: An interpolation algorithm for computing Dixon resul-
tants. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC
2022. LNCS, vol. 13366, pp. 185–205. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-14788-3_11

12. Jinadu, A., Monagan, M.: A new interpolation algorithm for computing Dixon
Resultants. ACM 56(2), 88–91 (2022)

13. Kaltofen, E., Lee, W., Lobo, A.: Early termination in Ben-Or/Tiwari sparse inter-
polation and a hybrid of Zippel’s algorithm. In: Proceedings of ISSAC 2000, pp.
192–201. ACM (2000)

https://doi.org/10.1007/978-3-031-14788-3_11
https://doi.org/10.1007/978-3-031-14788-3_11

254 A. Jinadu and M. Monagan

14. Monagan, M.: Maximal quotient rational reconstruction: an almost optimal algo-
rithm for rational reconstruction. In: Proceedings of ISSAC 2004, pp. 243–249.
ACM (2004)

15. Monagan, M., Vrbik, P.: Lazy and forgetful polynomial arithmetic and applica-
tions. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS,
vol. 5743, pp. 226–239. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04103-7_20

16. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 27, 701–717 (1980)

17. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5_73

https://doi.org/10.1007/978-3-642-04103-7_20
https://doi.org/10.1007/978-3-642-04103-7_20
https://doi.org/10.1007/3-540-09519-5_73

On the Distance to the Nearest Defective
Matrix

Elizaveta Kalinina(B) , Alexei Uteshev , Marina Goncharova ,
and Elena Lezhnina

Faculty of Applied Mathematics, St. Petersburg State University,
7–9 Universitetskaya nab., St. Petersburg 199034, Russia

{e.kalinina,a.uteshev,m.goncharova,e.lezhnina}@spbu.ru
http://www.apmath.spbu.ru

Abstract. The problem of finding the Frobenius distance in the C
n×n

matrix space from a given matrix to the set of matrices with multiple
eigenvalues is considered. The problem is reduced to the univariate alge-
braic equation construction via computing the discriminant of an appro-
priate bivariate polynomial. Several examples are presented including the
cases of complex and real matrices.

Keywords: Wilkinson’s problem · Complex perturbations · Frobenius
norm · Discriminant

1 Introduction

The problem of distance evaluation from a given square matrix A to a certain
subset of matrices in the matrix space is a known metric problem of Compu-
tational Algebra. For instance, one might refer to the distance to the nearest
degenerate matrix, or to the nearest orthogonal matrix (Procrustes problem),
or, in the case of Routh–Hurwitz stable matrix A, to the nearest unstable matrix
(stability radius), etc.

The present article is devoted to a problem from this field. Namely we are
looking for the distance from A ∈ C

n×n to the set D of complex matrices with
multiple eigenvalues (these matrices are further referred to as the defective matri-
ces). This classical problem is known as Wilkinson’s problem, and the required
distance, further denoted as dC(A,D), is called the Wilkinson distance of A
[2,15]. For the spectral and the Frobenius norm, Wilkinson’s problem has been
studied by many researchers (see, for example, [2,6,7,13,14,18,20–22] and ref-
erences therein). The most important result for the spectral norm was obtained
by Malyshev [14].

Theorem 1. Let A ∈ C
n×n. Let the singular values of the matrix

[
A − λIn γIn

On×n A − λIn

]
(1)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 255–271, 2023.
https://doi.org/10.1007/978-3-031-41724-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_14&domain=pdf
http://orcid.org/0000-0003-0288-3938
http://orcid.org/0000-0002-8344-3266
http://orcid.org/0000-0003-4260-7671
http://orcid.org/0000-0002-1898-3792
https://doi.org/10.1007/978-3-031-41724-5_14

256 E. Kalinina et al.

be ordered like σ1(λ, γ) ≥ σ2(λ, γ) ≥ . . . ≥ σ2n(λ, γ) ≥ 0. Then the 2-norm
distance dC(A,D) can be evaluated as

dC(A,D) = min
λ∈C

max
γ≥0

σ2n−1(λ, γ) .

However, the min-max representation does not provide the constructive solu-
tion of Wilkinson’s problem. For this reason, in some works [1–3,13], the pseu-
dospectra approach was used to find the Wilkinson distance. For both the 2-norm
and the Frobenius norm, the ε-pseudospectrum of a matrix A is defined as

Λε(A) = {σmin < ε}

where ε > 0, and σmin stands for the smallest singular value of the matrix A−zI.
Equivalently,

Λε(A) = {z ∈ C|det(A + E − zI) = 0, for some E ∈ C
n×n with ‖E‖ < ε}.

The examination of the pseudospectrum of a matrix A gives the critical points
of the minimal singular value σmin(x, y) of the matrix A−(x+iy)I. These critical
points allow one to find the nearest defective matrix. A geometric solution using
such approach is given in [13].

In [2], the smallest perturbation E∗ is found using the fact that the compo-
nents of the pseudospectrum of A + E∗ must coalesce.

The computational approaches to approximate the nearest defective matrix
by algorithms based on Newton’s method are suggested in [1,3].

All the approaches developed in the above cited papers could be characterized
as related to the Numerical Linear Algebra.

Also there are several works concerning the problems related to the pertur-
bation sensitivity of multiple eigenvalues (for example, see [4,15,17] and others).

In the present paper, to find the Wilkinson distance in the Frobenius norm
we use the Symbolic Computation approach that has been initiated in [12].
Main goal is the construction of the univariate algebraic equation with the set
of real zeros coinciding with the critical values of the squared distance function
to the set D.

The paper is organized as follows.
In Sect. 2, we start with algebraic background for the stated problem.

The cornerstone notion here is the multivariate resultant of a system of alge-
braic equations that helps to find the solution of this system. A particular case of
the resultant, namely the bivariate discriminant of a polynomial in two variables,
is a univariate polynomial whose zero set contains all the critical values of the
squared distance to the set of matrices with multiple eigenvalues. Its construc-
tion is theoretically feasible via application of symbolic methods for elimination
of variables.

In Sect. 3, we consider the case of a complex matrix. With the help of the fact
that the minimal perturbation is a rank-one matrix and the theorems connecting
singular values and eigenvalues of matrices under consideration, we obtain the

Distance to Defective Matrix 257

system of algebraic equations whose zero set contains the multiple eigenvalue of
the nearest defective matrix and the squared distance to this matrix.

The case of a real matrix has some simplifications and features that we treat
in Sect. 4. For both complex and real cases, the examples showing applicability
of the developed algorithm are presented.

Notation. For a matrix A ∈ C
n×n, fA(λ) denotes its characteristic polyno-

mial, dC(A,D) denotes the distance in C
n×n from A to the set D of matrices

possessing a multiple eigenvalue; E∗ and B∗ = A + E∗ stand for, correspond-
ingly, the (minimal) perturbation matrix and the nearest to A matrix in D (i.e.,
dC(A,D) = ‖A − B∗‖); we then term by λ∗ = a∗ + ib∗ the multiple eigenvalue
of B∗; I (or In) denotes the identity matrix (of the corresponding order); D (or
Dx,y) denotes the discriminant of a polynomial (with subscript indicating the
variables); the superscript H stands for the Hermitian transpose while � stands
for the transpose.

Remark. All the computations were performed in CAS Maple 15.0, Linear-
Algebra package. Although all the approximate computations have been per-
formed within the accuracy 10−40, the final results are rounded to 10−6.

2 Algebraic Preliminaries

We assume that the concept of resultant and discriminant of the univariate
polynomials is known to the reader. A sketch of theoretical results related to the
problems discussed further can be found in the corresponding section of [11].

A concept of the multivariate resultant is used to establish a necessary and
sufficient condition for the existence of a common zero of a multivariate algebraic
system. Its constructive computation can be implemented in several ways, and we
will exemplify below the procedure based of the Bézout construction of the
resultant [5] for the bivariate case.

Consider the polynomials {f1(x, y), f2(x, y), g(x, y)} ⊂ R[x, y], n1 :=
deg f1 ≥ 1, n2 := deg f2 ≥ 1,m := deg g ≥ 1. We need to find the condition
for the existence of a solution of a system of algebraic equations

f1(x, y) = 0, f2(x, y) = 0, g(x, y) = 0 . (2)

We expand f1 and f2 in decreasing powers of variables:

fj(x, y) ≡ fj,nj
(x, y) + fj,nj−1(x, y) + . . . + fj,0(x, y), j ∈ {1, 2}

where fj,k(x, y) stands for the form of degree k. Suppose the resultant of the
leading forms

A0 := Rx(f1,n1(x, 1), f2,n2(x, 1)) �= 0;

then the system
f1(x, y) = 0, f2(x, y) = 0 (3)

258 E. Kalinina et al.

has precisely N = n1n2 (the Bézout bound) solutions (αj , βj) ∈ C
2 , and the

bivariate resultant is formally defined as

Rx,y(f1, f2, g) := Am
0 Rg

x,y(f1, f2), where Rg
x,y(f1, f2) :=

N∏
j=1

g(αj , βj) .

We utilize the process of finding the normal form (or the reduction) modulo
the ideal I(f1, f2). As a basis for the vector space R[x, y]/I(f1, f2), generically
the Bézout’s set

M = {μk(x, y)}N
k=1 = {xpyq|0 ≤ p ≤ n1, 0 ≤ q ≤ n2} (4)

can be chosen. The monomials of this set might be numbered arbitrarily but, in
view of subsequent needs, we specify μ1 = 1, μ2 = x, μ3 = y. Then we find the
normal form for μk(x, y)g(x, y):

μk(x, y)g(x, y) + I(f1, f2) = bk1μ1(x, y) + . . . + bkNμN (x, y), {bkj}N
k,j=1 ⊂ R.

The matrix
B = [bkj]

N
k,j=1 (5)

is called the Bézout matrix. One has

Rg
x,y(f1, f2) = detB .

The determinant in the right-hand side is a rational function of the coefficients
of the polynomials f1, f2 and g, and generically, the condition detB = 0 is the
necessary and sufficient for the existence of a solution of system (2).

Under the condition rank(B) = N−1, this solution is unique. Denote by BNj

the cofactor to the entries of the last row of detB and assume that BN1 �= 0.
Then the components of the solution (x0, y0) of system (2) can be found by the
formulas

x0 = BN2/BN1, y0 = BN3/BN1 , (6)

i.e., they can be expressed as rational functions of the coefficients of the poly-
nomials f1, f2, and g.

In further considerations, we are mainly in need of a particular case of the
resultant, namely the discriminant of a bivariate polynomial F (x, y) ∈ R[x, y].
It can be formally defined as

Dx,y(F (x, y)) := RF
x,y(∂F/∂x, ∂F/∂y) ,

and it can be represented as a rational function of the coefficients of the poly-
nomial F .

For the case of polynomials in three variables x, y, and z, the above traced
procedures permit one to implement the algorithm of elimination of the variables
x and y from the corresponding algebraic system. This algorithm results in a
univariate algebraic equation providing z-components of solutions while the x
and y-components are represented as rational functions of the z-component.

Distance to Defective Matrix 259

3 Complex Matrix

We will utilize further the two known results [8–10]. The first one is related to
the matrix eigenvalues.

Theorem 2. Let {λ1, λ2, . . . , λn} ⊂ C be the spectrum of a matrix B ∈ C
n×n

and let Vλ1 ∈ C
n be a unit eigenvector corresponding to λ1. Then there exists a

unitary matrix V = [Vλ1 , V2, . . . , Vn] that furnishes the upper triangular Schur
decomposition

B = V TV H

where T = [tij]ni,j=1 is upper triangular with diagonal entries {tjj = λj}n
j=1.

The second result concerns the singular values of a matrix. For a nonsingular
matrix A ∈ C

n×n, denote by σ1 ≥ σ2 ≥ . . . ≥ σn > 0 its singular values while
by Uσj

and Vσj
its left and right unit singular vectors corresponding to σj .

Thus, the singular value decomposition of A is

A = UDnV H ,

with unitary matrices U = [Uσ1 , . . . , Uσn
] and V = [Vσ1 , . . . , Vσn

], and diagonal
matrix Dn = diag {σ1, σ2, . . . , σn}.

Theorem 3. For both the 2-norm and the Frobenius norm, one has

min
detB=0

||A − B|| = ||A − B∗|| = σn .

The nearest to A singular matrix is

B∗ = UDn−1V
H where Dn−1 = diag {σ1, σ2, . . . , σn−1, 0} .

The minimal perturbation E∗ such that

B∗ = A + E∗, ‖E∗‖ = σn

is given by the rank-one matrix

E∗ = −σnUσn
V H

σn
= −Uσn

UH
σn

A .

Corollary 1. The distance from A ∈ C
n×n to the nearest matrix B0 with the

prescribed eigenvalue λ0 ∈ C such as det(A − λ0I) �= 0, equals the least singular
value σ0 of the matrix A − λ0I. If Uσ0 is the unit left singular vector of A − λ0I
corresponding to σ0, then

E0 = Uσ0U
H
σ0

(λ0I − A), ‖E0‖ = σ0

is the minimal perturbation such that A + E0 = B0.

Further, for a given matrix A, we want to find an appropriate value λ0 such
that the corresponding nearest matrix B0 has λ0 as a multiple eigenvalue.

260 E. Kalinina et al.

Lemma 1. A value λ0 ∈ C is a multiple eigenvalue of a given matrix B iff there
exist unit vectors {X0, Y0} ⊂ C

n such that

BX0 = λ0X0, Y
H
0 B = λ0Y

H
0 , Y H

0 X0 = 0 . (7)

This assertion was presented in the work [13] with reference to [19]. Its proof is
trivial under additional assumption of the uniqueness of the multiple eigenvalue.
For the general case, no proof is listed anywhere.

Proof. Consider the Schur decomposition of the matrix B from Theorem 2.
Let λ0 ∈ C be a multiple eigenvalue of the matrix B and let Vλ0 be a corre-
sponding unit eigenvector. A unitary matrix V = [Vλ0 , V2, . . . , Vn] can be chosen
providing the decomposition B = V TV H where T is the upper triangular matrix
such that t11 = λ0, tnn = λ0. Then the vectors X0 = Vλ0 and Y0 = Vn satisfy
conditions (7).

Now assume that λ0 is a simple eigenvalue of the matrix B but the condi-
tions (7) are fulfilled for some unit vectors X0, Y0. A unitary matrix V can be
chosen providing the decomposition B = V TV H where T is the upper triangular
matrix such that t11 = λ0, t22 �= λ0, . . . tnn �= λ0. The vectors X̃0 = V HX0 and
Ỹ0 = V HY0 are unit vectors that satisfy the conditions

TX̃0 = λ0X̃0, Ỹ H
0 T = λ0Ỹ

H
0 , Ỹ H

0 X̃0 = 0 . (8)

If X̃0 := [x̃1, . . . , x̃n−1, x̃n]�, then the first of the conditions (8) yields tnnx̃n =
λnx̃n that leads to x̃n = 0. Then, successively using the triangular structure of T ,
one can deduce that x̃n−1 = 0, . . . , x̃2 = 0. Therefore, X̃0 := [1, 0, . . . , 0]�. Simi-
lar structure can be established for Ỹ0. This contradicts the last condition (8).

The following statement is a counterpart of the result proved in [14].

Lemma 2. Denote by σ(a, b) a singular value of the matrix A − (a + bi)I
({a, b} ⊂ R), and by U(a, b) and V (a, b) its corresponding left and right unit
singular vectors. The system of equations

∂σ/∂a = 0, ∂σ/∂b = 0 (9)

possesses a solution (a0, b0) ∈ R
2 iff

UH(a0, b0)V (a0, b0) = 0 .

Proof. Since

σ(a, b) ≡ UH(a, b)(A − (a + bi)I)V (a, b) ,

UH(a, b)U(a, b) ≡ 1, V H(a, b)V (a, b) ≡ 1 ,

differentiation of these identities with respect to a results in

∂σ

∂a
=

[
∂UH

∂a
(A − (a + bi)I)V + UH(A − (a + bi)I)

∂V

∂a

]
− UHV

=
[
∂UH

∂a
U + V H ∂V

∂a

]
− UHV = −UHV .

Distance to Defective Matrix 261

Similarly,
∂σ/∂b = −iUHV ,

and this completes the proof.

Now consider the matrix

E(a, b) = −σ(a, b)U(a, b)V H(a, b) .

According to Corollary 1, the matrix B = A + E has the eigenvalue λ = a + bi
and this is the nearest to A matrix with such an eigenvalue.

Corollary 2. System (9) possesses a solution (a0, b0) ∈ R
2 iff λ0 = a0 + b0i is

a multiple eigenvalue of the matrix A + E(a0, b0).

Proof. Being the singular vectors of the matrix A + E(a0, b0), the vectors
U(a0, b0) and V (a0, b0) satisfy the conditions

(A + E(a0, b0))V (a0, b0) = (a0 + b0i)V (a0, b0),

UH(a0, b0)(A + E(a0, b0)) = (a0 + b0i)UH(a0, b0) .

By Lemma 2, system (9) possesses a solution (a0, b0) ∈ R
2 iff

UH(a0, b0)V (a0, b0) = 0 .

The conditions of Lemma 1 are fulfilled.

Due to the last result, the values of the parameters a and b corresponding to
the potential multiple eigenvalue of the matrix in D nearest to A are contained in
the set of stationary points of the function σ(a, b). The latter is defined implicitly
via the equation

det
[
((a + bi)I − A)

(
(a − bi)I − AH

) − σ2I
]

= 0 .

Due to the implicit function theorem [16], the partial derivatives ∂σ/∂a and
∂σ/∂b can be expressed via those of the function

Θ(a, b, z) := det
[
((a + bi)I − A)

(
(a − bi)I − AH

) − zI
]

. (10)

Indeed, one has:

∂Θ

∂a
+ 2σ

∂Θ

∂z

∂σ

∂a
≡ 0,

∂Θ

∂b
+ 2σ

∂Θ

∂z

∂σ

∂b
≡ 0

and, therefore, the stationary points of the function σ(a, b) are defined by the
system of equations

Θ(a, b, z) = 0, ∂Θ(a, b, z)/∂a = 0, ∂Θ(a, b, z)/∂b = 0. (11)

We are looking for the real solutions of system (11). We first clarify the
essence of the z-component of these solutions.

262 E. Kalinina et al.

Theorem 4. Let system (11) possess a real solution (a0, b0, z0) such that z0 > 0
and ∂Θ/∂z �= 0. By U0 ∈ C

n, ‖U0‖ = 1 denote the left singular vector of the
matrix (a0+ib0)I−A corresponding to the singular value

√
z0. Then the rank-one

perturbation
E0 = U0U

H
0 ((a0 + ib0)I − A) (12)

is such that ‖E0‖ =
√

z0 and the matrix B0 = A + E0 ∈ C
n×n possesses the

multiple eigenvalue a0 + ib0.

Proof. The equality ‖E0‖ =
√

z0 is verified directly. Any solution (a0, b0, z0) of
the system (11) with z0 > 0, is such that ∂σ/∂a = 0, ∂σ/∂b = 0. Hence, by
Lemma 2, the vectors

U0 and
√

z0V0 = ((a0 + ib0)I − A)HU0

are orthogonal. By Corollary 2, this yields that the matrix B0 possesses the
multiple eigenvalue a0 + ib0.

Remark. In some exceptional cases, system (11) has a continuum of solutions
(for example, this relates to the cases of skew-symmetric and orthogonal matri-
ces [12]). Evidently, in these cases, we obtain a continuum of nearest matrices
in D.

Theorem 4 and Corollary 1 claim that the value dC(A,D) for A �∈ D equals
the square root of one of the positive values of the z-components of the real
solutions of system (11). Our next aim is to eliminate the variables a and b from
this system. According to the results of Sect. 2, we need to find the bivariate
discriminant Da,b(Θ(a, b, z)). This is a polynomial in z.

Theorem 5. Generically polynomial Da,b(Θ(a, b, z)) possesses a factor zn2
.

Proof. Polynomial Θ(a, b, 0) can be represented as the sum of squares of two
polynomials from R[a, b]:

Θ(a, b, 0) ≡ F 2
1 (a, b) + F 2

2 (a, b)

where

F1(a, b) := Re (det [(a + bi)I − A]) , F2(a, b) := Im (det [(a + bi)I − A])

and deg F1 = deg F2 = n. Therefore, for z = 0, system (11) transforms into

F 2
1 + F 2

2 = 0, F1∂F1/∂a + F2∂F2/∂a = 0, F1∂F1/∂b + F2∂F2/∂b = 0

that in turn is equivalent to

F1(a, b) = 0, F2(a, b) = 0 .

The latter possesses n2 solutions in C
2 including n real ones coinciding with

{(Re(μj),Im(μj))}n
j=1 where {μ1, . . . , μn} is the spectrum of the matrix A.

Distance to Defective Matrix 263

Denote
FC(z) := Da,b(Θ(a, b, z))/zn2

. (13)

Generically, d2
C
(A,D) equals the minimal positive zero of the equation FC(z) = 0;

the latter will be further referred to as the distance equation.

Remark. Since the matrix ((a + bi)I − A)
(
(a − bi)I − AH

)
is a Hermitian pos-

itive semi-definite one, (its characteristic) polynomial Θ(a, b, z) has real coeffi-
cients, and all the real zeros of the distance equation are non-negative.

Hence, the following algorithm for finding the distance to the nearest defec-
tive matrix and the minimal complex perturbation can be suggested.

1. Compute Θ(a, b, z) by formula (10).
2. Compute (for instance, via the Bézout matrix approach exemplified in Exam-

ple 1) the bivariate discriminant Da,b(Θ(a, b, z)).
3. Evaluate the minimal positive zero z∗ of polynomial (13). Thus, dC =

√
z∗.

4. Evaluate (via the Bézout matrix approach exemplified in Example 1) the
corresponding values a∗ and b∗ such that (a∗, b∗, z∗) is the solution of sys-
tem (11).

5. Compute the unit left singular vector U∗ of the matrix A − (a∗ + ib∗)I corre-
sponding to

√
z∗.

6. Compute the minimal perturbation E∗ by (12).

Example 1. Find dC(A,D) for the matrix

A =

⎡
⎣ 1 + i 1 − 2i 2 − 2i

1 + 2i 2 + i 1 − 3i
2 1 + 2i 2 + i

⎤
⎦ .

Solution. One has

Θ(a, b, z) = −z3 + (3a2 + 3b2 − 10a − 6b + 49)z2

+(−3a4 − 6a2b2 − 3b4 + 20a3 + 12a2b + 20ab2 + 12b3

−61a2 − 60ab − 105b2 + 144a + 210b − 539)z

+(−a3 + 3ab2 + 5a2 − 6ab − 5b2 + 11a + 15b − 39)2

+(−3a2b + b3 + 3a2 + 10ab − 3b2 − 15a + 11b + 4)2,

and polynomial (13) is computed via the determinant of the Bézout matrix (5).
The Bézout set of monomials differs from (4):

M = {1, a, b, a2, a3, b2, b3, b4, ab, ab2, ab3, a2b, a2b2} .

The Bézout matrix has the order 13 with its entries being polynomials in z:

b11 = −51764778 z3 + 32048312739 z2 + 146567003492 z − 2397651748842, . . .

264 E. Kalinina et al.

Up to an integer factor, one has

FC(z) = 108399666917514309184000000z12 + 3762725041344245481644288000z11

+7970534284699355155910379345664z10

+594852772422819225099947772015616z9

+58966505410792048579506939783280880z8

−1934010322986529287515147546541977912z7

−3339817707641603248547229214144474391z6

−668550529522759437104028660964878679783z5

+34400831204203249689441872938140635868897z4

−456665104689590746438681155159484447480610z3

+2541391271350022866101000210682775147554550z2

−6005735582941157597386422955673240674516500z

+4417849441492361445160051187261557418095000 .

The distance equation possesses the following real zeros

z1 ≈ 1.298448, 4.362357, 6.371340, 6.882992, 13.995031, 23.393345 .

Hence, dC(A,D) =
√

z1 ≈ 1.139494. Corresponding values for the a and b-
components of solutions of system (11) are evaluated via the cofactors to the
last row of detB(z). Formulas (6) take the form

a = B13,2(z)/B13,1(z), b = B13,3(z)/B13,1(z) ,

and we restrict ourselves here to demonstration of the denominator (skipping an
integer factor):

B13,1(z) = z8(1636287272729082827584195302400000 z10

+516189189984338149941804758347801600 z9

+13308879336238950915643689611262176000 z8

+12798163449938933324094163049611587456 z7

−41558519493626568482835297835309335402880 z6

−85832655417511950681993552102152413260748 z5

+91417365889462739280827447351551203496537387 z4

−1852347585745752531328887611730151802746655737 z3

+15546611877005879880021480393809409194725568820 z2

−57318861605312466147953930049815178122740094650 z

+65077268487484068397392884364062721686477728500).

Substitution z = z1 yields

a1 ≈ 3.809241, b1 ≈ 0.668805 .

Distance to Defective Matrix 265

Now the unit left singular vector of A − (a1 + b1i)I corresponding to
√

z1 is

U1 ≈ [−0.126403 + 0.234075i, 0.482021 − 0.080184i, 0.040115 + 0.829968i] ,

and the minimal perturbation is evaluated via (12)

E∗ ≈
⎡
⎣

0.105485 − 0.195337i −0.141553 − 0.138978i 0.010251 − 0.056115i
−0.402250 + 0.066914i −0.042258 + 0.361922i −0.092974 + 0.048320i
−0.033476 − 0.692614i −0.602916 − 0.142937i −0.063226 − 0.166585i

⎤
⎦ .

The spectrum of the matrix A + E∗ is

{≈ −2.618482 + 1.662389i, a1 + ib1, a1 + ib1} .

4 Real Matrix

We now turn to the case of a real matrix A though the potential perturbations
are still treated in C

n×n. System (11) splits naturally into two subsystems.

Theorem 6. Let A ∈ Rn×n. If system (11) possesses a solution (a0, b0, z0) with
b0 �= 0, then it has the solution (a0,−b0, z0).

Proof. Polynomial Θ(a, b, z) is even in b:

Θ(a,−b, z) = det
[
((a + ib)I − A�)((a − ib)I − A) − zI

]
= det

[{
((a + ib)I − A�)((a − ib)I − A)

}� − zI
]

= det
[
((a − ib)I − A�)((a + ib)I − A) − zI

]
= Θ(a, b, z).

Consequently, Θ′
a is even in b while Θ′

b is odd in b. The latter becomes even on
dividing by b. ��

Further analysis depends on whether or not the condition b = 0 is fulfilled.
If b = 0, then system (11) transforms into

Θ(a, 0, z) = 0, ∂Θ(a, 0, z)/∂a = 0 . (14)

The bivariate discriminant (13) degrades to the univariate one Da(Θ(a, 0, z)).
This polynomial happens to possess a factor zn. We denote

FR(z) := Da(Θ(a, 0, z))/zn . (15)

Equation FR(z) = 0 provides the distance dR(A,D) to the nearest matrix in D

with double real eigenvalue. The corresponding perturbation E is also real.
As for the case b �= 0, system (11) can be reduced to

Θ = 0, Θ′
a = 0, Θ′

b/b = 0

where all the polynomials are even in b. Substitute

b := b2

into these polynomials and denote

Ξ(a, b, z) := Θ(a, b, z), Ξa(a, b, z) := Θ′
a(a, b, z), Ξb(a, b, z) := Θ′

b(a, b, z)/b .

266 E. Kalinina et al.

Theorem 7. The result of elimination of variables a and b from the system

Ξ = 0, Ξa = 0, Ξb = 0 (16)

is the equation
zn(n−1)/2FI(z) = 0 .

Here FI(z) ∈ R[z] and generically deg FI(z) = n(n − 1)(n − 2)/2. (Thus, for
n = 2, polynomial FI(z) is just a constant).

If z̃0 is a positive zero of FI(z), the corresponding real solution of system (16)
might have the b-component either positive or negative. We are interested only
in the positive variant.

Equation FI(z) = 0 provides the distance dI(A,D) to the nearest matrix in
D with double imaginary eigenvalues. Its real zero z̃0 corresponds to a pair of
multiple zeros of the polynomial Θ(a, b, z̃0), and these zeros are either in the form
(a0,±β0) or in the form (a0,±iβ0) with real β0. We are definitely interested only
in the real solutions of system (11).

For any real solution (a0, b0, z̃0) with z̃0 > 0, b0 �= 0 of system (11), the rank-
one perturbation (12) is such that ‖E0‖ =

√
z̃0 and the matrix B0 = A + E0 ∈

C
n×n possesses the double eigenvalue a0 + ib0 (v. Theorem 4). Evidently, the

matrix E0 provides the double eigenvalue a0 − ib0 for the matrix B0 = A + E0.
In view of Theorem 4, the distance dC(A,D) results from the competition

between dR(A,D) and dI(A,D), i.e., between the minimal positive zero of FR(z)
and the minimal positive zero of FI(z) that corresponds to the real solution of
the system (11).

Formal relationship of the polynomials FR(z) and FI(z) with the general case
of the distance equation treated in Sect. 3 is given by the following result.

Theorem 8. For a real matrix A, one has the following identity

Da,b(Θ(a, b, z)) ≡ zn(n+1)/2FR(z)FI(z) . (17)

Proof. We restrict ourselves here with the establishing of the factor zn(n+1)/2

in the right-hand side of (17). This can be done with the aid of arguments similar
to those from the proof of Theorem 5. Indeed,

Θ(a, b, 0) ≡ det((a + bi)I − A) det((a − bi)I − A�)

and Θ(a, b, 0) = 0 iff either a + bi or a − bi coincides with some of eigenvalues
{νj}n

j=1 of the matrix A. Since the latter is real, for any (a0, b0) ∈ R
2 such that

Θ(a0, b0, 0) = 0, the relations

a0 + ib0 = νj , a0 − ib0 = νk

should be valid for some pair of indices j and k from {1, . . . , n}. Then (a0, b0) is
also a solution of the system

∂Θ(a, b, 0)/∂a = 0, ∂Θ(a, b, 0)/∂b = 0

Distance to Defective Matrix 267

due to the equality

∂Θ(a, b, 0)
∂a

≡ ∂fA(a + bi)
∂a

fA(a − bi) +
∂fA(a − bi)

∂a
fA(a + bi)

and similarly for ∂Θ(a, b, 0)/∂b. Here fA(ν) := det(νI − A).
The total number of possible pairs (j, k) chosen from the set {1, . . . , n}

such that j ≤ k (NB: equal values are allowed!) is exactly n(n + 1)/2.

For a real matrix, the following modification of the algorithm from Sect. 3
can be implemented.

1. Compute Θ(a, b, z) by formula (10).
2. Compute the univariate discriminant Da(Θ(a, 0, z)).
3. Evaluate the minimal positive zero z1 of the polynomial (15).
4. Compute the bivariate discriminant Da,b(Ξ(a, b, z)).
5. Evaluate the minimal positive zero z̃1 of the polynomial FI(z) defined in

Theorem 7.
6. Find the corresponding value b1 such that (a1, b1, z̃1) is a solution of the

system (16). If b1 > 0, then go to point 7. Otherwise, evaluate the next to z̃1
positive zero of FI(z), denote it z̃1 and return to the point 6.

7. Set dC(A,D) =
√

z∗ where z∗ = min{z1, z̃1}.
8. Compute the minimal perturbation E∗ via (12).

Example 2. Find dC(A,D) for

A =

⎡
⎣ 0 1 0

0 0 1
−91 −55 −13

⎤
⎦ .

Solution. First compute Eq. (15):

FR(z) := 33076090700402342058246544 z6

−377039198861306289080145178864 z5

+937864902703881321034450183916 z4

−771868276098720970149792503999 z3

+211070978787821517684022650624 z2

−510584100140452518540394496 z

+319295875259784560640000 .

Its real zeros are as follows

z1 ≈ 0.739336, 0.765571, 0.980468, 11396.658548 .

Next compute the polynomial Ξ(a, b, z):

Ξ(a, b, z) = −z3 + (3a2 + 3b + 26a + 11477)z2

−(3 a4 + 6 a2b + 3 b2 + 52a3 + 52ab + 11756a2 + 11536b + 11466 a + 19757)z

+
(
a2 + b + 14 a + 49

) (
(a2 + b + 6 a + 13)2 − 16 b

)
.

268 E. Kalinina et al.

Now we trace briefly the procedure of elimination of a and b from system (16).
The Bézout set of monomials

M = {1, a, b, b2} ,

and the Bézout matrix is of the order 4. Then

detB(z) ≡ z3FI(z)

where

FI(z) = 412324266119803814719539025 z3 + 33923334498676415590177600 z2

+691077589890510378371072 z − 899669298077697638400 .

For any zero z̃0 of this polynomial, the corresponding a and b components of
the solution to system (16) can be obtained via the cofactors to the last row of
detB(z)

a = B42(z)/B41(z), b = B43(z)/B41(z) (18)

where

B41 = 16(624300876564482975z2 − 226254560538037856z

−3469512291865600),

B42 = 8(43719663040898080379z2 + 2929017747573439808z

+29336262189312000),

B43 = 3083432482762007609519z3 + 1101690698089389073600z2

+67186386329988787456z − 129087561954918400 .

Polynomial FI(z) possesses a single real zero, namely

z̃1 ≈ 0.001227 ,

and substitution of this value into formulas (18) yields

a = a1 ≈ −4.403922, b = b1 ≈ 0.750705 .

Since b1 > 0, one may claim that

dC(A,D) =
√

z̃1 ≈ 0.035026 .

The two perturbations in C
3×3 providing this distance correspond to the solu-

tions of system (11)

(a1, b1, z̃1) and (a1,−b1, z̃1) where b1 =
√
b1 ≈ 0.866432 .

Let us compute via (12) the one corresponding to (a1,−b1, z̃1). The unit left
singular vector of (a1 − ib1)I − A corresponding to the singular value

√
z̃1 is as

follows

U1 ≈ [0.930609, 0.360923 + 0.039918 i, 0.045052 + 0.008866 i]�

Distance to Defective Matrix 269

and the minimal perturbation

E∗ ≈
⎡
⎣0.001289 − 0.000442i −0.007120 + 0.000832i 0.031666 + 0.002551i

0.000519 − 0.000116i −0.002797 + 0.000017i 0.012172 + 0.002348i
0.000067 − 0.000009i −0.000353 − 0.000028i 0.001509 + 0.000425i

⎤
⎦ .

The spectrum of the matrix A + E∗ is

{a1 − ib1, a1 − ib1,−13 − 2(a1 − ib1) ≈ −4.192156 − 1.732865i} .

��
To test the performability of the algorithm sketched in the present section,

we chose the next matrix from the Matlab gallery(′grcar′,6).

Example 3. Find dC(A,D) for

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0
−1 1 1 1 1 0

0 −1 1 1 1 1
0 0 −1 1 1 1
0 0 0 −1 1 1
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Solution. Here polynomial FR(z) of degree 30 has the minimal zero z1 ≈
0.116565. Polynomial FI(z) of degree 58 has integer coefficients of orders up
to 1089 and possesses 22 positive zeros with the minimal one1

z̃1 ≈ 0.04630491415327188209539627157 .

The latter corresponds to the real solution of system (11):

(a1,±b1, z̃1) where a1 ≈ 0.753316, b1 ≈ −1.591155 .

Thus, one obtains

dC(A,D) =
√

z̃1 ≈ 0.2151857666140395125353 .

This confirms estimation dC(A,D) ≈ 0.21519 from [1,2].
For the solution (a1, b1, z̃1), the spectrum of the nearest to A defective matrix

is as follows

{0.361392 − 1.944783i, 1.139422 − 1.239762i, 1.502453 − 0.616966i,
1.490100 + 0.619201i, a1 + ib1, a1 + ib1} .

1 All the decimals in the following approximation are error-free.

270 E. Kalinina et al.

5 Conclusions

We have investigated the Wilkinson’s problem for the distance evaluation from
a given matrix to the set of matrices possessing multiple eigenvalues. The prob-
lem is reduced to that of a univariate algebraic equations system solving. In the
framework of the developed approach, the algorithm for finding the nearest defec-
tive matrix is also proposed. The last opportunity might be essential for the
problem of sensitivity estimation of a particular matrix entry perturbation on
the distance value.

The authors believe that the counterparts of the approach that might be
applicable to the other metric problems in matrix space including those men-
tioned in the first paragraph of the present paper can be constructed.

Acknowledgment. This research was supported by the St. Petersburg State Univer-
sity (project ID 96291288).

The authors are grateful to the anonymous referees and to Prof. Evgenii V.
Vorozhtsov for valuable suggestions that helped to improve the quality of the paper.

References

1. Akinola, R.O., Freitag, M.A., Spence, A.: The calculation of the distance to a
nearby defective matrix. Numer. Linear Algebra Appl. 21(3), 403–414 (2014)

2. Alam, R., Bora, S.: On sensitivity of eigenvalues and eigendecompositions of matri-
ces. Linear Algebra Appl. 396, 273–301 (2005)

3. Alam, R., Bora, S., Byers, R., Overton, M.L.: Characterization and construction of
the nearest defective matrix via coalescence of pseudospectral components. Linear
Algebra Appl. 435, 494–513 (2011)

4. Armentia, G., Gracia, J.-M., Velasco, F.-E.: Nearest matrix with a prescribed eigen-
value of bounded multiplicities. Linear Algebra Appl. 592, 188–209 (2020)

5. Bikker, P., Uteshev, A.Y.: On the Bezout construction of the resultant. J. Symb.
Comput. 28(1), 45–88 (1999)

6. Demmel, J.W.: Computing stable eigendecompositions of matrices. Linear Algebra
Appl. 79, 163–193 (1986)

7. Demmel, J.W.: On condition numbers and the distance to the nearest ill-posed
problem. Numer. Math. 51, 251–289 (1987)

8. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1, 211–218 (1936)

9. Higham, N.G.: Matrix nearness problems and applications. In: Applications of
matrix theory, pp. 1–27. Oxford Univ. Press, New York (1989)

10. Horn, R.A., Johnson, Ch.: Matrix Analysis, 2nd edn. Cambridge University Press,
New York (2013)

11. Kalinina, E.A., Smol’kin, Y.A., Uteshev, A.Y.: Stability and distance to instability
for polynomial matrix families. Complex perturbations. Linear Multilinear Algebra
70, 1291–1314 (2022)

12. Kalinina, E., Uteshev, A.: Distance evaluation to the set of matrices with multiple
eigenvalues. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.)
CASC 2022. Lecture Notes in Computer Science, vol. 13366, pp. 206–224. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-14788-3 12

https://doi.org/10.1007/978-3-031-14788-3_12

Distance to Defective Matrix 271

13. Lippert, R.A., Edelman, A.: The computation and sensitivity of double eigenvalues.
In: Chen, Z., Li, Y., Micchelli, C.A., Xu, Y. (eds.) Proceedings of the Advances in
Computational Mathematics, pp. 353–393. Gaungzhou International Symposium,
Dekker, New York (1999)

14. Malyshev, A.: A formula for the 2-norm distance from a matrix to the set of
matrices with multiple eigenvalues. Numer. Math. 83, 443–454 (1999)

15. Mengi, E.: Locating a nearest matrix with an eigenvalue of prespecified algebraic
multiplicity. Numer. Math. 118, 109–135 (2011)

16. de Oliveira, O.: The implicit and inverse function theorems: easy proofs. Real Anal.
Exchange 39(1), 207–218 (2013/2014)

17. Petkov, P.H., Konstantinov, M.M.: The numerical Jordan form. Linear Algebra
Appl. 638, 1–45 (2022)

18. Ruhe, A.: Properties of a matrix with a very ill-conditioned eigenproblem. Numer.
Math. 15, 57–60 (1970)

19. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, New
York (1965)

20. Wilkinson, J.H.: Note on matrices with a very ill-conditioned eigenproblem. Numer.
Math. 19, 176–178 (1972)

21. Wilkinson, J.H.: On neighbouring matrices with quadratic elementary divisors.
Numer. Math. 44, 1–21 (1984)

22. Wilkinson, J.H.: Sensitivity of eigenvalues. Util. Math. 25, 5–76 (1984)

Effective Algorithm for Computing
Noetherian Operators of Positive

Dimensional Ideals

Katsusuke Nabeshima1(B) and Shinichi Tajima2

1 Department of Applied Mathematics, Tokyo University of Science,
1-3, Kagurazaka, Tokyo, Japan

nabeshima@rs.tus.ac.jp
2 Graduate School of Science and Technology, Niigata University,

8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan

tajima@emeritus.niigata-u.ac.jp

Abstract. An effective algorithm for computing Noetherian operators
of positive dimensional ideals is introduced. It is shown that an algo-
rithm for computing Noetherian operators of zero dimensional ideals,
that was previously published by the authors [https://doi.org/10.1007/
s00200-022-00570-7], can be generalized to that of positive dimensional
ideals. The key ingredients of the generalization are the prime decompo-
sition of a radical ideal and a maximal independent set. The results of
comparison between the resulting algorithm with another existing one
are also given.

Keywords: Noetherian operator · Partial differential operator ·
Primary ideal · Positive dimensional ideal

1 Introduction

This is the continuation of the authors’ paper [16] that introduces an algorithm
for computing Noetherian operators of zero dimensional ideals.

In the 1930s, W. Gröbner addressed the problem of characterizing ideal mem-
bership with differential conditions [11]. Later in the 1960s, L. Ehrenspreis and
V. P. Palamodov obtained a complete description of primary ideals and modules
in terms of differential operators [7,8,21]. At the core of the results, one has the
notion of Noetherian operators to describe a primary module (and ideal).

Recently several authors, including the authors of the present paper, have
studied the Noetherian operators in the context of symbolic computation. In [3–
6], Y. Cid-Riz, J. Chen et al. give algorithms for computing Noetherian operators
and the Macaulay2 implementation. They use the Hilbert schemes and Macaulay
dual spaces for studying and computing them. In [16], the authors propose a dif-
ferent algorithm for computing Noetherian operators of zero dimensional ideals.
The theory of holonomic D-modules and local cohomology play key roles in this

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 272–291, 2023.
https://doi.org/10.1007/978-3-031-41724-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_15&domain=pdf
https://doi.org/10.1007/s00200-022-00570-7
https://doi.org/10.1007/s00200-022-00570-7
https://doi.org/10.1007/978-3-031-41724-5_15

Noetherian Operators of Positive Dimensional Ideals 273

approach. Notably, as the authors’ algorithm [16] is constructed by mainly linear
algebra techniques, the algorithm is much faster than the algorithms presented
by Y. Cid-Riz, J. Chen et al. in computational speed.

In this paper, by adopting the framework proposed in [16], we consider a
method for computing Noetherian differential operators of a positive dimensional
primary ideal. We show that the use of the maximally independent set allows
us to reduce the computation of Noetherian operators of positive dimensional
primary ideals to that of zero dimensional cases. Accordingly, as the resulting
algorithm of computing Noetherian operators of positive dimensional primary
ideals consists mainly of linear algebra computation, it is also effective.

This paper is organized as follows. In Sect. 2, following [16], we recall results
of Noetherian operators of zero dimensional primary ideals. In Sect. 3, we review
some mathematical basics that are utilized in our main results. Section 4 con-
sists of three subsections. In Sect. 4.1, we describe an algorithm for computing
Noetherian operators of positive dimensional ideals. In Sect. 4.2 we give results
of benchmark tests. In Sect. 4.3, we introduce a concept of Noetherian represen-
tations and we present an algorithm for computing Noetherian representations
as an application of our approach.

2 Noetherian Operators of Zero Dimensional Ideals

Here we recall the algorithm for computing Noetherian operators of zero dimen-
sional ideals that is published in [16].

Through this paper, we use the notation X as the abbreviation of n variables
x1, x2, . . . , xn, K as a subfield of the field C of complex numbers and Q as the field
of rational numbers. The set of natural numbers N includes zero. For f1, . . . , fr ∈
K[X] = K[x1, . . . , xn], let 〈f1, . . . , fr〉 denote the ideal in K[X] generated by
f1, . . . , fr and

√〈f1, . . . , fr〉 denote the radical of the ideal 〈f1, . . . , fr〉. If an
ideal I ⊂ K[X] is primary and

√
I = p, then we say that I is p-primary.

Let D = K[X][∂] denote the ring of partial differential operators with
coefficients in K[X] where ∂ = {∂x1 , ∂x2 , . . . , ∂xn

}, ∂xi
= ∂

∂xi
with relations

xixj = xjxi, ∂xi
∂xj

= ∂xj
∂xi

, ∂xj
xi = xi∂xj

(i �= j), ∂xi
xi = xi∂xi

+ 1
(1 ≤ i, j ≤ n), i.e. D = {∑β∈Nn cβ∂β |cβ ∈ K[X]} where ∂β = ∂β1

x1
∂β2

x2
· · · ∂βn

xn

and β = (β1, β2, . . . , βn) ∈ N
n. For β = (β1, β2, . . . , βn) ∈ N

n, |β| :=
∑n

i=1 βi.
The set of all terms of ∂ is denoted by Term(∂) and that of X is denoted by
Term(X).

Let us fix a term order 	 on Term(∂). For a given partial differential operator
of the form

ψ = cα∂α +
∑

∂α�∂β

cβ∂β (cα, cβ ∈ K[X]),

we call ∂α the head term, cα the head coefficient and ∂β the lower terms. We
denote the head term by ht(ψ), the head coefficient by hc(ψ) and the set of lower
terms of ψ as LL(ψ) =

{
∂λ ∈ Term(ψ)

∣
∣ ∂λ �= ht(ψ)

}
. For a finite subset Ψ ⊂ D,

ht(Ψ) = {ht(ψ) |ψ ∈ Ψ }, LL(Ψ) =
⋃

ψ∈Ψ LL(ψ).

274 K. Nabeshima and S. Tajima

For instance, let ψ = x3
1x

2
2∂

3
x1

∂2
x2

∂x3 + x2
3∂

2
x1

∂x3 + x1x3∂x2∂x3 + x2
1x2x3 be

a partial differential operator in Q[x1, x2, x3][∂x1 , ∂x2 , ∂x3] and 	 the graded
lexicographic term order on Term({∂x1 , ∂x2 , ∂x3}) with ∂x1 	 ∂x2 	 ∂x3 . Then,
ht(ψ) = ∂3

x1
∂2

x2
∂x3 , hc(ψ) = x3

1x
2
2 and LL(ψ) = {∂2

x1
∂x3 , ∂x2∂x3 , 1}.

For each 1 ≤ i ≤ n, we write the standard unit vector as

ei = (0, . . . , 0,
ith
1 , 0, . . . , 0).

The definition of Noetherian operators is the following.

Theorem 1 (Ehrenspreis-Palamodov [7,8,21]). Let q be a p-primary ideal
in K[X] and proper. There exist partial differential operators ψ1, ψ2, . . . , ψ� ∈ D
with the following property. A polynomial g ∈ K[X] lies in the ideal q if and
only if ψ1(g), ψ2(g), . . . , ψ�(g) ∈ p.

Definition 1. The partial differential operators ψ1, ψ2, . . . , ψ� that satisfy The-
orem 1 are called Noetherian operators of the primary ideal q.

The core of the algorithm for computing Noetherian operators of zero dimen-
sional ideals, that is introduced in [16], is the following theorem. Actually, this is
the generalization of the result of L. Hörmander [14, Theorem 7.76 and pp. 235].

Theorem 2 ([16, Theorem 5]). Let I be a zero-dimensional ideal generated by
f1, . . . , fr in K[X] and q a primary component of a minimal primary decompo-
sition of I with

√
q = p. Let Ns(I) be the set of all partial differential operators

ϕ =
∑

β∈Nn,|β|<s c′
β∂β (c′

β ∈ K[X]), such that ϕ(f) ∈ p for all f ∈ I where
s is a natural number that satisfies ps ⊂ q. Let NTq be the set of all partial
differential operators ψ =

∑
β∈Nn,|β|<s cβ∂β (cβ ∈ K[X]), such that the com-

mutator [ψ, xi] = ψxi − xiψ ∈ Ns−1(I) for i = 1, 2, . . . , n and ψ(fj) ∈ p for
j = 1, 2, . . . , r. Then,

(i) g ∈ K[X], ψ(g) ∈ p for all ψ ∈ NTq ⇐⇒ g ∈ q.
(ii) Further, one can choose ψ1, ψ2, . . . , ψ� ∈ NTq such that

g ∈ K[X], ψk(g) ∈ p for k = 1, 2, . . . , � ⇐⇒ g ∈ q.

In what follows, the notation NTq, that is introduced in Theorem 2, is utilized
as the set of Noetherian operators of the primary ideal q.

Proposition 1 ([16, Proposition 1]). Let q be a zero dimensional primary
ideal in K[X] and

√
q = p. Then, the set NTq, that is from Theorem 2, is a

finite dimensional vector space over the field K[X]/p.

Definition 2. Let 	 be a term order on Term(∂), q a zero dimensional primary
ideal in K[X] and

√
q = p. Let NBq be a basis of the vector space NTq over the

field K[X]/p such that

for all ψ ∈ NBq,hc(ψ) = 1,ht(ψ) /∈ ht(NBq \{ψ}) and ht(ψ) /∈ LL(NBq).

Then, the basis NBq is called a reduced basis of the vector space NTq over K[X]/p
w.r.t. 	.

The algorithm that is presented in [16] always outputs a reduced basis of the
vector space if we input a zero dimensional primary ideal.

Noetherian Operators of Positive Dimensional Ideals 275

3 Mathematical Basics

Here we quickly review some mathematical basics of maximally independent
sets, extensions of ideals and Noetherian operators.

3.1 Extension and Contraction

Definition 3. Let I be a proper ideal in K[X] and U ⊂ X. Then U is called
an independent set modulo I if K[U] ∩ I = {0}. Moreover, U ⊂ X is called a
maximal independent set (MIS) modulo I if it is an independent set modulo I
and the cardinality of U is equal to the dimension of I.

For a finite subset Y , the cardinality of Y is written by |Y |.
Definition 4. Let I be an ideal in K[X], U ⊂ X and Y = X\U . Then, the
extension Ie of I to K(U)[Y] is the ideal generated by the set I in the ring
K(U)[Y] where K(U) is the field of rational functions with variables U . If J is
an ideal in K(U)[Y], then the contraction Jc of J to K[X] is defined as J∩K[X].

The following lemmas are fundamental in commutative algebra and computer
algebra. See [2].

Lemma 1. Let I be an ideal in K[X]. If U ⊂ X is a MIS modulo I, then Ie is
a zero dimensional ideal of K(U)[X\U].

Lemma 2 ([2, Lemma 1.122, Lemma 8.97]).

(1) Let p be a prime ideal in K[X] and U a MIS modulo p and Y = X\U . Then
pe is prime in K(U)[Y] and p = pec = (pe)c.

(2) Let p be a prime ideal in K[X] and U a MIS modulo I and Y = X\U . If q is
a p-primary ideal of K[X], then qe is pe-primary in K(U)[Y] and q = qec.

Let 	 be a term order on Term(Y). For a polynomial g ∈ K(U)[Y], we denote
the head coefficient of g by hc(g). In the following three lemmas, we fix subsets
U ⊂ X and Y = X\U .

Lemma 3 ([2, Lemma 8.91]). Let 	 be a term order on Term(Y). Suppose J is
an ideal of K(U)[Y], and G is a Gröbner basis w.r.t. 	 of J such that G ⊂ K[X].
Let I be the ideal generated by G in K[X], and set f as a least common multiple
of {hc(g)|g ∈ G} (i.e. f = LCM{hc(g)|g ∈ G}), where hc(g) ∈ K[U] is taken of
g as an element of K(U)[Y]. Then, Jc = I : f∞.

Lemma 4 ([2, Proposition 8.94]). Let 	 be a block term order on Term(X)
with Y U , and suppose I is an ideal of K[X] and G is a Gröbner basis
of I w.r.t. 	. Set f as a least common multiple of {hc(g)|g ∈ G} (i.e.
f = LCM{hc(g)|g ∈ G}), where hc(g) ∈ K[U] is taken of g as an element
of K(U)[Y]. Then, Iec = I : f∞.

Lemma 5 ([2, Lemma 8.95]). Let I = 〈f1, . . . , fr〉 ⊂ K[X]. Suppose q ∈ K[X]
and s ∈ N\{0} are such that I : qs = I : q∞. Then, I = 〈f1, . . . , fr, q

s〉∩ (I : qs).

In [12,13], J. Hoffmann and V. Levandovskyy provided more information on
the extension and contraction from both theoretical and algorithmic point of
view.

276 K. Nabeshima and S. Tajima

3.2 Noetherian Operators of a Primary Ideal qe ⊂ K(U)[Y]

Here we discuss the relations between Noetherian operators and local cohomol-
ogy classes for extensions of ideals. This discussion is basically the same as
Sect. 3.1 of [16]. See [16,18,19,23,24] for details.

Throughout this subsection, let I be an ideal in K[X], U a MIS modulo I,
q a primary component of the minimal primary decomposition of I such that a
MIS modulo q is U ,

√
q = p, Y = X\U and |Y | = �. Then, by Lemma 1, Ie, qe

and pe are zero dimensional ideals in K(U)[Y].
Let H�

[Z](K(U)[Y]) denote an algebraic local cohomology group, with support

on Z = {a ∈ K(U)
�|g(a) = 0,∀g ∈ pe}, defined as

H�
[Z](K(U)[Y]) = lim

k→∞
Ext�

K(U)[Y]

(
K(U)[Y]/(pe)k,K(U)[Y]

)

where K(U) be an algebraic closure of the field K(U) of rational functions.
Set Hqe = {ψ ∈ H�

[Z](K(U)[Y])|qψ = 0,∀q ∈ qe}. Then, the following holds

Hqe ∼= HomK(U)[Y]

(
K(U)[Y]/qe,H�

[Z](K(U)[Y])
)

= HomK(U)[Y]

(
K(U)[Y]/Ie,H�

[Z](K(U)[Y])
)

.

Let De = K(U)[Y][{∂y|y ∈ Y }] denote the ring of partial differential opera-
tors with coefficients in K(U)[Y]. Then, since K(U)[Y] ⊂ De, we also have

Hqe ∼= HomDe

(
De/Deqe,H�

[Z](K(U)[Y])
)

= HomDe

(
De/DeIe,H�

[Z](K(U)[Y])
)

.

Noetherian operators are considered as follows.

Definition 5. The set of De-linear homomorphisms HomDe (Mqe ,Mpe)
between the two left De-modules are called the Noetherian space of q ⊂ K[X]
w.r.t. U where Mqe = De/Deqe and Mpe = De/Depe are De-modules.

The Noetherian space has the structure of the right K(U)[Y]/pe-module.

Example 1. Let us consider a primary ideal

q = 〈x4
1 − 3x2x1x

2
0 + 2x3x

3
0, x2x

3
1 − 2x3x

2
1x0 + x2

2x
2
0,

x3x
3
1 − 2x2

2x1x0 + x2x3x
2
0, x

2
2x

2
1 − 2x2x3x1x0 + x2

3x
2
0, x

2
3x1 − x3

2〉
in Q[x0, x1, x2, x3]. Then, a MIS modulo q is {x2, x3}. A Gröbner basis G of qe

w.r.t. the lexicographic term order with x0 	 x1 is G = {(x3x0−x4
2)

2, x2
3x1−x3

2}
in Q(x2, x3)[x0, x1]. It is obvious that

√
qe = 〈x3x0 − x4

2, x
2
3x1 − x3

2〉. Hence, the
Noetherian space of q ⊂ Q[x0, x1, x2, x3] w.r.t. {x0, x1} is SpanR

(
1, ∂

∂x0

)
where

R = Q(x0, x1)[x2, x3]/〈x3x0 − x4
2, x

2
3x1 − x3

2〉.

Noetherian Operators of Positive Dimensional Ideals 277

Proposition 2. Let MIe = De/DeIe. Then,

HomDe (MIe ,Mpe) ∼= HomDe (Mqe ,Mpe) .

The proposition above says that the primary ideal qe ⊂ K(U)[Y] can be
determined by Ie and the prime ideal pe.

4 Main Results

Here, first we generalize the algorithm for computing Noetherian operators of
a zero dimensional ideal [16] to that of positive dimensional ideal. Second, we
compare the resulting algorithm with another existing one [4]. Third, we discuss
a Noetherian representation of an ideal as an application of the Noetherian
operators.

4.1 Generalization

By utilizing a MIS modulo an ideal, we are able to generalize Theorem 2 to the
following.

Lemma 6. Let I be an ideal generated by f1, . . . , fr in K[X], U a MIS modulo
I, q a primary component of the minimal primary decomposition of I such that
the MIS modulo q is U and

√
q = p. Let Ns(Ie) be the set of all partial differential

operators ϕ =
∑

β∈N�,|β|<s c′
β∂β (c′

β ∈ K(U)[Y]), such that ϕ(f) ∈ pe for all f ∈
Ie ⊂ K(U)[Y] where s is a natural number that satisfies (pe)s ⊂ qe in K(U)[Y].
Let NTqe be the set of all partial differential operators ψ =

∑
β∈N�,|β|<s cβ∂β

(cβ ∈ K(U)[Y]), such that the commutator [ψ, y] = ψy−yψ ∈ Ns−1(Ie) for each
y ∈ Y and ψ(fj) ∈ pe for j = 1, 2, . . . , r. Then,

(i) g ∈ K(U)[Y], ψ(g) ∈ pe for all ψ ∈ NTqe ⇐⇒ g ∈ qe in K(U)[Y].
(ii) Further, one can choose ψ1, ψ2, . . . , ψt ∈ NTqe such that

g ∈ K(U)[Y], ψk(g) ∈ pe for k = 1, 2, . . . , t ⇐⇒ g ∈ qe.

Proof. As we describe in Sect. 3.2, Ie, qe and pe are zero dimensional ideals in
K(U)[Y] and Noetherian operators of the primary ideal qe ⊂ K(U)[Y] can be
determined by Ie. Since it can be regarded as the same setting of Theorem 2,
this lemma holds. ��

By combining Proposition 1 and Lemma 6, we have the following corollary.

Corollary 1. Using the same notation as in Lemma 6, then, the set NTqe is a
finite dimensional vector space over the field K(U)[Y]/pe.

Definition 6. Using the same notation as in Lemma 6, let 	 be a term order
on Term({∂y|y ∈ Y }). Let NBqe be a basis of the vector space NTqe over the
field K(U)[Y]/pe such that

for all ψ ∈ NBqe ,hc(ψ) = 1,ht(ψ) /∈ ht(NBqe \{ψ}) and ht(ψ) /∈ LL(NBqe).

Then, the basis is called a reduced basis NBqe of the vector space NTqe over
K(U)[Y]/pe w.r.t. 	.

278 K. Nabeshima and S. Tajima

For ψ ∈ K(U)[Y][{∂y|y ∈ Y }] (or f ∈ K(U)[Y]), we define dlcm(ψ) (or
dlcm(f)) as the least common multiple of all denominators of coefficients in K(U)
of ψ (or f). For instance, set ψ = xy∂2

x∂2
y+ 1

u2 x∂x∂2
y+ 4

w∂y in K(u,w)[x, y][∂x, ∂y],
then dlcm(ψ) = u2w. Hence, dlcm(ψ) · ψ is in (K[u,w][x, y])[∂x, ∂y].

Theorem 3. Using the same notation as in Lemma 6, the following holds.

(i) g ∈ K[X], ψ(g) ∈ p ⊂ K[X] for all ψ ∈ NTqe ∩ K[X][∂] ⇐⇒ g ∈ q in
K[X].

(ii) One can choose ψ1, ψ2, . . . , ψ� ∈ NTqe ∩ K[X][∂] such that

g ∈ K[X], ψk(g) ∈ p ⊂ K[X] for k = 1, 2, . . . , � ⇐⇒ g ∈ q ⊂ K[X].

Proof. (i) (⇒) For g ∈ K[X], assume that ψ(g) ∈ p ⊂ K[X] for all ψ ∈ NTqe ∩
K[X][∂]. As we have p ⊂ pe, by Lemma 6, g ∈ qe in K(U)[Y]. Thus, by Lemma 2,
g ∈ qe ∩ K[X] = qec = q.
(⇐) For g ∈ K[X], assume that g ∈ q in K[X]. As we have q ⊂ qe, thus by
Lemma 6, for all ψ ∈ NTqe ∩K[X][∂] ⊂ NTqe , ψ(g) ∈ pe in K[X]. By Lemma 2,
g ∈ pe ∩ K[X] = pec = p.
(ii) Since Lemma 6 holds, there exist ψ1, ψ2, . . . , ψt ∈ NTqe such that “g ∈
K[X] ⊂ K(U)[Y], ψk(g) ∈ pe for k = 1, 2, . . . , t if and only if g ∈ qe”. Let us
consider the finitely many partial differential operators

dlcm(ψ1)ψ1,dlcm(ψ2)ψ2, . . . ,dlcm(ψt)ψt.

Note that (dlcm(ψk)ψk)(g) ∈ K[X][∂] (k = 1, 2, . . . , t), (dlcm(ψk)ψk)(g) ⊂ pe ∩
K[X][∂] = pec = p and g ∈ qe ∩ K[X] = qec = q. As K(U) is a field,

g ∈ K[X], (dlcm(ψk))(g) ∈ p for k = 1, 2, . . . , t if and only if g ∈ q

holds. ��
Let {ϕ1, . . . , ϕt} be a basis of the vector space NTqe . Then, by the proof

of Theorem 3, dlcm(ϕ1)ϕ1, . . . ,dlcm(ϕt)ϕt become Noetherian operators of q ⊂
K[X]. Thus, we need an algorithm for computing a basis of the vector space
NTqe where qe is zero dimensional in K(U)[Y]. Since Lemma 6 is essentially the
same as Theorem 2, we can naturally generalize the algorithm for computing
Noetherian operators of zero dimensional ideals to that of positive dimensional
ideals.

Before describing the main algorithm, we give the following lemma and
corollaries for efficiency. Note that these facts follow from Lemma 6 because
if ψ ∈ NTqe , then the commutator [ψ, y] ∈ NTqe for each y ∈ Y .

Lemma 7. Using the same notation as in Lemma 6, let 	 be a term order on
Term({∂y|y ∈ Y }) and |Y | = �. If ∂α /∈ NTqe . Then, for all ∂λ ∈ {∂α+γ |γ ∈ N

�},
∂λ /∈ ht(NTqe).

Let M be a set of terms of Term({∂y|y ∈ Y }). We define the neighbors of M
as Neighbor(M,Y) = {∂λ∂y|∂λ ∈ M,y ∈ Y }. The following corollary that is the
generalization of Corollary 1 of [16] is useful to compute possible candidates of
head terms of NTqe .

Noetherian Operators of Positive Dimensional Ideals 279

Corollary 2. Using the same notation as in Lemma 6, let 	 be a term order on
Term({∂y|y ∈ Y }) and λ = (λ1, . . . , λ�) ∈ N

�. Let Λ
(λ)
q = {∂λ′ ∈ ht(NTqe)|∂λ 	

∂λ′}. If ∂λ ∈ ht(NTqe), then for each 1 ≤ i ≤ �, ∂λ−ei is in Λ
(λ)
q , provided

λi ≥ 1.

If ∂λ ∈ ht(NTqe), then by Corollary 2, there is a possibility that an element
of Neighbor({∂λ}, Y) belongs to ht(NTqe). The following algorithm computes
possible candidates of head terms of the vector space NTqe w.r.t. a term order
	 on Term({∂y|y ∈ Y }) where Y is a subset of X.

Sub-algorithm (Headcandidate)
Specification: Headcandidate(Y, ∂τ ,	, Λ,FL)
Making new candidates for head terms.
Input: Y : set of variables in X (|Y | = �), ∂τ ∈ Term({∂y|y ∈ Y }),

	: a term order on Term({∂y|y ∈ Y }), Λ = {∂α ∈ ht(NTqe)|∂τ 	 ∂α}
FL: set of Term({∂y|y ∈ Y }) such that ∀∂α ∈ FL, ∂α /∈ Λ.

Output: CT: set of new candidates for head terms.
BEGIN
CT ← ∅; B ← Neighbor({∂τ}, Y); B ← B\(B ∩ {∂α+γ | ∂α ∈ FL, γ ∈ N

�});
while B �= ∅ do

select ∂τ ′
= ∂(τ ′

1,τ ′
2,...,τ ′

�) from B; B ← B\{∂τ ′};
for each i from 1 to � do Flag ← 1;

if τ ′
i �= 0 then
if ∂τ ′−ei /∈ Λ then Flag ← 0; break; end-if

end-if
end-for
if Flag = 1 then CT ← CT ∪{∂τ ′}; end-if

end-while
return CT;
END

The following corollary that is the generalization of Corollary 2 of [16] is
utilized to compute the candidates of lower terms.

Corollary 3. Using the same notations as in Corollary 2, let Γqe denote the set

of lower terms in NTqe and Γ
(λ)
q =

{
∂λ′ ∈ Γqe

∣∣
∣ ∂λ 	 ∂λ′

}
.

If ∂λ = ∂(λ1,...,λi,...,λ�) ∈ Γqe , then for each i = 1, 2, . . . , �, ∂λ−ei is in Γ
(λ)
q ∪Λ

(λ)
q ,

provided λi ≥ 1.

The algorithm Noether decides head terms of a reduced basis NBqe of the
vector space NTqe from bottom to up w.r.t. a term order 	 on Term({∂y|y ∈ Y }).
The algorithm consists of three main blocks, computing candidates for head
terms (Headcandidate), computing for candidate of lower terms and solving
a system of linear equations. For each block, the algorithm makes use of several
sets as intermediate data. We fix the meaning of the sets as follows.

280 K. Nabeshima and S. Tajima

• CT is a set of candidates of head terms w.r.t. ≺.
• CL is a set of candidates of lower terms for some ∂λ ∈ CT.
• FL is a set of terms that do not belong to ht(NBqe) w.r.t. ≺.

The Sub-algorithm “DetermineP” that is utilized in Algorithm 1, determines
indeterminates cτ s that are coefficients of the partial differential operators ψ.

Remark 1. Let I = 〈f1, . . . , fr〉 ⊂ K[X] and q a primary component of the
minimal primary decomposition of I such that the dimension of I is equal to
that of q. Let U be a MIS modulo

√
q = p and Y = X\U . If a partial differential

operator ψ is in the reduced basis NBqe of the vector space NTqe w.r.t. a term
order 	, then ψ satisfies the following condition (N (∗))

(N (∗)) “ψ(fi) ∈ pe in K(U)[Y] and [ψ, y] ∈ SpanK(U)[Y]/pe(NBqe)”

where 1 ≤ i ≤ r and y ∈ Y .
It is clear that 1 ∈ SpanK(U)[Y]/pe(NBqe), and hence, by Corollary 2, {∂y|y ∈

Y } becomes a set of candidates of the head terms.

Remark 2. It is reported that algorithms, published in [1,15,22], for computing a
prime decomposition of the radical

√
I are much faster than those for computing

primary decomposition of a polynomial ideal I in K[X]. One can utilized the
algorithms for computing a prime component of

√
I. In fact, the MIS modulo

√
I

can be also obtained as a by-product when we compute the prime component.

Algorithm 1 (Noether)

Specification: Noether({f1, f2, . . . , fr}, p, U, Y,)
Computing Noetherian operators for a primary component q of the primary
decomposition of 〈f1, f2, . . . , fr〉 where

√
q = p.

Input: {f1, f2, . . . , fr} ⊂ K[X],
p: associate prime ideal of a primary component q of the minimal
primary decomposition of 〈f1, f2, . . . , fr〉 s.t. U is a MIS modulo p,
U ⊂ X: MIS modulo 〈f1, f2, . . . , fr〉,
Y := X\U , (|Y | = �), 	 : term order on Term({∂y|y ∈ Y }).

Output: NB: a (reduced) basis of the vector space NTqe .
BEGIN
NB ← {1}; CT ← {∂y|y ∈ Y }; CL ← ∅; FL ← ∅; EE ← ∅;

while CT �= ∅ do
∂λ ← Take the smallest element in CT w.r.t. 	; CT ← CT \{∂λ};
E ← {∂γ ∈ EE |∂λ 	 ∂γ}; EE ← EE \E;
EL ← {∂(γ1,...,γ�) ∈ E|∂(γ1,...,γ�)−ei ∈ ht(NB) ∪ LL(NB), provided γi ≥ 1};
CL ← CL ∪EL;
ψ ← ∂λ +

∑
∂τ ∈CL cτ∂τ ; /* (cτ s are indeterminates) */

ψ′ ← DetermineP({f1, . . . , fr}, ψ, p,NB, {cτ |∂τ ∈ CL}, U, Y);
if ψ′ �= 0 then

NB ← NB ∪ {ψ′};
CT ← Headcandidate(Y, ∂λ,	,ht(NB),FL) ∪ CT;

Noetherian Operators of Positive Dimensional Ideals 281

EE ← (Neighbor(LL(ψ′)) ∪ EE) \CL;
else

FL ← FL∪{∂λ}; CL ← CL ∪{∂λ};
end-if

end-while
return NB ;
END

Sub-algorithm (DetermineP)

Specification: DetermineP({f1, f2, . . . , fr}, ψ, p,NB, {cτ |τ ∈ CL}, U, Y)
Determining cτ s that are coefficients of the partial differential operator ψ.
Input: {f1, f2, . . . , fr}, ψ, p,NB, {cτ |τ ∈ CL}, U , Y : described in Algorithm 1.
Output: ψ′: if ψ′ = 0, then ψ is not a Noetherian operator of qi, otherwise ψ′

is a Noetherian operator of qi where ht(ψ′) = ht(ψ).
BEGIN
L ← ∅; C ← NB; Y ′ ← Y ; i ← 1; {ϕ1, ϕ2, . . . , ϕs} ← NB; /* |NB | = s */
for each i from 1 to s do

g ← Compute the normal form of ψ(fi) w.r.t. pe in K(U)[Y];
if g �= 0 then

L ← L ∪ {g = 0};
end-if

end-for
while Y ′ �= ∅ do

Select y from Y ′; Y ′ ← Y ′\{y}; bi ← [ψ, y]; C ← C ∪ {bi}; i ← i + 1;
end-while
v= (∂α1 ∂α2 · · · ∂α�) ← Make a vector from Term(C) = {∂α1, · · · , ∂α�};
M ← Get the � × (s + |Y |) matrix that satisfies (ϕ1 · · · ϕs b1 · · · b|Y |) =vM ;(
Es · · ·
0 A

)
← Reduce M by elementary operations of matrix over K(U)[Y]/pe;

L ← L ∪ {a′ = 0 | a′ is an entry of the matrix A};
if the system of linear equations L has no solution over K(U)[Y]/pe then

return 0;
else

ψ′ ← Get the (unique) solution of L and substitute the solution into cτ s of ψ;
return dlcm(ψ′)ψ′;

end-if
END

In the sub-algorithm DetermineP, Es is the identity matrix of size s.
Then, it is known that A is the zero matrix if and only if b1, b2, . . . , b|Y | ∈
SpanK(U)[Y]/pe(NB). Hence, the sub-algorithm checks the condition (N (∗)) (see
Remark 1). Notice that the Sub-algorithm, consists of linear algebra techniques
except for computing a normal form of ψ(fi) w.r.t. pe in K(U)[X].

The correctness and termination follow from Theorem 3 and Corollary 1.
As Algorithm 1 is essentially the same as the case of zero dimensional ideal, we
omit the proof. We refer the readers to [16, Theorem 6] for details.

282 K. Nabeshima and S. Tajima

Example 2. Let I = 〈f1, f2, f3〉 ⊂ Q[x, y, z] where f1 = x6z + 9x4yz + x4z +
27x2y2z + 6x2yz + 27y3z + 9y2z, f2 = x6 + 6x4y + 9x2y2 + z2, f3 = z3. Then,
the prime decomposition of

√
I is

√
I = 〈x2 + 3y, z〉 ∩ 〈x, z〉.

Let us consider the first prime ideal p = 〈x2 + 3y, z〉, then a MIS modulo p
is {y}. Let 	 be the total degree lexicographic term order with ∂x 	 ∂z.
We execute Noether({f1, f2, f3}, pe, {y}, {x, z},) where pe is the extension of
p to Q(y)[x, z].

(0) Set NB = {1}, CT = {∂z, ∂x} and CL = FL = EE = ∅.
(1) Take the smallest element ∂z in CT and update CT to {∂x}. Since CL =

EE = ∅, there does not exist possible candidates of the lower terms. Set
ψ = ∂z and check the conditions (N (∗)) i.e. execute the sub-algorithm
DetermineP, then
ψ(f1) = x6 + 9x4y + x4 + 27x2y2 + 6x2y + 27y3 + 9y2 ∈ pe,
ψ(f2) = z ∈ pe, ψ(f3) = 3z2 ∈ pe,
[ψ, x] = 0 ∈ SpanQ(y)[x,z]/pe(NB), [ψ, z] = 1 ∈ SpanQ(y)[x,z]/pe(NB).
Hence, ψ satisfies the condition (N (∗)). Renew NB as {1, ∂z} and CT as

{∂x} ∪ Headcandidate
(
{x, z}, ∂z,	,ht(NB), ∅

)
= {∂x, ∂2

z , ∂x∂z}.

(2) Take the smallest element ∂x in CT and update CT to {∂2
z , ∂x∂z}. Since

CL = EE = ∅, there does not exist possible candidates of the lower terms.
Set ψ = ∂x and check the conditions (N (∗)), then
ψ(f1) = 6x5z + 36x3yz + 4x3z + 54xy2z + 12xyz ∈ pe,
ψ(f2) = 6x5 + 24x3y + 18xy2 ∈ pe, ψ(f3) = 0 ∈ pe,
[ψ, x] = 1 ∈ SpanQ(y)[x,z]/pe(NB), [ψ, z] = 0 ∈ SpanQ(y)[x,z]/pe(NB).
Hence, ψ satisfies the condition (N (∗)). Renew NB as {1, ∂z, ∂x} and CT as

{∂2
z , ∂x∂z} ∪ Headcandidate

(
{x, z}, ∂x,	,ht(NB), ∅

)
= {∂2

z , ∂x∂z, ∂
2
x}.

(3) Take the smallest element ∂2
z in CT and update CT to {∂x∂z, ∂

2
x}. Since

CL = EE = ∅, there does not exist possible candidates of the lower terms.
Set ψ = ∂2

z and check the conditions (N (∗)), then
ψ(f1) = 0 ∈ pe, ψ(f2) = 2 /∈ pe, ψ(f3) = 2z ∈ pe.
Hence, ψ does not satisfy the condition (N (∗)). Update FL = {∂2

z} and
CL = {∂2

z}.
(4) Take the smallest element ∂x∂z in CT and update CT to {∂2

x}. Set ψ =
∂x∂z + c(0,2)∂

2
z where c(0,2) is an indeterminate. Then,

ψ(f1) = 6x5 + 36x3y + 4x3 + 54xy2 + 12xy ∈ pe,
ψ(f2) = 2c(0,2), ψ(f3) = 2c(0,2)z ∈ pe, [ψ, x] = ∂z ∈ SpanQ(y)[x,z]/pe(NB),
[ψ, z] = ∂x + 2c(0,2)∂z ∈ SpanQ(y)[x,z]/pe(NB).
Hence, when c(0,2) ≡ 0 (mod pe), then ψ satisfies the condition (N (∗)). Set
c(0,2) = 0, and renew NB as {1, ∂z, ∂x, ∂x∂z} and CT as

{∂2
x} ∪ Headcandidate

(
{x, z}, ∂x∂z,	,ht(NB),FL

)
= {∂2

x, ∂2
x∂z}.

Noetherian Operators of Positive Dimensional Ideals 283

(5) Take the smallest element ∂2
x in CT and update CT to {∂2

x∂z}. Set ψ =
∂2

x + c(0,2)∂
2
z where c(0,2) is an indeterminate. Then,

ψ(f1) = 30x4z + 108x2yz + 12x2z + 54y2z + 12yz ∈ pe,
ψ(f2) = 30x4 + 72x2y + 18y2 + 2c(0,2), ψ(f3) = 2c(0,2)z ∈ pe,
[ψ, x] = 2∂x ∈ SpanQ(y)[x,z]/pe(NB), [ψ, z] = 2c(0,2)∂z ∈
SpanQ(y)[x,z]/pe(NB).
Hence, when c(0,2) ≡ −36y2 (mod pe), then ψ = ∂2

x − 36y2∂2
z satisfies the

condition (N (∗)). Set c(0,2) = −36y2, and renew NB as {1, ∂z, ∂x, ∂x∂z, ∂
2
x −

36y2∂2
z} and CT as

{∂2
x∂z} ∪ Headcandidate

(
{x, z}, ∂2

x,	,ht(NB),FL
)

= {∂2
x∂z, ∂

3
x}.

Update EE = {∂x∂2
z , ∂3

z}.
(6) Take the smallest element ∂2

x∂z in CT and update CT to {∂3
x}. Since EE =

E = EL, thus CL = {∂x∂2
z , ∂3

z , ∂2
z}. Set

ψ = ∂2
x∂z + c(1,2)∂x∂2

z + c(0,3)∂
3
z + c(0,2)∂

2
z

where c(1,2), c(0,3), c(0,2) are indeterminates. Then,
ψ(f1) = 30x4 + 108x2y + 12x2 + 54y2 + 12y /∈ pe,
ψ(f2) = 2c(0,2), ψ(f3) = 6c(0,2)z + 6c(0,3).
Hence, ψ does not satisfy the condition (N (∗)). Update FL = {∂2

x∂z, ∂
2
z} and

CL = {∂2
x∂z, ∂x∂2

z , ∂3
z , ∂2

z}.
(7) Take the smallest element ∂3

x in CT and update CT to ∅. Set

ψ = ∂3
x + c(2,1)∂

2
x∂z + c(1,2)∂x∂2

z + c(0,3)∂
3
z + c(0,2)∂

2
z

where c(2,1), c(1,2), c(0,3), c(0,2) are indeterminates. Then,
ψ(f1) ≡ −24c(2,1)y (mod pe), ψ(f2) ≡ −216xy + 2c(0,2) (mod pe),
ψ(f3) ≡ 6c(0,3) (mod pe),
[ψ, x] = 3∂2

x + 2c(2,1)∂x∂z + c(1,2)∂
2
z ,

[ψ, z] = c(2,1)∂
2
x + 2c(1,2)∂x∂z + 3c(0,3)∂

2
z + 2c(0,2)∂z.

Thus,

(1, ∂z, ∂x, ∂x∂z, ∂
2
x − 36y2∂2

z , [ψ, x], [ψ, z]) = (1, ∂z, ∂x, ∂x∂z, ∂2
x, ∂2

z)A

where

A =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0
0 0 0 1 0 2c(2,1) 2c(1,2)

0 0 0 0 1 3 c(2,1)

0 0 0 0 −36y2 c(1,2) 3c(0,3)

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.

284 K. Nabeshima and S. Tajima

By the Gaussian elimination method, we obtain

A −→

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0
0 0 0 1 0 2c(2,1) 2c(1,2)

0 0 0 0 1 3 c(2,1)

0 0 0 0 0 c(1,2) + 108y2 3c(0,3) + 36y2c(2,1)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

We have the following system of linear equations over Q(y)[x, y]/pe

−24c(2,1)y = 0,−216xy + 2c(0,2) = 0, 6c(0,3) = 0, c(1,2) + 108y2 = 0,
3c(0,3) + 36y2c(2,1) = 0.

Hence, we have the solution {c(2,1) = 0, c(1,2) = −108y2, c(0,3) = 0, c(0,2) =
108xy}. Therefore, we obtain ψ = ∂3

x − 108y2∂x∂2
z + 108xy∂2

z . Renew NB as
{1, ∂z, ∂x, ∂x∂z, ∂

2
x − 36y2∂2

z , ∂3
x − 108y2∂x∂2

z + 108xy∂2
z} and CT as

Headcandidate
(
{x, z}, ∂3

x,	,ht(NB),FL
)

= {∂4
x}.

Update EE = {∂2
x∂2

z , ∂x∂3
z}.

(8) Take the smallest element ∂4
x in CT and update CT to ∅. Since EL = ∅, set

ψ = ∂4
x + c(2,1)∂

2
x∂z + c(1,2)∂x∂2

z + c(0,3)∂
3
z + c(0,2)∂

2
z

where c(2,1), c(1,2), c(0,3), c(0,2) are indeterminates. Then,
ψ(f1) ≡ −24c(2,1)y (mod pe), ψ(f2) ≡ −936y + 2c(0,2) (mod pe),
ψ(f3) ≡ 6c(0,3) (mod pe).
Thus, we get c(2,1) = 0, c(0,2) = 468y, c(0,3) = 0. Furthermore,
[ψ, x] = 4∂3

x + 2c(2,1)∂x∂z + c(1,2)∂
2
z = 4∂3

x + c(1,2)∂
2
z ,

[ψ, z] = c(2,1)∂
2
x +2c(1,2)∂x∂z +3c(0,3)∂

2
z +2c(0,2)∂z = 2c(1,2)∂x∂z +2c(0,2)∂z.

Thus,

(1, ∂z, ∂x, ∂x∂z, ∂
2
x − 36y2∂2

z , ∂3
x − 108y2∂x∂2

z + 108xy∂2
z , [ψ, x], [ψ, z])

= (1, ∂z, ∂x, ∂x∂z, ∂2
x, ∂2

z , ∂3
x, ∂x∂2

z)B

where

B =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 2c(1,2)

0 0 0 0 1 0 0 0
0 0 0 0 −36y2 108xy c(1,2) 0
0 0 0 0 0 1 4 0
0 0 0 0 0 −108y2 0 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

Noetherian Operators of Positive Dimensional Ideals 285

By the Gaussian elimination method, we obtain

B −→

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 2c(0,2)

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 2c(1,2)

0 0 0 0 1 0 0 0
0 0 0 0 0 1 4 0
0 0 0 0 0 0 c(1,2) − 432xy 0
0 0 0 0 0 0 432y2 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The system of linear equations {c(1,2) − 432xy = 0, 432y2 = 0} does not
have any solution. Thus, ψ does not satisfy the condition (N (∗)). Update
FL = {∂4

x, ∂2
x∂z, ∂

2
z}.

Now, we stop computing because of CT = ∅. Hence,

1, ∂z, ∂x, ∂x∂z, ∂
2
x − 36y2∂2

z , ∂3
x − 108y2∂x∂2

z + 108xy∂2
z

are Noetherian operators of the primary component, whose radical is p, of I.
In Fig. 1, an element of ht(NB) is displayed as ◦ and an element of FL is

displayed as ∗.

Fig. 1. Elements of ht(NB) and FL

Algorithm 1 is implemented in the computer algebra system Risa/Asir [17].
One can download the source codes from the following website:

https://www.rs.tus.ac.jp/∼nabeshima/softwares.html.

When we input the second prime ideal 〈x, z〉 to the Risa/Asir implementation,
then it outputs 1, ∂x as the Noetherian operators.

4.2 Comparisons

In [4], the computer algebra system Macaulay2 [9] package NoetherianOperators,
that implements another algorithm for computing Noetherian operators intro-
duced in [3], is published. Let us compare an output of our Risa/Asir implemen-
tation with that of the Macaulay2 implementation.

Let f = x5+5x4y+10x3y2+10x2y3+x2z2+5xy4+2xyz2+xz3+y5+y2z2 ∈
Q[x, y, z] and J = 〈∂f

∂x , ∂f
∂y , ∂f

∂z 〉. Then, J is a primary ideal with
√

J = 〈x+ y, z〉,
and {y} is a MIS modulo J .

https://www.rs.tus.ac.jp/~nabeshima/softwares.html

286 K. Nabeshima and S. Tajima

Macaulay2 implementation returns the following Noetherian operators of J
if we input J .
{
1, ∂z, ∂x, ∂x∂z, ∂2

x, 3y∂2
x∂z + 2∂2

z , ∂3
x,

(−162y2 − 36)∂4
x + (240y3 + 540y)∂3

x∂z − 1620∂2
x∂z + (4860y2 + 1080)∂x∂2

z

+4860y∂2
z

}
,

where ∂x := ∂
∂x , ∂z := ∂

∂z .
Our Risa/Asir implementation returns the following Noetherian operators of

J if we input J .
{

1, ∂z, ∂x, ∂x∂z, ∂2
x, y∂2

x∂z +
2
3
∂2

z , ∂3
x, y∂4

x + 15y2∂3
x∂z − 30y∂x∂2

z − 30∂2
z

}
.

As is evident from the outputs above, the output of our Risa/Asir imple-
mentation is simpler than that of Macaulay2. This is because Algorithm 1
returns a reduced basis of the finite dimensional vector space NTqe over
Q(y)[x, z]/〈x + y, z〉. In contract, the output of Macaulay2 contains a redun-
dant term ∂2

x∂z. This is one of advantages of Algorithm 1.
Next, we give results of benchmark tests. All results in this paper have been

computed on a PC with [OS: Ubuntu Linux, CPU: Intel(R) Core(TM) i9-7900X
CPU @ 3.30 GHz, RAM: 128 GB]. The time is given in CPU-seconds. In Table 1,
“>10m” means it takes more than 10 min.

Note that as the Macaulay2 implementation [4] allows only a primary ideal
as the input, thus we use the following eight positive-dimensional primary ide-
als in Q[x, y, z] (or Q[x, y, z, w]) for the comparisons. We use the total degree
lexicographic term order with ∂x 	 ∂y 	 ∂z (or ∂x 	 ∂y, ∂x 	 ∂z).

1. F1 = {x8 + 4x6y + 6x4y2 + 4x2y3 + y4, z4 + 2z2 + 1} ⊂ Q[x, y, z],
√〈F1〉 =

〈x2 + y, z2 + 1〉, and a MIS modulo
√〈F1〉 is {y}.

2. F2 = {3x2+(y2+z)7, 7(y2+z)6x+10(y2+z)9, x3+(y2+z)7x+(y2+z)10} ⊂
Q[x, y, z],

√〈F2〉 = 〈x, y2 + z〉, and a MIS modulo
√〈F2〉 is {z}.

3. F3 = {3(x + z2 + 1)2y + y6, (x + z2 + 1)3 + 6(x + z2 + 1)y5 + 10y9, (x + z2 +
1)3y + (x + z2 + 1)y6 + y10} ⊂ Q[x, y, z],

√〈F3〉 = 〈y, x + z2 + 1〉, and a MIS
modulo

√〈F3〉 is {z}.
4. F4 = {3(x + y)2(z2 + w) + (z2 + w)8 + (z2 + w)7, (x + y)3 + 8(x + y)(z2 +

w)7 + 7(x + y)(z2 + w)6 + 9(z2 + w)8, (x + y)3(z2 + w) + (x + y)(z2 + w)8 +
(x + y)(z2 + w)7 + (z2 + w)9} ⊂ Q[x, y, z, w],

√〈F4〉 = 〈x + y, z2 + w〉, and a
MIS modulo

√〈F4〉 is {y, z}.
5. F5 = {3(x2 + z2)2 + (y + z)11, 11(y + z)10(x2 + z2) + 19(y + z)18 + 17(y +

z)16, ((x2 + z2)3 + (x2 + z2)(y + z)11 + (y + z)17 + (y + z)19)2} ⊂ Q[x, y, z],√〈F5〉 = 〈x2 + z2, y + z〉, and a MIS modulo
√〈F5〉 is {z}.

6. F6 = {(3(x+w)2+y10+y9)2, ((10y9+9y8)(x+w)+13y12+(z2+w)2)2, y(z2+
w), (x+w)3+(x+w)y11+y17+y19} ⊂ Q[x, y, z, w],

√〈F6〉 = 〈x+w, y, z2+w〉,
and a MIS modulo

√〈F6〉 is {w}.
7. F7 = {4(x2 + z)3 +2(y + z)5(x2 + z)+ y7, (5(y + z)4(x2 + z)2 +7(y + z)6(x2 +

z)+12(y+z)11)3, (x2+z)4+(y+z)5(x2+z)2+(y+z)7(x2+z)+(y+z)12} ⊂
Q[x, y, z],

√〈F7〉 = 〈x2 + z, y + z〉, and a MIS modulo
√〈F7〉 is {z}.

Noetherian Operators of Positive Dimensional Ideals 287

8. F8 = {3(2x2+z)2(y2+2)+(y2+2)13+(y2+2)12+(y2+2)11, (2x2+z)3+13(2x2+
z)(y2+2)12+12(2x2+z)(y2+2)11+11(2x2+z)(y2+2)10+15(y2+2)14, ((2x2+
z)3(y2+2)+(y2+2)15+(2x2+z)(y2+2)12+(2x2+z)(y2+2)13)2} ⊂ Q[x, y, z],√〈F8〉 = 〈y2 + 2, 2x2 + z〉, and a MIS modulo

√〈F8〉 is {z}.

In the benchmark tests, we use the Macaulay2 implementation with Strategy
= > ”MacaulayMatrix” and our Risa/Asir implementation with computing an
associate prime and a MIS, namely, the CPU time of “New implementation
(Risa/Asir)”, in Table 1, contains the sum of the computation times of

√〈Fi〉1,
a MIS modulo

√〈Fi〉 and Algorithm 1 for each i ∈ {1, 2, . . . , 8}.

Table 1. Comparisons of Noetherian operators

Problem Macaulay2 New implementation (Risa/Asir) (Algorithm 1)

1 0.280 0.0156

2 11.389 0.1875

3 5.898 0.03125

4 27.816 0.0180

5 >10 m 0.8288

6 >10 m 1.172

7 >10 m 2.922

8 >10 m 4.875

As is evident from Table 1, our new implementation is much faster in com-
parison with Macaulay2 implementation because Algorithm 1 mainly consists of
linear algebra techniques. This is one of the big advantages of the new algorithm.

4.3 Computing Noetherian Representations

Here we introduce an algorithm for computing a Noetherian representation that
can be regarded as an alternative primary ideal decomposition of a polyno-
mial ideal. As we described in Sect. 3 and Sect. 4.1, Noetherian operators encode
primary components of a polynomial ideal. Thus, they can be utilized to char-
acterize an ideal.

Definition 7. Let I be an ideal in K[X], I = q1 ∩ q2 ∩ · · · ∩ qt a pri-
mary decomposition of I where qi is a primary ideal for 1 ≤ i ≤ t. Let
NBi ⊂ K(Ui)[Yi][{∂y|y ∈ Yi}] be a basis of the vector space NTqi

e where Ui

is a MIS modulo qi and Yi = X\Ui. Then,

{(
√
q1,NB1, U1), (

√
q2,NB2, U2), . . . , (

√
qt,NBt, Ut)}

is called a Noetherian representation of I and written as Noether(I).
1 A function noro pd.prime dec [15], that computes a prime decomposition of a radical

ideal, is available in a program file noro pd.rr that is contained in the OpenXM
package [20].

288 K. Nabeshima and S. Tajima

By combining an algorithm for computing a prime decomposition of
√

I [1,15,
22], Lemma 3, 4, 5 and Algorithm 1, we can construct an algorithm for computing
Noether(I) without computing a primary decomposition of I. The following
algorithm is based on Gianni-Trager-Zacharias algorithm [10] of computing a
primary ideal decomposition.

Algorithm 2 (noetherian-rep)

Specification: noetherian-rep(F)
Computing Noetherian representation of 〈F 〉.
Input: F ⊂ K[X].
Output: NR = {(p1,NB1, U1), . . . , (pt,NBt, Ut)}: Noetherian representation of

〈F 〉.
BEGIN
Flag ← 1; NR ← ∅;
while Flag = 1 do

{p1, . . . , pk} ← ⋂k
i=1 pi is the minimal prime decomposition of

√〈F 〉; (∗)
pmax ← Select a maximal dimensional prime ideal pmax from {p1, . . . , pk};
U ← Compute a MIS modulo pmax; Y ← X\U ;
	b← Set a block term order with U Y ;
M ← {p ∈ {p1, . . . , pk}|dim(p) = dim(pmax), U is a MIS modulo p};
	← Set a term order on Term({∂y|y ∈ Y });
while M �= ∅ do

pm ← Select p form M ; M ← M\{pm};
NB ← Noether(F, pm, U, Y,);
NR ← NR ∪ {(pm,NB, U)};

end-while
if Y �= ∅ then

G ← Compute a Gröbner basis of 〈F 〉 w.r.t. 	b in K[U, Y] = K[X];
h ← LCM{hc(g)|g ∈ G} where G is regarded as a subset of K[U][Y];
if h is a constant then

Flag ← 0;
else

s ← Compute a natural number with 〈H〉 : h∞ = 〈H〉 : hs;
F ← {F ∪ {hs}};

end-if
else

Flag ← 0;
end-if

end-while
return NR;
END

As we mentioned in Remark 2, in general, an algorithm for computing a prime
decomposition of the radical

√
I, at (∗), is much faster that that for computing

primary decomposition of a polynomial ideal I in K[X].

Noetherian Operators of Positive Dimensional Ideals 289

Theorem 4. Algorithm 2 terminates and outputs correctly.

Proof. By utilizing Lemma 5, we have 〈F 〉 = 〈F ∪ {hs1
1 }〉 ∩ (〈F 〉 : hs1

1) where
h1 = LCM{hc(g)|g ∈ G ⊂ K[U1][Y1]}, G is a Gröbner basis of 〈F 〉 w.r.t. a
block term order with U1 Y1 on Term(X) in K[X], U1 is a MIS modulo 〈F 〉,
Y1 = X\U1 and s1 is a natural number that satisfying 〈F 〉 : h∞

1 = 〈F 〉 : hs1
1 .

In the second while-loop, a Noetherian representation of 〈F 〉 : hs1
1 is obtained

because of Lemma 3 and 4. Renew F2 := F ∪{hs1
1 }. Again, by utilizing Lemma 6,

we have 〈F2〉 = 〈F2 ∪ {hs2
2 }〉 ∩ (〈F2〉 : hs2

2) where h2 = LCM{hc(g)|g ∈ G2 ⊂
K[U2][Y2]}, G2 is a Gröbner basis of 〈F2〉 w.r.t. a block term order with U2 Y2

on Term(X) in K[X], U2 is a MIS modulo 〈F2〉, Y2 = X\U2 and s2 is a natural
number satisfies 〈F2〉 : h∞

2 = 〈F2〉 : hs2
2 . In the second while-loop, a Noetherian

representation of 〈F2〉 : hs2
2 is obtained by the same reason above. We repeat

the same procedure until hi becomes a constant (i ∈ N). Then, the union NR
of all triples is a Noetherian representation of the input ideal 〈F 〉 because of
〈F 〉 = (∩t

i=2(〈Fi〉 : hsi
i))∩ (〈F 〉 : hs1

1). As K[X] is a Noetherian ring, the number
t is finite. Thus, Algorithm 2 terminates and outputs correctly. ��

We illustrate the algorithm with the following example.

Example 3. Let us consider the ideal I of Example 2, again. As we described
in Example 2, we have

√
I = 〈x2 + 3y, z〉 ∩ 〈x, z〉 as the prime decomposition

of
√

I. Since {y} is the MIS modulo 〈x2 + 3y, z〉 and 〈x, z〉, thus M = {〈x2 +
3y, z〉, 〈x, z〉}. We have NR = {(〈x2 + 3y, z〉,NB, {y}), (〈x, z〉, {1, ∂z}, {y})} in
Example 2.

The reduced Gröbner basis G of I w.r.t. a block term order with {x, z} {y}
is G = {z3, (3y +1)x4z +(18y2 +6y)x2z +27y3z +9y2z, x6 +6yx4 +9y2x2 + z2}
in Q[x, y, z]. Then, h = LCM{hc(g)|g ∈ G ⊂ Q[y][x, z]} = 3y + 1 in Q[y] and
〈F 〉 : h∞ = 〈F 〉 : h. We set F ′ = {3y + 1} ∪ {f1, f2, f3}. In this case, 〈F ′〉 is zero
dimensional, namely, the MIS modulo 〈F ′〉 is the empty set.

The prime decomposition of
√〈F ′〉 is

√
〈F ′〉 = 〈x, 3y + 1, z〉 ∩ 〈x − 1, 3y + 1, z〉 ∩ 〈x + 1, 3y + 1, z〉.

Thus, for each prime ideal, Algorithm 1 outputs the reduced basis of the vector
space as follows:

NZ = {(〈x, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
z − ∂2

z , ∂3
x − 3∂x∂2

z}, ∅),
(〈x − 1, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂

2
x − 4∂2

z , ∂3
x − 12∂x∂2

z − 36∂2
z}, ∅),

(〈x + 1, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
x − 4∂2

z , ∂3
x − 12∂x∂2

z + 36∂2
z}, ∅)}.

Therefore, Noether(I) = NR ∪ NZ.
We remark that bases of the primary ideals that are associated to (〈x2+3y, z〉,

NB ∅), (〈x − 1, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
x − 4∂2

z , ∂3
x − 12∂x∂2

z − 36∂2
z} ∅) and

(〈x+1, 3y+1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
x−4∂2

z , ∂3
x−12∂x∂2

z +36∂2
z} ∅) are the following

q1, q2, q3. respectively.

290 K. Nabeshima and S. Tajima

q1 = {z3, x4z + 6x2yz + 9y2z, 9x4y2 + 54x2y3 − x2z2 + 81y4 − 6yz2,
x6 + 6x4y + 9x2y2 + z2},

q2 = {3y+1, z3, 4x2−3xz2−8x+4z2+4, x2z−2xz+z, 12x3−32x2+28x+z2−8},
q3 = {3y+1, z3, 4x2+3xz2+8x+4z2+4, x2z+2xz+z, 12x3+32x2+28x−z2+8}.

Since we can check 〈q1〉 ⊂ 〈q2〉 and 〈q1〉 ⊂ 〈q3〉, thus q2 and q3 are redundant,
namely, the following is also a Noetherian representation of 〈F 〉:

Noether(I) = NR ∪ {(〈x, 3y + 1, z〉, {1, ∂x, ∂z, ∂x∂z, ∂
2
z − ∂2

z , ∂3
x − 3∂x∂2

z}, ∅)}.

The Noetherian representation above corresponds to the minimal primary
decomposition of I.

Since we adapt the Gianni-Trager-Zacharias algorithm [10] of computing a
primary decomposition, there is a possibility that the output of Algorithm 2 con-
tains redundant components, like the above. After obtaining the decomposition,
it is possible to delete the redundant components by checking the inclusions.

In Sect. 6 of [16], an algorithm for computing generators of a zero dimensional
primary ideal q from a triple (p,NB, ∅) is introduced where q is p-primary and NB
is a basis of the vector space NTq in K[X][∂]. Even if q is not zero dimensional,
we can utilize the algorithm for computing generators of qe in K(U)[Y] where
U is a MIS of q and Y = X\U . As qec = q, generators of q can be obtained
by the algorithm that is published in [16]. Actually, in Example 3, q1, q2, q3
were computed by the algorithm. Therefore, by combining Algorithm 3 and the
algorithm for computing generators (and techniques of [15]), one can construct
an algorithm for computing a minimal primary decomposition of a polynomial
ideal I ⊂ K[X] and the Noetherian representation Noether(I), simultaneously.

Acknowledgments. This work has been partly supported by JSPS Grant-in-Aid for
Scientific Research(C) (Nos. 22K03334, 23K03076).

References

1. Aoyama, T., Noro, M.: Modular algorithms for computing minimal associated
primes and radicals of polynomial ideals. In: Proceedings of the ISSAC 2018, pp.
31–38. ACM (2018)

2. Becker, T., Weispfenning, V.: Gröbner Bases, A Computational Approach to Com-
mutative Algebra (GTM 141). Springer, Heidelberg (1993). https://doi.org/10.
1007/978-1-4612-0913-3

3. Chen, J., Härkönen, M., Krone, R., Leykin, A.: Noetherian operators and primary
decomposition. J. Symb. Comp. 110, 1–23 (2022)

4. Chen, J., Cid-Ruiz, Y., Härkönen, M., Krone, R., Leykin, A.: Noetherian operators
in Macaulay2. J. Softw. Algebra Geom. 12, 33–41 (2022)

5. Cid-Ruiz, Y., Stumfels, B.: Primary decomposition with differential operators. Int.
Math. Res. Not. rnac178 (2022)

6. Cid-Ruiz, Y., Homs, R., Stumfels, B.: Primary ideals and their differential equa-
tions. Found. Comput. Math. 21, 1363–1399 (2021)

https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-1-4612-0913-3

Noetherian Operators of Positive Dimensional Ideals 291

7. Ehrenspreis, L.: A fundamental principle for system of linear differential equa-
tions with constant coefficients and some of its applications. In: Proceedings of
the International Symposium on Linear Spaces, pp. 161–174. Jerusalem Academic
Press (1961)

8. Ehrenspreis, L.: Fourier Analysis in Several Complex Variables. Wiley Interscience
Publishers, Hoboken (1970)

9. Grayson, D.R., Stillman, M.E.: Macaulay2: a software system for research in alge-
braic geometry (2002). https://www.math.uiuc.edu/Macaulay2

10. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition
of polynomial ideals. J. Symb. Comp. 6, 149–167 (1988)

11. Gröbner, W.: Uber eine neue idealtheoretische Grundlegung der algebraischen
Geometrie. Math. Ann. 115, 333–358 (1938)

12. Hoffmann, J., Levandovskyy, V.: Constructive arithmetics in Ore localizations of
domains. J. Symb. Comp. 98, 23–46 (2020)

13. Hoffmann, J., Levandovskyy, V.: Constructive arithmetics in Ore localizations
enjoying enough commutativity. J. Symb. Comp. 102, 209–230 (2021)

14. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. The
third revised edition. North-Holland (1990)

15. Kawazoe, T., Noro, M.: Algorithms for computing a primary ideal decomposition
without producing intermediate redundant components. J. Symb. Comp. 46, 1158–
1172 (2011)

16. Nabeshima, K., Tajima, S.: Effective Algorithm for computing Noetherian opera-
tors of zero-dimensional ideals. Appl. Algebra Eng. Commun. Comput. 33, 867–899
(2022)

17. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings
of the ISSAC 1992, pp. 387–396. ACM (1992)

18. Ohara, K., Tajima, S.: An algorithm for computing Grothendieck local residues I,
– shape basis case –. Math. Comput. Sci. 13, 205–216 (2019)

19. Ohara, K., Tajima, S.: An algorithm for computing Grothendieck local residues II
– general case –. Math. Comput. Sci. 14, 483–496 (2020)

20. OpenXM committers: OpenXM, a project to integrate mathematical software sys-
tems. (1998–2022). https://www.openxm.org

21. Palamodov, V.P.: Linear Differential Operators with Constant Coefficients. Die
Gundlehren der mathematischen Wissenschaften, vol. 168. Springer, New York
(1970). Translated from the Russian by A. Brown

22. Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of poly-
nomial ideals. J. Symb. Comp. 22, 247–277 (1996)

23. Tajima, S.: An algorithm for computing the Noetherian operator representations
and its applications to constant coefficients holonomic PDE’s. Tools for Mathe-
matical Modellings, St. Petersbourg, pp. 154–160 (2001)

24. Tajima, S.: On Noether differential operators attached to a zero-dimensional pri-
mary ideal – shape basis case –. In: Proceedings of the 12th International Con-
ference on Finite or Infinite Dimensional Complex Analysis and Applications, pp.
357–366. Kyushu University Press (2005)

https://www.math.uiuc.edu/Macaulay2
https://www.openxm.org

On the Structure and Generators
of Differential Invariant Algebras

Peter J. Olver(B)

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
olver@umn.edu

http://www.math.umn.edu/~olver

Abstract. The structure of algebras of differential invariants, particu-
larly their generators, is investigated using the symbolic invariant calcu-
lus provided by the method of equivariant moving frames. We develop a
computational algorithm that will, in many cases, determine whether a
given set of differential invariants is generating. As an example, we estab-
lish a new result that the Gaussian curvature generates all the differential
invariants for Euclidean surfaces in three-dimensional space.

Keywords: Moving frame · Differential invariant · Recurrence
formula · Generating set

1 Introduction

The equivariant moving frame method, originally developed by Mark Fels and
the author, [1,17]—see also Mansfield, [10]—provides a powerful algorithmic
method for computing and studying differential invariants and, more generally,
invariant differential forms, [8], of general Lie group actions. This paper focusses
on the algebraic structures that are induced by the moving frame calculus, with
particular attention paid to generators and relations. In the standard approach,
one works in a differential geometric setting, and so the underlying category
is smooth or analytic differential functions, classified up to functional indepen-
dence. However, here we will take a more algebraic tack, and work in the cate-
gory of polynomial functions, or, occasionally, rational functions. See also [4,5]
for further development of the algebraic approach to moving frames.

Remark: In this paper, the word “symbolic” is used in three different ways. The
first is in the general computer algebra term “symbolic manipulation”. Second is
the “symbolic invariant calculus”, a term inspired by [10], which is established
by the method of moving frames, and effectively and completely determines the
structure of the algebra of differential invariants and, more generally, invariant
differential forms, purely symbolically, without any need for the explicit formulas
for the moving frame, the differential invariants, the invariant differential forms,
or the operators of invariant differentiation. Third is the “extended symbolic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 292–311, 2023.
https://doi.org/10.1007/978-3-031-41724-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_16&domain=pdf
http://orcid.org/0000-0001-6209-8777
https://doi.org/10.1007/978-3-031-41724-5_16

On the Structure and Generators of Differential Invariant Algebras 293

invariant calculus”, which is an adaptation of the second usage, that is developed
in Sect. 7, and forms the basis of our computational algorithm.

The starting point is a smooth or analytic action of a real1 r-dimensional Lie
group G on a real m-dimensional manifold M . The action may be only local,
and to avoid further complications with discrete symmetries, we will assume it
to be connected, as in [11]. In the algebraic framework, we take M to be an open
subset of R

m, with fixed coordinates z = (z1, . . . , zm). We choose a basis for the
infinitesimal generators

vκ =
m∑

i = 1

ζi
κ(z)

∂

∂zi
, κ = 1, . . . , r, (1)

which are vector fields on M that span a Lie algebra isomorphic to the abstract
Lie algebra g of the Lie group G. For simplicity, we will assume that G acts
locally effectively on subsets, [13], which is equivalent to requiring that its basis
infinitesimal generators (1) be linearly independent vector fields when restricted
to any open subset of M .

To ensure that the symbolic invariant calculus is fully algebraic, we will
further assume that the group action is infinitesimally algebraic, meaning that
either:

• G acts locally transitively on M , or, equivalently its infinitesimal generators
v1, . . . ,vr span the tangent space to M at all points; or,

• if intransitive, the coefficient functions ζi
κ(z) of the infinitesimal generators

are polynomial functions of the coordinates on M .

In the latter case, we will also assume, in order to simplify the exposition, that
G acts “locally transitively on the independent variables”, in a sense defined at
the beginning of Sect. 4. The preceding blanket assumptions hold in almost all
examples of interest arising in applications.

Sections 3–5 review known facts and computational techniques from the
method of moving frames. The new constructions and results appear in Sects. 6–
9, while Sect. 10 summarizes the resulting algorithm.

Remark: The methods to be presented can be extended to infinite-dimensional
Lie pseudo-group actions. Although the constructions and underlying theory
are significantly more complicated in the latter context, the resulting structure
theory is of a very similar flavor; see [19–21] for details.

2 Multi-indices

Let p ≥ 1 be a fixed integer. A p multi-index is an ordered n-tuple K =
(k1, . . . , kn) with 1 ≤ kν ≤ p, where n = #K is the order of K. We consider the
empty 0-tuple O = () to be the unique multi-index of order 0. Let M

(n) denote
1 The constructions work in an identical fashion for complex Lie groups acting ana-

lytically on complex manifolds.

294 P. J. Olver

the set of all multi-indices of order 0 ≤ k ≤ n. Note that M
(n) has cardinality

| M(n) | = 1+ p+ · · ·+ pn = (pn+1 − 1)/(p − 1). We further let M =
⋃

n≥0 M
(n)

denote the set of all p multi-indices.
A symmetric p multi-index J of order n = #J ≥ 1 is an unordered n-tuple

J = (j1, . . . , jn) with 1 ≤ jν ≤ p, where we identify any two n-tuples that are
obtained by permuting their indices. Thus any symmetric multi-index can be
rearranged to be nondecreasing, meaning ji ≤ ji+1 for 1 ≤ i < #J . The empty
order 0 multi-index O is considered to be symmetric. We let S

(n) denote the set of
all symmetric multi-indices of order 0 ≤ k ≤ n. Its cardinality is | S(n) | = (

n+p
p

)
.

Let S =
⋃

n≥0 S
(n) denote the set of all symmetric p multi-indices.

3 The Jet Calculus

Given the action of a Lie group on an m-dimensional manifold M , we are inter-
ested in the induced action on p-dimensional submanifolds N ⊂ M for some
fixed 1 ≤ p < m. We split the coordinates on M ⊂ R

m into independent and
dependent variables

z = (x, u) = {x1, . . . , xp, u1, . . . , uq },

where p+q = m. We will restrict our attention to submanifolds that can be iden-
tified with graphs of smooth functions u = f(x). For details, including extensions
to general p-dimensional submanifolds, see [11].

The corresponding jet space of order 0 ≤ n ≤ ∞, denoted by Jn = Jn(M,p),
is defined as the space of equivalence classes of p-dimensional submanifolds under
the equivalence relation of n-th order contact. It has induced local coordinates

(x, u(n)) = (. . . xi . . . uα
J . . .), i = 1, . . . , p, α = 1, . . . , q, J ∈ S

(n),

where we identify uα
J = uα

j1...jk
, where k = #J , with the partial derivative

∂kuα/∂xJ , so the equality of mixed partials is reflected in the fact that J is a
symmetric multi-index. The dependent variables uα = uα

O are identified as those
jet coordinates with empty multi-index O = (), so that J0 � M . By a differential
function (respectively, differential polynomial) we mean a smooth (respectively,
polynomial) function F (x, u(n)) of the jet coordinates.

In the jet space calculus, the total derivative operators D1, . . . , Dp are deriva-
tions that act on differential functions (polynomials) by differentiating with
respect to the independent variables x1, . . . , xp, treating the jet variables uα

J as
functions thereof; they are thus characterized by their action on the individual
jet coordinates:

Dix
j = δi

j , Diu
α
J = uα

J,i, i, j = 1, . . . , p, α = 1, . . . , q, J ∈ S,

where δi
j is the Kronecker delta, and, given J = (j1, . . . , jk) ∈ S, we define the

symmetric multi-index (J, i) = (j1, . . . , jk, i) ∈ S of order k + 1. Thus, we can
write

Di =
∂

∂xi
+

q∑

α=1

∑

J∈S

uα
J,i

∂

∂uα
J

, i = 1, . . . , p. (2)

On the Structure and Generators of Differential Invariant Algebras 295

The total derivative operators mutually commute:

[Di,Dj] = Di Dj − Dj Di = 0.

Higher order total derivatives are obtained by composition

DJ = Dj1 · · · Djk , J = (j1, . . . , jk) ∈ S, (3)

where commutativity is reflected in the fact that J is taken to be a symmetric
multi-index. In particular, DO = 11 is the identity operator.

The induced action of the Lie group G on p-dimensional submanifolds induces
an action on the jet spaces Jn, called the prolonged action. Its infinitesimal
generators have the form

vκ =
p∑

i = 1

ξi
κ(x, u)

∂

∂xi
+

q∑

α = 1

∑

J∈S

ϕα
J,κ(x, u(#J))

∂

∂uα
J

, κ = 1, . . . , r, (4)

where, by the well-known prolongation formula, [11],

ϕα
J,κ = vκ(uα

J) = DJ

(
ϕα

κ −
p∑

i=1

ξi
κ uα

i

)
+

p∑

i=1

ξi
κuα

J,i. (5)

Note: In view of the formula (2) for the total derivatives, the coefficients ϕα
J,κ

depend polynomially on the jet coordinates uβ
K of orders #K ≥ 1. Hence, under

our assumption that the action of G is infinitesimally algebraic, each prolonged
infinitesimal generator (4) is a derivation of the space of differential polynomials.

A differential invariant is, by definition, an invariant differential function
I(x, u(n)). The infinitesimal invariance condition requires

vκ(I) = 0, κ = 1, . . . , r,

which, by connectivity of the (prolonged) group action, is necessary and sufficient
for invariance of the function I. One method for determining the invariants is
to solve this system of homogeneous linear partial differential equations, [11].
However, the moving frame method is more direct and also has the advantage
of being purely algebraic, and hence can be readily implemented in standard
computer algebra systems.

4 Invariantization

In addition to assuming that G acts infinitesimally algebraically on M , we will
also, merely for the purpose of simplifying the notation and presentation, assume
that it acts “locally transitively on the independent variables”, meaning that the
projected infinitesimal generators

v̂κ =
p∑

i = 1

ξi
κ(x, u)

∂

∂xi
, κ = 1, . . . , r, (6)

296 P. J. Olver

span a subspace of dimension p at each point (x, u) ∈ M . If G itself acts locally
transitively on M , this condition is automatically satisfied.

By a general result, [12], local effectiveness implies that the prolonged group
action is locally free2 on a dense open subset of a jet space of sufficiently high
order, say s. By a local cross-section, we mean a submanifold K ⊂ Js of comple-
mentary dimension that intersects the prolonged group orbits transversally in at
most one point. Such a cross-section is defined by the equations

Zσ(x, u(s)) = cσ, σ = 1, . . . , r, (7)

prescribed by r independent differential functions Z1, . . . , Zr of order ≤ s and r
constants c1, . . . , cr ∈ R. To remain in the algebraic category, we assume that the
Zσ are polynomial functions of the jet coordinates. The simplest, and by far the
most common, choice is when the Zσ’s are individual jet coordinates, in which
case (7) is said to define a coordinate cross-section. Our blanket assumption that
G acts locally transitively on the independent variables implies that we can,
and will, always select the first p cross-section functions to be the independent
variables: Zi = xi for i = 1, . . . , p. If G acts transitively on M , then we will
select the next q = m − p of them to be the dependent variables: Zα+p = uα

for α = 1, . . . , q. The construction of the moving frame map from the cross-
section Eqs. (7) follows as in [1,17]; since we do not require these formulas in
the symbolic calculus employed here, we will not dwell on the details.

Specification of the cross-section and consequent moving frame induces a
process of invariantization, denoted by ι, that associates to each differential
function F the unique differential invariant I = ι(F) that agrees with F on the
cross-section. In particular, if I is a differential invariant, then ι(I) = I. Thus, the
invariantization process defines a projection from the algebra of differential func-
tions to the algebra of differential invariants: ι(ι(F)) = ι(F). Moreover, it clearly
respects all algebraic operations, and hence defines an algebra morphism. On the
other hand, the resulting differential invariants are not necessarily polynomial in
the jet coordinates, being prescribed by the moving frame solution to the poly-
nomial cross-section equations, (7). If the group acts algebraically (which is not
guaranteed by our assumptions on its infinitesimal generators), then the result-
ing differential invariants are algebraic functions of the jet coordinates, [4,5].
See [9] for a (non-constructive) version based on rational differential invariants.
In the symbolic moving frame calculus, the explicit formulas for the differential
invariants are not required, although they can, at least modulo algebraic compli-
cations, be explicitly constructed through an application of the invariantization
process.

In particular, the invariantization of each differential function used to define
the cross-section (7) is the corresponding normalization constant:

ι(Zσ) = cσ, σ = 1, . . . , r. (8)

These are commonly referred to as the phantom differential invariants. Thus, in
view of our specified choice of cross-section as predicated on the assumption
2 A group action is locally free if the isotropy subgroup at each point is discrete.

On the Structure and Generators of Differential Invariant Algebras 297

that the group acts locally transitively on the independent variables, all the
independent variables invariantize to constants:

ι(xi) = ci, i = 1, . . . , p, (9)

being the first p of the phantom differential invariants (8). The basic differential
invariants are obtained by invariantization of the remaining jet coordinates:

Iα
J = ι(uα

J), α = 1, . . . , q, J ∈ S. (10)

If G acts transitively, then, again by our assumption on the form of the cross-
section, all the Iα = ι(uα) are also constant phantom invariants. Since the
invariantization process respects all algebraic operations, if

F (x, u(n)) = F (. . . xi . . . uα
J . . .)

is any differential function, then

ι(F) = F (. . . ι(xi) . . . ι(uα
J) . . .) = F (. . . ci . . . Iα

J . . .). (11)

In particular, if J(x, u(n)) is any differential invariant, then

J(. . . xi . . . uα
J . . .) = J(. . . ci . . . Iα

J . . .). (12)

Equation (12) is known as the Replacement Rule, and allows one to immediately
and uniquely “rewrite” any differential invariant in terms of the basic differential
invariants (10), merely by replacing each jet coordinate by its corresponding
basic differential invariant. Thus, the basic differential invariants form a complete
system of differential invariants in the sense that any other differential invariant
is a function thereof. Interestingly, even though the basic differential invariants
need not be polynomial or even algebraic functions, every polynomial (algebraic)
differential invariant can be written as a polynomial (algebraic) function thereof.

On the other hand, the basic differential invariants are not functionally inde-
pendent, but are subject to the r polynomial equations provided by the invari-
antized cross-section relations (8):

ι(Zi) = ι(xi) = ci, i = 1, . . . , p,

Zσ(. . . ci . . . Iα
J . . .) = cσ, σ = p + 1, . . . , r,

(13)

which form a complete system of functional (polynomial) relations. In partic-
ular, if we are using a coordinate cross-section, then the non-phantom basic
differential invariants provide a complete system of functionally independent
differential invariants, in the sense that any other differential invariant can be
locally uniquely written as a function (not necessarily polynomial) thereof.

In the sequel, we let

I(n) = ι(u(n)) =
{

Iα
J = ι(uα

J)
∣∣∣ α = 1, . . . , q, J ∈ S

(n)
}

(14)

298 P. J. Olver

denote the basic differential invariants obtained by invariantizing the dependent
variable jet coordinates of order ≤ n, including all such constant phantom invari-
ants. Observe that, since the moving frame has order s, the order of each Iα

J is
≤ max{s,#J}.

The invariant differential operators are obtained by invariantizing the total
derivative operators (2):

Di = ι(Di), i = 1, . . . , p. (15)

As before, in the symbolic moving frame calculus, there is no need for their
explicit formulas, although these can (modulo computational complications) be
found through an explicit implementation of the invariantization process, [1].
Invariance means that if I is any differential invariant, so is DiI. The invariant
differential operators produced by the moving frame construction do not, in gen-
eral, commute; see Eq. (22) below for details. Higher order invariant differential
operators are obtained by iteration:

DK = Dk1Dk2 · · · Dkl
, K = (k1, . . . , kl) ∈ M, (16)

where the non-commutativity of the Di’s is reflected in the fact that K is an
ordered multi-index. As before, DO = 11 is the identity map.

The differential invariant algebra will mean the algebra generated by the
basic differential invariants, which could be polynomial, rational, or smooth
functions thereof, depending on the context, along with the invariant differ-
ential operators. In the algorithm described below, we will restrict attention to
the polynomial category.

The fundamental Lie–Tresse Theorem, [1,9,12,21], states that the differen-
tial invariant algebra is generated by a finite number of generating differential
invariants through the operations of invariant differentiation.

Theorem 1. Given a Lie group action on submanifolds of dimension p as above,
there exist a finite number of generating differential invariants I1, . . . , I l such
that every differential invariant can be locally expressed as a function of them
and their invariant derivatives, namely DKIσ for K ∈ M and σ = 1, . . . , l.

The Lie–Tresse Theorem can be viewed, in a certain sense, as the analogue of
the Hilbert Basis Theorem for differential invariant algebras. The moving frame
recurrence formulas can be used to prove Theorem 1 constructively, in that
they identify a set of generating differential invariants; see below. A significant
problem, and the main focus of the latter part of this paper, is to find minimal
generating sets of differential invariants since those identified via the moving
frame calculus are typically far from minimal, and contain many redundancies.
There is also an analogue of the Hilbert Syzygy Theorem for differential invariant
algebras; see [21] for details.

5 The Recurrence Formulae

Besides the systematic and algorithmic methods underlying its construction,
the most important new contribution of the equivariant moving frame method,

On the Structure and Generators of Differential Invariant Algebras 299

[1,17], is the general recurrence formula, which we now state for differential
functions. See [8] for the extension to invariant differential forms.

While, as we noted above, the invariantization process respects all algebraic
operations, it does not respect differentiation. The recurrence formula tells us
how the operations of invariantization and differentiation are related.

Theorem 2. Given 1 ≤ i ≤ p, let Di = ι(Di) be the invariant differential oper-
ator (15) produced by the moving frame invariantization process. Let v1, . . . ,vr

be the prolonged infinitesimal generators (4) of the group action. Let F be a
differential function and ι(F) its moving frame invariantization. Then

Di

[
ι(F)

]
= ι

[
Di(F)

]
+

r∑

κ = 1

Rκ
i ι

[
vκ(F)

]
, i = 1, . . . , p, (17)

for certain differential invariants

R = { Rκ
i | κ = 1, . . . , r, i = 1, . . . , p } . (18)

In particular, setting F = uα
J in (17) leads to the recurrence formulae for the

basic differential invariants:

DiI
α
J = Iα

J,i +
r∑

κ = 1

Rκ
i ι(ϕα

J,κ), (19)

where ϕα
J,κ are the prolonged infinitesimal generator coefficients (5).

The differential invariants Rκ
i are known as the Maurer–Cartan invariants

since they appear as the coefficients of the pull-backs of the Maurer–Cartan
forms on the Lie group G under the equivariant moving frame map, [1]. Fortu-
nately, we do not need to know or understand this fact since the Maurer–Cartan
invariants can be effectively computed by solving the phantom recurrence formu-
lae. Namely, setting F = Zσ to be the cross-section differential functions in (17),
and noting that ι(Zσ) = cσ is constant, we deduce

0 = ι
[
Di(Zσ)

]
+

r∑

κ = 1

Rκ
i ι

[
vκ(Zσ)

]
, i = 1, . . . , p. (20)

For each fixed i = 1, . . . , p, the corresponding phantom recurrence formu-
lae (20) are a system of r linear algebraic equations for the r Maurer–Cartan
invariants Rκ

i , κ = 1, . . . , r. The condition that (7) define a valid cross-section
implies that these p linear systems all have a unique solution. Thus, under our
assumptions on the group action, the coefficients of the phantom recurrence for-
mulae (20) are polynomial functions of the basic differential invariants, which
implies that the Maurer–Cartan invariants R are rational functions of the basic
differential invariants I(s).

As noted above, the invariant differential operators produced by the moving
frame construction do not, in general, commute. Their commutators can be
written in the following form:

300 P. J. Olver

[Dj ,Dk] = Dj Dk − Dk Dj =
p∑

i = 1

Y i
jkDi, j, k = 1, . . . , p, (21)

where the coefficients

Y i
jk = −Y i

kj =
r∑

κ = 1

[
Rκ

k ι(Djξ
i
κ) − Rκ

j ι(Dkξi
κ)

]
, i, j, k = 1, . . . , p, (22)

are certain differential invariants known as the commutator invariants. See [1,8]
for details on the derivation of this formula.

6 The Symbolic Invariant Calculus

The upshot of the preceding developments is that, remarkably, we do not need to
know the actual formulas for the moving frame, nor the differential invariants,
nor the invariant differential operators, in order to determine the structure of
the resulting differential invariant algebra! In other words, we can work entirely
symbolically when analyzing the differential invariant algebra, whose structure
is entirely determined by the recurrence formulae (19, 20) and the commutator
formulae (21, 22). Let us now formalize this procedure.

To this end, and under our blanket assumptions on the Lie group action and
choice of moving frame cross-section, we introduce new “symbolic” variables

v = (. . . vα
J . . .), α = 1, . . . , q, J ∈ S,

which will serve to represent the basic differential invariants: vα
J ←→ Iα

J . We will
also set

v(n) = (. . . vα
J . . .), α = 1, . . . , q, J ∈ S

(n),

for 0 ≤ n ≤ ∞, so that v = v(∞). Let us define the symbolic invariantization
process ι̃ , acting on differential functions F (x, u(n)), by the following rule based
on (11):

ι̃
[
F (x, u(n))

]
= F (. . . ι̃ (xi) . . . ι̃ (uα

J) . . .) = F (. . . ci . . . vα
J . . .) = F (v).

(23)
As such the symbolic variables will be subject to the polynomial cross-section
relations

Zσ(v) = cσ, σ = p + 1, . . . , r, (24)

which are based on (7), keeping (9) in mind. The algebraic variety defined by
the polynomial Eqs. (24) will be called the cross-section variety. All symbolic
calculations take place on this variety. As noted before, the simplest case is when
we choose a coordinate cross-section, in which case the variables vα

J that corre-
spond to the jet coordinates uα

J used to specify the cross-section are constant.
Thus, in this case, the cross-section variety is simply an affine subspace.

As we saw above, the differential invariant algebra structure is completely
encoded by the recurrence relations, specifically (19), which determine how the

On the Structure and Generators of Differential Invariant Algebras 301

invariant differential operators act on the basic differential invariants. Rather
than use the invariant differential operators directly, it will help to replace them
by symbolic derivations. Namely, for i = 1, . . . , p, let D̃i be the derivation defined
by its action on the symbolic variables:

D̃i vα
J = vα

J,i +
r∑

κ = 1

R̃κ
i ι̃ (ϕα

J,κ), (25)

where ϕα
J,κ are the prolonged infinitesimal generator coefficients (5), while R̃κ

i =
ι̃ (Rκ

i) are the symbolic Maurer–Cartan invariants, which can be obtained by
replacing the basic differential invariants in the formulae for the Maurer–Cartan
invariants Rκ

i by their symbolic counterparts, Iα
J
−→ vα

J , or, equivalently, by
solving the linear system of equations

0 = ι̃
[
DiZ

σ
]
+

r∑

κ = 1

R̃κ
i ι̃

[
vκ(Zσ)

]
, σ = 1, . . . , r, i = 1, . . . , p, (26)

associated with the (symbolic) phantom invariants, cf. (20). Since, under our
assumptions on the group action, the coefficients of the linear system are poly-
nomials in the symbolic variables v, the Maurer–Cartan invariants will be ratio-
nal functions of v. As above, the calculations are performed on the cross-section
variety (24).

As before, the symbolic invariant derivations so constructed will not, in gen-
eral, commute. Their commutators follow from (21, 22):

[D̃j , D̃k] = D̃j D̃k − D̃k D̃j =
p∑

i = 1

Ỹ i
jkD̃i, (27)

where

Ỹ i
jk = ι̃ (Y i

jk) =
r∑

κ = 1

[
R̃κ

k ι̃ (Djξ
i
κ) − R̃κ

j ι̃ (Dkξi
κ)

]
. (28)

are the symbolic commutator invariants. We recursively construct their higher
order counterparts

D̃K = D̃k1 · · · D̃kl
, K ∈ M

(n), 0 ≤ l = #K ≤ n, (29)

keeping in mind that, owing to their non-commutativity, the multi-index K is
unordered. (For completeness, D̃O = 11 is the identity operator.) On the other
hand, by invoking the commutator relations (27), one can adapt a Poincaré–
Birkhoff–Witt type argument, [7], to restrict to only nondecreasing multi-indices,
although this appears unnecessary, modulo possibly exploiting it in order to
speed up the computational algorithm.

7 The Extended Symbolic Invariant Calculus

The fact that the symbolic Maurer–Cartan invariants are, in general, rational
functions of the symbolic variables v takes us outside our polynomial “comfort

302 P. J. Olver

zone”. Moreover, the algorithm to be developed below will ask that we not explic-
itly compute them via solving the phantom recurrence formulas (26) in advance.
Instead, to maintain polynomiality, we will introduce a further set of symbolic
variables wκ

i to represent each Maurer–Cartan invariant Rκ
i , and rewrite (19) in

the form

D̃i vα
J = vα

J,i +
r∑

κ = 1

wκ
i ι̃ (ϕα

J,κ). (30)

These new symbolic variables will be subject to the linear algebraic constraints

0 = Cσ
i (v, w) ≡ ι̃

[
DiZ

σ
]
+

r∑

κ = 1

wκ
i ι̃

[
vκ(Zσ)

]
,

σ = 1, . . . , r,

i = 1, . . . , p,
(31)

corresponding to (26), whose coefficients depend polynomially on v. Solving this
linear system will recover the symbolic Maurer–Cartan invariants R̃κ

i , as con-
structed in the preceding section, but here we will not do this, and instead work
on the polynomial subvariety it defines.

We will also need to symbolically differentiate the variables representing the
Maurer–Cartan invariants, and hence include further symbolic variables

w = (. . . wκ
i;K . . .), κ = 1, . . . , r, i = 1, . . . , p, K ∈ M, (32)

where K is an ordered multi-index owing to the non-commutativity of the sym-
bolic invariant derivations. We also set

w(n) = (. . . wκ
i;K . . .), κ = 1, . . . , r, i = 1, . . . , p, K ∈ M

(n), (33)

for 0 ≤ n ≤ ∞, so that, for instance, w(0) = (. . . wκ
i . . .) represents the

undifferentiated Maurer–Cartan invariants R, while w = w(∞).
We extend the symbolic invariant derivations (25) to the polynomial algebra

generated by (v, w) by setting

D̃j wκ
i;K = wκ

i;j,K . (34)

Their commutators are as in (27) above, but now we express the symbolic com-
mutator invariants in terms of the symbolic Maurer–Cartan variables:

Ỹ i
jk = ι̃ (Y i

jk) =
r∑

κ = 1

[
wκ

k ι̃ (Djξ
i
κ) − wκ

j ι̃ (Dkξi
κ)

]
. (35)

The symbolic differentiated Maurer–Cartan invariants (34) are subject to a
system of linear constraints, with polynomially v dependent coefficients, which
are obtained by symbolically differentiating (31):

0 = Cσ
i;K(v, w) ≡ D̃KCσ

i (v, w)

= D̃K

(
ι̃
[
Di(Zσ)

]
+

∑r
κ = 1 wκ

i ι̃
[
vκ(Zσ)

])
,

σ = 1, . . . , r,

i = 1, . . . , p,

K ∈ M.

(36)

We will call the subvariety determined by (23, 31, 36) the extended cross-section
variety. As above, one can appeal to the commutation formulae (27) to restrict to
non-decreasing multi-indices K, but we will not use this option in what follows.

On the Structure and Generators of Differential Invariant Algebras 303

8 Independence

Let us review a basic result on functional dependence that will be used in the
sequel. Given a smooth function f : R

m → R
k depending on x = (x1, . . . , xm) ∈

R
m, we denote its k × m Jacobian matrix by

∇f =
(

∂f i

∂xj

)
. (37)

Theorem 3. The components of f = (f1(x), . . . , fk(x)) are functionally inde-
pendent if and only if their Jacobian matrix has rank∇f = k.

See [11] for details, including a precise definition of functional independence. For
our purposes, the following corollary will be of crucial importance.

Proposition 4. Let M be an m-dimensional manifold. Suppose that f : M →
R

k and g : M → R
l are smooth functions. Assume that the rank of their Jacobian

matrices ∇f and ∇g are constant. Then we can locally write f = h ◦g where
h : R

l → R
k is smooth if and only if

rank
(∇f

∇g

)
= rank∇g. (38)

More generally, suppose

M = { x ∈ R
n | c(x) = 0 }

is a submanifold defined by the vanishing of a function c : R
n → R

j . We assume
that ∇c is also of constant rank in an open neighborhood of M . Suppose f : R

n →
R

k and g : R
n → R

l. Then Lemma 4 becomes the statement that, locally,

f | M = h ◦g | M if and only if rank

⎛

⎝
∇f
∇g
∇c

⎞

⎠ = rank
(∇g

∇c

)
on M. (39)

In other words, given yi = f i(x1, . . . , xn) for i = 1, . . . , k, and zj = gj(x1, . . . , xn)
for j = 1, . . . , l, and assuming the Jacobian matrices have constant rank, then,
locally, we can write yi = hi(z1, . . . , zl) for i = 1, . . . , k on the submanifold M
defined by c(x) = 0 if and only if condition (39) holds on M .

9 Generating Differential Invariants

We now turn to the problem of finding generating sets of differential invariants,
in accordance with the Lie–Tresse Theorem 1. There are two a priori known
generating sets of differential invariants. First:

Theorem 5. If the moving frame has order s, then I(s+1) is a generating set.

304 P. J. Olver

The proof relies on the structure of the basic recurrence formulae (19), the key
observation being that if k = #J ≥ s, then the only term on the right hand
side of order k + 1 is the leading term Iα

J,i—all the summation terms, including
the Maurer–Cartan invariants, are of order ≤ k. See also [14] for further details.
The next result is due to Hubert, [3], and is again based on an analysis of the
recurrence relations.

Theorem 6. The invariants I(0) ∪ R form a generating set.

In particular, if G acts transitively, then the invariants I(0) = ι(u) are all phan-
tom and hence constant and therefore in this case the Maurer–Cartan invariants
R form a generating set.

In both cases, the generating sets are, typically, far from minimal and there
are many redundancies. Hence, the quest is to find minimal generating sets.
Unfortunately, apart from the case of curves, where p = 1, there is as yet no
general construction of minimal generating sets or computational test that will
ensure whether or not a given generating set is minimal—except in the obvious
situation where one can find a single generator. In low dimensional examples,
e.g., surfaces in R

3, this happens surprisingly often, cf. [6,15,16,22].
To this end, we will now describe an algorithm for determining if a given set

of differential invariants
J = (J1, . . . , J l)

forms a generating set. We will work in the extended symbolic invariant calcu-
lus, as presented in Sect. 7. The proposed generating differential invariants are
represented symbolically by functions

J(v) =
(
J1(v), . . . , J l(v)

)
(40)

depending on a finite number of the symbolic variables vα
J . To remain in the

polynomial category, we assume that these are polynomials. In most cases, they
are, in fact, individual vα

J ’s or perhaps simple combinations thereof. We could
also allow them to depend on the symbolic Maurer–Cartan variables w; this will
not change the ensuing argument. Let

Jν
K(v, w) = D̃KJν , ν = 1, . . . , l, K ∈ M, (41)

be the symbolic derivatives of the proposed generating invariants. We will call
#K the level of the differentiated symbolic invariant (41).

Now suppose that

I(v, w) =
(
I1(v, w), . . . , Ik(v, w)

)
(42)

is a known generating set, represented symbolically. A simple choice based on
Theorem 5, and the one preferred here, is to set I = v(s+1) where s is the order of
the moving frame. Alternatively, one could invoke Theorem 6 and take I = w(0)

to be the (symbolic) Maurer–Cartan invariants. Typically, there are obvious
redundancies among these generating invariants, including those prescribed by

On the Structure and Generators of Differential Invariant Algebras 305

the extended cross-section variety (31, 36), and one can use these to reduce their
initial number in order to streamline the ensuing computations. Clearly the J ’s
are generating if we can write each Iσ as a function of the Jν

K ’s, as always when
restricted to the extended cross-section variety. If any Iσ already appears among
the Jν ’s, this requirement is automatic and so these can also be set aside when
implementing the ensuing algorithm.

We now invoke Proposition 4, in the reformulation given at the very end of
Sect. 8. The variables x represent the symbolic variables v, w. Of course, there
are infinitely many of the latter; however, each function depends on only finitely
many of them, and so, in any finite calculation, one can ignore all symbolic vari-
ables of a sufficiently higher order. The functions y = f(x) will represent the
generating invariants in (42), so y = I(v, w), which can be reduced by discarding
redundancies as discussed above, and we let Ĩ denote the remaining differential
invariants. The functions z = g(x) will represent the proposed generating dif-
ferential invariants (40) and their derivatives (41) up to a specified level n ≥ 0,
so

z = J (n)(v, w) = (. . . Jν
K(v, w) . . .), ν = 1, . . . , l, K ∈ M

(n). (43)

The polynomial constraints c(x) = 0 represent the extended cross-section variety
(36) up to level n, so

0 = C(n)(v, w) = (. . . Cσ
i;K(v, w) . . .),

σ = 1, . . . , r, i = 1, . . . , p, K ∈ M
(n).

(44)

Thus, according to (39), we need to compute the gradients (Jacobian matrices)
of the right hand sides of (42, 43, 44) with respect to the v’s and w’s, whereby
∇ = (∇v,∇w), and we set

J
(n) =

(∇J (n)

∇C(n)

)
, I

(n) =

⎛

⎝
∇Ĩ

∇J (n)

∇C(n)

⎞

⎠. (45)

As a direct corollary of (39), we have established our desired criterion.

Theorem 7. The differential invariants {J1, . . . , J l} form a generating set if
and only if

rank I
(n) = rank J

(n) (46)

for some level n ≥ 0.

Indeed, if (46) holds, then Corollary 4 implies that, on the extended cross-section
variety, we can express all the components of the known generating set I(v, w)
in terms of the differentiated invariants Jν

K(v, w) = D̃KJν , which implies that J
is also a generating set of differential invariants.

306 P. J. Olver

Remark: Ideally, the rank criterion (46) should be checked symbolically. In prac-
tice, this is beyond the current capabilities of Mathematica, and so instead
it is checked by making several substitutions of random integers for the vari-
ables in the matrices. While not 100% foolproof, this method works well in all
calculations performed to date.

Here is the one example that has been computed so far. Although not so
complicated, it’s starting to reach the limits of what Mathematica is capable
of—although a more clever programming scheme might push it a bit further.
It would also be good to reprogram this in a more powerful computer algebra
system.

Example 8. Consider the action of the Euclidean group SE(3) = SO(3) � R
3,

consisting of all rigid motions, on surfaces S ⊂ R
3. For simplicity, we assume

the surface is given by the graph of a function u = f(x, y). The corresponding
local coordinates on the surface jet bundle are x, y, u, ux, uy, uxx, uxy, uyy, . . . ,
and, in general, ujk = Dj

xDk
yu. The total derivative operators are

Dx = ∂x + ux∂u + uxx∂ux
+ uxy∂uy

+ uxxx∂uxx
+ uxxy∂uxy

+ uxyy∂uyy
+ · · · ,

Dy = ∂y + uy∂u + uxy∂ux
+ uyy∂uy

+ uxxy∂uxx
+ uxyy∂uxy

+ uyyy∂uyy
+ · · · .(47)

The classical moving frame construction, [2,15], relies on the cross-section

x = y = u = ux = uy = uxy = 0, (48)

of order s = 2, which is a valid cross-section provided uxx �= uyy. The resulting
fundamental differential invariants are denoted as Ijk = ι(ujk). In particular,

κ1 = I20 = ι(uxx), κ2 = I02 = ι(uyy),

are the principal curvatures; the moving frame is valid provided κ1 �= κ2, mean-
ing that we are at a non-umbilic point. The mean and Gaussian curvature invari-
ants

H = 1
2 (κ1 + κ2), K = κ1κ2,

are often used as convenient alternatives. Higher order differential invariants are
obtained by invariant differentiation3 using D1 = ι(Dx), D2 = ι(Dy). We cau-
tion the reader that the action of SE(3) is only locally free on the second order
jet space, and this implies some residual discrete ambiguities remaining in the
resulting normalized differential invariants; for example, rotating the surface 90◦

around its normal interchanges the principal curvatures, while rotating it 180◦

through its tangent plane changes their signs. This ambiguity, however, does not
affect the ensuing calculations. Since we are working entirely symbolically, we
do not require the explicit formulas for the moving frame, nor the principal cur-
vature invariants, nor the invariant differential operators. A complete derivation
of all the non-symbolic formulas for the equivariant moving frame, differential
invariants, invariant differential operators, etc., can be found in [18].
3 These are related to, but not the same as, the operators of covariant differentiation,

since the latter do not take differential invariants to (scalar) differential invariants.

On the Structure and Generators of Differential Invariant Algebras 307

A basis for the prolonged infinitesimal generators is provided by the following
six vector fields4:

v4 = ∂x, v5 = ∂y, v6 = ∂u, (49)

representing infinitesimal translations, and

v1 = − y∂x + x∂y − uy∂ux
+ ux∂uy

− 2 uxy∂uxx

+ (uxx − uyy)∂uxy
+ 2 uxy∂uyy

+ · · · ,

v2 = − u∂x + x∂u + (1 + u2
x)∂ux

+ uxuy∂uy
+ 3 ux uxx∂uxx

+ (uy uxx + 2 ux uxy)∂uxy
+ (2 uy uxy + ux uyy)∂uyy

+ · · · ,

v3 = − u∂y + y∂u + uxuy∂ux
+ (1 + u2

y)∂uy
+ (uy uxx + 2 ux uxy)∂uxx

+ (2 uy uxy + ux uyy)∂uxy
+ 3 uy uyy∂uyy

+ · · · ,

(50)

representing infinitesimal rotations, where we just display the terms up to second
order, although it is straightforward to prolong further, to any desired order,
using (5).

The phantom recurrence formulae5 are

0 = D1I10 = I20 + R2
1, 0 = D2I10 = R2

2,

0 = D1I01 = R3
1, 0 = D2I01 = I02 + R3

2,

0 = D1I11 = I21 + (I20 − I02)R1
1, 0 = D2I11 = I12 + (I20 − I02)R1

2,

(51)

and can easily be solved for the (rotational) Maurer–Cartan invariants Rκ
i . How-

ever, since we are working in the extended symbolic calculus, these are not needed
here.

The generating differential invariants I(s+1) = I(3) guaranteed by Theorem
5 are I20, I02 and the 4 third order invariants I30, I21, I12, I03. However, the order
two basic recurrence formulae have the very simple form

D1I20 = I30, D2I20 = I21, D1I02 = I12, D2I02 = I03, (52)

because the third order coefficients of the prolonged infinitesimal generators
v1,v2,v3 all vanish on the chosen cross-section. Thus it is obvious that we can
generate all of the third order differential invariants from I = {I20, I02 }, meaning
that the principal curvatures (or, equivalently, the Gauss and mean curvature)
form a generating set.

In [15], it was proved, by cleverly manipulating the higher order recurrence
formulae and the commutator relations, that, in fact, a minimal generating set is
provided by merely the mean curvature H alone. (We know that this is minimal

4 The system for numbering the vκ is for later convenience.
5 For completeness, we should also include those of order 0, i.e. for K1 = ι(x) = 0,

K2 = ι(y) = 0, I00 = ι(u) = 0; however, these are only used to determine the trans-
lational Maurer–Cartan invariants, namely, Rκ

i for κ = 4, 5, 6 and i = 1, 2, which do
not appear anywhere else, and hence play no role in the ensuing calculations. This
always happens when the transformation group includes translations.

308 P. J. Olver

because it consists of a single differential invariant.) Indeed, for suitably generic
surfaces, there is a universal formula expressing the Gauss curvature as a rational
function of H and its invariant derivatives.

Let us instead apply the computational algorithm based on Theorem 7.
By this means, we not only reconfirm the preceding result that the mean curva-
ture generates, but also prove that either principal curvature—κ1 or κ2 – is also
a minimal generating set, as is the Gauss curvature K. The latter result comes as
a surprise, since it implies that the mean curvature, which is an extrinsic invari-
ant that depends upon the embedding of the surface in Euclidean space, can
be expressed in terms of the Gauss curvature, which is an intrinsic invariant as
a consequence of Gauss’ Theorema Egregium, [2], and its invariant derivatives.
Of course, the explanation is that the invariant differential operators do not
preserve intrinsicness. Thus, it would be of interest to further develop a classifi-
cation scheme for distinguishing intrinsic and extrinsic higher order differential
invariants.

Note: Technically, we should work symbolically by replacing the I’s by v’s and
the R’s by w’s. But, while this makes the symbolic algorithm easier to explain, in
practice whether we call the symbolic variables v, w or I,R makes no difference.

In detail, using my Mathematica code6 to compute the symbolic Jacobian
matrices and then computing their ranks by substituting random integers (a few
times just to make sure), we find the following.

For J = {2 H = κ1 + κ2 = I20 + I02 } and Ĩ = {κ2 = I02 }:

level size J
(k) rank J

(k) size I
(k) rank I

(k)

0 13 × 18 13 14 × 18 14
1 39 × 47 39 40 × 47 40
2 91 × 101 91 92 × 101 92
3 195 × 204 195 196 × 204 195
4 403 × 404 394 404 × 404 394

Since the ranks are equal at level 3 (and so the level 4 computation is unnec-
essary, but was performed as a check on the algorithm), by Theorem 7, we can
write κ2 in terms of the third order invariant derivatives of H, which is thus
generating, in accordance with the result found in [15]. Interestingly, the explicit
formula that was found there by manipulation of the recurrence formula involves
the fourth order derivatives of H, and hence there is an as yet unknown formula
for K involving at most third order derivatives of H. (This is not a contradiction,
owing to the many syzygies among the differentiated invariants.)

6 The software packages and details of the computations are available on the author’s
website: https://www-users.cse.umn.edu/~olver/omath.html.

https://www-users.cse.umn.edu/~olver/omath.html

On the Structure and Generators of Differential Invariant Algebras 309

For J = {κ1 = I20 } and Ĩ = {κ2 = I02 }:

level size J
(k) rank J

(k) size I
(k) rank I

(k)

0 13 × 18 13 14 × 18 14
1 39 × 47 39 40 × 47 40
2 91 × 101 91 92 × 101 92
3 195 × 204 194 196 × 204 194
4 403 × 404 393 404 × 404 393

It is interesting that the level 3 and 4 rows have a (slightly) different rank than
the previous case. As before, the ranks are equal at level 3, and thus, we can
write κ2 in terms of the third order derivatives of κ1, which is thus generating.
Switching the principal curvatures implies that κ2 is also generating. This is a
new result.

Finally, when J = {K = κ1 κ2 = I20 I02 } and Ĩ = {κ2 = I02 }, the table is
the same as in the first case, which implies that we can write κ2 in terms of the
third order derivatives of the Gauss curvature K, which is thus generating, and
hence there is a previously unknown formula for H in terms of derivatives of
K, valid for suitably generic surfaces. As noted above, this is a surprising new
result, and it would be instructive to construct the explicit formula, which has
yet to be done.

10 The Algorithm

We close by summarizing the above constructions in the form of an algorithm
for determining whether a prescribed collection of differential invariants forms a
generating set.

1. Input the infinitesimal generators of the action of the Lie group. Their coef-
ficients form the entries of the associated Lie matrix.

2. Input the level n of the computation and the order k of the cross-section.
3. Compute the prolonged infinitesimal generators up to order n + k + 1

using (5).
4. Input the cross-section, as in (7). Ensure that this is a valid cross-section

by checking that the Lie matrix has rank r = dimG when restricted to the
cross-section. If not, terminate the calculation.

5. Compute the recurrence formulas up to order n + k + 1 in the form (30),
including the linear algebraic constraints (31) following from the cross-
section specification.

6. Compute the commutators in the symbolic form (35).
7. Compute the higher order constraints (36) up to level n.
8. Choose a known generating set of differential invariants represented symbol-

ically as in (42). In the implementation used in the example, these are the
ones given in Theorem 5, eliminating obvious redundancies to streamline the
computation.

310 P. J. Olver

9. Input the proposed generating differential invariants represented symboli-
cally as in (40), and compute their invariant derivatives (43) to level n.

10. Compute the Jacobian matrices (45). If the rank condition (46) is satisfied,
then the chosen differential invariants form a generating set. If not, then
either they are not generating, or one needs to choose a higher level n. In
practice, since computing the ranks of the symbolic matrices (45) is too com-
putationally intensive, one substitutes random integers for the variables they
depend on, and compares the ranks of the corresponding integer matrices,
repeating this computation several times to be sure. Of course, with poor
choices of random integers, this final numerical step may be misleading, but
in the implementation this is not observed, and the ranks are almost always
independent of the random choice.

If unsuccessful, one can try a higher level. Unfortunately, I do not know a
bound on the level required to be sure whether or not the selected differential
invariants are generating; establishing this is a significant and apparently difficult
open problem.

Acknowledgments. I would like to thank Marc Härkönen and Anton Leykin for
suggestions and for checking the computations. I also thank Francis Valiquette for
several corrections. I further thank the referees for their careful reading of the original
version and useful suggestions.

References

1. Fels, M., Olver, P.J.: Moving coframes: II. Regularization and theoretical founda-
tions. Acta Appl. Math. 55, 127–208 (1999)

2. Guggenheimer, H.W.: Differential Geometry. McGraw-Hill, New York (1963)
3. Hubert, E.: Generation properties of Maurer-Cartan invariants, INRIA (2007)
4. Hubert, E., Kogan, I.A.: Rational invariants of a group action. Construction and

rewriting. J. Symb. Comp. 42, 203–217 (2007)
5. Hubert, E., Kogan, I.A.: Smooth and algebraic invariants of a group action: local

and global constructions. Found. Comput. Math. 7, 455–493 (2007)
6. Hubert, E., Olver, P.J.: Differential invariants of conformal and projective surfaces.

SIGMA: Symmetry Integrability Geom. Methods Appl. 3, 097 (2007)
7. Knapp, A.W.: Lie Groups: Beyond an Introduction, 2nd edn. Birkhäuser, Boston

(2002)
8. Kogan, I.A., Olver, P.J.: Invariant Euler-Lagrange equations and the invariant

variational bicomplex. Acta Appl. Math. 76, 137–193 (2003)
9. Kruglikov, B., Lychagin, V.: Global Lie-Tresse theorem. Selecta Math. 22, 1357–

1411 (2016)
10. Mansfield, E.L.: A Practical Guide to the Invariant Calculus. Cambridge University

Press, Cambridge (2010)
11. Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts

in Mathematics, vol. 107, 2nd edn. Springer-Verlag, New York (1993)
12. Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press,

Cambridge (1995)

On the Structure and Generators of Differential Invariant Algebras 311

13. Olver, P.J.: Moving frames and singularities of prolonged group actions. Selecta
Math. 6, 41–77 (2000)

14. Olver, P.J.: Generating differential invariants. J. Math. Anal. Appl. 333, 450–471
(2007)

15. Olver, P.J.: Differential invariants of surfaces. Diff. Geom. Appl. 27, 230–239 (2009)
16. Olver, P.J.: Moving frames and differential invariants in centro-affine geometry.

Lobachevskii J. Math. 31, 77–89 (2010)
17. Olver, P.J.: Modern developments in the theory and applications of moving frames.

London Math. Soc. Impact150 Stories 1, 14–50 (2015)
18. Olver, P.J.: Equivariant moving frames for Euclidean surfaces (2016). https://

math.umn.edu/~olver/mf_/eus.pdf
19. Olver, P.J., Pohjanpelto, J.: Maurer-Cartan forms and the structure of Lie pseudo-

groups. Selecta Math. 11, 99–126 (2005)
20. Olver, P.J., Pohjanpelto, J.: Moving frames for Lie pseudo-groups. Canadian J.

Math. 60, 1336–1386 (2008)
21. Olver, P.J., Pohjanpelto, J.: Differential invariant algebras of Lie pseudo-groups.

Adv. Math. 222, 1746–1792 (2009)
22. Olver, P.J., Polat, G.G.: Joint differential invariants of binary and ternary forms.

Portugaliae Math. 76, 169–204 (2019)

https://math.umn.edu/~olver/mf_/eus.pdf
https://math.umn.edu/~olver/mf_/eus.pdf

An Algorithm for the Intersection
Problem of Planar Parametric Curves

Ling Tan1,2, Bo Li1,2, Bingwei Zhang1,2, and Jin-San Cheng1,2(B)

1 KLMM, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China

jcheng@amss.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. This study presents a novel approach for handling the inter-
section of planar parametric curves. By leveraging the inherent properties
of parametric curves, our technique simplifies the process by reducing and
comparing the ranges of x and y coordinates. The essential advantage of
this technique lies in its simplicity, achieved through the reduction and
comparison of the x and y coordinates ranges of the two curves. The
monotonicity of curves is used during the reduction strategy. We utilize
the opposite monotone system within a box to determine the uniqueness
and existence of a simple intersection point. Moreover, we comprehen-
sively analyzed singular cases like cusps, self-intersections, and tangents.
Examples and comparisons with other methods showcase the algorithm’s
robustness and efficiency, particularly for high-degree systems.

Keywords: Reduction method · Opposite monotone system ·
Uniqueness and existence

1 Introduction

Finding intersections between planar parametric curves is a fundamental task in
computer-aided geometric design and solid modeling, especially when consider-
ing Bézier curves and NURBS (Non-Uniform Rational Basis Spline) curves. To
address this intersection problem, we denote the equations of the two parametric
curves as follows:

r1r1r1(s) = (X1(s), Y1(s)) =
(

x1(s)
w1(s)

,
y1(s)
w1(s)

)
,

r2r2r2(t) = (X2(s), Y2(s)) =
(

x2(t)
w2(t)

,
y2(t)
w2(t)

)
, (1)

where x1(s), y1(s), w1(s), x2(t), y2(t) and w2(t) are univariate polynomials and
(s, t) ∈ R

2.

This work was partially supported by the National Key Research and Development
Program of China grant 2022YFC3802102.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 312–329, 2023.
https://doi.org/10.1007/978-3-031-41724-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_17&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_17

An Algorithm for the Intersection Problem of Planar Parametric Curves 313

Three primary algorithms exist for computing intersections of plane curves
defined by rational parametrizations. These algorithms utilize elimination the-
ory [24,33], Bézier subdivision [3,21,23,27,31] and methods that solve bivariate
polynomial systems [4,8–11,28,29]. The elimination theory relies on the ability
to convert any rational parametric curve into an algebraic plane curve repre-
sented as F (x, y) = 0, with F (x, y) being a bivariate polynomial. This method
involves converting one of the parametric curves into its implicit form and sub-
stituting the other curve’s representation into it. This reduction transforms the
intersection problem into solving the real roots of a univariate polynomial [32–
35]. The algorithm exhibits relatively fast performance for low-degree curves
(up to degree three or four). However, as the degrees of the curves increase,
the algorithm’s efficiency diminishes. This is due to the use of resultants and
the computational burden of expanding a symbolic determinant. Additionally,
finding the roots of higher-degree polynomials lead to numerical instability [39].
The Bézier’s subdivision technique leverages the convex hull property of Bézier
curves and utilizes de Casteljau’s algorithm. The intersection algorithm involves
computing the convex hulls of the two curves. If the hulls do not overlap, there is
no intersection. Otherwise, the curves are subdivided, and the resulting hulls are
checked for intersection. In each iteration, the algorithm discards curve regions
without intersection points. Subdivision divides a curve segment into two curve
segments, with simple algorithms demonstrating linear convergence. By employ-
ing the Bézier clipping method [36], convergence can be accelerated. Bézier clip-
ping determines parameter ranges that guarantee the absence of intersection
points and effectively exploits the convex hull property. Methods based on solving
bivariate polynomial system set r1r1r1(s) = r2r2r2(t) to yield two polynomial equations{

x1(s)w2(t) − x2(t)w1(s) = 0,
y1(s)w2(t) − y2(t)w1(s) = 0.

(2)

with two unknown variables s and t. The subdivision method can yield boxes
that may not contain any roots. Various methods are employed to determine
the uniqueness and existence of a root within a given domain and obtain iso-
lated intervals. Miranda’s theorem [16,25] is utilized to verify the existence of
real zeros. The Jacobian test [1,16,22] is employed to determine if a system has
at most one real zero. For testing the uniqueness of complex zeros, the interval
Newton method [20,26,30] and α-theory [37] can be utilized. Additionally, there
is noteworthy research exploring the topology of parametric curves [19].

The primary emphasis of this paper lies in the intersection analysis of two
plane curves described by rational parametrizations. While it is possible to con-
vert parametric curve/curve intersections into algebraic curve/curve intersec-
tions using (2), such a conversion results in the loss of the distinctive properties
exhibited by parametric curves. Let

f1(s, t) = 0, f2(s, t) = 0 (3)

be two algebraic curves, where f1 and f2 are polynomial in the variables s and
t. Solving the polynomial system gives the intersection of two parametric curves

314 L. Tan et al.

[4,8–10,28,29]. We will use the system (3) to discuss the roots of the original
intersection problem of singular conditional.

This paper focuses on the analysis of geometric properties associated with
parametric curves. By comparing the ranges of x-coordinates and y-coordinates
between two parametric curves, we are able to narrow down the candidate boxes
that potentially contain their intersections. A major advantage of this technique
is its reliance only on solving univariate polynomials, which surpasses the com-
plexity of solving systems of bivariate equations. Leveraging the monotonicity of
the curves during the computation of coordinate ranges enables us to ascertain
the presence and uniqueness of a simple intersection point within the designated
box [10]. We utilize a specialized equation system for determination in situa-
tions involving singular cases. Our algorithm has been successfully implemented
in Matlab, and our experimental results showcase its effectiveness and efficiency,
particularly for high-degree systems.

The remainder of this paper is structured as follows: The reduction strategy
is presented in Sect. 2. We introduce the uniqueness and existence theorem in
Sect. 3. In Sect. 4, we delve into singular cases, where we employ a specialized
system of equations for decision-making. The summary of the algorithm is pro-
vided in Sect. 5. Moving on to Sect. 6, we present several numerical examples
to showcase the efficiency of our algorithm, along with a comparison to some
related algorithms. Finally, we offer our final remarks.

2 Reduction Strategy

In this section, we will describe our algorithm to rigorously compute all intersec-
tion points of two parametric curves F (s, t) = (r1r1r1(s), r2r2r2(t)) in R

2. To facilitate
the analysis, we divide the real line into three intervals, namely R = (−∞, ai] ∪
[ai, bi] ∪ [bi,+∞), where ai < 0 < bi, i = 1, 2. By doing so, we can categorize
all intersection points of F into nine regions (e.g., (s, t) ∈ (−∞, a1] × (−∞, a2],
(−∞, a1]× [a2, b2], (−∞, a1]× [b2,+∞), · · ·) for further examination. Addition-
ally, if s ∈ (−∞, a1], we can substitute s′ = 1

s ∈ [1
a1

, 0), and the task of finding
all intersection points of F (s, t) in (s, t) ∈ (−∞, a1]× [a2, b2] becomes equivalent
to finding all intersection points of F (s′, t) in (s′, t) ∈ [1

a1
, 0)× [a2, b2]. This app-

roach allows us to reduce the problem to locating intersection points within a
bounded box. Note that the number of the intersections of two rational curves is
finite. If we use the method for general parametric curves, there may exist infinite
intersections if we consider the whole space. But we can set a stopping tolerance.

Let us go over the basic notations of parametric curves. Let f1(s, t), f2(s, t)
be as defined in (2). We assume that w1(s) has no real root in I and w2(t) has no
root in J in the rest of the paper. We say F has intersections in B if the equations
f1(s, t) = 0, f2(s, t) = 0 have solutions in B. Let x1(I) = {x1(p) | p ∈ I} and we
say x1(I) > 0 (< 0) if x1(p) > 0 (< 0) for any p ∈ I.

2.1 Reduction Strategy

Let two plane curves defined by rational parametrizations F = (r1r1r1(s), r2r2r2(t)) and
B = I ×J ⊂ R

2. Using the geometric properties of parametric curves, we design

An Algorithm for the Intersection Problem of Planar Parametric Curves 315

a reduction strategy by comparing and decreasing the ranges of X1(s) and X2(t),
Y1(s) and Y2(t).

A smooth mapping f : I → R of a closed interval I = [a, b] can be thought of
as a monotonic mapping on Ii where I is the disjoint union I = ∪Ii such that f
is monotone on each Ii. It is a monotonic composition of I on f . It can be easily
achieved by decomposing I at the points p such that f ′(p) = 0, where f ′ is the
derivative of f . It is clear that the range of f on a monotonic interval is decided
by the values of its two endpoints.

The reduction method has two main steps as follows. Calculate extreme val-
ues and solve univariate polynomials.

(1) Compute the extreme points of X1(s), s ∈ I and X2(t), t ∈ J and decompose
I, J into monotonic intervals related to X1(s) and X2(t) respectively. We
have I = ∪n

i=1Ii and J = ∪m
j=1Jj .

(2) Let M1 = max{X1(s′)|s′ is the endpoints of Ii,∀i} and N1 = min{X1(s′)|
s′ is the endpoints of Ii,∀i}, we define M2 and N2 for X2(t) over J in the
same way. We usually have [N1,M1] ∩ [N2,M2] 	= ∅. Otherwise, the two
curves have no intersection. Let M be the minimum of M1 and M2 and N
be the maximum of N1 and N2. A necessary condition that a point (s0, t0)
is the solution of equation X1(s) = X2(t) in B is X1(s0) ∈ [N,M] and
X2(t0) ∈ [N,M]. Therefore, the solutions of inequality N ≤ X1(s) ≤ M and
N ≤ X2(t) ≤ M can be seen as the boundary of reduced boxes.

To ensure the identification of the intersection between the two parametric
curves, it is necessary to continue the reduction process for Y1(s) and Y2(t) as
that have done for X1(s) and X2(t). Eventually, we obtain the reduced solution
candidate boxes for the intersection of the parametric curves.

Consequently, Algorithm 1, which compares the ranges of the x-coordinates
(or y-coordinates), can be summarized as follows. The correctness and termina-
tion of the algorithm are evident based on the preceding analysis.

Algorithm 1 C = Reduction (X1(s),X2(t), B):
Input: Two rational polynomials X1(s) and X2(t), and a box B = [a, b] × [c, d] ⊂ R

2.
Output: A box list C .
1: Decompose [a, b], [c, d] related to X1(s) and X2(t), compute Ni, Mi, N, M(i = 1, 2).
2: C = {}.
3: if [N1, M1] ∩ [N2, M2] �= ∅ then
4: Solve (X1(s) − N)(X1(s) − M)(s − a)(s − b) = 0 and denote its roots in [a, b] as

s1, . . . , sm. Solve (X2(t) − N)(X2(t) − M)(t − c)(t − d) = 0 and denote its roots
in [c, d] as t1, . . . , tn.

5: for each pair (i, j)(1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1), do
6: if X1([si, si+1]) ∩ X2([tj , tj+1]) �= ∅ then
7: Append Bij = [si, si+1] × [tj , tj+1] to C .
8: end if
9: end for

10: end if
11: Output C .

316 L. Tan et al.

For each box, denoted as B, of the output of Algorithm 1, we compute
Reduction(Y1(s), Y2(t), B), whose output is the candidate boxes of the inter-
section of the two parametric curves, as outlined in Algorithm 2.

Algorithm 2 L = Candidatebox(r1r1r1(s), r2r2r2(t), B):
Input: Two parametric curves F = (r1r1r1(s), r2r2r2(t)), a domain B = I × J and an error

tolerance ε.
Output: A candidate box list L .
1: Initialize B = {B} and L = {}.
2: repeat
3: Pop an element B′ from B.
4: C1 = Reduction (X1(s), X2(t), B

′).
5: Let C3 = {}.
6: for each element B′′ in C1 do
7: C2 = Reduction (Y1(s), Y2(t), B

′′).
8: Add all elements in C2 to C3.
9: end for

10: repeat
11: Pop an element B0 from C3.
12: if the size of one element B0 in C3 is less than ε then
13: Append B0 to L .
14: else
15: Split B0 into B1 and B2 along the longer side of B0 and add them into B.
16: end if
17: until C3 = ∅
18: until B = ∅
19: Output L .

In Algorithm 2, as the iteration and the subdivision continue, the boxes
shrink, and the procedure ultimately stops. The correctness and termination of
the algorithm are obvious.

2.2 Preconditioner

In Algorithm 1, when M1 is close to M2 and N1 is close to N2, the iteration and
subdivision may be slow. We can do a coordinate transformation to change the
situation. We present the following lemma to solve the problem.

Lemma 1. Let F = (r1r1r1(s), r2r2r2(t)) and B = I × J be a rectangle in the plane.
For any nonzero constant ω, we have a new system F1 = (r11r11r11(s), r21r21r21(t)) where
r11r11r11(s) = (X1(s) + ωY1(s), Y1(s)) and r21r21r21(t) = (X2(t) + ωY2(t), Y2(t)). Then F
and F1 have the same intersections in B.

Proof. The system {X1(s) = X2(t), Y1(s) = Y2(t)} are equivalent to {X1(s) +
ωY1(s) = X2(t) + ωY2(t), Y1(s) = Y2(t)}. So F and F1 have the same intersec-
tions in B.

An Algorithm for the Intersection Problem of Planar Parametric Curves 317

During each iteration, it is possible to select an appropriate constant ω to
improve the performance of Algorithms 1 and 2. A comprehensive analysis of
the constant ω will be provided in Sect. 3.2.

3 Uniqueness and Existence

This section focuses on determining the presence of a solution within a candidate
box. Leveraging the monotonicity of the curves during the computation of coor-
dinate ranges enables us to ascertain the existence and uniqueness of a simple
intersection point within a given box [10].

3.1 An Opposite Monotone System in a Box

In this subsection, we provide a criterion to ascertain the existence of at most one
intersection within the candidate box B = [s1, s2]× [t1, t2] for F = (r1r1r1(s), r2r2r2(t)).
Our method leverages the geometric properties of planar curves.

The following definitions introduce an opposite monotone system for para-
metric curves.

Definition 1. Let r1r1r1(s) = (X1(s), Y1(s)) be a plane curves defined by rational
parametrization and s ∈ I. We say r1r1r1(s) is monotonically increasing in I
if Sign(X ′

1(I)Y ′
1(I)) > 0. Similarly, we say r1r1r1(s) is monotonically decreasing

in I if Sign(X ′
1(I)Y ′

1(I)) < 0.

Definition 2. Let F = (r1r1r1(s), r2r2r2(t)) be two plane curves defined by rational
parametrization and s ∈ I, t ∈ J, B = I × J . We say F is an opposite mono-
tone system in B if one of r1r1r1(s) and r2r2r2(t) is monotonically increasing in B,
the other one is monotonically decreasing in B.

Lemma 2. If F = (r1r1r1(s), r2r2r2(t)) is an opposite monotone system in B, then the
system F has at most one intersection in B.

Proof. Suppose that an opposite monotone system F has at least two inter-
section points in B. Without losing the generality, we suppose that r1r1r1(s) is
monotonically increasing. Let (s1, t1), (s2, t2) be two intersection points such
that r1r1r1(s1) = r2r2r2(t1) and r1r1r1(s2) = r2r2r2(t2), s1 < s2, X1(s1) < X1(s2) and
Y1(s1) < Y1(s2). Therefore, X2(t1) < X2(t2) and Y2(t1) < Y2(t2). We have now
reached a contradiction with the fact that r2r2r2(t) is monotonically decreasing. The
lemma is proved. �

3.2 How to Transform a System to an Opposite Monotone System
in a Box

Sometimes F = (r1r1r1(s), r2r2r2(t)) is not an opposite monotone system in a box
even when it contains only one intersection. In order to make the system F
to be an opposite monotone system in a box B, we need to choose a proper

318 L. Tan et al.

constant ω by Lemma 1 to transform the system F into an equivalent system F1

such that F1 is an opposite system inside B, as shown in the following theorem.
Without losing the generality, we assume that Y ′

1(s) 	= 0 and Y ′
2(t) 	= 0 for any

(s, t) ∈ B. Otherwise, we use r11r11r11(s) = (X1(s), ωX1(s) + Y1(s)) and r21r21r21(t) =
(X2(t), ωX2(t) + Y2(t)).

Theorem 1. Suppose that F = (r1r1r1(s), r2r2r2(t)) is not an opposite monotone sys-
tem in the box B = I × J ,

[a1, b1] =

{
−X ′

1(s)

Y ′
1 (s)

| s ∈ I

}
, [a2, b2] =

{
−X ′

2(t)

Y ′
2 (t)

| t ∈ J

}
.

If [a1, b1] ∩ [a2, b2] = ∅, then we can get a proper constant ω such that the new
system F1 = (r11r11r11(s), r21r21r21(t)) where r11r11r11(s) = (X1(s) + ωY1(s), Y1(s)) and r21r21r21(t) =
(X2(t) + ωY2(t), Y2(t)) is an opposite monotone system. More specifically:

(1) If b1 < a2, then we choose ω =
a2 − b1

2
,

(2) If b2 < a1, then we choose ω =
a1 − b2

2
.

Proof. For ω =
a2 − b1

2
, let r1r1r1(s) and r2r2r2(t) be both monotonically increas-

ing in B = I × J and b1 < a2. We have Sign(X ′
1(I)Y ′

1(I)) > 0 and
Sign(X ′

2(J)Y ′
2(J)) > 0.

If Y ′
1(I) > 0 and Y ′

2(J) > 0, then X ′
1(I) + ωY ′

1(I) > 0 and X ′
2(J) +

ωY ′
2(J) < 0. By Definition 2, the new system F1 = (r11r11r11(s), r21r21r21(t)) where

r11r11r11(s) = (X1(s) + ω Y1(s), Y1(s)) and r21r21r21(t) = (X2(t) + ωY2(t)), Y2(t)) is an
opposite system (Fig .1).

If Y ′
1(I) > 0 and Y ′

2(J) < 0, then X ′
1(I)+ωY ′

1(I) > 0 and X ′
2(J)+ωY ′

2(J) > 0.
So the new system F1 = (r11r11r11(s), r21r21r21(t)) is an opposite system;

If Y ′
1(I) < 0 and Y ′

2(J) > 0, then X ′
1(I)+ωY ′

1(I) < 0 and X ′
2(J)+ωY ′

2(J) < 0.
So the new system F1 = (r11r11r11(s), r21r21r21(t)) is an opposite system;

If Y ′
1(I) < 0 and Y ′

2(J) < 0, then X ′
1(I)+ωY ′

1(I) < 0 and X ′
2(J)+ωY ′

2(J) > 0.
So the new system F1 = (r11r11r11(s), r21r21r21(t)) is an opposite system.

Suppose that r1r1r1(s) and r2r2r2(t) are both monotonically increasing in B and
b2 < a2. The same conclusion can be obtained. This is the same as r1r1r1(s) and
r2r2r2(t) which are both monotonically decreasing in B. �
However, when the two curves intersect at or near tangency, it is not possi-
ble to transform the curves r1r1r1(s) and r2r2r2(t) into an opposite monotone system.
The analysis of this particular case will be presented in Sect. 4.3.

Fig. 1. Perform an affine transformation.

An Algorithm for the Intersection Problem of Planar Parametric Curves 319

For a point p ∈ R
2 and a positive number δ, we define a set of boxes as

B(p, δ) = {B|B is a box and p ∈ B, w(B) < δ} where w(B) = max{the length
of B,the width of B }. Then, we have the following lemma:

Lemma 3. Let F = (r1r1r1(s), r2r2r2(t)) and p∗ a simple zero of F . Then, there exists
δ > 0 such that for any B ∈ B(p∗, δ), there is a constant ω such that the
new system F1 = (r11r11r11(s), r21r21r21(t)) where r11r11r11(s) = (X1(s) + ωY1(s), Y1(s)) and
r21r21r21(t) = (X2(t) + ωY2(t)), Y2(t)) is an opposite monotone system.

Proof. Note that JF (p) is continuous function and JF (p∗) 	= 0. There exists
δ > 0 such that JF (p) 	= 0 for any p ∈ B = I × J and B ∈ B(p∗, δ). Thus, we
have [a1, b1] ∩ [a2, b2] = ∅. By Theorem 1, there is a constant ω such that the
new system F1 = (r11r11r11(s), r21r21r21(t)) is an opposite monotone system. �

Remark: If p∗ is a tangent intersection of two curves, then for any box B
containing p∗ , we can not transform the system F into an opposite monotone
system in B since 0 = det(JF (p∗)) ∈ det(JF (B)). But for each simple root p∗ of
F , we can always find a small box B containing p∗ and a constant ω s.t. F1 is
an opposite monotone system in B.

3.3 How to Check the Existence

We will demonstrate the method for verifying the existence of an intersection
within a box for an opposite system. To achieve this, we employ the findings pre-
sented in [10,11]. Consequently, it becomes necessary to convert the parametric
system into an implicit system.

Initially, we introduce two definitions for the conversion of an opposite (para-
metric) system into an opposite (implicit) system. The subsequent definitions are
adaptations derived from the relevant definitions in [10,11].

Definition 3. Let f1 = X1(s) − X2(t) and s ∈ I, t ∈ J, B = I × J . We say f1

is monotonically increasing in B if Sign
(

∂f1
∂s (B) ∂f1

∂t (B)
)

< 0. Similarly, f1

is monotonically decreasing in B if Sign
(

∂f1
∂s (B) ∂f1

∂t (B)
)

> 0.

Definition 4. Let G = (f1, f2), where f1 = X1(s) − X2(t), f2 = Y1(s) − Y2(t)
and B = I × J . We say G is an opposite monotone system in B if one of
f1 and f2 is monotonically increasing in B, and the other one is monotonically
decreasing in B.

The subsequent lemma demonstrates that if a parametric opposite system
forms an opposite system within B, then the corresponding implicit system also
constitutes an opposite system within B.

Lemma 4. If F = (r1r1r1(s), r2r2r2(t)) forms an opposite monotone system within
B = I × J , then G = (f1, f2) also constitutes an opposite monotone system
within B.

320 L. Tan et al.

Proof. We can see that ∂f1
∂s = X ′

1(s),
∂f1
∂t = −X ′

2(t),
∂f2
∂s = Y ′

1(s) and ∂f2
∂t =

−Y ′
2(t). The system F = (r1r1r1(s), r2r2r2(t)) is an opposite monotone system in B.

There are eight cases:
Case (1) if X ′

1(I)> 0, Y ′
1(I)> 0 and X ′

2(J)< 0, Y ′
2(J)< 0, we have f1 is mono-

tonically decreasing in B and f2 is monotonically increasing in B;
Case (2) if X ′

1(I) > 0, Y ′
1(I) > 0 and X ′

2(J) > 0, Y ′
2(J) < 0, we have f1 is

monotonically increasing in B and f2 is monotonically decreasing in B. Other
cases are symmetrical.

Therefore, G = (f1, f2) is an opposite monotone system in B. See Fig. 2. �

Fig. 2. If F is an opposite monotone system, so is G .eps

A method exists to verify the existence of a root for an opposite monotone
system G = (f1, f2) within the interval B = [s1, s2]× [t1, t2]. Further details can
be found in Sects. 3.3 and 3.4 of [10]. Here, we provide a concise overview.

Let G = (f1, f2) be an opposite monotone system in B and V (B) = {
(s1, t1), (s1, t2), (s2, t1), (s2, t2) }. We assume that S1 ∩ ∂B = {k1, k2} and S2 ∩
∂B = {k′

1, k
′
2} where Si is the set defined by fi = 0 in B for i = 1, 2 and

∂B = {(x, y)|x = s1 or x = s2 or y = t1 or y = t2}.

Lemma 5 ([10] Lemma 3.12). Let G = (f1, f2) be an opposite monotone sys-
tem in B, where f1, f2 are rational functions. Assume that S1 ∩ ∂B = {k1, k2},
we have:

(1) If f2(k1)f2(k2) ≤ 0, G = 0 has a unique root in B.
(2) If f2(k1)f2(k2) > 0, G = 0 has no root in B.

We can compute Sign(f2(k1)f2(k2)) to decide whether they have an intersec-
tion. Suppose that f intersects with the top and bottom of the box. If the equa-
tions X1(s)−X2(t1) = 0 and X1(s)−X2(t2) = 0 have solutions in [s1, s2], then we
denote them as α and β. Notice that there are at most one solution for the equa-
tions in [s1, s2]. We can get k1 = (α, t1) and k2 = (β, t2). Note that the solutions
may be on other sides and we can deal with them similarly. If we can exactly com-
pute the points k1, k2, we can easily know that G has a unique root or no root in
B by Lemma 5. However, it is unnecessary. Notice that one of f1 and f2 is mono-
tonically increasing and the other is monotonical decreasing in B, we need only
to determine the position of vertex of B. By computing the Sign(f1, V (B)) and
Sign(f2, V (B)) where Sign(f, V (B))={Sign(f(p))|any p ∈ V (B)}, we immedi-
ately know which sides of I these points k1, k2, k

′
1 and k′

2 lie on. We can arbitrarily

An Algorithm for the Intersection Problem of Planar Parametric Curves 321

take a point h on the side which k is on, we know that Sign(f(h)) = Sign(f(k)).
By this method, we can easily know Sign(f2(k1), f2(k2)). The bad case is that
k2, k′

2 are on the same side and we can not separate them. This case happens
when k1 = k′

2 or ||k2 − k′
2|| is less than the given bisection precision. As we have

done in [10], we may need to combine two boxes into one box and recheck the
new box again.

4 Some Singular Cases

As mentioned previously, the aforementioned method is applicable only to reg-
ular intersections and may not work for certain singular cases. In this section,
we will address these singular cases, which include cusp points, self-intersection
points formed by a single parametric curve, and the tangent case formed by two
parametric curves. Detailed definitions and relevant information regarding cusps
can be found in [5,6,14]. We will also revisit the concepts of real cusps and real
multiple points, where self-intersections are considered as multiple points.

Lemma 6 ([19] Lemma 4.1). The set of parameters corresponding to real
cusps is

TC = {t ∈ R\TC

p : (t, t) ∈ S},

the set of parameters corresponding to real multiple points is

TM = {t ∈ R\TC

p : ∃s 	= t, s ∈ R such that (s, t) ∈ S},

where TC
p = {t ∈ C :

∏
i qi(t) = 0} and S = {(s, t) ∈ C

2 : hi = 0 for all i}.
The system of bivariate polynomial are

hi =
pi(s)qi(t) − qi(s)pi(t)

s − t
for a curve φ(t) =

(
p1(t)
q1(t)

,
p2(t)
q2(t)

)
and i = 1, 2.

Let F = (r1r1r1(s), r2r2r2(t)), p = (s0, t0) ∈ B a zero of F , that is, r1r1r1(s0) = r2r2r2(t0).

If det(JF (p)) = 0 where JF =
(

X ′
1(s) Y ′

1(s)
X ′

2(t) Y ′
2(t)

)
, we say p is either a cusp or a

tangent point of F . Using Lemma 6 to determine cusps and self-intersections,
and using the Jacobian matrix to determine cusps and tangent points.

There are certain singular conditional cases. In cases 1(a) and 1(b) of Fig. 3,
the intersection of two curves is on or near a cusp point of one curve. In cases
2(a) and 2(b) of Fig. 3, they are self-intersection case or near self-intersection
case. In cases 3(a) and 3(b) of Fig. 3, they are tangent case or near tangent case.
There are some mixed situations for these cases. We will discuss and show how
to determine them. If t0 ∈ V(I1), then there exits a s0 such that f1(s0, t0) =
f2(s0, t0) = 0. We say that the partial solution t0 ∈ V(I1) can be extended to a
solution (s0, t0) ∈ V(I).

322 L. Tan et al.

Fig. 3. cusp case 1(a), nearly cusp case 1(b), self-intersection case 2(a) and nearly
self-intersection case 2(b), tangential case 3(a) and nearly tangential case 3(b).

4.1 Cusp Cases

In the following discussion, we will assume that r1r1r1(s) = (X1(s), Y1(s)) exhibits
a (near) cusp point, as depicted in Fig. 1(a) and 1(b) of Fig. 3.

A ccthe condition where both derivatives X ′
1(s) and Y ′

1(s) are zero, and there
is a change in the sign of the directional derivative along the tangent direction.
It should be noted that in certain situations, the requirement for the directional
derivative to change sign may be omitted. We will now investigate the following
system. {

r1r1r1(s) = r2r2r2(t),
TC(r1r1r1) = 0.

(4)

If the system has a real root within the specified box, it indicates that the two
curves intersect at a single point, as depicted in Fig. 1(a) of Fig. 3. However, if
the system does not possess a real root in the box, we can employ the method
outlined in Sect. 3 to certify the existence of roots, if any. It is worth noting that
solving the system (4) is relatively straightforward, as it only requires solving
univariate polynomials.

4.2 Self-intersection Cases

Let us consider the scenario where r1r1r1(s) exhibits a (near) self-intersection point,
as depicted in Fig. 2(a) or 2(b) of Fig. 3.

In this scenario, we will obtain two boxes, namely B1 = [s1, s2] × [t1, t2]
and B2 = [s′

1, s
′
2] × [t′1, t

′
2], such that the point (r1r1r1(p1), r2r2r2(q1)) is close to

(r1r1r1(p2), r2r2r2(q2)). Here, p1, p2, q1, and q2 represent the midpoints of the intervals
I1, I2, J1, and J2 respectively, and we have the condition [t1, t2] ∩ [t′1, t

′
2] 	= ∅. It

is assumed that s1 < s2 < s′
1 < s′

2.

An Algorithm for the Intersection Problem of Planar Parametric Curves 323

Based on the above analysis, We determine whether the system⎧⎪⎨
⎪⎩

r1r1r1(s) = r1r1r1(h),
r1r1r1(s) = r2r2r2(t),
S1 < s − h < S2.

(5)

has a real solution, where S1 = s′
1 − s2, S2 = s′

2 − s1. Here we can use New-
ton’s method for over-determined systems to compute its solution [12]. Sup-
pose that (5) have a real solution (s0, t0, h0). We know that (X1(s0), Y1(s0)) =
(X1(h0), Y1(h0)) is a self-intersection point of r1r1r1(s) and r1r1r1(s0) = r1r1r1(h0) = r2r2r2(t0),
which is exactly the self-intersection point of r1(s) as shown in 1(a) of Fig. 3.
Otherwise, the two curves have two different intersection points in B1 and B2

as illustrated in 2(b) of Fig. 3. We also can solve the system{
r1r1r1(s) = r2r2r2(t),
TM (r1r1r1) = 0.

(6)

One can also compute the real roots of (5) and (6) by symbolic methods such
as the Gröbner bases method [7], the Ritt-Wu characteristic set method [15] and
so on.

Example 1. In the region B = [0, 1]×[0, 1], let us consider the intersection points
of two parametric curves

r1(s) :=
(

43 − 604s + 3104s2 − 5056s3 + 2560s4

9 − 128s + 640s2 − 1024s3 + 512s4
,

151 − 2076s + 10268s2 − 16384s3 + 8194s4

63 − 896s + 4480s2 − 7168s3 + 3584s4

)
,

r2(t) :=
(

17500 + 43123t − 28115t2

5000
,
348 + 35t

140

)
.

The two parametric curves have a special intersection point at (X0, Y0) =
(5, 71/28) where (s1, t1) = ((2 +

√
3)/4, 1/5) and (s2, t2) = ((2 − √

3)/4, 1/5).
It is the self-intersection case of r1(s), as illustrated in Fig. 4. We can apply
Algorithm 2 and choose ε = 10−10 to get four boxes:

B1 = [0.0669872981077, 0.0669872981078] × [0.1999999999994, 0.2000000000013],

B2 = [0.9330127018921, 0.9330127018923] × [0.1999999999987, 0.2000000000006],

B3 = [0.1803473387387, 0.1803473387389] × [0.4906576541991, 0.4906576542049],

B4 = [0.7976830053688, 0.7976830053688] × [0.0450535239848, 0.0450535239857].

For this example, the solutions show that B1 = I1 × J1 and B2 = I2 × J2

are close to the self-intersection of r1r1r1(s) as shown in the middle points of Fig. 4.
Since J1 ∩ J2 	= ∅. We use MAPLE to solve the Eq. (5). Let S1=0.8660254037
and S2=0.8660254038. The solution is as follows

[s = 0.9330127019, t = 0.2000000000, h = 0.06698729811].

This illustrates that B1 and B2 represent the same point.

324 L. Tan et al.

Fig. 4. Intersection in self-intersection case.

4.3 Tangential Cases

In this case, the method proposed in Sect. 3 fails to determine whether the box
contains one intersection point even if the the size of the region is smaller than
the given error tolerance. If the proper ω in Theorem 1 cannot be found, it implies
that r1r1r1(s) and r2r2r2(t) may possess (near) tangent intersection points within the
box B, as depicted in 3(a) or 3(b) of Fig. 3.

If two curves are tangent, then the tangent direction is the same at the
tangent point. Let us consider the following system.

{
r1r1r1(s) = r2r2r2(t),
X ′

1(s) : Y ′
1(s) = X ′

2(t) : Y ′
2(t).

(7)

If the system (7) possesses a real root within the box, it indicates that the two
curves have only one intersection point, as depicted in 3(a) of Fig. 3. In such cases,
Newton’s method for over-determined systems [12] can be utilized to compute
the solution. Alternatively, if the system does not yield a real root, we can certify
the solutions using the method outlined in Sect. 3.

There are other ways to deal with it. Outputting the result when the box
is smaller than the specified error tolerance is one technique to deal with it.
In other words there is no distinction between the two cases. But if we want
to do this perfectly, we can utilize symbolic methods such as the Gröbner basis
method [7], the Ritt-Wu characteristic set method [15] and the method in [11].

4.4 Mixed Cases

In fact, the singular cases may be mixed one, that is, several singular cases mix
at one point. For example, a cusp point of r1r1r1(s) meets a self-intersection point of
r2r2r2(t). And there may exist more complicated cases. For mixed cases, we can deal
with them case by case, that is, we check them separately using the methods
discussed above. We will not discuss them in more details.

5 Algorithm

This section summarizes our algorithm to rigorously compute all the intersection
points of two parametric curves in a box.

An Algorithm for the Intersection Problem of Planar Parametric Curves 325

Consider two rational parametric curves r1r1r1(s) and r2r2r2(t), and let B = I×J be
a rectangular region in the plane. Our objective is to compute all the intersection
points of r1r1r1(s) and r2r2r2(t) within B, while ensuring a specified tolerance level.
The algorithm aims to provide a set of bounding boxes, each with a size smaller
than a given error tolerance ε > 0, containing exactly one intersection point.
However, it is important to note that in cases where the coefficients of the two
curves are not exact, the solutions of singular cases may not be precise.

The algorithm encompasses three main steps:
Reduction: Initially, Algorithm 2 is employed to obtain candidate boxes

within the specified error tolerance. This iterative and subdividing procedure
progressively reduces the size of the boxes until termination.

Existence and uniqueness checking: This step addresses the uniqueness and
existence of the system within each box using an opposite monotone approach.
If necessary, an affine transformation is performed. The correctness of this step
is ensured by Theorem 1, Lemma 3, and Lemma 5.

Singular case handling: If the opposite monotone method fails to conclusively
determine the existence of a solution within a box, and the box size is smaller
than the specified error tolerance, methods specifically designed for singular cases
are employed. These methods compute the boxes and output related solutions.

6 Experiments

The aforementioned algorithm has been implemented in MATLAB on a com-
puter running Windows 11, equipped with a 12th Gen Intel i7-12700 CPU and
16 GB RAM. Currently, our implementation does not incorporate parallel com-
puting; however, we plan to explore this aspect as part of our future work.

Let F = (r1r1r1(s), r2r2r2(t)) be two plane curves defined by rational parametrization
and deg(rrri), coeffi denote the maximal degree, the maximal absolute value of
coefficients among xi(s), yi(s) and wi(s) for i = 1, 2. We find the intersections
of the two curves in B = [0, 1] × [0, 1]. The termination precision ε = 10−6. We
test some examples which are generated as below. The system 1, 2, 3, 6, 7, 8 are
randomly generated and the system 4 is two rational Bézier curves with degree
10. The system 5 is two rational Bézier curves where one of them is with degree
30 and another one is with degree 15. The results are in Table 1.

We compare the calculation times of our approach with those of Birootiso-
lation (BRI) [10] and IRIT [18]. They are based on solving general bivariate
polynomial systems with numerical methods. BRI is an algorithm for isolating
real roots of a bivariate polynomial system implemented in Maple. This algo-
rithm employs the orthogonal monotone system to check the uniqueness and the
existence of solutions. IRIT is a matlab interface to the multivariate polynomial
solver. This solver is for real roots of sets of non-linear polynomial equations.

We build various systems at random and the number of xi(s), yi(s) and wi(s)
terms equal to deg(ririri)+1 for i = 1, 2, and therefore the equations are dense. We
determine the average time, and isolate all of the termination precision ε = 10−6.
Table 2 shows the outcomes. All the methods can find out the solutions.

326 L. Tan et al.

Table 1. Comparison for systems with different sizes.

Example deg(rrr1) deg(rrr2) coeff1 coeff2 Times

system1 2 2 5 5 0.0030 s

system2 3 4 19 23 0.0013 s

system3 8 9 320 160 0.0014 s

system4 10 10 26026 336 0.0156 s

system5 30 15 2.2×1014 5.2×104 0.3006 s

system6 200 200 100 100 0.9285 s

system7 500 500 5000 5000 159.5788 s

system8 1000 1000 5000 5000 224.5351 s

In Table 2, “\” means it is unable to give solutions within 5 h. One can
find that our method faster than BRI and IRIT, and especially for the sys-
tems with high degrees. The main benefit of our method is that it simply
requires solving univariate polynomials. As metioned in their paper, the BRI
method is good at system with sparse terms and high degrees for implicit equa-
tions. But our example are with dense terms, the BRI method is unable to
handle degrees higher than 50 in a fixed time since there are so many terms.
IRIT is based on Bézier clipping with some improvements [2,13,17,38] and it
is difficult to handle high degrees. The examples of Table 1 and Table 2 can be
found on the website https://github.com/tanling2021/example-of-plane-curves-
defined-by-rational-parametrization.

Table 2. Comparison with other methods (i = 1, 2).

deg(rrri) coeffi BRI IRIT our method

2 5 0.9070 s 0.0005 s 0.0030 s

20 100 3.2500 s 0.0033 s 0.0095 s

50 100 \ 0.2161 s 0.2448 s

100 500 \ 8.3483 s 1.1517 s

200 500 \ 61.2055 s 1.3490 s

300 500 \ \ 23.1671 s

500 5000 \ \ 159.5788 s

1000 5000 \ \ 224.5351 s

We constructed the following example (see Fig. 5) to demonstrate the stability
of our algorithm. This example includes complex cases where the intersection
points involve nearly self-intersections and tangent points. We took 0.0278s to
find out all 18 intersections in the box [−2, 2] × [−2, 2].

https://github.com/tanling2021/example-of-plane-curves-defined-by-rational-parametrization.
https://github.com/tanling2021/example-of-plane-curves-defined-by-rational-parametrization.

An Algorithm for the Intersection Problem of Planar Parametric Curves 327

Fig. 5. The intersection of the two curves (s8 − 8s6 +20s4 − 16s2, s7 − 7s5 +14s3 − 7s)
and

(
t8 − 2364805

298116
t6 + 704477

99372
t4 − 174750

8281
t2 + 302500

74529
, t7 − 2677

400
t5 + 512469

40000
t3 − 210681

40000
t
)
.

7 Conclusion

In this paper, based on the work of [10], we propose a novel numerical app-
roach for computing the intersections of two plane curves defined by rational
parametrization. The simple intersection of our method is certified. We also dis-
cuss how to deal with singular intersections. The experiments shows that our
method is efficient and stable.

References

1. Aberth, O.: Introduction to Precise Numerical Methods. Elsevier, Amsterdam
(2007)

2. Bartoň, M., Elber, G., Hanniel, I.: Topologically guaranteed univariate solutions
of underconstrained polynomial systems via no-loop and single-component tests.
In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, pp.
207–212 (2010)

3. Bartoň, M., Jüttler, B.: Computing roots of polynomials by quadratic clipping.
Comput. Aided Geom. Des. 24(3), 125–141 (2007)

4. Berberich, E., Emeliyanenko, P., Sagraloff, M.: An elimination method for solv-
ing bivariate polynomial systems: eliminating the usual drawbacks. In: 2011 pro-
ceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 35–47. SIAM (2011)

5. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves: Translated by John Stillwell.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-0348-0493-6

6. Bruce, J.W., Bruce, J.W., Giblin, P.: Curves and Singularities: A Geometrical
Introduction to Singularity Theory. Cambridge University Press, Cambridge (1992)

7. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassen-
rings nach einem nulldimensionalen polynomideal. Universitat Innsbruck, Austria,
Ph.D. thesis (1965)

8. Cheng, J.S., Gao, X.S., Guo, L.: Root isolation of zero-dimensional polynomial
systems with linear univariate representation. J. Symb. Comput. 47(7), 843–858
(2012)

https://doi.org/10.1007/978-3-0348-0493-6

328 L. Tan et al.

9. Cheng, J.S., Gao, X.S., Li, J.: Root isolation for bivariate polynomial systems with
local generic position method. In: Proceedings of the 2009 International Symposium
on Symbolic and Algebraic Computation, pp. 103–110 (2009)

10. Cheng, J.S., Wen, J.: Certified numerical real root isolation for bivariate polynomial
systems. In: Proceedings of the 2019 on International Symposium on Symbolic and
Algebraic Computation, pp. 90–97 (2019)

11. Cheng, J.S., Wen, J., Zhang, B.: Certified numerical real root isolation for bivariate
nonlinear systems. J. Symb. Comput. 114, 149–171 (2023)

12. Dedieu, J., Shub, M.: Newton’s method for overdetermined systems of equations.
Math. Comput. 69(231), 1099–1115 (2000)

13. Elber, G., Kim, M.S.: Geometric constraint solver using multivariate rational spline
functions. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and
Applications, pp. 1–10 (2001)

14. Fischer, G.: Plane Algebraic Curves, vol. 15. American Mathematical Society
(2001)

15. Gallo, G., Mishra, B.: Efficient algorithms and bounds for Wu-Ritt characteristic
sets. In: Mora, T., Traverso, C. (eds.) Effective Methods in Algebraic Geometry.
Progress in Mathematics, vol. 94, pp. 119–142. Springer, Boston (1990). https://
doi.org/10.1007/978-1-4612-0441-1 8

16. Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bern-
stein expansion. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic
Algebraic Methods and Verification Methods, pp. 87–97. Springer, Vienna (2001).
https://doi.org/10.1007/978-3-7091-6280-4 9

17. Hanniel, I., Elber, G.: Subdivision termination criteria in subdivision multivariate
solvers. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 115–
128. Springer, Heidelberg (2006). https://doi.org/10.1007/11802914 9

18. Jonathan, M., Ron, Z.: The IRIT multivariate solver-matlab interface (2014).
http://www.cs.technion.ac.il/∼irit/matlab/

19. Katsamaki, C., Rouillier, F., Tsigaridas, E., Zafeirakopoulos, Z.: On the geometry
and the topology of parametric curves. In: Proceedings of the 45th International
Symposium on Symbolic and Algebraic Computation, ISSAC 2020, pp. 281–288.
Association for Computing Machinery, New York (2020)

20. Krawczyk, R.: Newton-algorithmen zur bestimmung von nullstellen mit fehler-
schranken. Computing 4(3), 187–201 (1969)

21. Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer gener-
ation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal.
Mach. Intell. 1, 35–46 (1980)

22. Lien, J.-M., Sharma, V., Vegter, G., Yap, C.: Isotopic arrangement of simple curves:
an exact numerical approach based on subdivision. In: Hong, H., Yap, C. (eds.)
ICMS 2014. LNCS, vol. 8592, pp. 277–282. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44199-2 43

23. Ma, Y.L., Hewitt, W.T.: Point inversion and projection for NURBS curve and
surface: control polygon approach. Comput. Aided Geom. Des. 20(2), 79–99 (2003)

24. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic
curves I: simple intersections. ACM Trans. Graph. (TOG) 13(1), 73–100 (1994)

25. Miranda, C.: Un’osservazione su un teorema di Brouwer. Consiglio Nazionale delle
Ricerche (1940)

26. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer.
Anal. 14(4), 611–615 (1977)

27. Mørken, K., Reimers, M., Schulz, C.: Computing intersections of planar spline
curves using knot insertion. Comput. Aided Geom. Des. 26(3), 351–366 (2009)

https://doi.org/10.1007/978-1-4612-0441-1_8
https://doi.org/10.1007/978-1-4612-0441-1_8
https://doi.org/10.1007/978-3-7091-6280-4_9
https://doi.org/10.1007/11802914_9
http://www.cs.technion.ac.il/~irit/matlab/
https://doi.org/10.1007/978-3-662-44199-2_43
https://doi.org/10.1007/978-3-662-44199-2_43

An Algorithm for the Intersection Problem of Planar Parametric Curves 329

28. Rouillier, F.: Solving zero-dimensional systems through the rational univariate rep-
resentation. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999)

29. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J.
Comput. Appl. Math. 162(1), 33–50 (2004)

30. Rump, S.M.: Solving algebraic problems with high accuracy. In: A New Approach
to Scientific Computation, pp. 51–120. Elsevier (1983)

31. Schulz, C.: Bézier clipping is quadratically convergent. Comput. Aided Geom. Des.
26(1), 61–74 (2009)

32. Sederberg, T.W.: Planar piecewise algebraic curves. Comput. Aided Geom. Des.
1(3), 241–255 (1984)

33. Sederberg, T.W., Anderson, D.C., Goldman, R.N.: Implicit representation of para-
metric curves and surfaces. Comput. Vision Graph. Image Process. 28(1), 72–84
(1984)

34. Sederberg, T.W., Chen, F.: Implicitization using moving curves and surfaces. In:
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques, pp. 301–308 (1995)

35. Sederberg, T.W., Goldman, R.N.: Algebraic geometry for computer-aided geomet-
ric design. IEEE Comput. Graphics Appl. 6(6), 52–59 (1986)

36. Sederberg, T.W., White, S.C., Zundel, A.K.: Fat arcs: a bounding region with
cubic convergence. Comput. Aided Geom. Des. 6(3), 205–218 (1989)

37. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E.,
Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in
Pure, Applied, and Computational Mathematics, pp. 185–196. Springer, New York
(1986). https://doi.org/10.1007/978-1-4612-4984-9 13

38. van Sosin, B., Elber, G.: Solving piecewise polynomial constraint systems with
decomposition and a subdivision-based solver. Comput. Aided Des. 90, 37–47
(2017)

39. Wilkinson, J.H.: The evaluation of the zeros of ill-conditioned polynomials. Part I.
Numer. Math. 1(1), 150–166 (1959)

https://doi.org/10.1007/978-1-4612-4984-9_13

A Symbolic-Numeric Method for Solving
the Poisson Equation in Polar

Coordinates

Evgenii V. Vorozhtsov(B)

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch
of the Russian Academy of Sciences, Novosibirsk 630090, Russia

vorozh@itam.nsc.ru

Abstract. A new version of the method of collocations and least squares
(CLS) is proposed for the numerical solution of the Poisson equation in
polar coordinates on uniform and non-uniform grids. To increase the
accuracy of the numerical solution the degree of the local approximat-
ing polynomial has been increased by one in comparison with the ear-
lier second-degree version of the CLS method for solving the Poisson
equation. By introducing the general curvilinear coordinates the origi-
nal Poisson equation has been reduced to the Beltrami equation. The
method has been verified on three test problems having the exact ana-
lytic solutions. The examples of numerical computations show that if the
singularity – the radial coordinate origin lies outside the computational
region then the proposed method produces the solution errors which are
two orders of magnitude less than in the case of the earlier CLS method.
If the computational region contains the singularity then the solution
errors are generally two and three orders of magnitude less than in the
case of a second-degree approximating polynomial at the same number
of grid nodes.

Keywords: Poisson equation · Polar coordinates · The method of
collocations and least squares

1 Introduction

Mathematical modeling of a number of physical processes is based on solving
the Poisson equation. In particular, this equation describes the behavior of the
electrostatic potential [11] and the stationary temperature field in the presence of
heat sources [20]. For numerical simulation of viscous incompressible fluid flows
in a circular pipe or in an annular gap between two concentric pipes, the Navier–
Stokes equations are often used in cylindrical coordinates θ, r, z, where θ is the
azimuthal coordinate, r is the polar radius, and z is the coordinate measured

The research was carried out within the state assignment of Ministry of Science and
Higher Education of the Russian Federation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 330–349, 2023.
https://doi.org/10.1007/978-3-031-41724-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_18&domain=pdf
http://orcid.org/0000-0003-2753-8399
https://doi.org/10.1007/978-3-031-41724-5_18

A Symbolic-Numeric Method for Solving the Poisson Equation 331

along the normal to the plane (θ, r). However, when numerically solving these
equations, a difficulty arises due to the fact that in these equations, there are
singularities in the form of factors 1

r both in the continuity equation and in the
momentum equations [13]. In addition, in all momentum equations, there is also
a singularity having the form of the factor 1

r2 .
A singularity of the form 1

r is present in all equations of the Prandtl–Reuss
model of the flow of elastic-plastic materials in cylindrical coordinates [12]. In
[15], radiation plasma dynamics equations were solved in the variables r, t, where
r is the radial coordinate and t is the time. The right-hand sides of these equa-
tions contain a singularity of the form 1

r .
The existing numerical methods for solving the Poisson equation in areas with

circular boundaries (in the two-dimensional case) and in areas with cylindrical
boundaries (in the three-dimensional case) can be divided into two groups.

The first group includes methods that allow solving the Poisson equations in
disc-shaped or annular regions directly in Cartesian rectangular coordinates.

In [4], a difference scheme was presented for solving the Poisson equation
in irregular regions on an adaptive rectangular grid refining near the region
boundary. The refinement criterion was based on estimating the proximity to
an irregular boundary, so that the cells of the smallest size are located at the
boundary. In order to store spatial discretization data, a data structure in the
octree was used in [21], and the authors of [4] used data structures in the quadtree
and octree form. In [4], the disadvantage of using data structures in the quadtree
and octree form was indicated: some CPU time expenses are needed to traverse
the tree from its root to the desired node of the graph.

Paper [28] presents a collocation and least squares method for solving a two-
dimensional Poisson equation with discontinuous coefficients on a square com-
putational grid. In this method, the grid cells are divided into independent and
non-independent cells. An independent cell is a cell that is crossed by a curved
boundary, but the cell center remains inside the computational region. It is pro-
posed to attach a non-independent cell to neighboring independent cells. Thus,
unlike [4], the method [28] does not refine the grid near the region boundary.

The second group of the works devoted to the development of the numerical
techniques for solving the Poisson equation in the discs or annuli is constituted
by the works in which the Poisson equation in polar and cylindrical coordinates
is solved in the two- and three-dimensional cases, respectively. The convenience
of using the above curvilinear coordinates consists of the fact that the spatial
computational region becomes a rectangle in the two-dimensional case and a
parallelepiped in the three-dimensional case.

The two-dimensional Poisson equation in polar coordinates was approxi-
mated in the work [34] by a finite difference scheme having a centered three-point
stencil along each of the both polar coordinates. It was proved theoretically in
[25] that the approximation order of this scheme along the polar radius r is
O(h2

r

r), where r is the polar radius and hr is the size of a cell of the rectangular
grid in the (θ, r) plane, where θ is the circumferential coordinate. Let us take a
cell one of faces of which coincides with the line r = 0. If we now take in this

332 E. V. Vorozhtsov

cell a point with r = Chr, where 0 < C < 1, then it is clear that in such a cell,
the approximation order of the difference scheme drops to the first order.

The efficient spectral-difference methods were developed later for solving the
Poisson equations in polar and cylindrical coordinates by using the discrete fast
Fourier transform. In the two-dimensional case, one obtains for the coefficients
of the Fourier expansion a system of linear algebraic equations (SLAE), which
is solved efficiently by the Thomas method, and in the three-dimensional case,
the arising SLAE is solved by the matrix factorization technique. A second-order
difference scheme was constructed in [17] for the Fourier coefficients.

A compact fourth-order difference scheme was proposed in [16] for the Fourier
coefficients in the case of solving the Poisson equation in polar coordinates. The
results of numerical computations presented therein show that the approxima-
tion order of the proposed scheme drops to the third order when the computa-
tional region includes the line r = 0. One should note a shortcoming of spectral-
difference methods for solving the Poisson equations in polar and cylindrical
coordinates: the grid along the circumferential coordinate must be uniform. The
highest efficiency of the discrete fast Fourier transform is reached only in the
case when the number of nodes Nθ along the circumferential coordinate has the
form Nθ = 2N + 1, where N is a positive integer, N > 1.

As is known, at an adequate generation and use of non-uniform grids one can
increase significantly the numerical solution accuracy in comparison with the use
of a uniform grid with the same number of nodes [1,14,35]. In this connection, a
number of numerical techniques were developed for solving the Poisson equation
in polar coordinates on non-uniform grid [2,23].

In the work [39], the incompressible Navier–Stokes equations were solved in
polar coordinates in the streamfunction-vorticity (ψ − ω) formulation. The left-
hand sides of the equations for ω and ψ coincide with the Laplace operator in
polar coordinates. The elimination of ω gives rise to a fourth order partial dif-
ferential equation (PDE) in streamfunction. This equation contains the singular
factors of the forms 1

rk , k = 1, 2, 3, 4. To avoid these singularities the authors of
[39] multiplied the both sides of the above PDE by r4.

The collocation methods for the numerical solution of boundary-value prob-
lems both for the ordinary differential equations (ODEs) and PDEs date back to
the early 1970es [3,24]. The collocation method was used in [24] for the numerical
solution of ODEs. Cavendish [3] dealt with the collocation methods for elliptic
and parabolic boundary value problems.

A shortcoming of pure collocation methods is as follows: the matrix AX = b
of the system of linear algebraic equations, which is to be solved, is ill-conditioned
[18,19]. A widespread technique for reducing the condition number of the matrix
A is the use of the preconditioners and postconditioners; the overview of the
relevant literature may be found in [19].

There are in the literature the theoretical results on convergence of the col-
location methods both for the ODEs and PDEs. In particular, collocation with
piecewise polynomial functions was developed in [24] as a method for solving
two-point boundary value problems for ODEs and convergence was proved for a

A Symbolic-Numeric Method for Solving the Poisson Equation 333

general class of linear problems and a rather broad class of nonlinear problems.
Faleichik [5] proved convergence of collocation methods for stiff ODE systems
with complex spectrum. As regards the convergence of pure collocation methods
for elliptic PDEs, the convergence theorem was proved in [22] for the case when
the PDE is solved on the unit square. In our case, the Poisson equation is solved
in a rectangular region in which 0 ≤ θ ≤ 2π and 0 ≤ r ≤ rmax, where rmax > 0.
It is easy to transform this region to the unit square with the aid of the passage
to new variables θ̄ = θ/(2π) and r̄ = r/rmax.

The collocation and least squares (CLS) method of numerical solution of
boundary value problems for differential equations reduces the condition number
of a system of linear algebraic equations that must be solved in the collocation
method. This is achieved in the CLS method in the following way: the rows
corresponding to the conditions for matching local solutions at the boundaries
between neighboring cells are added to the matrix rows that correspond to col-
location equations. This constitutes the difference of the CLS method from pure
collocation methods. To the author’s knowledge, there are at present unfortu-
nately no convergence theorems for the CLS method. It was shown in [36] that
the inclusion of matching conditions in the matrix of the system leads to a
decrease in the condition number by 3–5 orders of magnitude, depending on the
number of grid cells, collocation points, and matching points. It is this signifi-
cant reduction in the condition number of the matrix that ensures the efficiency
of the CLS method in solving boundary value problems for partial differential
equations. In [30], a CLS method was proposed for the numerical solution of
the Poisson equation in polar coordinates. The local solution in each grid cell
was represented therein as a second-degree polynomial in θ, r. In the cases when
the computational region is an annulus with min(r) = O(1) the method of [30]
has the approximation order, which is very close to two. However, in the cases
where the line r = 0 lies in the computational region the order of accuracy of the
proposed CLS method drops from the second order to an order O(hp

r), where
0 < p < 1.

The above overview of the methods developed for the numerical solution of
the Poisson equation in polar or cylindrical coordinates shows that there is the
problem of the convergence order reduction in these methods in cases where the
line r = 0 is part of the computational region. We can formulate the following
general question: is it possible to develop a numerical method, which would have
the same order of accuracy independently of the fact whether the line r = 0
belongs or does not belong to the computational region?

One of the ways to give a positive answer to this question may be located
in the area of the CLS methods. As a matter of fact, it was shown in [9] that
the accuracy of the CLS method increases with increasing degree of approximat-
ing polynomials when this method is applied for the numerical solution of the
incompressible Navier–Stokes equations in Cartesian coordinates. Therefore, one
may hope that an increase in the degree of the local approximating polynomial
can help in the matter of achieving the uniform accuracy of the numerical solu-
tion of the Poisson equation in cases where the polar axis r = 0 is included in

334 E. V. Vorozhtsov

the spatial computational domain. In the present work, we use the third-degree
polynomials as approximating polynomials in the context of the CLS method.

A sufficiently universal applicability of the CLS method for solving various
initial- and boundary-value problems for partial differential equations of different
types was demonstrated previously in the works [9,10,27,29,31–33,36–38].

As the degree of the approximating local polynomial increases, the complexity
of the expressions for collocation equations increases. In order to avoid errors in
the derivation of these expressions “by hand” it is very advisable to carry out all
the necessary analytical calculations in a computer algebra system (CAS). The
CAS Mathematica has a very useful built-in function FortranForm, which allows
the user to translate Mathematica expressions into the Fortran operators, which
can then easily be included in Fortran programs. This speeds up considerably
the process of the development of new Fortran programs. We used the CAS
Mathematica in the above way to generate a Fortran program for calculating in
each grid cell the expressions for the entries of the local matrix and the right-
hand sides of the algebraic system.

2 The CLS Method for the Numerical Solution of the
Poisson Equation in Polar Coordinates

As a result of the passage from the Cartesian coordinates x, y to polar coordinates
r, θ by formulas x = r cos θ, y = r sin θ the Poisson equation uxx + uyy = f(x, y)
takes the form

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= f(θ, r), (1)

where f(θ, r) = f(r cos θ, r sin θ). We will omit the bar over f in the following
for the sake of brevity. Equation (1) is solved in the rectangular region

Ω = {(θ, r), 0 ≤ θ < 2π, R1 ≤ r ≤ R2} (2)

under the Dirichlet boundary conditions

u = g1(θ), r = R1; u = g2(θ), r = R2; 0 ≤ θ < 2π. (3)

In (2) and (3), R1 and R2 are the given quantities, 0 ≤ R1 < R2. The periodicity
condition is specified at the boundaries θ = 0 and θ = 2π

u(0, r) = u(2π, r), R1 ≤ r ≤ R2. (4)

We formulate a “discrete” problem approximating the original differential
boundary value problem. In the CLS method, a grid is constructed in the com-
putational domain (2). It can be non-uniform along both coordinates θ and r.
Let rj be the r coordinate of the jth grid node on the r axis, and let Nr be the
number of nodes of a non-uniform grid in the interval [R1, R2]. The set of grid
nodes r1, . . . , rNr

must satisfy the relations R1 = r1 < r2 < · · · < rNr
= R2.

Similarly, in the range [0, 2π), the set of grid nodes θ1, . . . , θNθ
is generated so

A Symbolic-Numeric Method for Solving the Poisson Equation 335

that the relations 0 = θ1 < θ2 < · · · < θNθ
= 2π are fulfilled, where Nθ is the

number of grid nodes in the interval [0, 2π). Denote by Ωi,j the subdomain of
the area (2) occupied by the cell with the indices i, j that is

Ωi,j = {(θ, r), θi ≤ θ ≤ θi+1, rj ≤ r ≤ rj+1}, i = 1, . . . , Nθ−1, j = 1, . . . , Nr−1.
(5)

One often encounters in fluid dynamics problems the spatial subregions with
large solution gradients. In the case of a uniform grid, such subregions may have
a size of less than one grid step; in these cases, the numerical algorithm can
simply “not identify” such narrow transitional regions, and this may lead to
considerable errors and incorrect results of the numerical simulation. In such
situations, the application of non-uniform grids clustering in the subregions of
large solution gradients makes it possible to increase the accuracy of simulation.

One of the simplest techniques of controlling the grid stretching in the case of
the Poisson equation uxx + uyy = f(x, y) consists of the use of the mapping [35]

x = f2(η) cos f1(ξ), y = f2(η) sin f1(ξ), (6)

where the monitoring functions f1(ξ) and f2(η) enter the relations θ = f1(ξ),
r = f2(η) and are specified by the user with regard for the specifics of the problem
to be solved. The computational region in the plane of curvilinear coordinates
(ξ, η) still remains rectangular as in the case when f1(ξ) = ξ and f2(η) = η.
Let us assume following [14,35] that the computational grid in the (ξ, η) plane
is square with steps Δξ = Δη = 1. If f1(ξ) �= ξ or f2(η) �= η, then the computa-
tional grid in the original plane (θ, r) will be non-uniform.

The Poisson equation takes the following form at the passage from the vari-
ables x, y to curvilinear coordinates ξ, η [14]:

ΔBu(ξ, η) = f(ξ, η), (7)

where ΔBu is the Beltrami operator, f(ξ, η) = f(f2(η) cos f1(ξ), f2(η) sin f1(ξ)),

ΔBu =
1√
g

[
∂

∂ξ

(
g22uξ − g12uη√

g

)
+

∂

∂η

(
g11uη − g12uξ√

g

)]
, (8)

gij (i, j = 1, 2) are the scalar products of covariant tangent vectors, gij = xξi
·xξj

,
i, j = 1, 2, where ξ1 ≡ ξ, ξ2 ≡ η, xξ = ∂x(ξ, η)/∂ξ, yξ = ∂y(ξ, η)/∂ξ, etc.,
xξ = (xξ, yξ), xη = (xη, yη) that is

g11 = x2
ξ + y2

ξ , g22 = x2
η + y2

η, g12 = g21 = xξxη + yξyη,
√

g = xξyη − xηyξ. (9)

The computation of quantities gij according to (9) in the specific case of the
mapping (6) leads to the following expression for the Beltrami operator:

ΔBu =
1

f2(η)f ′
1(ξ)f

′
2(η)

{
∂

∂ξ

[
f ′
2(η)uξ

f2(η)f ′
1(ξ)

]
+

∂

∂η

[
f ′
1(ξ)f2(η)uη

f ′
2(η)

]}
. (10)

336 E. V. Vorozhtsov

This differential operator was input in our Mathematica program as follows:

ClearAll[u];

lapu =
1

f2[η] f1′[ξ]f2′[η]
∗

(
D

[
f2′[η] ∗ D[u[ξ, η], ξ]

f2[η] f1′[ξ]
, ξ

]

+ D

[
1

f2′[η]
∗ f1′[ξ] ∗ f2[η] ∗ D[u[ξ, η], η], η

])
. (11)

For the purpose of the verification of this expression we have used the fact that
in the particular case of f1(ξ) = ξ = θ and f2(η) = η = r, the above expression
must coincide with the left-hand side of Eq. (1). This check-up was implemented
with Mathematica as follows:

lapu1 = lapu/.{f2′′[η] → 0, f1′′[ξ] → 0, f1′[ξ] → 1, f2′[η] → 1, f2[η] → r}
This resulted in the expression, which obviously coincides with the left-hand side
of (1):

u(0,1)[ξ, η]
r

+ u(0,2)[ξ, η] +
u(2,0)[ξ, η]

r2
.

In each cell Ωi,j , the local coordinates y1 and y2 are used in the CLS method
along with the global coordinates ξ and η. The local coordinates are introduced
as follows:

y1 =
θ − θi+1/2

0.5(θi+1 − θi)
, y2 =

r − rj+1/2

0.5(rj+1 − rj)
,

where (θi+1/2, rj+1/2) are the coordinates of the geometric center of the Ωi,j cell,
they are computed by the following formulas: θi+1/2 = (θi + θi+1)/2, rj+1/2 =
(rj + rj+1)/2. Thus, the local coordinates y1, y2 vary from −1 to +1 within the
cell. This is convenient for the implementation of the CLS method.

To ensure the grid steps Δξ = Δη = 1 in the plane of curvilinear coordi-
nates ξ, η we specify the connection between the coordinates ξ, η and the local
coordinates y1, y2 by the following formulas:

y1 =
ξ − ξi+1/2

0.5
, y2 =

η − ηj+1/2

0.5
, (12)

where (ξi+1/2, ηj+1/2) are the coordinates of the geometric center of the Ωi,j cell
in the (ξ, η) plane that is ξi+1/2 = ξi + 0.5, ηj+1/2 = ηj + 0.5. The formulas

∂

∂ξ
=

dy1
dξ

· ∂

∂y1
=

1
0.5

∂

∂y1
= 2

∂

∂y1
,

∂

∂η
= 2

∂

∂y2
(13)

enable one to replace the differentiation with respect to ξ and η in (10) with
the differentiation with respect to y1 and y2. Besides, it is necessary to replace
ξ and η in f2(η), f ′

1(ξ), f ′
2(η) by the formulas ξ = 0.5y1 + ξi+1/2, η = 0.5y2 +

ηj+1/2. The passage in the expression (11) to the local variables y1 and y2 was
implemented in the language of the CAS Mathematica as follows:

lapu2 = lapu/.{u(0,1)[ξ, η] → 2u(0,1)[y1, y2], u(0,2)[ξ, η] → 4u(0,2)[y1, y2],

u(1,0)[ξ, η] → 2u(1,0)[y1, y2], u(2,0)[ξ, η] → 4u(2,0)[y1, y2]}

A Symbolic-Numeric Method for Solving the Poisson Equation 337

In the obtained expression for lapu2, there are the Greek letters and the primed
variables, which are unacceptable in the available Fortran compiler. Therefore,
one must prepare the operator lapu2 for its further use in a Fortran program.
To this end, the following denotations were used in our Mathematica program:

lapu3 = lapu2/./{f2[η] → y, f2′[η] → r1s, f2′′[η] → r2s,

f1′[ξ] → th1s, f1′′[ξ] → th2s}

The variable y coincides with r: r ≡ y.
The derivatives f ′

1(ξ), f
′
2(η), f ′′

1 (ξ), f ′′
2 (η) enter formula (10). These deriva-

tives were approximated at the center of the cell Ωi,j with the second order of
accuracy. Let us illustrate the procedure for calculating these derivatives by the
example of the derivatives f ′

2(η), f ′′
2 (η). The central differences were used for

their approximation in internal cells [14,35]:

f ′
2(ηj+1/2) = rj+1 − rj , f ′′

2 (ηj+1/2) = rj+3/2 − 2rj+1/2 + rj−1/2. (14)

In the left boundary cell Ωi,1, we apply the right one-sided differences:

f ′
2(η3/2) = (1/2)

(
4r5/2 − 3r3/2 − r7/2

)
, f ′′

2 (η3/2) = r7/2 − 2r5/2 + r3/2. (15)

In the right boundary cell Ωi,Nr−1, we apply the left one-sided differences:

f ′
2(ηNr−1/2) = 1

2

(
rNr−1/2 − 4rNr−3/2 + rNr−5/2

)
,

f ′′
2 (ηNr−1/2) = rNr−1/2 − 2rNr−3/2 + rNr−5/2.

(16)

To avoid the singularities in the form of the factors 1
r and 1

r2 in Eq. (1) we
have multiplied the both sides of this equation by r2 following [39].

It is to be noted that at the application of the CLS method for solving any
problems, it is important that the equations of the overdetermined system, which
play equal role in the approximate solution, have approximately equal weight
coefficients. Denote by ΔB,y1,y2 the Beltrami operator in local variables y1 and
y2. Note that the factor 1/[f ′

2(η)]2 enters the Beltrami operator (7). This factor
has the order of smallness 1/O(h2

r) in the uniform grid case, where hr is the grid
step in the interval [R1, R2]. And the coefficients of the equations obtained from
the boundary condition have the order of smallness O(1). To ensure the same
orders of smallness for the coefficients of all equations of the algebraic system for
b1, . . . , b10 it is enough to multiply the both sides of the Beltrami equation by
a quantity of the order O(h2

r). One can ensure this by multiplying the equation
by the quantity [f ′

2(η)]2. Thus, the final form of the collocation equation is as
follows:

ζ [f2(η)f ′
2(η)]2 ΔB,y1,y2u = ζ [f2(η)f ′

2(η)]2 F (y1, y2), (17)

where F (y1, y2) = f(0.5y1 + ξi+1/2, 0.5y2 + ηj+1/2) and ζ is a user-specified
parameter. This results in some improvement of the numerical solution accuracy.

To perform the passage to Eq. (17) the left- and right-hand sides were calcu-
lated as follows:

338 E. V. Vorozhtsov

Fig. 1. Versions of the specification of collocation and matching points: (a) Nc = 10,
Nm = 2, M = 4; (b) Nc = 11, Nm = 2, M = 12; (c) Nc = 12, Nm = 4, M = 4; (d)
Nc = 16, Nm = 5, M = 4.

equ1= Expand[zeta*(y*r1s)^2*lapu3]; rhs= zeta*(r1s*y)^2*frhs[x,y];

Here frhs is a double precision function in the Fortran code, which computes
the right-hand side of the Poisson equation; x = θ, y = r.

The number of collocation points Nc in each cell Ωi,j and their location
inside the cell are specified by the user, and this can be done in different ways.
The collocation points were set at the same angular distance from one another
on the Lamé curve (hyperellipse)

∣∣∣y1
ω

∣∣∣M +
∣∣∣y2
ω

∣∣∣M = 1, (18)

where M is a user-specified real number. Figure 1 shows the examples of speci-
fying different numbers of collocation points by the given technique; the dashed
line shows curve (18) at the different values of M . It is to be noted that the
collocation points are located in the cell Ωi,j asymmetrically with respect to the
straight lines y1 = 0, y2 = 0 at odd values of Nc (see Fig. 1, (b)), which may
deteriorate to some extent the accuracy of the solution obtained by the CLS
method. It is, therefore, desirable to use the even values of the parameter Nc.

In the present work, the polynomial representation of the solution of the
Poisson equation in each cell Ωi,j is employed in the form of the following third-
degree polynomial:

u(y1, y2) = b1+b2y1+b3y2+b4y
2
1+2b5y1y2+b6y

2
2+b7y

3
1+b8y

2
1y2+b9y1y

2
2+b10y

3
2 .

(19)
In this equation, b1, . . . , b10 are the unknown coefficients that are to be found.
The substitution of expression (19) in (17) leads to an algebraic equation, which
is linear in the coefficients b1, . . . , b10. The coordinates of Nc collocation points
(y1,i,m, y2,j,m), m = 1, . . . , Nc are then substituted in this linear equation. As
a result, one obtains Nc collocation equations. Generally, we used the following
rule when setting the value of Nc: the number of collocation points must be
no less than the number of unknown coefficients bj , j = 1, . . . , 10 in the local
approximating polynomial (19) because it is the collocation equation, which
approximates the Beltrami equation (17).

A Symbolic-Numeric Method for Solving the Poisson Equation 339

Similarly to [30–32], we specified on the sides of each cell the conditions
for matching the solution therein with the solutions in neighboring cells. As
the vast experience of the application of the CLS method to the solution of var-
ious PDEs shows, the incorporation of the matching conditions in the matrix of
a system of linear algebraic equations (SLAE) for determining the bi enables a
considerable reduction of the condition number of the resulting SLAE. In addi-
tion, the matching conditions ensure the unique piecewise polynomial solution.
The requirements of the continuity of a linear combination of the values of the
approximate solution and its derivative along a normal to the wall have been
taken here as matching conditions:

σ1h∂u/∂n + σ2u = σ1h∂(U−)/∂n + σ2(U−). (20)

One takes in the left-hand sides of these relations the solution u in the current
cell, which is to be found, and in the right-hand side, one takes the solution
in the neighboring cell; this is typically the known solution from the foregoing
iteration of the CLS method, which is denoted as follows:

U(y1, y2) = a1+a2y1+a3y2+a4y
2
1+2a5y1y2+a6y

2
2+a7y

3
1+a8y

2
1y2+a9y1y

2
2+a10y

3
2 .

The points at which Eqs. (20) are written are called the matching points. Here
n = (n1, n2) is the external normal to the cell side, and U− are the limits of the
function U as its arguments tend to the cell side from outside the cell; σ1 and
σ2 are the non-negative user-specified weight parameters, which affect to some
extent the condition number of the obtained system of linear algebraic equations
and the solution convergence rate [8].

The quantity h in (20) is specified as follows: on the side r = rj+1 of the cell
Ωi,j we assume h = 1

2 according to (12). Then h∂(U−)/∂n = h · dy2
dη · ∂U−

∂y2
=

∂U−
∂y2

. We have similarly on the side θ = θi+1: hθ∂(U−)/∂n = hθ∂(U−)/∂θ =
∂U−/∂y1, hθ = 1

2 . Denote by Nm the number of matching points on each cell
side. Since the number of cell sides is equal to four, we obtain 4Nm matching
conditions in each cell (the matching points are shown by small squares in Fig. 1).

If the cell side on which r = const belongs to the boundary of the Ω region,
then one writes the boundary conditions

u(y1, y2) = g1 or u(y1, y2) = g2 (21)

according to (3) instead of the matching conditions on this side at the points,
to which on the cell sides lying inside the region the points of assigning the
matching conditions correspond.

In the matching conditions (20), the periodicity conditions (4) were taken
into account along the θ coordinate in the boundary cells Ω1,j and ΩNθ−1,j ,
j = 1, . . . , Nr − 1. Consider at first the cell Ω1,j . The side θ1 = 0 of this cell is
simultaneously the side θ1 = 2π of the cell ΩNθ−1,j . Therefore, equality (20) was
implemented in the cell Ω1,j as follows:

340 E. V. Vorozhtsov

[
σ1

∂u(y1, y2)
∂y1

+ σ2u(y1, y2)
]

i=1,
y1=−1

=
[
σ1

∂U(y1, y2)
∂y1

+ σ2U(y1, y2)
]

i=Nθ−1,
y1=1

.

(22)
In a similar way, the equation[

σ1
∂u(y1, y2)

∂y1
+ σ2u(y1, y2)

]
i=Nθ−1,
y1=1

=
[
σ1

∂U(y1, y2)
∂y1

+ σ2U(y1, y2)
]

i=1,
y1=−1

.

(23)
was included in the SLAE when assembling it for the cell ΩNθ−1,j .

At the practical implementation of the CLS method, the solution is found
in the cells Ωi,j in the direction of the increasing indices i, j. Therefore, at the
SLAE assembly in the cell Ω1,j , the solution in the cell ΩNθ−1,j is not known yet.
In this connection, we have implemented the computation with the use of the
alternating Schwarz method [26]. According to this method, the values known
at the moment of the solution in the given cell were taken as U− in (20) and
(22). Let n be the iteration number, n = 0, 1, 2, . . . Condition (22) was then
implemented as follows:[

σ1
∂un+1(y1, y2)

∂y1
+ σ2u

n+1(y1, y2)
]

i=1,y1=−1

=
[
σ1

∂Un(y1, y2)
∂y1

+ σ2U
n(y1, y2)

]
i=Nθ−1,y1=1

.

And on the right-hand side of Eq. (23), one can take the values of U(y1, y2)
and ∂U(y1, y2)/∂y1 at the (n+1)th iteration because at the computation in the
direction of the increasing index i, the values of the coefficients b1, . . . , b10 in
(19) are already known by the moment when the computational process reaches
the boundary cell ΩNθ−1,j .

Thus, the following SLAE was solved in each cell Ωij :

AijX
n+1 = fn

ij , (24)

where X = (bn+1
1 , . . . , bn+1

10)� and � stands for the transpose; fn
ij is the vector of

the right-hand sides, it includes both the right-hand sides of collocation equations
and the right-hand sides of the matching conditions. The collocation part of the
matrix Aij was computed by us in the language of the CAS Mathematica as
follows.

X={b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}; mb = Length[X];
rowm = Table[0,{mb}]; SetDirectory["D:\\Papers\\CASC2023"];
"Coefficients of the Poisson collocation equation" >> colloc.txt;
Do[eq = " AR(m,"; eq = eq<>ToString[m]<>") = ";
eqm = FullSimplify[rowm[[m]]]; e1f = FortranForm[eqm];
eq <> ToString[e1f] >>> colloc.txt,{m,mb}];
rh1 = zeta*(r1s*y)^2*frhs[x,y];
eq = " BR(m) = "; e1f = FortranForm[rh1];
eq <> ToString[e1f] >>> colloc.txt;

A Symbolic-Numeric Method for Solving the Poisson Equation 341

In the above program fragment, one row of the matrix AR = Aij is computed.
The number of these rows is equal to the number of collocation points Nc;
BR = fn

ij . The programming of the matching conditions is carried out similarly
to the case of the collocation equation. One must only replace the collocation
equation with the equation expressing the matching condition.

The initial guess u0(θ, r) was set with regard for the boundary conditions (3)
by a linear interpolation of the values g1(θ) and g2(θ):

u0(θ, r) =
[g1(θ) − g2(θ)]r + g2(θ)R1 − g1(θ)R2

R1 − R2
.

As a result, one obtains in each cell a system involving Nc + 4Nm equations,
where Nc ≥ 10, Nm ≥ 1, by including in the SLAE the collocation equations
and the matching conditions. By virtue of the fact that Nc + 4Nm ≥ 14, the
SLAE for finding ten unknown coefficients a1, . . . , a10 in (19) is overdetermined.
The method of reflections [7] was applied for the numerical solution of this SLAE.
The Givens method of rotations [6] is less efficient than the method [7] because
it requires a CPU time, which is by the factor of 1.27 larger than in the case of
the Householder method.

In the version of the method implemented here, the numerical solution of the
global problem is found iteratively in the so-called Gauss–Seidel process. In this
process, all cells of the region are scanned sequentially at each global iteration
after the initial guess has been assigned to the solution in each cell. One solves
in each cell a SLAE, which determines a “local” piece of the global solution. If
the current cell belongs to the region boundary, the boundary conditions of the
problem are then realized therein because their approximation has been included
in the SLAE determining the solution in this cell.

The Poisson equation (1) contains a singularity at point r = 0. The solution
itself is regular if the right-hand side of the Poisson equation and the boundary
conditions are sufficiently smooth. In the spectral-difference methods [16,17], the
singularity problem was solved by using a uniform grid on the r axis, which was
shifted by a half-step from the point r = 0, as well as the symmetry conditions
of the coefficients of the expansion into the Fourier series.

There is no singularity problem in the proposed CLS method at finite grid
step values. The collocation points are set inside the cell, therefore, always r =
rj,m > 0 (j = 1, . . ., Nr − 1; m = 1, . . . , Nc). There is no division by r in the
matching conditions (20), that is, they have no singularity.

3 Computational Results

To investigate the accuracy of the above-proposed version of the CLS method
we have used the same test solutions of the Poisson equation as in [30]:

u(x, y) = 3ex+y(x − x2)(y − y2) + 5, (25)

u(x, y) =
ex + ey

1 + xy
. (26)

u(x, y) = ((x + 1)5/2 − (x + 1))((y + 1)5/2 − (y + 1)). (27)

342 E. V. Vorozhtsov

The above exact solutions were taken in [30] from the works [2,17]. The corre-
sponding right-hand sides f(x, y) are easily obtained by substituting solutions
(25)–(27) into the left-hand side of equation uxx +uyy = f(x, y). Then one finds
the expression for the function f̄(θ, r) in (1). Note that at the use of test (26),
it is necessary to specify R2 <

√
2 in (2) because at R2 =

√
2 and θ = 3π/4,

the denominator in (26) vanishes, that is, it gives rise to a singularity. In the
example (27), the derivatives ∂u/∂rk and ∂u/∂θk also contain the singularities
at k > 2 in the form of the following factors:

1√
1 + r sin θ

,
1√

1 + r cos θ
,

1
(1 + r sin θ)k− 5

2
,

1
(1 + r cos θ)k− 5

2
.

For example, 1 + r sin θ = 0 at r = 1 and sin θ = −1; at r = 2 and cos θ = −1/2,
etc. One can also note that solutions (25)–(27) possess the symmetry property:
u(x, y) = u(y, x).

The computations by the CLS method were done on both uniform and non-
uniform grids along the θ and r axes. The non-uniform grids were generated
along each axis by the same algorithm described in [35, p. 106–107]. Let us
briefly describe the algorithm for obtaining the non-uniform grid in the interval
R1 ≤ r ≤ R2. In this algorithm, one must at first specify the grid steps r2 − r1
and rNr

−rNr−1 by the formulas: r2−r1 = λr,L ·hr, rNr
−rNr−1 = λr,R ·hr, where

hr is the uniform grid step in the interval R1 ≤ r ≤ R2; this uniform grid has
Nr nodes that is hr = (R2 − R1)/(Nr − 1); λr,L and λr,R are the user-specified
coefficients, 0 < λr,L, λr,R ≤ 1. If λr,L < 1 and λr,R = 1, then one obtains
along the r axis a grid that clusters near the boundary r = R1; if λr,L < 1
and λr,R < 1, the grid clusters near the both boundaries r = R1 and r = R2;
if λr,L = 1 and λr,R < 1, then the grid clusters near the boundary r = R2; and,
finally, at λr,L = λr,R = 1, a uniform grid is obtained. The function sinh(ζ) is
involved in the computations of the coordinates of grid node coordinates in this
algorithm.

To determine the error of the method on a specific spatial computational grid
the grid analogs of the error norms were computed with the use of the norms of
the Lp spaces (p ≥ 1) by the formulas

‖ δuk ‖p=

⎡
⎣ 1

π(R2
2 − R2

1)

Nθ−1∑
i=1

Nr−1∑
j=1

(
uk

i+ 1
2 ,j+ 1

2
− uex

i+ 1
2 ,j+ 1

2

)p

rj+ 1
2
δrj+ 1

2
δθi+ 1

2

⎤
⎦

1
p

,

‖ δuk ‖∞= max
i,j

∣∣∣uk
i+ 1

2 ,j+ 1
2

− uex
i+ 1

2 ,j+ 1
2

∣∣∣ , (28)

where uex
i+1/2,j+1/2 and uk

i+ 1
2 ,j+ 1

2
are, respectively, the exact solution and the

approximate solution by the CLS method, which have been computed at the
center of the Ωi,j cell, δθi+ 1

2
= θi+1 − θi, δrj+ 1

2
= rj+1 − rj .

The convergence rate νp of the CLS method on a sequence of grids at the
grid refinement was computed by the formula known in numerical analysis:

νp =
log

(‖ δuk(hm−1) ‖p / ‖ δuk(hm) ‖p

)
log(hm−1/hm)

, (29)

A Symbolic-Numeric Method for Solving the Poisson Equation 343

where hm, m = 2, 3, . . . are some values of steps hr and hθ such that |hr,m−1 −
hr,m| + |hθ,m−1 − hθ,m| > 0.

Let bk
i,j,l (k = 0, 1, . . .; l = 1, . . . , 10) be the value of the coefficient bl in (19)

in the cell Ωi,j at the kth iteration. The following condition was used for the
termination of iterations by the Schwarz’s alternating method:

‖ δbk+1 ‖< ε, (30)

where

‖ δbk+1 ‖= max
i,j

(
max

1≤l≤10

∣∣∣bk+1
i,j,l − bk

i,j,l

∣∣∣
)

, (31)

ε is a user-specified small positive number,

ε <<

[
min
i,j

{(θi+1 − θi), (rj+1 − rj)}
]2

.

Table 1. The influence of the parameter ζ in the collocation equation on the accuracy
of the solution by the CLS method, u(x, y) = 3ex+y(x − x2)(y − y2) + 5

ζ Nit ‖ δu ‖2 ‖ δu ‖∞

0.25 306 1.4008E−05 4.0966E−05

0.5 306 5.4729E−06 2.1945E−05

0.8 306 6.0599E−06 2.0324E−05

1.0 306 6.3944E−06 1.9241E−05

The numerical results presented in Tables 1, 2, 3, 4 and 5 were obtained by
using the value ω = 0.7 at the specification of collocation points; σ1 = σ2 = 1
in (20). In the computation termination criterion (30), we have set the value
ε = 10−10.

We have investigated the influence of the value of M in (18) on the accuracy
of the numerical results obtained at the numerical solution of all test problems.
We have tried the following values of M : 2.0, 3.0, 4.0, 4.3, 6.0, 11.0, and 12.0.
The best results were obtained when the value M = 4.0 was set.

The effect of the number of the collocation points Nc on the accuracy of
numerical results was also studied. We have tried the following numbers of collo-
cation points in each cell Ωij : Nc = 10, 12, 14, and 16. The best results from the
viewpoint of accuracy were obtained at Nc = 16. One can of course increase fur-
ther the value of Nc, but this leads to the corresponding increase in the CPU time
needed for obtaining the final converged solution. The value Nc = 16 ensures
a reasonable compromise between the solution accuracy and the requirement of
a relatively small CPU time. Therefore, we used 16 collocation points in each
cell when solving all test problems. In addition, five matching points were set on
each side of each cell.

344 E. V. Vorozhtsov

Table 1 illustrates the influence of the parameter ζ in the collocation Eq. (17)
on the accuracy of the solution obtained by the CLS method. The values R1 =
0.5, R2 = 1.0, Nθ = 101, Nr = 9 were used in this series of runs. A command
was given to terminate the calculation using the CLS method as soon as the
inequality ‖ δbk ‖< 10−10 was satisfied. Nit is the number of iterations, which is
minimally necessary to ensure the satisfaction of the above inequality. One can
see in Table 1 that the error ‖ δu ‖2 reaches its minimum at the value ζ = 0.5.
On the other hand, the values of the numerical solution errors have the same
orders of magnitude in the interval 0.5 ≤ ζ ≤ 1.0 so that any value of ζ taken in
this interval can be considered as a quasi optimal value.

Table 2. The errors ‖ δu ‖2, ‖ δu ‖∞ and the convergence rates ν2, ν∞ on a sequence
of grids, u(x, y) = 3ex+y(x − x2)(y − y2) + 5, 0.5 ≤ r ≤ 1, ζ = 0.5

Nθ − 1 Nr − 1 ‖ δu ‖2 ν2 ‖ δu ‖∞ ν∞

Uniform grids

75 6 9.8344E−06 3.6702E−05

100 8 5.4729E−06 2.04 2.1945E−05 1.79

150 12 2.5085E−06 1.92 1.0460E−05 1.83

200 16 1.4350E−06 1.94 6.0121E−06 1.92

250 20 9.2642E−07 1.96 3.8858E−06 1.96

Uniform grids along the r axis

and non-uniform grids along the θ axis (λθ,l = λθ,r = 0.9)

75 6 2.9392E−05 8.7918E−05

100 8 1.6291E−05 2.05 7.2906E−04 2.02

150 12 7.1623E−06 2.03 2.2755E−05 1.90

200 16 4.0077E−06 2.02 1.3005E−05 1.94

250 20 2.5566E−06 2.01 8.3947E−06 1.96

In the case of numerical results presented in Table 2, the singularity r = 0
lies outside the computational region. The errors ‖ δu ‖2 and ‖ δu ‖∞ are two
orders of magnitude less than in Tables 1 and 2 of [30]. Note that the local
approximating polynomial used in [30] had the second degree:

U2(y1, y2) = a1 + a2y1 + a3y2 + a4y
2
1 + 2a5y1y2 + a6y

2
2 . (32)

One can see in Table 2 that the convergence rate ν2 is very close to 2; the
convergence rate ν∞ is also close to 2, although it is slightly lower than the
quantity ν2. The use of a non-uniform grid along the θ axis in the case of R1 = 0.5
has resulted in a slightly lower accuracy of the numerical solution. One can note
that the convergence rates are higher than in the case of a uniform grid.

On the contrary, the use of the approximating polynomial (32) and of the
non-uniform grid along the θ axis in [30] resulted in a slight increase of the
numerical solution accuracy in comparison with the uniform grid case.

A Symbolic-Numeric Method for Solving the Poisson Equation 345

Table 3. The errors ‖ δu ‖2, ‖ δu ‖∞ and the convergence rates ν2, ν∞ on a sequence
of grids, u(x, y) = 3ex+y(x − x2)(y − y2) + 5, 0 ≤ r ≤ 1, ζ = 1.0

Nθ − 1 Nr − 1 ‖ δu ‖2 ν2 ‖ δu ‖∞ ν∞

Uniform grids

75 12 2.1905E−05 1.8536−04

100 16 1.0871E−05 2.44 1.1422E−04 1.68

150 24 4.4827E−06 2.18 5.4664E − 05 1.82

200 32 2.3993E−06 2.17 3.1240E−05 1.94

250 40 1.4916E−06 2.13 2.0095E−05 1.98

Uniform grids along the r axis

and non-uniform grids along the θ axis (λθ,l = λθ,r = 0.9)

75 12 3.8690E−05 1.3991E−04

100 16 1.9886E−05 2.31 9.5002E−05 1.35

150 24 8.3745E−06 2.13 4.8092E−05 1.68

200 32 4.6310E−06 2.06 2.8277E−05 1.85

250 40 2.9392E−06 2.04 1.8443E−05 1.92

Table 4. The errors ‖ δu ‖2, ‖ δu ‖∞ and the convergence rates ν2, ν∞ on a sequence
of grids, u(x, y) = (ex + ey)/(1 + xy), 0 ≤ r ≤ 1, ζ = 2.0

Nθ − 1 Nr − 1 ‖ δu ‖2 ν2 ‖ δu ‖∞ ν∞

Uniform grids

75 12 6.8632E−04 1.6114E−03

100 16 2.8365E−04 3.07 6.4818E−04 3.17

150 24 9.2781E−05 2.76 2.0592E − 04 2.83

200 32 4.5818E−05 2.46 9.9769E−05 2.52

250 40 2.7727E−05 2.25 5.9303E−05 2.33

Uniform grids along the r axis

and non-uniform grids along the θ axis (λθ,l = λθ,r = 0.8)

75 12 7.7149E−04 1.7748E−03

100 16 2.8891E−04 3.41 7.2906E−04 3.09

150 24 9.5354E−05 2.73 2.6017E−04 2.54

200 32 4.7478E−05 2.42 1.3436E−04 2.30

250 40 2.8773E−05 2.24 8.2612E−05 2.18

One can see in Table 3 that in the case when the polar axis r = 0 is included
in the computational region, the accuracy of numerical results is only slightly
lower than in the case when the above axis lies outside the computational region.
In the case when the value r = 0 belonged to the computational region and a non-

346 E. V. Vorozhtsov

uniform grid along the θ axis was employed we failed to increase the numerical
solution accuracy in comparison with the uniform grid case.

It follows from Table 4 that in the case of a non-uniform grid along the θ
axis, the accuracy of numerical results is only slightly lower than in the case of
a uniform grid. The errors ‖ δu ‖2 and ‖ δu ‖∞ are two orders of magnitude
less than in the case of a version of the CLS method based on the second-degree
polynomial (32) (cf. [30]). It is worth noting that the convergence rates are
higher in the case of the test problem (26) in comparison with the test problem
(25) despite the fact that in the case of Table 4, the singularity r = 0 has been
included in the computational region.

Table 5. The errors ‖ δu ‖2, ‖ δu ‖∞ and the convergence rates ν2, ν∞ on a sequence
of uniform grids, u(x, y) = ((x+1)5/2 − (x+1))((y+1)5/2 − (y+1)), 0 ≤ r ≤ 1, ζ = 0.5

Nθ − 1 Nr − 1 ‖ δu ‖2 ν2 ‖ δu ‖∞ ν∞

Uniform grids

75 12 4.8865E−05 3.1008E−04

100 16 2.7222E−05 2.03 1.6907E−04 2.11

150 24 1.2054E−05 2.01 7.2104E−05 2.10

200 32 6.7953E−06 1.99 3.9581E−05 2.08

250 40 4.3918E−06 1.96 2.5078E−05 2.05

Uniform grids along the r axis

and non-uniform grids along the θ axis (λθ,l = λθ,r = 0.9)

75 12 9.1721E−05 5.8574E−04

100 16 5.0607E−05 2.07 3.3943E−04 1.90

150 24 2.2228E−05 2.03 1.5646E−04 1.91

200 32 1.2436E−05 2.02 8.9853E−05 1.93

250 40 7.9641E−06 2.00 5.8281E−05 1.94

In the case of the test solution (27) (see Table 5), the accuracy of the numer-
ical solution obtained by the CLS method proves to be much higher than in the
case of test (26) (see Table 4). The use of a non-uniform grid along the θ axis
increases the values of error norms by a factor of nearly two, but they still have
the magnitudes that are two orders less than in the case of the version of the
CLS method [30], which is based on the local second-degree polynomial.

Figure 2 summarizes the data on convergence rates ν2 and ν∞, which were
obtained by the proposed CLS method on uniform grids in the course of com-
putations of the problems with exact solutions (25), (26), and (27). One can see
a considerable increase in convergence rates in the case of the new CLS method
in comparison with the CLS method [30].

A Symbolic-Numeric Method for Solving the Poisson Equation 347

Fig. 2. The convergence rates in the case of test solutions (25) (a), (26) (b), and (27)
(c). (• • •) ν2, polynomial (32), (◦ ◦ ◦) ν2, polynomial (19), (� � �) ν∞, polynomial
(32), (� � �) ν∞, polynomial (19)

4 Conclusions

A new version of the method of collocations and least squares has been pre-
sented for the numerical solution of the Poisson equation in polar coordinates.
The method has been verified on three test problems having the exact analytic
solutions. It is shown that if the radial coordinate origin does not belong to the
computational region then the proposed method has the second-order accuracy.
In addition, the errors ‖ δu ‖2 and ‖ δu ‖∞ are two orders of magnitude less
than in [30].

If the singularity—the radial coordinate origin—enters the computational
region, then the convergence rate ν∞ exceeds considerably the value of 2 in the
case of test solution (26). The solution errors ‖ δu ‖2 and ‖ δu ‖∞ are generally
two and three orders of magnitude less than in the case of the method [30],
which was based on the second-degree local approximating polynomial. This
effect takes place also in cases when the non-uniform grids are used.

One can also note that the CLS method is well parallelizable. One can par-
tition the entire computational region along the boundaries of grid cells into
several subregions containing approximately equal number of cells. In each sub-
region, the global problem computation can be performed in parallel.

References

1. Belyaev, V.V., Shapeev, V.P.: The method of collocations and least squares on
adaptive grids in a region with curvilinear boundary. Vychislitelnye tehnologii 5(4),
12–21 (2000). (in Russian)

2. Borges, L., Daripa, P.: A fast parallel algorithm for the Poisson equation on a disk.
J. Comput. Phys. 169, 151–192 (2001)

3. Cavendish, J.C.: Collocation methods for elliptic and parabolic boundary value
problems. Ph.D. thesis. University of Pittsburgh, Pittsburgh, PA (1972)

4. Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the
Poisson and heat equations on irregular domains and non-graded adaptive Carte-
sian grids. J. Sci. Comput. 31(1/2), 19–60 (2007)

5. Faleichik, B.V.: Explicit implementation of collocation methods for stiff systems
with complex spectrum. J. Numer. Anal. Ind. Appl. Math. 5(1–2), 49–59 (2010)

348 E. V. Vorozhtsov

6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

7. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. Assoc.
Comput. Mach. 5, 339–342 (1958)

8. Isaev, V.I., Shapeev, V.P., Eremin, S.A.: Investigation of the properties of the
method of collocation and least squares for solving the boundary value problems
for the Poisson equation and the Navier-Stokes equations. Vychislitelnye tehnologii
12(3), 53–70 (2007). (in Russian)

9. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least
squares method for the numerical solution of the Navier-Stokes equations. Comput.
Math. Math. Phys. 50(10), 1670–1681 (2010)

10. Isaev, V.I., Shapeev, V.P.: High-order accurate collocations and least squares
method for solving the Navier-Stokes equations. Dokl. Math. 85, 71–74 (2012)

11. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken (2001)
12. Kiselev, S.P., Kiselev, V.P., Vorozhtsov, E.V.: Smoothed particle hydrodynamics

method used for numerical simulation of impact between an aluminum particle
and a titanium target. J. Appl. Mech. Tech. Phys. 63(6), 1035–1049 (2022)

13. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M.: Foundations of Fluid Mechanics with
Applications: Problem Solving Using Mathematica. Springer, Cham (2017)

14. Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC Press, Boca
Raton (1994)

15. Kuzenov, V.V., Ryzhkov, S.V., Starostin, A.V.: Development of a mathematical
model and the numerical solution method in a combined impact scheme for MIF
target. Russ. J. Nonlinear Dyn. 16(2), 325–341 (2020)

16. Lai, M.-C.: A simple compact fourth-order Poisson solver on polar geometry. J.
Comput. Phys. 182, 337–345 (2002)

17. Lai, M.-C., Lin, W.-W., Wang, W.: A fast spectral/difference method without pole
conditions for Poisson-type equations in cylindrical and spherical geometries. IMA
J. Numer. Anal. 22(4), 537–548 (2002)

18. Ling, L., Schaback, R.: An improved subspace selection algorithm for meshless
collocation methods. Int. J. Numer. Meth. Eng. 80, 1623–1639 (2009)

19. Liu, C.-S., Yeih, W., Atluri, S.N.: On solving the ill-conditioned system AX = b:
general-purpose conditioners obtained from the boundary-collocation solution of
the Laplace equation, using Trefftz expansions with multiple length scales. Comput.
Model. Eng. Sci. 44(3), 281–311 (2009)

20. Luikov, A.V.: Analytical Heat Diffusion Theory. Academic Press, New York (1968)
21. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equa-

tions in complex geometries. J. Comput. Phys. 190, 572–600 (2003)
22. Prenter, P.M., Russell, R.D.: Orthogonal collocation for elliptic partial differential

equations. SIAM J. Numer. Anal. 13(6), 923–939 (1976)
23. Ray, R.K., Kalita, J.C.: A transformation-free HOC scheme for incompressible

viscous flows on nonuniform polar grids. Int. J. Numer. Methods Fluids 62, 683–
708 (2010)

24. Russell, R.D., Shampine, L.F.: A collocation method for boundary value problems.
Numer. Math. 10, 582–606 (1972)

25. Samarskii, A.A., Andreev, V.B.: Difference Methods for Elliptic Equations. Nauka,
Moscow (1976)

26. Schwarz, H.A.: Über einem Grenzübergang durch alternierendes Verfahren. Viertel-
jahrsschrift der naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)

A Symbolic-Numeric Method for Solving the Poisson Equation 349

27. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: The method of collocations and least
squares for the Stokes equations. Vychislitelnye Tehnologii 1(2), 90–98 (1996). (in
Russian)

28. Shapeev, V.P., Bryndin, L.S., Belyaev, V.A.: Numerical solution of an elliptic prob-
lem with several interfaces. Numer. Methods Program. 23(3), 172–190 (2022).
https://doi.org/10.26089/NumMet.v23r311. (in Russian)

29. Shapeev, V.P., Vorozhtsov, E.V.: Application of computer algebra systems to the
construction of the collocations and least residuals method for solving the 3D
Navier-Stokes equations. Model. Anal. Inf. Syst. 21(5), 131–147 (2014). (in Rus-
sian)

30. Shapeev, V.P., Vorozhtsov, E.V.: Application of the method of collocations and
least residuals to the solution of the Poisson equation in polar coordinates. J.
Multidisciplinary Eng. Sci. Technol. 2(9), 2553–2562 (2015)

31. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collo-
cations and least residuals method for the solution of 3D Navier–Stokes equations.
In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013.
LNCS, vol. 8136, pp. 381–392. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02297-0 31

32. Shapeev, V.P., Vorozhtsov, E.V., Isaev, V.I., Idimeshev, S.V.: The method of collo-
cations and least residuals for three-dimensional Navier-Stokes equations. Numer.
Methods Program. 14(3), 306–322 (2013). (in Russian)

33. Sleptsov, A.G.: Collocation-grid solution of elliptic boundary value problems. Mod-
elirovanie v mekhanike 5(22)(2), 101–126 (1991). (in Russian)

34. Swartztrauber, P.N., Sweet, R.A.: The direct solution of the discrete Poisson equa-
tion on a disc. SIAM J. Numer. Anal. 10, 900–907 (1973)

35. Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation: Foun-
dations and Applications. North-Holland, New York (1985)

36. Vorozhtsov, E.V., Shapeev, V.P.: On combining the techniques for convergence
acceleration of iteration processes during the numerical solution of Navier-Stokes
equations. Numer. Methods Program. 18, 80–102 (2017). (in Russian)

37. Vorozhtsov, E.V., Shapeev, V.P.: A divergence-free method for solving the incom-
pressible Navier–Stokes equations on non-uniform grids and its symbolic-numeric
implementation. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 430–450. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26831-2 28

38. Vorozhtsov, E.V., Shapeev, V.P.: On the efficiency of combining different methods
for acceleration of iterations at the solution of PDEs by the method of collocations
and least residuals. Appl. Math. Comput. 363, 1–19 (2019). https://doi.org/10.
1016/j.amc.2019.124644

39. Yu, P.X., Tian, Z.F.: A compact scheme for the streamfunction-velocity formula-
tion of the 2D steady incompressible Navier-Strokes equations in polar coordinates.
J. Sci. Comput. 56, 165–189 (2013)

https://doi.org/10.26089/NumMet.v23r311
https://doi.org/10.1007/978-3-319-02297-0_31
https://doi.org/10.1007/978-3-319-02297-0_31
https://doi.org/10.1007/978-3-030-26831-2_28
https://doi.org/10.1016/j.amc.2019.124644
https://doi.org/10.1016/j.amc.2019.124644

Two Variants of Bézout Subresultants
for Several Univariate Polynomials

Weidong Wang and Jing Yang(B)

SMS – HCIC – School of Mathematics and Physics, Center for Applied Mathematics
of Guangxi, Guangxi Minzu University, Nanning 530006, China

yangjing0930@gmail.com

Abstract. In this paper, we develop two variants of Bézout subresultant
formulas for several polynomials, i.e., hybrid Bézout subresultant polyno-
mial and non-homogeneous Bézout subresultant polynomial. Rather than
simply extending the variants of Bézout subresultant formulas developed
by Diaz–Toca and Gonzalez–Vega in 2004 for two polynomials to arbi-
trary number of polynomials, we propose a new approach to formulating
two variants of the Bézout-type subresultant polynomials for a set of
univariate polynomials. Experimental results show that the Bézout-type
subresultant formulas behave better than other known formulas when
used to compute multi-polynomial subresultants, among which the non-
homogeneous Bézout-type formula shows the best performance.

Keywords: Resultant · Bézout matrix · Hybrid Bézout subresultant ·
Non-homogeneous Bézout subresultant

1 Introduction

Resultant and subresultant are the most important objects in resultant theory
which have numerous applications (e.g., [1,7,14,19,20]). Due to their impor-
tance, extensive research has been carried out both in theoretical and practical
aspects on resultants, subresultants, and their variants [3,5,6,8,11,12,15,17,18].
One of the essential topics in resultant theory is the representation of resultant
and subresultant polynomials. Good representations with nice structures often
bring lots of convenience for theoretical development and subsequent applica-
tions, among which determinantal formulas for subresultant polynomials are a
class of representations with prominent merits especially in the developments
of theory and efficient algorithms. For this reason, people constructed various
types of determinantal formulas for subresultant polynomials since the concept
was proposed, including Sylvester-type [16,17], Bézout-type [13], Barnett-type
[4,9], and so on [10]. However, the classical subresultant polynomials are only
defined for two polynomials. In [12], Hong and Yang extended the concept of
subresultant polynomial for two polynomials to the multi-polynomial case and
gave three types of determinantal formulas for the extended subresultant poly-
nomials, i.e., Sylvester-type, Bézout-type and Barnett-type formulas. These sub-
resultant polynomials have their own interesting structures. By exploiting the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 350–369, 2023.
https://doi.org/10.1007/978-3-031-41724-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_19&domain=pdf
http://orcid.org/0000-0002-9032-1443
https://doi.org/10.1007/978-3-031-41724-5_19

Two Variants of Bézout Subresultants for Several Univariate Polynomials 351

hidden structures, it is expected that people may develop various algorithms for
computing subresultant polynomials effectively. It is revealed in [10] that Bézout
matrix and its variant called hybrid Bézout matrix show better behavior than
the Barnett matrix when used for computing the greatest common divisor of
several univariate polynomials. In [2], Asadi et al. proposed a speculative app-
roach based on the (hybrid) Bézout matrix to compute the subresultant chains
over rings of multivariate polynomials. For computing subresultant polynomi-
als of several polynomials efficiently, it is needed to exploit the form of known
subresultants and develop new formulas from them.

In this paper, we present two new variants of Bézout subresultant matrix for
several univariate polynomials, i.e., hybrid Bézout subresultant matrix and non-
homogeneous Bézout subresultant matrix. It is shown that the determinants
of the two matrices are equivalent to the subresultant polynomial defined in
terms of roots. The proof idea is borrowed from [12] and reformulated in a more
friendly way. Compared with the generalized Bézout subresultant polynomials
for several polynomials, the two variants given in the current paper often have
smaller degree. We also compare the efficiency of computing multi-polynomial
subresultants with the five known subresultant formulas. It is shown that the
Bézout formula and its two variants behave better than the Sylvester-type and
Barnett-type. Among the three Bézout-type formulas, the non-homogeneous
Bézout behaves best. After profiling, it is observed that the hybrid Bézout matrix
dominates the three in forming the subresultant matrix and, thus, has high
potentiality to be optimized when used for computing subresultants.

The paper is structured as follows. In Sect. 2, we review the concepts of
Bézout matrix as well as its two variants (i.e., hybrid Bézout matrix and non-
homogeneous Bézout matrix) and subresultant polynomial for several polynomi-
als. The main result of the paper is presented in Sect. 3 and the proof is given
in Sect. 4. Experimental results are reported in Sect. 5 with further remarks and
the paper is concluded in Sect. 6.

2 Preliminaries

We start with a brief introduction on the Bézout-type subresultant polynomial
for two univariate polynomials as well as its two variants. Then the concept of
subresultant polynomial for several univariate polynomials is reviewed. We adopt
the geometric expression of subresultant polynomials, that is, the expression in
roots of the given polynomials to define the subresultant polynomial because it is
very helpful for the reasoning purpose. Unless otherwise stated, the polynomials
appearing in the rest of the paper are all univariate polynomials over the rational
field, denoted by Q, with x as the variable.

2.1 The Bézout-Type Subresultant and Its Variants for Two
Polynomials

We now recall the concepts of Bézout matrix and Bézout resultant for two poly-
nomials as well as their two invariants including hybrid Bézout matrix/resultant

352 W. Wang and J. Yang

and non-homogeneous Bézout matrix/resultant. In the rest of the subsection, we
assume A,B ∈ Q[x] are of degrees m and n, respectively, where m ≥ n. More
explicitly,

A = amxm + am−1x
m−1 + · · · + a0,

B = bnxn + bn−1x
n−1 + · · · + b0,

where ambn �= 0.

Definition 1. The Bézout matrix Bez(A,B) of A and B with respect to x is
defined by

Bez(A,B) :=

⎡
⎢⎣

cm−1,0 · · · cm−1,m−1

...
...

c0,0 · · · c0,m−1

⎤
⎥⎦ ,

where ci,jis given by

A(x)B(y) − A(y)B(x)
x − y

=
m−1∑
i,j=0

ci,jx
iyj . (1)

The determinant of Bez(A,B) is called the Bézout resultant of A and B with
respect to x.

Definition 2. The hybrid Bézout matrix H(A,B) of A and B with respect to x
is defined by

H(A,B) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 · · · bn

.
b0 b1 · · · bn

f1,m f1,m−1 · · · · · · f1,2 f1,1

...
...

...
...

fn,m fn,m−1 · · · · · · fn,2 fn,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎬
⎭ m − n rows

⎫
⎬
⎭ n rows

where fr,j is the coefficient of the following polynomial

kr = (amxr−1 + · · · + am−r+1)(bn−rx
m−r + · · · + b0x

m−n)

− (am−rx
m−r + · · · + a0)(bnxr−1 + · · · + bn−r+1)

=
m∑

j=1

fr,jx
m−j

in the term xm−j for j = 1, . . . ,m. The determinant of H(A,B) is called the
hybrid Bézout resultant of A and B with respect to x.

Two Variants of Bézout Subresultants for Several Univariate Polynomials 353

Definition 3. The non-homogeneous Bézout matrix N(A,B) of A and B with
respect to x is defined by

N(A,B) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 · · · bn

.
b0 b1 · · · bn

cn−1,0 cn−1,1 · · · · · · cn−1,m−2 cn−1,m−1

...
...

...
...

c0,0 c0,1 · · · · · · c0,m−2 c0,m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎬
⎭m − n rows

⎫
⎬
⎭n rows

where ci,j’s are as in (1). The determinant of N(A,B) is called the non-homo-
geneous Bézout resultant of A and B with respect to x.

2.2 Subresultant in Roots for Several Polynomials

In [12], Hong and Yang generalized the concept of subresultant polynomial for
two univariate polynomials to the multi-polynomial case. We recall the formal
definition of generalized subresultant polynomial for several univariate polyno-
mials below.

Definition 4. Given F = (F0, F1, . . . , Ft) ⊆ Q[x], assume F0 = a0d0

∏d0
i=1(x −

αi), i.e., α1, . . . , αd0 are the d0 complex roots of F0 over the complex field C,
where d0 = degF0. Let δ = (δ1, . . . , δt) ∈ Nt be such that |δ| = δ1+ · · ·+ δt ≤ d0.
Then the generalized δ-th subresultant polynomial Sδ of F with respect to x is
defined by

Sδ(F) := aδ0
0d0

detMδ/detV,

where1

Mδ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
1F1(α1) · · · α0

d0
F1(αd0)

...
...

αδ1−1
1 F1(α1) · · · αδ1−1

d0
F1(αd0)

...
...

...
...

α0
1Ft(α1) · · · α0

d0
Ft(αd0)

...
...

αδt−1
1 Ft(α1) · · · αδt−1

d0
Ft(αd0)

α0
1(x − α1) · · · α0

d0
(x − αd0)

...
...

αε−1
1 (x − α1) · · · αε−1

d0
(x − αd0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

1 The delimitation lines in matrices hereinafter do not have any particular mathemat-
ical meaning and they are only for the presentation purpose.

354 W. Wang and J. Yang

V =

⎡
⎢⎣

α0
1 · · · α0

d0
...

...
αd0−1
1 · · · αd0−1

d0

⎤
⎥⎦ ;

δ0 = max(d1 + δ1 − d0, . . . , dt + δt − d0, 1 − |δ|);
ε = d0 − |δ|.

The rational expression for Sδ in Definition 4 should be interpreted as follows;
otherwise, the denominator will vanish when F is not squarefree.

(1) Treat α1, . . . , αd0 as indeterminates and carry out the exact division, which
results in a symmetric polynomial in terms of α1, . . . , , αd0 .

(2) Evaluate the polynomial with α1, . . . , αd0 assigned the value of roots of F .

Therefore, Sδ is essentially a polynomial in α1, . . . , αd0 although it is presented
in the form of rational function. Furthermore, note that Sδ is symmetric in
α1, . . . , αd0 and thus it can be written as a polynomial in the coefficients of
polynomials in F . In fact, Hong and Yang provided three representations of Sδ

in terms of coefficients, including the Sylvester-type, the Bézout-type, and the
Barnett-type. In particular, the explicit formula for the Bézout-type subresultant
polynomial for F is presented below. The construction of the Bézout-type sub-
resultant inspires us with a promising way to construct the hybrid Bézout-type
and non-homogeneous Bézout-type subresultant polynomials.

Theorem 1. Given F = (F0, F1, . . . , Ft) ⊆ Q[x], assume di = degFi for 0 ≤
i ≤ t with d0 = max0≤i≤t di and δ = (δ1, . . . , δt) ∈ Nt\{0, . . . , 0} satisfying
|δ| = δ1 + · · · + δt ≤ d0. Let

Bezδ(F) :=
[
R1 R2 · · · Rt Xδ,d0

]T

where

– Ri consists of the first δi columns of Bez(F0, Fi), and

– Xδ,d0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x

−1
. . .
. . . x

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

d0×(d0−|δ|)

.

Then we have
Sδ = a

δ0−|δ|
0d0

detBezδ(F).

3 Main Results

In this section, we propose a new approach to constructing the hybrid Bézout
matrix and the non-homogeneous Bézout subresultant matrix for a set of uni-
variate polynomials, which is different from the way developed by Diaz–Toca and

Two Variants of Bézout Subresultants for Several Univariate Polynomials 355

Gonzalez–Vega in [10]. We will show that the determinants of the two matrices
are identical with the subresultant polynomial of the given polynomial set.

In [12], Hong and Yang proposed a method of constructing the Bézout subre-
sultant matrix for several polynomials from the Bézout matrices Bez(F0, F1), . . . ,
Bez(F0, Ft). Following the similar idea, we construct the hybrid Bézout sub-
resultant matrix and non-homogeneous Bézout subresultant matrix for more
than two univariate polynomials below. For stating the main result, we assume
Fi = aidi

xdi + · · · + ai0 for i = 0, 1, . . . , t where d0 = max0≤i≤t di and

Bez(F0, Fi) =

⎡
⎢⎢⎣

c
(i)
d0−1,0 · · · c

(i)
d0−1,d0−1

...
...

c
(i)
0,0 · · · c

(i)
0,d0−1

⎤
⎥⎥⎦ .

Definition 5. Given F = (F0, F1, . . . , Ft) ⊆ Q[x] where Fi =
∑di

j=0 aijx
j and

aidi
�= 0 and δ = (δ1, . . . , δt) ∈ Nt\{0, . . . , 0} satisfying |δ| = δ1 + · · · + δt ≤ d0,

the generalized δ-th hybrid Bézout subresultant matrix Hδ of F with respect to x
is defined by

Hδ(F) :=
[
R1 R2 · · · Rt Xδ,d0

]T
,

where Ri is the transpose of the submatrix of H(F0, Fi) obtained by selecting its
first δi rows, that is

Ri =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai0 · · · aidi

. . .
. . .

ai0 · · · aidi

f
(i)
1,d0

· · · · · · f
(i)
1,2 f

(i)
1,1

...
...

...
f
(i)
δi+di−d0,d0

· · · · · · f
(i)
δi+di−d0,2 f

(i)
δi+di−d0,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎫
⎬
⎭min(δi, d0 − di) rows

⎫
⎬
⎭max(0, δi + di − d0) rows

and f
(i)
r,j is the coefficient of the following polynomial

k(i)
r = (a0d0x

r−1 + · · · + a0d0−r+1)(aidi−rx
d0−r + · · · + ai0x

d0−di)

− (a0d0−rx
d0−r + · · · + a00)(aidi

xr−1 + · · · + aidi−r+1) (2)

=
d0∑

j=1

f
(i)
r,j xd0−j

in the term xd0−j for j = 1, . . . , d0.

Definition 6. Given F = (F0, F1, . . . , Ft) ⊆ Q[x] where Fi =
∑di

j=0 aijx
j and

aidi
�= 0 and δ = (δ1, . . . , δt) ∈ Nt\{0, . . . , 0} satisfying |δ| = δ1 + · · · + δt ≤ d0,

the generalized δ-th non-homogenous Bézout subresultant matrix Nδ of F with
respect to x is defined by

Nδ(F) :=
[
R1 R2 · · · Rt Xδ,d0

]T

356 W. Wang and J. Yang

where

Ri =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai0 · · · aidi

. . .
. . .

ai0 · · · aidi

c
(i)
di−1,0 · · · · · · c

(i)
di−1,d0−2 c

(i)
di−1,d0−1

...
...

...
c
(i)
d0−δi,0 · · · · · · c

(i)
d0−δi,d0−2 c

(i)
d0−δi,d0−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎫⎬
⎭min(δi, d0− di) rows

⎫
⎬
⎭max(0, δi + di − d0) rows

Remark 1. The matrices Hδ(F) and Nδ(F) can be viewed as a generalization of
the subresultant matrix developed by Li in [16] for the Sylvester-type subresul-
tant polynomial of two univariate polynomials. c = a

δ0−∑t
i=1 max(0,δi+di−d0)

0d0
.

Theorem 2 (Main result). With the above settings, we have

(1) Sδ(F) = c · detHδ(F),
(2) Sδ(F) = c · detNδ(F),

where c = a
δ0−∑t

i=1 max(0,δi+di−d0)
0d0

Remark 2.

(1) The difference between the construction of Bézout-type subresultant vari-
ants in this paper and that in [10] is that we select rows to formulate the
subresultant matrices while the latter selects columns. In the two-polynomial
case, both approaches produce the same subresultant polynomials.

(2) Note that max(0, δi+di −d0) ≤ δi and thus
∑t

i=1 max(0, δi + di − d0) ≤ |δ|.
Therefore, when compared with the generalized Bézout subresultant poly-
nomials developed in [12], the two invariants of Bézout-type subresultant
polynomials developed in the current paper often have smaller degrees.

Example 1. Consider F = (F0, F1, F2) where

F0 = a05x
5 + a04x

4 + a03x
3 + a02x

2 + a01x + a00,

F1 = a14x
4 + a13x

3 + a12x
2 + a11x + a10,

F2 = a24x
4 + a23x

3 + a22x
2 + a21x + a20.

Two Variants of Bézout Subresultants for Several Univariate Polynomials 357

and a05a14a24 �= 0. Let δ = (2, 2). By Definitions 5 and 6,

Hδ(F) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a10 −a00a14 a20 −a00a24 x

a11 −a01a14 + a05a10 a21 −a01a24 + a05a20 −1

a12 −a02a14 + a05a11 a22 −a02a24 + a05a21 0

a13 −a03a14 + a05a12 a23 −a03a24 + a05a22 0

a14 −a04a14 + a13a05 a24 −a04a24 + a23a05 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

Nδ(F) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a10 −a00a14 + a04a10 a20 −a00a24 + a04a20 x

a11 −a01a14 + a04a11 + a05a10 a21 −a01a24 + a04a21 + a05a20 −1

a12 −a02a14 + a04a12 + a05a11 a22 −a02a24 + a04a22 + a05a21 0

a13 −a03a14 + a04a13 + a05a12 a23 −a03a24 + a04a23 + a05a22 0

a14 a13a05 a24 a23a05 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

Further calculation yields

δ0 = max(δ1 + d1 − d0, ˜δ2 + d2 − d0, 1 − (δ1 + δ2)) = 1,

c = a
δ0−(max(0,δ1+d1−d0)+max(0,δ2+d2−d0))
05 = a−1

05 .

By Theorem 2, we have

Sδ(F) = a−1
05 · detHδ(F) = a−1

05 · detNδ(F).

If one computes Sδ(F) with the Bézout subresultant matrix of F , then by
Theorem 1,

Sδ(F) = a−3
05 · detBezδ(F),

which indicates that detBezδ(F) has a higher degree than detHδ(F) and
detNδ(F).

4 Proof

In this section, we show the proof of Theorem 2.

4.1 Proof of Theorem 2-(1)

Proof. By Definition 4, Sδ(F) · detV = aδ0
0d0

detMδ(F). Thus, we only need to
show that

aδ0
0d0

detMδ(F) = c · det(Hδ(F) · V).

It inspires us to simplify the determinant of Hδ(F) · V .

358 W. Wang and J. Yang

Consider the product

Hδ(F) · V =

⎡
⎢⎢⎢⎢⎣

RT
1
...

RT
t

XT
δ,d0

⎤
⎥⎥⎥⎥⎦

· V =

⎡
⎢⎢⎢⎢⎣

RT
1 V
...

RT
t V

XT
δ,d0

V

⎤
⎥⎥⎥⎥⎦

where

Ri =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai0 · · · aidi

.
ai0 · · · aidi

f
(i)
1,d0

· · · · · · f
(i)
1,2 f

(i)
1,1

...
...

...
f
(i)
δi+di−d0,d0

· · · · · · f
(i)
δi+di−d0,2 f

(i)
δi+di−d0,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎫
⎬
⎭min(δi, d0 − di) rows

⎫
⎬
⎭max(0, δi + di − d0) rows

Meanwhile, we partition the denominator Mδ of Sδ(F) into t + 1 parts, that is

Mδ(F) =

⎡
⎢⎢⎢⎣

M1

...
Mt

Xε

⎤
⎥⎥⎥⎦ (3)

where

Mi =

⎡
⎢⎣

α0
1Fi(α1) · · · α0

d0
Fi(αd0)

...
...

αδi−1
1 Fi(α1) · · · αδi−1

d0
Fi(αd0)

⎤
⎥⎦ ,

Xε =

⎡
⎢⎣

α0
1(x − α1) · · · α0

d0
(x − αd0)

...
...

αε−1
1 (x − α1) · · · αε−1

d0
(x − αd0)

⎤
⎥⎦ .

We will show that there exists a δi × δi matrix Ti such that TiMi = RT
i V and

XT
δ,d0

V = Xε.

1. Show that TiMi = RT
i V . Carrying out the matrix product RT

i V and combin-
ing the following observations:

– ai0α
0
j + · · · + aidi

αdi
j = Fi(αj), and

– f
(i)
r,d0

α0
j + · · · + f

(i)
r,1α

d0−1
j = k

(i)
r (αj),

Two Variants of Bézout Subresultants for Several Univariate Polynomials 359

we obtain

RT
i V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
1Fi(α1) · · · α0

d0
Fi(αd0)

...
...

α
min(δi,d0−di)−1
1 Fi(α1) · · · α

min(δi,d0−di)−1
d0

Fi(αd0)
k
(i)
1 (α1) · · · k

(i)
1 (αd0)

...
...

k
(i)
δi+di−d0

(α1) · · · k
(i)
δi+di−d0

(αd0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall (2). Plugging x = αj into it, we obtain

k(i)
r (αj) = (a0d0α

r−1
j + · · · + a0d0−r+1)(aidi−rα

d0−r
j + · · · + ai0α

d0−di
j)

− (a0d0−rα
d0−r
j + · · · + a00)(aidi

αr−1
j + · · · + aidi−r+1)

= (a0d0α
r−1
j + · · · + a0d0−r+1)(aidi−rα

d0−r
j + · · · + ai0α

d0−di
j)

+ (a0d0α
d0
j + · · · + a0d0−r+1α

d0−r+1
j)(aidi

αr−1
j + · · · + aidi−r+1)

= (a0d0α
r−1
j + · · · + a0d0−r+1) · (ai0α

d0
j + · · · + ai0α

d0−di
j)

= αd0−di
j Fi(αj)(a0d0α

r−1
j + · · · + a0d0−r+1),

which immediately yields that

RT
i V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
1Fi(α1) · · · α0

d0
Fi(αd0)

...
...

α
min(δi,d0−di)−1
1 Fi(α1) · · · α

min(δi,d0−di)−1
d0

Fi(αd0)
αd0−di
1 Fi(α1)G1(α1) · · · αd0−di

d0
Fi(αd0)G1(αd0)

...
...

αd0−di
1 Fi(α1)Gδi+di−d0(α1) · · · αd0−di

d0
Fi(αd0)Gδi+di−d0(αd0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Gr(αj) = a0d0α
r−1
j + · · ·+a0d0−r+1. We continue to simplify the lower

part of RT
i V (which has max(0, δi + di − d0) rows) with a series of row oper-

ations.
Observing that

⎡
⎢⎢⎢⎣

G1(αj)
G2(αj)

...
Gδi+di−d0(αj)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a0d0

a0d0−1 a0d0

...
...

. . .
a0(2d0−δi−di+1) · · · · a0d0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α0
j

α1
j
...

αδi+di−d0−1
j

⎤
⎥⎥⎥⎦ ,

360 W. Wang and J. Yang

we immediately have
⎡
⎢⎣

αd0−di
1 Fi(α1)G1(α1) · · · αd0−di

d0
Fi(αd0)G1(αd0)

...
...

αd0−di
1 Fi(α1)Gδi+di−d0(α1) · · · αd0−di

d0
Fi(αd0)Gδi+di−d0(αd0)

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

a0d0

a0d0−1 a0d0

...
...

. . .
a0(2d0−δi−di+1) · · · · a0d0

⎤
⎥⎥⎥⎦

⎡
⎢⎣

α0
1 · · · α0

d0
...

. . .
...

αδi+di−d0−1
1 · · · αδi+di−d0−1

d0

⎤
⎥⎦

·

⎡
⎢⎣

αd0−di
1 Fi(α1)

. . .
αd0−di

d0
Fi(αd0)

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

a0d0

a0d0−1 a0d0

...
...

. . .
a0(2d0−δi−di+1) · · · · a0d0

⎤
⎥⎥⎥⎦

⎡
⎢⎣

αd0−di
1 Fi(α1) · · · αd0−di

d0
Fi(αd0)

...
...

αδi−1
1 Fi(α1) · · · αδi−1

d0
Fi(αd0)

⎤
⎥⎦ .

Hence, let

T̃i =

⎡
⎢⎢⎢⎣

a0d0

a0d0−1 a0d0

...
...

. . .
a0(2d0−δi−di+1) · · · · a0d0

⎤
⎥⎥⎥⎦

which has the order max(0, δi + di − d0). Then

RT
i V =

[
Ii

T̃i

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
1Fi(α1) · · · α0

d0
Fi(αd0)

...
...

α
min(δi,d0−di)−1
1 Fi(α1) · · · α

min(δi,d0−di)−1
d0

Fi(αd0)
αd0−di
1 Fi(α1) · · · αd0−di

d0
Fi(αd0)

...
...

αδi−1
1 Fi(α1) · · · αδi−1

d0
Fi(αd0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Ii is of order min(δi, d0 − di). Let Ti =
[
Ii

T̃i

]
. Then Ti is of order δi

and RT
i V = TiMi.

2. Show that XT
δ,d0

V = Xε.

Two Variants of Bézout Subresultants for Several Univariate Polynomials 361

It is easy to be verified by carrying out the following matrix product:

XT
δ,d0

V =

⎡
⎢⎣
x −1

.
x −1

⎤
⎥⎦

ε×d0

⎡
⎢⎣

α0
1 · · · α0

d0
...

...
αd0−1
1 · · · αd0−1

d0

⎤
⎥⎦

=

⎡
⎢⎣

α0
1(x − α1) · · · α0

d0
(x − αd0)

...
...

ε−1(x − α1) · · · αε−1
d0

(x − αd0)

⎤
⎥⎦ = Xε.

To sum up, we have

⎡
⎢⎢⎢⎣

T1

. . .
Tt

I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

M1

...
Mt

Xε

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

RT
1 V
...

RT
t V

Xδ,d0V

⎤
⎥⎥⎥⎥⎦
= Hδ(F) · V.

Finally, taking determinants on the left- and right-hand sides, we obtain the
following:

t∏
i=1

detTi · detMδ = detHδ(F) · detV,

where

detTi = det
[
Ii

T̃i

]
= det T̃i.

Recall that T̃i is of order max(0, δi + di − d0) and is a lower-triangular matrix
with diagonal entries to be a0d0 . Thus

det T̃i = a
max(0,δi+di−d0)
0d0

which yields detTi = a
max(0,δi+di−d0)
0d0

. Then it is easy to derive that

Sδ(F) = aδ0
0d0

· detMδ/detV

= aδ0
0d0

detHδ(F)
/ t∏

i=1

detTi

= a
δ0−∑t

i=1 max(0,δi+di−d0)
0d0

detHδ(F).

4.2 Proof of Theorem 2-(2)

Proof. Again by Definition 4, we only need to show that

aδ0
0d0

detMδ(F) = c · det(Nδ(F) · V),

which inspires us to simplify the determinant of Nδ(F) · V .

362 W. Wang and J. Yang

Consider the product Nδ(F) · V . We have

Nδ(F) · V =

⎡
⎢⎢⎢⎢⎣

RT
1

...
RT

t

XT
δ,d0

⎤
⎥⎥⎥⎥⎦

· V =

⎡
⎢⎢⎢⎢⎣

RT
1 V

...
RT

t V

XT
δ,d0

V

⎤
⎥⎥⎥⎥⎦

where

Ri =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai0 · · · aidi

.
ai0 · · · aidi

c
(i)
di−1,0 · · · · · · c

(i)
di−1,d0−2 c

(i)
di−1,d0−1

...
...

...
c
(i)
d0−δi,0

· · · · · · c
(i)
d0−δi,d0−2 c

(i)
d0−δi,d0−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎫
⎬
⎭min(δi, d0 − di) rows

⎫
⎬
⎭max(0, δi + di − d0) rows

As done in (3), we partition the denominator Mδ of Sδ(F), into t + 1 parts,
denoted by M1, . . . ,Mt,Xε. By the proof of Theorem 2-(1), XT

δ,d0
V = Xε.

It remains to show RT
i V = TiMi for some δi × δi matrix Ti.

Note that

RT
i V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
1Fi(α1) · · · α0

d0
Fi(αd0)

...
...

α
min(δi,d0−di)−1
1 Fi(α1) · · · α

min(δi,d0−di)−1
d0

Fi(αd0)
C

(i)
di−1 · ᾱ1 · · · C

(i)
di−1 · ᾱd0

...
...

C
(i)
d0−δi

· ᾱ1 · · · C
(i)
d0−δi

· ᾱd0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

C
(i)
k · ᾱj =

[
c
(i)
k,0 c

(i)
k,1 · · · c

(i)
k,d0−1

]
·

⎡
⎢⎢⎢⎢⎢⎣

α0
j

α1
j

...

αd0−1
j

⎤
⎥⎥⎥⎥⎥⎦

.

Now we partition RT
i V into two blocks, i.e.,

RT
i V =

[
U1

U2

]

Two Variants of Bézout Subresultants for Several Univariate Polynomials 363

with

U1 =

⎡
⎢⎣

α0
1Fi(α1) · · · α0

d0
Fi(αd0)

...
...

α
min(δi,d0−di)−1
1 Fi(α1) · · · α

min(δi,d0−di)−1
d0

Fi(αd0)

⎤
⎥⎦ ,

U2 =

⎡
⎢⎢⎣

C
(i)
di−1 · ᾱ1 · · · C

(i)
di−1 · ᾱd0

...
...

C
(i)
d0−δi

· ᾱ1 · · · C
(i)
d0−δi

· ᾱd0

⎤
⎥⎥⎦ .

We continue to simplify U2 (which has max(0, δi − d0 + di) rows) with a series
of row operations.

Recall [12, Lemma 35] which states that

C
(i)
k · ᾱj = a0d0Fi(αj)(−1)d0−k−1e

(j)
d0−k−1

where e
(j)
� denotes the �-th elementary symmetric function on α1, α2, . . . , αj−1,

αj+1, . . . , αd0 . Substituting the above equation into U2 and factoring a0d0 out,
we have

U2 = a0d0

⎡
⎢⎢⎣

Fi(α1)(−1)d0−die
(1)
d0−di

· · · Fi(αd0)(−1)d0−die
(d0)
d0−di

...
...

Fi(α1)(−1)δi−1e
(1)
δi−1 · · · Fi(αd0)(−1)δi−1e

(d0)
δi−1

⎤
⎥⎥⎦ .

By [12, Lemma 36],

e
(i)
j =

j∑
k=0

(−1)kej−kαk
i = [(−1)0ej (−1)1ej−1 · · · (−1)je0 0 · · · 0] ·

⎡
⎢⎢⎢⎣

α0
i

α1
i
...

αd0−1
i

⎤
⎥⎥⎥⎦

where e� is the �-th elementary symmetric polynomial on α1, . . . , αd0 with the
convention e0 := 1. Denote [(−1)0ej (−1)1ej−1 · · · (−1)je0 0 · · · 0] with ēj .
Then e

(i)
j = ējᾱi and thus

U2 = a0d0

⎡
⎢⎣

Fi(α1)(−1)d0−di ēd0−di
ᾱ1 · · · Fi(αd0)(−1)d0−di ēd0−di

ᾱd0

...
...

Fi(α1)(−1)δi−1
ēδi−1ᾱ1 · · · Fi(αd0)(−1)δi−1

ēδi−1ᾱd0

⎤
⎥⎦

= a0d0

⎡
⎢⎣
(−1)d0−di ēd0−di

...
(−1)δi−1

ēδi−1

⎤
⎥⎦

[
ᾱ1 · · · ᾱd0

]
⎡
⎢⎣

Fi(α1)
. . .

Fi(αd0)

⎤
⎥⎦ .

364 W. Wang and J. Yang

Noting that the last d0−δi columns of ēd0−di
, . . . , ēδi−1 are all zeros, we truncate

these columns and denote the resulting vectors with ẽd0−di
, . . . , ẽδi−1. With the

the last d0 − δi rows of
[
ᾱ1 · · · ᾱd0

]
cancelled by these zero columns, we obtain

U2 = T̃i

⎡
⎢⎣

α0
1 · · · α0

d0
...

...
αδi−1
1 · · · αδi−1

d0

⎤
⎥⎦

⎡
⎢⎣

Fi(α1)
. . .

Fi(αd0)

⎤
⎥⎦

where

T̃i = a0d0

⎡
⎢⎣
(−1)d0−di ẽd0−di

...
(−1)δi−1

ẽδi−1

⎤
⎥⎦ .

It is easy to see that T̃i is of order max(0, δi − d0 + di) × δi.
On the other hand, it is observed that

U1 =
[
Ii 0

]
⎡
⎢⎣

α0
1 · · · α0

d0
...

...
αδi−1
1 · · · αδi−1

d0

⎤
⎥⎦

⎡
⎢⎣

Fi(α1)
. . .

Fi(αd0)

⎤
⎥⎦

where the order of Ii is min(δi, d0 − di). We construct

Ti =
[

Ii 0
T̃i

]

and it follows that

RT
i V =

[
U1

U2

]
= Ti

⎡
⎢⎣

α0
1 · · · α0

d0
...

...
αδi−1
1 · · · αδi−1

d0

⎤
⎥⎦

⎡
⎢⎣

Fi(α1)
. . .

Fi(αd0)

⎤
⎥⎦ = TiMi.

Finally assembling RT
i V together, we achieve the following:

Nδ(F) · V =

⎡
⎢⎢⎢⎢⎣

RT
1 V

...
RT

t V

XT
δ,d0

V

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

T1M1

...
TtMt

Xε

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T1

. . .
Tt

Iε

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

M1

...
Mt

Xε

⎤
⎥⎥⎥⎦

where Iε is the identity matrix of order ε. Taking determinant on both sides
yields

detNδ(F) · detV =
t∏

i=1

detTi · detMδ.

Further calculation derives

detTi = det
[

I 0
T̃i

]
= a

∑t
i=1 max(0,δi−d0+di)

0d0
,

Two Variants of Bézout Subresultants for Several Univariate Polynomials 365

which immediately implies

Sδ(F) = aδ0
0d0

detMδ/detV = aδ0
0d0

· detNδ(F) · 1∏t
i=1 detTi

= c · detNδ(F),

where
c = a

δ0−∑t
i=1 max(0,δi−d0+di)

0d0
.

5 Experimental Results

In this section, we run a collection of examples to examine the efficiency for
computing the subresultant polynomials with various subresultant formulas. The
involved formulas include the Sylvester type, the Barnett type, and the Bézout
type as well as its two variants developed in the current paper. These examples
are run on a PC equipped with the Intel Core i7-10710U processor and a 16.0G
RAM. In particular, the comparison is carried out from three aspects. One is the
time cost for computing different subresultant polynomials with the same poly-
nomial set as δ changes (see Fig. 1); another is the total cost for computing the
subresultant polynomials for all possible δ’s (see Table 1); the third one is the cost
charged by each stage in the computation of multi-polynomial subresultant poly-
nomials (see Table 2). The test examples are generated randomly and the pro-
gram can be accessed via the link https://github.com/JYangMATH/Bezsres.git.

Table 1. Total time cost for computing Sδ for all possible δ’s with various formulas
where #δ is the number of all possible δ’s and the en-dash symbol indicates that the
running time goes beyond 1,200 s. In the table, NH Bézout and HB Bézout are the
abbreviations for non-homogeneous Bézout and hybrid Bézout, respectively

No. deg(F) #δ Sylvester Barnett Bézout NH Bézout HB Bézout

F1 (10, 9, 8) 66 1.893 2.531 0.169 0.093 0.316
F2 (19, 19, 15) 210 99.379 75.621 4.868 0.738 22.837
F3 (12, 10, 10, 8) 455 19.525 41.297 4.401 1.094 6.638
F4 (15, 14, 10, 8) 816 77.125 132.306 16.057 3.497 29.523
F5 (14, 14, 10, 8, 8) 3060 211.801 489.829 53.003 13.083 79.035
F6 (22, 21, 20) 276 – – 308.291 243.700 –
F7 (17, 9, 8, 8) 1140 525.281 416.500 68.047 291.094 240.703
F8 (15, 14, 14, 14) 816 – – 89.016 66.281 1157.250
F9 (14, 13, 13, 13) 680 – – 304.859 255.328 –

Figure 1 illustrates the cost for two polynomial sets as δ changes. The degrees
of the involving polynomials are (15, 12, 9) and (14, 12, 12) while the number of
parameters are both 2. Considering the total numbers of possible δ’s are 120 and
136 respectively, in the two examples, it is impractical to list all of them. Thus

https://github.com/JYangMATH/Bezsres.git

366 W. Wang and J. Yang

Fig. 1. The time cost for computing Sδ’s for two polynomials sets by the listed formulas
where the vertical axis stands for the time cost counted with seconds

we select 14 δ’s for each case. In Fig. 1 below, the costs for different formulas
are distinguished by line styling. It is seen that the three Bézout-type formulas
behave better than the other two (i.e., the Sylvester type and the Barnett type).
Moreover, the non-homogeneous Bézout type shows the least time consumption.
This observation is also supported by most of the results shown in Table 1. The
only exception is F7 where di’s for i = 1, . . . , t are much smaller than d0. It
is suspected that when the differences (d0 − di)’s are big, the symmetry in the
minors of the matrix Nδ will be destroyed, which invalidates the optimization
strategies in Maple for symmetric matrices when computing the determinants.
However, by Theorem 2, the resulting determinant detNδ indeed has a smaller
degree for such cases and, thus, it is expected that fast algorithms for comput-
ing detNδ with its specific structure integrated will significantly enhance the
efficiency for computing the generalized subresultant polynomials.

To get a better understanding on the time efficiency of the three Bézout
type formulas, we make a further profiling on them. With some analysis on
the program, we identify two operations that cover most of the running time,
which are matrix generation and determinant calculation. In Table 2, we show

Two Variants of Bézout Subresultants for Several Univariate Polynomials 367

Table 2. The profiling for time cost (in seconds) charged by two key steps in the
computation of Sδ’s with three Bézout-type subresultant formulas (where T is the
total time cost, M is the time cost for generating the subresultant matrices, and D is
that for calculating the determinants). In the table, NH Bézout and HB Bézout are
the abbreviations for non-homogeneous Bézout and hybrid Bézout

d = Bézout NH Bézout HB Bézout
degF T M D T M D T M D

(12, 11, 10) 11.300 6.155 5.097 7.509 2.237 5.240 40.412 0.000 40.334
(13, 10, 10) 7.934 4.764 3.155 5.547 2.128 3.387 22.423 0.000 22.392
(16, 12, 10) 33.030 23.890 9.125 26.797 7.780 19.017 120.701 0.000 120.544

(13, 12, 12) 12.418 8.781 3.622 4.750 2.031 2.704 48.396 0.000 48.302
(14, 10, 5) 9.036 5.860 3.161 7.815 1.686 6.129 17.045 0.000 16.998
(12, 10, 10, 8) 27.840 17.195 10.330 27.068 6.015 19.398 56.600 0.016 59.069
(13, 12, 11, 10) 57.501 39.009 18.022 48.085 11.057 29.707 169.479 0.032 169.353

(10, 9, 8, 8, 7) 37.152 24.447 12.078 31.311 9.711 17.998 39.550 0.000 39.348
(12, 12, 11, 10, 9) 154.086 99.524 53.013 108.431 38.425 62.639 392.935 0.032 392.701

the time cost for each operation with 9 tested examples. The total time cost
listed in the table is the sum of time cost for all possible δ’s and the numbers of
involved parameters are all 2. It is seen that in all cases, the non-homogeneous
Bézout formula dominates all the three formulas while the hybrid Bézout behaves
worst. However, after a closer look, it is found that the time for generating the
hybrid Bézout matrix takes almost no time compared with other two formulas.
The calculation of determinants takes up almost all the time. Then it naturally
leads to a question: Is there an efficient method for computing the determinant
of a hybrid Bézout matrix with its structure to be fully exploited? This is an
interesting topic that needs to be further studied.

It should be pointed out that the matrices generated with the five formulas
have their own interesting structures which may be used to optimize the compu-
tation of generalized subresultant polynomials. In the current stage, we compute
the determinants using the Maple built-in command Determinant and will leave
the analysis of their hidden structures as well as their application in improving
the time efficiency for computing generalized subresultant polynomials in the
future.

6 Conclusion

In this paper, we develop two variants of Bézout-type subresultant polynomials
for a set of univariate polynomials. Compared with the Bézout type presented in
[12] which generalizes the classical one to the multi-polynomial case, the two new
variants in the current paper often have smaller degree. Furthermore, experimen-
tal results on a variety of examples show that the Bézout-type formula and its

368 W. Wang and J. Yang

variants exhibit better performance in computation. Among the three Bézout-
type formulas, the non-homogenous Bézout-type formula behaves best while the
hybrid Bézout show higher potentiality to be optimized.

It is noted that the computation of multi-polynomial resultants and subresul-
tants usually has two main steps, i.e., constructing the matrices and developing
fast algorithms for computing the determinants of these matrices. Each of the
steps may have a significant impact on the computational cost and each one
may dominate the other. Therefore, an interesting problem to be investigated in
the future is to study the patterns hidden in the matrices and develop various
strategies to reduce the cost.

Acknowledgments. The authors wish to thank the anonymous reviewers for their
helpful comments and insightful suggestions. The authors’ work was supported by
National Natural Science Foundation of China (Grant No. 12261010), Natural Science
Foundation of Guangxi (Grant No. 2023GXNSFBA026019) and the Natural Science
Cultivation Project of GXMZU (Grant No. 2022MDKJ001).

References

1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I:
the basic algorithm. SIAM J. Comput. 13(4), 865–877 (1984)

2. Asadi, M., Brandt, A., Jeffrey, D.J., Maza, M.M.: Subresultant chains using Bézout
matrices. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.)
CASC 2022. LNCS, vol. 13366, pp. 29–50. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-14788-3_3

3. Barnett, S.: Greatest common divisor of several polynomials. In: Mathematical
Proceedings of the Cambridge, vol. 70, pp. 263–268. Cambridge University Press
(1971)

4. Barnett, S.: Polynomials and Linear Control Systems. Marcel Dekker, Inc. (1983)
5. Bostan, A., D’Andrea, C., Krick, T., Szanto, A., Valdettaro, M.: Subresultants in

multiple roots: an extremal case. Linear Algebra Appl. 529, 185–198 (2017)
6. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. J. ACM

14(1), 128–142 (1967)
7. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier

elimination. J. Symb. Comput. 12(3), 299–328 (1991)
8. Cox, D.A., D’Andrea, C.: Subresultants and the Shape Lemma. Math. Comput.

92, 2355–2379 (2023)
9. Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest com-

mon divisor of several univariate polynomials through Bezout-like matrices. J.
Symb. Comput. 34(1), 59–81 (2002)

10. Diaz-Toca, G.M., Gonzalez-Vega, L.: Various new expressions for subresultants
and their applications. Appl. Algebr Eng. Comm. 15(3), 233–266 (2004)

11. Hong, H., Yang, J.: A condition for multiplicity structure of univariate polynomials.
J. Symb. Comput. 104, 523–538 (2021)

12. Hong, H., Yang, J.: Subresultant of several univariate polynomials. arXiv preprint
arXiv:2112.15370 (2021)

13. Hou, X., Wang, D.: Subresultants with the Bézout matrix. In: Computer Mathe-
matics, pp. 19–28. World Scientific (2000)

https://doi.org/10.1007/978-3-031-14788-3_3
https://doi.org/10.1007/978-3-031-14788-3_3
http://arxiv.org/abs/2112.15370

Two Variants of Bézout Subresultants for Several Univariate Polynomials 369

14. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon
resultants. In: Proceedings of the International Symposium on Symbolic and Alge-
braic Computation, pp. 99–107 (1994)

15. Lascoux, A., Pragacz, P.: Double Sylvester sums for subresultants and multi-Schur
functions. J. Symb. Comput. 35(6), 689–710 (2003)

16. Li, Y.B.: A new approach for constructing subresultants. Appl. Math. Comput.
183(1), 471–476 (2006)

17. Sylvester: On a theory of syzygetic relations of two rational integral functions, com-
prising an application to the theory of Sturm’s functions, and that of the greatest
algebraic common measure. Phil. Trans. R. Soc. Lond. 143, 407–548 (1853)

18. Terui, A.: Recursive polynomial remainder sequence and its subresultants. J. Alge-
bra 320(2), 633–659 (2008)

19. Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Com-
put. 25(3), 295–314 (1998)

20. Wang, D.: Computing triangular systems and regular systems. J. Symb. Comput.
30(2), 221–236 (2000)

Efficient Quotients of
Non-commutative Polynomials

Stephen M. Watt(B)

Cheriton School of Computer Science, University of Waterloo,
Waterloo N2L 3G1, Canada

smwatt@uwaterloo.ca

https://cs.uwaterloo.ca/~smwatt

Abstract. It is shown how to compute quotients efficiently in non-
commutative univariate polynomial rings. This extends earlier work
where efficient generic quotients were studied with a primary focus on
commutative domains. Fast algorithms are given for left and right quo-
tients of polynomials where the variable commutes with coefficients.
These algorithms are based on the concept of the “whole shifted inverse”,
which is a specialized quotient where the dividend is a power of the
polynomial variable. It is also shown that when the variable does not
commute with coefficients, that is for skew polynomials, left and right
whole shifted inverses are defined and may be used to compute right and
left quotients. In this case their computation is not asymptotically fast,
but once obtained, they may be used to compute multiple quotients, each
with one multiplication. Examples are shown of polynomials with matrix
coefficients, differential operators and difference operators. In addition,
a proof-of-concept generic Maple implementations is given.

Keywords: Non-commutative polynomials · Skew polynomials · Ore
Algebras · Generic Algorithms · Efficient quotients

1 Introduction

In symbolic mathematical computation it is important to have efficient algo-
rithms for the fundamental arithmetic operations of addition, multiplication
and division. While linear time algorithms for additive operations are usually
straightforward, considerable attention has been devoted to find efficient meth-
ods to compute products and quotients of integers, polynomials with integer
or finite field coefficients and matrices with elements from a ring. For these,
both practically efficient algorithms and theoretically important bounds are well
known.

For integer and polynomial division, efficient algorithms based on Newton
iteration allow the computation of quotients in time proportional to multiplica-
tion. Until recently, these algorithms left the original domain to perform arith-
metic in related domains. For integers, this involved computing an approximation
to the inverse of the divisor in extended precision approximate arithmetic or in a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 370–392, 2023.
https://doi.org/10.1007/978-3-031-41724-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_20&domain=pdf
https://doi.org/10.1007/978-3-031-41724-5_20

Efficient Quotients of Non-commutative Polynomials 371

residue ring, and for polynomials it involved computing the inverse of the reverse
of the divisor polynomial in ideal-adic arithmetic.

We have recently shown how these quotients may be computed without
leaving the original domain, and we have extended this to a generic domain-
preserving algorithm for rings with a suitable whole shift operation [10]. For inte-
gers the whole shift multiplies by a power of the representation base and for poly-
nomials it multiplies by a power of the variable, in both cases discarding terms
with negative powers. The previous paper developed the concept of the whole
shifted inverse and used it to compute quotients efficiently. Non-commutative
domains were mentioned only briefly.

The present article expands on how these methods may be used to compute
quotients of non-commutative polynomials. In particular, it is shown that

• the whole shifted inverse is well-defined on non-commutative polynomial rings
R[x],

• its computation is efficient,
• they may be used to compute left or right quotients in R[x], each with one

multiplication,
• left and right whole shifted inverses may be defined on skew polynomials

R[x;σ, δ], and
• they may be used to compute the right and left quotients in R[x;σ, δ], each

with one multiplication.

The remainder of this article is organized as follows. Section 2 presents
some basic background, including notation, the definition of division in a non-
commutative context, and the Newton-Schulz iteration. Section 3 considers divi-
sion of non-commutative polynomials in R[x], showing O(n2) algorithms for clas-
sical division and for pseudodivision. It recalls the notion of the whole shifted
inverse, proves it is well-defined on non-commutative R[x] and shows that it can
be used to compute left and right quotients in this setting. Section 4 recapitu-
lates the generic algorithms from [10] that use a modified Newton iteration to
compute the whole shifted inverse. It also explains why it applies when poly-
nomial coefficients are non-commutative. Section 5 gives an example of these
algorithms applied to polynomial matrices. Section 6 extends the discussion to
skew polynomials R[x;σ, δ], defining left and right whole shifted inverse, and
showing how they may be used. Section 7 gives linear ordinary differential and
difference operators as examples, before concluding remarks in Sect. 8.

372 S. M. Watt

2 Background

2.1 Notation

We adopt the following notation:

precB u number of base-B digits of an integer u, �logB |u|� + 1

precx p number of coefficients of a polynomial p, degreex p + 1

u quo v, u rem v quotient and remainder (see below)

uxquo v, uxrem v left and right (pseudo)quotient and remainder,

x ∈ {l, lp, r,pr}
shiftn v, shinvn v whole shift and whole shifted inverse (see below)

R[x;σ, δ], R[x, δ] skew polynomials (see Sect. 6)

iu, ui coefficient of skew polynomial u with variable powers

on the left, right.

xshiftnv, xshinvnv left and right whole shift and shifted inverse,

x ∈ {l, r} (see Sect. 6)

X(i) value of X at ith iteration

The “prec” notation, standing for “precision”, means the number of base-B digits
or polynomial coefficients. It is similar to that of [4], where it is used to present
certain algorithms generically for integers and polynomials. In particular, if we
take integers to be represented in base-B, i.e. for any integer u �= 0 there is
h = precB(u) − 1, such that

u =
h∑

i=0

uiB
i, ui ∈ Z, 0 ≤ ui < B, uh �= 0, (1)

then integers base-B behave similarly to univariate polynomials with coefficients
ui, but with carries complicating matters.

2.2 Division

The notion of integer quotients and remainders can be extended to more general
rings. For a Euclidean domain D with valuation N : D → Z≥0, such that for
any u, v ∈ D, v �= 0, there exist q, r ∈ D such that

u = qv + r, r = 0 or N(r) < N(v).

The value q is a quotient of u and v and r is a remainder of dividing u by v and
we write

q = u quo v r = u rem v

Efficient Quotients of Non-commutative Polynomials 373

when these are unique. When both the quotient and remainder are required, we
write u div v = (u quo v, u rem v). When D is a non-commutative ring with
a valuation N , there may exist left and right quotients such that

u = v ql + rl, rl = 0 or N(rl) < N(v)
u = qr v + rr, rr = 0 or N(rr) < N(v).

(2)

When these exist and are unique, we write

ql = u lquo v rl = u lrem v qr = u rquo v rr = u rrem v.

For certain non-commutative rings with a distance measure ‖ · ‖, a sequence
of approximations to the inverse of A may be computed via the Newton-Schulz
iteration [7]

X(i+1) = X(i) + X(i)(1 − AX(i)) (3)

where 1 denotes the multiplicative identity of the ring. There are several ways to
arrange this expression, but the form above emphasizes that as X(i) approaches
A−1, the product X(i)(1 − AX(i)) approaches 0. For C

n×n matrices, a suitable
initial value is X(0) = A†/(nTr(AA†)), where A† is the Hermitian transpose.

2.3 Whole Shift and Whole Shifted Inverse

In previous work [10] we studied the problem of efficient domain-preserving com-
putation of quotients and remainders for integers and polynomials, then general-
ized these results to a generic setting. To this end, we defined the notions of the
whole shift and whole shifted inverse with attention to commutative domains.
We recapitulate these definitions and two results relevant to the present article.

Definition 1 (Whole n-shift in R[x]). Given a polynomial u =
∑h

i=0 uix
i ∈

R[x], with R a ring and n ∈ Z, the whole n-shift of u with respect to x is

shiftn,xu =
∑

i+n≥0

uix
i+n. (4)

When x is clear by context, we write shiftnu.

Definition 2 (Whole n-shifted inverse in F [x]). Given n ∈ Z≥0 and v ∈
F [x], F a field, the whole n-shifted inverse of v with respect to x is

shinvn,xv = xn quo v. (5)

When x is clear by context, we write shinvnv,

Theorem 1. Given two polynomials u, v ∈ F [x], F a field, and 0 ≤ degree u ≤
h,

u quo v = shift−h(u · shinvh v). (6)

374 S. M. Watt

For classical and Karatsuba multiplication it is more efficient to compute
just the top part of the product in (6), omitting the lower h terms, instead of
shifting:

shift−h(u · shinvh v) = MultQuo(u, shinvh v, h),

with MultQuo(a, b, n) = ab quo xn computing only degree a + degree b − n + 1
terms. For multiplication methods where computing only the top part of the
product gives no saving, some improvement is obtained using

shift−h(u · shinvh v) = shift−(h−k)(shift−k u · shinvh v).

Theorem 2. Given v ∈ F [x], with F a field and h > degree v = k and suitable
starting value w(0), the sequence of iterates

w(i+1) = w(i) + shift−h

(
w(i)(shifth1 − vw(i))

)

converges to shinvh v in 	log2(h − k)
 steps.

A suitable starting value for w(0) is given by Shinv0 in Sect. 4.

3 Division in Non-Commutative R[x]

We now lay out how to use shift and shinv to compute quotients for polynomials
with non-commutative coefficients. First we show classical algorithms to compute
left and right quotients in R[x]. We then prove two theorems, one showing that
xnlquov = xnrquov in this setting, making the whole shifted inverse well defined,
and another showing that it may be used to compute left and right quotients.

Efficient Quotients of Non-commutative Polynomials 375

3.1 Definitions and Classical Algorithms

Let u and v be two polynomials in R[x] with Euclidean norm being the polyno-
mial degree. The left and right quotients and remainders are defined as in (2).
Left and right quotients will exist provided that vk is invertible in R and they
may be computed by Algorithm 1. In the presentation of the algorithm, π denotes
a permutation on two elements so is either the identity or a transposition. The
notation ×π is a shorthand for × ◦ π so a ×π b = a × b when π is the identity
and a ×π b = b × a when π is a transposition.

There are some circumstances where quotients or related quantities may be
computed even if vk is not invertible. When R is an integral domain, quotients
may be computed as usual in K[x] with K being the quotient field of R. Alter-
natively, when R is non-commutative but vk commutes with v, it is possible to
compute pseudoquotients and pseudoremainders satisfying

mu = v ql + rl, degree rl < degree v

um = qr v + rr, degree rr < degree v

m = vh−k+1
k ,

as shown in Algorithm 2. In this case, we write

ql = u lpquo v rl = lprem v

qr = u rpquo v rl = rprem v.

Requiring vk to commute with v is quite restrictive, however, so we focus our
attention to situations where the inverse of vk exists.

376 S. M. Watt

3.2 Whole Shift and Whole Shifted Inverse in R[x]

We now examine the notions of the whole shift and whole shifted inverse for
R[x] with non-commutative R. First consider the whole shift. Since x commutes
with all values in R[x], we may without ambiguity take, for u =

∑h
i=0 uix

i and
n ∈ Z,

shiftn u =
∑

i+n≥0

xn(uix
i) =

∑

i+n≥0

(uix
i)xn. (7)

That is, the fact that R[x] is non-commutative does not lead to left and right
variants of the whole shift.

We state two simple theorems with obvious proofs:

Theorem 3. Let w ∈ R[x]. Then, for all n ∈ Z≥0, shift−nshiftnw = w.

Theorem 4. Let u, v ∈ R[x] with degree u = h and degree v = k. Then, for
m ∈ Z,

shift−k−m(u × v) = shift−k(shift−m(u) × v)
shift−h−m(u × v) = shift−h(u × shift−m(v)).

We now come to the main point of this section and show shinv is well-defined
when R is non-commutative.

Theorem 5 (Whole shifted inverse for non-commutative R[x]).
Let v =

∑k
i=0 vix

i ∈ R[x], with R a non-commutative ring and vk invertible in
R. Then, for h ∈ Z≥0,

xh lquo v = xh rquo v.

Proof. Let ql = xhlquov and qr = xhrquov. If h < k, then ql = qr = 0.
Otherwise, both ql and qr have degree h − k ≥ 0 so

vk qlh−k = 1 qrh−k vk = 1 (8)
k∑

j=M

vj qli+k−j = 0
k∑

j=M

qri+k−j vj = 0, 0 ≤ i < h − k, (9)

where M = max(0, i − h + 2k). We show by induction on i that qli = qri for
0 ≤ i ≤ h − k. Since vk is invertible, (8) and (9) give

qlh−k = qrh−k = v−1
k (10)

and

qli = −
k−1∑

j=M

v−1
k vj qli+k−j qri = −

k−1∑

j=M

qri+k−j vj v−1
k , 0 ≤ i < h − k. (11)

Efficient Quotients of Non-commutative Polynomials 377

Equation (10) gives the base of the induction. Now suppose qli = qri for N <
i ≤ h − k. Then for i = N ≥ 0 equation (11) gives

qlN = −
k−1∑

j=M

v−1
k vj qlN+k−j = −

k−1∑

j=M

v−1
k vj qrN+k−j

= −
k−1∑

j=M

v−1
k vj

(
−

k−1∑

�=M

qrN+k−j+k−�v� v−1
k

)

= −
k−1∑

�=M

⎛

⎝−
k−1∑

j=M

v−1
k vj qrN+k−j+k−�

⎞

⎠ v� v−1
k

= −
k−1∑

�=M

qrN+k−j v� v−1
k = qrN .

�
Thus we may write shinvh v without ambiguity in the non-commutative case, i.e

shinvh v = xh lquo v = xh rquo v. (12)

3.3 Quotients from the Whole Shifted Inverse in R[x]

We consider computing the left and right quotients in R[x] from the whole shifted
inverse. We have the following theorem.

Theorem 6 (Left and right quotients from the whole shifted inverse
in R[x]). Let u, v ∈ R[x], R a ring, with degree v = k and vk invertible in R.
Then for h ≥ degree u,

u lquo v = shift−h(shinvh(v) × u) and
u rquo v = shift−h(u × shinvh(v)).

Proof. Consider first the right quotient. It is sufficient to show

u = shift−h(u × shinvh v) × v + rr

for some rr with degree rr < k. It suffices to show

shift−k u = shift−k

(
shift−h(u × shinvh v) × v

)
. (13)

We have

(u × shinvh v) × v = u × ((xh rquo v) × v) (14)

= u × (xh − ρ), ρ = 0 or degree ρ < k

= shifth u − u × ρ.

shifthu = (u × shinvh v) × v + u × ρ. (15)

378 S. M. Watt

Since h ≥ 0, Theorem 3 applies and equation (15) gives

u = shift−h

(
(u × shinvh v) × v

)
+ shift−h(u × ρ)

with the degree of shift−h(u × ρ) less than k. Therefore

shift−k u = shift−k−h

(
(u × shinvh v) × v

)

= shift−k

(
shift−h(u × shinvh v) × v)

)
,

by Theorem 4, and we have shown equation (13) as required. The proof for lquo
replaces equation (14) with

v × (shinvh v × u) = (v × (xh lquo v)) × u

and follows the same lines, mutatis mutandis. �

As in the commutative case, it may be more efficient to compute only the top
part of the product instead of computing the whole thing then shifting away part.
Now that we have shown that shift and shinv are well-defined for non-commutative
R[x], we next see that shinv may be computed by our generic algorithm.

4 Generic Algorithm for the Whole Shifted Inverse

Earlier work has shown how to compute shinv efficiently for Z, both for Euclidean
domains F [x], and generically [10]. The generic version shown here in Algo-
rithm 3. We justify below that it applies equally well to polynomials with non-
commutative coefficients. The algorithm operates on a ring D that is required
to have a suitable shift and certain other operations and properties must be
defined. For example, on F [x], F a field, these are

shiftn u =

{
u · xn if n ≥ 0
u quo x−n if n < 0

coeff(u, i) = ui

Shinv0(v) = (1/vk x − 1/vk · vk−1 · 1/vk, 2)
hasCarries = false
Mult(a, b) = ab

MultMod(a, b, n) = ab rem xn.

The iterative step of Algorithm 3 is given on line 32. Since D.PowDiff computes
shifth1 − v · w, this line computes

shiftmw + shift2m−h

(
w · (shifth1 − v · w)

)
. (16)

Efficient Quotients of Non-commutative Polynomials 379

380 S. M. Watt

The shift operations are multiplications by powers of x, with shifthp = pxh.
The expressions involving k, h, � and m for shift amounts arise from multipli-
cation by various powers of x at different points in order to compute shorter
polynomials when possible. Since x commutes with all values, it is possible to
accumulate these into single pre- and post- shifts. With this in mind, the R[x]
operations + and · ultimately compute the polynomial coefficients using the
operations of R and the order of the multiplicands in (16) is exactly that of the
Newton-Schulz iteration (3). The form of Shinv0 above is chosen so that it gives
a suitable initial value for non-commutative polynomials.

The computational complexity of the Refine methods of Algorithm 4 may be
summarized as follows: The function D.Refine1 computes full-length values at
each iteration so has time complexity O(log(h−k)M(h)) where M(N) is the time
complexity of multiplication. The function D.Refine2 reduces the size of the val-
ues, computing only the necessary prefixes. The function D.Refine3 reduces the
size of some values further and achieves time complexity O

(∑log(h−k)
i=1 M(2i)

)
,

which gives time complexity O(M(N)), N = h − k for the purely theoretical
M(N) ∈ O(N log N), for Schönhage-Strassen M(N) ∈ O(N log N log log N) and
for M(N) ∈ O(Np), p > 0.

5 Non-commutative Polynomial Example

We give an example of computing left and right quotients via the whole shifted
inverse with R[x] = F7

2×2[x] using the algorithms of Sects. 3 and 4. Note that
R[x] is not a domain—there may be zero divisors, but it is easy enough to check
for them. This example, and the one in Sect. 7, were produced using the Domains
package in Maple [5]. The setup to use the Domains package for this example is

with(Domains);
F := GaloisField(7);
F2x2 := SquareMatrix(2, F);
PF2x2 := DenseUnivariatePolynomial(F2x2, x);

We start with

u =
[

4 6
6 1

]
x5 +

[
2 2
0 1

]
x4 +

[
2 1
1 3

]
x3 +

[
2 0
4 1

]
x2 +

[
3 3
5 4

]
x +

[
4 5
1 2

]
,

v =
[

4 3
4 5

]
x2 +

[
5 3
0 4

]
x +

[
1 2
6 1

]
.

The whole 5-shifted inverse of v is then

shinv5 v =
[

5 4
3 4

]
x3 +

[
6 0
4 1

]
x2 +

[
1 0
2 2

]
x +

[
5 1
6 3

]
.

From this, the left and right quotients and remainders are computed to be

ql =
[

2 6
1 1

]
x3 +

[
6 1
0 0

]
x2 +

[
2 0
3 3

]
x +

[
3 1
0 0

]
, rl =

[
1 6
4 1

]
x +

[
1 4
4 3

]
,

qr =
[

3 5
5 0

]
x3 +

[
1 1
1 5

]
x2 +

[
0 5
5 5

]
x +

[
4 0
2 6

]
, rr =

[
2 0
2 1

]
x +

[
0 4
5 6

]
.

Efficient Quotients of Non-commutative Polynomials 381

Taking a larger example where u has degree 100 and v degree 10, D.Refine1
computes shinv100v with one guard digit in 6 steps with intermediate values of
w all of prec 92. Methods D.Refine2 and D.Refine3 compute the same result
also in 6 steps but with values of w having prec 4, 8, 16, 32, 64, 92 successively.
Method D.Refine3 uses a shorter prefix of v on the first iteration (s = 3).
The Maple code used for this example is given in Fig. 1.

6 Division in R[x; σ, δ]

We now examine the more general case where the polynomial variable does not
commute with coefficients. For quotients and remainders to be defined, a notion
of degree is required and we note that this leads immediately to Ore extensions,
or skew polynomials. After touching upon classical algorithms, we introduce
the notions of left and right whole shifted inverse. We note that the modified
Newton-Schulz iteration may be used to compute whole shifted inverses, though
in this case there is no benefit over classical division. Finally, we show how left
and right whole shifted inverses may be used to compute right and left quotients,
each with only one multiplication.

6.1 Definitions and Classical Algorithms

Consider a ring of objects with elements from a ring R extended by x, with
x not necessarily commuting with elements of R. By distributivity, any finite
expression in this extended ring is equal to a sum of monomials, the monomials
composed of products of elements of R and x. To have a well-defined degree
compatible with that of usual polynomials, it is required that

∀ r ∈ R ∃ a, b, c, d ∈ R s.t. xr − rx = ax + b = xc + d. (17)

We call the elements of such a ring skew polynomials. Condition (17) implies
that for all r ∈ R there exist σ(r), δ(r) ∈ R such that

x r = σ(r)x + δ(r). (18)

Therefore, to have well-defined notion of degree, the ring must be an Ore exten-
sion, R[x;σ, δ]. Ore studied these non-commutative polynomials almost a century
ago [6] and overviews of Ore extensions in computer algebra are given in [1,2].
The subject is viewed from a linear algebra perspective in [3] and the complexity
of skew arithmetic is studied in [9]. The ring axioms of R[x;σ, δ] imply that σ
be an endomorphism on R and δ be a σ-derivation, i.e. for all r, s ∈ R

δ(r + s) = δ(r) + δ(s) δ(r · s) = σ(r) · δ(s) + δ(r) · s.

Different choices of σ and δ allow skew polynomials to represent linear differ-
ential operators, linear difference operators, q-generalizations of these and other
algebraic systems.

382 S. M. Watt

Condition (18) implies that it is possible to write any skew polynomial as a sum
of monomials with all the powers of x on the right or all on the left. We will use
the notation ui for coefficients of skew polynomials with all powers of the variable
on the right and iu for coefficients with all powers of the variable on the left, e.g.

u =
h∑

i=0

uix
i =

h∑

i=0

xi
iu.

Algorithm 4 gives left and right classical division in R[x;σ, δ]. As in Sect. 3,
×π is multiplication with arguments permuted by π. When σ(r) = r, R[x;σ, δ]
is a differential ring, usually denoted R[x, δ], and Algorithm 4 specializes to
Algorithm 1. The left division algorithm applies only when σ is bijective. If left
division is of primary interest, start from rx = xσ∗(r) + δ∗(r) instead of (18)
and work in the adjoint ring R[x;σ∗, δ∗].

Some care is needed in Algorithm 4 to avoid duplicating computation. Notice
that for rskewdiv the application of qcoeff on line 6 requires n-fold applica-
tion of σ to invvk and that the computation of t×π v on line 7 is coeff(t)xi+k ×v.
The latter requires commuting h − k powers of x across v over the course of the
division. Depending on the cost to compute σ, it may be useful to create an
array of the values σi(invvk) for i from 0 to h − k. It is also possible to pre-
compute and store the products xi × v, with xi+1 × v obtained from xi × v by
one application of (18). Then the xi × v may be used in descending order in the
for loop without re-computation. Both of these pre-computations are performed
in the Maple program for P[RDiv] shown in Fig. 2.

6.2 Whole Shift and Inverse in R[x; σ, δ]

It is possible to define left and right analogs of the whole shift and whole shifted
inverse for skew polynomials. In general, the left and right operations give dif-
ferent values.

Definition 3 (Left and right whole n-shift in R[x;σ, δ]). Given u ∈
R[x;σ, δ] and n ∈ Z, the left whole n-shift of u is

lshiftn,x u =
∑

i+n≥0

xi+n
iu,

the right whole n-shift of u is

rshiftn,x u =
∑

i+n≥0

uix
i+n

When x is clear by context, we write lshiftnu and rshiftnu.

Efficient Quotients of Non-commutative Polynomials 383

Definition 4 (Left and right whole n-shifted inverse in R[x;σ, δ]). Given
n ∈ Z≥0 and v ∈ R[x;σ, δ], the left whole n-shifted inverse of v with respect to
x is lshinvn,x v = xn lquo v

the right whole n-shifted inverse of v with respect to x is
rshinvn,x v = xn rquo v

When x is clear by context, we write lshinvn v and rshinvn v.

Modified Newton-Schulz Iteration. For monic v ∈ R[x;σ, δ], the whole
shifted inverses may be computed using modified Newton-Schulz iterations with
g = 1 guard places as follows:

wl(0) = wr(0) = xh−k+g − vk−1x
h−k−1+g

wl(i+1) = wl(i) + rshift−h

(
wl(i) × (rshifth 1 − v × wl(i))

)
,

wr(i+1) = wr(i) + lshift−h

(
(lshifth 1 − wr(i) × v) × wr(i)

)
,

rshift−g wl(i) → lshinvh v

lshift−g wr(i) → rshinvh v.

(19)

These generalize D.Refine1 in Algorithm 3. For D.Refine2 and D.Refine3,
the shifts that reduce the size of intermediate expressions are combined into
one pre- and one post-shift in R[x]. But on R[x;σ, δ] we do not expect these
simplifications of shift expressions to be legitimate.

Even though (19) can be used to compute whole shifted inverses, it does
not give any benefit over classical division. In the special case of R[x, δ], the
multiplication by v and then by w make it so each iteration creates only one
correct term, so h − k iterations are required rather than log2(h − k). In other
skew polynomial rings, e.g. linear difference operators, the iteration (19) can still
converge, but with multiple iterations required for each degree of the quotient.
It is therefore simpler to compute lshinv and rshinv by classical division.

384 S. M. Watt

6.3 Quotients from Whole Shifted Inverses in R[x; σ, δ]

It is possible to compute left and right quotients from the right and left whole
shifted inverses in R[x;σ, δ]. Although computing whole shifted inverses is not
asymptotically fast as it is in R[x], once a whole shifted inverse is obtained it
can be used to compute multiple quotients and hence remainders, each requiring
only one multiplication. This is useful, e.g., when working with differential ideals.
In some cases this multiplication of skew polynomials is asymptotically fast [8].

Theorem 7 (Quotients from whole shifted inverses in R[x;σ, δ]). Let
u, v ∈ R[x;σ, δ], with R a ring, k = degree v, h = degree u, and vk invertible in
R. Then

u rquo v = rshift−h(u × lshinvh v) (20)
u lquo v = lshift−h(rshinvhv × u). (21)

Proof. We first prove (20). For h ≥ k, we proceed by induction on h − k.
Suppose h − k = 0. Since u − (uh × 1/vk) × v has no term of degree h, we have

u rquo v = uh × 1/vk.

On the other hand, when h = k, lshinvh v = 1/vk so

rshift−h(u × lshinvh v) = uh × 1/vk

and (20) holds. For the inductive step, we assume that (20) holds for h−k < N .
For h − k = N , let u = q × v + o(xk) and let Q, q̂ and û be given by

u = (Qxh−k + q̂) × v + r, Q ∈ R, q̂ ∈ o(xh−k), r ∈ o(xk),

û = u − Qxh−k × v.

With this, û has degree at most h−1. The inductive hypothesis gives û rquo v =
rshift−h(û × lshinvh v). Therefore,

û = u − Qxh−k × v = (û rquo v) × v + r̂, r̂ ∈ o(xk)
= rshift−h(û × lshinvh v) × v + r̂

⇒ u =
(
rshift−h(û × lshinvh v) + Qxh−k

) × v + r̂

= rshift−h(û × lshinvh v + Qx2h−k) × v + r̂.

From this, we have

u rquo v = rshift−h(û × lshinvh v + Qx2h−k)

= rshift−h

(
(u − Qxh−k × v) × lshinvh v + Qx2h−k

)

= rshift−h

(
u × lshinvh v − Qxh−k × v × lshinvh v + Qx2h−k

)

= rshift−h

(
u × lshinvh v − Qxh−k × v × (xh lquo v) + Qx2h−k

)

= rshift−h

(
u × lshinvh v − Qxh−k × (xh + o(xk)) + Qx2h−k

)

= rshift−h

(
u × lshinvh v + Q × o(xh)

)
= rshift−h(u × lshinvh v).

Efficient Quotients of Non-commutative Polynomials 385

This completes the inductive step and the proof of (20). Equation (21) is proven
as above, mutatis mutandis. �

As in the commutative case, it may be more efficient to compute only the required
top part of the product in (20) and (21) rather than to compute the whole
product and then shift by −h.

7 Skew Polynomial Examples

7.1 Differential Operators

We take F7[y, ∂y] as a first example of using whole shifted inverses to compute
quotients of skew polynomials. We use Algorithm 4 to compute the left and right
whole shifted inverses, and then Theorem 7 to obtain the quotients. We start
with u and v

u = (3y + 6)∂5
y + (3y + 1)∂4

y + 6y∂3
y + 4y∂2

y + (2y + 1)∂y + (2y + 5)

v = 4∂2
y + (2y + 5)∂y + (4y + 6).

The whole shifted inverses lshinv5v = ∂5
y lquo v and rshinv5 = ∂5

yrquo v are
computed by Algorithm 4.

lshinv5 = 2∂3
y + (6y + 1)∂2

y + (4y2 + 4y + 3)∂y + (5y3 + y2 + 3y + 2)

rshinv5 = 2∂3
y + (6y + 1)∂2

y + (4y2 + 4y + 5)∂y + (5y3 + y2 + y + 1).

Then ql = lshift−5(rshinv5v × u) and qr = rshift−5(u × lshinv5 v) so

ql = (6y + 5)∂3
y + (4y2 + 3y + 3)∂2

y + (5y3 + 5y2 + 5)∂y

+ (y4 + 3y3 + 5y2 + 5y + 2)

rl = (5y5 + 4y4 + 3y3 + 6y2 + 4y)∂y + (3y5 + 2y4 + y3 + 5y2 + 5)

qr = (6y + 5)∂3
y + (4y2 + 3y + 1)∂2

y + (5y3 + 5y2 + 4y + 3)∂y

+ (y4 + 3y3 + 5y2 + 3y + 5)

rr = (5y5 + 4y4 + 6y3)∂y + (3y5 + 3y4 + 5y3 + y2 + 4y + 5).

A proof-of-concept Maple implementation for generic skew polynomials is given
in Fig. 2. The program is to clarify any ambiguities without any serious attention
to efficiency. The setup for the above example is

with(Domains):
LinearOrdinaryDifferentialOperator :=

(R, x) -> SkewPolynomial(R, x, r->r, R[Diff], r->r):
F := GaloisField(7):
R := DenseUnivariatePolynomial(F, ’y’):
Lodo := LinearOrdinaryDifferentialOperator(R, ’D[y]’):

386 S. M. Watt

7.2 Difference Operators

We use linear ordinary difference operators as a second example, this time with
σ not being the identity. We construct F7[y,Δy] as F7[y][Δy;E,E−1]. As before,
we use Algorithm 4 to compute the left and right whole shifted inverses, and
then Theorem 7 to obtain the quotients. We take u and v to be

u = yΔ5
y + (3y + 6)Δ4

y + (6y + 5)Δ3
y + 3yΔ2

y + (2y + 1)Δy + 5y

v = 4Δ2
y + (6y + 1)Δy + (6y + 6).

The whole shifted inverses lshinv5v = Δ5
ylquo v and rshinv5 = Δ5

yrquo v are
computed by Algorithm 4.

lshinv5 = 2Δ3
y + (4y + 2)Δ2

y + (y2 + 4y)Δy + (2y3 + 6y2 + y)

rshinv5 = 2Δ3
y + (4y + 1)Δ2

y + (y2 + 2)Δy + (2y3 + y2 + 4y + 1).

Then ql = lshift−5(rshinv5v × u) and qr = rshift−5(u × lshinv5 v) so

ql = (2y + 3)Δ3
y + (4y2 + 3y + 4)Δ2

y + (y3 + 5y2 + 6y + 4)Δy

+ (2y4 + 6y3 + 4y2 + 4y + 4)

rl = (2y5 + 6y4 + 6y2 + 5y + 3)Δy + (2y5 + 2y4 + 4y3 + 2y + 1)

qr = 2yΔ3
y + (4y2 + 5)Δ2

y + (y3 + 5y2 + y + 6)Δy + (2y4 + 4y3 + 5y + 1)

rr = (2y5 + 3y4 + 4y3 + y2)Δy + (2y5 + 6y4 + 5y3 + 3y2 + 5y).

The Maple setup for this example is

Delta(f) acts as subs(y=y+1, f) - f for f in R
LinearOrdinaryDifferenceOperator := proc(R, x, C)

local E := R[ShiftOperator];
SkewPolynomial(R, x, r->E(r,C[1]), r->R[‘-‘](E(r,C[1]),r),

r->E(r,C[‘-‘](C[1])));
end:
F := GaloisField(7);
R := DenseUnivariatePolynomial(F, ’y’);
Lodo := LinearOrdinaryDifferenceOperator(R, ’Delta[y]’, F)

7.3 Difference Operators with Matrix Coefficients

As a final example, we take quotients in F 2×2
7 [y,Δy] to underscore the genericity

of this method.

u =
([

6 0
1 1

]
y +

[
3 0
2 0

])
Δ5

y +
([

4 4
6 5

]
y +

[
3 2
4 4

])
Δ4

y +
([

4 3
0 3

]
y +

[
1 1
4 1

])
Δ3

y

+
([

0 1
4 5

]
y +

[
3 2
5 4

])
Δ2

y +
([

0 6
4 3

]
y +

[
0 0
0 6

])
Δy +

([
5 3
6 2

]
y +

[
5 2
1 2

])

v =
[

1 5
2 6

]
Δ2

y +
([

1 5
0 0

]
y +

[
4 6
3 4

])
Δy +

([
2 6
0 4

]
y +

[
0 3
1 2

])

Efficient Quotients of Non-commutative Polynomials 387

lshinv5 =
[

2 3
4 5

]
Δ3

y +
([

5 0
3 0

]
y +

[
0 4
1 2

])
Δ2

y

+
([

2 0
4 0

]
y2 +

[
3 1
0 1

]
y +

[
0 2
4 4

])
Δy

+
([

5 0
3 0

]
y3 +

[
4 2
0 4

]
y2 +

[
2 6
6 6

]
y +

[
1 2
6 6

])

rshinv5 =
[

2 3
4 5

]
Δ3

y +
([

5 0
3 0

]
y +

[
4 4
2 2

])
Δ2

y

+
([

2 0
4 0

]
y2 +

[
2 1
5 1

]
y +

[
6 0
0 2

])
Δy

+
([

5 0
3 0

]
y3 +

[
2 2
3 4

]
y2 +

[
3 5
5 4

]
y +

[
1 3
3 1

])

ql =
([

1 3
1 5

]
y +

[
3 1
6 4

])
Δ3

y +
([

2 0
4 0

]
y2 + +

[
4 6
2 1

]
y +

[
2 1
5 0

])
Δ2

y

+
([

5 0
3 0

]
y3 +

[
4 0
6 6

]
y2 +

[
2 4
5 4

]
y +

[
0 5
6 1

])
Δy

+
([

2 0
4 0

]
y4 +

[
4 3
2 6

]
y3 +

[
1 0
5 0

]
y2 +

[
4 3
1 5

]
y +

[
5 6
1 6

])

rl =
([

6 0
0 0

]
y5 +

[
6 2
1 0

]
y4 +

[
6 6
4 6

]
y3 +

[
2 2
3 6

]
y2 +

[
2 4
6 0

]
y +

[
6 5
2 0

])
Δy

+
([

0 0
5 0

]
y5 +

[
6 0
3 4

]
y4 +

[
3 2
3 6

]
y3 +

[
5 1
3 0

]
y2 +

[
3 6
4 6

]
y +

[
2 4
2 6

])

qr =
([

5 4
6 1

]
y +

[
6 2
4 6

])
Δ3

y +
([

2 0
1 0

]
y2 +

[
0 0
6 0

]
y +

[
5 3
4 5

])
Δ2

y

+
([

5 0
6 0

]
y3 +

[
1 6
0 2

]
y2 +

[
5 5
1 4

]
y +

[
5 3
2 6

])
Δy

+
([

2 0
1 0

]
y4 +

[
2 5
5 6

]
y3 +

[
5 2
4 3

]
y2 +

[
2 2
1 1

]
y +

[
2 5
2 3

])

rr =
([

5 4
6 2

]
y5 +

[
1 4
0 3

]
y4 +

[
4 4
3 2

]
y3 +

[
1 3
1 4

]
y2 +

[
3 2
2 5

]
y +

[
2 6
4 5

])
Δy

+
([

3 2
5 1

]
y5 +

[
3 4
4 6

]
y4 +

[
3 0
2 6

]
y3 +

[
6 1
2 6

]
y2 +

[
3 2
6 0

]
y +

[
4 0
1 3

])

The Maple setup for this example is the same as for the previous example but
with F := SquareMatrix(2, GaloisField(7)).

388 S. M. Watt

Fig. 1. Maple code for fast generic polynomial shinv and left and right division

Efficient Quotients of Non-commutative Polynomials 389

Fig. 2. Maple code for generic skew polynomials

390 S. M. Watt

Fig. 2. (continued)

Efficient Quotients of Non-commutative Polynomials 391

Fig. 2. (continued)

8 Conclusions

We have extended earlier work on efficient computation of quotients in a generic
setting to the case of non-commutative univariate polynomial rings. We have
shown that when the polynomial variable commutes with the coefficients, the
whole shift and whole shifted inverse are well-defined and they may be used to
compute left and right quotients. The whole shifted inverse may be computed
by a modified Newton method in exactly the same way as when the coefficients
are commutative and the number of iterations is logarithmic in the degree of the
result. When the polynomial variable does not commute with the coefficients,
left and right whole shifted inverses exist and may be computed by classical
division. Once a left or right whole shifted inverse is obtained, several right or left
quotients with that divisor may be computed, each with a single multiplication.

References

1. Abramov, S.A., Le, H.Q., Li, Z.: Univariate Ore polynomial rings in computer
algebra. J. Math. Sci. 131(5), 5885–5903 (2005)

2. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret.
Comput. Sci. 157(1), 3–33 (1996)

392 S. M. Watt

3. Jacobson, N.: Pseudo-linear transformations. Ann. Math. Second Ser. 38(2), 484–
507 (1937)

4. Moenck, R.T., Borodin, A.B.: Fast modular transforms via division. In: Proceed-
ings of the 13th Annual Symposium on Switching and Automata Theory (SWAT
1972), pp. 90–96. IEEE, New York (1972)

5. Monagan, M.B.: Gauss: a parameterized domain of computation system with sup-
port for signature functions. In: Miola, A. (ed.) DISCO 1993. LNCS, vol. 722, pp.
81–94. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0013170

6. Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. Second Ser. 34(3),
480–508 (1933)

7. Schulz, G.: Iterative Berechnung der reziproken Matrix. Z. Angew. Math. Mech.
13(1), 57–59 (1933)

8. van der Hoeven, J.: FFT-like multiplication of linear differential operators. J. Symb.
Comput. 33(1), 123–127 (2002)

9. van der Hoeven, J.: On the complexity of skew arithmetic. Appl. Algebra Eng.
Commun. Comput. 27, 105–122 (2016)

10. Watt, S.M.: Efficient generic quotients using exact arithmetic. In: Proceedings of
the International Symposium on Symbolic and Algebraic Computation (ISSAC
2023). ACM, New York (2023)

https://doi.org/10.1007/BFb0013170

Inverse Kinematics and Path Planning
of Manipulator Using Real Quantifier
Elimination Based on Comprehensive

Gröbner Systems

Mizuki Yoshizawa, Akira Terui(B) , and Masahiko Mikawa

University of Tsukuba, Tsukuba, Japan
terui@math.tsukuba.ac.jp, mikawa@slis.tsukuba.ac.jp

https://researchmap.jp/aterui

Abstract. Methods for inverse kinematics computation and path plan-
ning of a three degree-of-freedom (DOF) manipulator using the algo-
rithm for quantifier elimination based on Comprehensive Gröbner Sys-
tems (CGS), called CGS-QE method, are proposed. The first method for
solving the inverse kinematics problem employs counting the real roots
of a system of polynomial equations to verify the solution’s existence.
In the second method for trajectory planning of the manipulator, the
use of CGS guarantees the existence of an inverse kinematics solution.
Moreover, it makes the algorithm more efficient by preventing repeated
computation of Gröbner basis. In the third method for path planning
of the manipulator, for a path of the motion given as a function of a
parameter, the CGS-QE method verifies the whole path’s feasibility.
Computational examples and an experiment are provided to illustrate
the effectiveness of the proposed methods.

Keywords: Comprehensive Gröbner systems · Quantifier elimination ·
Robotics · Inverse kinemetics · Path planning

1 Introduction

We discuss inverse kinematics computation of a 3-degree-of-freedom (DOF)
manipulator using computer algebra. Manipulator is a robot with links and
joints that are connected alternatively. The end part is called the end-effector.
The inverse kinematics problem is fundamental in motion planning. In the
motion planning of manipulators, a mapping from a joint space and the opera-
tional space of the end-effector is considered for solving the forward and inverse
kinematics problems. The forward kinematics problem is solved to find the end-
effector’s position from the given configuration of the joints. On the other hand,
the inverse kinematic problem is solved to find the configuration of the joints if
the solution exists.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 393–419, 2023.
https://doi.org/10.1007/978-3-031-41724-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41724-5_21&domain=pdf
http://orcid.org/0000-0003-0846-3643
http://orcid.org/0000-0002-2193-3198
https://doi.org/10.1007/978-3-031-41724-5_21

394 M. Yoshizawa et al.

For solving inverse kinematics problems, computer algebra methods have
been proposed [5,8,17,20,21]. Some of these methods are especially for mod-
ern manipulators with large degrees of freedom [17], which indicates an interest
in applying global methods to a real-world problem. The inverse kinematics
problem is expressed as a system of polynomial equations in which trigonomet-
ric functions are replaced with variables, and constraints on the trigonometric
functions are added as new equations. Then, the system of equations gets “trian-
gularized” by computing a Gröbner basis and approximate solutions are calcu-
lated using appropriate solvers. We have proposed an implementation for inverse
kinematics computation of a 3-DOF manipulator [7]. The implementation uses
SymPy, a library of computer algebra, on top of Python, and also uses a com-
puter algebra system Risa/Asir [13] for Gröbner basis computation, connected
with OpenXM infrastructure [11].

An advantage of using Gröbner basis computation for solving inverse kine-
matics problems is that the global solution can be obtained. The global solution
helps to characterize the robot’s motion, such as kinematic singularities. On the
other hand, Gröbner basis computation is relatively costly. Thus, repeating
Gröbner basis computation every time the position of the end-effector changes
leads to an increase in computational cost. Furthermore, in inverse kinematics
computation with a global method, it is necessary to determine if moving the
end-effector to a given destination is feasible. Usually, numerical methods are
used to compute an approximate solution of the system of polynomial equa-
tions, but this is only an approximation and another computation is required to
verify the existence of the solution to the inverse kinematics problem. In fact,
our previous implementation above has the problem of calculating approximate
solutions without verifying the existence of the real solution to the inverse kine-
matics problem.

We have focused on Comprehensive Gröbner Systems (CGS). CGS is a theory
and method for computing Gröbner bases for ideals of the polynomial ring, where
generators of the ideal have parameters in their coefficients. Gröbner basis is com-
puted in different forms depending on constraints of parameters. In the system
of polynomial equations given as an inverse kinematics problem, by expressing
the coordinates of the end-effector as parameters, then, by computing CGS from
the polynomial system, we obtain the Gröbner basis where the coordinates of
the end-effector are expressed in terms of parameters. When moving the robot,
the coordinates of the end-effector are substituted into the Gröbner basis cor-
responding to the segment in which the coordinates satisfy constraints on the
parameters, then solved the configuration of the joints. This allows us to solve
the system of polynomial equations immediately without computing Gröbner
basis when the robot is actually in motion.

Furthermore, we have focused on quantifier elimination with CGS (CGS-
QE) [6]. CGS-QE is a QE method based on CGS, and it is said to be effective
when the constraints have mainly equality constraints. When we use CGS to
solve inverse kinematics problems for the above purposes, the CGS-QE method
also allows us to verify the existence of a solution to the inverse kinematics prob-

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 395

lem. Then, if the given inverse kinematic problem is determined to be feasible,
it is possible to immediately obtain a solution to the inverse kinematic problem
without Gröbner basis computation.

With these motivations, we have proposed an inverse kinematics solver that
verifies the existence of a solution to the inverse kinematics problem by the CGS-
QE method, and efficiently finds a feasible solution using CGS [14]. Our solver
uses “preprocessing steps [14, Algorithm 1]” to configure the solver before the
startup of the manipulator, that is, we eliminate segments without real points
and, if the input system is a non-zero dimensional ideal, we find a trivial root
that makes the input system zero-dimensional. Then, when the manipulator is
running, the solver uses “main steps [14, Algorithm 2]” to determine the existence
of feasible solutions and compute them. However, in the proposed algorithm, the
preprocessing steps were performed manually.

The main contribution of this paper is the extension of our previous solver [14]
in two ways. The first is that the computation of the preprocessing steps is
completely automated. The procedures in the previous work were refined into
an algorithm that can be executed automatically. The second is the extension of
the solver to path planning (trajectory planning) in two ways.

Trajectory planning is a computation in which the path along which the
manipulator (the end-effector) is to be moved is given in advance, and the con-
figuration of the joints is determined at each time so that the position of the
end-effector changes as a function of time along that path. Trajectory planning
also considers the manipulator’s kinematic constraints to determine the config-
uration of the joints at each time.

Our extension of the solver to trajectory planning is as follows. The first
method iteratively solves the inverse kinematics problem along a path using the
proposed method described above. In the second method, the path is represented
by a function of a parameter. Feasibility of the inverse kinematics problem is
determined using the CGS-QE method within a given time range. It determines
whether the entire trajectory falls within the manipulator’s feasible region before
the manipulator moves. If the trajectory planning is feasible, we solve the inverse
kinematics problem sequentially along the path.

This paper is organized as follows. In Sect. 2, the inverse kinematics problem
for the 3-DOF manipulator is formulated for the use of Gröbner basis compu-
tation. In Sect. 3, CGS, CGS-QE method, and a method of real root counting
are reviewed. In Sect. 4, an extension of a solver for inverse kinematics prob-
lem based on the CGS-QE method is proposed. In Sect. 5, trajectory planning
methods based on the CGS-QE method are presented. In Sect. 6, conclusions
and future research topics are discussed.

2 Inverse Kinematics of a 3-DOF Robot Manipulator

In this paper, as an example of a 3-DOF manipulator, one built with LEGO R©

MINDSTORMS R© EV3 Education1 (henceforth abbreviated to EV3) is used
1 LEGO and MINDSTORMS are trademarks of the LEGO Group.

396 M. Yoshizawa et al.

Fig. 1. A 3-DOF manipulator built with EV3.

Fig. 2. Components and the coordinate systems of the manipulator.

in (Fig. 1). The EV3 kit is equipped with large and small motors, optical, touch,
gyro sensors, and a computer called “EV3 Intelligent Brick.” A GUI-based devel-
opment environment is provided, and development environment with Python,
Ruby, C, and Java are also available.

The components of the manipulator is shown in Fig. 2. The manipulator has
eight links (segments) and eight joints connected alternatively. A link fixed to
the bottom is called Link 0, and the other links are numbered as Link 1, . . . , 7
towards the end-effector. For j = 1, . . . , 7, the joint connecting Links j −1 and j
is called Joint j. The foot of Link 0 on the ground is called Joint 0, and the end-

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 397

effector is called Joint 8. Due to the circumstances of the appropriate coordinate
transformation described below, Joints 1 and 2 overlap, and Link 1 does not exist
either. (Note that by setting joint parameters appropriately, the consistency of
coordinate transformation is maintained even for such a combination of links
and segments.) Joints 1(= 2), 4, 7 are revolute joints, while the other joints are
fixed.

At Joint i, according to a modified Denavit-Hartenberg convention [16], the
coordinate system Σi is defined as follows (Fig. 2). The origin is located at Joint i,
and the xi, yi and zi axes are defined as follows (in Fig. 2, the positive axis
pointing upwards and downwards is denoted by “�” and “⊗”, respectively):

– The zj axis is chosen along with the axis of rotation of Joint j.
– The xj−1 axis is selected along with the common normal to axes zj−1 to zj .
– The yj axis is chosen so that the present coordinate system is right-handed.

Note that the above definition of axes may have ambiguity. For the current
manipulator, if the axes zi and zi−1 are parallel, there are infinite ways to take
the xi axis. Thus, in this case, the xi axis is defined as follows.

– In the coordinate system Σ0, define the axes x0, y0, z0 like those in Σ1 as
depicted in Fig. 2. Also, in the coordinate system Σ8, define the axes x8, y8, z8
like those in Σ7, respectively.

– In the coordinate system Σi (i = 2, . . . , 7), since the origin is located on Joint
i, define the xi axis to overlap Link i.

For analyzing the motion of the manipulator, we define a map between the
joint space and the configuration space or operational space. For a joint space,
since we have revolute joints 1, 4, 7, their angles θ1, θ4, θ7, respectively, are located
in a circle S1, we define the joint space as J = S1 ×S1 ×S1. For a configuration
space, let (x, y, z) be the end-effector position located in R

3 and then define the
configuration space as C = R

3. Thus, we consider a map f : J −→ C. The
forward kinematic problem is to find the position of the end-effector in C for the
given configuration of the joints in J , while the inverse kinematic problem is to
find the configuration of the joints in J which enables the given position of the
end-effector in C. We first solve the forward kinematic problem for formulating
the inverse kinematic problem.

Let ai be the distance between axes zi−1 and zi, αi the angle between axes
zi−1 and zi with respect to the xi axis, di the distance between the axes xi−1

and xi, and θi be the angle between the axes xi−1 and xi with respect to the
zi axis. Then, the coordinate transformation matrix i−1Ti from the coordinate
system Σi to Σi−1 is expressed as in Fig. 3.

where the joint parameters ai, αi, di and θi are shown in Table 1 (note that
the unit of ai and di is [mm]). The transformation matrix T from the coordinate
system Σ8 to Σ0 is calculated as T = 0T1

1T2
2T3

3T4
4T5

5T6
6T7

7T8, where i−1Ti

is expressed as in Fig. 4.

398 M. Yoshizawa et al.

Fig. 3. The transformation matrix i−1Ti.

Table 1. Joint parameters for EV3.

i ai (mm) αi di (mm) θi

1 0 0 80 θ1

2 0 π/2 0 π/4

3 88 0 0 π/4

4 24 0 0 θ4

5 96 0 0 −π/2

6 16 0 0 π/2

7 40 0 0 θ7

8 120 0 0 0

Then, the position (x, y, z) of the end-effector with respect to the coordinate
system Σ0 is expressed as

x = −120 cos θ1 cos θ4 sin θ7 + 16 cos θ1 cos θ4 − 120 cos θ1 sin θ4 cos θ7

− 136cosθ1sinθ4 + 44
√

2 cos θ1,

y = −120 sin θ1 cos θ4 sin θ7 + 16 sin θ1 cos θ4 − 120 sin θ1 sin θ4 cos θ7

− 136 sin θ1 sin θ4 + 44
√

2 sin θ1,

z = 120 cos θ4 cos θ7 + 136cosθ4 − 120 sin θ4 sin θ7 + 16sinθ4 + 104 + 44
√

2.

(1)

The inverse kinematics problem comes down to solving (1) for θ1, θ4, θ7.
By substituting trigonometric functions cos θi and sin θi with variables as ci =
cos θi, si = sin θi, subject to c2i + s2i = 1, (1) is transferred to a system of
polynomial equations:

f1 = 120c1c4s7 − 16c1c4 + 120c1s4c7 + 136c1s4 − 44
√

2c1 + x = 0,

f2 = 120s1c4s7 − 16s1c4 + 120s1s4c7 + 136s1s4 − 44
√

2s1 + y = 0,

f3 = −120c4c7 − 136c4 + 120s4s7 − 16s4 − 104 − 44
√

2 + z = 0,

f4 = s21 + c21 − 1 = 0, f5 = s24 + c24 − 1 = 0, f6 = s27 + c27 − 1 = 0.

(2)

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 399

Fig. 4. The transformation matrix i−1Ti (i = 1, . . . , 8).

3 Real Quantifier Elimination Based on CGS

Equations (1) and (2) show that solving the inverse kinematic problem for the
given system can be regarded as a real quantifier elimination of a quantified
formula

∃c1∃s1∃c4∃s4∃c7∃s7

(f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ f4 = 0 ∧ f5 = 0 ∧ f6 = 0), (3)

with x, y, z as parameters.
In this section, we briefly review an algorithm of real quantifier elimination

based on CGS, the CGS-QE algorithm, by Fukasaku et al. [6]. Two main tools
play a crucial role in the algorithm: one is CGS, and another is real root count-
ing, or counting the number of real roots of a system of polynomial equations.
Note that, in this paper, we only consider equations in the quantified formula.

Hereafter, let R be a real closed field, C be the algebraic closure of R, and
K be a computable subfield of R. This paper considers R as the field of real
numbers R, C as the field of complex numbers C, and K as the field of rational
numbers Q. Let X̄ and Ā denote variables X1, . . . , Xn and A1, . . . , Am, respec-
tively, and T (X̄) be the set of the monomials which consist of variables in X̄.
For an ideal I ⊂ K[X̄], let VR(I) and VC(I) be the affine varieties of I in R
or C, respectively, satisfying that VR(I) = {c̄ ∈ Rn | ∀f(X̄) ∈ I: f(c̄) = 0} and
VC(I) = {c̄ ∈ Cn | ∀f(X̄) ∈ I: f(c̄) = 0}.

3.1 CGS

For the detail and algorithms on CGS, see Fukasaku et al. [6] or references
therein. In this paper, the following notation is used. Let � be an admissible
term order. For a polynomial f ∈ K[Ā, X̄] with a term order � on T (X̄), we
regard f as a polynomial in (K[Ā])[X̄], which is the ring of polynomials with X̄
as variables and coefficients in (K[Ā]) such that Ā is regarded as parameters.

400 M. Yoshizawa et al.

Given a term order � on T (X̄), < (f), LC(f) and LM(f) denotes the leading
term, the leading coefficient, and the leading monomial, respectively, satisfying
that < (f) = LC(f)LM(f) with LC(f) ∈ K[Ā] and LM ∈ T (X̄) (we follow the
notation by Cox et al. [4]).

Definition 1 (Algebraic Partition and Segment). Let S ⊂ Cm for m ∈ N.
A finite set {S1, . . . ,St} of nonempty subsets of S is called an algebraic partition
of S if it satisfies the following properties:

1. S =
⋃t

k=1 Sk.
2. For k �= j ∈ {1, . . . , t}, Sk ∩ Sj = ∅.
3. For k ∈ {1, . . . , t}, Sk is expressed as Sk = VC(I1) \ VC(I2) for some ideals

I1, I2 ⊂ K[Ā].

Furthermore, each Sk is called a segment.

Definition 2 (Comprehensive Gröbner System (CGS)). Let S ⊂ Cm

and � be a term order on T (X̄). For a finite subset F ⊂ K[Ā, X̄], a finite set
G = {(S1, G1), . . . , (St, Gt)} is called a Comprehensive Gröbner System (CGS)
of F over S with parameters Ā with respect to � if it satisfies the following:

1. For k ∈ {1, . . . , t}, Gk is a finite subset of K[Ā, X̄].
2. The set {S1, . . . ,St} is an algebraic partition of S.
3. For each c̄ ∈ Sk, Gk(c̄, X̄) = {g(c̄, X̄) | g(Ā, X̄) ∈ Gk} is a Gröbner basis

of the ideal 〈F (c̄, X̄)〉 ⊂ C[X̄] with respect to �, where F (c̄, X̄) = {f(c̄, X̄) |
f(Ā, X̄) ∈ F}.

4. For each c̄ ∈ Sk, any g ∈ Gk satisfies that
(
LC(g)

)
(c̄) �= 0.

Furthermore, if each Gk(c̄, X̄) is a minimal or the reduced Gröbner basis, G is
called a minimal or the reduced CGS, respectively. In the case S = Cm, the
words “over S” may be omitted.

3.2 Real Root Counting

Let I ⊂ K[X̄] be a zero-dimensional ideal. Then, the quotient ring K[X̄]/I is
regarded as a finite-dimensional vector space over K [3]; let {v1, . . . , vd} be its
basis. For h ∈ K[X̄]/I and i, j satisfying 1 ≤ i, j ≤ d, let θh,i,j be a linear
transformation defined as

θh,i,j : K[X̄]/I −→ K[X̄]/I

∈ ∈

f �→ hvivjf.

Let qh,i,j be the trace of θh,i,j and M I
h be a symmetric matrix such that its (i, j)-

th element is given by qh,i,j . Let χI
h(X) be the characteristic polynomial of M I

h ,
and σ(M I

h), called the signature of M I
h , be the number of positive eigenvalues

of M I
h minus the number of negative eigenvalues of M I

h . Then, we have the
following theorem on the real root counting [1,15].

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 401

Theorem 1 (The Real Root Counting Theorem). We have

σ(M I
h) = #({c̄ ∈ VR(I) | h(c̄) > 0}) − #({c̄ ∈ VR(I) | h(c̄) < 0}).

Corollary 1. σ(M I
1) = #(VR(I)).

Since we only consider a quantified formula with equations, as in (3), we omit
properties of the real root counting related to quantifier elimination of quantified
formula with inequalities or inequations (for detail, see Fukasaku et al. [6]).

3.3 CGS-QE Algorithm

The CGS-QE algorithm accepts the following quantified formula given as

∃X̄(f1(Ā, X̄) = 0 ∧ · · · ∧ fμ(Ā, X̄) = 0 ∧ p1(Ā, X̄) > 0 ∧ · · · ∧ pν(Ā, X̄) > 0∧
q1(Ā, X̄) �= 0 ∧ · · · ∧ qξ(Ā, X̄) �= 0),

f1, . . . , fμ, p1, . . . , pν , q1, . . . , qξ ∈ Q[Ā, X̄] \ Q[Ā],

then outputs an equivalent quantifier-free formula. Note that, in this paper, we
give a quantified formula only with equations as shown in (3). The algorithm
is divided into several algorithms. The main algorithm is called MainQE, and
sub-algorithms are called ZeroDimQE and NonZeroDimQE for the case that
the ideal generated by the component of the CGS is zero-dimensional or positive
dimensional, respectively. (For a complete algorithm description, see Fukasaku
et al. [6]).

In the real root counting, we need to calculate σ(M I
h) as in Sect. 3.2. This cal-

culation is executed using the following property [22] derived from Descartes’
rule of signs. Let M be a real symmetric matrix of dimension d and χ(X) be the
characteristic polynomial of M of degree d, expressed as

χ(λ) = λd + ad−1λ
d−1 + . . . + a0, χ(−λ) = (−1)dλd + bd−1λ

d−1 + . . . + b0. (4)

Note that b� = a� if � is even, and b� = −a� if � is odd. Let Lχ+ and Lχ− be
the sequence of the coefficients in χ(λ) and χ(−λ), defined as

Lχ+ = (1, ad−1, . . . , a0), Lχ− = ((−1)d, bd−1, . . . , b0), (5)

respectively. Furthermore, let L̄χ+ and L̄χ− be the sequences defined by remov-
ing zero coefficients in Lχ+ and Lχ−, respectively, and let

Sχ+ = (the number of sign changes in L̄χ+),
Sχ− = (the number of sign changes in L̄χ−).

(6)

Then, we have the following.

Lemma 1. Let Sχ+ and Sχ− be defined as in (6). Then, we have

Sχ+ = #({c ∈ R | c > 0 ∧ χ(c) = 0}), Sχ− = #({c ∈ R | c < 0 ∧ χ(c) = 0}).

402 M. Yoshizawa et al.

Corollary 2. Let Sχ+ and Sχ− be defined as in (6), and I be a zero-dimensional
ideal and M I

1 be a matrix defined as in Sect. 3.2. Then, we have

#(VR(I)) = σ(M I
1) ⇔ Sχ+ �= Sχ−. (7)

Remark 1. As shown below, most of our inverse kinematic computation uses
up to the real root counting part of the CGS-QE algorithm. The part of the
algorithm that eliminates quantified variables and obtains conditions on the
parameters is used only to verify the feasibility of the inverse kinematic solution
for the given path (see Sect. 5.2).

4 Solving the Inverse Kinematic Problem

This section shows a method for solving the inverse kinematic problem in (2).
Specifically, for the coordinates of the end-effector that are given as (x, y, z) =
(x0, y0, z0) ∈ R

3, determine the feasibility of the configuration of the end-effector
with the CGS-QE method. If the configuration of the end-effector is feasible,
then compute c1, s1, c4, s4, c7, s7 by solving (2), and compute the angle θ1, θ4, θ7
of Joint 1, 4, 7, respectively, as

θ1 = arctan(s1/c1), θ4 = arctan(s4/c4), θ7 = arctan(s7/c7). (8)

The computation is executed as follows, summarized as Algorithm 1. For
Algorithm 1, f1, . . . , f6 in (2), variables X̄ = (c1, s1, c4, s4, c7, s7) parameters
Ā = (x, y, z), and a position of the end-effector p = (x0, y0, z0) are given. (For
optional arguments, see Remark 3).

1. Compute CGS of 〈f1, . . . , f6〉 ⊂ R[Ā, X̄] with an appropriate monomial order.
Let

F = {(S1, G1), . . . , (St, Gt)} (9)

be the computed CGS. Assume that the segment Sk is represented as

Sk = VC(Ik,1) \ VC(Ik,2), Ik,1 = 〈Fk,1〉, Ik,2 = 〈Fk,2〉, (10)

where Fk,1, Fk,2 ⊂ R[Ā].
2. From F , eliminate (S, G) ∈ F satisfying that S ∩ R

3 = ∅ and that are easily
detected. Re-arrange indices as F ′ = {(S1, G1), . . . , (St, Gτ)}. See Sect. 4.1
for detail.

3. For (x0, y0, z0), choose (Sk, Gk) ∈ F ′ satisfying that (x0, y0, z0) ∈ Sk. Let

G = {g1, . . . , gρ}, (11)

be Gk with substituting (x0, y0, z0) for (x, y, z).
4. For G in (11), determine if 〈G〉 is zero-dimensional. For the case 〈G〉 is not

zero-dimensional, see Sect. 4.3.

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 403

Algorithm 1. Solving the inverse kinematic problem
Input: F = {f1, . . . , f6}: (2) for the inverse kinematic problem,

V = {c1, s1, c4, s4, c7, s7}: variables, P = {x, y, z}: parameters, p = (x0, y0, z0):
a position of the end-effector to be placed, F (optional): a CGS of 〈F 〉 or
the output of Generate-Real-CGS(F ,P) (Algorithm 2) where F is a CGS
of 〈F 〉, RealCGS = {TRUE | FALSE} (optional): whether one wish to call
Generate-Real-CGS (Algorithm 2) or not;

Output: Θ = {θ1, θ4, θ7}: joint angles of a solution of the inverse kinematic problem,
or Θ = ∅ if there are no solution or an infinite number of solutions;

1: function Solve-IKP-Point(F , V, P, p, F , RealCGS)
2: if F = ∅ then
3: Compute a CGS of 〈F 〉 as F = {(S1, G1), . . . , (St, Gt)};
4: end if
5: if RealCGS = TRUE then
6: F ′ ← Generate-Real-CGS(F , V); � See Sect. 4.1 (Algorithm 2)
7: else F ′ ← F ;
8: end if
9: Choose (Sk, Gk) from the CGS F ′ satisfying p ∈ Sk;

10: G′ ← {g ∈ G | x ← x0, y ← y0, z ← z0 in g}
11: σ ← Count-Real-Roots(G′); � See Sect. 4.2 (Algorithm 4)
12: if σ = “FAIL” then
13: Θ ← Solve-IKP-NonZeroDim(G′); � See Sect. 4.3 (Algorithm 5)
14: else if σ = 0 then Θ ← ∅;
15: else
16: S ← (real solutions of g1 = · · · = gρ = 0 in (12));
17: Θ ← (joint angles obtained by (8));
18: end if
19: return Θ;
20: end function

5. If 〈G〉 is zero-dimensional, calculate the number of real roots of

g1 = · · · = gρ = 0. (12)

See Sect. 4.2 for detail.
6. If the system of polynomial equations (12) has real roots, calculate approxi-

mate roots with a numerical method. If the system has more than one set of
real roots, we accept the first set of roots that the solver returns.

7. By (8), calculate joint angles θ1, θ4, θ7.

Remark 2. We see that Algorithm 1 outputs Θ = {θ1, θ4, θ7} or Θ = ∅ correctly,
as follows. After computing the CGS F , some segments without real points
are eliminated optionally, resulting in F ′. Then, a pair of a segment and the
accompanying Gröbner basis (Sk, Gk) is chosen, satisfying that p ∈ Sk. After
defining G′ by substituting parameters (x, y, z) in g ∈ G with p, The number of
real roots of polynomial equations {g′ = 0 | g′ ∈ G′} is counted by Algorithm 4,
and it returns σ. In the case σ = 0, this means that there are no real roots in

404 M. Yoshizawa et al.

{g′ = 0 | g′ ∈ G′}, thus ∅ is output. In the case σ = “FAIL”, G′ is investigated
by Algorithm 5 and a value of ∅ or Θ is returned, which becomes the output of
this algorithm. Finally, in the case σ > 0, real solutions of {g′ = 0 | g′ ∈ G′} are
calculated as Θ, which becomes the output of this algorithm. This finishes the
computation.

Remark 3. In Algorithm 1, it is also possible to calculate the GCS F or F ′ (in
which some segments without real points are eliminated) first and then given
to the algorithm. The arguments F and RealCGS in the function Solve-IKP-
Point are optional. Furthermore, if F ′ is given to Solve-IKP-Point, the vari-
able RealCGS is set TRUE. Pre-computing the CGS before executing Algorithm
1 would make the algorithm more efficient, especially when repeatedly solving
the same problem (see Example 2).

4.1 Removing a Segment Not Existing in R
3

In the inverse kinematic problem, since the parameters consist of x, y, z in (2), the
segments in the algebraic partition corresponding to the CGS F in (9) exist in C

3.
However, since only real values of x, y, z are used in solving the inverse kinematic
problem, if a segment Sk in (10) do not exist in R

3, then it can be ignored. Thus,
by investigating generators in Fk,1 and Fk,2 in (10), we remove some Sk that
satisfies Sk ∩ R

3 = ∅ and that is easily detected, as follows, summarized as
Algorithm 2.

1. Let f ∈ Fk,1. If f is a univariate polynomial and deg f = 2, calculate the
discriminant disc(f) of f . If disc(f) < 0, then remove (Sk, Gk).

2. If f is a univariate polynomial and deg f ≥ 3, calculate the number of real
roots of f by the Sturm’s method. If the number of real roots of f is equal to
0, then remove (Sk, Gk).

3. Let (x0, y0, z0) be a root of f ∈ Fk,1 as many coordinates as possible are 0.
Assume that there exists f0 ∈ Fk,1 with only the real root (x0, y0, z0)
(for detecting f0 satisfying this property, see below).

4. If there exists g ∈ Fk,1 satisfying that g(x0, y0, z0) is a nonzero constant, then
we see that (x0, y0, z0) �∈ Sk ∩ R

3, thus remove (Sk, Gk).
5. If all h ∈ Fk,2 satisfies h(x0, y0, z0) = 0, then we see that (x0, y0, z0) �∈ Sk ∩R

3,
thus remove (Sk, Gk).

In Step 3 above, we find (x0, y0, z0), a root of f ∈ Fk,1 as many coordinates as
possible are 0, along with f0 which has (x0, y0, z0) only the real root, as follows.
For the purpose, we find f with the terms of the degree with respect to each
parameter x, y, z is even, expressed as

f = a +
∑

(p,q,r)∈Z3
≥0\{(0,0,0)}

ap,q,rx
2py2qz2r, a ∈ R, ap,q,r �= 0. (13)

We see that f of the form as in (13) may have the following property.

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 405

Algorithm 2. Removing a segment which does not exist in R
3

Input: F = {(S1, G1), . . . , (St, Gt)}: a CGS, P: parameters
Output: F ′ = {(S1, G1), . . . , (Sτ , Gτ)}: a CGS with organized numbering in which

segments those do not exist in R
3 are removed;

1: function Generate-Real-CGS(F , P)
2: Undecided ← True;
3: for each (S, G) ∈ F do
4: (x0, y0, z0) ← (x, y, z);
5: for each f ∈ F1 where S = VC(I1) \ VC(I2), I1 = 〈F1〉 and I2 = 〈F2〉 do
6: if f is a univariate polynomial then
7: if deg f ≥ 3 then
8: #RealRoots ← (the number of reall roots of f computed with the

Sturm’s method);
9: if #RealRoots = 0 then Undecided ← False; break;

10: end if
11: else if deg f = 2 then
12: if disc(f) = 0 then Undecided ← False; break;
13: end if
14: end if
15: else (x0, y0, z0) ← Find-Trivial-Roots(f, (x0, y0, z0)); � Algorithm 3
16: if (x0, y0, z0) = ∅ then Undecided ← False; break;
17: end if
18: end if
19: end for
20: if (x0, y0, z0) = ∅ then Undecided ← False;
21: else
22: for each g ∈ F1 do
23: if g(x0, y0, z0) is a nonzero constant then Undecided ← False; break;
24: end if
25: end for
26: if for all g ∈ F2 g(x0, y0, z0) = 0 then Undecided ← False;
27: end if
28: end if
29: if Undecided = True then F ′ ← F ′ ∪ {(S, G)};
30: end if
31: end for
32: Renumber indices of (S, G) in F ′ as F ′ = {(S1, G1), . . . , (Sτ , Gτ)};
33: return F ′

34: end function

1. If a �= 0 and the signs of a and ap,q,r (ap,q,r �= 0) are the same, then f does
not have a real root.

2. If a = 0 and the signs of a and ap,q,r (ap,q,r �= 0) are the same, then f has a
root that the parameters appearing in f equals 0. Let (x0, y0, z0) be (x, y, z)
with the variable appearing in f set to 0.

Example 1. Examples of polynomials of the form as in (13) satisfying properties
in above.

406 M. Yoshizawa et al.

Algorithm 3. Find a roots as many coordinates as possible are 0
Input: f ∈ R[Ā], (x0, y0, z0): x0 ∈ {x, 0}, y0 ∈ {y, 0}, z0 ∈ {z, 0};
Output: (x0, y0, z0): x0 ∈ {x, 0}, y0 ∈ {y, 0}, z0 ∈ {z, 0} or ∅;
1: function Find-Trivial-Roots(f , (x0, y0, z0))
2: if f is expressed as in (13) then
3: if a 	= 0 then
4: if the signs of a and ap,q,r are the same then (x0, y0, z0) ← ∅;
5: end if
6: else if the signs of a and ap,q,r are the same then
7: if x appears in f then x0 ← 0
8: else if y appears in f then y0 ← 0
9: else if z appears in f then z0 ← 0

10: end if
11: end if
12: end if
13: return (x0, y0, z0);
14: end function

1. A polynomial with a �= 0 and the signs of a and ap,q,r (ap,q,r �= 0) are the
same: f1(x, y, z) = 2x2y4 + z2 + 3 = 0 does not have a real root.

2. A polynomial with a = 0 and the signs of a and ap,q,r (ap,q,r �= 0) are the
same: f2(x, y, z) = −2x2y4 − z2 = 0 has a trivial real root x = y = z = 0.

By Algorithm 3, we find a polynomial that has no real roots or f0 that has only
the real root (x0, y0, z0) with as many coordinates as possible are 0.

Remark 4. We see that Algorithm 3 finds a polynomial of the form of (13) that
has no real roots or f0 that has only the real root (x0, y0, z0) with as many
coordinates as possible are 0, as follows. If f is the form of (13) with a �= 0,
investigate if signs of a and the other non-zero coefficients are the same. If the
signs are the same, f does not have a real root, and the algorithm returns ∅.
On the other hand, if f is the form of (13) with a = 0 and signs of the other
non-zero coefficients are the same, f has a unique root with x = 0, y = 0 or
z = 0. Then, x0, y0 or z0 are replaced with 0 if corresponding variables appears
in f .

Remark 5. We see that Algorithm 2 outputs a CGS F with some segments
without real points eliminated, as follows. Let Sk, Ik,1, Ik,2, Fk,1 and Fk,2 be
as in (10). If f ∈ Fk,1 is a univariate polynomial, real roots are counted using
the discriminant (if deg f = 2) or Sturm’s method (if deg f ≥ 3). Thus, if f is
a univariate polynomial with no real toot, then Sk has no real point. Next, for
f ∈ Fk,1 expressed as in (13), Algorithm 3 reports that there exists f ∈ Fk,1 that
does not have a real root or finds a root (x0, y0, z0) with as many coordinates as
possible are 0.

1. If f ∈ Fk,1 has no real root, then Sk has no real point.

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 407

Algorithm 4. Calculating the number of real roots [6]
Input: G: a Gröbner basis as in (11)
Output: σ: the number of real roots of {g = 0 | g ∈ G}; In the case 〈G〉 is not

zero-dimensional, return σ = “FAIL”;
1: function Count-Real-Roots(G)
2: if 〈G〉 is zero-dimensional then

3: σ ← σ(M
〈G〉
1); � Calculated by Corollary 1

4: else σ ← “FAIL”; � See Sect. 4.3
5: end if
6: return σ;
7: end function

2. If there exists a root (x0, y0, z0) with as many coordinates as possible are
0, since the form of the input polynomial in Algorithm 3 is as in (13), we
see that (x0, y0, z0) is a root of f0 ∈ Fk,1 that has no other real roots. We
examine if (x0, y0, z0) ∈ Sk = VC(Ik,1) \ VC(Ik,2). If there exists g ∈ Fk,1

satisfying that g(x0, y0, z0) is a nonzero constant, then (x0, y0, z0) �∈ VC(Ik,1),
thus (x0, y0, z0) �∈ Sk. Futhermore, if all h ∈ Fk,2 satisfies h(x0, y0, z0) = 0,
(x0, y0, z0) ∈ VC(Ik,2), thus (x0, y0, z0) �∈ Sk.

Remark 6. Even without Algorithm 2, it is possible to eventually remove seg-
ments that do not have a real point in Algorithm 1. However, it may be possible
to improve the efficiency of solving the inverse kinematic problem while iterating
Algorithm 1 by providing a CGS that has previously removed segments that do
not have real number points using Algorithm 2 (see Example 2).

4.2 Calculating the Number of Real Roots

Calculating the number of real roots in (2) is based on Algorithm MainQE
in the CGS-QE method [6]. While the original algorithm computes constraints
on parameters such that the equations have a real root, the parameters are
substituted with the coordinates of the end-effector, thus the number of real
roots is calculated as follows, summarized as Algorithm 4.

1. Let G be the Gröbner basis G in (11). Determine if 〈G〉 is zero-dimensional.
If 〈G〉 is not zero-dimensional, apply computation in Sect. 4.3.

2. Calculate a real symmetric matrix M
〈G〉
1 (for its definition, see Sect. 3.2).

3. By Corollary 1, calculate the number of real roots of {g = 0 | g ∈ G} by
calculating σ(M 〈G〉

1).

Remark 7. For a Gröbner basis G, we see that Algorithm 4 counts the number
of real roots of {g = 0 | g ∈ G} if 〈G〉 is zero-dimensional. If 〈G〉 is zero-
dimensional, then the number of real roots is calculated by Corollary 1. On the
other hand, 〈G〉 is not zero-dimensional, it returns “FAIL”.

408 M. Yoshizawa et al.

4.3 Calculation for Non-Zero Dimensional Ideals

Our previous studies [14] have shown that, for G in (11), there exists a case that
〈G〉 is not zero-dimensional. In the case x0 = y0 = 0, c21 + s21 − 1 ∈ G and the
corresponding segment S satisfies S = VC(I1)\VC(I2), I1 = 〈x, y〉. (Note that, in
this case, the segment S is different from the one in which the most feasible end-
effector positions exist.) This means that the points in VR(I1) satisfy x = y = 0,
and the end-effector is located on the z-axis in the coordinate system Σ0. In this
case, θ1, the angle of Joint 1 is not uniquely determined. Then, by putting θ1 = 0
(i.e., c1 = 1, s1 = 0) in g ∈ G, we obtain a new system of polynomial equations
G′ which satisfies that 〈G′〉 is zero-dimensional, and, by solving a new system
of polynomial equations {g′ = 0 | g′ ∈ G′}, a solution to the inverse kinematic
problem is obtained.

Based on the above observations, for G in (11), in the case, 〈G〉 is not zero-
dimensional, we perform the following calculation, summarized as Algorithm
5.

1. It is possible that G has a polynomial g0 = s21+c21−1. If such g0 exists, define

G′ = {g ∈ G \ {g0} | substitute s1 ← 1 and c1 ← 0 in g}.

2. For newly defined G′, apply Algorithm 4 for testing if G′ is zero-dimensional.
If G′ is zero-dimensional, calculate the number of real roots of the system of
equations

g′
1 = · · · = g′

ρ = 0, (14)

where g′
1, . . . , g

′
ρ ∈ G.

3. If the number of real roots of (14) is positive, then compute approximate real
roots and put then into Θ.

Remark 8. For a Gröbner basis G of non-zero dimensional ideal, we see that
Algorithm 5 outputs Θ = {θ1, θ4, θ7} or Θ = ∅ correctly, as follows. G′ is calcu-
lated as G′ = {g ∈ G | g �= s21 + c21 − 1}. Then, for g′ ∈ G′, s1 ← 0 and c1 ← 1.
The number of real roots of polynomial equations {g′ = 0 | g′ ∈ G′} is counted
by Algorithm 4, and it returns σ. In the case σ = 0, this means that there are
no real roots in {g′ = 0 | g′ ∈ G′}, thus ∅ is output. In the case σ = “FAIL”,
further computation is cancelled and ∅ is output. Finally, in the case σ > 0, real
solutions of {g′ = 0 | g′ ∈ G′} are calculated as Θ, which becomes the output of
this algorithm.

Remark 9. Note that Algorithms 2, 3 and 5 correspond to “preprocessing steps
(Algorithm 1)” in our previous solver [14]. In our previous solver, except for the
computation of the CGS, “the rest of computation was executed by hand”[14,
Sect. 4].

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 409

Algorithm 5. Computing real roots for non-zero dimensional ideal
Input: G: a Gröbner basis of non-zero dimensional ideal
Output: Θ = {θ1, θ4, θ7}: joint angles of a solution of the inverse kinematic problem,

or Θ = ∅ if there are no solution or an infinite number of solutions;
1: function Solve-IKP-NonZeroDim(G)
2: G′ ← ∅;
3: for each g ∈ G do
4: if g 	= s21 + c21 − 1 then G′ ← G′ ∪ {g};
5: end if
6: end for
7: for each g′ ∈ G′ do s1 ← 1; c1 ← 0;
8: end for
9: σ ← Count-Real-Roots(G′); � See Sect. 4.2 (Algorithm 4)

10: if σ = 0 or “FAIL” then Θ ← ∅;
11: else
12: S ← (real solutions of {g′ = 0 | g ∈ G′});
13: Θ ← (joint angles obtained by (8));
14: end if
15: return Θ;
16: end function

4.4 Experiments

We have implemented and tested the above inverse kinematics solver [18]. An
implementation was made on the computer algebra system Risa/Asir [13]. Com-
putation of CGS was executed with the implementation by Nabeshima [12].
The computing environment is as follows: Intel Xeon Silver 4210 3.2 GHz, RAM
256 GB, Linux Kernel 5.4.0, Risa/Asir Version 20230315.

Test sets for the end-effector’s position were the same as those used in the
tests of our previous research [7,14]. The test sets consist of 10 sets of 100 random
end-effector positions within the feasible region; thus, 1000 random points were
given. The coordinates of the position were given as rational numbers with the
magnitude of the denominator less than 100. For solving a system of polynomial
equations numerically, computer algebra system PARI-GP 2.3.11 [19] was used
in the form of a call from Risa/Asir. In the test, we have used pre-calculated
CGS of (2) (originally, to be calculated in Line 3 of Algorithm 1). The computing
time of CGS was approximately 62.3 s.

Table 2 shows the result of experiments. In each test, ‘Time’ is the average
computing time (CPU time), rounded at the 5th decimal place. ‘Error’ is the
average of the absolute error, or the 2-norm distance of the end-effector from the
randomly given position to the calculated position with the configuration of the
computed joint angles θ1, θ4, θ7. The bottom row, ‘Average’ shows the average
values in each column of the 10 test sets.

The average error of the solution was approximately 1.63 × 10−12 [mm].
Since the actual size of the manipulator is approximately 100 [mm], computed
solutions with the present method seem sufficiently accurate. Comparison with

410 M. Yoshizawa et al.

Table 2. A result of inverse kinematics computation.

Test Time (sec.) Error (mm)

1 0.1386 1.2428 × 10−12

2 0.1331 2.3786 × 10−12

3 0.1278 1.0845 × 10−12

4 0.1214 1.6150 × 10−12

5 0.1147 1.5721 × 10−12

6 0.1004 1.6229 × 10−12

7 0.0873 2.2518 × 10−12

8 0.0792 1.3923 × 10−12

9 0.0854 1.2919 × 10−12

10 0.0797 1.8674 × 10−12

Average 0.1068 1.6319 × 10−12

data in our previous research shows that the current result is more accurate than
our previous result (1.982×10−9 [mm] [14] and 4.826×10−11 [mm] [7]). Note that
the software used for solving equations in the current experiment differs from
the one used in our previous experiments; this could have affected the results.

The average computing time for solving the inverse kinematic problem was
approximately 100 [ms]. Comparison with data in our previous research shows
that the current result is more efficient than our previous result (540 [ms] [14] and
697 [ms] [7], measured in the environment of Otaki et al. [14]). However, systems
designed for real-time control using Gröbner basis computation have achieved
computation times of 10 [ms] order [20,21]. Therefore, our method may have
room for improvement (see Sect. 6).

5 Path and Trajectory Planning

In this section, we propose methods for path and trajectory planning of the
manipulator based on the CGS-QE method.

In path planning, we calculate the configuration of the joints for moving the
position of the end-effector along with the given path. In trajectory planning,
we calculate the position (and possibly its velocity and acceleration) of the end-
effector as a function of time series depending on constraints on the velocity and
acceleration of the end-effector and other constraints.

In Sect. 5.1, we make a trajectory of the end-effector to move it along a line
segment connecting two different points in R

3 with considering constraints on the
velocity and acceleration of the end-effector. Then, by the repeated use of inverse
kinematics solver proposed in Sect. 4, we calculate a series of configuration of the
joints. In Sect. 5.2, for the path of a line segment expressed with a parameter,
we verify that by using the CGS-QE method, moving the end-effector along

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 411

the path is feasible for a given range of the parameter, then perform trajectory
planning as explained in the previous subsection.

5.1 Path and Trajectory Planning for a Path Expressed
as a Function of Time

Assume that the end-effector of the manipulator moves along a line segment
from the given initial to the final position as follows.

– pd = t(x, y, z): current position of the end-effector,
– p0 = t(x0, y0, z0): the initial position of the end-effector,
– pf = t(xf , yf , zf): the final position of the end-effector,

where pd,p0,pf ∈ R
3 and x0, y0, z0, xf , yf , zf are constants satisfying x0 �= xf ,

y0 �= yf , z0 �= zf . Then, with a parameter s ∈ [0, 1], pd is expressed as

pd = p0(1 − s) + pfs. (15)

Note that the initial position p0 and the final position pf corresponds to the
case of s = 0 and 1 in (15), respectively.

Then, we change the value of s with a series of time t. Let T be a positive
integer. For t ∈ [0, T], set s as a function of t as s = s(t) satisfying that s ∈ [0, 1].
Let ṡ and s̈ be the first and the second derivatives of s, respectively. (Note
that ṡ and s̈ corresponds to the speed and the acceleration of the end-effector,
respectively).

Let us express s(t) as a polynomial in t. At t = 0, the end-effector is stopped
at p0. Then, accelerate and move the end-effector along with a line segment for a
short while. After that, slow down the end-effector and, at t = T , stop it at pf .
We require the acceleration at t = 0 and T equals 0 for smooth starting and
stopping. Then, s(t) becomes a polynomial of degree 5 in t [10], as follows. Let

s(t) =
a4T

5

(
t

T

)5

+
a3T

4

(
t

T

)4

+
a2T

3

(
t

T

)3

+
a1T

2

(
t

T

)2

+ a0t, (16)

where a4, a3, a2, a1, a0 ∈ R. (Note that, for s(0) = 0, s(t) does not have a constant
term.) Then, we have

ṡ(t) = a4

(
t

T

)4

+ a3

(
t

T

)3

+ a2

(
t

T

)2

+ a1

(
t

T

)

+ a0,

s̈(t) =
4a4

T

(
t

T

)3

+
3a3

T

(
t

T

)2

+
2a2

T

(
t

T

)

+
a1

T
.

(17)

By the constraints s(0) = ṡ(0) = s̈(0) = 0, s(T) = 1, ṡ(T) = s̈(T) = 0, we see
that a0 = a1 = 0 and a3, a4, a5 satisfy the following system of linear equations.

20a2 + 15a3 + 12a4 − 60
T

= 0, a2 + a3 + a4 = 0, 2a2 + 3a3 + 4a4 = 0. (18)

412 M. Yoshizawa et al.

Algorithm 6. A path and trajectory planning of the manipulator
Input: F = {f1, . . . , f6}: a system of equations for the inverse kinematic problem (2),

V = {c1, s1, c4, s4, c7, s7}: variables, P = {x, y, z}: parameters, p0 = t(x0, y0, z0):
the initial position of the end-effector in the path, pf = t(xf , yf , zf): the final
position of the end-effector in the path, T : a step length of the time series; F
(optional): a CGS of 〈F 〉 or the output of Generate-Real-CGS(F ,P) (Algorithm
2) where F is a CGS of 〈F 〉, RealCGS = {TRUE | FALSE} (optional): whether
one wish to call Generate-Real-CGS (Algorithm 2) or not;

Output: L = {Θt = (θ1,t, θ4,t, θ7,t) | t = 1, . . . , T}: a series of solution of the inverse
kinematic problem (2);

1: function Compute-IKP-Trajectory(F , V, P, p0, pf , T , F , RealCGS)
2: if F = ∅ then
3: Compute a CGS of 〈F 〉 as F = {(S1, G1), . . . , (St, Gt)};
4: end if
5: if RealCGS = TRUE then
6: F ′ ← Generate-Real-CGS(F , V); � See Sect. 4.1 (Algorithm 2)
7: else F ′ ← F ;
8: end if
9: L ← ∅;

10: for t = 1, . . . , T do
11: s ← 6

T5 t5 − 15
T4 t4 + 10

T3 t3; pd ← p0(1 − s) + pf � from (19) and (15),
respectively;

12: Θ ← Solve-IKP-Point(F, V, P,pd, F ′,FALSE); � See Sect. 4 (Algorithm
1)

13: if Θ 	= ∅ then
14: L ← L ∪ {Θ};
15: else return L;
16: end if
17: end for
18: return L;
19: end function

By solving (18), we obtain a2 = 30
T , a3 = − 60

T , a4 = 30
T . Thus, s(t), ṡ(t), s̈(t)

become as

s(t) =
6

T 5
t5 − 15

T 4
t4 +

10
T 3

t3, ṡ(t) =
30
T 5

t4 − 60
T 4

t3 +
30
T 3

t2,

s̈(t) =
120
T 5

t3 − 180
T 4

t2 +
60
T 3

t,

(19)

respectively.
We perform trajectory planning as follows. For given p0 = t(x0, y0, z0),

pf = t(xf , yf , zf), t ∈ [0, T], calculate s(t) by (19). For each value of t changing
as t = 0, 1, . . . , T , calculate pd = t(xd, yd, zd) by (15), then apply Algorithm 1
with xd, yd, zd and calculate the configuration of joints θ1, θ4, θ7.

This procedure is summarized as Algorithm 6.

Remark 10. We see that Algorithm 6 outputs a trajectory for the given path of
the end-effector, as follows. After computing the CGS F , some segments without

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 413

real points are eliminated optionally, resulting in F ′. Next, a trajectory of points
on the given path is calculated as s(t) with t = 0, . . . , T . Then, for t = 0, . . . , T ,
an inverse kinematic problem is solved with Algorithm 1, and while the solution
Θ of the inverse kinematic problem exists, a sequence of solutions L is obtained.

Remark 11. In Algorithm 6, it is also possible to calculate the GCS F or F ′

(in which some segments without real points are eliminated by Algorithm 2)
first and then give them to the algorithm as in the case of Algorithm 1. (The
specification is the same as Algorithm 1; see Remark 3.)

Example 2. Let p0 = t(x0, y0, z0) = t(10, 40, 80), pf = t(xf , yf , zf) =
t(40, 100, 20), and T = 50. As the CGS corresponding to (2), F that has
already been computed in Sect. 4.4 is given. By Algorithm 6, a sequence L
of the configuration of the joints θ1, θ4, θ7 corresponding to each point in the
trajectory of the end-effector from p0 to pf has been obtained. The total
amount of computing time (CPU time) for path and trajectory planning was
approximately 3.377 s. Next, we show another example by using CGS F ′ =
Generate-Real-CGS(F ,V), where F is the same as the one used in the pre-
vious example. Then, the computing time (CPU time) was approximately 2.246
sec. Note that computing time has been reduced by using the CGS with some
segments not containing real points eliminated using Algorithm 2.

Remark 12. Algorithm 6 may cause a discontinuity in the sequence of the config-
uration of the joints when a point on the trajectory gives a non-zero dimensional
ideal as handled by Algorithm 5. For example, assume that the trajectory has
a point p = (0, 0, z0) at t = t0 (0 < t0 < T). Then, at t = t0, according to
Algorithm 5, θ1 is set to 0 regardless of the value of θ1 at t = t0 − 1. This could
cause θ1 to jump between t0 −1 and t0, resulting a discontinuity in the sequence
of configuration of Joint 1. Preventing such discontinuity in trajectory planning
is one of our future challenges.

5.2 Trajectory Planning with Verification of the Feasibility
of the Inverse Kinematic Solution

Assume that the path of the motion of the end-effector is given as (15) with
the initial position p0 and the final position pf . We propose a method of trajec-
tory planning by verifying the existence of the solution of the inverse kinematic
problem with the CGS-QE method.

In the equation of the inverse kinematic problem (2), by substituting param-
eters x, y, z with the coordinates of pd in (15), respectively, we have the following
system of polynomial equations.

414 M. Yoshizawa et al.

Algorithm 7. Trajectory planning with CGS-QE method
Input: F = {f1, . . . , f6}: a system of equations for the inverse kinematic problem (2),

V = {c1, s1, c4, s4, c7, s7}: variables, P = {x, y, z}: parameters, p0 = t(x0, y0, z0):
the initial position of the end-effector in the path, pf = t(xf , yf , zf): the final
position of the end-effector in the path, T : the step length of a time series; F
(optional): a CGS of 〈F 〉 or the output of Generate-Real-CGS(F ,P) (Algorithm
2) where F is a CGS of 〈F 〉, RealCGS = {TRUE | FALSE} (optional): whether
one wish to call Generate-Real-CGS (Algorithm 2) or not;

Output: L = {Θt = (θ1,t, θ4,t, θ7,t) | t = 1, . . . , T}: a series of solution of the inverse
kinematic problem (2);

1: function Solve-IKP-Trajectory-CGS-QE(F , V, P, p0, pf , T , F , RealCGS)
2: if F = ∅ then
3: Compute a CGS of 〈F 〉 as F = {(S1, G1), . . . , (St, Gt)};
4: end if
5: if RealCGS = TRUE then
6: F ′ ← Generate-Real-CGS(F , V); � See Sect. 4.1 (Algorithm 2)
7: else F ′ ← F ;
8: end if
9: M ← MainQE(F ′);

10: if [0, 1] ⊂ M then
11: L ← Compute-IKP-Trajectory(F, V, P,p0,pf , T, F ′, FALSE); � See

Sect. 5.1 (Algorithm 6)
12: else L ← ∅;
13: end if
14: return L;
15: end function

f1 = 120c1c4s7 − 16c1c4 + 120c1s4c7 + 136c1s4 − 44
√

2c1

+ x0(1 − s) + xfs = 0,

f2 = 120s1c4s7 − 16s1c4 + 120s1s4c7 + 136s1s4 − 44
√

2s1

+ y0(1 − s) + yfs = 0,

f3 = −120c4s7 − 136c4 + 120s4s7 − 16s4 − 104 − 44
√

2
+ z0(1 − s) + zfs = 0,

f4 = s21 + c21 − 1 = 0, f5 = s24 + c24 − 1 = 0, f6 = s27 + c27 − 1 = 0.

(20)

Note that x0, y0, z0, xf , yf , zf are the constants.
Equation (20) has a parameter s. Using the CGS-QE method, we verify (20)

has real roots for s ∈ [0, 1]. The whole procedure for trajectory planning is shown
in Algorithm 7.

Remark 13. In Algorithm 7, it is also possible to calculate the GCS F or F ′ (in
which some segments without real points are eliminated by Algorithm 2) first
and then give them to the algorithm as in the case of Algorithms 1 and 6. (The
specification is the same is Algorithms 1 and 6; see Remark 3).

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 415

In Algorithm 7, Line 9 corresponds to Algorithm MainQE in the CGS-QE
method. Its detailed procedure for a zero-dimensional ideal is as follows. Let F ′

be the input CGS, (S, G) a segment, M ⊂ R
3 the output. Assume that the ideal

〈G〉 is zero-dimensional.

1. In the case G �= {1}, calculate the matrix M
〈G〉
1 .

2. Calculate the characteristic polynomial χ
〈G〉
1 (X).

3. Calculate the range M of parameter s that makes (20) has a real root as
follows.
(a) By (4) and (5), generate the sequences of coefficients L

χ
〈G〉
1 +

and L
χ

〈G〉
1 −

of χ
〈G〉
1 (X) and χ

〈G〉
1 (−X), respectively. Note that L

χ
〈G〉
1 +

and L
χ

〈G〉
1 −

consist of polynomials in s.
(b) Using L

χ
〈G〉
1 +

, L
χ

〈G〉
1 −, make sequences of equations and/or inequality in

s, such as (1, ad−1 > 0, ad−2 < 0, . . . , a0 > 0). For the sequences, calculate
the number of sign changes S

χ
〈G〉
1 +

and S
χ

〈G〉
1 − as in (6).

(c) By Corollary 2, collect the sequences of equations/inequalities that satisfy
S

χ
〈G〉
1 +

�= S
χ

〈G〉
1 −. From the sequences satisfying the above condition,

extract conjunction of the constraints on s as M ⊂ R.

Remark 14. We see that Algorithm 7 outputs a trajectory for the given path
of the end-effector after verifying feasibility of the whole given path, as follows.
For a system of polynomial equations F with parameter s in (20), a CGS F of
〈F 〉 is calculated. After calculating F , some segments without real points are
eliminated optionally, resulting in F ′. Next, for F ′, the range M of parameter s
that makes (20) has a real root with the MainQE algorithm in the CGS-QE
method. Then, if [0, 1] ⊂ M , a series of solution of the inverse kinematic problem
L is calculated by calling Algorithm 6.

We have implemented Algorithm 7 using Risa/Asir, together with using Wol-
fram Mathematica 13.1 [23] for calculating the characteristic polynomial in Step
2 and simplification of formula in Step 3 above. For connecting Risa/Asir and
Mathematica, OpenXM infrastructure [11] was used.

Example 3. Let p0 = t(x0, y0, z0) = t(10, 40, 80) and pf = t(xf , yf , zf) =
t(40, 100, 20) (the same as those in Example 2). For (20), substitute x0, y0,
z0, xf , yf , zf with the above values and define a system of polynomial equations
with parameter s as

f1 = 120c1c4s7 − 16c1c4 + 120c1s4c7 + 136c1s4 − 44
√

2c1 + 30 s + 10 = 0,

f2 = 120s1c4s7 − 16s1c4 + 120s1s4c7 + 136s1s4 − 44
√

2s1 + 60 s + 40 = 0,

f3 = −120c4s7 − 136c4 + 120s4s7 − 16s4 − 60 s − 44
√

2 − 24 = 0,

f4 = s21 + c21 − 1 = 0, f5 = s24 + c24 − 1 = 0, f6 = s27 + c27 − 1 = 0,

(21)

and verify that (21) has a real root for s ∈ [0, 1]. In Algorithm 7, comput-
ing a CGS F (Line 3) was performed in approximately 485.8 sec., in which F

416 M. Yoshizawa et al.

has 6 segments. The step of Generate-Real-CGS (Line 6) was performed
in approximately 0.009344 s with obtaining one segment existing in R. The
step of MainQE (Line 9) was performed in approximately 1.107 s, and we see
that [0, 1] ⊂ M , thus the whole trajectory is included in the feasible region of
the manipulator. The rest of the computation is the same as the one in Example
2.

6 Concluding Remarks

In this paper, we have proposed methods for inverse kinematic computation
and path and trajectory planning of a 3-DOF manipulator using the CGS-QE
method.

For the inverse kinematic computation (Algorithm 1), in addition to our
previous method [14], we have automated methods for eliminating segments that
do not contain real points (Algorithm 2) and for handling non-zero dimensional
ideals (Sect. 4.3). Note that our solver verifies feasibility for the given position
of the end-effector before performing the inverse kinematic computation.

For path and trajectory planning, we have proposed two methods. The first
method (Algorithm 6) is the repeated use of inverse kinematics solver (Algorithm
1). The second method (Algorithm 7) is based on verification that the given
path (represented as a line segment) is included in the feasible region of the end-
effector with the CGS-QE method. Examples have shown that the first method
seems efficient and suitable for real-time solving of inverse kinematics problems.
Although the second method is slower than the first one, it provides rigorous
answers on the feasibility of path planning. This feature would be helpful for
the initial investigation of path planning that needs rigorous decisions on the
feasibility before performing real-time solving of inverse kinematics problems.

Further improvements of the proposed methods and future research directions
include the following.

1. If more than one solution of the inverse kinematic problem exist, currently
we choose the first one that the solver returns. However, currently, there is
no guarantee that a series of solutions of the inverse kinematic problem in
the trajectory planning (in Sect. 5.1) is continuous, although it just so hap-
pened that the calculation in Example 2 was well executed. The problem of
guaranteeing continuity of solutions to inverse kinematics problems needs to
be considered in addition to the problem of guaranteeing feasibility of solu-
tions; for this purpose, tools for solving parametric semi-algebraic systems by
decomposing the parametric space into connected cells above which solutions
are continuous might be useful [2,9,24]. Furthermore, another criterion can be
added for choosing an appropriate solution, based on another criteria such as
the manipulability measure [16] that indicates how the current configuration
of the joints is away from a singular configuration.

2. Our algorithm for trajectory planning (Algorithm 6) may cause a disconti-
nuity in the sequence of the configuration of the joints when a point on the

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 417

trajectory gives a non-zero dimensional ideal. The algorithm needs to be mod-
ified to output a sequence of continuous joint configurations, even if the given
trajectory contains points that give non-zero dimensional ideals (see Remark
12).

3. Considering real-time control, the efficiency of the solver may need to be
improved. It would be necessary to actually run our solver on the EV3 to
verify the accuracy and efficiency of the proposed algorithm to confirm this
issue (see Sect. 4.4).

4. In this paper, we have used a line segment as a path of the end-effector.
Path planning using more general curves represented by polynomials would
be useful for giving the robot more freedom of movement. However, if path
planning becomes more complex, more efficient methods would be needed.

5. While the proposed method in this paper is for a manipulator of 3-DOF,
many industrial manipulators have more degrees of freedom. Developing the
method with our approach for manipulators of higher DOF will broaden the
range of applications.

Acknowledgements. The authors would like to thank Dr. Katsuyoshi Ohara for sup-
port for the OpenXM library to call Mathematica from Risa/Asir, and the anonymous
reviewers for their helpful comments.

This research was partially supported by JSPS KAKENHI Grant Number
JP20K11845.

References

1. Becker, E., Wöermann, T.: On the trace formula for quadratic forms. In: Recent
Advances in Real Algebraic Geometry and Quadratic Forms (Berkeley, CA,
1990/1991; San Francisco, CA, 1991), Contemporary Mathematics, vol. 155, pp.
271–291. AMS, Providence (1994). https://doi.org/10.1090/conm/155/01385

2. Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical
systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2011. LNCS, vol. 6885, pp. 101–125. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23568-9 9

3. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer,
Heidelberg (2005). https://doi.org/10.1007/b138611

4. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 4th edn.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-16721-3

5. Faugère, J.C., Merlet, J.P., Rouillier, F.: On solving the direct kinematics problem
for parallel robots. Research Report RR-5923, INRIA (2006). https://hal.inria.fr/
inria-00072366

6. Fukasaku, R., Iwane, H., Sato, Y.: Real quantifier elimination by computation of
comprehensive Gröbner systems. In: Proceedings of the 2015 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2015, pp. 173–180.
ACM, New York (2015). https://doi.org/10.1145/2755996.2756646

https://doi.org/10.1090/conm/155/01385
https://doi.org/10.1007/978-3-642-23568-9_9
https://doi.org/10.1007/978-3-642-23568-9_9
https://doi.org/10.1007/b138611
https://doi.org/10.1007/978-3-319-16721-3
https://hal.inria.fr/inria-00072366
https://hal.inria.fr/inria-00072366
https://doi.org/10.1145/2755996.2756646

418 M. Yoshizawa et al.

7. Horigome, N., Terui, A., Mikawa, M.: A design and an implementation of an
inverse kinematics computation in robotics using Gröbner bases. In: Bigatti, A.M.,
Carette, J., Davenport, J.H., Joswig, M., de Wolff, T. (eds.) ICMS 2020. LNCS,
vol. 12097, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
52200-1 1

8. Kalker-Kalkman, C.M.: An implementation of Buchbergers’ algorithm with appli-
cations to robotics. Mech. Mach. Theory 28(4), 523–537 (1993). https://doi.org/
10.1016/0094-114X(93)90033-R

9. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Com-
put. 42(6), 636–667 (2007). https://doi.org/10.1016/j.jsc.2007.01.007

10. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, Cambridge (2017)

11. Maekawa, M., Noro, M., Ohara, K., Takayama, N., Tamura, K.: The design and
implementation of OpenXM-RFC 100 and 101. In: Shirayanagi, K., Yokoyama, K.
(eds.) Computer Mathematics: Proceedings of the Fifth Asian Symposium on Com-
puter Mathematics (ASCM 2001), pp. 102–111. World Scientific (2001). https://
doi.org/10.1142/9789812799661 0011

12. Nabeshima, K.: CGS: a program for computing comprehensive Gröbner sys-
tems in a polynomial ring [computer software] (2018). https://www.rs.tus.ac.jp/
nabeshima/softwares.html. Accessed 30 June 2023

13. Noro, M.: A computer algebra system: Risa/Asir. In: Joswig, M., Takayama, N.
(eds.) Algebra, Geometry and Software Systems, pp. 147–162. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-662-05148-1 8

14. Otaki, S., Terui, A., Mikawa, M.: A design and an implementation of an inverse
kinematics computation in robotics using real quantifier elimination based on
comprehensive Gröbner systems. Preprint (2021). https://doi.org/10.48550/arXiv.
2111.00384, arXiv:2111.00384

15. Pedersen, P., Roy, M.F., Szpirglas, A.: Counting real zeros in the multivariate case.
In: Computational Algebraic Geometry (Nice, 1992). Progress in Mathematics, vol.
109, pp. 203–224. Birkhäuser Boston, Boston (1993). https://doi.org/10.1007/978-
1-4612-2752-6 15

16. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning
and Control. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84628-
642-1

17. da Silva, S.R.X., Schnitman, L., Cesca Filho, V.: A solution of the inverse kinemat-
ics problem for a 7-degrees-of-freedom serial redundant manipulator using Gröbner
bases theory. Math. Probl. Eng. 2021, 6680687 (2021). https://doi.org/10.1155/
2021/6680687

18. Terui, A., Yoshizawa, M., Mikawa, M.: ev3-cgs-qe-ik-2: an inverse kinematics solver
based on the CGS-QE algorithm for an EV3 manipulator [computer software]
(2023). https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2

19. The PARI Group, Univ. Bordeaux: PARI/GP version 2.13.1 (2021). https://pari.
math.u-bordeaux.fr/

20. Uchida, T., McPhee, J.: Triangularizing kinematic constraint equations using
Gröbner bases for real-time dynamic simulation. Multibody Syst. Dyn. 25, 335–356
(2011). https://doi.org/10.1007/s11044-010-9241-8

21. Uchida, T., McPhee, J.: Using Gröbner bases to generate efficient kinematic solu-
tions for the dynamic simulation of multi-loop mechanisms. Mech. Mach. Theory
52, 144–157 (2012). https://doi.org/10.1016/j.mechmachtheory.2012.01.015

https://doi.org/10.1007/978-3-030-52200-1_1
https://doi.org/10.1007/978-3-030-52200-1_1
https://doi.org/10.1016/0094-114X(93)90033-R
https://doi.org/10.1016/0094-114X(93)90033-R
https://doi.org/10.1016/j.jsc.2007.01.007
https://doi.org/10.1142/9789812799661_0011
https://doi.org/10.1142/9789812799661_0011
https://www.rs.tus.ac.jp/nabeshima/softwares.html
https://www.rs.tus.ac.jp/nabeshima/softwares.html
https://doi.org/10.1007/978-3-662-05148-1_8
https://doi.org/10.48550/arXiv.2111.00384
https://doi.org/10.48550/arXiv.2111.00384
http://arxiv.org/abs/2111.00384
https://doi.org/10.1007/978-1-4612-2752-6_15
https://doi.org/10.1007/978-1-4612-2752-6_15
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1155/2021/6680687
https://doi.org/10.1155/2021/6680687
https://github.com/teamsnactsukuba/ev3-cgs-qe-ik-2
https://pari.math.u-bordeaux.fr/
https://pari.math.u-bordeaux.fr/
https://doi.org/10.1007/s11044-010-9241-8
https://doi.org/10.1016/j.mechmachtheory.2012.01.015

Inverse Kinematics and Path Planning of Manipulator Using CGS-QE 419

22. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–
392. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-9459-1 20

23. Wolfram Research Inc: Mathematica, Version 13.1 [computer software] (2022).
https://www.wolfram.com/mathematica. Accessed 14 May 2023

24. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a
class of inequality-type theorems. Sci. China Ser. F Inf. Sci. 44(1), 33–49 (2001).
https://doi.org/10.1007/BF02713938

https://doi.org/10.1007/978-3-7091-9459-1_20
https://www.wolfram.com/mathematica
https://doi.org/10.1007/BF02713938

Author Index

A
Ansari, Mahsa 1

B
Barket, Rashid 21
Bernauer, Klara 39
Brandt, Alexander 69

C
Cheng, Jin-San 312
Chuluunbaatar, O. 128
Clamond, Didier 90

D
Derbov, V.L. 128

E
England, Matthew 21

G
Galligo, André 90
Gerhard, Jürgen 21
Go, Soo 107
Goncharova, Marina 255
González Trochez, Juan Pablo 69
Gusev, A. A. 128

H
Hai, L. L. 128
Hashemi, Amir 141
Hofstadler, Clemens 39
Hormann, Kai 162
Huang, Bo 183

I
Imre, Jacob 199
Irtegov, Valentin 213

J
Jeffrey, David J. 199
Jia, H. M. 128
Jinadu, Ayoola 233

K
Kalinina, Elizaveta 255

L
Lezhnina, Elena 255
Li, Bo 312
Li, Xiaoliang 183
Lichtblau, Daniel 141
Lin, C.J. 128

M
Mikawa, Masahiko 393
Monagan, Michael 1, 233
Moreno Maza, Marc 69

N
Nabeshima, Katsusuke 272
Nazmitdinov, R.G. 128
Niu, Wei 183

O
Olver, Peter J. 292

P
Pan, Victor Y. 107

R
Regensburger, Georg 39

S
Soto, Pedro 107

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
F. Boulier et al. (Eds.): CASC 2023, LNCS 14139, pp. 421–422, 2023.
https://doi.org/10.1007/978-3-031-41724-5

https://doi.org/10.1007/978-3-031-41724-5

422 Author Index

T
Tajima, Shinichi 272
Tan, Ling 312
Terui, Akira 393
Titorenko, Tatiana 213

U
Uteshev, Alexei 255

V
Vinitsky, S.I. 128
Vorozhtsov, Evgenii V. 330

W
Wang, Weidong 350
Watt, Stephen M. 370
Wen, P.W. 128

X
Xie, Shaofen 183

Y
Yang, Jing 350
Yap, Chee 162
Yoshizawa, Mizuki 393
Yuan, Haoze 69

Z
Zhang, Bingwei 312
Zhang, Ya Shi 162

	 Preface
	 Acknowledgments
	 Organization
	Abstracts of Invited Talks
	 Normal Forms of Integer Matrices
	 On the Performance of Local Search Algorithms for K-SAT Problems in Random Graphs
	 Contents

	Computing GCDs of Multivariate Polynomials over Algebraic Number Fields Presented with Multiple Extensions
	1 Introduction
	1.1 Motivation for the Algorithm
	1.2 Preliminaries
	1.3 Paper Outline

	2 Converting Q(1,…,n) to a Single Extension Q()
	2.1 Computing a Primitive Element and its Minimal Polynomial
	2.2 The Isomorphism

	3 The Modular Gcd Algorithm
	3.1 PGCD
	3.2 MGCD

	4 Complexity
	5 Implementation
	5.1 Maple Implementation
	5.2 Benchmark

	6 Conclusion and Future Work
	References

	Generating Elementary Integrable Expressions
	1 Introduction
	1.1 Machine Learning and Computer Algebra
	1.2 Symbolic Integration Meta-Algorithms
	1.3 Motivation
	1.4 Contributions and Plan

	2 Existing Datasets and Data Generation Methods
	2.1 Deep Learning for Symbolic Mathematics
	2.2 Other Existing Datasets

	3 The Risch Algorithm
	3.1 The Rational Part
	3.2 The Polynomial Part

	4 Data Generation Based on the Risch Algorithm
	4.1 Polynomial Integrable Expressions
	4.2 Rational Integrable Expressions

	5 Discussion
	5.1 Risch Data Generation Benefits
	5.2 Future Work

	References

	How to Automatise Proofs of Operator Statements: Moore–Penrose Inverse; A Case Study
	1 Introduction
	2 From Operator Identities to Noncommutative Polynomials
	3 Treating Existential Statements
	4 Treating Common Properties
	4.1 Real Matrices
	4.2 Identity Operators
	4.3 Injectivity, Surjectivity, and Full Matrix Ranks
	4.4 Range Inclusions

	5 Logical Framework
	6 Case Study
	A The Software Package Operator_gb
	A.1 Certifying Operator Statements
	A.2 Useful Auxiliary Functions for Treating Operator Statements
	A.3 Quivers and Detecting Typos
	A.4 Gröbner Basis Computations
	A.5 Heuristics for Finding Polynomials of Certain Form

	References

	A Modular Algorithm for Computing the Intersection of a One-Dimensional Quasi-Component and a Hypersurface
	1 Introduction
	2 Preliminaries
	3 Genericity Assumptions
	4 The Modular Method
	4.1 The Fumber of Bad Specializations is Finite
	4.2 Number of Bad Specializations and Other Degree Estimates
	4.3 A Modular Algorithm

	5 Relaxing the Hypotheses
	6 Implementation
	7 Experimentation and Discussion
	References

	Certified Study of Internal Solitary Waves
	1 Introduction
	2 Improved Serre-Like Model
	3 Steady Motions
	4 Algebraic Analysis and Symbolic Computations
	4.1 Improved SGN
	4.2 Expressions Related to D, with 1 and 2
	4.3 Illustrative Case
	4.4 Classical SGN, i.e., 1 =2=0

	5 Partition of the Parameters Space
	6 Phase Plane Analysis
	6.1 Local Analysis
	6.2 Global Analysis

	7 An Explicit Example of Slug
	8 Conclusion
	References

	Root-Squaring for Root-Finding
	1 Introduction
	1.1 Polynomial Root-Finding
	1.2 Classical Root-Squaring Iterations
	1.3 Related Works on Root-Squaring and Its Applications
	1.4 The Two Nearly Optimal Polynomial Root-Finders
	1.5 Our Contribution
	1.6 Organization of Our Paper

	2 Background and Motivation
	2.1 Definitions
	2.2 Extension of the DLG Iterations
	2.3 NIRp, Root-Squaring, and Estimation of Extremal Root Radii
	2.4 NIRp, Root-Squaring, and Recent E/i Tests
	2.5 Recovery of Complex Roots

	3 Our Root-Squaring Algorithm
	3.1 Implementation Details
	3.2 Analysis

	4 Experimental Results
	4.1 Setup
	4.2 Our Findings
	4.3 Alternative Bounds on Extremal Root Radii

	5 Conclusion
	A Additional Tables
	References

	Symbolic-Numerical Algorithm for Solving the Problem of Heavy Ion Collisions in an Optical Model with a Complex Potential
	1 Introduction
	2 Optical Model and IWBC Model in the Single-Channel Approximation
	3 The Optical Model Algorithm
	4 Benchmark Calculations
	5 Conclusions
	References

	On the Complexity of Linear Algebra Operations over Algebraic Extension Fields
	1 Introduction
	2 Preliminaries
	3 Complexity Results
	3.1 Multiplication Table
	3.2 Algebraic Inverse
	3.3 Gaussian Elimination
	3.4 Minimal Polynomial

	4 Notes on Implementation and Experimental Results
	4.1 Dependence on Matrix Dimension
	4.2 Dependence on Normal Set Size

	References

	Range Functions of Any Convergence Order and Their Amortized Complexity Analysis
	1 Introduction
	1.1 Why We Must Extend the CL Framework
	1.2 Overview
	1.3 Terminology and Notation

	2 Generalized CL Framework
	2.1 Achieving Any Order of Convergence
	2.2 Strong Box Functions

	3 A Practical Range Function of Order 4
	4 Holistic Complexity Analysis of Range Functions
	4.1 Amortized Complexity of
	4.2 Amortized Complexity of
	4.3 Amortized Complexity for Hermite Schemes

	5 Experimental Results
	5.1 Non-maximal Recursion Levels

	6 Conclusions and Future Work
	References

	Stability and Zero-Hopf Bifurcation Analysis of the Lorenz–Stenflo System Using Symbolic Methods
	1 Introduction and Main Results
	2 Preliminary Results
	3 Stability Conditions of the Lorenz–Stenflo System
	4 Zero-Hopf Bifurcation of the Lorenz–Stenflo System
	5 Zero-Hopf Bifurcation in a Special Lorenz–Stenflo System
	6 Conclusions
	References

	Non-principal Branches of Lambert W. A Tale of 2 Circles
	1 Introduction
	1.1 Definitions
	1.2 Expansions
	1.3 Branch Structure
	1.4 Asymptotic Expansions
	1.5 Outline

	2 de Bruijn Series for Large z
	3 de Bruijn Series for Small z
	4 A Surprising Convergence
	5 A Further Variation
	6 Concluding Remarks
	References

	On the Qualitative Analysis of the Equations of Motion of a Nonholonomic Mechanical System
	1 Introduction
	2 Problem Statement
	3 On Stationary Sets in the Case of Absence of External Forces
	4 On Stationary Sets in the Case of the Presence of External Forces
	5 On Pendulum-Like Motions
	6 On the Stability of Stationary Sets
	6.1 The Case of Absence of External Forces
	6.2 The Case of the Presence of External Forces

	7 Conclusion
	References

	Solving Parametric Linear Systems Using Sparse Rational Function Interpolation
	1 Introduction
	2 Sparse Multivariate Rational Function Interpolation
	2.1 Cuyt and Lee's Algorithm
	2.2 Using a Kronecker Substitution on the Parameters

	3 The Algorithm
	4 Analysis
	4.1 Failure Probability Analysis
	4.2 Complexity Analysis

	5 Implementation and Benchmarks
	References

	On the Distance to the Nearest Defective Matrix
	1 Introduction
	2 Algebraic Preliminaries
	3 Complex Matrix
	4 Real Matrix
	5 Conclusions
	References

	Effective Algorithm for Computing Noetherian Operators of Positive Dimensional Ideals
	1 Introduction
	2 Noetherian Operators of Zero Dimensional Ideals
	3 Mathematical Basics
	3.1 Extension and Contraction
	3.2 Noetherian Operators of a Primary Ideal qe K(U)[Y]

	4 Main Results
	4.1 Generalization
	4.2 Comparisons
	4.3 Computing Noetherian Representations

	References

	On the Structure and Generators of Differential Invariant Algebras
	1 Introduction
	2 Multi-indices
	3 The Jet Calculus
	4 Invariantization
	5 The Recurrence Formulae
	6 The Symbolic Invariant Calculus
	7 The Extended Symbolic Invariant Calculus
	8 Independence
	9 Generating Differential Invariants
	10 The Algorithm
	References

	An Algorithm for the Intersection Problem of Planar Parametric Curves
	1 Introduction
	2 Reduction Strategy
	2.1 Reduction Strategy
	2.2 Preconditioner

	3 Uniqueness and Existence
	3.1 An Opposite Monotone System in a Box
	3.2 How to Transform a System to an Opposite Monotone System in a Box
	3.3 How to Check the Existence

	4 Some Singular Cases
	4.1 Cusp Cases
	4.2 Self-intersection Cases
	4.3 Tangential Cases
	4.4 Mixed Cases

	5 Algorithm
	6 Experiments
	7 Conclusion
	References

	A Symbolic-Numeric Method for Solving the Poisson Equation in Polar Coordinates
	1 Introduction
	2 The CLS Method for the Numerical Solution of the Poisson Equation in Polar Coordinates
	3 Computational Results
	4 Conclusions
	References

	Two Variants of Bézout Subresultants for Several Univariate Polynomials
	1 Introduction
	2 Preliminaries
	2.1 The Bézout-Type Subresultant and Its Variants for Two Polynomials
	2.2 Subresultant in Roots for Several Polynomials

	3 Main Results
	4 Proof
	4.1 Proof of Theorem 2-(1)
	4.2 Proof of Theorem 2-(2)

	5 Experimental Results
	6 Conclusion
	References

	Efficient Quotients of Non-commutative Polynomials
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Division
	2.3 Whole Shift and Whole Shifted Inverse

	3 Division in Non-Commutative R[x]
	3.1 Definitions and Classical Algorithms
	3.2 Whole Shift and Whole Shifted Inverse in R[x]
	3.3 Quotients from the Whole Shifted Inverse in R[x]

	4 Generic Algorithm for the Whole Shifted Inverse
	5 Non-commutative Polynomial Example
	6 Division in R[x; ,]
	6.1 Definitions and Classical Algorithms
	6.2 Whole Shift and Inverse in R[x; ,]
	6.3 Quotients from Whole Shifted Inverses in R[x; ,]

	7 Skew Polynomial Examples
	7.1 Differential Operators
	7.2 Difference Operators
	7.3 Difference Operators with Matrix Coefficients

	8 Conclusions
	References

	Inverse Kinematics and Path Planning of Manipulator Using Real Quantifier Elimination Based on Comprehensive Gröbner Systems
	1 Introduction
	2 Inverse Kinematics of a 3-DOF Robot Manipulator
	3 Real Quantifier Elimination Based on CGS
	3.1 CGS
	3.2 Real Root Counting
	3.3 CGS-QE Algorithm

	4 Solving the Inverse Kinematic Problem
	4.1 Removing a Segment Not Existing in R3
	4.2 Calculating the Number of Real Roots
	4.3 Calculation for Non-Zero Dimensional Ideals
	4.4 Experiments

	5 Path and Trajectory Planning
	5.1 Path and Trajectory Planning for a Path Expressed as a Function of Time
	5.2 Trajectory Planning with Verification of the Feasibility of the Inverse Kinematic Solution

	6 Concluding Remarks
	References

	Author Index

