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Part I 
General Topics



Geothermal Habitats and Adaptations 
of Thermophilic Microbes 

Bjorn Thor Adalsteinsson and Gudmundur Oli Hreggvidsson 

Abstract In this chapter, the main habitats of thermophiles, their discovery, and 
ecology are discussed. The focus of the discussion is on natural habitats associated 
with geothermal activity, their geological origin, and characteristics of different 
geothermal surface manifestations, including mud pools, solfatara fields, alkaline 
hot springs, and warm springs. The ecological discussion is primarily focused on 
strategies that thermophiles utilize to obtain energy. 

1 Introduction: Brief History of Scientific Exploration 
of the Upper Thermal Boundary of Life 

From the early nineteenth century, microorganisms were known to inhabit high-
temperature environments and the first thermophilic bacterial strains were isolated 
toward the end of the century (reviewed in Allen 1953 and Brock 2001). By 1920, 
scientific interest in thermophiles had dwindled and was largely confined to moder-
ate thermophiles studied in the context of food microbiology. It was the pioneering 
work of Thomas D. Brock in the 1960s and onward that sparked a new wave of 
scientific interest in thermophiles that has continued to this date. In the early 1960s, 
Brock was involved in microbiology research, including studies on the sulfur-
oxidizing bacterium Thiothrix mucor and on cyanobacteria, and visited Yellowstone 
National Park in search of possible habitats for these organisms. During these visits 
in 1964–1965, Brock noted that hot springs not only gave rise to diverse and dense 
microbial life in efflux channels where temperatures were moderately high but 
noticed evidence of microbial life at elevated temperatures, previously thought to 
be devoid of life. Specifically, he noticed pink filaments in the geothermal water at 
82 °C that he strongly suspected were of biological nature (Brock 1995). He returned 
to Yellowstone in 1966 and attempted to obtain a culture of the organism by
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inoculating a sample of the pink filaments into media and cultivating the enrichment 
at 70 °C under aerobic conditions. Instead of the desired pink organism, Brock was 
searching for, the culture became dense with yellow-pigmented cells. From the 
culture, the strain Thermus aquaticus YT-1 was first isolated, and subsequently, 
Brock and his colleagues isolated several other bacterial strains. They showed that 
the species grows optimally at 70 °C and has a maximal growth temperature of 79 °C 
(Brock and Freeze 1969). This work was the first to report an organism that grows at 
a temperature above 70 °C. The publication of these findings along with the 
deposition of strain YT-1 in the American Type Culture Collection was hugely 
influential, not only leading to an interest in the exploration of life at elevated 
temperatures but also to influential innovations in biotechnology. Taq polymerase, 
derived from T. aquaticus, became the standard enzyme for the polymerase chain 
reaction (PCR). Brock continued his studies in Yellowstone for several years. 
During that period, he showed that when microscope slides were immersed in 
geothermal hot springs at high temperatures, even at or around 100 °C, they became 
covered in cells that could be observed under a microscope (Brock 1967; Bott and 
Brock 1969). He also isolated the first representatives of thermoacidophilic aerobic 
archaea Sulfolobus acidocaldarius and Thermoplasma acidophilum (Brock et al. 
1972; Darland et al. 1970).
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In the 1980s, Karl Stetter and his colleague Wolfram Zillig became interested in 
microbial life at high temperatures (Stetter 2006) and their studies would lead to 
further leaps in knowledge about thermophiles, the discovery of the great diversity of 
anaerobes in geothermal sites, and the corresponding ecological and metabolic 
variety of these organisms. At that time, the aerobic archaeon, Sulfolobus 
acidocaldarius, was the most extreme thermophile known, with an optimal growth 
rate at 75 °C and an upper-temperature limit for growth at 85 °C. On a trip to Iceland 
in 1980, Stetter and Zillig sampled multiple boiling hot springs and, under the 
microscope, observed that the water teemed with what appeared to be microorgan-
isms. Stetter noted that when the blue redox indicator resazurin was incubated in the 
hot-spring water, it immediately turned pink, an indication that the water was 
reducing—i.e., an anaerobic environment. This turned out to be a highly important 
observation since most strains that were later isolated from comparable environ-
ments are indeed strict anaerobes, and hence, their isolation requires careful handling 
under conditions devoid of oxygen. From samples collected in Kerlingarfjöll in 
central Iceland, Stetter and Zillig isolated the methanogen Methanothermus fervidus 
and a strictly anaerobic species of Thermoproteales, both of which grew at a 
maximum temperature of 97 °C (Zillig et al. 1981; Stetter et al. 1981)—far beyond 
the maximal growth temperature of S. acidocaldarius. Searching for still more 
extreme thermophiles, Stetter sampled submarine hydrothermal vents off the coast 
of Italy in 1981. From these samples, strictly anaerobic Pyrodictium strains were 
isolated with optimal growth at 105 °C and an upper limit for growth at 110 °C 
(Stetter 1982). Later, Stetter and colleagues isolated Pyrolobus fumarii from a black 
smoker in the Atlantic Ocean, which has an optimal growth temperature of 106 °C, 
an upper growth limit of 113 °C, and can survive in an autoclave for an hour at 121 ° 
C (Blöchl et al. 1997). The term hyperthermophile has been coined for



microorganisms with optimum growth temperature above 80 °C and most of the new 
species isolated by Stetter and coworkers, at that time and in the following decades 
were anaerobic hyperthermophilic Archaea. These new species were 
chemolithotrophic, chemolithoautotrophic, or organotrophic, which harnessed 
energy by anaerobic respiration. Extremely thermophilic bacteria (Topt > 80 °C) 
were also discovered such as the aerobic marine hyperthermophile Aquifex 
pyrophilus of the phylum Aquificota and hyperthermophilic fermentative marine 
species Thermotoga maritima of the phylum Thermotogae. 
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Research efforts on thermophilic microbiology and ecology increased extensively 
in the early 1990s when large international research projects (thermophiles and 
extremophiles) in the field were funded by the European Union. This helped to 
establish in Europe important research groups in the field and to advance collabo-
rative research in the microbiology of terrestrial and marine geothermal habitats. 

Geothermal areas are largely reduced and anaerobic habitats, with various adap-
tations to energy sources, physicochemical conditions, and scarcity of oxygen. Due 
to the high novelty and the extremophilic adaptations to both temperatures and pH, 
early research focused largely on the microbiology of Archaea, but early work on the 
microbiology and ecology of anaerobic and fermentative bacteria was carried out by 
Jurgen Wiegel in Yellowstone Park in the USA and by Birgitte Ahring (Denmark) in 
Iceland. Fermentative, anaerobic bacteria are important consumers of organic matter 
in microbial mats and sediments, and a number of thermophilic adaptations belong-
ing to novel genera such as Thermoanaerobacterium, Thermoanaerobacter, 
Thermotoga, and Caldicellulosiruptor have been discovered and described from 
these biotopes. 

Early work on aerobic Bacteria was mainly carried out by the effort of 
KO. Stetter, and R. Huber in Germany; RAD. Williams, R. Sharp, and NDH. 
Raven in Britain; JK. Kristjansson, G. Alfredsson, S. Hjörleifsdottir, 
GO. Hreggvidsson in Iceland; Da. Costa and H. Santos in Portugal; T. Oshima in 
Japan; and HW. Morgan and RM. Daniel in New Zealand. This included work on the 
heterotrophic genera Thermus, Rhodothermus, and Geobacillus and the autotrophic 
hydrogen oxidizing genera Hydrogenobacter and Aquifex. 

Colorful photosynthetic microbial mats are a conspicuous feature of alkaline hot 
spring effluents composed of photosynthetic bacteria. They are abundant in summer 
and near disappearing in winter. Pioneering work on the microbial ecology of these 
microbial mats was done by DM. Ward, R. Castenholz, and SR. Miller who isolated 
and described novel species belonging to the phyla Cyanobacteria and Chloroflexi. 
Consequently, the photosynthetic temperature boundary at 70–74 °C was 
established, above which photosynthetic bacteria are not found.
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2 Underlying Geology and Global Distribution 
of Geothermal Areas 

Geothermal areas are the primary natural habitats of thermophiles. They are diverse 
in terms of temperature, water abundance, pH levels, and availability of various 
molecules that microorganisms utilize for growth—a result of different underlying 
geology, which is briefly discussed here. 

Geothermal areas are primarily found at plate-tectonic margins, in regions of 
active volcanism, where recent plutonism has occurred, and at intracontinental rifts 
(Fig. 1, Nukman and Moeck 2013; Bogie et al. 2005; Faulds et al. 2009), due to the 
presence of a heat source in the form of magma, pluton, or mantle close to earth’s 
surface (Moeck 2014). 

These geothermal sites harbor biotopes of only thermophilic microbes completely 
different from those of the surrounding area. They have sporadic distribution, and 
they are far apart on a global scale, which gives these confined ecosystems distinct 
island characteristics. 

Geothermal features arise because of different sub-surface geological phenomena 
that provide a heat source. These heat sources result in temperatures exceeding 200 ° 
C within a depth of 3.000 m (Moeck and Beardsmore 2014). The features are formed 
as a result of heat being transferred from the heat source to the surface via 
convection—i.e., through the movement of fluids. The source of the fluids is 
generally meteoric water (Deon et al. 2012). As the fluids are exposed to the heat 
source, their composition changes when salts, minerals, acids, and other chemicals 
are dissolved. In their “journey” from heat source to the surface, the fluids may be 
further altered chemically as they pass through different geological layers. On 
breaking the surface, the hot fluids are manifested in geothermal features including 
fumaroles, geysers, hot springs, mud pools, or solfatara fields, depending on the 
water availability and resultant chemical composition, pH, and temperature of the 
fluids when they reach the surface. Further alterations then occur at the surface when 
encountering atmospheric oxygen due to abiotic oxidation, mainly of H2S. 

A shallow, active magma chamber provides an intense heat source that can give 
rise to geothermal features. Such geothermal systems can arise in association with 
active volcanism, for example, in Iceland, Java, the South American Andes, and 
Taiwan (Moeck and Beardsmore 2014). Surface features may arise directly above 
the heat source, atop a respective volcano, in the so-called upflow zone, which is 
generally characterized by high temperatures, water scarcity, and acidity. Fluids may 
also move horizontally after exposure to the heat source and surface at the roots of a 
volcano, in the so-called outflow zone. During the horizontal movement, the fluid 
cools down and approaches near neutral pH (Hochstein 1988). Magmatic geother-
mal systems can also arise due to the presence of an active magma chamber without 
active volcanism, for example, in the Taupo Volcanic Zone in New Zealand (Bogie 
et al. 2005; Moeck and Beardsmore 2014). 

Further, geothermal features can be formed in areas where recent plutonism has 
occurred—i.e., where magma has risen through the crust without reaching the
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surface, is crystallizing, and radiates heat. They are generally formed at convergent 
continent–continent margins surrounded by mountains that provide a rich source of 
meteoric water to sustain convection (Moeck and Beardsmore 2014). Examples 
include the Geysers geothermal field in California and the Larderello geothermal 
system in Italy (Argus and Gordon 2001; Bertini et al. 2006).
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Finally, geothermal features can be observed in areas where extension has caused 
crustal thinning such that the mantle is elevated to levels close to the surface, 
providing a heat source. Geothermal features form in this context where meteoric 
water can seep deep into the crust to interact with the heat source via faults or 
otherwise permeable layers. Geothermal systems of this type are found in western 
Turkey, East African rift, Upper Rhine graben in central Europe, and the Great Basin 
in the USA (Moeck and Beardsmore 2014). 

2.1 High- and Low-Temperature Geothermal Areas 

Geothermal areas with surface features can broadly be classified as high- or 
low-temperature fields. 

In high-temperature fields, which usually coincide with active volcanic areas at 
high altitudes, temperatures exceed 200 °C at a depth of 1.000 m and groundwater 
levels are usually low. On the surface, they are characterized by the presence of 
steam, transformed and colorful soils, mud pools, and the release of gases, particu-
larly N2, CO2, H2S, and H2. Below the surface, pH levels in these fields are 
circumneutral due to the presence of CO2 and H2S (pKa = 6.3 and 7.2, respectively). 
However, as hydrogen sulfide reaches the surface, it is oxidized chemically due to 
exposure to atmospheric O2 and biologically due to microbial respiration. This leads 
to the formation of H2SO4 (H2S + O2 → H2SO4) that lowers the pH level at the 
surface and transforms surface rocks into mud. Most of the surface of the respective 
geothermal area is turned into an acidic solfatara field with white and yellow sulfur 
precipitations, generally with mud pools scattered about where some water is 
present. These areas are further characterized by instability, in that water levels 
may change dramatically over a short time span, and surface features may be “lost” 
and others may form at regular intervals. 

In low-temperature fields, temperatures are lower than 150 °C at 1.000 m depth. 
On the surface, they are characterized by pools of liquid water at neutral or slightly 
alkaline pH. Water influx is relatively generous, as compared with high-temperature 
fields, giving rise to effluent streams with temperature gradients that sustain diverse 
microbial communities, often providing colorful layers to the otherwise largely 
white or off-white geothermal field. Sulfide levels are low, and with high efflux 
rates, H2SO4 does not accumulate. The water contains dissolved minerals and silica 
(SiO2) when the fluids interact with silicate rocks and bicarbonate when they interact 
with carbonate rocks and gases of varying levels. The silica precipitates as waters 
cool down at the surface of the hot springs, forming silica sinters, and accordingly, 
the sinters form low, broad deposits that extend several meters from the respective



hot spring. In contrast, calcium carbonate precipitates rapidly when CO2 escapes 
from bicarbonate-rich fluids, causing supersaturation with respect to bicarbonate, 
and the formation of travertine. The rapid precipitation results in the formation of 
deposits near the edge of the respective hot spring, and as a result, the deposits form 
high-relief structures. In low-temperature fields, temperatures and water flow are 
generally stable. 
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2.2 Surface Features in Terrestrial Geothermal Areas 

Solfatara fields are characterized by large surface areas covered in soft soil of 
varying hues of light brown—rock transformed by sulfuric acid (Fig. 2). Adding 
to the richness of color, the fields are generally scattered with tones of yellow due to

Fig. 2 Solfatara field. (Top): The hill Námafjall, east of Mývatn, Iceland, showing hues of brown, 
yellow, and red characteristic of solfatara fields. (Bottom): Close-up images from the same field, 
showing red (left) and yellow (right) deposits in more detail



the deposition of sulfur, tones of red due to the deposition of iron-containing 
compounds (e.g., hematite Fe2O3), and hues of dark gray due to the deposition of 
ferrous sulfide (FeS). The acidic soil harbors communities of strictly anaerobic 
archaea and at lower temperatures of Thermoplasma and Picrophilus archaea and 
Thiomonas, Thiobacillus, Geobacillus, and Deinococcus bacteria (Hreggvidsson 
et al. 2017).
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Fig. 3 Mud pools. (Top): A mud pool in the Hverarönd geothermal area in the slopes of Námafjall, 
Mývatn, Iceland. The pool is about 5 m in diameter (rough estimate by the photographer). (Bottom): 
Closeup images of the thick bubbling fluids of two mud pools. The bottom left image is from the 
same pool as that on top, and the bottom right image is from a separate pool with thicker fluids. The 
images were taken after a period of heavy rainfall, which likely reduced the thickness of the pool 
fluids 

Mud pools are formed in solfatara fields where the field’s mud and liquid water 
mix in varying proportions (Fig. 3). The pools have no efflux channel, water is 
generally scarce, and depending on the water influx rate, the mud pot can be thick or 
thin. Often, bubbling is observed in the pool, a result of gases and steam passing to



the surface. Microorganisms frequently encountered in mud pools include 
Stygiolobus and Sulfolobus archaea, and Hydrogenobaculum bacteria 
(Hreggvidsson et al. 2017) 
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Fig. 4 Fumaroles. Both images are from Hverarönd, east of Mývatn in Iceland. Surrounding the 
fumarole in the top image is a mound has formed of about half a meter in height. The opening of the 
fumarole in the bottom image is very small, about 0.5–1 cm in diameter 

Fumaroles, often observed in solfatara fields, are small openings through which 
steam and volcanic gases (including CO2, H2S, and SO2) are released (Fig. 4). The 
flow rate of the gases is generally quite high, and as it passes through the surrounding 
rocks and mud at the surface, a rather loud sound is often emitted, reminiscent of a 
violent storm 

Boiling pits are small, shallow depressions in the surface with bubbling water. 
They can be found in high-temperature areas, in which case the water bubbles as a 
result of volcanic gases streaming through the water, and they can be found in 
low-temperature areas, in which case the bubbling is caused by boiling of the water 

Alkaline hot springs (>50 °C) and warm springs (<50 °C) are common in 
low-temperature fields. They are pools of mineral water, circular in form, and of 
varying sizes, often 2–5  m2 . They generally have outlets where water from the pools



flows out into the colder, surrounding environment, creating a temperature gradient 
that can sustain diverse life. In alkaline hot springs, pH levels are in the range of 
7–10. These habitats often give rise to colorful microbial mats, with distinct “bands” 
of different colors corresponding to particular microorganisms. The boundaries 
reflect gradients in physicochemical parameters—pH, temperature, and fluid 
composition—and the ability or competence of respective microorganisms to thrive 
therein. Commonly observed colors and associated microorganisms include green 
from cyanobacteria; hues of orange and/or red from phototrophic Chloroflexus and 
Roseiflexus; and white, gray, gray with hues of blue, and black from hydrogen 
oxidizing Sulfurihydrogenibium and Thermocrinis albus (Hreggvidsson et al. 2017). 
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Sulfide-rich hot springs (65–85 °C) are rare but are occasionally found in 
low-temperature geothermal fields and in high-temperature fields where water is 
abundant. Like alkaline hot springs, they are water-rich, approximately circular in 
form, and often 2–5 m2 in size. They differ in that the water contains high concen-
trations of sulfide. The springs have relatively high water flow rates and outlets, and 
therefore, sulfuric acid does not accumulate, and the pH level is around 5.5–6.5. 
They are often associated with microbial mats containing sulfide-utilizing species, in 
particular dominated by Sulfurihydrogenobium species (Hreggvidsson et al. 2017). 

Steam vents are sometimes found in low-temperature fields, often in the absence 
of any other nearby surface features (Fig. 5). They form where steam from hot 
groundwater rises through porous layers such as a young lava field and rises to the 
surface. From a distance, they may therefore give the appearance that the lava itself 
is fuming. On closer inspection, one can identify discrete openings where the steam 
escapes, in which temperatures are in the range of 55–85 °C and pH of the 
surrounding soil is 7–8. Commonly, members of Thermus, Chloroflexus, 
Actinobacteria, and Acidobacteria are found in these environments (Hreggvidsson 
et al. 2017). 

3 Other High-Temperature Environments, Natural 
and Anthropogenic 

Various other thermal environments, natural and anthropogenic (man-made), sustain 
thermophilic microbial communities. They are, however, generally less extensively 
studied than those discussed above—in some cases a result of their rarity and/or 
inaccessibility—and will therefore only be briefly discussed here. 

Intertidal and submarine hot springs: Geothermal fluids can in principle surface 
through earth’s crust anywhere on the globe, given the presence of a geological heat 
source as discussed above—i.e., they can surface on dry land, on shore, or under-
water. Intertidal hot springs are formed when geothermal fluids surface on an ocean’s 
shore. They are quite unique environments in that temperatures fluctuate greatly with 
tidal movements. At high tide, the pools are covered in seawater, and temperatures 
match that of the respective ocean, except right at the hot-spring source. At low tide, 
the pool is quickly heated by the geothermal fluids. The temperature shift at low and



high tide depends on the temperature of the geothermal fluids and that of the ocean 
water. These types of environments are for example found at various locations 
around the coast of Iceland (Bjornsdottir et al. 2021; Kale et al. 2013; Hobel et al. 
2005), in Italy, New Zealand, Fiji (Burgess et al. 2007), and others. Submarine hot 
springs are formed when geothermal fluids discharge underwater. They can be 
located at depths from a few meters to a few kilometers and include vents off the 
coast of Milos Island, Greece (Sievert et al. 2000), off the northern coast of Iceland 
(Marteinsson et al. 2001), and deep-sea vents located at a great depth near Galápagos 
islands (Corliss et al. 1979). The hydrothermal fluids that emanate from the vents 
differ significantly in chemical composition and hence the associated microbial 
communities. In some systems, they contain high concentrations of sulfides (Kelley 
et al. 2002), while in others they are enriched in hydrogen and methane (Kelley et al. 
2005). Heat at the source can be extremely high, but mixing with seawater causes a 
steep temperature gradient, thus sustaining communities of thermophiles, 
mesophiles, and psychrophiles. 
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Fig. 5 Steam vents. Top image shows steam arising from multiple steam vents on and under the 
slopes of Jarðbaðshólar, east of Mývatn in Iceland. Note the larger plume in the foreground and the 
smaller plumes on the hill. The bottom image shows a steam vent opening. Note the lack of fluids 
and the transformed vegetation 

Anthropogenic thermal environments: Various human activities have resulted in 
the formation of “non-natural” warm habitats that are conducive for the growth of



thermophiles (Pask-Hughes and Williams 1975; Brock and Boyle 1973). Examples 
of such habitats include heat exchangers and pipelines in homes that carry hot water, 
e.g., in the context of delivering hot water from a boiler to a radiator; district heating 
systems that distribute hot water to entire towns or cities; thermophilic waste 
treatment plants; burning coal waste piles; and various industrial processes that 
involve heating, e.g., in the context of reducing microbial content in foods. 
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Transient natural thermal habitats can result from the self-heating of composts; 
of hay, straw, or other similar agricultural products that are stored in large quantities; 
or of manure. Though these types of environments may form in the absence of 
humans, they exist at a larger scale due to human activities. 

4 Ecology in Geothermal Habitats 

Temperature strongly affects the physiology of organisms and hence their ability to 
thrive in a given environment. Some multicellular organisms can regulate body heat 
and their cells are therefore partially protected from the surrounding heat, while in 
microorganisms, which are unicellular, cytoplasmic temperature directly follows 
that of the environment. Many cellular macromolecules like DNA and enzymes 
are quite vulnerable to loss of structure (and hence function) due to elevated heat 
since their structure is largely the result of weak chemical interactions (hydrogen 
bonds, etc.). Many thermophilic microorganisms have evolved with genomes that 
have high GC content and encode rigid enzymes/proteins to withstand thermal 
disruption (Feller 2010; Radestock and Gohlke 2011; Hu et al. 2022). These 
adaptations, however, render the organism’s incapable of growth at lower temper-
atures. Each microorganism is adapted for growth at a particular temperature, the 
Topt, where its growth is fastest. Growth rates generally reduce linearly some 15–25 ° 
C from the Topt to the lowest temperature that will sustain growth, the Tmin. Above 
the Topt, the growth rate is reduced more rapidly to a temperature, Tmax, above which 
no growth is observed. There is no single accepted consensus for the defining growth 
temperature that would classify an organism as a thermophile. Brock proposed that 
this temperature should be 55–60 °C since habitats with temperatures below 55 °C 
are common in nature, while habitats with higher temperatures are rare. Further, he 
noted that no eukaryotes grow at temperatures beyond this limit, while certain 
bacteria and archaea thrive. According to this definition, the thermophiles are 
therefore exclusively prokaryotes. The terms moderate thermophile, thermophile, 
extreme thermophile, and hyperthermophile are now used in microbiology of ther-
mophiles to describe different temperature adaptations. The demarcations are not 
clear, but the following criteria have been proposed for defining more accurately 
both thermophiles and hyperthermophiles, the former having Tmax ≥ 65 °C and the 
latter having Topt > 80 °C (Hreggvidsson et al. 2017; Kristjansson and Stetter 1991). 
Taking into account the definition of Brock, a moderate thermophile would then 
have Tmax higher than 55 °C and lower than 65 °C. 

Thermophiles have diverse chemotropic catabolic processes for harnessing 
energy, both organotrophic and lithotrophic, and they use both autotrophic and



organotrophic processes for supplying carbon to anabolic pathways. Autotrophic 
thermophiles include both photoautotrophs and chemolithoautotrophy. Photoauto-
trophs are, however, not found at temperatures beyond 70–74 °C, the photosynthetic 
boundary, while diverse chemolithoautotrophs that utilize various inorganic electron 
acceptors and donors thrive at more extreme temperatures. In addition to the primary 
production of organic chemicals that occurs in geothermal habitats, the organic 
material may be introduced into the habitat from outside sources—e.g., leaves or 
other plant material that are blown in a gust of wind into a hot spring. Overall, 
geothermal habitats are nevertheless generally oligotrophic. Sudden changes in 
temperature in hot springs can, however, lead to a rapid increase in nutritional 
availability. After a period of stable temperature, in which certain organisms can 
thrive at or close to their Topt, with a corresponding accumulation of biomass, a 
sudden increase in temperature can result in their death and hence elevated nutri-
tional level in the habitat that other more thermophilic species then utilize. Some 
chemolithoautotrophic thermophiles utilize oxygen as an electron acceptor in their 
metabolism. Oxygen concentration in geothermal fluids is, however, relatively low, 
as compared with concentrations found in lakes or seawater, since oxygen solubility 
in water decreases with increased temperature (Geng and Duan 2010). 
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Among archaea, the most extensively studied thermophiles are methanogens and 
a broad group of sulfur-metabolizing species. Methanogens obtain energy via an 
anaerobic respiratory pathway called methanogenesis that is uniquely found in 
archaea. They can be further classified as hydrogenotrophs, which comprise five 
orders, and methylotrophs that comprise a single order. Hydrogenotrophs obtain 
energy primarily by the reduction of CO2 into CH4 using H2 as an electron donor, 
though a few other small organic molecules can act as electron donors as well. 
Methylotrophs are similarly capable of the reduction of CO2 into CH4, but are 
characterized by their ability to convert various methyl group-containing 
compounds—methanol, methyl amines, and methyl sulfides—and acetate into 
CH4 (Costa and Leigh 2014). Examples of thermophilic methanogens are 
Methanothermus fervidus (Topt = 83 °C, pHopt = 6.5) that is found in anaerobic 
mud and soil and Methanobacterium thermoautotrophicum (Topt = 65, pHopt = 7.4) 
found in alkaline hot springs and sewage sludge (Stetter et al. 1981; Zeikus and 
Wolfe 1972). 

Archaea use diverse aerobic and anaerobic metabolic pathways for energy con-
servation using sulfur-containing compounds as electron donors and acceptors 
(reviewed in Liu et al. 2012 and Hreggvidsson et al. 2017). The compounds include 
elemental sulfur S0 , sulfate, sulfite, thiosulfate, sulfide, and others. In aerobic sulfur 
oxidation, S0 is the electron donor and oxygen is the electron acceptor. The process 
is, e.g., utilized by the thermoacidophilic Sulfolobus acidocaldarius (Topt = 75 °C, 
pHopt = 2.5) and Acidianus infernus (Topt = 90 °C, pHopt = 2) that inhabit acidic 
solfatara fields. Under anaerobic conditions, S0 can be reduced for energy conser-
vation by at least three mechanisms, all of which are commonly found in thermo-
philes that inhabit anaerobic geothermal soil. First, this can occur by autotrophic 
respiration using H2 as an electron donor—e.g., in A. infernus and in Thermoproteus 
tenax (Topt = 90 °C, pHopt = 5) and Pyrodictium occultum (Topt = 105 °C,



pHopt = 6.5); second, by heterotrophic respiration with organic chemicals as electron 
donors—e.g., in Thermoproteus tenax (Topt = 90 °C, pHopt = 5); and third, by 
fermentation of organic chemicals—for example, Pyrococcus furiosus (Topt = 100 ° 
C, pHopt = 6). Under anaerobic conditions, sulfate and sulfite can also be reduced 
with organic compounds or H2 as electron donors—e.g., in Archaeoglobus fulgidus 
(Topt = 83 °C, pHopt = 7) and A. profundus (Topt = 82 °C, pHopt = 6). Other 
thermophilic archaea found in geothermal areas include the heterotrophs 
Thermoplasma volcanium (Topt = 60 °C, pHopt = 2) and Sulfolobus acidocaldarius 
(Topt = 75 °C, pHopt = 2.5) that can obtain energy through aerobic respiration of 
organic matter and Pyrococcus furiosus (Topt = 100 °C, pHopt = 6) that obtain 
energy through anaerobic fermentation of organic matter. 

16 B. T. Adalsteinsson and G. O. Hreggvidsson

Some metabolic pathways for energy conservation in archaea are also found in 
bacteria, such as the Embden–Meyerhof and Entner–Doudoroff glycolytic path-
ways. The pathways are, however, partially different in the two domains, in that 
reactants are converted to products via different enzymes and hence through differ-
ent intermediates (Bräsen et al. 2014). Methanogenesis is not found in bacteria, and, 
conversely, photo-autotrophy based on the electron transport chain is found in 
bacteria but not in archaea—e.g., in Synechococcus lividus (Topt = 65 °C, pHopt = 8) 
and Chloroflexus aurantiacus (Topt = 56 °C, pHopt = 8). Photoautotrophic thermo-
philic bacteria do, however, not survive at very high temperatures —the highest Tmax 

observed is in the range of 70–75 °C. Other autotrophic thermophilic bacteria 
oxidize inorganic molecules (reviewed in Kristjansson et al. 2000), including hydro-
gen and hydrogen sulfide—e.g., aerobic species of the phylum Aquificae, the 
extreme thermophile, Hydrogenobacter thermophilus (Topt = 72 °C, pHopt = 6.8) 
and the hyperthermophile, Thermocrinis ruber (Topt = 80 °C, pHopt = 7–8.5), 
respectively, that inhabit alkaline hot springs. Other thermophilic autotrophic bac-
teria in the same habitat utilize sulfate as an electron acceptor and hydrogen as 
electron donor for energy conservation—e.g., Thermodesulfobacterium 
thermophilum (Topt = 65 °C, pHopt = 7.5). 

Thermophilic aerobic chemoorganotrophic bacteria such as species belonging to 
the genera Thermus, Geobacillus, and Rhodothermus oxidize organic matter and 
thrive in circumneutral and alkaline environments with growth optima ≤80 ° C. 

Anaerobic thermophilic and hyperthermophilic fermentative bacteria are isolated 
from microbial mats and geothermal anaerobic mud generally in the range of 
pH 5.5–7.5. Identified species are usually strict anaerobes, and fermentation is 
their predominant catabolic process. A great variety of these species belong to 
anaerobic genera of the phylum Firmicutes, e.g., Clostridium, Thermoanaerobacter, 
Thermoanaerobacterium, and the hyperthermophilic genus Caldicellulosiruptor 
(Scully and Orlygsson 2015; Willquist and van Niel 2012). Whereas Firmicutes 
has both aerobic and anaerobic members, Thermotogae has only the latter, glycolytic 
fermentative catabolism being the predominant catabolic process of the phylum. 
Temperature growth optima of the members range from 55° to 80 °C, and the 
optimum pH for growth ranges from 5.5 to 7.5. Different genera have been isolated 
from terrestrial and marine habitats, e.g., respectively, the genera Fervidobacterium 
and Thermotoga. Hyperthermophiles belonging to the phylum have only been



identified in marine habitats, by species such as Thermotoga maritima (Topt = 80 °C, 
pHopt = 6.5) and Thermotoga neapolitana (Topt = 80 °C, pHopt = 7), the latter of 
which uses S0 as an electron acceptor and have only been found in marine geother-
mal sites (Frock et al. 2010). 
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Abstract The term ”thermophilic prokaryotes” covers an immense taxonomic and 
functional diversity of bacteria and archaea, spanning the length and breadth of the 
prokaryotic Tree of Life. Indeed, thermophiles are found within most major pro-
karyotic lineages and their functional diversity runs the gamut of biochemical and
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physiological adaptations. Thus, examples can be found of thermophilic 
lithoautotrophs as well as chemoheterotrophs, obligate anaerobes and aerophiles, 
extreme halophiles, acidophiles and alkaliphiles, and more. Their ecology is likewise 
diverse, with thermophiles found in a variety of habitats ranging from hydrothermal 
vents to desert soil to industrial settings and wastewater treatment facilities. It goes 
without saying that such immense diversity cannot be reviewed comprehensively in 
a relatively short book chapter. We thus aim to present examples pulled from diverse 
taxa within the vast menagerie of prokaryotic thermophiles in order to give insights 
into the metabolic, taxonomic, and ecological diversity of thermophilic prokaryotes 
rather than attempting an exhaustive review.
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Abbreviations 

Comammox Complete ammonia oxidation 
MAG Metagenome-assembled genome 

1 Introduction 

Thermophilic prokaryotes are found not only at various geothermally heated sites 
such as hot springs and hydrothermal vents, but also in a variety of other habitats 
where growth and metabolism at elevated temperatures may confer a selective 
advantage. Examples include hot desert soils, solar salterns, compost heaps, deep 
subsurface sites, such as oil reservoirs and deep mine shafts, and various industrial 
settings. It is therefore not surprising that thermophily has evolved independently 
within multiple and highly diverse clades and not necessarily limited to deep 
lineages of microbes. The occurrence of thermophily across multiple lineages can 
be seen as an evolutionary response to the environment and the ability of microor-
ganisms to adjust and evolve. A recent review counted more than 1200 known 
thermophilic species of bacteria and archaea (DiGiacomo et al. 2022), making an 
exhaustive review of their diversity and phylogeny a difficult exercise of dubious 
applicability. This review is therefore intended to give snapshot examples pulled 
from the vast menagerie that is thermophile diversity. Notwithstanding the vast 
diversity of thermophiles, some generalizations can be made about their physiology 
and metabolism, especially as regards those thermophiles originating from geother-
mal sites, where the chemical composition of the environment is characteristically 
mineral rich, resulting in the microbial community to be largely supported by 
lithotrophic bacteria and archaea. Common metabolism in thermophilic bacteria 
and archaea is therefore sulfur and iron metabolism, along with gas metabolism 
such as H2 and CO oxidation. 

In this chapter, we will briefly discuss some of the major thermophilic and 
hyperthermophilic groups of Bacteria and Archaea, focusing on 14 phyla commonly



occurring in diverse natural thermophilic environments. Phylogenetic tree of the 
different phyla discussed is shown in Fig. 1. We highlight their distribution, phys-
iology, ecology, and potential biotechnological applications where known. Current 
valid taxonomy and nomenclature as presented on the List of Prokaryotic Names 
with Standing in Nomenclature (Parte et al. 2020) are followed in this chapter, which 
includes the major recent changes to the nomenclature of upper-level taxa validly 
published by Oren and Garrity (2021). To minimize confusion, some of the more 
commonly used older names are indicated where appropriate. 
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Fig. 1 Tree of life representing the phylogenetic diversity of thermophilic bacteria and archaea. 
The majority of thermophilic microbes discussed in the chapter belong to the phylogenetic groups 
shown with asterisk in the Tree of life [based on Ciccarelli et al. (2006) and vizualised with iTOL 
(Letunic and Bork 2007)] 

2 Deinococcota (Previously Deinococcus-Thermus) 

The deeply branching Deinococcota (Oren and Garrity 2021) phylum, originally 
named as Deinococcus-Thermus (Weisburg et al. 1989), due to its resistance to 
extreme stressors including oxidation, radiation, desiccation, and high temperature, 
is known as one of the most extremophilic phyla of bacteria (Theodorakopoulos



et al. 2013; Tian and Hua 2010). The first isolated member from this phylum was 
Deinococcus radiodurans strain R1, discovered by Anderson et al. (1956) from X-
ray-irradiated canned meat. In 1969, Thomas D. Brock and Hudson Freeze described 
for the first time Thermus aquaticus, and henceforth, organisms belonging to the 
genus Thermus have been considered as the archetypal thermophilic bacteria (Brock 
and Freeze 1969). Since these discoveries, more than 60 different species have been 
isolated, all showing an enormous biochemical, physiological, and phenotypic 
diversity (Garrity et al. 2001b). Their close branching based on 16S rRNA phylog-
eny suggests that they share a common ancestor, but other than a number of 
conserved inserts or deletions specific to the groups, there are no distinctive bio-
chemical or molecular signatures exclusive of the phylum (Griffiths and Gupta 
2004). 
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The members of Deinococcota are currently divided into two orders, the 
Deinococcales, composed of the three genera Deinococcus, Deinobacterium, and 
Truepera, and the order Thermales, that comprises five genera: Thermus, 
Meiothermus, Marinithermus, Oceanithermus, and Vulcanithermus 
(Theodorakopoulos et al. 2013). Recently, a new family has been proposed, the 
Truperaceae (Theodorakopoulos et al. 2013). Members belonging to this phylum 
are generally aerobic chemo-organotrophic bacteria, some of which are dissimilative 
sulfur oxidizers, using reduced sulfur compounds as electron donors in energy 
conservation, with O2 or other organic compounds as electron acceptor (Skirnisdottir 
et al. 2001), others are dissimilative iron-reducers, coupling for respiration the 
oxidation of H2 or organic electron sources with the reduction of ferric iron (Fe

3+ ) 
as a terminal acceptor (Kieft et al. 1999). Although some members of the 
Deinococcota stain gram-positively, they are classified as gram-negative bacteria, 
due to their complex cell envelope that includes an outer membrane-like structure 
(Thompson and Murray 1981), and a peculiar peptidoglycan, in which ornithine 
represents the principal diamino acid in the cross-linked chains (Rainey and da Costa 
2001). The members of the genus Deinococcus exhibit resistance to high ionizing 
and ultraviolet radiations, and desiccation (Albuquerque et al. 2005; Cox and 
Battista 2005; Slade and Radman 2011). In contrast, cultured representatives of 
the Thermus genus are either thermophilic or hyperthermophilic, while not having 
any unusual radiation nor stress resistance capabilities (Brock and Freeze 1969), and 
have a tolerance temperature range between 45 °C and 80 °C. Most of the organisms 
belonging to the group have a maximum growth temperature slightly under 80 °C 
(Brock and Freeze 1969; Chung et al. 2000), and just a few strains, belonging to 
T. thermophilus, can grow at 80 °C or above (Manaia et al. 1995). 

This phylum comprises very different species that have been found and isolated 
from a number of different environments, such as air dust and air samples (Weon 
et al. 2007; Yoo et al. 2009), desert soils (Rainey et al. 2005), cold environments in 
Antarctica (Hirsch et al. 2004), hot springs or biofilms, radioactive sites (Siebert and 
Hirsch 1988), and Phoenix spacecraft surface (Stepanov et al. 2014). 

The exploitation of the adaptation strategies of these organisms finds numerous 
applications in the biotechnological field, for an example the treatment of nuclear 
energy waste. Indeed, D. radiodurans can be directly used for the adsorption of



uranium in radioactive wastewater and for the treatment of mixed radioactive wastes 
containing ionic mercury (Li et al. 2021). The most noteworthy discovery has been 
the isolation of the thermostable DNA polymerase (DNA pol) from Thermus 
aquaticus (Taq pol) which revolutionized the history of molecular biology through 
its use in the polymerase chain reaction (PCR) and paved the way for the develop-
ment of modern biotechnology (Bessman et al. 1956; Chien et al. 1976). 
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2.1 Thermales 

Bacteria belonging to Thermales order are generally rod-shaped, non-motile, gram-
negative, aerobic or facultatively anaerobic thermophiles, generally isolated from 
hydrothermal areas with temperatures of 50–70 °C and neutral to alkaline pH 
(Rainey and da Costa 2001). The most representative species is Thermus aquaticus 
(Brock and Freeze 1969), which grows at temperatures ranging from 40 to 80 °C, 
with an optimum at 70 °C, and at a pH of 7.5–7.8. 

The genus Thermus lists several thermophilic and hyperthermophilic species, 
mainly isolated from hydrothermal areas, such as Yellowstone National Park and 
Pacheteaus Calistoga in California (Brock and Freeze 1969), Japan (Oshima and 
Imahori 1974), Iceland (Pask-Hughes and Williams 1977), continental Portugal, the 
Island of São Miguel in the Azores (Manaia and da Costa 1991; Santos et al. 1989), 
and the Australian Artesian Basin (Denman et al. 1991). Isolates of the genus 
Thermus have also been obtained from abyssal geothermal areas in the 
mid-Atlantic Ridge and in the Guaymas Basin, Gulf of California, at depths of 
3500 and 2000 m, respectively (Marteinsson 1999). 

The most representative species of this genus is Thermus aquaticus, first isolated 
in 1969 from the Mushroom Spring in the Lower Geyser Basin of Yellowstone 
National Park by Thomas D. Brock and Hudson Freeze of Indiana University (Brock 
and Freeze 1969). T. aquaticus has been described as a gram-negative, 
non-sporulating, non-motile, rod-shaped bacterium, able to switch to a long fila-
mentous shape at supraoptimal temperatures or in the stationary phase. Moreover, 
one of its main reported features is the production of peculiar large spherical bodies 
in older cultures, probably generated as temporary food and nucleotide storage 
(Brock and Freeze 1969). Another representative member of this genus is Thermus 
thermophilus, first isolated in 1968 from the thermal water of Mine Hot Spring, in 
Japan, and originally placed in the genus Flavobacterium (Oshima and Imahori 
1971). T. thermophilus is used to grow at temperatures ranging from 47 to 85 °C, 
with an optimum between 65 and 72 °C, and at a pH range of 5.1 and 9.6, with an 
optimum pH value of around 7.5 (Oshima and Imahori 1974).
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3 Nitrospirota (Previously Nitrospirae) 

The first member of this phylum, Nitrospira marina, a chemolithotrophic nitrite-
oxidizing bacterium isolated from water in the Gulf of Maine, was discovered by 
Watson in 1986. The phylum Nitrospirota, previously known as Nitrospirae, is a 
diverse group of Gram-negative, curved, vibrioid, or spiral-shaped bacteria (Garrity 
et al. 2001e). This phylum consists of three genera that have cultured representatives: 
Nitrospira, Leptospirillum, and Thermodesulfovibrio (Garrity et al. 2001e; Watson 
et al. 1986; Watson and Waterbury 1971). Phylogenetic surveys based on the 16S 
rRNA gene show how Nitrospira and Leptospirillum consistently cluster together, 
while Thermodesulfovibrio forms a separate branch. 

The phylum comprises physiologically diverse bacteria, with a big representation 
of a chemolithoautotrophic, aerobic, nitrite-oxidizing bacteria (NOB) (Nitrospira), 
chemolithoautotrophic, aerobic, ferrous iron (FeIII) oxidizers (Leptospirillum), and 
anaerobic, thermophilic, chemo-organoheterotrophic, or hydrogenotrophic sulfate 
reducers (SRB) (Thermodesulfovibrio) (Daims 2014). Members of this phylum have 
been found in different natural and man-made ecosystems, like soil (Wang et al. 
2019), fresh and groundwater (Ghimire-Kafle et al.  2023; Hovanec et al. 1998; 
Palomo et al. 2022), wastewater treatment plants (Daims 2014), marine sponge 
(Off et al. 2010), and geothermal springs with temperatures between 55 °C and 
70 °C (Edwards et al. 2013; Lebedeva et al. 2011). 

The genus Nitrospira represents the most abundant nitrite oxidizer, and it is 
almost ubiquitously present in oxic habitats, catalyzing an essential step of nitrifi-
cation for biogeochemical nitrogen cycling. Leptospirillum tends to be a 
thermotolerant acidophilic genus, with optimal temperature growth ranging between 
30 and 37 °C, and with only a few moderately thermophilic strains that can grow up 
to 40 °C (Vardanyan et al. 2023). The Nitrospira genus comprises only five formally 
identified members (Lücker et al. 2010), usually reported as moderately thermo-
philic, with growth temperature ranges between 28 and 44 °C (Ehrich et al. 1995; 
Lebedeva et al. 2008). Recently, the most thermophilic NOB known, Nitrospira 
calida, was isolated from Gorjachinsk Hot Spring in the Lake Baikal area (Russia), 
with a growth temperature optimum of 46–52 °C and an upper temperature for 
growth of 58 °C (Lebedeva et al. 2011). Thermodesulfovibrio is the most thermo-
philic genus of the phylum, with a temperature range for growth from 40 to 75 °C, 
and an upper pH limit for growth of 7.7–8.5 for all species, and a lower pH limit 
from 6.0 to 6.5 (Frank et al. 2016). 

This phylum comprises three genera, all with relevant biotechnological use. 
Leptospirillum members are considered the most important microorganisms used 
in commercial bioleaching, and their iron oxidizing activity has been used in acid 
mine drainage, while Thermodesulfovibrio members are used to degrade organic 
compounds in anaerobic digesters. Moreover, Nitrospira species are used in waste-
water treatment plants (WWTPs) to prevent eutrophication (Spasov et al. 2020; 
Vardanyan et al. 2023).
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3.1 Nitrospirales 

The genus Nitrospira represents a key nitrite oxidizer in nature, and it is almost 
ubiquitously present in oxic habitats, catalyzing the second and essential step of 
nitrification for biogeochemical nitrogen cycling. But their metabolism is not limited 
to nitrite oxidation or comammox, but they are also involved in other functionalities 
in the nitrogen cycle, either under anoxic or aerobic conditions. Members of this 
group are generally aerobic chemolithoautotrophic bacteria. They have been found 
in groundwater, geothermal springs, freshwater, soils, and wastewater treatment 
plants (WWTPs). But they could also colonize marine sponges, rhizospheres, and 
leaf surfaces of plants. According to many studies, Nitrospira generally have an 
optimum of growth between 30–35 °C and the optimum pH is in the range 8.0–8.3 
(Mehrani et al. 2020), and the only true thermophile found in this genus so far is 
Nitrospira calida, with a growth temperature optimum of 46–52 °C and an upper 
temperature for growth of 58 °C (Lebedeva et al. 2011). 

The genus Thermodesulfovibrio is classified as a group of strictly anaerobic, 
curved rod-shaped, thermophilic bacteria capable of reducing sulfate and other sulfur 
compounds and even perform oxidation of hydrogen and other organic compounds 
(Henry et al. 1994). Another ecologically significant physiological capability is the 
ability to undergo syntrophic degradation of organic compounds in the absence of 
sulfate. This group shows adaptations to the physico-chemical surroundings found in 
hot springs, as well as a diverse array of subterranean and terrestrial hot spring 
ecosystems, where they have been observed to thrive. The growth of 
Thermodesulfovibrio was observed at 40 °C and 70 °C with an optimum at 65 °C 
with a pH range between 6.8 and 7.0. (Haouari et al. 2008; Henry et al. 1994; 
Sekiguchi et al. 2008). 

4 Chloroflexota (Previously Chloroflexi) 

The phylum Chloroflexota (Oren and Garrity 2021), formerly known as Chloroflexi, 
contains a large number of thermophilic bacteria that differ widely both physiolog-
ically and ecologically. They are largely isolated from geothermal habitats, but also 
from compost heaps and industrial settings. Originally, the Chloroflexota were 
described as “Green non-sulfur bacteria,” suggesting a very specific physiology. 
However, in recent years, with the increase of isolated strains and with metagenome-
assembled genomes (MAGS) reconstructed from environmental samples, the phy-
lum Chloroflexota has expanded to include vast metabolic diversity and abundant 
numbers in diverse subsurface ecosystems. Studies have been unraveling the true 
diversity of the phylum, which consists of a wide variety of anaerobic and aerobic 
bacteria, mesophilic and thermophilic, chemoheterotrophic, chemolithotrophic, or 
photolithotrophic. Nevertheless, the cell biology of members within the 
Chloroflexota remains poorly studied.
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A commonly occurring physiological trait within the Chloroflexota is their 
filamentous cell structure with gliding motility (Garrity et al. 2001b) with only a 
few of them possessing flagella. The cell envelope of Chloroflexota is quite unique 
and has long been debated if they have a two-layer membrane (diderma) or only one 
layer (monoderm) since many of them lack the ability to form peptidoglycan (Kube 
et al. 2005), but it seems that species within the phylum might diverge in this sense 
as well. 

4.1 Anaerolineae 

Environmental DNA-based community analyses have revealed that members of the 
class Anaerolineae frequently occur in geothermal environments in widely disparate 
geographical locations. Examples include hot methane seeps in Iceland 
(Þorsteinsdóttir et al. 2020), hot spring microbial mats in Saudi Arabia (Yasir et al. 
2020), hot spring water in the Himalayas (Sharma et al. 2020), sediments down-
stream from a sulfidic hot spring in Sumatra (Okumura et al. 2022), and seafloor 
hydrothermal vents (McGonigle et al. 2020). 

Cultured thermophiles within this class all belong to the order Anaerolineales 
(Yamada et al. 2006) and are filamentous chemoheterotrophic anaerobes, oxidizing 
various carbohydrates, and proteinaceous compounds. They are likely to do so 
synergistically with hydrogenotrophic methanogens, as their growth is enhanced in 
their presence, indicating that they can use hydrogenotrophs as a hydrogen scav-
enging system (Yamada and Sekiguchi 2018). The family Anaerolineaceae contains 
thermophiles in at least four of its genera, Anaerolinea, Bellilinea, 
Thermanaerothrix, and Thermomarinilinea. These include A. thermophila isolated 
from hot spring sulfur-turf (Sekiguchi et al. 2003), A. thermolimosa and 
B. caldifistulae from anaerobic thermophilic granular sludge (Yamada et al. 2006, 
2007), Tt. daxenis isolated from a deep hot aquifer (Gregoire et al. 2011), and the 
halophilic Tm. lacunofontana isolated from a shallow hydrothermal vent (Nunoura 
et al. 2013). 

Most of the members of the Anaerolineae indicated by community analyses have 
not been cultured and attempts at reconstructing their genomes from metagenomic 
data are frequently complicated by binning problems (Singleton et al. 2021). Nev-
ertheless, recent MAG-based studies (Ward et al. 2018; Braga et al. 2021; Liu et al. 
2022; Rogers et al. 2023) have revealed this class to be considerably more metabol-
ically diverse than previously believed, including sulfur oxidation, nitrogen cycling, 
and microaerophilic respiration (Rogers et al. 2023).
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4.2 Chloroflexia 

The class Chloroflexia comprises among others the well-known phototrophic 
mat-forming bacteria that often grow in great abundance in and around hot springs, 
frequently in association with Cyanobacteria (Pierson and Castenholz 1974; 
Giovannoni et al. 1987; Jørgensen and Nelson 1988). The chloroflexi proper, 
forming the family Chloroflexaceae, are gliding filamentous phototrophic thermo-
philes. Three species have been described, Chloroflexus aurantiacus, C. aggregans, 
and C. islandicus (Pierson and Castenholz 1974; Hanada et al. 1995; Gaisin et al. 
2017). The family Roseoflexaceae contains additional thermophilic mat-formers, 
Heliothrix oregonensis (Pierson et al. 1985) and Roseiflexus castenholzii (Hanada 
et al. 2002). A cellulolytic filamentous thermophile, Kallotenue papyrolyticum, is 
found within the order Kallotenuales (Cole et al. 2013). 

4.3 Ktedonobacteria 

The class Ktedonobacteria harbors aerobic bacteria that stain gram-positive 
(Cavaletti et al. 2006). In DNA-based environmental studies, they are often encoun-
tered in environments such as geothermal fields, volcanic soils, caves, and gas vents 
(Hernández et al. 2020; Þorsteinsdóttir et al. 2020; Arif et al. 2021). Ktedonobacteria 
MAGs have been found to be abundant in young volcanic soil where they are 
thought to use reduced gases, such as H2 and CO for growth (Hernández et al. 
2020). Studies of their functional capabilities have shown diverse degradation 
abilities, indicating an ecological function comparable to that of actinomycetes and 
saprotrophic fungi. Genome sequencing has revealed large genome sizes, including 
megaplasmids, with several unknown functions, while screening has shown broad 
antimicrobial activities (Zheng et al. 2019). Cultured representatives of thermophiles 
within the class Ktedonobacteria are thus far limited to two species in one of its 
seven genera, Thermosporothrix hazakensis and T. narukonensis (Yabe et al. 2010, 
2016). 

4.4 Other Chloroflexota Classes 

The class Ardenticatenia is yet represented only by a single thermophilic species, 
Ardenticatena maritima. This facultatively anaerobic chemoheterotroph reduces 
iron and nitrate under anaerobic conditions. It was isolated from a hydrothermal 
field in Japan (Kawaichi et al. 2013). 

DNA-based studies on hot methane seeps in Iceland have indicated a dominating 
presence of uncultured members of the class Dehalococcoidia (Þorsteinsdóttir et al. 
2020). This class contains obligate organohalide-respiring anaerobic bacteria



(Löffler et al. 2013). MAG-based studies have indicated that uncultured members of 
the class Dehalococcoidia may fix CO2 via the Wood-Ljungdahl pathway, which 
has thus far not been observed among the culturable Chloroflexota (Hug et al. 2013). 
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A recently described class, Tepidiformia, is composed of only a single species, 
Tepidiforma bonchosmolovskayae, which was isolated from a hot spring in Russia. It 
is an aerobic, chemoheterotrophic thermophile that can grow 
chemolithoautotrophically with siderite (FeCO3) as the electron donor and oxygen 
as electron acceptor (Kochetkova et al. 2020). 

Thermoflexus hugenholtzii (Dodsworth et al. 2014) is a thermophilic filamentous 
bacterium within the class Thermoflexia. It is chemoheterotrophic, microaerophilic, 
and facultatively anaerobic. It is found in terrestrial geothermal systems, occurring 
prominently in geothermally heated sediments, also found in microbial mats in 
similar habitats. 

5 Pseudomonadota 

The phylum Pseudomonadota (Oren and Garrity 2021), previously named 
Proteobacteria, is an extremely diverse and cosmopolitan phylum. It harbors a 
number of different types of thermophiles, including anoxygenic phototrophs, het-
erotrophs, oligotrophs, and diverse chemolithotrophs. 

5.1 Acidithiobacillia 

Chemolithoautotrophic thermophiles are found within the genera Acidithiobacillus 
and Thermithiobacillus. These organisms are obligately aerobic sulfur oxidizers, 
using reduced inorganic sulfur such as thiosulfate, elemental sulfur, and hydrogen 
sulfide as electron donors (Boden and Hutt 2019a, b). While most members of these 
genera are mesophilic, moderate thermophiles are represented by A. caldus and 
T. tepidarius. An apparently obligate autotroph, T. tepidarius was isolated from a 
Roman bath and is adapted to a fluctuating environment in terms of oxygen partial 
pressure (Boden and Hutt 2019a). On the other hand, A. caldus is a strictly aerobic 
mixotroph (Boden and Hutt 2019b). 

5.2 Alphaproteobacteria 

Although the vast majority of the Alphaproteobacteria are considered mesophilic, 
generally not exhibiting growth at temperatures above 45 °C, this phylogenetically, 
ecologically, and metabolically highly diverse class nevertheless harbors an aston-
ishing diversity of moderately thermophilic bacteria. Thermophilic members of this



class range from obligate chemoheterotrophs to facultative phototrophs and 
mixotrophs. They have been isolated from habitats including hot springs, desert 
soils, and industrial environments. 
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Unusual cell morphologies, such as prosthecate cells, and complex life cycles are 
frequently observed among members of the Caulobacteraceae family. They are 
usually chemo-organotrophs and may be quite fastidious, often requiring 
supplemented peptides, amino acids, and B vitamins. Habitat range is wide, but 
they are most often found in oligotrophic habitats and are frequently associated with 
freshwater environments, including submerged surfaces to which they can attach and 
form a biofilm (Abraham et al. 2014). Some moderately thermophilic species are 
known within the genus Phenylobacterium, including P. terrae and P. lituiforme, 
isolated from Pakistani soil and a subsurface aquifer, respectively (Kanso and Patel 
2004; Khan et al. 2018). Like other members of the genus, these species are 
heterotrophic. Atypically for the genus, which classically is described as comprising 
strict aerobes only, P. lituiforme is a facultative anaerobe, reflecting the oxygen-poor 
environment of the subsurface from where it was isolated. 

In the order Parvarculales, the only thus far described species of the genus 
Amphiplicatus, A. meriothermophilus, is a prosthecate moderate thermophile and 
halophile isolated from a Chinese hot spring (Zhen-Li et al. 2014). This species can 
grow at an optimum temperature between 48 and 50 °C and optimum pH of 7.5. 

Within the Rhizobiales, the family Hyphomicrobiaceae, although not particularly 
large, is morphologically and physiologically highly diverse (Oren and Xu 2014). 
Prosthecate and budding species are commonly found within the family. Most 
species are aerobic chemoheterotrophs, although some are facultatively anaerobic 
denitrifiers, and many are oligocarbophilic. Some are facultative photoheterotrophs, 
and a few facultative chemolithotrophs have been found within this family (Oren and 
Xu 2014). Thermophiles are found within the genera Rhodoplanes and 
Dichotomicrobium, including D. thermohalophilum, R. azumiensis, R. tepidamas, 
and R. tepidicaeni (DiGiacomo et al. 2022). 

Moderately thermophilic species have also been described within the family 
Methylobacteriaceae, which is characterized by pigmented facultatively 
methylotrophic bacteria that can grow on one-carbon compounds, e.g., formate, 
formaldehyde, and methanol as sole carbon sources. The thermophiles are within the 
genus Microvirga and were isolated from plant root nodules and desert soil (Reeve 
et al. 2014; Amin et al. 2016). Other thermophiles within the Rhizobiales order 
include members of the genera Chelativorans, Tepidamorphus, Tepdicaulis, and 
Mongoliimonas (DiGiacomo et al. 2022). 

In the Rhodobacterales, thermophily seems rather common in the metabolically 
diverse family Paracoccaceae (previously Rhodobacteraceae). It contains a variety of 
slight and moderate thermophiles, including members of the genera: Albidovulum, 
Jhaorihella, Oceanicella, Paracoccus, Rubellimicrobium, Ruegeria, Rhodobacter, 
Rhodosalinus, and Tranquilimonas (Xian et al. 2020; DiGiacomo et al. 2022). 

The genus Albidovulum contains two validly described species, A. inexpectatum 
and A. xiamenense, both of which are thermophilic (Albuquerque et al. 2018). While 
capable of oxidizing thiosulfate to sulfate in the presence of organic substrates,



A. inexpectatum does not grow chemoautotrophically and is therefore characterized 
as a facultative mixotroph (Albuquerque et al. 2018). 
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Moderate thermophiles are also found among the sphingomonads, such as 
Porphyrobacter tepidarius, Altererythrobacter lauratis, Sphingomonas 
astaxanthinifaciens, and Thermaurantiacus tibetensis (Ming et al. 2021; DiGiacomo 
et al. 2022). Known for the budding mode of reproduction of several of its member 
species, the genus Porphyrobacter currently contains 10 described species (Parte 
et al. 2020), all of which are strictly aerobic chemo-organoheterotrophs. Members of 
this genus produce bacteriochlorophyll-a esterified with phytol and carotenoids 
(Hiraishi and Imhoff 2015). They can thus appear purple pigmented, although the 
presence of carotenoids often renders them orange or red (Tonon et al. 2014). The 
carotenoids are polar and include carotenoid sulfates and bacteriorubixanthin, as 
well as nostaxanthin in P. tepidarius, and form with bacteriochlorophyll-a the core 
light-harvesting complex and the photosynthetic reaction center. However, they 
seem to lack the peripheral light-harvesting center, as indeed do other 
bacteriochlorophyll-containing Alphaproteobacteria (Hiraishi and Imhoff 2015). 
Also, similarly to many other aerobic photosynthetic bacteria, Porphyrobacter 
species produce bacteriochlorophyll-a only in the dark. 

The porphyrobacters are primarily associated with freshwater environments, 
including the neuston (the air-water interface) and some strains are known to degrade 
biphenyl and dibenzofuran (Hiraishi et al. 2002). The thermophilic species 
P. tepidarius, with an optimum temperature of about 40–48 °C, was isolated from 
cyanobacterial mats in a brackish hot spring in Japan (Hanada et al. 1997). Another 
similarly thermophilic (Topt ~45–50 °C) Porphyrobacter species, P. cryptus, was 
isolated in 2003 from a Portuguese hot spring (Rainey et al. 2003). Comparing the 
genomes of Porphyrobacter type strains, Xu et al. (2018) concluded that 
thermophily of P. cryptus was at least in part made possible by substitution of 
glycine and serine to alanine, increasing the frequency of alpha-helices and thus 
promoting thermostability of proteins. 

Although closely related to Porphyrobacter, members of the genus 
Altererythrobacter produce carotenoids but no bacteriochlorophyll and do not pho-
tosynthesize (Tonon et al. 2014). Two thermophilic Altererythrobacter species, 
A. palmitatis and A. lauratis, have been described (Yuan et al. 2017) and were 
both isolated from Tibetan hot springs. 

The only species thus far described in the genus Thermaurantiacus is the 
thermophilic species T. tibetensis, isolated from a microbial mat in a Tibetan hot 
spring (Ming et al. 2021). It is moderately thermophilic, with an optimal growth 
temperature of 45 °C and growth not observed above 55 °C. Carotenoids are present. 

5.3 Betaproteobacteria 

The order Burkholderiales contains bacteria that are highly diverse in terms of 
ecology, physiology, and metabolism, ranging from psychrophiles to thermophiles,



and widely distributed in Nature. It contains obligate and facultative 
chemolithotrophs, nitrogen-fixers, and facultative anaerobes, as well as strict aerobes 
(Garrity et al. 2015). Accumulation of poly-hydroxybutyrate is a common feature 
among the Burkholderiales, consistent with organisms adjusted to an oligotrophic 
environment where storage of carbon in carbonosomes is likely to confer an advan-
tage (Prieto et al. 2014). Among thermophiles in this order are members of the 
genera Caldimonas, Tepidimonas, and Tepidicella, as well as at least two species of 
Schlegelella, S. aquatica, and S. thermodepolymerans (Elbanna et al. 2003; Lütke-
Eversloh et al. 2004; Chou et al. 2006). Both are moderately thermophilic, the 
former isolated from a Taiwanese hot spring, while the latter comprises strains 
isolated from sewage treatment sludges. 
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5.4 Gammaproteobacteria 

The purple sulfur bacteria (PSB) are found within the order Chromatiales, primarily 
in the families Chromatiaceae and Ectothiorhodospiraceae. While most of the PSBs 
described so far are mesophilic, a few species in both families are thermophilic, 
notably Thermochromatium tepidum (Imhoff et al. 1998) and the extremely 
halotolerant Halorhodospira halochloris (Imhoff and Trüper 1977). Thermophilic 
PSBs are found in hot springs and warm soda lakes and salterns. The term “purple 
bacteria” refers to their reddish-purple color, which in turn is explained by the 
presence of bacteriochlorophyll and carotenoids. They are thus capable of 
anoxygenic photosynthesis and typically fix CO2 via Rubisco and the Calvin-
Benson cycle. Electron donors are usually reduced sulfur compounds, often stored 
in sulfur granules either intracellularly or, in the case of the Ectothiorhodospiraceae, 
on the cell surface. Non-phototrophic thermophiles are also found within the 
Chromatiales, such as the chemolithoautotrophic sulfur oxidizers Thiofaba 
tepidiphila and Sulfurivermis fontis, both isolated from Japanese hot springs (Mori 
and Suzuki 2008; Kojima et al. 2017). 

5.5 Deltaproteobacteria 

The class Deltaproteobacteria, recently proposed to be reclassified into the phyla 
Desulfobacterota, Myxococcota, and SAR324 (Langwig et al. 2022), is ubiquitous 
in marine sediments (Wang et al. 2012), soils (Delgado-Baquerizo et al. 2018), 
subterranean environments (Hug et al. 2016), wetlands (Liu et al. 2014), freshwater, 
and marine water columns (Swan et al. 2011; Sheik et al. 2015), playing an essential 
role in global biogeochemical cycling. Despite their importance, our understanding 
of these bacteria is biased toward cultured organisms. They include gram-negative 
bacteria, for the major part mesophilic anaerobes, many of which are interesting for 
their potential biotechnological applications. Notable metabolic features within this



class are the sulfate respiration, using protein complexes sulfate adenylyltransferase 
(Sat), adenylyl sulfate reductase (Apr), and dissimilatory sulfite reductase (Dsr), 
most of which have already been characterized (Minz et al. 1999). Members of the 
class Deltaproteobacteria are also known for their ability to reduce elemental 
metals, such as iron, with species of the families Geobacteraceae and 
Desulfuromonadaceae able to use external surfaces as electron acceptors to com-
plete respiration, producing an electrical current (Bond et al. 2002; Holmes et al. 
2004). These organisms have a variety of other metabolic abilities, such as inorganic 
sulfur compounds disproportionation (mainly carried out by members of the orders 
Desulfobacterales and Desulfovibrionales and of one phylogenetically separate 
species, Desulfomonile tiedjei (Deweerd and Suflita 1990; Sorokin et al. 2008)), 
dissimilatory iron reduction (mainly within Desulfuromonadia) (Lovley and Phillips 
1988; Lonergan et al. 1996), nitrogen fixation (Masuda et al. 2017; Tan et al. 2019), 
mercury methylation (Si et al. 2015), organohalide respiration (Liu and Häggblom 
2018), and aliphatic and aromatic hydrocarbon degradation (Bergmann et al. 2011). 
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Among thermophilic Deltaproteobacteria, different strains have been character-
ized recently and seem to have very similar metabolisms. For instance, an anaerobic 
thermophilic chemolithoautotroph bacterium called Desulfurirhabdus 
thermomarina has been isolated from a shallow sea hydrothermal vent. It can 
grow at 50 °C by the disproportionation of sulfite and elemental sulfur (Allioux 
et al. 2020). Furthermore, among thermophilic Deltaproteobacteria there is 
Dissulfurimicrobium hydrothermale Sh68T, which is a motile, anaerobic, 
chemolithoautotrophic microorganism, isolated from a hydrothermal pond at Uzon 
caldera, Kamchatka, Russia. Similar to D. thermomarina, it is able to produce 
energy and grow by disproportionation of elemental sulfur, sulfite, and thiosulfate 
(Yvenou et al. 2021). Another thermophilic deltaproteobacterium able both to 
disproportionate sulfur compounds and accomplish dissimilatory sulfate reduction 
at high temperatures corresponds to Dissulfuribacter thermophilus, strain S69T 
(Slobodkin et al. 2013). This microorganism was isolated from a deep-sea hydro-
thermal vent chimney located on the Eastern Lau Spreading Center and Valu Fa 
Ridge, Pacific Ocean, at a depth of 1910 m using anoxic medium with elemental 
sulfur as the only energy source. Its temperature range for growth was 28–70 °C, 
with an optimum at 61 °C. A metabolically and phylogenetically similar 
deltaproteobacteria strain was also isolated from a shallow-sea hydrothermal vent 
where it participates in biogeochemical cycling of sulfur, most probably as a primary 
producer (Slobodkina et al. 2016). 

A different strategy of bacterial predation is found in the members of the order 
Myxococcales, known for their predominantly aerobic, predatory lifestyle with the 
ability to produce a variety of secondary metabolites (Jurkevitch and Davidov 2007; 
Berleman and Kirby 2009). During the motile phase of their life, members of this 
order exhibit complex social behavior, swarm prey organisms, secrete enzymes and 
proteases to lyse the target cells (Hart and Zahler 1966), and are also able to 
sporulate. Myxobacteria have long been considered mesophiles (Reichenbach 
1999). Recently, a thermotolerant strain GT-7, identified as belonging to the genus 
Myxococcus within the Cystobacterineae, was isolated from the soil. Its growth



i

temperature range is between 42 and 44 °C (Gerth and Müller 2005). It is also known 
that the occurrence of the myxobacteria in hot spring microbial mats is relatively 
high and this is probably due to more stable microbial ecosystems existing in the 
mats, compared to the external environment (Iizuka et al. 2006). 
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Deltaproteobacteria are one of the most used groups of microorganisms for 
numerous biotechnological applications. For instance, a subtype of Class II type V 
CRISPR-Cas effectors from Deltaproteobacteria have been reported to produce 
extensive 5′-overhangs at cleaved DNA targets, which can make it usable for various 
applications (Selkova et al. 2020). Furthermore, Deltaproteobacteria can degrade 
Polycyclic Aromatic Hydrocarbons, enabling them significant environmental reme-
diation functions in many areas, including groundwater pollution and oil spills 
(Viggi et al. 2017; Wang et al. 2021). Recent binding analysis of six previously 
uncharacterized proteins from the magnetotactic deltaproteobacterium Desulfamplus 
magnetovallimortis BW-1, identified two new magnetite-binding proteins which can 
be used as affinity tags for the immobilization of recombinant fusion proteins to 
magnetite (Pohl et al. 2021). Members of the Deltaproteobacteria class such as 
Desulfovibrio magneticus and Geobacter sulfurreducens are defined as 
“magnetotactic bacteria,” because their ability to derive their magnetic orientation 
from magnetosomes, which are unique organelles containing nanometer-sized crys-
tals of magnetic iron minerals. Nanowires enable bacteria to transfer electrons over 
micrometer distances to extracellular electron acceptors such as insoluble metal 
oxides or electrodes (Lovley and Malvankar 2015). Understanding how protein-
based nanowires can conduct electrons is intriguing, as proteins are generally 
considered to be electrical insulators and are widely used in different biotechnolog-
ical fields. Dissimilatory metal-reducing bacteria have been employed in microbial 
fuel cells and in bioremediation techniques, and bioengineered nanowires have been 
proposed for future use in nanobioelectronics (Boesen and Nielsen 2013). 

6 Campylobacterota 

The phylum Campylobacterota comprises a phylogenetically diverse bacterial group 
consisting of three classes: Desulfurellia (formerly corresponding to the order 
Desulfurellales) and Campylobacteria (formerly classified as 
Epsilonproteobacteria) (Waite et al. 2017). Although this phylum is widely 
known for its pathogenic members such as Helicobacter pylori and Campylobacter 
jejuni (Salama 2020; Yeh et al. 2021), a greater number of non-pathogenic 
mesophilic and thermophilic species have been discovered in diverse natural envi-
ronments, including deep-sea hydrothermal fields (Shiotani et al. 2020), aquatic 
redox-stratified systems (Henkel et al. 2022), subterranean estuaries (Huang et al. 
2021), terrestrial sulfidic caves (Bizic et al. 2023), terrestrial Mud Volcanoes 
(Mardanov et al. 2020), and oil fields (Nakagawa and Takaki 2009). These micro-
organisms are key players in element cycling (Lopez-Fernandez et al. 2018;  D  
Cesare et al. 2020; Seyler et al. 2021), and in deep-sea hydrothermal vents, they



constitute the dominant members of the microbial community, particularly in sulfide 
chimney structures where they can represent up to 85% of the total microbial 
biomass (Nakagawa et al. 2006). 

36 O. Vilhelmsson et al.

The taxonomically and metabolically diverse members of Campylobacterota are 
also responsible for chemosynthetic primary productivity of inorganic sources at sub 
seafloor level (Campbell et al. 2006; McNichol et al. 2018). Although the cultivation 
of thermophilic Campylobacterota members has increased with the refinement of 
cultivation conditions, the number of described thermophilic species still only 
represents 14% of the total number of validly published species within 
Campylobacterota (Shiotani et al. 2020). Consequently, there is insufficient infor-
mation on their genomes and intra-specific diversity, leaving the classification of 
thermophiles unresolved. Within the Campylobacterota, thermophiles are found 
within the order Nautiliales and in the incertae sedis genera Nitratiruptur, while 
the majority of the other members in the Campylobacterales are represented by 
mesophiles with some exception showing thermotolerance. All the thermophiles in 
the phylum have been isolated from deep-sea hydrothermal vents where they are key 
primary producers sustaining the vent ecosystems (Campbell et al. 2006). 

Cultivation, isolation, and characterization of these bacteria have enabled new 
discoveries about their evolution and diversification (Nakagawa et al. 2007), bioge-
ography (Mino et al. 2017), and their potential of biotechnological applications 
related to global warming mitigation (Mino et al. 2018; Fukushi et al. 2020). For 
example, Nitratiruptor labii carries out the reduction of N2O to N2 (Fukushi et al. 
2020), a reaction which could be exploited for nitrogen removal from wastewater. 
Future studies, including cultivation analysis of N2O-reducing Campylobacteria, 
transcriptional analysis of nitrous oxide reductase genes, and evaluation of N2O 
consumption thermodynamics and kinetics, may provide a broader view of mecha-
nisms allowing to significant N2O consumption rates. 

Vent-derived hydrogen-converting enzymes detected in Campylobacterota have 
also been widely studied in recent years. Due to the wide range of thermal and 
chemical conditions featuring vent environments (Miyazaki et al. 2020), thermo-
philic Campylobacterota hydrogenases genes are of particular interest for the use in 
hydrogen production as a green energy source and energy generation in biofuel cells 
(Armstrong et al. 2009; Chenevier et al. 2013). 

6.1 Nautiliales 

Within the deeply branching group of the Nautiliales, sequences have been retrieved 
exclusively from hydrothermal systems, and cultured representatives of the family 
are thermophilic, autotrophic, and can reduce elemental sulfur with molecular 
hydrogen. Deep-sea hydrothermal environments can be regarded as one of the 
largest reservoirs of diverse environmental Campylobacterota on Earth, whose 
deeply branching groups correspond to Nautiliales and Nitratiruptor. The first 
hydrogen-oxidizing, sulfur-reducing, thermophilic chemolithoautotrophs



Nautiliales successful isolations were from Alvinella pompejana 
symbiont-associated biomass and tube samples (Campbell et al. 2001). Alvinella 
pompejana is a deep-sea hydrothermal vent polychaete, which has an episymbiont 
community integrated into its dorsal epithelium. Surveys of geochemical conditions 
within A. pompejana tubes revealed high temperature range (�20–80 °C), anoxia, 
surprisingly low or trace free hydrogen sulfide (from <0.2 to 46.53 μM), pH values 
between 5.3 and 6.4, high concentrations of potential electron acceptors such as 
sulfate, nitrate, and iron, and potentially lethal levels of heavy metals like zinc, 
nickel, vanadium, copper, lead, cadmium, cobalt, and silver (Di Meo-Savoie et al. 
2004; Luther et al. 2001; Cary et al. 1998). The Nautiliales isolates from Alvinella 
pompejana were moderately thermophilic sulfur-reducing heterotrophs growing on 
formate as the energy and carbon source. In addition, two of the isolates were able to 
grow on sulfur using hydrogen as the electron donor. Optimal growth temperatures 
of the bacteria ranged from 41 to 45 °C (Campbell et al. 2001). Preliminary analysis 
of a metagenomic library of the A. pompejana symbionts supports the hypothesis 
that at least a portion of the symbiotic Campylobacterota detoxify sulfide by 
rendering it biologically unavailable through metal-transport and sulfide-oxidation 
processes so that A. pompejana can thrive in this extreme microhabitat (Barbara 
J. Campbell et al. 2006). Recently, several previously uncultivated, phylogenetically 
diverse Campylobacterota groups were isolated from various geologically and 
geographically distinct deep-sea hydrothermal fields, all showing a diverse range 
of physiological characteristics and utilization of electron donors, such as hydrogen 
and sulfur, and electron acceptors, such as sulfur and nitrogen. Additionally, they 
have been shown to fix inorganic carbon (Voordeckers et al. 2005; Nakagawa et al. 
2005a, b) through two autotrophic pathways, the acetyl-coenzyme A pathway and 
the rTCA cycle. 
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Therefore, all the Campylobacterota studied so far are chemolithoautotrophs, and 
it is highly significant from the evolutionary point of view, because 
chemolithoautotrophy is thought to be the first type of metabolic pathway evolved 
on Earth (Russell and Hall 1997; Wächtershäuser 1990). Phylogenetic analysis of 
rTCA genes amplified directly from hydrothermal vent chimney samples, as well as 
enzymatic expression analyses of the beta subunit of the ATP citrate lyase (aclB), 
genetic analyses of the cultures of Candidatus A. sulfidicus, and the 
chemolithoautotrophic Nautilia sp. strain AmH (Wirsen et al. 2002; Campbell 
et al. 2003) have demonstrated the potential presence of the rTCA cycle for auto-
trophic carbon fixation in these environments (Wächtershäuser 1990; Campbell et al. 
2003; Ken Takai et al. 2005). Oxygen is not essential for many of the isolated sulfur-
reducing or sulfur-oxidizing Campylobacterota, especially for the deeply branching 
Nautiliales, which are obligate anaerobes that use various alternative electron 
acceptors, such as sulfite, elemental sulfur, and nitrate. Because the metabolic 
features and environmental adaptation of the studied Campylobacterota, including 
growth at high temperatures, anaerobic metabolism, and chemoautotrophy, are 
similar to the members of Chlorobiaceae and Aquificales, the evolution and signif-
icance of the Campylobacterota throughout Earth’s history are interesting reasons to 
pursue in future research.
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Nitratiruptor tergarcus is a thermophilic bacterium (growth temperature between 
37 and 65 °C) which has been isolated from a deep-sea hydrothermal chimney 
structure in the Mid-Okinawa Trough (Nakagawa et al. 2005a, b). To this group 
belongs the recently described species Nitratiruptor labii, isolated from the same 
deep-sea hydrothermal region (Fukushi et al. 2020). Only in the last few years, a new 
strain EPR55-1 T belonging to the Nitratiruptoraceae species was isolated from the 
East Pacific Rise, being the first thermophilic campylobacterial species which is able 
to utilize thiosulfate and sulfite as its sole electron acceptor and sulfur source, 
respectively. This strain possessed lophotrichous flagella, unlike the monotrichous 
and amphitrichous flagella of Nitratiruptor labii and Nitratiruptor tergarcus, respec-
tively (Shiotani et al. 2020). 

7 Firmicutes 

The phylum Firmicutes (today, also known as Bacillota) was originally described by 
Gibbons and Murray (1978), comprising low G + C Gram-positive bacteria. 
According to the Taxonomy in NCBI database (Schoch et al. 2020), the phylum 
consists of nine classes (Bacilli, Bacillota incertae sedis, Bacillota sensu stricto 
incertae sedis, Clostridia, Culicoidibactera, Desulfuribacilla, Erysipelotrichia, 
Limnochordia, Negativicutes, Thermolithobacteria, and Tissierellia), however— 
two of the listed classes have not been validly published according to LPSN (Parte 
et al. 2020). At least 45 families and 480 genera have been published; consequently, 
the phylum Firmicutes is highly diverse (Seong et al. 2018). Within the phylum, 
several thermophilic bacteria are known, such as members of genera Clostridia, 
Thermoanaerobacterium, Thermoanaerobacter, Caldanaerobacter, and 
Caldicellulosiruptor. 

7.1 Clostridia 

The type genus of the family Clostridiacea, Clostridium, is a large and diverse group 
of bacteria, currently containing more than 250 validly published species (Parte et al. 
2020). The genus was first described in 1880, and harbors rod-shaped, Gram-
positive, spore-forming anaerobic bacteria distributed in diverse habitats, including 
soil, water, and other ecological niches rich in plant decaying material (Lawson 
2016; Wiegel 2015; Figueiredo et al. 2020). The species of genus Clostridium are 
extremely diverse and their G + C content can vary from 21 to 54%, which is 
considered to be too extensive for one genus (Lawson 2016). A phylogenetic 
analysis on Clostridia by Collins et al. (1994) leads to the conclusion that more 
than half of the species assigned to the genus were in fact not closely related to the 
type species, C. butyricum.
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Most of the 250 validly described Clostridium species are classified as 
mesophiles, whereas only about 20 are moderately thermophilic, e.g., 
C. thermocellum, C. thermosuccinogenes, C. thermopalmarium, and 
C. stercorarium. Many of the thermophilic species of Clostridium have been 
extensively studied regarding their ability to degrade complex and lignocellulosic 
biomass, especially C. thermocellum (Akinosho et al. 2014). Some key features of 
C. thermocellum include its complex cellulolytic machinery, high growth rates, and 
tolerance to high temperatures and ethanol concentrations (Dumitrache et al. 2016; 
Sudha Rani et al. 1998). In recent years, researchers have been working to engineer 
C. thermocellum to improve its performance and make it a more effective biocatalyst 
for industrial applications (Sander et al. 2015; Rangel et al. 2020). Several studies 
have investigated the genetic and biochemical mechanisms underlying the cellulo-
lytic activity of C. thermocellum, e.g., Raman et al. (2011) where transcriptomic and 
proteomic approaches were used to identify key genes and enzymes involved in 
cellulose degradation. 

7.2 Thermoanaerobacterium 

Bacteria belonging to the genus Thermoanaerobacterium are anaerobic, extreme 
thermophiles with optimal growth temperature ranging from 55 to 70 °C. In general, 
their cells have Gram-positive cell wall structure; however, several strains of 
Thermoanaerobacterium appear as Gram-negative during Gram staining. The pH 
range for growth is also broad, ranging from 3.2 to 8.5 (Onyenwoke and Wiegel 
2015). The genus was first described in 1993 when two xylan-degrading bacteria 
were isolated from Frying Pan Springs in Yellowstone National Park (Lee et al. 
1993). Today, the genus consists of eight validly published species: T. aciditolerans, 
T. aotearoense, T. butyriciformans, T. polysaccharolyticum, T. saccharolyticum, 
T. thermosaccharolyticum, T. thermostercoris, T. thermosulfurigenes, 
T. xylanolyticum, and T. zeae isolated from a variety of extreme environment, such 
as hot springs, hydrothermal vents, and leachate of waste from canning factories 
(Parte et al. 2020). 

Bacteria of Thermoanaerobacterium have been studied extensively for their 
potential use in industrial biotechnology and are known for their abilities to degrade 
various sugars present in lignocellulosic biomass. Degradation of lignocellulose, and 
other substrates, results in a variety of end products, such as ethanol, acetate, lactate, 
and hydrogen. Thermoanaerobacterium species are thus promising candidates for 
bioethanol production from lignocellulose, although the production of mixed end 
products limits their use—and the level of ethanol is in general low (Ren et al. 2008; 
Romano et al. 2010; Sveinsdottir et al. 2009; Wu et al. 2021). For the past two 
decades or so, various studies have been published on genetical modifications of 
Thermoanaerobacterium species to improve the final ethanol titer and more. 
T. saccharolyticum is one of the most studied bacteria of the 
Thermoanaerobacterium genus and was the first thermophilic bacterium to be



genetically modified to enhance its ethanol production (Desai et al. 2004). Attempts 
have been made to knock out both acetate and lactate formation, resulting in 
increased ethanol yields both from glucose and xylose (Shaw et al. 2008). In a 
recent study, the T. saccharolyticum pforA and ferredoxin were transferred to strain 
of Clostridium thermocellum, increasing the maximum ethanol titer by 14% (Hon 
et al. 2018). Similarly, other species of Thermoanaerobacterium are known for 
effective hydrogen production from lignocellulosic biomass, i.e., T. aotearoense 
(Li et al. 2019). 
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7.3 Thermoanaerobacter and Caldanaerobacter 

The genus Thermoanaerobacter is composed of obligately anaerobic thermophiles. 
All species have a Gram-positive cell wall structure, but in some cases the Gram-
stain reaction can vary. The optimal growth temperature of Thermoanaerobacter 
ranges from 35 to 78 °C and pH optimum range of 5.8–8.5. Thermoanaerobacter are 
organoheterothropic and use various fermentation pathways, including the Wood-
Ljungdahl pathway. Some species of the genus are also able to grow 
chemolithoheterotrophically and others are facultative chemolithoautotrophs 
(Onyenwoke and Wiegel 2015). The genus was first described in 1981 when the 
type species, T. ethanolicus was isolated from a hot spring in Yellowstone National 
Park (Wiegel and Ljungdahl 1981). Today, the genus contains 15 validly published 
species and 5 subspecies, isolated from extreme environments such as hot springs 
and oil fields (Parte et al. 2020). Most species can degrade various substrates and 
sugars and their main end products are ethanol, hydrogen, lactate, and in some cases 
alanine. Thermoanaerobacter species, such as T. ethanolicus, T. brockii, and 
T. thermohydrosulfuricus, have been extensively studied for their ethanol production 
(Lacis and Lawford 1988a, b; Lee et al. 2007; Georgieva and Ahring 2007; Lamed 
and Zeikus 1980a, b) and high yields of ethanol production from sugar observed. 
The ethanol yields can however vary greatly depending on both species and culture 
conditions. For example, Thermoanaerobacter strain AK5 was shown to produce up 
to 1.7 mol ethanol from 1 mol glucose in batch culture but when lowering the pH 2 
the yields dropped, and end product formation was switched to acetate rather than 
ethanol (Brynjarsdottir et al. 2012). Recently, the production of branched-chain 
alcohols from branched-chain amino acids by Thermoanaerobacter has gained 
increased attention and has potential as a source for biofuel production from protein 
waste in the future (Scully and Orlygsson 2014). 

Members of Thermoanaerobacter were recently reclassified and moved to the 
genus Caldanaerobacter based on phylogenetic, phenotypic, and metabolic charac-
teristics (Fardeau et al. 2015). Today, Caldanaerobacter consists of only two species 
and four subspecies (Parte et al. Parte et al. 2020). Caldanaerobacter bacteria are 
strictly anaerobic heterotrophs and ferment glucose to L-alanine in nearly equal 
molar amounts (Fardeau et al. 2015). In a recent study on the genomes of three 
species of C. subterraneus, a variety of hydrolases were found, concluding bacteria



of the genus Caldanaerobacter to harbor enzymes with great biotechnological 
potential (Sant'Anna et al. 2015). Novel thermostable lipases originating from 
Calanaerobacter have furthermore been cloned and expressed in E. coli. The two 
lipases identified showed high thermoactivity and stability (90 °C, pH11) and were 
also found resistant to various organic solvents, which makes these enzymes greatly 
interesting for multiple biotechnological processes (Royter et al. 2009). 

Diversity of Thermophilic Prokaryotes 41

7.4 Caldicellulosiruptor 

Members of the genus Caldicellulosiruptor are Gram-negative, strictly anaerobic 
and have optimal growth temperatures ranging from 65 to 75 °C. They have a broad 
substrate spectrum and degrade mono-, di- and polysaccharides, e.g., cellulose, 
cellobiose, xylan, and xylose (Rainey 2015). The type species, C. saccharolyticus, 
was described by Rainey et al. (1994), and today, the genus contains ten validly 
published species: C. saccharolyticus, C. acetigenus, C. bescii, C. changaiensis, 
C. diazotrophicus, C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, 
C. lactoaceticus, and C. owensensis (Parte et al. 2020). All species of 
Caldicellulosiruptor have been isolated from geothermal environments such as hot 
springs and lake sediments (Rainey et al. 1994; Yang et al. 2010). Unlike the 
previously mentioned Thermoanaerobacter and Thermoanaerobacterium, 
Caldicellulosiruptor species do not produce ethanol at high titer. They are, however, 
excellent candidates for hydrogen production, and some have been extensively 
studied for their H2 production from sugar and hydrolysates from lignocellulosic 
biomass (Kádár et al. 2004; Vrije et al. 2007; Zeidan and van Niel 2010). High 
ethanol yields have however been observed by one species, C. bescii, by genetical 
modification of the wild type (Chung et al. 2015). The genomes of all validly 
published Caldicellulosiruptor type species have been whole sequenced, revealing 
enzymes that can be useful for pharmaceutical production, as well as in textile and 
paper processing (Blumer-Schuette 2020). Furthermore, Caldicellulosiruptor spe-
cies are now being investigated for the formation of metal nanoparticles (Bing et al. 
2018) and heavy metal reduction (Bai et al. 2018). 

8 Thermotogae 

The Thermotogae phylum is composed of generally thermophilic, anaerobic gram-
negative eubacteria characterized by the presence of an outer sheath-like envelope, 
referred to as “toga,” the absence of an outer membrane and a rod-like shape (Frock 
et al. 2010; Bhandari and Gupta 2014a; Counts et al. 2017), able to thrive at different 
temperature ranges, from mesophilic to thermophilic and extremely thermophilic 
organisms. This phylum includes four orders Kosmotogales, Mesoaciditogales, 
Petrotogales, and Thermotogales. At present, the Thermotogales order includes



two families, Fervidobacteriaceae and Thermotogaceae (Bhandari and Gupta 
2014a; Schoch et al. 2020). 
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For the most part, members of the class have been isolated from submarine 
geothermal features (Jannasch et al. 1988; Boniface et al. 2006; Conners et al. 
2006), either shallow or deep (Wery et al. 2001; Alain et al. 2002; Postec et al. 
2005, 2010; Nunoura et al. 2007; L’Haridon et al. 2019), oil reservoirs (Ravot et al. 
1995; Fardeau et al. 1997; Takahata et al. 2001), continental solfataric (Windberger 
et al. 1989), and/or acidic springs (Itoh et al. 2016). The majority of the members of 
this class are able to grow on a myriad of carbon sources, including hexoses, 
pentoses, disaccharides, glucans, xylans, glucomannan, galactomannan, pectin, chi-
tin, and amorphous cellulose (Conners et al. 2006; Vanfossen et al. 2008; Latif et al. 
2015). 

All members of the Thermotogae class are characterized by the presence of a 
toga-like outer membrane and are generally rod-shaped cells, although some mem-
bers can also have cocci-shaped ones (Bhandari and Gupta 2014b; Reysenbach 
2015). While most of them are obligate anaerobes, some exhibit oxygen tolerance 
and can survive under concentrations below 15% (DiPippo et al. 2009). The most 
distinctive feature of all members of this class is the toga-like outer membrane, 
which has been reported to have a rather unusual composition regarding other 
bacteria, leading to their classification as atypical Gram-negative bacteria rather 
than the prototypical diderm Gram-negative bacteria. Other unusual features of the 
membranes of the Thermotogae are the presence of long-chain C30, C32, and C34 
dicarboxylic acids in lipids from Kosmotoga, Thermotoga, Fervidobacterium, and 
Thermosipho, which are considered an adaptation to grow in high-temperature 
environments. This consideration is further supported by their absence in the lipids 
of Mesotoga prima (Bhandari and Gupta 2014b). 

The members of this phylum are all chemo-organotrophs capable of coupling the 
degradation of various types of carbon substrates, from simple forms of sugars to 
more complex organic matter, and to the oxidation of different forms of sulfur. 
The metabolic pathways involved in sugar degradation are the Entner–Doudoroff 
and the Embden–Meyerhof–Parnas pathways along with the non-oxidative portion 
of the pentose-phosphate pathway. The presence of genes that coded for different 
sugar metabolisms was also observed by (Zhaxybayeva et al. 2009) after function-
ally annotating large fractions of genomes besides the one studied previously from 
T. maritima (Nelson et al. 1999). One of the main products of glucose fermentation, 
H2, inhibits growth for most of the species. However, this effect can be overcome in 
the presence of sulfur, thiosulfate, or cysteine, depending on the species, and the 
production of H2S is thought of as a kind of a detoxification reaction. (Bhandari and 
Gupta 2014a; Huber and Hannig 2006). 

The potentially high yields of H2 as a metabolic product, as well as the capability 
to use a myriad of carbon substrates, and its thermophilic and hyperthermophilic 
nature has sparked great interest for technological applications. Thermotolerant 
enzymes present in these bacteria can be industrially used to increase reaction 
velocities and solubility of substrates and they can easily be overproduced in 
E. coli through recombinant vectors (Bhandari and Gupta 2014a). Their capability



to use different types of carbon substrates has also been used in large-scale industrial 
production of sugars, artificial sweeteners, and syrups. Enzymes from Thermotogae 
species have also been applied in the pretreatment of pulp and for the braking of 
fluids in oil wells. A more detailed description of all the other applications of 
enzymes isolated from this class can be found in (Bhandari and Gupta 2014a). The 
high yield of H2 reported from the degradation of various carbon sources, as well as 
the fact that both Thermotoga maritima and Thermotoga neapolitana reach the 
Thauer limit (i.e., completely efficient fermentation of sugar into the production of 
H2) these species represent prime candidates for the production of clean, renewable 
energy (Auria et al. 2016; Eriksen et al. 2011; Frock et al. 2010; Van Ooteghem et al. 
2002, 2004). 
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8.1 Thermotogales 

Thermotogales are widespread cosmopolitan bacteria, able to grow at high temper-
atures (optimal growth temperature around 80 °C and maximum temperature of 90 ° 
C) making them, together with members of the phylum Aquificota (formerly known 
as Aquificae), the bacteria with the highest growth temperature known now. Its 
thermophilic nature explains its predominance in volcanically or geothermally 
heated environments, and its organotrophic nature reflects its capability of degrading 
complex organic substrates (Huber and Hannig 2006). They also exhibit a broad 
range of tolerance to salinity conditions, with some species restricted to growth 
under low salinity ranges while others can thrive at higher salt concentrations. The 
capability to use a wide variety of carbon sources also explains its biotechnological 
application to produce clean energy and the degradation of organic pollutants 
(Blumer-Schuette et al. 2008; Bhandari and Gupta 2014a; Latif et al. 2015). The 
first isolated organisms from the phylum all belong to the Thermotogales order, 
either to the Fervidobacteriacea class (Fervidobacterium nodosum, Patel et al. 
1985) or the Thermotogaceae class (Termotoga maritima, Huber et al. 1986). 
Generally speaking, members of this class are heterotrophic thermophiles capable 
of using both simple and complex forms of carbon to transform them into H2, CO2, 
and acetate. 

The Fervidobacteriaceae family includes two genera, Fervidobacterium and 
Thermosipho, both of them composed of thermophilic bacteria, able to grow at 
temperatures between 65 and 80 °C, neutral pH and low salinity (<1% salt concen-
tration). All members of this family are strictly anaerobic and able to reduce sulfur to 
sulfide and have been found in hot springs, terrestrial geothermal aquifers, shallow 
and deep-sea hydrothermal vents, and deep oil reservoirs (Farrell et al. 2021). Their 
growth is inhibited by the presence of H2 and they can utilize different types of 
carbon substrates with various degrees of complexity, from glucose and sucrose to 
starch, and lactose (Huber et al. 1990; Patel et al. 1985; Kanoksilapatham et al. 
2016). The G + C content in the DNA of members of this family ranges between 29.5 
and 45.8 mol%. The type genus for this family is Fervidobacterium, with its type



species being F. nodosum, isolated in 1985 by Patel et al. from a hot spring in 
New Zealand. The other species that compose the Fervidobacterium genus are 
Fervidobacterium changbaicum, Fervidobacterium gondwanense, 
Fervidobacterium islandicum, Fervidobacterium pennivorans, Fervidobacterium 
riparium, and Fervidobacterium thailandense. 
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On the other hand, the Thermosipho genus is made up of eight species 
Thermosipho africanus, Thermosipho melanesiensis, Thermosipho japonicus, 
Thermosipho geolei, Thermosipho atlanticus, Thermosipho affectus, Thermosipho 
globiformans, and Thermosipho activus (Nesbø et al. 2022). The type species for this 
genus is T. africanus, which was isolated by Huber et al. (1989) from a marine 
hydrothermal area in Obock, Djibouti (Africa). T. africanus differs from other 
members of the Thermotogales order in their GC content (29.5–31.5 mol%), the 
presence of a divergent RNA polymerase, and lower growth temperatures (from 
35 to 77 °C). All species of the Thermosipho genus share over 91% of their 16S 
rRNA with each other and are closely related with genus Fervidobacterium 
(Bhandari and Gupta 2014a). Species have been isolated from shallow and deep-
sea hydrothermal vents and deep subsurface oil reservoirs, and all have shown 
growth inhibition in the presence of H2. 

Thermotogaceae members are thermophilic and hyperthermophilic bacteria, with 
optimal growth temperatures between 60 and 80 °C and that require anaerobic 
conditions to grow. They are fermentative and hydrogen-producing rod-shaped 
bacteria that can use a wide variety of carbon sources (Zhaxybayeva et al. 2019). 
This family is divided into two, Thermotoga and Pseudothermotoga, with the type 
genus being Thermotoga, as defined by (Huber et al. 1986). All species from both 
families are known to occur in geothermally heated sediments, shallow-depth marine 
hydrothermal vents, hot springs, solfataric springs, oil reservoirs, and bioreactors 
(Bhandari and Gupta 2014a; Huber and Hannig 2006; Jannasch et al. 1988; 
Zhaxybayeva et al. 2019). Species from the Thermotogaceae family have a G + C 
content between 38.7 and 51.3 mol, and within the Thermotoga genus, the species 
can be differentiated based on the presence of the lipid 15, 16-dimethyl-30-
glyceryloxytriacontanoic acid (Bhandari and Gupta 2014a). 

The Thermotoga genus is composed of four validly named species, T. maritima, 
T. neapolitana, T. naphthophila, and T. petrophila, with T. maritima being the type 
species for the genus, while the Pseudothermotoga genus consists of 
Pseudothermotoga thermarum, Pseudothermotoga elfii, Pseudothermotoga 
hypogea, Pseudothermotoga Profunda, and Pseudothermotoga caldifontis, with 
P. thermarum being the type species (Farrell et al. 2021). Members of the 
Pseudothermotoga genus are able to use thiosulfate as an electron acceptor and 
different carbon substrates, like xylose, glucose, sucrose, and starch, while for the 
type species, P. thermarum, elemental sulfur can inhibit growth, as well as the 
presence of H2 (Windberger et al. 1989).
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8.2 Kosmotogales 

The Kosmotogales order was proposed by Bhandari and Gupta (2014b) to include all 
bacteria that were either rod or cocci-shaped and had a thermophilic or mesophilic 
nature, with the genus Kosmotoga as its nomenclature type. Within the 
Kosmotogales, the Kosmotogaceae family includes two genera Kosmotoga and 
Mesotoga and is characterized by a G + C content between 36.4 and 48.3 mol% 
(Nesbø et al. 2019). All the members of this order are known to be present in 
hydrothermal vents, marine sediments, crustal fluids, deep aquifers, oil reservoirs, 
environments contaminated with hydrocarbons, and other anthropic environments. 
The genus Kosmotoga is composed of three species, K. olearia, K. arenicorallina, 
and K. shengliensis, all of them thermophiles, with an optimum growth temperature 
between 60 and 65 °C (DiPippo et al. 2009; Feng et al. 2010; Nunoura et al. 2010). 
The name Kosmotoga was proposed by DiPippo et al. (2009) to indicate the fact that 
its members are present in different environments, from oil fields to marine sedi-
ments and hot springs. Among the substances that inhibit its growth are sulfite, 
acetate, lactate, and propionate (DiPippo et al. 2009). The fact that Kosmotoga 
species can grow at temperatures from 20 °C to  79  °C has been considered as 
evidence of high phenotypic flexibility in expressing genes associated with energy 
and carbohydrate metabolic activity at high temperatures, and up-regulation of 
amino acid production at lower temperatures (Pollo et al. 2017). However, not all 
species from this family share the same tolerance to anaerobiosis and capability to 
use alternative electron acceptors. For instance, K. arenicorallina is an obligate 
anaerobe and chemo-organotroph that grows in a very narrow temperature range, 
between 50 and 65 °C, and unable to reduce thiosulfate (Nunoura et al. 2010). The 
Mesotoga genus includes mesophilic obligate heterotrophs that grow optimally 
between 37 and 45 °C and is composed of two species M. prima (type species, 
described by Nesbø et al. 2012) and M. infera. 

8.3 Mesoaciditogales 

This order was proposed by Itoh et al. (2016) to accommodate the deeply branched, 
more acidic, low salinity, anaerobic, chemo-organotrophic bacteria that belonged to 
the Thermotogae. Accordingly, Mesoaciditogales are divided into two families, 
Athalassotoga and Mesoacidotoga, which include one species each (Itoh et al. 
2016; Reysenbach et al. 2013). The only member of the Athalassotoga family, 
Athalassotoga saccharophila, has short rod cells that prefer mildly acidic 
(pH 4.5–7.5) and thermophilic (between 30 and 60 °C) conditions for growth as 
well as low salinity (< 1.0% NaCl), and anaerobic conditions. They can use different 
types of complex carbon substrates and can reduce Fe (III), thiosulfate, and L-cystine 
as electron acceptors. The G + C content is 41 mol% (Itoh et al. 2016). The family 
Mesoaciditoga, composed only of Mesoaciditoga lauensis (Reysenbach et al. 2013),



is characterized by moderately thermophilic (45 to 65 °C) acidophilic (pH between 
5.5 and 5.7) bacteria with cells shaped like short rods or cocci and a G + C content of 
45 mol%. They grow under anaerobic conditions and are chemo-organotrophs 
capable of fermenting a broad range of carbohydrates, proteinaceous substrates, 
and yeast, reducing elemental sulfur to H2S. Members of this family, similarly to 
other Thermotogae, have been isolated from deep-sea hydrothermal sediments 
(M. lauensis) or acidic hot spring waters (A. saccharophila). 
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8.4 Petrotogales 

Petrotogales are all thermophilic (growth temperature between 45 and 70 °C) 
bacteria known to occur in oil reservoirs or deep-sea hydrothermal vents or chim-
neys. This order has only one family, Petrotogaceae that is composed of six genera: 
Defluviitoga, Geotoga, Marinitoga, Oceanotoga, Petrotoga, and Tepiditoga. 
Petrotoga is the type genus of the Petrotogaceae family, with Geotoga petraea as 
the type species. All members of the Petrogales order are also anaerobic, able to use 
elemental sulfur as an electron acceptor, have rod-shaped cells, and can degrade 
different types of carbon substrates. 

Geotoga petraea was isolated and described by Davey et al. (1993) from oil field 
brines, along with G. subterranea, also isolated and characterized first by Davey 
et al. (1993) from brines in oil fields in Texas and Oklahoma. As all other 
Thermotogae, both are obligate anaerobes, and capable of fermentation and of 
reducing elemental sulfur to H2S. They also share some morphological features 
like rod-shaped cells and a sheath-like outer structure. However, unlike other 
members of the Thermotogales class, they grow optimally at temperatures between 
45 and 50 °C (Bhandari and Gupta 2014a; Davey et al. 1993) and are considered as 
halophilic since they grow optimally at salt concentrations between 3 to 4% and can 
tolerate salt concentrations of up to 10%. 

Other relevant members of this order are the six species of the genus Marinitoga 
(M. camini, M. piezophila, M. hydrogenotolerans, M. okinawensis, M. litoralis, and 
M. lauensis). These species are capable of growth at low pH (4.5–5) and high salinity 
(from 2 to 4%) conditions as well as temperatures between 55 and 65 °C. This is 
thought to reflect the environmental conditions of their habitats (Alain et al. 2002; 
Bhandari and Gupta 2014a; L’Haridon et al. 2019; Nunoura et al. 2007; Postec et al. 
2005, 2010; Wery et al. 2001). One peculiarity is the fact that M. hydrogenotolerans 
and M. okinawensis, unlike most members of the Marinotoga genus, and the 
Petrotogaceae family, are able to grow under 100% H2 in the absence of sulfur 
(Nunoura et al. 2007). 

The Petrotoga genus includes seven moderately thermophilic and halophilic 
species: P. halophila, P. japonica, P. mexicana, P. miotherma. P. mobilis, 
P. olearia, and P. sibirica, all isolated from oil brines, oil reservoirs, or oil wells. 
These bacteria are able to grow at temperatures that range from 35 to 65 °C (optimal 
temperature between 55 and 60 °C), at a pH range between 5.5 and 9.0, and variable



salinity conditions (between 0.5 and 10% NaCl) with an optimum from 2.0 to 4.0% 
(Bhandari and Gupta 2014b; Davey et al. 1993; Lien et al. 1998; Miranda-Tello et al. 
2004, 2007; Purwasena et al. 2014). The other three genera, Defluviitoga, 
Oceanotoga, and Tepiditoga, are all composed of just one species each: 
D. tunisiensis, O. teriensis, and T. spiralis, all of them exhibiting more of a moderate 
thermophilic nature, with an optimum growth temperature around 50 °C (Ben Hania 
et al. 2012; Jayasinghearachchi and Lal 2011; Mori et al. 2020). 
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9 Thermodesulfobacteria 

Thermodesulfobacterias are thermophilic chemolithoautotrophs and heterotrophs 
that can use oxidized sulfur and iron compounds as terminal electron acceptors 
(Vick et al. 2010). The phylum contains one class Thermodesulfobacteria, one order 
Thermodesulfobacteriales, and one family Thermodesulfobacteriaceae with four 
valid genera: Thermodesulfobacterium, Thermodesulfatator, Caldimicrobium, 
Thermosulfurimonas, and the candidate genus Geothermobacterium (Mori 2014). 
Although there is one family in this phylum, it is one of the deeply branching 
lineages within the domain Bacteria, with a sequence divergence of the 16S rRNA 
gene is 11.6 b% (Mori 2014). 

Members of this group inhabit different thermal environments. They were iso-
lated from terrestrial hot spring in Yellowstone (U.S.A.) (Kashefi et al. 2002; Zeikus 
et al. 1983), in Kamchatka (Russia) (Miroshnichenko et al. 2009), in Iceland (Sonne-
Hansen and Ahring 1999), from stratal waters of oil deposits (Hatchikian et al. 
2001), from deep-sea hydrothermal vents at Guaymas Basin (Jeanthon et al. 2002), 
Central Indian Ridge (Moussard et al. 2004), mid-Atlantic Ridge (Alain et al. 2010), 
and Eastern Lau Spreading Center (Slobodkin et al. 2012). In addition, 
Thermodesulfobacterium species were retrieved from oil field waters from oil 
production platforms in the Norwegian sector of the North Sea (Christensen et al. 
1992). 

In general, they have cells morphologically rod-shaped and motile with single or 
some polar flagella (with some exceptions (Hatchikian et al. 2001; Sonne-Hansen 
and Ahring 1999)). Their Gram reaction is negative and spore formation is not 
reported. They are thermophilic, neutrophilic, and strictly anaerobic, with some 
exceptions. For example, species members of the genus Thermodesulfobacterium 
are chemolithoautotrophs growing using sulfur compounds or Fe(III) as an energy 
source, and CO2 as a carbon source. Moreover, organic compounds can be used for 
growth by some species of the genera Thermodesulfobacterium and 
Thermodesulfatator (Mori 2014).
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10 Aquificota 

The phylum Aquificota (formerly referred to as Aquificae) is widespread in hydro-
thermal environments, both marine and terrestrial (Gupta 2014). Aquificota is 
composed of both thermophilic and hyperthermophilic bacteria, with the species 
Aquifex aeolicus holding the record of the highest temperature for the Bacterial 
domain, being able to grow at above 90 °C (Clarke 2014; Dworkin et al. 2006). The 
vast majority of members belonging to Aquificota are chemolithoautotrophs, being 
able to derive energy from inorganic compounds, such as different oxidation states 
of sulfur, hydrogen, ferrous iron, nitrate, and oxygen, coupled to inorganic carbon 
fixation using the reductive citrate cycle (rTCA) (Gupta, 2014b). Their versatility in 
the usage of electron donors and acceptors, as well as their abundance in geothermal 
environments, makes them key players in the biogeochemical cycles in these 
ecosystems. Notably, they have been used as a model to infer the evolution of 
metabolism for different reasons: they inhabit what could be referenced as relic 
ecosystems, which resemble the conditions present in the early Earth, as well as the 
fact that they root deeply in the phylogenetic tree of Life (Braakman et al. 2014; 
Giovannelli et al. 2017). This means that these organisms carry both ancestral and 
acquired genes. For instance, Braakman et al. (2014), using a novel approach 
nominated phylometabolics, which merges phylogenetic inference with metabolic 
reconstructions, was able to show three classes of innovations in metabolic evolution 
studying the genomic architecture of Aquifex aeolicus. The phylum Aquificota is 
composed of only one class, nominated Aquificae, and two orders, the Aquificales, 
and Desulfurobacterales. The order Aquificales encompasses aerobic and 
microaerophilic bacteria, while Desulfurobacteriales, only strictly anaerobic bacte-
ria. This implies that they are able to colonize different niches in geothermal 
environments given the disponibility of oxygen in the ecosystem. Within 
Aquificales, two families have been described, Hydrogenothermaceae and 
Aquificaceae, while within Desulfurobacteriales, only the family 
Desulfurobacteriaceae has been described. 

10.1 Aquificae 

Aquificae > Aquificales > Hydrogenothermaceae. 
The family Hydrogenothermaceae, within the phylum Aquificota, is composed 

by the genera Hydrogenothermus, Persephonella, Sulfurihydrogenibium, and 
Venenivibrio. All of the members belonging to this family are known thermophiles, 
with optimum growth temperatures ranging from 60 to 73 °C, using a diverse set of 
electron donors, such as elemental sulfur, thiosulfate, ferrous iron, and hydrogen, 
coupled to the reduction of oxygen and nitrate. One of the key characteristics of this 
family is the usage of oxygen as an electron acceptor.



Diversity of Thermophilic Prokaryotes 49

The genus Hydrogenothermus, represented by the type strain Hydrogenothermus 
marinus VM1t, was firstly isolated from a marine shallow-water hydrothermal vent 
in the island of Vulcano, Italy (Stöhr et al. 2001). This organism grows 
chemolithoautotrophically, through the oxidation of hydrogen, coupled to the reduc-
tion of oxygen, and with an optimum temperature of 65 °C. Characterized by being a 
gram-negative bacterium, H. marinus has an optimum growth between pH5 and 
7. Hydrogenothermus marinus have been reported from diverse geothermal envi-
ronments, such as the deep-sea hydrothermal vents along the Eastern Lau Spreading 
Center (Ferrera et al. 2014), the hot springs of Tengchong, China (Briggs et al. 
2014), as well as the mariana back-arc venting fluids (Trembath-Reichert et al. 
2019). Previous studies have shown that this organism is able to grow on high 
abundances of perchlorates, naturally found in arid regions such as the Atacama 
Desert, Chile, with maintained growth patterns up to 200 mM perchlorate. Since 
high concentrations of perchlorates are also found on Mars, H. marinus was 
suggested to be considered as a model organism for future space experiments 
(Beblo-Vranesevic et al. 2017b). Given their ecological role in geothermal systems, 
the capabilities of coupling hydrogen oxidation to oxygen reduction means that this 
group occupies the aerobic niche in hydrothermal systems, coupling the reduction of 
hydrothermal fluids with the oxidized sea water, taking the advantage of the ther-
modynamic equilibrium formed. 

The genus Persephonella, represented by the type strain Persephonella marina, 
was initially isolated in deep-sea hydrothermal vents in the Pacific Ocean (Gotz 
2002). It is characterized by being a strictly chemolithoautotrophic, microaerophilic, 
hydrogen-oxidizing bacteria, with an optimum growth temperature of 73 °C and 
pH6. Other species belonging to Persephonella genus include Persephonella 
guaymasensis, isolated from the deep-sea hydrothermal vents of the Guaymas 
Basin (Gotz 2002), Persephonella hydrogeniphila (Nakagawa et al. 2003), isolated 
from the deep-sea hydrothermal vents of the Suyiyo Seamount in the Izu-Bonin Arc, 
Japan, and Persephonella atlantica, isolated from deep-sea hydrothermal chimney 
collected from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge 
(François et al. 2021). For this reason, they are thought to be major colonizers of the 
deep-sea hydrothermal vent ecosystem (Mino et al. 2013). Members of this genus 
are known to use hydrogen and thiosulfate as electron donors, coupled with the 
reduction of oxygen and nitrate, and have similar optimum growth temperatures 
(~70 °C). However, only Persephonella atlantica is not able to utilize elemental 
sulfur as an electron donor. Due to their thermophilic way of life, members belong-
ing to Persephonella have been used for carbon sequestration technologies, for 
instance, by the utilization of their high temperature adapted carbonic anhydrase 
used in an amine-based absorption process (Kanth et al. 2014). 

The genus Sulfurihydrogenibium, represented by the type strain 
Sulfurihydrogenibium subterraneum, was initially isolated from a hot subsurface 
aquifer in a Japanese gold mine. Having an optimum growth temperature of 60–65 ° 
C, this species grows chemolithoautotrophically, using hydrogen, sulfur, and thio-
sulfate as electron donors, coupled to oxygen reduction (Takai et al. 2003). Other 
species belonging to this genus include Sulfurihydrogenibium azorense, isolated



a

from terrestrial hot spring in the Azores, Portugal (Aguiar et al. 2004), 
Sulfurihydrogenibium kristjanssonii, isolated from terrestrial Icelandic hot spring 
(Flores et al. 2008), and Sulfurihydrogenibium rodmanii isolated from terrestrial hot 
springs in the Geyser Valley and the Uzon Caldera, Kamchatka, Russia (O’Neill 
et al. 2008). These species have been demonstrated to use a diverse set of electron 
donors, encompassing hydrogen, ferrous iron, sulfide, sulfate, thiosulfate, sulfur, 
coupled to oxygen as electron acceptor. Their optimum temperature ranges from 55 ° 
C to 70  °C, and they are morphologically characterized by being gram-negative with 
motile rods. 
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The genus Venenivibrio is the least characterized genus from the 
Hydrogenothermaceae, with only one described species. The type strain, 
Venenivibrio stagnispumantis, is a thermophilic, hydrogen-oxidizing bacterium, 
isolated from a hot spring in Waiotapu, New Zealand (Hetzer et al. 2008). This 
species is able to grow using hydrogen as an electron donor, and oxygen as an 
electron acceptor, with an optimum temperature for growth at 70 °C, with elemental 
sulfur and thiosulfate shown to be essential for growth. Additionally, 
V. stagnispumantis is gram-negative, rod-shaped, and motile bacteria, growing 
with an optimum pH of 5.4. 

The family Aquificaceae, together with Hydrogenothermaceae, make up the 
order Aquificales. This family encompasses the most thermophilic members belong-
ing to the Aquificota, with optimum growth temperatures ranging from 65 to 90 °C, 
and spanning five different genera: Hydrogenivirga, Hydrogenobacter, 
Hydrogenobaculum, Thermocrinis, and Aquifex. As a whole, members belonging 
to the Aquificaceae are obligate chemolithoautotrophs, using hydrogen as the most 
preferred electron donor, and oxygen as electron acceptor. However, some species 
are also able to use sulfur species as electron donors, and nitrate as electron acceptor. 

The genus Hydrogenivirga is composed of chemolithoautotrophic and thermo-
philic bacteria. Represented by the type species, Hydrogenivirga caldilitoris,  
bacterium isolated from a coastal hot spring in Ibusuki, Kagoshima Prefecture, 
Japan. This species is able to grow at an optimum temperature of 75 °C and optimum 
pH of 6.5–7, using sulfur and hydrogen as electron donors, and nitrate and oxygen 
(microaerophilic) as electron acceptors Nakagawa et al. 2004a, b). The other species 
belonging to this genus is Hydrogenivirga okinawensis, a chemolithoautotrophic, 
thermophilic bacteria, isolated from a deep-sea hydrothermal field at the Yonaguni 
Knoll IV, Southern Okinawa Trough (Nunoura et al. 2008a, b). Compared to the 
other species of this genus, H. okinawensis can use thiosulfate as an electron donor, 
instead of hydrogen, and is able to grow at an optimum temperature of 70–75 °C and 
at an optimum pH of 6.9–7.5. 

The genus Hydrogenobacter, represented by the type species Hydrogenobacter 
thermophilus, was initially isolated from hot springs located in Izu and Kyushu, 
Japan, and was regarded as the first obligate chemolithoautotroph described among 
the aerobic, hydrogen-oxidizing bacteria (Kawasumi et al. 1984). This thermophilic 
species grows through the oxidation of hydrogen, coupled to the reduction of 
oxygen, and has an optimum growth temperature between 70 and 75 °C, at neutral 
pH. Interestingly, it was on H. thermophilus that it was discovered a novel pathway



of the reductive TCA cycle, where the cleavage of citrate was carried out by citryl-
CoA synthetase (CCS), instead of the known enzyme ATP citrate lyase (ACL) 
(Aoshima et al. 2004). Other species of this genus include Hydrogenobacter 
halophilus, isolated from a seaside saline hot spring in Izu Peninsula, Japan. This 
species grows at an optimum temperature of 70 °C (Nishihara et al. 1990), and 
compared to the other species of the genus, H. halophilus can utilize elemental sulfur 
and thiosulfate as alternative electron donors to hydrogen. Furthermore, the species 
Hydrogenobacter hydrogenophilum (formerly classified as Calderobacterium 
hydrogenophilum) was isolated from the hydrothermal vents of the Kamchatka 
region (Ludvík and Benada 1994) and is able to grow at an optimum temperature 
of 74 °C, using hydrogen as an electron donor, and oxygen as an electron acceptor. 

Diversity of Thermophilic Prokaryotes 51

The genus Hydrogenobaculum was created to accommodate the species 
Hydrogenobaculum acidophilum, which was previously classified as 
Hydrogenobacter acidophilus, belonging to the genus Hydrogenobacter. This spe-
cies was isolated from a solfataric field in Tsumagoi, Japan (Shima and Suzuki 
1993), and it is the only thermoacidophile belonging to the Aquificota, with an 
optimum pH between 3 and 4, and an optimum growth temperature of 65 °C (Stöhr 
et al. 2001). This species can utilize hydrogen and reduced sulfur species as electron 
donors, with oxygen as electron acceptor. 

The genus Thermocrinis, represented by the type species Thermocrinis ruber, is a  
thermophilic bacterium isolated from the Octopus spring in the Yellowstone 
National Park (H. Huber 2002). This species can grow at 89 °C in neutral to alkaline 
pH, using hydrogen, thiosulfate, and elemental sulfur as electron donors, and with 
oxygen as an electron acceptor. T. ruber was shown to be able to grow both 
chemolithoautotrophically, as well as heterotrophically. Additionally, a previous 
study reported the ability of Thermocrinis ruber to utilize arsenite as a sole electron 
donor, producing arsenate (Härtig et al. 2014). Other species belonging to this genus 
include Thermocrinis minervae, isolated from a Costa Rican terrestrial hot spring, a 
chemolithoautotrophic bacteria, growing at an optimum temperature of 75 ° C, and 
5.9–6.5 pH (Caldwell et al. 2010). Similar to T. ruber, this species is able to utilize 
elemental sulfur, thiosulfate, and hydrogen as electron donors, and oxygen as 
electron acceptor. Moreover, the species Thermocrinis jamiesonii was isolated 
from the water column of Great Boiling Spring, Nevada, USA (Dodsworth et al. 
2015). It can grow chemolithoautotrophically, using hydrogen and thiosulfate as 
electron donors and oxygen as an electron acceptor, having an optimum growth 
temperature of 80 °C, and an optimum pH of 7.25. However, the most thermophilic 
species within the genus Thermocrinis is Thermocrinis albus, which grows at an 
optimum temperature of 89 °C, and similar to the other species of this genus, is able 
use hydrogen, thiosulfate, and sulfur as electron donors, and oxygen as electron 
acceptor (Eder and Huber 2002). 

The genus Aquifex, represented by the type species Aquifex pyrophilus, was 
initially isolated from hot marine sediments, retrieved from the Kolbeinsey Ridge, 
Iceland (R. Huber et al. 1992). This species is characterized by being a strictly 
chemolithoautotroph, growing at an optimum growth temperature of 85 °C and 
optimum pH of 6.8. It can use hydrogen, thiosulfate, and elemental sulfur as electron



donors, and oxygen (microaerophilic) and nitrate as electron acceptors. The other 
species belonging to Aquifex, and the most studied member within the Aquificota is 
Aquifex aeolicus. As one of the most thermophilic bacteria known (growing at 95 ° 
C), A. aeolicus has sparked the interest of the scientific community. Similar to other 
members of the genus Aquifex, this species can utilize hydrogen as an electron 
donor, and oxygen (microaerophilic) as electron acceptor (Deckert et al. 1998), but 
contrary to A. pyrophilus, it has not been observed to perform nitrate respiration. 
Given its observed resistance to higher temperatures, it has been screened for 
temperature-resistant enzymes which could provide essential biotechnological appli-
cations (Guiral et al. 2012). 
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The family Desulfurobacteriaceae, the only described family within the order 
Desulfurobacteriales, is widely distributed in marine geothermal environments 
(Gupta 2014). It is composed of four genera: Balnearium, Desulfurobacterium, 
Phorcysia, and Thermovibrio. Conversely to the other families of Aquificota, 
Desulfurobacteriaceae is composed entirely of obligate anaerobic, 
chemolithoautotrophic, thermophilic bacteria (60–75 °C) (Giovannelli et al. 2017). 
Their inability to use oxygen as a terminal electron acceptor is reflected by the 
diversity of inorganic electron acceptors used to derive energy for growth, such as 
sulfur, polysulfide, thiosulfate, sulfite, and nitrate, coupled to hydrogen oxidation. 
Furthermore, similar to all the Aquificota, members belonging to this family are able 
to fix inorganic carbon using the reverse citrate cycle. However, they represent the 
only lineage within Aquificota to retain a complete reductive acetyl-coA pathway, 
including the oxygen-sensitive enzyme carbon monooxidase (CodH) (Giovannelli 
et al. 2017). 

The genus Desulfurobacterium is ubiquitous in deep-sea hydrothermal vent 
environments. Represented by the type species Desulfurobacterium 
thermolithotrophum, it was initially isolated from a deep-sea hydrothermal chimney 
sample, retrieved from the mid-Atlantic ridge (L’Haridon et al. 1998). Other known 
species belonging to this genus include Desulfurobacterium atlanticum, isolated 
from East Pacific rise deep-sea hydrothermal vents, Desulfurobacterium pacificum, 
isolated from the mid-ocean ridge, Desulfurobacterium crinifex, isolated from the 
Juan de Fuca Ridge, and Desulfurobacterium indicum, isolated from a high temper-
ature, deep-sea hydrothermal vent (Cao et al. 2017;  L’Haridon et al. 2006; Alain 
et al. 2003). Members of this genus can oxidize hydrogen, coupled to a variety of 
electron acceptors, such as elemental sulfur, thiosulfate, sulfite, and nitrate. Addi-
tionally, this genus comprises only thermophilic bacteria, with optimum growth 
temperatures ranging from 60 °C to 75  °C, and pH 6. 

The genus Thermovibrio is composed of three known species: Themovibrio 
guaymasensis, isolated from a deep-sea hydrothermal vent chimney at Guaymas 
Basin, Thermovibrio ammonificans, isolated from the East Pacific Rise hydrothermal 
field, and Thermovibrio ruber, isolated from a hydrothermal system off the beach of 
Lihir Island, Papua New Guinea (H. Huber 2002; Vetriani et al. 2004;  L’Haridon 
et al. 2006). Of all the known species within Thermovibrio, T. ruber, the type 
species, remains the only microorganism that is not obtained from a deep-sea 
hydrothermal system. It is characterized by being a strictly anaerobic,



chemolithoautotrophic, thermophilic bacteria (75 ° C), growing through the oxida-
tion of hydrogen, coupled to the reduction of sulfur or nitrate. Interestingly, com-
pared to the genus Desulfurobacterium of the Desulfurobacteriaceae, members 
belonging to Thermovibrio possess less flexibility regarding electron acceptors, 
mainly using sulfur and nitrate to produce H2S and ammonium, respectively. For 
this reason, they have been considered key players in the nitrogen cycle on hydro-
thermal systems (Giovannelli et al. 2017). Additionally, all members of this genus 
possess similar optimum growth temperatures (75 °C to 80  °C), and optimum pH 
between 5.5 and 6.0. 
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The genus Phorcysia has only one described species, the type species Phorcysia 
thermohydrogeniphila, isolated from the tube of Alvinella pompejana tubeworms, 
collected from the wall of a sulfide structure on the East Pacific Rise deep-sea 
hydrothermal vents (Perez et al. 2012). Characterized by being an anaerobic, 
chemolithoautotrophic bacteria, P. thermohydrogeniphila can grow using hydrogen 
as the sole electron donor, and nitrate and sulfur as electron acceptors, producing 
ammonium and hydrogen sulfide, respectively. 

The genus Balnearium is represented by only one identified species, Balnearium 
lithotrophicum, a strictly anaerobic, hydrogen-oxidizing, and chemolithoautotrophic 
bacteria. This species is a known thermophile, having an optimum growth temper-
ature ranging from 70 to 75 °C, and the lowest optimum pH within the 
Desulfurobacteriaceae, 5.4 (K. Takai 2003). Contrarily to the other genus of this 
family, Balnearium lithotrophicum can grow using hydrogen as a sole electron 
acceptor, and elemental sulfur as the sole electron acceptor, therefore presenting 
the lowest metabolic plasticity of the family. 

11 Deferribacterota 

The phylum Deferribacterota, described in 2001, consists of a family formerly 
known as Deferribacteres (Huber and Stetter 2001) and is widespread in marine 
environments, deep hydrothermal vents, contaminated soils and oil reservoirs, and 
the gut mucus of rodents. Ten Gram-negative, anaerobic (rarely microaerophilic), 
and rod- or vibrio-shaped genera are grouped in the phylum, e.g., Calditerrivibrio, 
Deferribacter, Denitrovibrio, Flexistipes, Geovibrio, Deferrivibrio, Limisalsivibrio, 
Petrothermobacter, Selenivibrio, and Mucispirillum. Of these, only five are thermo-
philic, able to live and survive above 41 °C, e.g., Calditerrivibrio, Deferribacters, 
Flexistipes, Deferrivibrio, and Petrothermobacter. Members belonging to 
Deferribacterota employ different metabolic strategies, such as chemo-organotrophy 
and chemolithotrophy. In general, they are capable of deriving energy from the 
anaerobic respiration of various organic substrates and the use of nitrate, iron (II), 
manganese (IV), sulfur-reduced compounds, and cobalt (III) as terminal electron 
acceptors. However, they can also be able to grow heterotrophically by fermentation 
(Huber and Stetter 2001). The dissimilatory metal reduction is a metabolic pathway 
that some members of the Deferribacterota phylum can use to thrive on iron and



manganese oxides as electron acceptors. The thermophilic genera of this phylum are 
commonly found in sulfur-rich and deep-sea hydrothermal systems, making them 
key players in the biogeochemical cycles in these environments (Slobodkin et al. 
2019), while the other genera can be found in contaminated soils and oil reservoirs 
(Hidalgo et al. 2021), with the exception for Mucispirillum sp. that showed a unique 
lifestyle connected to gut mucus of rodents (Robertson et al. 2005). The presence of 
some genera in deep-sea systems is also supported by their halophilic and 
halotolerant capabilities. 
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11.1 Deferribacteres 

The genus Calditerrivibrio is an important nitrate reducer in nature and was discov-
ered in hot spring waters in Yumata, Nagano, Japan (T = 60 °C) (Iino et al. 2008). 
The only known species is Calditerrivibrio nitroreducens, an anaerobic, thermo-
philic bacterium with an optimum growth temperature between 30 °C and 65 °C, and 
a pH optimum between 7.0 and 7.5 (Iino et al. 2008). From a metabolic point of 
view, C. nitroreducens can be defined as a chemo-organotrophic, non-fermentative 
organism. It is involved in the nitrogen biogeochemical cycle due to its ability to use 
nitrate as the only electron acceptor during growth, having ammonium as the final 
product. Other types of electron acceptors are not used in their metabolic activities. 
C. nitroreducens use different organic carbon species as electron donors (Iino et al. 
2008). 

The genus Deferribacters, composed of four different species, is of fundamental 
importance in the biogeochemical cycling of iron and other metal oxides as part of 
their respiratory metabolism. Only four species belong to this genus: D. abyssi, 
D. autotrophicus, D. desulfuricans, and D. thermophilus. All four species are 
thermophiles able to grow between 40 °C and 70 °C with an optimum temperature 
of 60 °C. D. abyssi, D. autotrophicus, and D. desulfuricans have been isolated from 
deep-sea hydrothermal environments between the Mid-Atlantic Ridge, and the deep-
sea hydrothermal vents on the Izo-Bonin Arc in Japan (Miroshnichenko et al. 2003; 
Takai et al. 2003). Furthermore, D. autotrophicus was isolated from the deepest 
known ocean hydrothermal field at a depth of 4100 m (Slobodkina et al. 2009). 
D. thermophilus was discovered in the North Sea’s Beatrice oil field, 
UK. Metabolically, D. abyssi is a chemolithoautotrophic bacteria capable of using 
molecular hydrogen and inorganic carbon compounds as electron donors, and 
reduced sulfur, iron (III), and nitrate species as electron acceptors (Miroshnichenko 
et al. 2003). The same is for D. autotrophicus but it adds manganese (IV) to the 
plethora of electron acceptors. All four species can use hydrogen or organic sub-
stances as energy sources and carbon sources, and elemental sulfur and nitrate as 
electron acceptors (Greene et al. 1997). Additionally, D. desulfuricans has been 
shown to be able to use arsenate as an electron acceptor, making it a major player in 
the arsenic biogeochemical cycle (Takai et al. 2003).
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The genus Flexistipes, along with the only known species F. sinusarabici, has 
been isolated from the hot brines of the Atlantis II Deep at the bottom of the Red Sea, 
one of the most extreme environments on our planet, e.g., temperature of 64 °C and 
salinity values of 26% NaCl, high concentration of heavy metals, and no free oxygen 
(Hartmann 1985; Brewer and Spencer 1969). F. sinusarabici is a thermophile 
organism that can grow in a range of temperatures between 30 °Cand 53 °C with 
an optimum temperature between 45 °C and 50 °C. It is a chemo-organotroph 
capable of metabolizing complex organic compounds under anaerobic growth 
using molecular nitrogen, carbon dioxide, molecular hydrogen, and methane. It 
has been found that F. sinusarabici can produce sulfur hydrides in the presence of 
elemental sulfur (Fiala et al. 1990). 

The genus Deferrivibrio is a key actor in the biogeochemical cycling of elements 
in hot and haline mineral water deposits. D. essentukiensis is the only known species 
of this genus, isolated for the first time in the Yessentukskoye mineral water deposit 
in Russia (Zavarzina et al. 2022). It is a moderate thermophile capable of growing at 
a temperature between 30 °C and 54 °C and a pH between 6.2 and 7.9. In addition, it 
is an anaerobic halotolerant organism able to thrive in haline environments with a 
concentration of NaCl between 0 and 18 g/L. D. essentukiensis is a chemo-
organotroph that uses carbonic organic compounds as electron donors and 
ferrihydrite as the sole electron acceptor (Zavarzina et al. 2022). 

The single species known as Petrothermobacter organivorans makes up the 
entire genus Petrothermobacter. P. organivorans has been isolated for the first 
time in a deep subsurface oil field in Japan. It is an anaerobic, chemoheterotrophic 
organism capable of oxidizing carbon compounds while reducing iron (III), manga-
nese (IV), nitrate, and sulfate as electron acceptors. It has an optimum of growth at 
55 °C and the optimum pH is in the range of 6.0–8.0 (Tamazawa et al. 2017). 
P. organivorans has a relatively broad substrate range and can utilize pyruvate, 
fumarate, succinate, malate, yeast extract, and peptone for fermentative growth. Due 
to its metabolic capabilities, it can be considered as an essential organism for the 
biogeochemical cycling of various metals, such as iron and manganese (Tamazawa 
et al. 2017). 

12 Chlorobi 

The phylum Chlorobi has long been regarded as a monophyletic group of strictly 
anaerobic and anoxygenic, sulfur-oxidizing, photolithoautotroph microorganisms, 
generally referred to as the Green Sulfur Bacteria (GSB) (Frigaard and Dahl 2009; 
Fröstl and Overmann 2000; Gregersen et al. 2011; Imhoff 2003; van Niel 
1932; Overmann and Tuschak 1997; Trüper Hans and Pfennig 1992). Photosynthe-
sis is carried out due to bacteriochlorophylls and photosynthetic pigments—similar 
to plant, algal, and cyanobacterial chlorophyll—hosted in the chlorosomes. Sulfide 
and hydrogen sulfide are used as electron donors to fix  CO2 via reverse TCA cycle 
(Bello et al. 2022; Trüper Hans and Pfennig 1992).
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Chlorobi traditionally included a single monotypic class Chlorobia, in turn 
consisting of one order (Chlorobiales) and family (Chlorobiaceae) (Gibson et al. 
1984; Imhoff 2003), which is further divided into several genera (e.g., Chlorobium, 
Ancalochloris, Chloroherpeton, Pelodicyton, and Prostheocochloris) (Fröstl and 
Overmann 2000; Garrity et al. 2001a, b, c, d, e, f). The only metabolic exception 
was believed to concern the species Chlorobium ferroxidans and Chlorobium 
phaeoferrooxidans, which use ferrous iron rather than sulfur as electron donor in a 
metabolic pathway termed photoferrotrophy (Beatty et al. 2005; Frigaard and Bryant 
2004; Frigaard and Dahl 2009; Garcia et al. 2021; Ghosh and Dam 2009; Hegler 
et al. 2008; Heising et al. 1999; Hiras et al. 2016; Imhoff 2003). However, later 
studies demonstrated that the cultured representative GSB are rather part of a wider 
and more diverse taxonomic group (Hiras et al. 2016). Firstly, a second class termed 
Ignavibacteria was included in the phylum when the anaerobic chemo-
organoheterotrophic thermophilic species Ignavibacterium album (Iino et al. 2010) 
and Melioribacter roseus (Podosokorskaya et al. 2013) were discovered. Then, 
metagenomic approaches widened the class Chlorobi by revealing uncultured aer-
obic photoheterotrophic genome species, namely Thermochlorobacter aerophylum, 
and Chlorobium sp. GBChlB, and Chlorobi-445 (Liu et al. 2012; Roy et al. 2019); 
these latter have been proposed as part of the novel family Chloroherpetonaceae 
(Bello et al. 2022). Lastly, the aerobic chemo-organoheterotrophic OPB56 clade, 
whose clones are reported to be ubiquitous in thermal environments, was proposed 
to have the same common ancestor as Chlorobi and Ignavibacterium classes based 
on both concatenated ribosomal protein tree and concatenated single copy genes tree 
(Hiras et al. 2016; Soo et al. 2014). 

12.1 Chlorobia 

Besides GSB, the order Chlorobiales encompasses various thermophilic microor-
ganisms whose optimal growth temperature range is 45 °C – 55 °C, and 4.5 and 6 for 
pH. The species Chlorobium tepidum was in fact isolated from an anoxygenic mat in 
a volcanic area in New Zealand and consists of anaerobic, phototrophic—either 
autotrophic or heterotrophic—microorganisms (Wahlund et al. 1991). Likewise, 
Thermochlorobacter aerophilum was isolated from microbial mats of alkaline 
siliceous hot spring at the Yellowstone National Park, but it is an aerobic 
phototrophic species, unable to oxidize sulfur compounds and to fix both N2 and 
CO2 (Liu et al. 2012). Conversely, the GSB1 species, which has been molecularly 
correlated to the Chlorobium and Prosthecochloris, was isolated from water col-
lected at the plume of a 2 km-deep black smoker on the East Pacific rise. GSB1 
retrieval is surprising as its growth requires anaerobiosis, sulfide or hydrogen sulfide, 
CO2, and light, which in such an environment can only derive from geothermal 
activity (Beatty et al. 2005).
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12.2 Ignavibacteria 

The order Ignavibacteriales only harbors two thermophilic species, namely 
Ignavibacterium album and Melioribacter roseus, isolated from a sulfide-rich hot 
spring in Japan and water springing from a 2775 m-deep artesian borehole in 
Western Siberia, respectively. Both isolates have been cultured, thus demonstrating 
to be able to grow both aero- and anaerobically via chemo-organotrophic metabo-
lism, with their optimal growth temperature spanning between 35 °C and 60 °C (Iino 
et al. 2010; Podosokorskaya et al. 2013). 

Notably, Melioribacter roseus has 2 L-asparaginases, whose activity can be 
widely exploited by various biotechnological fields: these enzymes can both pro-
mote apoptosis in cancer cells and catalyze L-asparagine hydrolysis (thus preventing 
the formation of acrylamide, a human carcinogen). One of the two M. roseus 
enzymes exhibits the highest rate of activity at 70 °C, and thermophilic enzymes 
have been demonstrated to exhibit higher enzymatic activity, despite increased 
KM. Adaptation to high temperatures is given by the low abundance of thermolabile 
residues and the high frequency of thermostable residues (Dumina et al. 2021). 

13 Thaumarchaeota 

Thaumarchaeota is Gram-negative, short-rod, microbial group, including members 
of 0.3–0.6 μm in diameter and 0.6–1.0 μm long (Jung et al. 2018). Most of them 
possess a wider range of cell envelope structures than bacteria, and they differ from 
bacteria in the absence of peptidoglycan in the cell walls. Thaumarchaeota range 
among the most abundant archaea on Earth, and in particular in soil systems where 
they constitute about 5% of all prokaryotic biomass (Schleper and Nicol 2010). 
Initially classified as “mesophilic Crenarchaeota,” comparative genomics has 
recently revealed that they form a separate and deep-branching phylum within the 
Archaea (Zhang and He 2012). Everything starts back in 1992, when Jed Fuhrman’s 
team and Ed DeLong reported the discovery of a novel clade of archaeal 16S rRNA 
sequences from ocean surface waters, which formed a mesophilic sister group to the 
hyperthermophilic Crenarchaeota (DeLong 1992; Fuhrman et al. 1992). When it 
became apparent that this novel group contained autotrophic ammonia-oxidizing 
archaea, these organisms were consequently also referred to as mesophilic 
Crenarchaeota. When Brochier-Armanet and colleagues analyzed a concatenated 
data set of 53 ribosomal proteins common to Archaea and Eukarya, they observed 
that C. symbiosum branched off before the separation of Crenarchaeota and 
Euryarchaeota. Based on this phylogenetic analysis, on gene presence/absence 
data, and on the diversity and wide distribution of autotrophic ammonia-oxidizing 
archaea, they proposed that these organisms belong to the phylum Thaumarchaeota 
(Brochier-Armanet et al. 2008). This novel phylum includes all known archaeal



ammonia oxidizers and additionally several clusters of environmental sequences 
representing microorganisms with unknown energy metabolism (Pester et al. 2011). 
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Aerobic ammonia oxidation, the first and rate-limiting step in nitrification, is the 
only biological process converting reduced to oxidized inorganic nitrogen species on 
Earth (Gruber and Galloway 2008). The Thaumarchaeota are the first example of 
nitrification in the Archaea kingdom, a metabolism previously thought to be 
restricted to a few proteobacterial lineages (Könneke et al. 2005). Most of the 
ammonia-oxidizing archaea that have been identified to date have not been fully 
characterized because it is extremely difficult to obtain pure cultures of these 
organisms. Autotrophic CO2 fixation on low NH3 concentrations is the primary 
anabolic process in thaumarchaeal ammonia oxidizers; however, a potential for 
mixotrophic growth has also been reported (Hatzenpichler 2012; Stahl and de la 
Torre 2012). They have an extremely high affinity for substrate (Martens-Habbena 
and Stahl 2011), which means that they are frequently the dominant ammonia-
oxidizing organisms in natural environments with low NH3 concentrations. These 
environments include oligotrophic open ocean waters and nutrient-poor soils 
(Verhamme et al. 2011). They also seem to be adapted to growth at low pH, low 
dissolved oxygen concentrations, and high temperatures (Hatzenpichler 2012) and 
are the primary ammonia oxidizers in acidic forest soils (Lehtovirta-Morley et al. 
2011), coastal waters (Urakawa et al. 2010), in the Atlantic and Pacific Oceans 
(Aylward and Santoro 2020), marine sediments (Dang et al. 2013), wastewater 
treatment bioreactors (Badar et al. 2022), in a coffee compost (Papale et al. 2021) 
and geothermal habitats (Beam et al. 2014; Hedlund et al. 2013; Nishizawa et al. 
2016). 

The presence of Thaumarchaeota, both in mesophilic and in thermophilic envi-
ronments (De la Torre et al. 2008), confirms the wide spectrum of phenotypes 
belonging to this phylum. Different studies show that ammonia-oxidizing archaea 
are widely distributed in terrestrial geothermal systems (De la Torre et al. 2008) 
featured by diverse environmental variables. For example, ammonia-oxidizing 
archaea growth has been demonstrated up to 74 °C (de la Torre et al. 2008) and in 
situ activity measurements and quantitative studies of these microbial populations 
have revealed high activity and abundance up to ~81 °C (Cole et al. 2013; 
Dodsworth et al. 2011). In addition, studies about the distribution and relative 
abundance of the isoprenoid glycerol dialkyl glycerol tetraether (iGDGT) 
crenarchaeol, a potential biomarker for ammonia-oxidizing archaea, suggest this 
microbe’s higher abundance compared to other archaea at 45–50 °C (Zhang et al. 
2006). We also know that hyperthermophiles constitute the first diverging lineages 
of the currently described archaeal phyla (Crenarchaeota, Euryarchaeota, 
Korarchaeota) indicating that the last common ancestor of Archaea might have 
been a hyperthermophile (Forterre 2002; Woese 1987; Woese et al. 1990). 
Mesophily in some thaumarchaeal lineages is a derived character that helped their 
adaptation to colder habitats. The analysis of environmental sequences from 
Thaumarchaeota indicates that adaptation to mesophilia may have happened through 
horizontal gene transfer from bacteria or from mesophilic archaea (López-García 
et al. 2015). Because secondary adaptations to mesophily are also observed in



Euryarchaeota, this would be consistent with the hypothesis of multiple independent 
adaptations to mesophily in the Archaea from thermophilic or hyperthermophilic 
ancestors. 
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There are clear biotechnological applications related to the Thaumarchaeota 
group, mainly related to its thermostable enzyme properties (Saghatelyan et al. 
2021). It is known, for example, that the type IB DNA topoisomerases are very 
important targets for antitumoral drugs in humans (Pommier 2009). Recent studies 
suggest that the archaeal type IB topoisomerases are much more similar to the 
eukaryotic enzymes than the Vaccinia virus type IB topoisomerase, which has 
been widely used as model system to understand human enzyme (Dahmane et al. 
2016). These characteristics indicate that the Cs-TopIB or others thaumarchaeal 
TopIB might be promising new models for phylogenetic and structural studies of 
the type IB DNA topoisomerases. 

14 Archaeoglobi 

Archaeoglobi is a class of archaea that includes two orders, namely the 
Archaeoglobales and the Desulfurococcales. Members of the Archaeoglobales 
reduce sulfate, thiosulfate, iron, and nitrate, while they are facultative autotrophs 
or heterotrophs that reduce sulfate and thiosulfate to hydrogen sulfide. Archaeoglobi 
are strict anaerobes and hyperthermophiles that thrive in high-temperature environ-
ments, typically between 60 °C and 95 °C, and pH 5.5–7.5. They occur singly and in 
pairs and are gram-negative. Thermophilic archaeoglobi are generally small, spher-
ical, or rod-shaped, and lack motility structures such as flagella. They typically have 
a cell wall made of pseudomurein, a type of peptidoglycan-like polymer that is 
unique to the Archaea domain. 

Archaeoglobi are found in various locations around the world, such as Iceland, 
Italy, Japan, New Zealand, Russia, and the United States, and in a wide range of 
extreme habitats, such as deep-sea hydrothermal vents, hot springs, and oil 
reservoirs. 

There are two orders of marine generalist archaea that are both considered 
Archaeoglobi: the Archaeoglobales in the Euryarchaeota and the Desulfurococcales 
in the Crenarchaeota. 

The family Archaeoglobaceae is composed of Archaeoglobi, Geoglobus, and 
Ferroglobus. Archaeoglobi includes five species with validly published names: 
A. fulgidus, A. profundus, A. veneficus, A. infectus, and A. sulfaticallidus. 
Archaeoglobi can use a wide range of electron donors and acceptors, including 
sulfate, sulfite, thiosulfate, iron, nitrate, and various organic compounds. Members 
of the Archaeoglobales order, including Archaeoglobi, are able to grow by reduction 
of sulfite and thiosulfate. A. sulfaticallidus is the only species capable of 
lithoautotrophic growth with sulfate as a terminal electron acceptor.
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The cell envelope of Archaeoglobi consists of an S-layer composed of subunits in 
hexagonal array containing a periodate-Schiff-positive polypeptide. Cells contain 
phytanyl ether lipids. 

A complete oxidative TCA cycle has been shown to function in the cells of 
Archaeoglobi members such as A. fulgidus, A. profundus, F. placidus, Geoglobus 
ahangari, and Geoglobus acetivorans. The recently discovered species of 
Archaeoglobus, named A. lithotrophicus, has been found to be capable of 
lithoautotrophic growth using hydrogen gas and carbon dioxide as electron donor 
and acceptor, respectively. 

One of the defining characteristics of thermophilic archaeoglobi is their ability to 
use molecular hydrogen (H2) as an electron donor and sulfate (SO4 

2-) as an electron 
acceptor for energy production. This process, known as sulfate reduction, produces 
hydrogen sulfide (H2S) as a byproduct. The ability of thermophilic archaeoglobi to 
carry out sulfate reduction is believed to be a key factor in their success in extreme 
environments, as sulfate is often abundant in such environments. Thermophilic 
archaeoglobi are also capable of carrying out a number of other metabolic processes, 
including the oxidation of organic compounds and the reduction of elemental sulfur. 
Some species are even capable of using carbon monoxide (CO) or methanol as 
electron donors. 

There is growing interest in the biotechnological applications of Archaeoglobi 
due to their unique metabolic capabilities, which make them potentially useful for a 
range of industrial processes. Archaeoglobi are known, for example, for their ability 
to degrade a variety of hydrocarbons, including alkanes and aromatic compounds, 
under anaerobic conditions. This makes them a potential tool for bioremediation of 
contaminated environments, such as oil spills or petroleum-contaminated soils. 
Archaeoglobi can use hydrogen and carbon dioxide to produce methane, making 
them useful for the production of biogas as a renewable energy source. This archaeal 
group is also able to produce a range of enzymes that have potential biocatalytic 
applications. For example, some archaeal enzymes are known to be highly stable and 
active under extreme conditions of temperature, pH, and salinity, and this is why 
they are widely used in the production of chiral compounds for pharmaceuticals and 
agrochemicals, and in various industrial processes that require high stability and 
activity under extreme conditions. Some species of Archaeoglobi are capable of 
oxidizing sulfide minerals, making them useful for bioleaching of metal ores. 
Overall, there is significant potential for biotechnological applications of 
Archaeoglobi, and research in this area is ongoing. 

15 Euryarcheota 

The Euryarcheota phyla belongs to the Archaea domain and is composed of organ-
isms that show very diverse physiological traits. These characteristics are known 
since the greatest number of cultured and diverse archaeal lineages belong to the 
Euryarchaeota phyla, in particular from the thermophilic classes Archaeoglobi,
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Methanopyri, and  Thermococci (Baker et al. 2020). Generally speaking, the 
Euryarchaeota can occur as rods, cocci, irregular cocci, triangular, square, lancet, 
spiral, or disk-shaped cells. Its nature with regard to Gram staining can be either 
positive or negative, based on the presence or absence of pseudomurein in cell walls 
(Garrity et al. 2001a, b, c, d, e, f). This phylum includes hyperthermophilic, 
halophilic, and methanogenic organisms. This diversity also poses a sharp contrast 
among organisms classified as Euryarcheota, since methanogens are the most strict 
type of anaerobes described, while halophiles are for the most part primarily aerobes 
(Pesaro and Widmer 2002; Baker et al. 2020). Euryarchaeota thermophiles belong to 
the Thermoplasmatales order, which includes three genera: Thermoplasma, 
Picrophilus, and Ferroplasma, with the Thermoplasma having the peculiarity of 
not having cell walls (Garrity et al. 2001a, b, c, d, e, f). There are three key genera of 
hyperthermophiles, two of them (Thermococcus and Pyrococcus) make up a distinct 
taxonomic order, the Thermococcales while the other one (Methanopyrus) is  
methanogen that despite its similarity with the other methanogens has the peculiarity 
of being able to thrive at high temperatures. The growth temperatures reported for 
these thermophiles range from 55 °C (Thermoplasma) to as high as 110 °C 
(Methanopyrus). Other hyperthermophiles belonging to the Thermoplasmatales 
include Archaeoglobus and Ferroglobus. Thermophilic and hyperthermophilic 
Euryarcheaota metabolisms are varied, spanning from methanogenesis like in 
Methanopyrus to chemoheterotrophy, where proteins such as starch or maltose are 
used as electron donors and Fe, sulfate or S0 act as a terminal electron acceptor in 
Thermococcus, Pyrococcus, Thermoplasma, and Picrophilus (Leigh and Whitman 
2013a, b). 
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15.1 Thermoplasmatales 

The key genera of this class are Thermoplasma, Picrophilus, and Ferroplasma. All 
members of this class are facultative aerobes capable of heterotrophic growth, under 
acidic conditions; however, only Thermoplasma and Picrophilus can thrive under 
thermophilic conditions. Thermoplasma lacks cell walls and grows optimally at 
temperatures near 55 °C (Garrity et al. 2001a, b, c, d, e, f; Leigh and Whitman 
2013a, b). Thermoplasma species are facultative aerobes, chemo-organotrophic 
organisms, able to perform sulfur respiration through the degradation of organic 
compounds. These archaea are also acidophiles (optimum pH2.0) and are able to 
cope with the high temperatures and low pH due to the production of lipoglycan 
inside its cytoplasmic membranes. Members of the Thermoplasma have been found 
in self-heating coal refuse piles, terrestrial solfataras, and acid hot springs, with 
T. acidophilum being the first species described by Darland et al. (1970). Other 
members of this genus are T. volcanium (Segerer et al. 1988) and T. thiooxidans 
(Li et al. 1994). 

Picrophilus is the other thermophilic member of the Thermoplasmatales. This 
genus differs from Thermoplasmata in the fact that it has a cell membrane.



Picrophilus species have an optimum growth temperature between 47 and 60 °C and 
is able to grow at pH values below 0, making it an hyperacidophile. It has also been 
shown that its growth is inhibited by high salt concentrations, which supports the 
hypothesis of a distribution restricted to terrestrial geothermal settings (Garrity et al. 
2001a, b, c, d, e, f). This genus is composed of two species, both of them isolated 
from solfataric springs in Japan by Schleper et al. (1996) and capable of forming a 
highly acid-impermeable membrane at pH values below 4. 
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15.2 Thermococcales 

The Thermococcales order includes all the hyperthermophilic genera belonging to 
the Euryarchaeota. They are heterotrophic archaea able to grow optimally at tem-
peratures between 75 and 100 °C using sulfur respiration. They are commonly found 
in deep and shallow marine hydrothermal vents, although they have also been 
isolated from terrestrial hot springs (Garrity et al. 2001a, b, c, d, e, f). The genera 
included in this order are as follows: Thermococcus and Pyrococcus. Thermococcus 
are obligate chemo-organotrophic anaerobes that can grow metabolizing proteins 
and other complex C sources due to the reduction of elemental sulfur (Zillig et al. 
1983a, b). The optimum growth temperature for these archaea is between 75 and 88 ° 
C (Zillig et al. 1983a, b; Garrity et al. 2001a, b, c, d, e, f), in the presence of salt 
(between 2 and 4%). There are at least 15 species formally recognized as members of 
this genus, most of them isolated from terrestrial hot springs, coastal and marine 
solfataras, and deep-sea hydrothermal vents (Garrity et al. 2001a, b, c, d, e, f). The 
other member of the Thermococcales order is Pyrococcus. Members of this genus 
have a higher optimum growth temperature, between 70 and 106 °C, with this being 
the major difference among the two genera. From a metabolic point of view, they are 
also very similar, since both genera are heterotrophs that couple degradation of 
complex carbon substrates to the reduction of elemental sulfur to form H2S. Species 
belonging to the Pyrococcus genus have been isolated from geothermally heated 
marine sediments such as P. furiosus (Fiala and Stetter 1986), deep-sea hydrother-
mal vents such as P. abyssi, P. glycovorans, P. chitonophagus, P. horikoshii, 
P. kukulkanii, P. woesei, and P. yayanosii (Zillig et al. 1987; Erauso et al. 1993; 
González et al. 1998; Barbier et al. 1999; Lepage et al. 2004; Birrien et al. 2011). 

15.3 Methanopyrus 

Methanopyrus organisms are hyperthermophilic archaea able to grow optimally at 
temperatures of 98 °C (Garrity et al. 2001a, b, c, d, e, f). Members of this genus have 
the peculiarity that they share phenotypic properties with both methanogens and 
hyperthermophiles. They can grow autotrophically through chemolithoautotrophy, 
coupling the reduction of CO2 to CH4, to the oxidation of H2. The membrane lipids



found in the cell membranes of these archaea are an unsaturated form of diphytanoyl 
tetraethers and are thought to be able to stabilize the cytoplasmic membrane at high 
temperatures. 
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16 Crenarchaeota 

The phylum Crenarchaeota (Garrity et al., 2001) were identified as a physiologically 
homogeneous group characterized by thermophilic taxa like Sulfolobus spp. (Brock 
et al. 1972; Woese 1987; Woese et al. 1990; Pesaro and Widmer 2002) but also by 
hyperthermophiles like Pyrolobus spp. (Blöchl et al. 1997). Most Crenarchaeota 
species were first isolated from submarine and terrestrial environments such as deep-
sea hydrothermal vents, terrestrial hot springs, and hot acidic mudpots (Zillig et al. 
1983a, b; Nakagawa et al. 2004a, b; Leigh and Whitman 2013a, b). The only class 
within the Crenarchaeota is named Thermoprotei which is divided in further orders 
among which the Acidilobales, Desulfurococcales, Fervidicoccales, Sulfolobales, 
and Thermoproteales (Offre et al. 2013). Energy-generating metabolism known for 
Crenarchaeota includes autotrophic pathways during which carbon is assimilated 
from oxidized inorganic compounds, i.e., carbon dioxide or bicarbonate, and 
reduced to form simple organic molecules (Berg et al. 2010). Some lineages of 
Crenarchaeota include facultative autotrophic organisms as well as obligate hetero-
trophs which utilize proteins and sugars as main carbon source (Kletzin 2007). The 
Crenarchaeota include some of the first cultivated lineages of archaea belonging to 
the Sulfolobus genus that were isolated for the first time from the hot acid springs in 
Yellowstone National Park by Thomas Brock (Brock et al. 1972) and then become 
one of the main models of thermophile archaea investigations (Zhang et al. 2018). 

16.1 Thermoprotei 

Sulfolobus species present an aerobic and microaerophilic way of life, able to thrive 
at temperatures around 75–80 °C and pH 2–3 (Brock et al. 1972). Most species are 
chemo-organoheterotrophs, e.g., S. solfataricus which uses a wide range of carbon 
substrates (i.e., sugars, tryptone, peptides, and amino acids) (Hanner et al. 1990; 
Wolf et al. 2016) while others like S. acidocaldarius are considered facultative 
autotrophic, involved in the respiration of sulfur and the utilization of CO2 or 
HCO3—as source of carbon (Brock et al. 1972; Schönheit and Schäfer 1995; 
Leigh and Whitman 2013a, b). Among the eight Sulfolobus species known in 
literature, only three (S. islandicus, S. solfataricus, and S. acidocaldarius) are well 
described as model organisms for comparative genomics and genetics, host–virus 
interactions, investigation of catabolic enzymes, and industrial applications (Held 
and Whitaker 2009; Reno et al. 2009; Chavan and Deshpande 2013; Bräsen et al. 
2014). Indeed, the genus Sulfolobus has a key role in several biotechnological



applications since it is a source of unique enzymes, biomaterials, and unique 
catabolic pathways (i.e., the Entner–Doudoroff (ED) pathway and the Weimberg 
and Dahms pathway) involved in the degradation of pentoses and hexoses for the 
exploitation of novel products (Siebers and Schönheit 2005; Nunn et al. 2010; Kouril 
et al. 2013; Besse et al. 2015; Quehenberger et al. 2017). 
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17 Conclusions 

This chapter was intended to give an overview of thermophilic bacteria, found within 
the prokaryotic Tree of Life. At this present date, more than 1200 species of 
thermophilic bacteria have been discovered and are found in at least 15 phyla. 
Thermophilic prokaryotes are found in a wide range of extreme environments, 
including hot springs, geothermal vents, deep-sea hydrothermal vents, and desert 
soil. In general, thermophilic bacteria have diverse metabolic activity and are 
capable of utilizing a wide range of substrates. Their diversity and adaptation to 
extreme environments make them a promising source of biotechnological applica-
tions, including production of enzymes and biofuels as was addressed in the present 
chapter. 
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Molecular Basis for Thermostability 

Sean Michael Scully 

Abstract Thermophilic bacteria have always fascinated scientists because of their 
tolerance and ability to thrive at extreme temperatures where no other living organ-
isms survive. This has led to immense knowledge of the molecular mechanisms 
these bacteria possess mostly by comparing psychrophilic and mesophilic molecules 
with molecules of high-temperature origin. This chapter deals with how thermo-
philic and extremophilic bacteria adapt their cellular membranes, nucleic acids, and 
proteins to thrive and survive extreme heat. 

1 Introduction 

Life has adapted to tolerate and thrive at extremes of temperature, pressure, radiation, 
water activity, osmolality, and pH across all three domains of life. Of particular interest 
are the adaptations of organisms to thermal extremes, particularly above 50 °C. While 
high-temperature environments may be less common on earth than in earlier eons, 
ecosystems that exhibit high temperatures are still very common. It has been 
suggested, based on the analysis of the highly conserved proteins using sequence 
alignment and the thermophily index, that the universal common ancestor was likely a 
thermophile or hyperthermophile (Di Giulio 2001), making the question of the 
molecular means of thermal adaptation an evolutionary question in addition to impor-
tant to understanding the molecular basis for thriving at life at high temperatures. 

The extremes of temperature, summarized in Fig. 1, are described as psychro-
philic, for those organisms living near freezing, whereas those thriving at elevated 
temperatures are thermophiles. While no strict definition for a thermophile exists, it 
is generally accepted that thermophilic boundary is in the range of 50–60 °C given 
the relative rarity of environments on earth with temperatures greater than 60 °C 
(Brock 1986). It has been suggested that a thermophile should be defined as an
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organism capable of living at or near that upper-temperature boundary within its 
taxonomic group (Brock 1986). Hyperthermophiles are organisms that thrive at 
temperatures above 80 °C. At present, nearly all described hyperthermophiles are 
archaea (Vieille and Zeikus 1996). Organisms isolated from permafrost have been 
reported to live at temperatures as low as -20 °C, whereas others isolated from 
hydrothermal vents and hot springs can survive at 121 °C (Barton and Northup 
2011).
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Fig. 1 Distribution of organisms across the terrestrial temperature gradient (Madigan and Martinko 
2010) 

Table 1 Extremophiles, their environments, and representative genera; taxon in parentheses have 
some representatives of the phenotype (Hough and Danson 1999; Abe et al. 2004) 

Phenotype Environment Typical genera 

Thermophilic 55–80 °C Methanobacterium, Thermoplasma, Thermus, (bacillus) 

Hyperthermophilic 80–113 °C Aquifex, Hydrogenobacter, Methanothermus, Pyrococcus, 
Pyrodictium, Pyrolobus, Sulfolobus, Thermococcus, 
Thermotoga 

Psychrophilic -2–20 °C Alteromonas, Psychrobacter 

Halophilic 2–5 M NaCl Haloarcula, halobacterium, Haloferax, Halorubrum 

Acidophilic pH < 4 Acidianus, Desulfurolobus, Sulfolobus, thiobacillus 

Alkaliphilic pH > 9 Natronobacterium, Natronococcus, (bacillus) 

Piezophiles 
(psychrophilic) 

30–94 MPa, 
2–15 °C 

Colwellia hadiensis, Moritella japonica, photobacterium 
profundum (Shewanella) 

Piezophiles 
(thermophilic) 

20–45 MPa 
80–103 °C 

Methanocaldococcus jannaschii, Palaeococcus 
ferrophilus, Pyrococcus abyssi, Thermococcus 

To date, many of the Archaea that have been described in the scientific literature 
are extremophiles (Whitaker et al. 2003) although there are many examples of 
bacteria that have adapted to extreme conditions (Table 1). While there are examples 
of eukaryotes and cyanobacteria to be tolerant of mild thermal extremes, they are less 
common than examples of thermophily among archaea and bacteria. That said, a few 
interesting examples of eukaryotes that are classified as thermophilic include



Myceliophthora thermophila, which can grow at temperatures up to 62 °C (Apnis 
1963), the fungi Curvularia protuberata (Nelson and Hodges 1965), and some 
human-infecting amoebas, such as the so-called brain-eating Naegleria fowleri 
(Huizinga and McLaughlin 1990). 
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Thermotolerant microbes are a group of microorganisms that can survive high 
temperatures. These microbes can be found at various places and grow at tempera-
tures of or above 45 °C. These microbes are of great interest for microbiologists 
because of their potential biotechnological applications. These microbes have 
thermotolerant proteins to withstand high temperatures and can be used in a wide 
range of research and biotechnological applications ranging from the classical 
example of DNA application to organic synthesis (Zeikus 1979; Yamini et al. 
2022). Thermotolerant bacteria have been observed in a wide variety of environ-
ments, e.g., saltwater, soil, grains, irrigation water, and fecal matter of animals 
and humans (Kumar et al. 2007; Coorevits et al. 2008; Kurapova et al. 2012; Paruch 
and Mæhlum 2012; Pachepsky et al. 2016; Sandona et al. 2019). Thermophiles and 
hyperthermophiles have been isolated from hot springs, deep-sea hydrothermal 
vents, oil reservoirs, and more (Chaban et al. 2006). 

Typically, a 10 °C increase in temperature (within the enzyme’s tolerance range) 
results in the doubling of enzyme activity as defined by the 10° temperature quotient 
(Q10) as shown in the equation below. Conversely, lowering the temperature by 10° 
results in a two- to fourfold decrease in enzyme activity (Feller and Gerday 2003). 

Q10 = 
UT þ UTþ10 °C 

UT 

While enzyme-catalyzed reactions may run at increased rates at higher tempera-
tures, the generation times of thermophiles are lower than their mesophilic counter-
parts due to the need to repair proteins damaged by elevated temperatures (i.e., 
thermal denaturation and deamination). 

The upper thermal limit for life has drawn some attention. To date, the two most 
heat-resistant organisms are Pyrolobus fumarii and “Strain 121,” both of which are 
archeons. “Strain 121” (“Geogemma barossii”) garners its name as it can grow at 
121 °C, which is a noteworthy achievement as this is the most common sterilization 
temperature used by many autoclaves although this strain ceases growing at 130 °C 
still it retains (Kashefi and Lovley 2003). Pyrolobus fumarii has a maximum growth 
temperature of 113 °C. Ultimately, the upper temperature boundary may be depen-
dent upon the thermostability of the ribosome (Atlas and Bartha 1998, p. 295). 

As the molecular basis of life is the same for all organisms as yet described, 
understanding the subtle changes to the structure of these molecules is important to 
understand how organisms function at elevated temperatures. As elevated tempera-
tures pose challenges for major biomolecules, namely denaturation, hydrolysis, and 
oxidative reactions, it is important to understand the molar basis of thermophily. The 
following overview will focus on the main biological macromolecules (cell mem-
branes and related lipids, proteins, and nucleic acids) in thermophilic



microorganisms and describe the major trends that have been observed in adapting 
these molecules to function at high temperatures. 
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2 Adaptations to the Cellular Membrane 

The cell membrane provides a number of functions essential for metabolism, and the 
challenges posed by high temperature are not trivial as the membrane must be kept in 
a liquid-crystalline state to maintain its core functions of separating the internal and 
external environments and regulating the transport of materials across the mem-
brane. A delicate balance is needed to maintain enough structural integrity to prevent 
the membrane from becoming “leaky” while remaining fluid enough for the trans-
port of molecules across the bilayer. Foremost among its functions, the membrane 
separates the internal volume of the cell from the external environment and in the 
process serves as a selective barrier requiring molecules that pass through to either be 
non-polar in nature or transported across the membrane via specific transport 
systems as is the case for many polar or ionic solutes (i.e., ion channels and ABC 
transporters). The cell membrane is also critical for energy transduction via proton 
motive force and the maintenance of other ion gradients associated with bioenerget-
ics. Additionally, the membrane has several roles in cell signaling. Thus, under-
standing the structural basis for the thermostability of the lipid bilayer is critical. 

The properties of the cellular membrane are directly linked to the nature of the 
chemical and electrostatic properties of its constituent lipids as exhibited in Fig. 2. 
The lipid bilayers of bacteria are typically composed of fatty acid esters of glycerol 
(typical sn-glycerol-3-phosphate moieties) (Boucher 2007) although other “back-
bone” molecules have been reported (such as sphingosine). Ester linkages can be 
hydrolyzed under extremely acidic and basic conditions, a problem exacerbated at 
elevated temperatures. Archaea, however, compose their cellular membranes of a 
mono-layer of di- and tetra-isoprenoid ethers linked to a sn-glycerol-1-phosphate 
backbone (Boucher 2007). By comparison, these isoprenoid monolayers are less 
prone to hydrolysis under the influence of increased temperatures (Wharton 2002). 
Additionally, ethers are more stable to extremes of pH and temperature (Wuts and 
Greene 2007) and likely explain why hyperthermophiles are almost exclusively
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Fig. 2 Structures of common lipids within the cellular membrane in bacteria and archaea where the 
R group is polar group. (a) a diacylglycerol (DAG) containing acyl groups consisting of 18 carbon 
atoms; (b) a diether lipid (archaeol) composed of C20 side chains; (c) a tetraether lipid 
(caldarchaeol) containing isoprenoid units linked between two glycerol molecules



archaea. Indeed, archaeal membranes maintain a liquid-crystalline state over a much 
wider temperature range than their fatty acyl ester counterparts (De Rosa et al. 1986).
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Lipids of bacterial (and eukaryotic) cell membranes are commonly mono-, di-, or 
tri-acyl glycerides containing C10–C30 fatty acids although C12–C18 is typical. In 
contrast, the lipids of the archaeal cell membrane are composed of either diether 
lipids (archaeol) or tetraether lipids (caldarchaeol). Some archaea have also been 
found to contain cyclic lipids (including macrocyclic ethers and pentacyclic rings), 
which may be another layer of adaptation for survival at higher temperatures 
(Boucher 2007). 

The structure of the tetraether lipids spans the entire cell membrane, which likely 
confers additional mechanical and thermal stability to an archaea’s bilayer while also 
being more resistant to oxidation (Benvegnu et al. 2004). The structure and biosyn-
thesis of archaeal membrane lipids are a topic of intense curiosity, and interested 
readers are directed to reviews on the topic herein (Benvegnu et al. 2004; Jain et al. 
2014). 

Generally, there are four strategies for regulating membrane fluidity in microor-
ganisms: modulating chain length, branching, and degree of saturation, or the 
addition of plasticizers (e.g., sterols such as cholesterol) to the membrane environ-
ment. The length of the acyl group and its degree of branching and unsaturation 
directly impact its melting point (Tm) and glass transition temperature (Tg) and thus 
the fluidity of the membrane at a given temperature. Similarly, the addition of 
branching alters the fluidity of membrane lipids with the addition of a methyl 
group generally decreasing the melting point of a lipid as evidenced by the shifts 
of the iso-fatty acids. These general trends can be observed in Fig. 3. The position of 
the branch point is also critical; the addition of alkyl groups toward the end of a lipid 
is typically observed. 

The introduction (or removal) of double bonds is another means for organisms to 
regulate membrane fluidity. Higher degrees of unsaturation can maintain cellular 
membrane fluidity at lower temperatures as compared to highly saturated lipids 
(Boucher 2007), while saturated lipids will maintain more membrane integrity at 
higher temperatures. As an example, numerous 20-carbon fatty acids with various 
degrees of unsaturation can be found in nature (Fig. 4), which highlights the 
importance of both the degree of unsaturation and position of the double bond on 
its fluidity; arachidic acid has a melting point of 75 °C but the addition of a single 
double bond decreases the melting point to 23 °C (in the case of eicosenoic acid/11-
eicosenoic acid) or 13 °C in the case of paullinic acid/13-eicosenoic acid). 

It should be noted that unsaturated fatty acids are prone to oxidation, particularly 
at higher temperatures. Not surprisingly, thermophilic bacteria have lipid bilayers 
that are dominated by saturated fatty acids, which are less prone to oxidation than 
more fluid unsaturated fatty acids (Wharton 2002). However, as saturated fatty acids 
have higher melting points than unsaturated fatty acids, thermophiles may experi-
ence a loss in membrane fluidity, limiting the exchange of materials across the 
bilayer, and even solidification if the environmental temperature drops low enough 
(Wharton 2002).



°(tniop
gnitle

M
 

Number of double bonds 

B 

A 
A 

B

-80
-60
-40
-20 

0 
20 
40 
60 
80 

100 

0 1 2 3 4 5  

C)

96 S. M. Scully

-40

-30

-20

-10 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 5 10 15 20 25 30 

M
el

tin
g p

oi
ng

 (°
C)

 

Number of Carbon Atoms 

Linear saturated FFA Iso FFAs 

Fig. 3 Melting point of linear and iso-free fatty acids data from Knothe and Dunn (2009) 

Fig. 4 Influence of unsaturation degree and position on the melting point of C20 fatty acids; note 
the structure of the arachidic acid (a) and 11-eicosenoic acid (b) 

The final method of membrane stabilization is remodeling via the inclusion of 
cyclic lipids such as sterols in the case of eukaryotes or hopanoids in bacteria 
(Fig. 5). Sterols, such as cholesterol and ergosterol, found in vertebrates and plants, 
respectively, consist of a skeleton of four fused rings. Membrane sterols serve to 
regulate the elasticity or stiffness of the lipid bilayer. Additionally, sterols contribute 
to the formation (or suppression) of localized three-dimensional protrusions from the 
membrane bilayer as a means of regulating membrane stress (Kawakami et al. 2017). 
The addition of sterols to membranes is a phenomenon largely limited to eukaryotes 
and is rarely found in bacteria. One of the most notable groups of bacteria to use 
cholesterol are Mollicutes such as various mycoplasma (Dahl 1993) and bacteria 
within the genera of Borrelia and Helicobacter (Huang and London 2016). While



a

sterol biosynthesis and utilization are thought to be a feature of eukaryotes, genes 
associated with sterol synthesis have been found among a large number of bacterial 
genomes although the mechanism for modification is generally absent (Wei et al. 
2016). 
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Fig. 5 Sterol and sterol-like structures used for the regulation of membrane fluidity 

Similar to sterols, hopanoids are a class of planar pentacyclic triterpenoids, which 
contain a diverse range of side chains and are widely produced by Gram-negative 
and Gram-positive bacteria and cyanobacteria. Hopanoids function as direct analogs 
to sterols like cholesterol as they interact with the lipids of the outer membrane 
(Sáenz et al. 2015). The sheer abundance of hopanoids has even led them to be found 
as a part of the geological record (Ourisson and Albrecht 1992; Ourisson and 
Rohmer 1992) suggesting that these “molecular fossils” have long been a component 
of bacteria’s strategy for regulating membrane fluidity. Unlike sterols, hopanoids 
lack a hydroxyl group on ring A but often contain multiple hydroxyl groups 
associated with the branched aliphatic tail attached to ring E. As a result, this 
gives them a polarity that is the inverse of their sterol counterparts (Dufourc 2008). 

Alicyclobacillus (formerly Bacillus) acidocaldarius, an acidophilic thermophile 
isolated from Yellowstone National Park in the 1970s (Darland and Brock 1971), 
includes hopanoids with extended side chains to a high degree (≤16% of the 
membrane lipid content) (Langworthy and Mayberry 1976). The production of 
hopanoids is thought to stabilize the membrane of Burkholderia cenocepacia,  
bacteria capable of thriving in a wide range of environmental conditions including 
within the hostile environment of macrophages (Schmerk et al. 2011). Interestingly, 
proteins associated with the lipid bilayer have also been implicated in regulating 
membrane integrity in bacteria that otherwise lack regulatory lipids such as 
hopanoids (Kaiser 2011). The biosynthetic pathways leading to hopanoid formation 
and more detailed structural characteristics have been carefully detailed elsewhere 
(Rezanka et al. 2010; Dufourc 2008; Kannenberg and Poralla 1999; Belin et al. 
2018).
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3 Adaptations to Nucleic Acids 

Nucleic acids serve a variety of roles within the cell but are probably best known for 
their role in the flow of genetic information. Deoxyribonucleic acid (DNA) is 
remarkably stable with a purported half-life on the order of 500 years (Willerslev 
and Cooper 2005; Kaplan 2012). As is the case with other major biomolecules, 
increased temperatures pose a number of challenges to the components of nucleic 
acids, namely denaturation, hydrolysis, deamination, the excision of purine, and 
pyrimidine bases via depurination and depyrimidination, respectively, as well as 
oxidation. These challenges are non-trivial under ideal circumstances and become 
even more deleterious in the conditions in which many extremophiles thrive. While 
some degree of denaturation is required for basic functions such as DNA replication, 
the genetic material must maintain sufficient integrity to regulate gene transcription. 

It is well established that DNA molecules enjoy greater stability in aqueous 
solution than RNAs (Allentoft et al. 2012; Dabney et al. 2013). While DNA is 
more inherently resistant to hydrolysis than RNA by virtue of the fact that it lacks a 
2′ hydroxyl group, both of these polynucleic acids suffer from increased rates of 
hydrolysis at higher temperatures. Furthermore, the hydrolysis of polynucleic acids 
is facilitated by divalent metal ions (Lindahl 1993). Additionally, the base pairs 
themselves can undergo oxidation reactions ultimately resulting in mutations (Bur-
rows and Muller 1998). Unsurprisingly, elevated temperatures cause more oxidative 
damage in part due to the generation of more reactive oxygen species, which are 
ultimately responsible for the oxidation of bases. As an example, guanine can be 
oxidized to 8-oxoguanine (Bruskov et al. 2002). 

Grosjean and Oshima (2007) laid out seven basic adaptations that allow thermo-
philes and hyperthermophiles to adapt their nucleic acids, which can be broadly 
clustered into three broad categories: intrinsic properties, extrinsic properties, and 
detect and repair mechanisms. Intrinsic changes to nucleic acids that permit higher 
thermostability include having a relatively high G + C content in the RNA 
(as opposed to the genomic DNA) and stabilizing nucleic acids via covalent mod-
ification (such as methylation). Some examples of extrinsic changes to nucleic acids 
include the stabilization of genetic materials via small ligand binding and forming 
compact tertiary structures, which help exclude water from attacking the backbone 
of polynucleic acids. Complex DNA repair mechanisms also play a key role in 
fostering DNA stability at high temperatures and controlling the damage to RNAs at 
high temperature can be mitigated by increasing the rate of RNA turnover, thus 
quickly removing damaged RNAs. 

The deamination of cytosine results in uracil, while 5-methylcytosine results in 
thymine (Fig. 6). Similar nitrogenous bases undergo similar reactions, such as 
guanine, which yields xanthine, while adenine produces hypoxanthine. These alter-
ations can alter the hydrogen bonding patterns of DNA and cause errors in replica-
tion and transcription (Wang and Hu 2016). Depyrimidination involves the loss of a 
pyrimidine base from the ribose or deoxyribose. Interestingly, depurination-induced



deamination is speculated to have played an important evolutionary role (Lewis et al. 
2016; Fryxell and Zuckerkandl 2000; Ehrlich et al. 1986). 
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Fig. 6 Examples of 
deamination reactions 
occurring among 
nitrogenous bases found in 
nucleic acids 

Fig. 7 Two common means 
of DNA damage. (a) the 
products of depurination 
(an apurinic site and a 
liberated adenine base); (b) 
deamination of a cytosine 
resulting in the loss of 
ammonia and conversion 
onto a uracil residue 

The conversion of 5-methylcytosine into thiamine by the loss of an amine is 
among the most common mutations to occur and is often corrected by thymine– 
DNA–glycosylase. Similarly, guanine can be converted into xanthine and adenine 
can be converted into hypoxanthine. Given the common occurrence of the conver-
sion of adenine and thymine, it might be expected that thermophiles favor G–C-rich 
sequences. 

One of the most common forms of DNA damage is the spontaneous hydrolysis of 
purine attached to the C1’ position of deoxyribose via a N-glycosidic linkage, while 
RNA is much less susceptible to the bases (Fig. 7). Purines are excellent leaving 
groups and the rate of this reaction is not trivial with depurinations occurring on the



order of 103 per cell per hour. The rates of depurination are increased by increasing 
temperature and low pH conditions making depurination a particular challenge for 
thermophilic organisms. Similarly, depyrimidination involves the liberation of a 
pyrimidine base (C or T), resulting in a free C1’ hydroxyl group although this occurs 
at lower rates than depurination. As a result, the creation of a free hydroxyl group can 
lead to hydrolysis of the phosphodiester backbone (Lindahl 1993; Dabney et al. 
2013). The loss of purine groups can be avoided by complexation with polycations, 
such as chitosan and spermine, by altering the pKa values of the amino groups and 
thus inhibiting protonation (An et al. 2017). 
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Fig. 8 The G + C content of selected bacteria and archaea as a function of optimum growth 
temperature 

The primary composition of polynucleic acids directly influences their ability to 
form secondary structures and their melting points; the base pairing of an A and T 
contributes 2 °C to the melting point, while the three hydrogen bonds of a G–C 
pairing contribute 3 °C. It can be surmised that thermophiles typically have higher 
proportions of guanine and cytosine in their genomes as a response to their higher 
environmental temperatures thus to contributing the thermostability of the genetic 
material (Atlas and Bartha 1998). Indeed, a survey of the G + C content of 
microorganisms reveals a general trend that supports this (Fig. 8). Paradoxically, 
hyperthermophiles have lower G:C ratios typically less than 40 mol % (Atlas and 
Bartha 1998, p. 295). 

Under lower temperatures, DNA–DNA interactions are strengthened and unfa-
vorable secondary structures in RNA (i.e., loops); this interferes with transcription 
and translation processes, respectively. Some cold-adapted nucleic acid-binding



molecules, such as RNA helicase, have been observed in psychrophiles growing 
near zero, and other psychrophiles incorporate post-transcriptional modifications to 
improve RNA flexibility (Feller and Gerday 2003). 
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While it seems that the G + C content trends upward as the thermophilic boundary 
is approached, this trend seems to disperse at greater temperatures. Recalling one of 
the “rules” of nucleic acid adaptations (Grosjean and Oshima 2007), namely that 
high G + C content is favored in RNAs, this stabilization or reversal of the G + C 
content trend begins to make sense as a high genomic G + C content corresponds to a 
high A + T content in mRNA transcripts. 

4 Adaptations to Proteins 

The other major biomolecule that should be considered in the context of adaptation 
to high temperatures are proteins, which serve a diverse range of functions and need 
to be correctly folded to maintain their structure and functionality. As with other 
major biomolecules, proteins are susceptible to denaturation at low and high tem-
peratures and a number of chemical reactions, such as deamination, which are 
exacerbated at higher temperatures. An enzyme is considered thermostable if it 
meets one of two criteria: a highly defined transition temperature (Tm), typically 
above the thermophilic boundary (55 °C), or a long half-life at a selected temperature 
(Turner et al. 2007). 

The three-dimensional conformation of proteins, and thus their functionality, can 
be altered by changes to the physical and chemical environment; variations in 
temperature, pH, ionic strength, or pressure can give rise to changes in the folded 
conformation. Such changes are often reversible although covalent modifications of 
the protein primary structure may lead to irreversible changes that can alter protein 
function (Creighton 1993). Proteins functioning in environments where such condi-
tions are extreme have adapted to maintain structural resilience. 

The ability of the proteins of thermophilic and hyperthermophilic bacteria and 
archaea to withstand the high temperatures in which they thrive has been of interest 
to physiologists for many decades. The free energy or stabilization (ΔGstab) of most 
mesozyme is between 5 and 15 kcal/mol (Vieille and Zeikus 1996). Based upon 
several comparisons of enzymes from thermophiles to their mesophile counterparts, 
the ΔGstab of thermophilic proteins is typically only 5–20 kcal/mole higher at 25 °C 
(Li et al. 2005). This means that relatively few changes are needed to an amino acid’s 
primary sequence to increase an enzymes’ thermostability. Thermozymes are highly 
analogous to their mesophilic counterparts in that the primary sequence of amino 
acids is 40–85% similar, their three-dimensional structures are superposable, and the 
catalytic mechanism by which they operate is conserved (Vieille and Zeikus 1996). 
Analysis of proteins from thermophiles and their mesophilic homologs has revealed 
that there is no general strategy for increasing thermal stability (Sadeghi et al. 2006). 
However, a number of features are generally attributed to increases in thermostabil-
ity; these features can be explained in terms of changes to primary, secondary, and



Contributing Factor

tertiary structure, thermodynamic properties, and interactions among functional 
groups within a protein. Turner et al. (2007) summarized some common features 
of thermostable enzymes as presented in Table 2. 

102 S. M. Scully

Table 2 Features common in thermostable enzymes [modified from Turner et al. (2007)] 

Feature for Internal 
Stabilization 

Helix stabilization – Low frequency of branched amino acid residues 

– Proline residues at ends 

Stabilizing interactions – Disulfide bridges 

– Hydrogen bonds 

– Hydrophobic interactions 

– Aromatic interactions (π–π stacking) 
– Ion-pair networks 

– Loose end docking 

Interactions between 
domains 

– Oligomer formation (ion-pair networks) 

Dense packing – Hydrophobic cores 

– Filled cavities 

Stable surface-exposed 
residues 

– Decreased instances of residues prone to deamination (Gln, Aln) 

– Decreased instances of residues prone to oxidative degradation 
(Cys, met) 

Maintaining protein functionality at high temperatures seems to involve several 
factors like higher core hydrophobicity (Schumann et al. 1993), increased packing 
density (Vetriani et al. 1998; Russell et al. 1997), additional network of hydrogen 
bonds (Jaenicke and Böhm 1998), decreased length of surface loops (Thompson and 
Eisenberg 1999), stabilization by heat stable chaperones (Haslbeck et al. 2005), an 
increase in disulfide bond formation (Beeby et al. 2005), and general shortening of 
length (Tekaia et al. 2002). 

One of the most important trends observed among thermophilic enzymes is that 
they are often more rigid than their mesophilic counterparts owing to the more 
efficient packing of their hydrophobic cores (Vieille and Zeikus 1996; Li et al. 
2005). Proteins that have adapted to function at high temperature derive their 
stability from alterations of these interactions relative to their mesophile counterparts 
(Li et al. 2005). From a thermodynamic standpoint, a buried methylene group can 
contribute 1.3 kcal/mol to the stability of an enzyme (Vieille and Zeikus 1996), 
which is an important strategy to counter the increased mobility of proteins at higher 
temperature. Similarly, closely associated aromatic rings can contribute approxi-
mately 1 kcal/mol of stability through pi-pi stacking (Vieille and Zeikus 1996). 
Alterations to protein structure can also be accomplished through the accumulation 
of small changes to stability. Hydrogen bonding stabilizes internal peptide chains 
and coordinates water from the aqueous medium (Li et al. 2005). The stabilization 
energy of a single buried hydrogen bond can contribute a modest 0.6 kcal/mol with 
multiple hydrogen bonds having an additive effect on stability.
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Like other major biomolecules, proteins exposed to high temperature can undergo 
several chemical reactions with consequences. For example, at extremes of temper-
ature and pH, asparagine and glutamine undergo deamination to aspartate and 
glutamate residues, respectively (Creighton 1993). Thiols, such as cysteine, are 
easily oxidized in air, particularly in the presence of divalent metal cations 
(Creighton 1993). Disulfide bonds are readily heat-liable and undergo reduction. 
As such, the enzymes of thermophiles often minimize these residues, particularly 
those that are exposed to the outer surfaces of the protein (Turner et al. 2007). 

5 Future Directions 

The molecular basis of thermal adaptation gives us critical insights into the molec-
ular evolution of major biomolecules. Thermal adaptations of organisms have many 
applications in bioprocessing as explored in subsequent chapters. Additionally, 
understanding the molecular basis of the thermostability of proteins has obvious 
applications in engineering proteins to be more (or less) thermal stable through 
genetic modification. Furthermore, modifying membrane fluidity can potentially be 
used to fine-tune membrane properties. One potential application of using lipid 
adaptations is through exploiting the role of hopanoids in conferring drug resistance 
to bacterial strains, which may be an interesting route to track drug resistance (Sáenz 
et al. 2015). 

It should be noted that many of the trends used to draw conclusions about the 
nature of thermostability predominately come from our understanding of mesophiles 
and “true” thermophiles (i.e., those with temperature optima above 65 °C). An 
understanding of moderately thermophilic bacteria (those growing optimally under 
65 °C) is underrepresented, and more careful scrutiny of these taxa may offer 
additional insights into thermophily. Another notable knowledge gap is of species 
that thrive at the intersection of multiple extremes such as high pressure and salinity. 

6 Conclusions 

Microorganisms living at thermal extremes have adopted a number of changes to 
their major biomolecules in order to adapt to their environments. The lipids of cell 
membranes of thermophiles are typically more saturated as compared to their lower-
temperature counterparts. Organisms at high temperatures also adapt their nucleic 
acids by altering their composition, methylating residues, and RNA turnover. The 
proteins of thermophiles often have reduced unpaired ionic residues and more 
condensed hydrophobic cores, which confer greater rigidity.
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Cultivation Techniques and Molecular 
Methods of Identification of Thermophilic, 
Anaerobic Bacteria 

Sean Michael Scully and Johann Orlygsson 

Abstract The cultivation and identification of strictly anaerobic thermophilic 
microorganisms present a number of challenges owing to the oxygen-sensitive 
nature of many of these species. This chapter reviews the nature of the anaerobic 
environment and the techniques currently employed to cultivate both aerotolerant 
and strictly anaerobic bacteria. Additionally, molecular methods of identifying 
thermophilic bacteria without cultivation will be addressed. 

1 Introduction 

Despite our oxygen-centric perspective on life, organisms that inhabit anaerobic 
environments such as sediments, hot springs, and waste streams, represent a signif-
icant contribution to the carbon, nitrogen, and sulfur cycles in the biosphere (Shu and 
Huang 2021; Bolhuis et al. 2014). Notwithstanding their noteworthy contributions to 
the biosphere, the cultivation of obligatory and strictly anaerobic microorganisms is 
seldom covered in any detail in standard undergraduate microbiology textbooks 
despite such organisms being of clinical and ecological relevance and often of 
tremendous biological potential. As such, students often encounter mentions of the 
techniques used to cultivate strict anaerobes under anoxic conditions but seldom are 
the auxiliary concepts necessary to master the technique in practice alluded to. While 
many of the techniques for the study of anaerobic microorganisms have been for the 
past 40 years, there have been several noteworthy advances that have impacted the 
study of anaerobes in very profound ways. As an example, earlier works describing 
the cultivation of strictly anaerobe organisms, such as the Anaerobe Laboratory 
Manual (Holdeman et al. 1977), include instructions on the use of heated copper 
catalyst setups for removing impurities from gases and the use of cannulas for 
directing gas flow. 
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Anaerobic microorganisms are ubiquitous in the environment and may have 
thrived on early earth prior to the great oxygenation event (Hsia et al. 2013). A 
distinction must be made between obligate anaerobes, which cannot utilize molec-
ular oxygen but may tolerate various degrees of oxygen in the environment, and 
strict anaerobes, which are killed in the presence of oxygen. Strictly anaerobic 
bacteria cannot grow in the presence of greater than 5 μM of dissolved oxygen 
(Baughn and Malamy 2004). The clinical relevance and biotechnological potential 
of many anaerobic bacteria necessitate that their study is carried out under strictly 
oxygen-free conditions due to their dislike of oxygen due to the toxicity of molecular 
oxygen and its related species. The cultivation of strictly anaerobic bacteria is even 
more stringent and requires special precautions to remove the presence of oxygen as 
does the examination of many of their cofactor-requiring enzyme systems and to 
lower the redox potential of the medium to create a sufficiently reducing environ-
ment (Selmer 2005). 

Louis Pasteur’s pioneering work on the fermentative activities of life in the 
absence of oxygen developed the term “anaerobic” in the mid-nineteenth century 
(Durre 2005 and references therein). In the 150 years since, techniques to highly 
manipulate oxygen-sensitive organisms have been developed allowing the exami-
nation of strictly anaerobic organisms leading to the large-scale production of 
solvents, a better understanding of their physiology and microbial ecology. 

The historical applications of strict anaerobes have long eluded us due to perhaps 
a lack of methodologies to study them. An excellent example of this is the microbial 
production of indigo pigment from woad (Isatis tinctoria), which has been used for 
centuries (Durre 2001). The process involves the conversion of pigments (Istan B 
and Indican) to indigo aerobically by Enterobacter agglomerans, which is subse-
quently converted to water-soluble leuco-indigo at temperatures of up to 52 °C under 
anaerobic conditions after the addition of urea and potash (Durre 2001). It was 
discovered that the organism responsible for the last step is Clostridium isatidis, a  
moderately thermophilic, strictly anaerobic organism that has been found associated 
with dying vats (Padden et al. 1999). 

The following theme in this chapter will be divided into two main subchapters, 
one focusing on general techniques to cultivate thermophilic anaerobes, with an 
emphasis on strictly anaerobic bacteria, and the other on the identification of 
anaerobic, thermophilic microbes with various molecular methods. 

2 The Trouble with Oxygen 

While the use of oxygen as a terminal electron acceptor is ubiquitous in nature, many 
aerobic organisms have developed specialized mechanisms to negate the inherent 
toxicity of oxygen. Oxygen is a potent oxidizing agent and in the presence of light or 
a transition metal such as iron, manganese, or cobalt can undergo radical reactions 
generating superoxides, peroxides, and hydroxyl radicals (Auten and Davis 2009). 
These reactive oxygen species in turn can oxidize sensitive biomolecules, including



unsaturated fatty acids. To negate oxygen radicals and radical-forming species, 
many oxygen-tolerant microorganisms rely on various enzymes like oxidases, 
peroxidases, and catalases to neutralize these species before cellular damage occurs 
(Ezraty et al. 2017). Reactions involving molecular oxygen can give rise to singlet 
oxygen species, which are highly reactive and often react with biomolecules via the 
transfer of radicals (Mitchell 2001). The reactions below show (Fig. 1) the main 
toxic compounds formed in the presence of oxygen although many secondary 
reactive oxygen species (ROS) can form. 
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Fig. 1 Formation of 
reactive oxygen species 
from molecular oxygen 

ROS are of particular concern to biological systems due to their ability to cause 
oxidative damage to major biomolecules such as lipids, proteins, and nucleic acids 
(Choe and Min 2006; Auten and Davis 2009). As such, many aerobic and 
aerotolerant organisms have developed specific mechanisms to mitigate the forma-
tion of reactive oxygen species. Below are someone of the most commonly 
employed mechanisms for dealing with deleterious ROS: 

Catalase: H2O2 + H2O2  2H2O + O2 

Peroxidase: H2O2 + NADH + H+  2H2O + NAD+ 

Superoxide dismutase: O2·- + O2·- 2H+  H2O2 + O2 

Superoxide dismutase/catalase in combination: 4 O2·- + 4H+  2H2O + 3O2 

Superoxide reductase: O2·- + 2H+ Cytochrome Creduced  H2O2 Cytochrome Coxidized 

Strictly anaerobic bacteria often lack these enzymes, with the notable exception 
of lactic acid bacteria (LAB) which while they are strictly anaerobic are highly 
aerotolerant due to their production of highly active catalase and peroxidases, thus 
creating their own anaerobic environment. Additionally, there have been descrip-
tions of LABs that can perform respiratory metabolism (Pedersen et al. 2012). 

Many anaerobes have varying degrees of oxygen tolerance; some simply will not 
grow in the presence of oxygen but may tolerate periods of oxygenation, while 
others are the so-called microaerophilic bacteria that thrive when the concentration 
of oxygen is low (< ppm). Organisms within Class Clostridia are all strictly 
anaerobic bacteria although a number of aerotolerant species have been reported. 
Strictly anaerobic Firmicutes, such as organisms within Class Clostridia and Bacilli,



may rely on endospore formation during periods of oxygen exposure (Mitchell 
2001). 
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Strict anaerobes have been isolated from a diverse number of environments, 
which typically share the trait of having very low oxygen concentrations such as 
geothermal features, muds and sediments, the rumen and digestive tract of organ-
isms, and highly stratified bodies of water. Sediment environments are often highly 
reduced with traces of oxygen that are often quickly removed through various 
reactions (such as the oxidation of sulfides to sulfur oxides such as sulfate), while 
biological scavenging of oxygen by facultative anaerobe digestive systems keeps the 
oxygen concentrations low, thus conferring additional protection to strict anaerobes 
in the system. Within thermal environments, the among of dissolved oxygen is 
negligible above 50 °C and only relevant for organisms living at the air–water 
interface although the presence of highly reduced molecules (such as sulfide) can 
also serve as oxygen scavengers. 

Despite their sensitivity to oxygen, a number of strictly anaerobic bacteria have 
significant roles in biotechnology (Table 1). Examples of strictly anaerobic bacteria 
that cause diseases are C. botulinum (botulism), C. difficile (enterocolitis), 
C. perfringens (gas gangrene), C. tetani (tetanus), and P. gingivalis (the causative 
agent of gingivitis) (Mitchel 2001). A number of thermophilic anaerobes have also 
demonstrated biotechnological potential in a diverse range of areas as highlighted in 
Table 1. 

3 Cultivation of Anaerobic Bacteria 

3.1 The Importance of Redox Potential 

A major consideration when cultivating anaerobic bacteria is the redox potential 
(ORP, redox potential, or Eh) of the medium, which relates to not only the avail-
ability of oxygen, but also the reducing potential of the culture environment (Liu 
et al. 2013). In some cases, strictly anaerobic bacteria will not grow if the redox 
potential of the medium is not sufficiently low enough, often necessitating the 
addition of reducing agents to the medium. 

The measurement of dissolved oxygen and culture redox potential (CRP) is often 
critical as some anaerobes will not grow unless the reducing potential is sufficiently 
low (Liu et al. 2013). The CRP is the result of complex interactions contributed by 
multiple redox couples present in the culture medium. While the measurement of 
dissolved oxygen (dO2) via several sensor types is widely available, the measure-
ment of CRP is even more facile and can be conveniently measured using a platinum 
electrode. 

In small batch culture, however, the measurement of redox potential via electrode 
is cumbersome and it is thus more common to rely on one or more redox-sensitive 
chromophores. A wide number of redox-sensitive dyes are commercially available 
(Table 2). The useful range of each of these redox dyes is typically ±50 mV of their



midpoint potential (Em). Chromophores with high molar extinction coefficients are 
preferable such that minimal quantities can be used in the medium and detected 
easily by visual examination. 
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Table 1 Selected biotechnologically relevant anaerobic organisms. Thermophilic microorganisms 
are bolded 

Anaerobe Features O2 relationship Notes Refs 

Cl. isatidis Indigo 
production 

Strict anaerobe Moderate 
thermophile 

Padden et al. 
(1999) 

Cl. acetobutylicum Butanol Strict anaerobe Mesophilic Delarouzee 
et al. (2023) 

Clostridium beijerinckii Butanol Strict anaerobe Mesophilic Krishna et al. 
(2022) 

T. ethanolicus Ethanol from 
a wide range 
of hexoses 
and pentoses 

Strict anaerobe Thermophile Wiegel and 
Ljungdahl 
(1981) 

Cl. thermocellum Cellulose-
degrading 

Strict anaerobe Produces 
cellulosome for 
biomass 
desconstruction 

Akinosho et al. 
(2014) 

Caldicellulosiruptor 
saccarolyticus 

Cellulose-
degrading, 
hydrogen 
production 

Strict anaerobe Willquist et al. 
(2011) 

P. gingivalis Pathogen Strict anaerobe Causative 
agent of 
gingivitis 

Lamont and 
Jenkinson 
(1998), 
Takada and 
Hirasawa 
(1998) 

Thermoanoaerbacterium 
thermosaccharolyticum 

Ethanol from 
a wide range 
of hexoses 
and pentoses 

Strict anaerobe Isolated from 
spoiled canned 
goods 

McClung 
(1935), Collins 
et al. (1994) 

Methanobacterium 
formicicum 

Methane 
production 

Strict anaerobe Important for 
interspecies 
hydrogen 
transfer 

Chellapandi 
et al. (2018) 

Streptococcus pyogenes Pathogen Aerotolerant Upper respira-
tory tract 

Avire et al. 
(2021) 

Spirillum volutans Fresh water Microaerophile Gram negative Padgett et al. 
(1982) 

Methylene blue is routinely used in combination with glucose to detect oxygen 
(or the lack thereof) in anaerobic jars and pouches. In its oxidized form, methylene 
blue is an intensely blue chromophore although when it is reduced to its leuco form it 
is colorless (Fig. 2). While this system is common and often sufficient for anaerobic



Dye Notes

systems intended for fairly oxygen-sensitive organisms, its midpoint potential of 
11 mV is not sufficient for the cultivation of strictly anaerobic bacteria. 
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Table 2 Selected midpoint potentials and other features of commonly used redox indicators. 
Modified from Jacob (1970), Srinivas et al. (1988) 

Midpoint potential (Em, 
mV) 

Methylene blue 11 Commonly available, inexpensive 

Resorufin -51 Low toxicity, used in viability 
assays 

Indigo trisulfonate -81 

Nile blue -142 

Cresyl violet -167 

Brilliant alizarin blue -173 

Neutral blue -192 

Phenosafranine -252 

Safranine-T -289 

Neutral red -325 

Benzyl viologen -359 Inexpensive, respiratory irritant 

Methyl viologen -440 Inexpensive, acutely toxic 

Standard hydrogen 
electrode

-421 

Fig. 2 Methylene blue and its reduction to leucomethylene blue 

Fig. 3 Resazurin is a commonly used redox indicator for anaerobic media that undergoes a 
irreversible reduction from blue to pink (resorufin), which can be reversibly reduced to a colorless 
form (dihydroresorufin) 

Another commonly used chromophore systems is resazurin (Fig. 3), a fluorescent 
phenazine dye, which has the notable advantage of having a lower midpoint



o

potential upon its irreversible reduction to resorufin (-51 mV). Resazurin and its 
reduced forms are commonly used in cell viability assays where resorufin is highly 
fluorescent, while its reduced form lacks fluorescence. When the redox potential of 
the medium reaches -110 mV, the reversible reduction of resorufin t  
dihydroresorufin takes place yielding a colorless molecule. 
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3.2 Preparation of Media for Strictly Anaerobic Bacteria 

While several media for the cultivation of anaerobes are available, such as reinforced 
clostridial medium (RCM), the use of mineral medium is often preferred due to the 
greater control afforded over its composition and minimizing or eliminating 
non-essential components to reduce the formation of metabolic end products that 
are not under study. Unlike the media used for aerobic bacteria, special care must be 
taken to remove traces of oxygen from the media and lower the redox potential 
sufficiently to protect cells whether the media is for cultivation or for long-term cell 
storage (such as 30% v/v glycerol or DMSO stocks). 

Typically, the first step in preparing anaerobic medium on the benchtop is to 
reduce the oxygen load of the liquid medium itself. This can be accomplished using 
several methods (boiling, membrane filtering, sonication, vacuum, and sparging with 
an inert gas such as nitrogen, argon, or helium). Heating is facile as it does not 
require equipment rarely found in laboratories. After boiling, the medium is rapidly 
cooled under nitrogen flushing (or another inert gas) to prevent oxygen from 
dissolving in the medium. 

Cool, oxygen-free medium is then transferred to serum bottles or Hungate tubes 
under active nitrogen flushing, and the gas is allowed to sparge through the medium 
briefly before being sealed with a butyl rubber septa and then sealed with an 
aluminum crimp cap. It should be noted that long needles that reach deep into 
the vessel being sparged will give a better result. General advice from DSMZ on 
the amount of liquid medium to be dispensed into bottles is no more than 25% of the 
nominal capacity as many anaerobes produce substantial quantities of gas generating 
substantial overpressure due to the production of hydrogen, carbon dioxide, and, in 
some cases, methane if a methanogen is present. Gas accumulation in glass vessels 
can lead to catastrophic failure of the vessel and harm to unprotected researchers. For 
this reason, it is often wise to limit the amount of carbon source in the medium to 
avoid producing more than a few atmospheres of overpressure (DSMZ 2012). 

It is worth noting that the liquid–gas (L-G) ratio is of great importance with some 
organisms in terms of the distribution of end products as a function of the partial 
pressures of gaseous end products such as H2 and CO2 (Jessen and Orlygsson 2012; 
Scully and Orlygsson 2020) and variations in L-G ratio can shift end product 
formation if the organism is sensitive to changes in the partial pressure of hydrogen 
(pH2). It is therefore recommended that a L-G ratio of 1:1 be used to ensure 
consistent fermentation results.



.
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Table 3 Commonly used reducing agents in anaerobic media. Modified from Breznak and 
Costilow (2007 and refs therein) 

Reducing agent Typical concentrations Reduction potential (mV) 

Ti3+ -660 

Dithionate (S2O4 
2-) -480 

Ascorbic acid 0.05% w/v +58 

Na2S 9H2O 0.05% w/v -243 

FeS (amorphous) 4 ug/mL ≤270 
Cysteine-HCl 0.05% w/v -325 

Sodium thioglycolate (HSCH2COONa) 0.05% w/v -140 

Titanium (III) citrate 1–4  mM -480 

H2 + PdCl2 Variable -413 

Dithiothreitol 1 mM -330 

Cysteine-HCl 

Autoclaving procedures are carried out in seal vessels at 121 °C for at least 
15 min. Refer to the subsequent section for considerations relating to sterilization of 
media and disposal of spent cultures. 

Prior to inoculation, other media components that do not survive autoclaving 
(carbon sources, vitamins, trace elements, oxygen scavengers) must be added. Such 
solutions are often sterilized using syringe filtering into sterile nitrogen-flushed 
serum bottles. It is often helpful to reduce the oxygen load in these solutions by 
preparing them with rigorously degassed distilled water or degassing them after 
preparation by sonication (with or without vacuum), helium, or nitrogen sparging, 
prior to syringe filtering them. While carbon sources such as glucose can be 
autoclaved for short periods in the absence of amines (such as amino acids), heating 
of sugar solutions often leads to the formation of inhibitory compounds such as 
5-hydroxy-2-methylfurfuraldehdye (5-HMF) making syringe filtering a preferable 
option (Einarsson et al. 1988). The last step prior to media inoculation is the addition 
of reducing agents, such as sodium sulfide or dithionite, to scavenge oxygen and 
lower the reduction potential (Eh) of the medium (Table 3). 

3.3 Sterilization of Media and Cultivation Vessels 

One of the often-touted advantages of working with thermophilic bacteria is the 
decreased risk of mesophilic contamination. However, the corollary of this is that 
there is an increased risk of thermophilic contamination. It is common practice for 
the routine cultivation of microorganisms to autoclave media at 121 °C for 15 min 
with the general expectation that no vegetative organisms or endospores will sur-
vive. Geobacillus stearothermophilus, a spore-forming thermophilic facultative 
anaerobe, is routinely used to test the efficacy of autoclave systems and is commer-
cially available with Merck’s Sterikon® all-in-one bioindicator ampules being one



example. However, among thermophilic bacteria, there are several examples of 
organism with decimal reduction times (D-values) greater than that of 
G. stearothermophilus, which may warrant a greater degree of caution when steril-
izing media and spent cultures (Table 4). 
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Table 4 D-values of selected mesophilic and thermophilic spore-forming bacteria (Data from 
Hyun et al. (1983) and references therein) 

Microorganism Topt (°C) D-value at 121 °C (min) 

Clostridium thermocellum 55 0.5 

Thermoanaerobacterium thermosulfurogenes 60–70 2.5 

Thermoanaerobacter pseudethanolicus 65 11 

Desulfotomaculum nigrificans 55 5.6 

Bacillus subtilis 35 0.9 

Geobacillus stearothermophilus (strain FS1518) 55 3.0 

Clostridium sporogenes 37 1.3 

It should be pointed out that comprehensive studies on the D-values of many 
thermoanaerobes have not been carried out so the results in Table 4. may not be 
representative. Even so, as an example, if a culture of Thermoanaerobacter 
pseudethanolicus with a reported D121°C of 11 min reached a cell density of 
1.0 × 109 CFU per mL, it would take 99 min at this temperature for the culture to 
become completely sterilized, which is nearly 7 times longer than a tradition 15-min 
cycle used for routine sterilization. For this reason, strict protocols for the steriliza-
tion of media and spent cultures should be in place to prevent contamination. 

For these reasons, the author’s group routinely sterilizes media for 60 min at 121 ° 
C while autoclaving spent cultures and glassware for 120 min on the backend 
followed by dry heat sterilization (250 °C, at least 4 h). Great care is also taken to 
ensure that the risk of cross-contamination is minimized by employing rigorous 
surface sterilization techniques. We are aware that several research groups use 
tyndallization heat treatment in their laboratories with the work of thermophilic 
bacteria. 

3.4 Cultivation of Aerotolerant Anaerobic Bacteria 

The batch cultivation of aerotolerant anaerobes is reasonably easy. For liquid 
culture, a common technique involves overlaying liquid medium with an oxygen-
impermeable material such as mineral oil or Valspar (one part petroleum jelly to one 
part paraffin). Cultivations vessels may also become anaerobic if they are tightly 
sealed and deep, thus preventing atmospheric oxygen from reaching the cultivation 
broth, or having limited headspace. Another technique involves the use of an airlock 
(commonly associated with brewing with facultative anaerobes such as S. cerevisiae 
and other yeasts).
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Fig. 4 Commercially available anaerobic jars used for the cultivation of anaerobic microorganisms 

For solid cultures such as agar plates, it is common to utilize cultivation cabinets 
with controlled headspace gas (typically CO2 or N2) or to utilize anaerobic jars or 
pouches to create an anaerobic environment. Anaerobic jars (Fig. 4) are sealable 
containers which can maintain an oxygen-free atmosphere for cultivating organisms, 
which require low levels of oxygen (Shahin et al. 2003). Typically, anaerobic jars 
available from commercial suppliers can accommodate 10–20 petri dishes. The jar’s 
atmosphere is made anaerobic by means of a palladium catalyst, which converts 
oxygen to water and hydrogen gas. One major drawback of working with anaerobic 
jars as that the use of this technique is insufficient for working with strict anaerobes. 
An alternative is an anaerobic pouch. 519F 

Anaerobic pouches are often ideal for field work where samples must be trans-
ferred to an anaerobic environment quickly. 

Anaerobic chambers and glove boxes are typically used in laboratories that 
specialize in anaerobic culture work (Selmer 2005). They are large plastic tents 
with an incubator and equipment for culturing the anaerobes. The atmosphere inside 
the chamber is usually filled with a mixture of carbon dioxide and nitrogen gas. The 
chamber has an airlock that can be emptied or refilled with nitrogen or oxygen-free 
gas. It is through this airlock that it is possible to place the culture media inside or 
remove it from the chamber. The oxygen remaining in the chamber is removed by its 
reaction with hydrogen in the presence of a palladium catalyst. It is possible to work 
inside the chamber by extending your arms into specialized gloves attached to the 
chamber walls; this is why it is also called a glove box. Anaerobic chambers can be 
very economical if properly constructed because the cost of gases for operating the 
system is minimal and it allows the use of conventional plating media (Engelkirk 
et al. 1992).
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3.5 Cultivation of Strictly Anaerobic Bacteria 

Unlike cultivating aerotolerant anaerobes, the cultivation of strictly anaerobic bac-
teria requires great measures to protect organisms from oxygen. The seminal work in 
this field, the so-called “Hungate technique,” traces back to Robert Hungate’s 
description of techniques for studying anaerobic cellulose-degrading organism 
from the rumen of cattle (Hungate 1947). His highly cited 1969 paper, “A roll 
tube method for cultivation of strict anaerobes,” clearly laid out detailed protocols 
(Hungate 1969). In hindsight, many of the aspects described are old-fashioned due to 
the modern availability of high-purity (i.e. oxygen-free) gases although many of the 
central features of Hungate’s techniques (such as the use of butyl rubber septa and 
reducing agents) have carried through to this day. 

The current recommended procedures for the anaerobic technique, an evolution 
of Hungate’s earlier work, were largely developed in the laboratory of Ralph 
S. Wolfe during the mid-1970s and are generically referred to as “the Balch 
technique.” For example, roll tubes are still one of the easier ways to isolate 
anaerobes on agar surfaces or in agar using the agar-shake roll tube method as 
compared to the endpoint dilution technique. 

These techniques use specialized user-friendly glassware and equipment to easily 
manipulate anaerobes or any microorganism requiring a defined gas phase. Various 
laboratories working with anaerobes have developed their own modifications 
depending on preferences or needs. Simpler approaches to anaerobic microbiology 
are covered in the literature (Willis 1969), with much of it targeted toward medically 
important clostridia that are in general less sensitive to air or oxygen than most 
clostridia. Indeed, the oxygen tolerance of clostridial species ranges from relative 
insensitivity, such as for Lacrimispora (formerly Clostridium) aerotolerans (Van 
Gylswyk and Van der Toorn 1987) to extreme sensitivity, such as for some of the 
hydrogen-oxidizing acetogens. The removal of oxygen and lowering of the redox 
potential of culture media by the addition of a reducing agent are the two crucial 
parts of the technique. The removal of oxygen is usually achieved by boiling the 
medium. This will often be done with the medium under a stream of anoxic gas for a 
small batch of medium, or by steam sterilization in an autoclave for a large batch 
(above 1–2 l). Steam sterilization is done with the vessel covered but still open to the 
atmosphere. After autoclaving, the medium is cooled under a stream of sterile, 
anoxic gas (Hungate 1969) and then sealed with aluminum capsules (Balch et al. 
1979) (Fig. 5). Finally, a sterile reducing agent is added to reduce the medium’s 
redox potential. The reducing agents used are, for example, sulfide, titanium (III) 
ion, or dithionate. For preparing or dispensing anaerobic media in small batches such 
as in various tubes or serum bottles, the media are made anoxic by boiling, cooled to 
below 40 °C, reduced by adding the appropriate amount of reducing agent, and then, 
under the stream of oxygen-free gas, distributed into the tubes or bottles, which then 
are sealed with butyl stoppers and aluminum crimps and autoclaved. The butyl 
rubber is most often used because of its limited permeability to oxygen. In labora-
tories dealing with a lot of soil samples or various spore-forming strains, autoclaving



time at 121 °C should be extended to 30–40 min to ensure that heat-resistant spores 
are killed. In some instances, autoclaving the media a second time after incubating 
for 36–48 h at 30 °C or 60  °C is recommended for laboratories primarily working 
with thermophiles and thermobiotic soils and sediments. 
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Fig. 5 Serum bottles (a) and Hungate tubes (b) filled with basal mineral medium 

4 Culture-Independent Techniques for Identifying 
Anaerobic Bacteria 

In the last few decades, impressive achievements have been made in modern 
microbiology to isolate and cultivate microbes under laboratory conditions, leading 
to our understanding of their physiological properties. These achievements have 
been the basis for the successful development of both fundamental microbiology and 
applied microbiology. Still, there is a clear paradox in various ecological niches 
since the total number of bacteria that can be cultivated using traditional methods is a 
small fraction of those that are revealed using sequence-independent methods; this



phenomenon is termed the great plate count anomaly (Kaeberlein et al. 2002; 
Zengler et al. 2002; Buerger et al. 2012). As such, it is generally accepted that 
only 1% of prokaryotes may be cultivated in the laboratory although this “cultivation 
gap” may largely be a matter of finding appropriate conditions for fastidious 
members of a community. Regardless, this leads to the inescapable conclusion that 
the remaining “uncultivated fraction” is likely to include many interesting bacteria 
that play an important part in their microbial communities and may also be of utility 
in biotechnology. 
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The remainder of this chapter deals with the identification of thermophilic 
anaerobes without direct isolation of the organism. The application of several 
molecular approaches has elucidated the diversity of microbial communities in 
different environments. The methods used to identify the diversity and activity of 
microorganism in environmental samples are divided into two main groups: partial 
and whole community analysis. Firstly, the partial analysis of microbial communi-
ties is performed using several molecular methods, such as denaturing gradient gel 
electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), single-
strand conformation polymorphism (SSC), DNA microarrays, real-time polymerase 
chain reaction (qPCR), and fluorescence in situ hybridization (FISH). Secondly, 
whole community analysis is performed using techniques such as amplicon-based 
metabarcoding, sequence-based metagenomics, G + C fractionation, functional 
metagenomics, metatranscriptomics, and metaproteomics (Mohammadali and 
Davies 2018). 

The term metagenome was first proposed by Handelsman and coworkers to 
describe “the genomes of total microbiota found in nature” (Handelsman et al. 
1998). In short, metagenomics and culture-independent genomic analysis of micro-
bial genomes in environmental samples are based on DNA that is isolated. The first 
microorganisms that were used as a base for preparing metagenomic libraries were 
from picoplankton (Schmidt et al. 1991). In this study, the total DNA was isolated 
from the environment, and it was randomly fragmented and sequenced. By this 
approach, it was possible to identify genes and metabolic processes performed not 
only from pure cultures isolated, but from other uncultivated microorganisms as 
well. Later, with better sequencing techniques, it was possible to obtain total DNA 
from environmental samples, a technique now called environmental DNA-based 
community analysis. Today, metagenomics studies can be classified as functional 
metagenomics and shotgun-sequence metagenomics. Instead of a full review of the 
different methods used for both partial and full analysis of microbial community, 
some examples of both concerning thermophilic anaerobes are given below.
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4.1 Partial Analysis of Thermophilic, Anaerobic Bacteria by 
Molecular Methods 

Denaturing gradient gel electrophoresis (DGGE) is a technique used to separate 
short- to medium-length DNA fragments based on their melting characteristics. 
Saghatelyan and coworkers did an analysis of microbial diversity of nine terrestrial 
geothermal springs in Armenia using DGGE methods (Saghatelyan et al. 2021). 
Their main finding was that the main bacterial phyla of Proteobacteria, 
Bacteroidetes, Cyanobacteria, and Firmicutes were the predominant microbes in 
the springs studied. Some interesting difference was in the presence of archaea in 
the springs tested. Temperature seemed to be the most important factor in shaping 
the microbial communities in these springs, but overall the diversity and richness of 
the microbiota were negatively affected by an increase in temperature. More than 
130 bacterial and archaeal strains were reported, among them several thermophilic 
heterotrophic anaerobic bacteria with potential use as producers of thermostable 
enzymes and biomolecules of biotechnological interest. 

Temperature gradient gel electrophoresis (TGGE) is a form of electrophoresis in 
which a temperature gradient is used to denature molecules as they move through 
either acrylamide or agarose gel. TGGE can be applied to analyze DNA, RNA, 
protein–DNA complexes, and, less commonly, proteins. Young and coworkers 
investigated anaerobic digestion sludge cultivated in an electrochemical bioreactor 
and “conventional bioreactor“and studied the methanogenic diversity in both reac-
tors by using TGGE (Jeon et al. 2009). Their main observation was that the 
methanogenic diversity was higher in the electrochemical bioreactor. 

Single-stranded conformation polymorphism (SSCP) analysis is a widely used 
screening method that allows you to identify different genomic variants in many 
samples and in a broad range of organisms, from microorganisms to humans. The 
techniques have been used in a broad field of organisms, ranging from animals, 
birds, fishes, plants, and with microbes. Examples are analysis of 300-bp fragments 
of DNA from thermophilic methanogens (Daffonchio et al. 1998) and analysis of 
structural diversity in a biogas reactor of both mesophilic and thermophilic 
methanogens (Dohrmann et al. 2011). 

DNA microarrays are a tool used to determine whether the DNA from a particular 
individual contains a mutation in genes (Williams et al. 2007) and are thus widely 
used for the analysis of microbial genes. As an example, the thermophilic anaerobe 
Clostridium thermocellum was investigated and its genes were identified with the 
help of DNA microarray tests (Wilson et al. 2013). Other applications of microarrays 
include applications in transcriptomics to obtain either a targeted functional over-
view or even a full transcriptome. This approach is particularly useful in microbial 
ecology for distinguishing between active microbial community (i.e., mRNA-
producing) and inactive transient or dead organisms, all of which are typically 
included in eDNA-based analyses resulting in less than representative picture of 
the community.
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Real-time polymerase chain reaction (RT-PCR) is molecular biology method 
based on the polymerase chain reaction and is widely used in a broad spectrum of 
sciences. An example of the use of RT-PCR is in a thermophilic, chemolithotrophic 
hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus strain TK-6 (Ueda 
et al. 2007). The authors used RT-PCR to show four clusters of hydrogenase genes. 

Fluorescence in situ hybridization (FISH) is a cytogenetic technique that uses 
fluorescent DNA probes to target specific chromosomal locations, resulting in 
colored signals that can be detected using a fluorescent microscope. The technique 
is suitable for locating specific DNA sequences, diagnosis of genetic diseases, gene 
mapping, and identification of novel oncogenes or genetic aberrations contributing 
to various types of cancers. Mostly FISH has been used on pathogen diagnosis 
although some studies have been performed on thermophiles. The microbial com-
munity of a volcanic mud spring in the Philippines was assessed using 16S rRNA-
based approaches (Lantican et al. 2011). The DNA was extracted from solfataric 
soils and sediments taken from mud springs, and the 16S rDNA was PCR amplified 
using universal (519F–1392R) and archaeal-specific (23FPL–1391R) primer pairs, 
cloned, and sequenced. Fluorescence in situ hybridization (FISH) analysis revealed 
that about 71% of the microbial community present in the mud spring belonged to 
domain Archaea of which 63% were Crenarchaeota and 8% were Euryarchaeota. 
Seventeen percent (17%) of the population consisted of bacteria as indicated by the 
positive hybridization with the BACT338 probe, and the remaining 12% are 
unidentified. 

4.2 Whole Community Analysis of Thermophilic, Anaerobic 
Bacteria by Molecular Methods 

Whole-genome sequencing sometimes also called full genome or complete genome 
sequencing is a process of determining the entire DNA sequence of an organism. 
Several investigations have been on whole-genome sequencing using thermophilic 
bacteria although not as much as compared with mesophilic bacteria, especially 
pathogens. The whole genome of several thermophilic, anaerobic bacteria has been 
sequenced, especially strains with biotechnological relevance. Many 
Thermoanaerobacter strains have been WGS because of their potential for 
bioethanol production from lignocellulose (Verbeke et al. 2013). Other examples 
include the facultative thermophilic Paenibacillus strain DA-C8 capable of xylan 
degradation (Chhe et al. 2021) and the extremophile Caldicellulosiruptor 
saccharolyticus (Van De Werken et al. 2008). For recent developments on whole-
genome sequencing, we refer to the recent overview of Verma and coworkers 
(Verma et al. 2022). 

In amplicon-based community analysis, only the target DNA is sequenced. 
However, in shotgun metagenomics “all” the isolated eDNA is sequenced to collect 
genomic information from microbes without cultivation. A study on the taxonomic



diversity and functional potential of two hot springs in northwestern Spain (Burgas 
and Muino da Veiga) was done by using metagenomic sequence-based analysis 
(DeCastro et al. 2021). Using these methods, the investigators could determine a 
significant difference in the abundance of various phyla between the two hot springs. 
Another example of SBM is in a recent study where metagenomic analysis was made 
from a large composting operation (Antunes et al. 2016). GC fractionation is used 
when total community DNA is analyzed in an environmental sample and is inde-
pendent of PCR amplification and thus provides a sense of the relative abundance of 
bacterial populations (Holben et al. 2004). In a study where authors investigated the 
competition of acetate for the acetoclastic methanogens and syntrophic acetate-
oxidizing bacteria in thermophilic anaerobic digestion, metagenome-assembled 
genomes were used (Dyksma et al. 2020). Firmicutes was the most abundant phylum 
in the metagenome covering 53% of species that were responsible for various 
functions, e.g., polymer hydrolysis and syntrophic acetate oxidation. The Wood– 
Ljungdahl pathway for syntrophic acetate oxidation and corresponding genes for 
energy conservation were identified in Dethiobacteraceae metagenome-assembled 
genomes. 16S rRNA gene amplicon sequencing and enrichment cultivation identi-
fied the uncultured Dethiobacteraceae together with Syntrophaceticus, 
Tepdianaerobacter, and Clostridia. Thus, this study gave new insight into a complex 
anaerobic digestion ecosystem where acetate catabolism was mainly performed by 
Bacteria. 
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Functional metagenomics is a method for studying gene function, starting from 
extracted DNA of mixed microbial consortium. The method relies on the construc-
tion of metagenomic libraries by cloning environmental DNA into expression 
vectors and propagating them into appropriate hosts, followed by activity-based 
screening. When the active clone has been identified, the sequence of it is deter-
mined, and the gene of interest is amplified and cloned with a subsequent expression 
and characterization of the product. The thermophile T. thermophilus has been used 
to detect thermophilic enzymes, such as esterases using this method (Leis et al. 
2015). This approach was used to investigate the microbial diversity of two hot 
springs in the Himalayas with the main outcome showing that both hot springs 
possess a diverse set of genes analogous to various (osmotic, heat, and acid) stress 
factors (Najar et al. 2020). 

Metatranscriptomics studies retrieve information about the gene expression of 
microbes within natural environments of complex microbial communities. A study 
by Chen and coworkers where metagenomics and metatranscriptomics methods 
were used to compare mesophilic and thermophilic propionate degradation commu-
nities showed that microbial interactions, metabolic pathways, and niche diversity 
are distinct between mesophilic and thermophilic microbial communities responsi-
ble for syntrophic propionate degradation (Chen et al. 2020). 

Finally, metaproteomics is a term used for experimental approaches to study all 
proteins in a microbial community and microbiomes from environmental sources. Its 
main use is to classify experimental data where all proteins are identified and 
quantified from complex microbial communities. In a recent study, proteomic 
approach was used to define thermophilic communities in the anaerobic digestion



of cellulose (Lu et al. 2014). The investigators found more than 500 non-redundant 
protein functions and the taxonomic community structure as inferred from the 
metaproteomic data set was in overall agreement with 16S rRNA gene identification. 
Numerous protein functions were related to cellulose and hemicellulose degradation 
catalyzed by Caldicellulosiruptor and Clostridium species. 

Cultivation Techniques and Molecular Methods of Identification. . . 125

5 Conclusions 

Although the methodology of cultivation of anaerobic thermophilic bacteria has not 
changed dramatically since the era of Hungate in the 1960s our understanding of 
oxygen sensitivity of these microbes has increased to a large extent. Also, our 
understanding of extremophilic thermophiles has emerged to increase the time 
needed for the preparation of an anaerobic medium because of the high temperature 
tolerance of the microbes involved. New methods using molecular microbiology 
identifying methods have increased our understanding of the role of thermophilic 
anaerobes in various natural and manmade environments although much more 
emphasis has been on mesophilic bacteria, especially pathogens. 
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Abstract The industry is increasingly discovering the potential of strict anaerobic 
thermophilic bacteria, as there are many applications to consider, including the 
production of stable thermozymes and degradation of lignocellulosic materials, 
proteins, and alkanes. However, the metabolism of these thermoanaerobes is still 
poorly understood and so far, there is comprehensive knowledge of only a few 
model species. Of the studies published to date, the vast majority have focused 
almost exclusively on the anaerobic catabolism of carbohydrates, including poly-
saccharides, hexoses, pentoses, and disaccharides. While research on the fermenta-
tion of proteins and amino acids has enjoyed some recent developments, the 
exploration of the degradation of lipids and alkanes under these conditions has 
only just begun. In this chapter, the different central carbon pathways are discussed 
along with the utilization of alternative intracellular energy carriers other than ATP, 
namely GTP and pyrophosphate. Subsequent steps and approaches in deeper under-
standing of the physiology are concisely discussed. 
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H2ase Hydrogenase 
NADH Nicotinamide adenine dinucleotide 
NADPH Nicotinamide adenine dinucleotide phosphate 
PFL Pyruvate formate lyase 
PFOR Pyruvate ferredoxin:oxidoreductase 
pH2 partial hydrogen pressure in the gas phase 
PPi Pyrophosphate 
PPP Pentose phosphate pathway 
PTS Phosphotransferase system 
TCA Tricarboxylic acid cycle 
VFA Volatile fatty acids 

1 Introduction 

In general, anaerobic microorganisms, which include also various extremophiles, are 
essential contributors to global elemental biogeochemical cycles. As an example, the 
strictly anaerobic heterotrophic thermophilic bacteria inhabiting hot springs and 
other warm environments take part in at least the global cycling of carbon, sulfur, 
and nitrogen. Amongst thermophilic anaerobes, the majority characterized thus far 
have their optimum pH between 5.0 and 8.5 and some can be spore forming 
(Kristjansson and Stetter 1998). These anaerobic bacteria earn their energy through 
fermentation or anaerobic respiration, such as denitrification or sulfate reduction 
(Martinez-Spinosa 2020), with a number of organisms combining these two strate-
gies to varying degrees. Some thermophiles, such as Thermotoga species, can use 
thiosulfate and elemental sulfur as electron acceptors (Fardeau et al. 1997). Conse-
quently, the utilization of these alternative electron acceptors improves growth, and 
their fermentation product profiles are altered such that lower quantities of reduced 
end product such as hydrogen and alanine are formed. These heterotrophic thermo-
philes reside both in naturally niches, such as geothermal and volcanic areas, and in 
man-made thermophilic habitats, such as biological waste treatment plants, mines, 
and compost piles (Mehti and Satyanarayana 2013). 

Like their mesophilic counterparts, there are examples of thermophilic anaerobes 
using all of the major biomolecule categories including carbohydrates, lipids, pro-
teins, and nucleic acids as substrates, although the latter has received scant attention 
in the literature. Among the substrates that are fermented by these organisms, 
carbohydrates represent the majority, which include polysaccharides, oligosaccha-
rides, pectin, disaccharides, and monosaccharides. Typically, the end products 
produced from carbohydrates include a mixture of organic acids, such as acetic 
and lactic acids, and ethanol as well as hydrogen, CO2, and alanine. In addition, 
several thermophiles are also proteolytic, often using both exo- and endoproteases, 
and fermenting select amino acids to varying degrees depending on the environ-
mental conditions, which similarly yield mixtures of the aforementioned gases and



acids. Therefore, these bacteria are of commercial interest for their production of 
carbohydrate hydrolases and proteolytic enzymes. The variety of metabolic path-
ways that convert these various substrates are described in this chapter. 
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2 Central Carbon Pathways 

In microbial metabolism, the central carbon pathways or catabolic pathways possess 
the highest fluxes and foresee the cell with reducing equivalents (NADH and 
NADPH), energy carriers (ATP), and precursors for biosynthesis of new cell mate-
rial. The majority of the chemoheterotrophic thermoanaerobes can convert pentoses, 
hexoses, disaccharides, oligosaccharides, and polysaccharides to various end prod-
ucts. Depending on the species, other compounds such as methanol, glycerol, pectin, 
a polysaccharide containing D-galacturonic acid residues, and various other organic 
compounds can be degraded. Unfortunately, the utilization of carbon compounds is 
not standardized leaving many knowledge gaps when novel strains are characterized. 
Despite the prevalent nature of carbohydrate metabolism among thermoanaerobes, 
very few have been studied in depth although Acetivibrio thermocellus (formerly 
Clostridium thermocellum), and species of Thermotoga and Caldicellulosiruptor 
have received great scrutiny in this regard. The sugars are taken up by ABC trans-
porters in most of these thermophiles and many own a phosphotransferase system for 
fructose (Conners et al. 2005; Van de Werken et al. 2008; Lin et al. 2011). 

2.1 Catabolite Repression and Transporters 

In contrast to Thermotoga maritima, Caldicellulosiruptor species have been tested 
on different monosaccharide combinations and displayed no catabolite repression, 
allowing for simultaneous uptake and fermentation of multiple monosaccharides 
(Van de Werken et al. 2008; Van Fossen et al. 2009; Vongkampang et al. 2021). In a 
rich sugar mixture, C. saccharolyticus showed the following preference: fructose > 
xylose/arabinose > mannose/glucose/galactose (Van Fossen et al. 2009). Fructose is 
transported with a phosphotransferase system (PTS), which was expressed in the 
presence of fructose in the medium (Van Fossen et al. 2009). A similar phenomenon 
and transporter were observed for Thermotoga strain RQ2, the only Thermotoga 
strain possessing a PTS for fructose (Frock et al. 2012). Thermotoga species possess 
a kind of catabolite repression, as in a mixture of fructose, galactose, glucose, xylose, 
and arabinose, only glucose and xylose are first taken up simultaneously. Both these 
sugars were taken up by the cell with the same transporter (Frock et al. 2012). Later 
studies revealed that the xylose transporter of C. saccharolyticus also transported 
glucose, but a dedicated glucose transporter was only expressed in the absence of 
xylose (Björkmalm et al. 2018). Remarkably, even though Thermoanaerobacterium 
thermosaccharolyticum strain W16 possesses a transporter for glucose and for



xylose, in mixtures of glucose and xylose high concentrations of either sugar 
inhibited the uptake of the other (Zhao et al. 2019, 2020). In this case, the glucose 
is transported by a PTS and xylose with an ABC transporter, as has been described 
also for Thermoanaerobacter sp. X514 (Lin et al. 2011). On the other hand, 
Thermoanaerobacter thermohydrosulfuricus contains two xylose transporters, of 
which one is induced at relatively high xylose concentrations (>50 mM) that does 
not transport, nor is inhibited by, glucose (Cook et al. 1994). The second transporter 
operates at low xylose concentrations (~5–10 mM), and transports glucose as well. A 
transcriptional regulation mechanism for expressing coutilization of hexoses and 
pentoses has been presented for Thermoanaerobacter (Lin et al. 2011), which has no 
relationship to the known catabolite repression mechanism. Interestingly, 
C. kronotskyensis relied on glucose uptake via the xylose transporter only, as a 
dedicated glucose transporter appears to be lacking (Vongkampang et al. 2021). In 
the presence of both glucose and xylose, these xylose/glucose transporters are prone 
to undergo mutual competitive inhibition (Vongkampang et al. 2021; Cook et al. 
1994). It was speculated that C. kronotskyensis has adapted to glucose uptake in the 
form of cellobiose instead, as hinted by its faster uptake compared to glucose. 
Similarly, T. maritima grows slower on monosaccharides than on polysaccharides 
(Chhabra et al. 2003), which might be due to that glucose is not stable at higher 
temperatures (Conners et al. 2006). The simultaneous conversion of various saccha-
rides by one species reflects the way these types of thermophiles have adapted to 
environments low in free carbohydrates (Roh et al. 2002). This makes them very 
effective and simplifying industrial bioprocesses using complex feedstocks. This 
effectiveness can be further enhanced by designing appropriate cocultures of bacte-
ria with complementary metabolic capabilities such as described for 
T. saccharolyticum and C. thermocellum (Jacobson et al. 2020). 
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2.2 Hexose Metabolism 

The Embden-Meyerhof-Parnas pathway (EMP) is most commonly used central 
metabolic pathway among the facultative and strict anaerobic chemoheterotrophic 
thermophiles (Flamholz et al. 2013) (Fig. 1). In fermentation mode, these anaerobes 
rely mostly on substrate-level phosphorylation (SLP) for ATP production and the 
EMP yields 2 mol ATP/mol hexose. A small percentage of organisms are known to 
possess the Entner-Doudoroff pathway (ED) commonly associated with Gram-
negative organisms (Fig. 1), although only a few anaerobes are known to rely on 
the ED only. The likely reason for this preference for EMP over ED is that the latter 
is inferior anaerobically as the lower energy yield is only 1 mol ATP/mol hexose, 
whereas under aerobic conditions the ATP loss at substrate level is well compen-
sated by the oxidative phosphorylation. However, in many thermophiles, the pyru-
vate is further converted to acetate, which is accompanied by an additional 
production of ATP via SLP. In that case, the overall amount of ATP per hexose 
generated is 3 and 4 via the ED and EMP pathways, respectively, making the loss of



1 ATP durable. Alternatively, it has been proposed that pathways such as the ED 
display higher redox carrier (NAD(P)H) formation fluxes relative to energy carrier 
(ATP) formation fluxes, thereby severely affecting the growth rate and cell yields 
(Van Niel et al. 2017). Therefore, these microorganisms contain a dedicated meta-
bolic “highway” to convert more substrate to product as a means to extrapolate 
sufficient energy for proliferation as has been depicted in the mesophilic Zymomonas 
mobilis (Fuhrer et al. 2005). However, studies with T. maritima have shown that the 
ED and EMP are running in parallel with a flux distribution of 15% and 85%, 
respectively (Selig et al. 1997). This was later confirmed with an in silico metabolic 
model of T. maritima (Nogales et al. 2012). The low flux through the ED accounts 
for that it plays a role in biosynthesis, which may be linked to keeping an optimal 
ratio of reduced ferredoxin over NADH (Nogales et al. 2012). T. maritima also
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Fig. 1 Combination of the central carbon pathways in thermophilic bacteria: The Embden Mey-
erhof pathway (EMP) (black arrows); Entner-Doudoroff pathway (ED) (blue arrows); Pentose 
Phosphate Pathway (PPP) (red arrows); Arabinose pathway (green arrow); Xylose pathway (purple 
arrows). In the ED pathway, the C6-intermediate splits into two C3-intermediates, i.e., pyruvate 
(PYR) and glyceraldehyde 3 phosphate (GAP) and thus enters the pathway that it has in common 
with the EMP



possesses a complete pentose phosphate pathway (PPP), but an increasing flux 
through the oxidative part of the PPP apparently may be detrimental to growth, 
whereas it is the opposite for increasing fluxes through the EMP or ED.
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Fewer studies have focused on the metabolism of other hexoses. The thermo-
philic bacteria studied so far that can ferment galactose do so via the Leloir pathway 
(Van de Werken et al. 2008; Fushinobu 2021; Qian et al. 2009), which include 
species of Caldicellulosiruptor, Marinithermus, Thermoanaerobacter, Thermotoga, 
and Thermus. Rhamnose, a deoxyhexose that is available in significant quantities in 
pectin and hemicelluloses, can be converted into several fermentation products, 
which was studied in depth in C. saccharolyticus. It ferments rhamnose to 
1,2-propanediol, acetate, CO2, and H2 in a 1:1:1:1 ratio (Bielen et al. 2013). This 
sugar is not effective for H2 production as all NADH are used to reduce lactaldehyde 
into 1,2-propanediol. Nonetheless, the latter is a commodity chemical that is of 
industrial interest. Many other thermophilic bacteria, including other 
Caldicellulosiruptor species, can also ferment rhamnose and fucose to equimolar 
amounts of 1,2-propanediol plus similar fermentation products as mentioned above 
(Weimer et al. 1984; Ingvadottir et al. 2017, 2018). 

2.3 Pentose Metabolism 

Pentoses are rich energy carriers and carbon sources in nature, especially in the form 
of hemicellulose; therefore, it is no surprise that many thermophiles can ferment 
these sugars. Moreover, preference for xylose over other sugars is quite common 
among anaerobic thermophilic bacteria. This is similar for arabinose as has been 
observed at least in C. saccharolyticus (Van Fossen et al. 2009; Björkmalm et al. 
2018), but not so in Thermotoga species (Frock et al. 2012). Conversion of xylose is 
through the pentose phosphate pathway (PPP) (Fig. 1) in thermophilic bacteria 
(Gottschalk 1986), which is entered as the metabolite xylulose-5P via a xylose 
isomerase and xylulokinase. L-arabinose (pentose in hemicellulose) and D-arabinose 
are also converted to xylulose-5P with their respective isomerase and kinase (Van de 
Werken et al. 2008; Rodionov et al. 2021). However, the gene coding for D-
arabinose isomerase has been annotated also as a L-fucose isomerase (Van de 
Werken et al. 2008) and the purified recombinant protein could use both L-fucose 
and D-arabinose, among other sugars, as substrates (Ju and Oh 2010). Therefore, D-
arabinose is also funneled into the fucose pathway resulting in the production of 
significant amounts of ethylene glycol next to acetate (Isern et al. 2013). 

Several of these thermophiles studied so far are missing the oxidative part of the 
PPP (Van de Werken et al. 2008; Feng et al. 2009; Cordova et al. 2016), including 
species of Caldicellulosiruptor, Thermoanaerobacter, and Thermus. Therefore, the 
source of NADPH production must be positioned elsewhere in the metabolic 
network. For Caldicellulosiruptor species, the source has not yet been found, but 
isocitrate dehydrogenase has been identified for Thermus thermophile (Cordova 
et al. 2016), which has been indicated to be a rate-limiting step in biosynthesis due



to low fluxes through the TCA cycle. Otherwise, Ferredoxin-NADP+ reductase has 
been observed as the catalyst for NADPH production in several thermophilic 
anaerobes (Feng et al. 2009; Lacis and Lawford 1991). 
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One of the exceptions among thermophiles is Cl. thermocellum that can take up 
xylose, but accumulation of the intermediate xylitol inhibits further conversion 
(Verbeke et al. 2017). However, recently heterologous expression of xylose isom-
erase and xylose kinase plus overexpression of the transketolases could turn Cl. 
thermocellum into a successful xylose-consumer (Rangel et al. 2020). 

2.4 Energy Currencies 

ATP is considered the universal energy carrier in the cell (Stryer 1988). It is 
produced in the glycolytic pathways, TCA cycle, and in aerobic microorganisms 
from NADH via the electron transport chain—building up a proton motive force 
(pmf)—and ATPase. The strict anaerobes rely on ATP production at substrate 
phosphorylation level in the glycolytic pathways and via acetate formation if they 
possess an acetate kinase. Some thermophiles, like Thermoanaerobacter species, 
might also form ATP from a bidirectional PEP carboxykinase (Verbeke et al. 2013). 
Finally, anaerobic thermophiles can also use the pmf to produce ATP thereby 
mediated by three types of ATP synthases, i.e., the F-type (most common), the 
V-type (linked to vacuoles), and A-type (Archaeal) (Kuhlbrandt and Davies 2016). 

However, among the anaerobic thermophilic bacteria, pyrophosphate (PPi) and 
GTP have been notified as additional energy carriers in several, mainly catabolic, 
reactions (Verbeke et al. 2017; Bielen et al. 2010; Zhou et al. 2013) (Fig. 2). GTP can 
be generated from ATP mediated by an NDP-kinase and in the catabolic enzymes, 
phosphoglycerate kinase and PEP carboxykinase, as depicted in Cl. thermocellum 
(Zhou et al. 2013). In the latter organism, GTP is then used to phosphorylate glucose 
and PPi to phosphorylate fructose-6P in the EMP. 

PPi in the role of energy carrier occurs mainly in plants, several unicellular 
eukaryotes, and thermophilic prokaryotes (Mertens 1991). The source of PPi is the 
nucleotide polymerization and protein synthesis metabolism that is especially active 
under growth conditions. In those reactions, PPi is a by-product that normally is 
hydrolyzed to two inorganic phosphates with a cytosolic pyrophosphatase. This is an 
essential reaction that makes the formation of these macromolecules thermodynam-
ically possible. However, if we focus on the thermophilic bacteria only, PPi can be 
removed by the kinases in the central carbon pathways (pyrophosphate-dependent 
6-phosphofructokinase and pyruvate phosphate dikinase). So far, PPi as an energy 
carrier has been studied only for a few thermophiles. It has been revealed that 
C. saccharolyticus is relying on PPi as main energy carrier, being present at higher 
concentrations (approx. 4 ± 2 mM) than ATP (approx. 0.43 ± 0.07 mM), at least 
during growth conditions (Bielen et al. 2010). During exponential growth, the ATP 
concentration is even lower than the ADP concentration, which is normally a sign of 
starvation. Relatively high PPi levels (0.8–1.5 mM) have also been observed in the



mid-log phases of Cl. pasteurianum and Moorella (formerly Clostridium) 
thermoacetica (Heinonen and Drake 1988). Decline of these concentrations sets in 
at the end of the log phase until the PPi levels are similar to those in Escherichia coli 
(0.3 mM); in the latter the level remains the same, irrespective of the growth phase. 

140 E. W. J. van Niel et al.

Fig. 2 Combination of Embden-Meyerhof pathways of several thermophilic bacteria. Black: 
common backbone but specialized for C. saccharolyticus; Red: special metabolism of Cl. 
thermocellum. Specific differences in thermophilic bacteria: (1) ATP-dependent phosphofructoki-
nase and pyrophosphate-dependent phosphofructokinase of C. saccharolyticus and Cl 
thermocellum only possessing the latter (blue); (2) pyruvate phosphodikinase and phosphokinase, 
of which the latter is inhibited by PPi (green; see main text); (3) inhibition of lactate dehydrogenase 
by pyrophosphate (PPi); (4) pathway from PEP to PYR due to a missing pyruvate kinase in Cl. 
thermocellum. Glu-6P glucose 6 phosphate, Fru-6P fructose 6-phosphate, Fru-1,6P fructose 
bisphosphate, DHAP dihydroxyacetone phosphate, 1,3BPG 1,3-bisphosphoglycerate, 3PG 
3-phosphoglycerate, 2PG 2-phosphoglycerate, PEP phospho-enolpyruvate, PYR pyruvate, LAC 
lactate, OAA oxaloacetate, MAL malate. Modified from Bielen et al. (2010) and Zhou et al. (2013) 

That PPi is deeply involved in the catabolism of C. saccharolyticus, is further 
reflected in its role of inhibitor of ADP-dependent pyruvate kinase42 and lactate



dehydrogenase (LDH) (Fig. 2) (Willquist and van Niel 2010). Interestingly, this 
bacterium also possesses a cytosolic and a membrane-bound proton-translocating 
pyrophosphatases. The latter may contribute to maintaining a pmf (Serrano et al. 
2004). The presented studies strongly indicate that PPi plays a central role in the 
catabolic metabolism in several anaerobic thermophilic bacteria. Whether this 
exemplifies that PPi is a primitive form of energy carrier was recently debated 
(Wimmer et al. 2021) because its hydrolysis is a pivotal irreversible event that 
makes biosynthesis of macromolecules possible. The latter is evident, nevertheless 
several microorganisms and plants have opted to utilize PPi as a central energy 
carrier as demonstrated in C. saccharolyticus (Bielen et al. 2010). 
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3 Cellulolytic Fermenting Thermophiles 

The interest in thermophilic enzymes degrading microbes and their enzymes has 
increased dramatically in the past few decades. Cellulose and hemicellulose, part of 
lignocellulose in plants and some macroalgae, are the most dominant renewable 
biomass available on Earth and is a material of intense interest for the production of 
both fine chemicals and biofuels. There are several interesting thermophilic bacteria 
capable of degradation of cellulose anaerobically. The most well-known and highly 
studied cellulolytic thermophile is the moderately thermophilic Clostridium 
thermocellum, especially because of their possession of a working scaffold, the so 
called cellulosome (Doi and Kosugi 2004; Fontes and Gilbert 2010; Akinosho et al. 
2014). Other well-known cellulolytic thermophiles belong to other Clostridium 
species, Caldicellulosiruptor species (Rainey et al. 1994; Kadar et al. 2004; Chung 
et al. 2015) and Thermotoga species (Liebl 2001; Cheng et al. 2011; Obeng et al. 
2017). In order to achieve the complete deconstruction of crystalline cellulose into 
glucose, multiple enzymes working synergistically are required: cellobiohydrolases 
(CBH), endoglucanases (EGL), and B-glucosidases (BGL) (Wood and Garcia-
Campayo 1990). For further information on cellulose degradation with thermo-
philes, we refer to (Scully and Orlygsson 2023). 

Unlike cellulose, hemicellulose tends to have random, amorphous structures that 
are only comprised of 500–300 residues (Glazer and Nikaido 2007). Furthermore, 
there is a tremendous diversity of hemicellulose that can be comprised of a mixture 
of hexoses, such as glucose, galactose, and mannose, pentoses (D-arabinose, D-
xylose), methylpentose (L-rhamnose), and uronic acids each in addition to various 
modifications such as esterification and etherification. Because of the heterogeny of 
hemicellulose biomass, there is a wide variety of enzymes needed for its degradation. 
The main types of hemicellulases are endoxylanases, β-xylosidase, 
arabinofuranosidase, and acetyl-xylan esterase among others (Ebringerová 2005). 
Thermophilic enzymes have advantage over mesophilic enzymes and can withstand 
the extreme conditions needed in the various industries, e.g., bleaching of pulp in the 
paper industry. Therefore, enzymes from extremophilic bacteria have gained 
increased interest in the last decades. Many thermophilic and hyperthermophilic



bacteria have been reported to produce endoxylanases such as Thermotoga (Bok 
et al. 1994; Winterhalter et al. 1995), Clostridium (Rani and Nand 2000; Heinze et al. 
2017), Caldicellulosiruptor (Crosby et al. 2022), and various aerobic thermophiles 
(Geobacillus, Bacillus, and Streptomyces species). For further information on hemi-
cellulose degradation with thermophiles, see Scully and Orlygsson (2023). 
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4 Protein and Amino Acid-Degrading Thermophiles 

Studies of thermophiles have mainly focused on carbohydrate degradation, partly 
because of the vast availability and broad range of sugars they can ferment. None-
theless, proteolytic thermophiles have become of increased interest in connection to 
improving degradation of protein-rich wastes. The underlying reason is that these 
microorganisms possess thermostable enzymes, such as proteases, peptidases, and 
keratinases, that can withstand harsh industrial conditions and/or can tackle recalci-
trant animal proteins (Suzuki et al. 2006; Elleuche et al. 2014). Microorganisms need 
several types of proteases and peptidases for proper protein degradation. Proteases 
can be distinguished between highly specific to highly promiscuous. Exopeptidases 
mainly cleave the terminal peptide bonds releasing single amino acids at the 
N-terminus (aminopeptidases) or the C-terminus (carboxypeptidases) (Mótyán 
et al. 2013). Apart from them, there are also dipeptidyl peptidases, tripeptidyl 
peptidases, and peptidyl dipeptidases. Keratinases, as the name suggest, break 
down keratin (as found in feathers), are used in industrial sectors including feather 
recycling, leather, textile, biofertilizers, feed, and cosmetics (Brandelli 2008; Hassan 
et al. 2020). Keratin is a fibrous and tough protein and due to its recalcitrant nature 
cannot be degraded by common proteases. Interestingly, keratinases of 
Thermoanaerobacter, Thermococcus, and Thermosipho have potential, thanks to 
excellent performance properties, to degrade also recalcitrant proteins such as prions 
(Gupta et al. 2013). Other thermophilic anaerobic bacteria that are under investiga-
tion for their proteolytic potential include species of Caloramator (Tarlera and 
Stams 1999), Coprothermobacter (Sasaki et al. 2011), Thermotoga (Ward et al. 
2002), and Fervidobacterium (Akram et al. 2022). 

In addition to exploitation of thermozymes, there is also production of potential 
chemicals in amino acid fermentations. For instance, longer chain and branched-
chain alcohols can be produced from anaerobic degradation of amino acids that can 
be of interest to the chemical industry. Organic wastes containing proteins vary from 
municipality waste, food industry (dairy waste) to slaughterhouse waste. As such 
waste treatment at mesophilic conditions may be a potential source of pathogens, it is 
safer to perform these processes at higher temperatures with strict anaerobic ther-
mophiles with the benefit of value-added product formation. 

In general, proteins are first hydrolyzed extracellularly to (oligo)peptides and 
amino acids, which are then transported into the cell and further degraded to volatile 
fatty acids (VFA), hydrogen, and ammonium (McInerney 1988). Genes coding for 
transporters of amino acids and oligopeptides have been annotated in several



thermophiles, such as the ABC transporters in C. saccharolyticus (Van Werken et al. 
2008) and T. maritima (Nelson et al. 1999). As a carbon source for biosynthesis, 
amino acids are degraded to the level of acetyl-CoA, propionyl-CoA, pyruvate, 
and/or α-ketoglutarate, which are metabolites on the crossroads of catabolism and 
anabolism. 
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4.1 Proteolytic Thermophiles 

For the hydrolysis of the peptide bonds, proteolytic thermophiles use several types of 
proteases that can be peptidases with narrow or a broad specificity. These enzymes 
can be characterized by their active site chemistry, which include acid proteases 
being active at low pH, alkaline proteases being active at neutral to high pH, and 
metalloproteases containing a metal ion at their active site. Hydrolysis starts outside 
the cell with exocellular proteases cleaving the protein into oligopeptides and amino 
acids. Oligopeptides can be further hydrolyzed with intracellular proteases. As 
mesophilic proteases may be slow in degrading especially insoluble proteins 
(Hobson and Wallace 1982), thermophilic conditions have seen benefits of protein 
hydrolysis due to thermal denaturation that causes loss of secondary structure of the 
protein. Hardly any studies have focused on the regulation of proteases in thermo-
philes. However, older studies with mesophilic strict anaerobes revealed that these 
proteases are highly induced under energy-limited conditions, such as sugar-limited 
batch cultures entering the stationary phase or under low dilution rates in continuous 
cultures (Allison and Macfarlane 1990). Extracellular protease activity was also seen 
to increase three-fold in cocultures with a methanogen (Tarlera and Stams 1999). 
Despite T. maritima possessing at least 35 proteases and peptidases of which about 
12 have a function outside the cell as annotated by Ward and coworkers (2002), its 
growth on peptides as sole carbon and energy source has still not been reported. 

4.2 Amino Acid-Degrading Thermophiles 

In nature, there are two types of amino acid-degrading mechanisms: (1) amino acid 
fermentation, and (2) conversion of pairs of amino acids via the Stickland reaction, 
in which one amino acid is the oxidant and the other the reductant receiving the 
electrons (Stickland 1934). Amino acid fermentation will be limited outside a 
syntrophic consortium as the deamination step is a thermodynamically constraint 
due to hydrogen production (Orlygsson et al. 1995). Alternatively, in the absence of 
hydrogenotrophic microorganisms, e.g., methanogens, chemical electron acceptors 
improve also amino acid fermentation, such as has been observed with 
Thermoanaerobacter species reducing thiosulfate to sulfide (Faudon et al. 1997). 
Fermentation products of amino acids consist of VFA, ammonium, and hydrogen, of 
which the latter needs to be immediately removed by the hydrogenotrophic partner



to sustain the fermentation flow. In the presence of adequate amounts of thiosulfate, 
hydrogen is not produced as the electrons produced in the oxidation step go to this 
electron acceptor that is reduced to sulfide. Interestingly, several 
Thermoanaerobacter and Caldanaerobacter species contain promiscuous alcohol 
dehydrogenases (ADH) that can reduce, with both NADH and NADPH, these VFA 
further to their corresponding alcohol (Scully et al. 2015). Moreover, 
Thermoanaerobacter species possess a number of ADHs having different substrate 
specificities for either primary or secondary alcohols (Lamed and Zeikus 1981) and 
an aldehyde:ferredoxin oxidoreductase (Hitschler et al. 2018) making them 
equipped for formation of a variety of longer chain and branched-chain alcohols. 
Indeed, T. pseudethanolicus and Thermoanaerobacter strain AK85 can degrade the 
branched-chain amino acids isoleucine, leucine, threonine, and valine to their 
respective fatty acids (Scully and Orlygsson 2019, 2020). The corresponding alco-
hols were formed when thiosulfate was present, although the concentrations remain 
relatively low. The amino acid fermentation process needs to be further optimized to 
increase product yields, including temperature, pH, substrate concentrations, and 
removal of accumulating inhibitors. Of these inhibitors, hydrogen is the most 
important, as has been demonstrated by the effect of scavenging it through using 
thiosulfate or methanogens as described above. During active fermentation, hydro-
gen may accumulate very fast in the liquid creating oversaturation due to mass 
transfer limitations to the gas phase (Pauss et al. 1990). The study of Tarlera and 
Stams (1999) is one of the few studies that investigated the critical pH2 of amino acid 
fermentation inhibition by thermophiles. They found that fermentation of leucine 
and valine was terminated in Caloramator proteoclasticus at partial hydrogen 
pressure ( pH2) values of 7.8 and 4 kPa, respectively. This is a factor 5 to 8 lower 
than for the maximum pH2 of sugar fermentation by Caldicellulosiruptor 
saccharolyticus (Willquist et al. 2011), showcasing the high sensitivity of amino 
acid fermentation to hydrogen. As mentioned before, this issue can be prevented by 
either adding a hydrogenotrophic methanogen, glycine (to stimulate the Stickland 
reaction) or thiosulfate. The former has the advantage that methane is produced as an 
added-value product, but the latter has the drawback of sulfide accumulation that can 
lead to corrosion and precipitation of precious metal ions negatively influencing the 
fermentation process. 

144 E. W. J. van Niel et al.

Ammonium is another potential inhibitor of that accumulates during amino acid 
fermentation. Although, it might be ammonia that is the effective inhibitor as it can 
enter the cell through diffusion, and once inside, it will become protonated and thus 
increase the cytoplasmic pH. This will be a bigger issue at higher pH due to the high 
pKa value of ammonia (pKa = 9.24). There are thermophiles that are able to alleviate 
ammonium inhibition by forming alanine through amination of pyruvate, such as the 
moderately thermophilic amino acid fermenting Clostridium strain P2 (Orlygsson 
et al. 1995). Accumulation of ammonium and VFA plus alcohols can also be 
inhibitory as they contribute to the increase of the osmolarity of the fermentation 
broth.
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5 Future Perspectives and Conclusions 

So far, the physiology of only a few strict anaerobic thermophiles has been inves-
tigated in more detail, including Cl. thermocellum, and species of 
Caldicellulosiruptor, Thermoanaerobacter, and Thermotoga, and has been captured 
in a metabolic model (Nogales et al. 2012; Zhang et al. 2009, 2021; Tong et al. 2013; 
Garcia et al. 2020; Gautam and Xu 2021). Most attention has been paid to the sugar 
metabolism for production of biofuels and chemicals, due to the availability of 
substantial sugar-rich waste streams and lignocellulosic biomass resources. There 
is an increasing attention in the physiology of protein and amino acid degradation as 
this may lead to other types of biochemicals and production of enzymes of interest to 
the industry. Thermophilic lipid and alkane degradation is still a young study field of 
interest to the oil industry and for bioremediation of oil spills. Recently, a thermo-
philic community with a dominant novel thermophilic bacterium within the phylum 
actinobacteria, “Candidatus Syntraliphaticia,” was described able to degrade 
n-alkanes (Liu et al. 2020). It improves degradation in the presence of fumarate, 
forming an n-alkyl-succinate, which is succeeded by an n-alkyl-succinyl-CoA that 
will undergo β-oxidation steps forming acetate, hydrogen/formate, and CO2. This 
consortium also contains methanogens that further improve the performance by 
removing these inhibiting fermentation products through producing methane. Anaer-
obic alkane degradation works better under thermophilic than under mesophilic 
conditions due to improved accessibility of these compounds through increased 
solubility and desorption (Hlihor et al. 2017). This can be an issue deeper in oil 
reservoirs where temperatures are high. 

To further improve yields of these products, metabolic engineering might be 
required for commercial application of these thermophiles. However, genetic pro-
tocols have been accomplished for only a few strict anaerobic thermophiles, includ-
ing Cl. thermocellum (Tripathi et al. 2010), Caldicellulosiruptor bescii (Cha et al. 
2013), and species of Thermotoga (Han et al. 2014), Thermoanaerobacter, and 
Thermoanaerobacterium (Shaw et al. 2010), of which a few are promoted to become 
platforms for cell factories. Tools and protocols for applying CRISPR/Cas genome 
editing in thermophiles are becoming available as well (Le and Sun 2022). Engi-
neering studies started with removing genes to avoid by-product formation, which 
led to slight increases of yields but can make the performance of the strain weaker 
due to lower energy yields (Scully and Orlygsson 2017). Currently, the focus is on 
improving yields of fermentation products already generated by these bacteria such 
as hydrogen, ethanol (Crosby et al. 2019), butanol (Bhandiwad et al. 2014), and 
lactate (Mazzoli and Olson 2020), but also for the production of thermostable 
enzymes (Sahoo et al. 2020). The intention is to make several of these 
thermoanaerobes into cell factories or “thermochassis” (Vavitas et al. 2022) through 
introducing foreign genes to produce a wider palette of commodities.
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Thermostable Enzymes and Their 
Applications 

Sean Michael Scully and Johann Orlygsson 

Abstract Microbial enzymes are of great importance for the degradation of organic 
material with relevance in the bioremediation of organic waste, bioenergy genera-
tion, large-scale industrial bioprocesses, and more. The current chapter deals with 
the most important enzymes thermophilic bacteria produce, starch-degrading 
enzymes, celluloses, hemicelluloses, proteases, and more. Thermophilic bacteria 
are ubiquitous in nature and grow on wide variety of substrates due to their secretion 
of extracellular enzymes. In present study, the most relevant thermophilic, anaerobic 
bacteria degrading various polymeric substrates are described. 

1 Introduction 

Enzymes are classified into six groups; ligases, isomerases, oxidoreductase, ester-
ases, lyases, transferases, and hydrolases (Rigoldi et al. 2017). It has been estimated 
that 85% of the enzymes of biotechnological potential today are hydrolases with 
around 30% of all bulk enzyme sales being enzymes involved in the degradation of 
starch (Elleuche and Antranikian 2013). 

The catalytic properties of enzymes produced by thermophiles have been 
exploited to carry out efficient and cost-effective degradation of various compounds 
in research, and in various industrial sectors like food, health, cosmetics, agriculture, 
chemistry, and energy (Rigoldi et al. 2017; Barzkar et al. 2018; Wu et al. 2021; 
Wang et al. 2019; Sahoo et al. 2020). Enzymes have long been used as detergents 
and for food production, mainly in cheese, sourdough, beer, and wine together with 
the production of leather, indigo, and linen (Prakash et al. 2013). The development 
of large-scale production, isolation, and purification of enzymes from thermophilic 
bacteria has provided biocatalysts to be used as molecular tools of actual industry 
processes (Leisola et al. 2017). 
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The use of enzymes can be broadly categorized as either biocatalysis or biotrans-
formation; biocatalysis is generally understood to use specific enzymes while bio-
transformation typically involves the use of whole cells. As with any technology, the 
use of enzymes, whether as purified enzymes or as a part of a whole-cell system, 
presents several advantages as well as potential drawbacks. First and foremost, 
enzymes are incredibly efficient catalytic agents. A typical traditional chemical 
catalyst is often used at a concentration between 0.1 and 1% (on a mole basis) 
while enzymes are often employed at concentrations between of 10-3 to 10-4 mole). 
By their nature, enzymes are both renewable and biodegradable. Enzymes frequently 
exhibit a high degree of reaction selectivity, often being chemoselective, 
stereoselective, and regioselective with some enzymes displaying a degree of cata-
lytic promiscuity catalyzing reactions beyond their “native” selectivity. A common 
selling point of the use of biocatalysis is the use of mild reaction conditions. While 
many thermophilic enzymes have temperature optima close to the boiling point of 
water, some of these enzymes retain activity at lower temperatures (Sahoo et al. 
2020). Many enzymes are also compatible with organic solvents. Enzymes and 
whole cells can often be fixed to a solid surface or encapsulated in a solid matrix 
allowing their facile reuse. 

The use of biocatalysts is not without its potential drawbacks. Often-cited concern 
is the cost associated with using purified enzymes or bioreactors as well as the range 
of conditions in which they can operate. In the case of some classes of enzymes, such 
as oxidoreductases, cofactors such as NAD(H), NADP(H), pyridoxal phosphate, 
Vitamin B12, and FADH2, are often required. While purified cofactors are often 
expensive, they are often only required in small quantities and can often be recycled 
by coupling the desired reaction with a secondary reaction that will recycle the 
cofactor needed (Sharma et al. 2022; Bachosz et al. 2023). Alternately, whole cell 
systems may not require the addition of exogenous cofactors. Also, the use of 
purified enzymes or whole cells may complicate reactions although this can often 
be mitigated by immobilization or the bulk separation of cells (Li et al. 2022). While 
the stereoselectivity of many enzymes is often cited as a tremendous advantage, it 
can also be a limitation (Raczynska et al. 2021). Another potential drawback to 
enzyme catalysis is various inhibition phenomena as well as the prospect of dena-
turation over time, limiting the usable life of a given catalyst. That said, there are 
reports of some enzyme systems being used for dozens if not hundreds of cycles in 
industrial settings (Zheng et al. 2017). 

Enzymes have numerous applications. Thermophilic microorganisms have 
shown to be a good source of novel enzymes which are suitable for industrial 
applications. They produce a broad variety of enzymes, e.g., amylases, phospha-
tases, cellulases, hemicellulases, proteases, lipases, laccases, and other more specific 
enzymes usable in food, textile, dairy, pharmaceutical, and more (Atalah et al. 2019; 
Ajeje et al. 2021). The main reason for the importance of thermophilic enzymes for 
industrial applications is economical both in value-added product and biofuel pro-
duction. The use of enzymes for biomass utilization at high temperatures improves 
enzyme penetration through the cell wall of lignocellulosic biomass and helps to 
disrupt crystalline elements within its structure.
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Fig. 1 Indigo is the result of the reduction of the yellow, water soluble form of indigo (Leuco-
indigo) by a moderately thermophilic anaerobe, Clostridium isatidis 

One of the early applications of microorganisms, albeit unknown to early users, 
was the biotransformation of glycosides in wood (Isatis tinctoria) for the production 
of a truly high-value compound included the formation of indigo, a blue dye used for 
coloring cotton fabrics since antiquity. Historically, the preparation of indigo from 
balled woad was performed in wood vats with the addition of wood ash to maintain 
an alkaline pH and by keeping the vat’s temperature around 50–60 °C (Clark et al. 
1993; Andreesen 2005). The organism responsible for the biotransformation is the 
moderately thermophilic and somewhat aerotolerant Clostridium isatidis which was 
isolated from woad vats used in Europe during medieval times (Padden et al. 1998, 
2000). Subsequent work with isolates from other historic woad preparation con-
cluded that C. istatidis is the responsible organism for the biotransformation (Padden 
et al. 2000). Figure 1 shows the production of indigo by Clostridium isatidis. 

When evaluating the use of an enzyme for a specific purpose, understanding its 
operating parameters, such as temperature, pH, and salinity ranges, is critical. An 
often-overlooked parameter is the tolerance of an enzyme to oxygen, something of 
particular importance with enzymes from strictly anaerobic bacteria. Other important 
parameters are the use of activators, inhibitors, cofactors, thermal stability, solvent 
stability, and half-life. In this chapter, we will give an overview of the main types of 
enzymes produced by thermophiles and the wide variety of applications.
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2 Hydrolases from Thermophilic Anaerobes 

2.1 Amylases and Pullulanases 

2.1.1 Structure of Starch 

Starch is a ubiquitous polysaccharide composed of glucose residues. In plants and 
some algae species, starch serves as a storage of carbon and energy in a manner 
analogous to glycogen in higher animals. Starch is widely associated with edible 
terrestrial plants such as wheat, potatoes, rice, oats, and corn and typically forms 
granules within the cell (Wang et al. 2022; Apriyanto et al. 2022). Green algae such 
as Ulva species also contain starch which can make up to 45% of their dry weight 
(Wang et al. 2022). Starch is water soluble, depending upon the molecular weight 
and degree of branching, and is easily hydrolyzed in the presence of dilute acid, 
particularly at elevated temperatures. As such, starch is an abundant raw material for 
bioprocessing as well as other noteworthy applications related to its gelling proper-
ties (Wang et al. 2022; Apriyanto et al. 2022). 

Starch is not a singular substance but can mainly be divided into amylose and 
amylopectin. Amylose is a linear polysaccharide while amylopectin is highly 
branched and constitutes the majority of starches found in nature (Fig. 2). In both 
instances, the fundamental unit of this glycan is maltose, a glucose disaccharide. 
Amylose is a linear homopolysaccharide composed of repeating glucose residues 
linked via a α-1,4-O-glycosidic bonds. The number of repeating glucose residues are 
typically between 500 and 20,000 units (Bergthaller and Hollmann 2014), although 
this is highly dependent upon the source of the starch. In practice, even amylose 
contains some degree of branching although this is typically less than 0.1% of the 
linkages present (Bergthaller and Hollmann 2014). Due to its hydrophilic nature, 
amylose is somewhat soluble in water although it tends to be quite viscous and forms 
a gel-like slurry. Similar to amylose, amylopectin has a linear backbone composed of 
the aforementioned α-1,4-O-glycosidic bonds with a high degree of branching at C6

Fig. 2 The structure of starch. Amylose (left) and amylopectin (right); α-1,4-O-glycosidic bonds 
are shown in red, α-1,6-O-glycosidic bonds are shown in magenta; n = 500–20,000, m = 20–30



position via an α-1,6-O-glycosidic bonds with the sidechains composed of up to 
30 glucose residues. Amylopectin molecules are insoluble and can contain up to 
6x106 glucose residues (Naguleswaran et al. 2014), highlighting their utility as 
storage of carbon and energy.
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Fig. 3 The structure of 
pullalan which is composed 
of a maltotriose with two 
internal α-1,4-O-glycosidic 
bonds with the first and third 
glucose residues liking to 
other maltotriose residudes 
via an α-1,6- O-glycosidic 
linkages 

Similar to starch, pullulan is a polysaccharide consisting of maltotriose units, also 
known as glucan composed of α-1,4-O- and α-1,6-O-glycosidic bonds which is 
synthesized by a number of microorganisms such as the black yeast-like fungi 
Aureobasidium pullulans (Cheng et al. 2011). Unlike starch, pullulan is a highly 
structured glucan with a 2:1 ratio of α-1,4- to α-1,6 bonds; the fundamental unit is 
maltotriose in which individual glucose residues bear an α-1,4-linkage while 
maltotrioses units are connected by an adjoining α-1,6-linkage (Fig. 3). The molec-
ular weight range of pullulans can range from 4.5 × 104 to 6 × 105 Da (Lee and Yoo 
1993). Pullulan is a tasteless, odorless, nonhygroscopic powder, transparent films, 
viscous, adhesive solution (Domań-Pytka and Bardowski 2004). 

2.1.2 Enzymes 

The enzymatic deconstruction of starch to its constituent glucose units is a multistep 
process requiring the synergistic action of multiple enzymes. Fortunately, a wide 
number of organisms across all three domains of life possess amylases. Even a large 
number of thermophilic anaerobes have the native ability to degrade amylose, 
amylopectin, and maltose. 

A wide range of enzymes acting on starch and derivatives thereof have been 
described including, α-amylases, β-amylase, glucoamylase, α-glucosidases, 
pullulanases, isoamylases, and α-glucan lyase. Each of these enzymes differ in its 
substrate specificity and mechanism of action (Table 1). 

The first step of starch degradation is liquefaction which requires an endo-acting 
α-amylases to hydrolyze the internal glycosidic linkages resulting in the liberation of 
maltodextrins. The subsequent step (saccharification) employs two enzymes: a 
pullulanase which debranches the maltodextrins by hydrolyzing any α-1,6 linkages



and exo-acting glucoamylase which releases individual glucose residues from the 
nonreducing end of the polymer (Rodriguez-Sanoja et al. 2005). 
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Table 1 Specificity of starch-acting enzymes 

Enzyme Substrate Other names Specificity Notes 

α-Amylase Starch 1,4-α-D-glucan 
glucanohydrolase 
(EC 3.2.1.1) 

α-1,4-O-
glycosidic 

Endo-acting 

β-Amylase Starch 1,4-α-D-glucan 
maltohydrolase 
(EC 3.2.1.2) 

α-1,4-O-
glycosidic 

Exo-acting; cleaves 
second linkage from 
nonreducing end, 
release maltose 

Glucoamylase Starch 1,4-α-D-glucan 
glucohydrolase 
(EC 3.2.1.3) 

α-1,4-O- Exo-acting; requires 
acidic conditions 

α-Glucosidases Maltodextrins 1,4-α-D-glucoside 
glucanohydrolase, malt-
ase (EC 3.2.1.20) 

α-1,4-O- Exo-acting; removes 
single glucose 
resides from the end 
of the maltodextrin 

Pullulanse Amylopectin, 
glycogen, 
pullulan 

Pullulan 
α-1,6-glucanohydrolase 
(EC 3.2.1.41) 

α-1,6-O- Endo-acting, 
debranching 

Isoamylase Amylopectin, 
glycogen 

Glycogen 
α-1,6-glucanohydrolase 
(EC 3.2.1.68) 

α-1,6-O- Debranching 

α-Glucan lyase Starch, 
maltodextrin 

1,4-α-D-glucan exo-4-
lyase (EC 4.2.2.13) 

α-1,4-O-
glycosidic 

Yields 1,5-anhydro-
D-fructose 

Given the ubiquity of starch-rich crops, the demand for amylolytic enzymes by 
the starch processing industry represents one of the largest enzyme markets in the 
world. The modern industrial hydrolysis of starch into high-fructose corn syrup uses 
a number of enzymes at temperatures well above 50 °C, although none are sources 
from thermophilic anaerobes. Bacillus licheniformis, a thermotolerant facultative 
anaerobe, is widely used for enzyme production used in starch processing today 
(Hussain et al. 2013). 

For an amylase to be useful for industrial starch processing, it should have an 
operating temperature near 100 °C, have high thermal stability, and not require the 
presence of a divalent metal ion for activity (due in part to gelatinization). The 
rationale for selecting enzymes for this application that operate at high temperatures 
is twofold: to decrease the viscosity of the starch solution and to prevent microbial 
contamination. 

2.1.3 Thermophilic Starch-Degrading Enzymes: Microorganisms 

A number of thermophilic anaerobes are known to produce various starch-acting 
enzymes. The ability to ferment starch as carbon source is a common feature of many 
genera including Clostridium thermosulfurogenes (Hyun and Zeikus 1985a, b),



Thermoanaerobacter (Zheng et al. 2010), and more. That said, relatively few 
amylases from these organisms have been characterized. Table 2 summarizes the 
main thermophilic bacteria producing α-amylases, glucoamylases, β-glucosidases, 
and pullulanases showing temperature and pH optimum and some other properties. 
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2.2 Cellulases 

2.2.1 Structure of Celluose 

Cellulose is a renewable carbon source that is available in abundance on Earth and is 
produced by a large number of organisms, although it is primarily associated with 
terrestrial plants and seaweeds (Urbina et al. 2021). It has been estimated that 
globally 100 billion tons of cellulose are produced annually (Varshney and Naithani 
2011). The utilization of cellulose for bioprocessing is of intense interest, particu-
larly in the context of producing biofuels such as ethanol from renewable lignocel-
lulosic biomass (Ajeje et al. 2017). 

Cellulose is one of the main components of lignocellulose where it serves as the 
primary structural component of the cell wall of plants. Conversely, bacterial 
celluloses serve as extracellular material. Regardless of its origin, cellulose is a 
linear homopolysaccharide comprised of β-D-glucopyranose units that are linked 
together by β-1,4-O-glycosidic bonds (Fig. 4). The fundamental unit of cellulose is 
cellobiose, a disaccharide of glucose connected by the aforementioned β-1,4-O-
glycosidic bond, as the enzymatic deconstruction of cellulose often removes glucose 
residues in increments of two glucose residues (Chen et al. 2023). 

Cellulose is one of the most recalcitrant polymers among all polysaccharides 
present in nature due to its highly stable glycosidic bond. Unlike starch, the ether 
linkage between the C1 and C4 carbons of adjoining glucose residues is difficult to 
attack as it is sequestered between adjacent heterocyclic rings. Furthermore, due to 
the presence of a large number of free hydroxyl groups, cellulose exhibits a high 
degree of inter- and intramolecular hydrogen bonding within individual cellulose 
strands and between strands. For this reason, cellulose often exists as a semicrystal-
line solid with large crystalline regions where there is a high degree of hydrogen 
bonding interspersed with amorphous sections (Fig. 4). Very long arrays of parallel 
chains aggregate into microfibrils. 

The vast majority of the attention on the deconstruction of cellulose has focused 
on the action of fungal enzymes due in no small part to organisms such as 
Trichoderma reesei being able to secrete large quantities of cellulases. Most often 
these enzymes have been cloned to rapidly growing bacterial hosts. In the past few 
years though, more attention has been on bacterial cellulases because of their fast 
growth rates and survival in harsh environments and their ability to produce multiple 
enzyme complexes which provide increased function and synergy.
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Table 2 Starch-acting enzymes from thermophilic organisms 

MW 
(kDa) 

Alicyclobacillus 
acidocaldarius 

α-Amylase 75 7.5 160 Schwermann et al. 
(2004) 

Thermotoga neapolitana α-Amylase 75 6.5 48 Park et al. (2010) 

Thermococcus 
profundus 

α-Amylase 80 5.0–6.0 43 Chung et al. (1995) 

Thermotoga maritima α-Amylase 85–90 7.0 61 Liebl et al. (1997) 

Dictyoglomus 
thermophilum 

α-Amylase 90 5.5 81 Fukusumi et al. 
(1988) 

Thermotoga maritima α-Amylase 90 8.5 241 Ballschmiter 
(2006) 

Pyrococcus furiosus α-Amylase 90 4.5 76 Yang et al. (2004) 

Thermococcus sp. α-Amylase 95 5.0 51 Wang et al. (2008) 

Pyrococcus furiosus α-Amylase 100 5.5–6.0 100 Koch et al. (1990) 

Pyrococcus woesei α-Amylase 100 5.5 68 Koch et al. (1991) 

Clostridium 
thermosaccharolyticum 

Glucoamylase 70 5.0 75 Specka et al. 
(1991) 

Thermoanaerobacter 
tengcongensis 

Glucoamylase 75 5.0 °77 Zheng (2010) 

Clostridium 
thermohydrosulfuricum 

α-Glucosidase 75 5.0–5.5 – Saha and Zeikus 
(1991) 

Thermotoga maritima α-Glucosidase 90 7.5 110 Raasch et al. 
(2000) 

Thermococcus sp. AN1 α-Glucosidase 98 7.0 60 Piller et al. (1996) 

Pyrococcus furiosus α-Glucosidase 105 5.0–6.0 125 Costantino et al. 
(1990) 

Pyrococcus furiosus α-Glucosidase 105–115 5.5 125 Chang et al. (2001) 

Anaerobranca 
gottschalkii 

Pullulanase 70 8.0 96 Bertoldo (2004) 

Thermoactinomyces 
thalpophilus 

Pullulanase 70 7.0 79 Odibo and Obi 
(1988) 

Thermoanaerobacter 
ethanolicus 

Pullulanase 80 6.0 109 Lin and Leu (2002) 

Thermotoga neapolitana 80 5.0–7.0 93 Kang et al. (2011) 

Clostridium 
thermohydrosulfuricum 

Pullulanase 85 5.5–6.0 – Hyun and Zeikus 
(1985a, b) 

Clostridium 
thermohydrosulfuricum 

Pullulanase 90 5.0–5.5 136.5 Saha et al. (1988) 

Thermococcus celer Pullulanase 90 5.5 – Canganella et al. 
(1994) 

Thermotoga maritima Pullulanase 90 6.0 96.3 Bibel et al. (1998) 

Thermococcus siculi Pullulanase 95 6.0 148.6 Jiao et al. (2011) 

Pyrococcus furiosus Pullulanase 98 5.5 110 Brown and Kelly 
(1993)
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Table 2 (continued)

MW 
(kDa) 

Thermococcus litoralis Pullulanase 98 5.5 119 Brown and Kelly 
(1993) 

Desulfurococcus 
mucosus 

Pullulanase 100 5.0 – Canganella et al. 
(1994) 

Pyrococcus woesei Pullulanase 100 6.0 90 Rudiger 
et al. (1995) 

Thermococcus 
aggregans 

Pullulanase 100 6.5 – Canganella et al. 
(1994) 

Fig. 4 Cellulose is a 
common carbohydrate 
composed disaccharide 
glucose residues 
(cellobiose) linked by 
β-1,4-O-glycosidic bonds 

Table 3 Specificity of enzymes acting on cellulose 

Enzyme Substrate Other names Specificity Notes 

Cellobiohydrolase 
(CBH) 

Cellulose Cellulose 
1,4-β-cellobiosidase, 
exo-1,4-β-D-glucanase, 
Avicelase (EC 3.2.1.91) 

β-1,4-O Exo-acting, 
yields 
oligosaccharides 

Endo-1,4-β-D-
glucanase (EG) 

Cellulose, 
cellodextrin 

4-β-D-glucan 
4-glucanohydrolase, 
CMCase (EC 3.2.1.4) 

β-1,4-O Endo-acting, 
random attacks 
internal 
1,4-linkage 

β-Glucosidase 
(BG) 

Cellobiose, 
other soluble 
cellodextrins 

β-D-glucoside 
glucohydrolase, cellobiase 

β-1,4-O Exo-acting; lib-
erates individual 
glucose residues 

2.2.2 Enzymes 

To achieve the complete deconstruction of crystalline cellulose into glucose, multi-
ple enzymes working synergistically are required. Table 3 summarizes the main 
enzymes responsible for cellulose degradation. 

Cellulases are grouped into glycoside hydrolyse families (Park et al. 2017) and 
dominate the enzyme market worldwide (Linares-Pasten et al. 2014). Hydrolysis of 
cellulose requires the collaboration of three classes of enzymes: cellobiohydrolases 
(CBH), endoglucanases (EGL), and β-glucosidases (BGL) (Wood and Garcia-
Campayo 1990). 

Degradation of cellulose to glucose includes various EGLs to cleave cellulose 
chains internally, releasing shorter fragments and also cleave of the smaller



fragments to 2–4 carbon saccharides. The CBHs further degrade the smaller frag-
ments to release the disaccharide cellobiose units. The CBHs are further classified as 
BCH I that acts on the reducing end and BCH II that acts on the nonreducing end. 
Further degradation of cellobiose is accomplished by β-glucosidase (BGL) releasing 
glucose and by cellobiose phosphorylase releasing glucose-1-phosphate and glu-
cose. For an effective cellulose degradation, synergistic action of these three cellu-
lase components is needed. EG forms nicks in the polymer opening the reducing and 
nonreducing end which are further used by CBH to release the cellobiose and 
oligosaccharide units. Finally, the BGL releases glucose from cellobiose (Dadwal 
et al. 2021). 
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Enzymatic hydrolysis of cellulose most often occurs at 40–50 °C which is often 
performed at slow rate with low yields of sugars and incomplete hydrolysis. Ther-
mostable or thermotolerant enzymes are, therefore, often suitable for various use in 
industries, e.g., textile, detergent, animal feed, pharmaceutical, and paper and pulp 
industry. The ability to hydrolyze the polymer at high temperatures is currently in 
focus because of the increased demand for bioethanol (Zuliani et al. 2021). The use 
of high temperatures for cellulose degradation is also prerequisite for various other 
industrial processes. Additional factors favoring high temperatures for cellulose 
degradation are decreased risk of contamination, low cost of cooling, and recovery 
of end products like ethanol (Scully and Orlygsson 2015). 

2.2.3 Thermophilic Cellulose-Degrading Enzymes: Microorganisms 

Mainly there are two types of cellulases existing in thermophilic microorganisms. 
Firstly, extracellular enzymes mainly produced by filamentous fungi and aerobic 
bacteria, and secondly, via secretion of a multienzyme complex, the so-called 
cellulosome complex in anaerobic bacteria like the thermophile Clostridium 
thermocellum, but also by mesophiles like Ruminococcus, Acetovibrio, 
Bacterioides, and in anaerobic fungi like Neocallimastigo mycota (Bayer et al. 
2008; Doi 2008; Haitjema et al. 2017). The former is more common but anaerobic 
bacterial cellulases are often more stable and have increased specific activity. 

Microorganisms capable of cellulose degradation have been isolated from various 
environments, such as soil (Schut 2022) hot springs (Peng et al. 2015), and compost 
systems (Munir et al. 2021). Among thermophilic bacteria producing cellulases are 
the aerobic Bacillus, Geobacillus, Caldibacillus, Acidothermus, Caldocellum and 
the anaerobic genera of Clostridium, Caldicellulosiruptor, and more. Several inves-
tigations have been conducted on Thermotoga species concerning their cellulolytic 
activity. Thermotoga neapolitiana CelA and Cel B were investigated for their 
cellulose production (Bok et al. 1998). The Cel A protein was optimally active at 
pH 6.0 and 95 °C, but the Cel B protein had a broader pH range (6.0–6.5) at 106 °C. 
Both enzymes showed a high level of activity, or 1.219 and 1.536 U/mg. 
Thermotoga maritima MSB8 was investigated by fusing cellulase-β-glucosidase 
by gene fusion (Hong et al. 2007). The fusion protein showed both cellulase 
(Cel5C) and β-glucosidase (BglB) activity. The former at pH 8.0, 70 °C and the 
latter at pH 8.0 and 80 °C. Exo-1,4-β-cellobiohydrolase was isolated from



Thermotoga sp. FjSS3-B1 (Ruttersmith and Daniel 1991). This enzyme showed a 
half-life of 70 min at 108 °C and was active against amorphous cellulose and 
CM-cellulose but had only limited effects on filter paper and Sigmacell 20 hydroly-
sates. The pH optimum was around neutral. 
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Several Caldicellulosiruptor have also been investigated for the cellulase acidity 
at extreme temperatures. Cellulolytic Caldicellulosiruptor uses unique approaches 
to degrade cellulosic substrates. Many thermophilies in general freely secrete indi-
vidual cellulases and others assemble large multiprotein complexes; cellulosomes 
(Bayer et al. 2008) with binding and cellulolytic properties, Caldicellulosiruptor 
species deploy a novel system with properties of both. For a recent review on the 
subject, see Lee et al. (2018). C. kristjanssoni was isolated from Iceland and showed 
an optimum growth around 78 °C (Bredholt et al. 1999) and was later investigated 
for cellulolytic activity on avicel (Bredholt et al. 1995). Caldicellulosiruptor 
obsidiansis was isolated from Yellowstone and grows optimally at 78 °C on avicel, 
filter paper, and processed cardboard (Hamilton-Brehm et al. 2010). Other known 
thermophiles that have been reported to be cellulolytic are, e.g., Aneurinibacillus 
thermoaerophilus (Acharya and Chaudhary 2012), Anoxybacillus flavithermus 
EHP2 (Salah et al. 2007), Clostridium thermocellum (Lv and Yu 2012; Otajevwo 
and Aluyi 2011), and more. 

2.3 Hemicellulases 

2.3.1 Structure 

Hemicellulose is highly diverse family of heteropolysaccharides that represent the 
most abundant renewable terrestrial energy source after cellulose and make up about 
a third of annual biomass production (Spiridon and Popa 2008). As one of the 
components of lignocellulose, hemicelluloses are closely associated with the cellu-
lose and lignin found in plants where they act as a matrix substance within the cell 
wall (Spiridon and Popa 2004). However, in addition to being found in terrestrial 
plants, hemicelluloses can also be found in a number of seaweeds (Misurcova 2012) 
while others still are of microbial origin. 

Unlike cellulose, hemicellulose tends to have random, amorphous structures that 
are only comprised of 500–3000 residues (Microbial Biotech textbook) which can be 
easily hydrolyzed by solutions of dilute acid or base (Fig. 5). Furthermore, there is a 
tremendous diversity of hemicellulose that can be comprised of a mixture of hexoses 
(such as glucose, galactose, and mannose), pentoses (D-arabinose, D-xylose), 
methylpentose (L-rhamnose), and uronic acids each in addition to various modifica-
tions such as esterification and etherification. While the “backbone” of a hemicellu-
lose is commonly composed of β-1,4-linkages, other configurations are not 
uncommon, and branching is also a common occurrence. The physical properties 
of specific hemicelluloses are dependent upon its composition, nature of the glyco-
sidic bonds, molecular weight, and modifications, all of which vary greatly contin-
gent upon the plant source (Ebringerová 2005).
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Fig. 5 Xylan is among the most common of the hemicelluloses. Here xylose residues are linked by 
β-1,4-O-glycosidic bonds with individual residues bearing modifications such as linking to uronic 
acids, acyl groups such as acetate, or lignols such as ferulic acid which can serve as a linker between 
strands of xylan 

Given the large number of possible constituents and modifications, there is a 
tremendous diversity of hemicellulases present in nature. Four categories are used to 
describe hemicellulases based upon their composition: xyloglycans (xylans), 
mannoglycans (mannans), mixed β-glucan, and xyloglucans (Ebringerová 2005). 
The most common of the hemicelluloses is xylan. Other common hemicelluloses 
include β-glucan (a glucose polymer consisting of β-1,3-O glycosidic bonds), 
xyloglucan, arabinoxylan, mannan, galactomannan, arabinan, galactan, and 
polygalacturonan, although these glucans require specific enzymes systems to 
hydrolyze their specific linkages. 

Xylans usually consist of a backbone of β-(1 → 4)-linked xylose residues and can 
be further divided into homoxylans and heteroxylans. Homoxylans have a backbone 
of D-xylopyranose residues linked by β(1 → 3) or mixed β(1 → 3, 1 → 4)-glycosidic 
linkages. Homoxylans mainly have structural functions. Heteroxylans such as 
glucuronoxylans, glucuronoarabinoxylans, and complex heteroxylans, have a back-
bone of D-xylopyranose and short carbohydrate branches. For example, 
glucuronoxylan has a substitution with α-(1 → 2)-linked glucuronosyl and 4-O-
methyl glucuronosyl residues. Arabinoxylans and glucuronoarabinoxylans contain 
arabinose residues attached to the backbone (Salmen 2022). 

The mannan-type hemicellulose can be classified into two types based on their 
main chain difference, galactomannans and glucomannans. Galactomannans have 
only β-(1 → 4) linked D-mannopyranose residues in linear chains. Glucomannans 
consist of both β-(1 → 4) linked D-mannopyranose and β-(1 → 4) linked D-
glucopyranose residues in the main chains. As for the side chains, D-galactopyranose 
residues tend to be 6-linked to both types as the single side chains with various 
amount (Voiniciuc 2022). 

The conformation of the mixed linkage glucan chains usually contains blocks of 
β-(1 → 4) D-Glucopyranose separated by single β-(1 → 3) D-Glucopyranose. The 
ratio of β-(1 → 4) and β-(1 → 3) are about 70% and 30%. These glucans primarily 
consist of cellotriosyl (C18H32O16) and cellotetraosyl (C24H42O21) segments in 
random order. There are some studies that show the molar ratio of cellotriosyl/ 
cellotetraosyl for oat (2.1–2.4), barley (2.8–3.3), and wheat (4.2–4.5) (Salem 2022; 
Voiniciuc 2022; Hemati et al. 2022).
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Xyloglucans have a backbone similar to cellulose with α-D-xylopyranose residues 
at position 6. To better describe different side chains, a single letter code notation is 
used for each side chain type. G unbranched Glc residue; X α-d-Xyl-(1 → 6)-Glc. 
L β-Gal, S α-l-Araf, F α-l-Fuc. These are the most common side chains (Hemati 
et al. 2022). 

2.3.2 Enzymes 

Given the tremendous diversity of hemicelluloses, the enzymatic deconstruction of 
these polysaccharides needs a much more complex set of enzymes for degradation as 
compared with cellulose degradation. Hemicellulases can be divided into two major 
classes. Firstly, enzymes with depolymerization action, which hydrolyze the main 
chain glycosidic bonds (xylanases, glucanases, and mannanases), and secondly, 
accessory enzymes, which break the ester bonds and glycosidic bonds of hemicel-
lulose side chains (α-L-arabinofuranosidase, acetyl xylan esterase, β-glucuronidase, 
glucuronyl esterase, and ferulic acid esterase (Shallom and Shoham 2003). Xylan is 
the main constituent of the hemicellulosic compounds that account for one-third of 
the total organic carbon on Earth (Agger et al. 2022). Industrial processes to remove 
xylan components from lignocellulose include high temperatures and pressure under 
alkaline conditions (Kumar and Satyanarayana 2011). These processes are energy 
demanding and environmentally unfriendly. Therefore, mild enzyme methods using 
various hemicellulases are preferred today, especially enzymes that are active at high 
temperatures. The main types of hemicellulases are endoxylanases, β-xylosidase, 
arabinofuranosidase, acetyl-xylan esterase, and more. The endoxylanases (EC: 
3.2.1.8) mainly cleave the β-glycosidic bonds of the xylan backbone. The 
β-xylosidases (EC: 3.2.1.37) degrade xylobiose and other xylooligosaccharides to 
yield xylose. Arabinofuranosidases (EC: 3.2.1.55) and acetyl-xylan esterases 
(EC:3.1.1.72) attack side chains of heterogenous xylan substrates and help xylanases 
and β-xylosidases to degrade xylan completely (Collins et al. 2005). Additionally, 
the synergistic action of these enzymes facilitates xylan and lignin removal from 
cellulose without affecting the cellulose structure (Collins et al. 2005). 

2.3.3 Thermophilic Hemicellulose-Degrading Enzymes: 
Microorganisms 

Hemicellulose-degrading enzymes were first discovered from mesophilic bacteria 
and fungi. Such enzymes do not withstand the extreme conditions needed in the 
various industries, e.g., bleaching of pulp in the paper industry. Therefore, enzymes 
from thermophilic bacteria have gained increased interest in the last decades. There 
are several reasons for considering bacterial over fungi enzymes (Zhu et al. 2011; 
Verma et al. 2019). Bacteria are easily cultivated and grow fast and harvesting 
methods have been well documented. Thus, bacteria are regarded as attractive 
factories for enzyme production (Verma et al. 2019). The majority of fungal



xylanases are either acidic or neutral, whereas many bacterial enzymes work at 
alkaline pH range, often an advantage in the pulp and paper industry (Verma et al. 
2019). Finally, bacterial hemicellulose enzymes are often smaller than enzymes of 
fungal origin, which increases their diffusion into the rigid lignocellulosic biomass 
(Breccia et al. 1998; Verma et al. 2019). 

168 S. M. Scully and J. Orlygsson

Below are examples of the various literature on thermophilic anaerobes degrading 
various portions of hemicelluoses. Geobacillus species are perhaps the best-known 
thermophiles known to produce xylanases and other hemicellulose-degrading com-
ponents (Chadha et al. 2019). These bacteria are however aerobic and thus not a 
topic in this chapter. While only a few Caldicellulosiruptor species can degrade 
cellulose, all known species are hemicellulolytic and among good producers of 
xylanases are species within the genus, such as C. bescii, C. lactoaceticus, and 
C. owenensis (Crosby et al. 2022; An et al. 2015; Jia et al. 2014; Liu et al. 2017). 
C. bescii GH10 xylanase was overexpressed in E. coli and showed high activity with 
a half-life of 7.7 h at 60 °C. The enzyme was also capable of cellulose degradation 
and may therefore be a good choice for biomass degradation (An et al. 2015). 
C. lactoaceticus also possesses GH10 xylanase activity at 80 °C and pH 4.5 (Jia 
et al. 2014). The enzymatic degradation of xylan resulted in liberation of XOS with 
methyl-glucouronic acid sub-chains. C. owensis produces thermostable xylanases 
which are optimally active at 90 °C and exhibited a half-life of 1 h at 80 °C and is 
capable of degrading hemicellulose of corn stover and cob (Liu et al. 2017). Other 
known thermophilic anaerobic xylanase-producing bacteria are, e.g., Herbivorax 
saccincola (Aikawa et al. 2018), Caldicoprobacter algertensis (Amel et al. 2016), 
and Thermoanaerobacterium aotearoense (Huang et al. 2015). Many thermophilic 
and hyperthermophilic bacteria have been reported to produce endoxylanases, 
including Thermotoga (Bok et al. 1998; Winterhalter et al. 1995), Clostridium 
(Rani and Nand 2000; Heinze et al. 2017), Caldicellulosiruptor (Crosby et al. 
2022), and various aerobic thermophiles (Geobacillus, Bacillus, Streptomyces sp). 

Degradation of other hemicellulose types like β-glucan, xyloglucan, 
arabinoxylan, mannan, galactomannan, arabinan, galactan, and polygalacturonan is 
much less studied as compared with xylan. The most thermoactive α-galactosidase 
was isolated from Thermotoga neapolitana 5068 possessing a temperature optimum 
at 100–103 °C (Duffaud et al. 1997). Almost all thermostable mannanases have been 
isolated from fungi (Aulitto et al. 2019), except for a description of β-mannanase 
from Thermotoga species (Chhabra et al. 2001) and Dictyglomus thermophilum 
(Gibbs et al. 1999). 

2.4 Proteases and Amino Acid-Degrading Enzymes 

2.4.1 Enzymes 

Proteases (EC 3.4) are a diverse class of hydrolyses that are among the most 
fundamental and most flexible family due to their role in the hydrolysis of proteins



via the hydrolysis of peptide bonds making them critical to the core physiological 
activities of all organisms. Proteases have found an expansive range of applications 
ranging from leather processing, silver recovery, medical purposes, food and feed 
processing, chemical synthesis, and waste treatment (Homaei et al. 2010, 2014; 
Homaei 2015; Homaei and Etemadipour 2015). According to some sources, the 
market value for proteases in 2016 is more than 65% of all enzymes produced 
(Shanmugavel et al. 2016) highlighting their widespread utility. Additionally, many 
proteases can hydrolyze carboxylic esters and often exhibit a high degree of catalytic 
promiscuity while retaining enantioselectivity, often toward the enantiomer most 
similar to their natural substrate, making them useful agents in organic synthesis 
(Bornscheuer and Kazlauskas 2006; Faber 2011). 
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Proteases are complex groups of enzymes that differ by their site of cleavage 
along a peptide, the nature of the active site, and associated mechanism of action, as 
well as their optimum pH and temperature. As is the case with other hydrolases, 
proteases can be classified as either endo- or exo-acting based on the location of 
peptide hydrolysis. The former cleaves at the terminal amino acid residues near the 
end of a polypeptide while the latter hydrolyzes internal peptide bonds (Souza et al. 
2005). The specific location of peptide hydrolysis is often determined by the 
neighboring steric factors dictated by neighboring sides chains; as an example, 
two serine proteases, trypsin and chymotrypsin, differ in their location of the 
hydrolysis with trypsin hydrolyzing peptide bonds. Another classification may be 
done based on their location of cleavage, i.e., aminoprotease acts on free amino-
terminal of the polypeptide chain and carboxylprotease on the carboxyl-terminal of 
the polypeptide chain. Further classification of proteases may be done according to 
their catalytic active site into four groups, serine-, cysteine-, aspartic-, and metallo-
proteases (Gupta et al. 2002). 

2.4.2 Thermophilic Protein-Degrading Bacteria 

Thermophilic, anaerobic degradation of proteins and amino acids are much less 
studied as compared with mesophilic bacteria (Orlygsson 1994). Early work on 
mesophilic bacteria mainly focused upon degradation of rumen microorganisms to 
understand the classification of protein-degrading organisms (Mead 1971; Elsden 
and Hilton 1979) and later on physiology of the rumen and soil consortia (Firkins 
et al. 2007). Of particular interest were Clostridium species of clinical relevance, 
such as Clostridium botulinum (Elsden and Hilton 1978). During these studies, it 
became clear that the importance of hydrogenotrophic methanogenesis in systems 
where protein degradation occurs was of great importance (Orlygsson et al. 1994). 
This was later investigated further leading to the observation that many amino acids, 
especially reduced amino acids (e.g., alanine, branched-chain amino acids) cannot be 
degraded anaerobically as single substrates unless the hydrogen produced in the 
initial oxidative step is scavenged (Faudon et al. 1995). These amino acids are 
therefore not degraded as single substrates unless the electrons produced are scav-
enged, either by coculturing the amino acid-degrading organism in a coculture with



hydrogen scavenging organisms, or by adding a chemical such as thiosulfate to 
scavenge the hydrogen produced (Fardeau et al. 1997; Scully and Orlygsson 2014). 
Thus, the branched-chain amino acids, leucine, isoleucine, and valine were degraded 
to their corresponding, one carbon shorter, branched-chain fatty acids, isovalerate, 
2-methylbutyrate, and isobutyrate (2-methylpropionate) under such conditions 
(Scully and Orlygsson 2014; Scully and Orlygsson 2019). Interestingly, recent 
investigations revealed that some species within the genera of Thermoanaerobacter 
and Caldanaerobacter, did not only produce their corresponding branched-chain 
fatty acids from branched-chain amino acids, but also to their corresponding alcohol 
when cultivated with thiosulfate as an electron acceptor (Scully and Orlygsson 
2019). This is an interesting mechanism of producing valuable high-carbon alcohols 
from amino acids. 
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Among thermophilic anaerobic bacteria that have been reported as proteolytic are 
members within the genera of Coprothermobacter (Gagliano et al. 2015), and the 
archaea Thermococcus (Koga et al. 2014) and Pyrococcus (Borissenko and Groll 
2005). Several Thermoanaerobacter and Caldanaerobacter species also exhibit 
proteolytic features (Scully 2019). 

2.5 Esterases and Lipases 

Lipases and esterases belong to the hydrolase family of enzymes and the class of 
serine hydrolases (Akram et al. 2023). They are classified into eight families (I–VIII) 
based on their differences in their physiological properties, conserved motifs, and 
amino acid sequences (Ramnath et al. 2017). Their activity involves synthesis, 
hydrolysis of fat, esterification, transesterification, interesterification, acidolysis, 
alcoholysis, and aminolysis (Verissimo et al. 2018; Nawal et al. 2019; Monteiro 
et al. 2020; Qiu et al. 2021; Adetunji and Olaniran 2021). These catalytic activities, 
however, have often limitations in most synthetic and chemical processes (Li et al. 
2012). Lipases do not require any cofactors to function and are highly soluble in 
water and can catalyze insoluble substrates like long-chain triacylglycerols. Many 
lipases have, however, high thermostability often necessary in various industrial 
processes; detergent, food, oleochemical, pulp and paper, resolution of drugs, 
wastewater treatment, peptide synthesis, and biodiesel (Bornscheuer 2002; Hasan 
et al. 2006; Sharma et al. 2001). Thermostable or thermotolerant lipases are wide-
spread research fields because of the desired properties of thermophilic enzymes 
compared with their mesophilic equivalents. A very significant feature of thermo-
philic lipases is their thermostability, which is an excellent property in most reaction 
conditions correlated with optimum enzymatic activity and growth. The thermosta-
bility of lipases has pushed them to the frontiers of being the most suitable catalyst in 
biodiesel production (Milasinovic et al. 2012). One of the main benefits of using 
lipases is the fact that these enzymes often work in solvent-free reactions. Important 
requirements for thermostability of lipases are a small hydrophobic surface, exposed 
N- and C-terminal loops, strong ion-pairing with arginine residues, hydrogen and



disulfide bonds, hydrophobic interactions, and interactions between aromatic pairs 
(Jaenicke and Böhm 1998). One of the main obstacles of using microbial lipases is 
the fact that they do not fulfill all the requirements for efficient biocatalysis. 
Therefore, in the past few years there has been extensive research to use genetic 
engineering to increase their thermostability (Li and Zhang 2005). 
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2.5.1 Thermophilic, Anaerobic Bacteria Producing Lipases 

There are very few thermophilic fermentative anaerobic bacteria known to produce 
lipases. However, there are numerous reports on thermophilic and thermostable 
lipases from aerobic bacteria and we refer to an excellent review from 2021 on 
this subject (Hamdam et al. 2021). 

In a study by Royter et al. (2009), two novel genes responsible for lipase 
production from Thermoanarobacter thermohydrosulfuricus strain (DSM) and 
Caldanaerobacter subterraneus subsp. tencongensis (DSM 15242, formerly 
Thermoanaerobacter tencogensis) were successfully cloned to E. coli (Royter 
et al. 2009). These enzymes were robust proteins and resistant against a large number 
of organic solvents and detergents and showed activity (10.90–12.15 U/mg) toward 
a broad spectrum of substrates, including triacylglycerols, monoacylglycerols, ester 
of secondary alcohols, and p-nitrophenyl esters. Some studies have been performed 
on the moderate thermophile species within the genus Anoxybacillus (Bakir and 
Metin 2016). Esterases from Anoxybacillus gonensis (Colak et al. 2005), a lipase 
from Anoxybacillus kamchatkensis (Olusesan et al. 2009), a lipase from various 
Anoxybacillus species (Pinzon-Martinez et al. 2010), a carboxylesterase from 
Anoxybacillus sp. PDF1 (Ay et al. 2011), and an esterase/lipase from Anoxybacillus 
flavithermus (Chis et al. 2013). An intracellular lipase from Anoxybacillus 
flavithermus was isolated and purified by Bakir and Metin (2016). The enzyme 
from the strain was stable at pH between 6.0 and 11.0 and at temperatures between 
25 and 50 °C for 24 h. The enzyme was highly stable against glycerol, sorbitol, and 
mannitol and preferred long-chain triacylglycerol and saturated fatty acids. Two 
lipases from the thermophilic, anaerobic bacterium, Thermosyntropha lipolytica 
were described by Salameh and Wiegel (2009). The bacterium retained 50% activity 
after incubation for 6 h at 100 °C. The enzymes, LipA and LipB are the most alkali-
thermophilic lipases (optimal pH at 25 °C = 9.4–9.6; optimal T = 96 °C) known 
today. It catalyzes the synthesis of diacylglycerols and various alcohol fatty acids. 
Finally, Fervidobacterium nodusum was investigated for lipase production capacity 
(Yu et al. 2010). The strain hydrolyzes triacylglycerols with long chains and has 
maximum activity at 70 °C and pH 9.0. The enzyme was activated by treating it with 
polar organic solvents like propanol and acetone.
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2.6 Pectinases 

The vast majority of biomass used as a feedstock for fuels, chemicals, and other 
bioproducts has been focusing on crystalline cellulose, lignin, and xylan (Taylor 
et al. 2009; Scully and Orlygsson 2015). Pectin is, however, overlooked although it 
is produced in secondary walls of most plant species. It is also known that sacchar-
ification of plant biomass can be improved by modifying the structure of pectin. 
Also, some types of biomass, such as apple pomace, citrus processing waste, and 
sugar beet pulp may contain relatively high concentrations of pectin (Lin et al. 2022). 
The first commercial use of pectinases was in 1930 where the enzyme was used for 
clarification of apple juice (Kertesz 1930). The applications of pectinases vary to a 
great extent depending on physical conditions and microbes used. These enzymes 
have been used in various industrial processes, such as tea, coffee, textile, wastewa-
ter treatment, oil extraction, and more. Perhaps the most important use of pectinases 
is their use in fruit processing industry as juice clarifiers, color and yields enhancers, 
and in fruit mash treatment (Zhang et al. 2010). 

2.6.1 Structure 

Pectin is a complex and heterogenous polymer formed by various substructures like 
homogalacturonan (HG), xylogalacturonan (XGA), rhamnogalacturonan I (RG-I), 
and rhamnogalacturonan II (RG-II) (Fig. 6) (Harholt et al. 2010). 

The ratio of the various substructures of pectin vary to a great deal depending on 
the source but in most cases, HG is in highest concentrations with 65% of the 
molecule, followed by RG-1 (25–30%) (Harholt et al. 2010). HG forms a backbone 
of α-1,4-D-galacuronic acid made up of galacturonic acid or methyl galacturonic 
acids residues linked with a-1,4 glycosidic linkage. In XGA, these residues are 
substituted with xylose and clusters of side chains of glycosyl residues. For further 
information on structure and function of pectin, we refer to Harholt et al. (2010) and 
Caffall and Mohnen (2009). 

Fig. 6 Pectins 
(galacturonans)are a class 
consisting of α-(1–4)-linked 
D-galacturonic acid residues 
with varying degrees of 
esterification of the 
carboxylic acids group. The 
example shown is a 
homogalacturonan, 
although heterogalcturonans 
contain other carbohydrates 
and may have branching that 
incorporates neutral sugars
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2.6.2 Enzymes 

Pectinases are a heterogenous group of related enzymes capable of pectin degrada-
tion, mostly present in plants. They are classified into three groups, hydrolyses 
(EC 3.2.1.15), lyase/transeliminases (EC 4.2.2.10), and pectate lyases 
(EC 3.1.1.11). Pectinases are primarily used for processes involving plant material 
degradation and have also been used in wine production and are of great industrial 
importance. Pectin hydrolases (PG) catalyze the hydrolysis of a-1,4-glycosidic bond 
to depolymerize polygalacturonate. They can be divided in endo- and exo-PG with 
the former hydrolyzing polygalacturonate and liberates oligogalacturonate but the 
latter hydrolyzes pectic acids to monogalacturonate (Patidar et al. 2018). Pectin 
methylesterase de-esterifies methoxyl groups of pectin-forming pectic acid 
(Kashyap et al. 2001). Pectinolytic lyases (pectic transeliminases) degrade pectin 
through cleavage reaction with β-elimination producing 4,5-unsaturated 
oligogalacturonate products (Gummadi and Kumer 2005). 

2.6.3 Thermophilic Bacteria Degradation of Pectin 

Majority of pectinases are produced from mesophilic facultative aerobic bacteria like 
Yersinia (Abbott and Boraston 2007), Klebsiella (Walker and Pemberton 1987), 
Pseudomonas (Liao et al. 1992), Bacillus (Bekli et al. 2019), Paenibacillus (Li et al. 
2014), Bacteroides (McGarthy et al. 1985), and more. Additionally, some filamen-
tous fungi are known to produce pectinases (Damak et al. 2013; Yadav et al. 2009). 
Thermoactive pectinases of anaerobic origin have though been reported in literature. 
Caldicellulosiruptor, Clostridia, and Thermoanaerobacter species are among ther-
mophilic, anaerobic genera that have been mentioned (Bredholt et al. 1999; Schink 
and Zeikus 1983; Wiegel et al. 1979; Kozianowski et al. 1997). Recently a study on 
Caldicellulosiruptor kronotskyensis showed that a thermostable pectin lyase was 
highly conserved and exhibited an optimal activity at 70 °C and pH 9.0 with Ca2+ as 
cofactor. This bacterium degraded polygalacturonic acid, methylated pectin through 
endo-cleaving action (Su et al. 2015). Thermotoga maritima has also been shown to 
grow on pectin as a sole carbon source and produces pectin lyase A in the medium 
(Kluskens et al. 2003). A recent investigation on genetic engineering work where 
exo-polygalacturonases from T. maritima were cloned and expressed in E. coli 
showed optimum activity at temperatures above 50 °C and good stability at high 
temperatures (40–90 °C) for up to 24 h (Flores-Fernandez et al. 2022).
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3 Other Enzymes 

Among other thermophilic enzymes used in various industries are oxidoreductases, 
nitrilases, transaminases, glutamate dehydrogenases, and laccases (Atalah et al. 
2019). Thermostable alcohol dehydrogenases in particular have received a lot of 
coverage in the literature due in no small part to their ability to enantioselectivity 
reduce ketones to their corresponding (S)-enantiomer which is of particular impor-
tance in the preparation of pharmaceutical intermediates. A noteworthy feature of the 
ADHs produced by Thermoanaerobacter species is their high selectivity for sec-
ondary alcohol dehydrogenases (Fig. 7) making them useful tools in their regard. 

The native TS alcohol dehydrogenases produced by Thermoanaerobacter often 
have a relatively limited preference for small substrates and also require NADP as a 
cofactor. While beyond the scope of this chapter, these secondary ADHs have been 
extensively used as targets for the expansion of the activity site to allow an expanded 
range of substrate specificity as well as the substitution of NAD for NADP (An et al. 
2019). 

Another enzyme class of synthetic value are thermostable nitrilases. Nitrilases are 
enzymes that contain a cyano group in their structure and are used for the production 
of polymers, pharmaceuticals, and pesticides (Nigam et al. 2017). Many of these 
enzymes are toxic and carcinogenic and it is not surprising that microorganisms have 
developed a way to degrade them in nature. These enzymes are enantioselective, 
thiolytic, and convert nitriles to their corresponding carboxylic acid and ammonia. 
The catalytic place is a residue of Glu-Lys-Cys and they catalyze a wide spectrum of 
substrates (Nigam et al. 2017). The enzymes do not require metal ions or other 
cofactors for activity. Many bacteria have been shown to possess nitrilases, most of 
mesophilic origin (Nigam et al. 2017). Several thermophiles (Almatawah and 
Cowan 1999; Chen et al. 2019) and extremophiles (Chen et al. 2019; Mueller 
et al. 2006) have thermostable nitrilases. The archaea Pyrococcus sp. M2D13 pro-
duces nitrilase with highest activity at 85 °C, most likely the most thermostable 
enzyme of its class known (Dennett and Blamey 2016). 

Transaminases are a group of enzymes that use pyridoxal-5′-phosphate (PLP) as a 
cofactor and catalyze the reversible transfer of an amine group from a donor (often 
amino acid) to the carbonyl of an acceptor substrate (Mehta et al. 1993). The 
mechanism of these enzymes is a two-step catalysis; first the amine or the amino 
acid is deaminated releasing the amino donor product, whereafter the amination of a 
keto, ketone or aldehyde (amino acceptor) is performed, with the release of a new 
amino acid or amine (Guo and Berglund 2017). The active site of these enzymes

Fig. 7 The reduction of 
ketones to a chiral 
secondary alcohol is readily 
facilitated by 
Thermoanaerobacter 
secondary alcohol 
dehydrogenase (TSADH)



comprises a lysine residue which binds transiently to the donated amino group and 
after binding to the amino accepting compound, the enzyme returns back to its initial 
state (Steffen-Munsberg et al. 2015). The fact that these enzymes do not need 
addition of any more cofactors is appealing for industrial use.
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Transaminases are ubiquitous enzymes since they participate in the central 
metabolism of all living things. However, there are relatively few transaminases 
from thermophiles that have been described and all are from aerobic bacteria (Atalah 
et al. 2019). Another enzyme that has an important role in carbon and nitrogen 
metabolism is glutamate dehydrogenase but it catalyzes the reverse oxidative deam-
ination of glutamate to α-ketoglutarate and ammonia. The enzyme is dependent on 
NAD+ or NADP+ and most of them are homo-oligomers. There are several thermo-
stable glutamate dehydrogenases but few of anaerobic origin. Pyrococcus furiosus 
has though been described to produce one of the most stable glutamate dehydroge-
nases with an impressive half-life of 10.5 h at 100 °C (Diruggiero and Robb 1995). 

Other hydrolases of note have been found among thermophilic bacteria The 
thermophilic L-aminoacylase (esterase) was cloned and overexpressed from 
archaeon Thermococcus litoralis (Toogood et al. 2002). This esterase gene codes 
for pyroglutamyl carboxyl peptidase which is a cysteine protease that cleaves the 
pyroglutamyl group from the N-terminus of biologically important peptides. The 
commercial use of this enzyme is to cleave the pyroglutamyl group from blocked 
peptides. Other examples of commercial enzymes that have been identified are 
carboxyl esterase from Thermogutta terrifontis (Sayer et al. 2015), μ-lactamase 
from Sulfolobus solfataricus (Toogood et al. 2004), an α-carbonic anhydrase from 
Thermovibrio ammonificans (James et al. 2014), and transaminase from Sulfolobus 
sulfotaricus (Sayer et al. 2012). 

4 Conclusions 

The enzymes from thermophilic anaerobes are an important and exciting field of 
biotechnology used in various industries. Their importance is mostly due to their 
tolerance toward extremes, not only because of their tolerance to high temperatures 
but also of other extreme environmental factors used in industrial production of 
various products. The urge for renewable biomass for the production of biofuels and 
other compounds, at present mostly produced by ecologically unfriendly methods, is 
increasing and thus the importance of understanding both the basic microbiology of 
microbes involved in the production of these compounds is increasing as ever. 
Thermophilic bacteria possessing the enzymatic factory of degrading the various 
portions of lignocellulosic biomass are thus getting more and more important and at 
escalating rate. An example of this is the number of articles with the use of cellulose 
and hemicellulose at Web of Science at present date are 197,496 and 22,773, 
respectively. The degradation of proteins and amino acids remains an unexplored 
field of study, but is essential especially because of the possibility to produce higher 
chain alcohols from branched-chain amino acids, a route to produce high-energy



dense alcohols from protein-containing substrates. Thermostable enzymes from 
thermophilic anaerobes are also an excellent source of synthetic tools such as 
nitrilases, transaminases, and alcohol dehydrogenases. 
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Production of Biofuels by Thermoanaerobic
Bacteria

Ed W. J. van Niel and Johann Orlygsson

Abstract Biofuel demand is gradually rising yearly and is expected to do so more
rapidly due to the current energy crisis. Bioethanol production is already at a
commercial scale but is primarily made using mesophiles fermenting corn and
sugar, which have obvious societal drawbacks. Therefore, new technologies should
be developed. In addition, hydrogen as a non-carbon energy carrier has gained
renewed interest. Thermophilic hydrogen and ethanol production from lignocellu-
losics and organic wastes, therefore, provide new avenues of biofuel production.
This overview looks concisely into the status and remaining challenges of hydrogen
and ethanol production exploiting thermophilic anaerobic bacteria.
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HRT Hydraulic retention time (h)
LCA Life cycle assessment
MEC Microbial electrolysis cell
MFC Microbial fuel cell
PFL Pyruvate formate lyase
PFOR Pyruvate ferredoxin:oxidoreductase
PH2 Partial hydrogen pressure (Pa)
PHB Polyhydroxybutyrate
PNS Purple non-sulfur
QH2 Volumetric hydrogen productivity (mmol H2 L

-1 h-1)
TRL Technical readiness level
UA Up-flow anaerobic reactor
YH2 Hydrogen yield (mol H2 mol substrate-1)

1 Introduction

Many governments have committed themselves to arrive at a zero-carbon society by
2050. In this scenario, various biofuels, such as biomethane, butanol, bioethanol, and
biohydrogen, are interesting candidates to play a part in replacing fossil fuels. Here,
we will focus on two biofuels as produced by thermophilic bacteria, i.e.,
biohydrogen and bioethanol. Bioethanol from complex biomass using thermophilic
bacteria have gained increased interest in the past decade. The main reason for this is
the broad substrate spectra that many thermophiles have as they are capable of
degrading a wide variety of both pentoses and hexoses present in lignocellulose in
addition to di- and oligosaccharides that result from the partial hydrolysis of
carbohydrates such as starch and cellulose. Bioethanol processes have been devel-
oped for large-scale production over the last three decades, but they are primarily
based on ethanologenic bioprocessing organisms such as yeast and Zymomonas
mobilis. On the other hand, there is no industrial large-scale biohydrogen production
as the technology is still at a relatively nascent technical readiness level (TRL) of 3–4
(Islam et al. 2021). Biohydrogen has become a renewed interest, due to the envi-
ronmental and humanistic issues related to the manufacturing of batteries for electric
cars. Currently, over 20 countries develop strategies for hydrogen applications in
their existing infrastructure. The application of hydrogen technologies is present at
diverse stages of readiness, from existing (fuel cell cars) to early stages, such as
production of carbon-free steel, ammonia, cement, ceramics, and glass (Global
hydrogen review 2021). The green hydrogen market is estimated to grow by one
order of magnitude in 5-year time, with a current size of over 400 million USD
(Global hydrogen market (2021–2026).
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2 Background Information

Bioethanol is entirely produced via dark fermentation (DF) using either mesophilic
microorganisms (Saccharomyces cerevisiae and Z. mobilis) or thermophilic micro-
organisms, including species of Caldicellulosiruptor, Caloramator, Clostridium,
Thermoanaerobacter, Thermoanaerobacterium, and Thermotoga. Biohydrogen
can be produced in more than one way including splitting water by
photosynthesizing microorganisms (algae and cyanobacteria), photofermentation
(by, e.g., purple non-sulfur bacteria (PNS)), DF, and using electricity in microbial
fuel cells (MECs). Thermophiles are used in the latter two processes only, and thus
will be discussed in this chapter.

Both biofuels are mainly produced with feedstock containing predominantly
sugars. The stoichiometric reactions of the fermentation for obtaining the maximum
yield of each biofuel per glucose are as according to the following two reactions:

C6H12O6 → 2 C2H6Oþ 2 HCO3
- þ 2 Hþ ð1Þ

C6H12O6 12 H2O→ 12 H2 6 HCO3
- 6 Hþ 2

In contrast to reaction (1), reaction (2) is endergonic (Table 1) and thus will not
proceed under standard conditions. Instead, two overall reactions are needed to
obtain the maximum amount of H2 from glucose (Thauer et al. 1977):

C6H12O6 þ 4 H2O→ 4 H2 þ 2 C2H3O2
- þ 2 HCO3

- þ 2 Hþ ð3Þ
2C2H3O2

- 2Hþ 8H2O→ 8H2 4HCO3
- 4Hþ 4

Reaction (3) is exergonic, but reaction (4) needs energy input for it to occur
(Table 1). The latter can be accomplished with photons (photofermentation by,
e.g. PNS bacteria) or with electricity (electrohydrogenesis (EH) in MECs).

At a maximum yield of bioethanol and biohydrogen, it is possible to obtain 91%
and 98%, respectively, of the energy conserved in the glucose molecule (Table 1).
When used as an energy carrier, H2 and ethanol produce 122 kJ/g and 26.7 kJ/g
energy, respectively, showing the significantly higher energy content of hydrogen on
weight basis.

Table 1 Information about the thermodynamics of biofuel formation

Stoichiometric
Gibbs free energy of the
reaction (ΔG0’) (kJ mol
substrate-1)

Energy content of the
fuel (ΔG0’) (kJ mol
substrate-1)

Glucose Bioethanol (1) -234.3 -2460

Biohydrogen (2) +3.2 -2670

(3) -206.1 -890

(4) +104.6 -1780

Glycerol Biohydrogen (5) -9.97 -667
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There are also thermophiles that can convert glycerol to hydrogen and acetate
according to the following stoichiometry (Maru et al. 2013):

C3H8O3 þ 2 H2O→ 3 H2 þ C2H3O2
- þ HCO3

- þ 2 Hþ ð5Þ

The yield of 3 mol H2 per mol glycerol has been seen with Thermotoga species is
in stark contrast to the one H2 per glycerol obtained with mesophiles (Maru et al.
2013). This is due to the thermodynamics of reaction (5) is more favourable at higher
temperatures.

There are three subclasses amongst the thermophilic hydrogen producers: mod-
erate thermophiles (50 °C< Topt< 64 °C), extreme thermophiles (65 °C< Topt< 79 °
C), and hyperthermophiles (Topt > 80 °C).

Of them, significant amounts of EtOH are produced predominantly by moderate
thermophiles whereas H2 is produced with higher yields by extreme and
hyperthermophiles. The latter is a consequence of the higher temperature shifting
reaction (3) to the right, thus improving the thermodynamics of the conversion to
more highly reduced (H2) and oxidized end products (acetic acid, CO2).

In general, there is a tremendous metabolic diversity among anaerobic thermo-
philic bacteria. Central to the ethanol production is the degradation of sugars to end
products usually via the Embden-Meyerhof-Parnas (EMP) pathway but the degra-
dation of glucose to pyruvate generates 2 moles of NADH and 2 moles of pyruvate.
Pyruvate can be degraded to a wide variety of both oxidized (acetate, CO2) and
reduced (lactate, ethanol, alanine, and hydrogen) compounds. The distribution of
end products is highly depended on culture conditions and microorganisms (see
below).

3 Biohydrogen

3.1 Physiology

One of the perspectives of this overview is to explore the status of maximizing the
volumetric productivity (QH2) and the total YH2 from sugars of thermophilic hydro-
gen production. In principle, thermophilic DF possesses superior YH2 close to the
theoretical maximum of 4 moles of H2 per mole of glucose (Thauer et al. 1977),
which is only 33% of the total hydrogen that can be extracted from hexoses.
Interestingly, a higher YH2 is obtained via glycerol than for sugars because of
glycerol being a more reduced compound: the degree of reduction is 4.67 for
glycerol compared to 4 for glucose (reaction 5) (Maru et al. 2013). However, a
big drawback is the very low QH2 on glycerol being in the order of 1–2.3 mmol
H2 L

-1 h-1. One reason could be the low ATP yield on glycerol fermentation, which
is about 1 mol ATP mol glycerol (Maru et al. 2013). Overall, in DF processes,
thermophiles are surpassed in their QH2 by mesophilic hydrogen producers, i.e.,



30–160 mmol H2 L
-1 h-1 and 100–600 mmol H2 L

-1 h-1, respectively (Van Niel
2016).
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Inherent to the DF process is the formation of volatile fatty acids (VFA) and
ethanol (Fig. 1). In the most optimal case, it will be only acetate being formed, which
is especially seen with species of Caldicellulosiruptor, Thermoanaerobacter, and
Thermotoga and are among the best performing hydrogen producers (Pawar and van
Niel 2013). It means that the DF effluent still contains 67% of potential H2 in the
form of acetate, which can be harvested in a second process that demands input of
energy (reaction 4). Of the few options, thermophiles can do the job in microbial
electrolysis cells (MECs) or Microbial Fuel Cells (MFCs), with (preferably renew-
able) electricity as energy input to drive the conversion of acetate to H2. In general,
the EH process can reach near maximum YH2 of 4 mol H2 mol acetate-1 (Call and
Logan 2008), but QH2 remains low which is partly a technological challenge.

3.2 Feedstocks

A number of hydrogenic thermophiles produce H2 from various sugars in a DF
process (for the list, refer Kengen et al. 2009; Van Niel et al. 2011). These sugars
may vary from monosaccharides, disaccharides, oligo-, and polysaccharides of both
hexoses and pentoses. Many thermophilic anaerobes have the enzymes necessary to
degrade starches, pectin, and some lignocellulosic biomaterials such as xylan.
Therefore, thermophilic DF can be applied to convert organic streams containing
these polysaccharides, including plant biomass, forestry and agricultural waste, and
waste from food industry and households (for the list, refer Wang and Yin 2021). It
opens the opportunity for consolidated bioprocessing (CBP), or direct microbial
conversion, in which no or only a minimum of pre-treatment is applied to increase
the accessibility of the material to the microorganisms (Nagarajan et al. 2019). A
treatment with commercial hydrolases can thus be avoided saving operation costs.
However, simultaneous saccharification and fermentation make the process slower
with hydrolysis as the rate-limiting step, but also due to lower cell densities (Ren
et al. 2016), resulting in low QH2. A technico-economical evaluation is needed here
to determine whether this option is economically viable on a case-by-case basis. The
majority of test fermentations on (pre-treated) cellulosic material have been
conducted at crimp-seal flask level, which have shown yields near the theoretical
value can be obtained, e.g., with C. thermocellum on Whatman filter and delignified
wood fibers (Levin et al. 2006) and C. saccharolyticus on untreated switchgrass
(Talluri et al. 2013). As these tests were carried out under non-optimized conditions,
in the latter study and others (e.g., Cao et al. 2014; Jiang et al. 2019), QH2 were
obtained in the order of 0.1–0.6 mmol L-1 h-1. Best results were obtained at neutral
pH and addition of 0.15–0.3% yeast extract (Talluri et al. 2013; Sheng et al. 2015) as
lignocellulosic biomass is nitrogen poor. Further optimization and cost-saving
factors of the CBP lies in (1) minimum pre-treatment requirement; (2) cheap nutrient
sources; (3) finding the best particle size; (4) use of the right co-cultures to obtain the
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Fig. 1 Overview of the various central carbon pathways to H2 in strict anaerobic thermophiles. The
predominant route to pyruvate is via the Embden-Meyerhof pathway (EMP), although several
hyperthermophiles possess both the EMP and the Entner-Douderoff (ED) pathway, such as
Thermotoga species (Selig et al. 1997). Black arrows: the pathways of Caldicellulosiruptor,
Thermoanaerobacter, Thermoanaerobacterium and Thermotoga, including a hydrogenase
(H2ase) reoxidizing NADH and [FeFe] and/or (NiFe] H2ase reoxidizing reduced ferredoxin
(Fdred). Ferredoxin is used as electron acceptor by pyruvate ferredoxin:oxidoreductase (PFOR)
that catalyzes the reaction of pyruvate to acetyl-CoA (AcCoA). A bifurcating hydrogenase (given in
red) was discovered in Thermotoga maritima (Counts et al. 2017), and is expected to be found in
other hydrogenic thermophiles (Rinker and Kelly 2000). In addition, Thermotoga species can also
convert pyruvate to alanine as an alternative means to reoxidize NADH (Rinker and Kelly 2000)
(given in green) and use glycerol as a substrate (Maru et al. 2013) (given in brown-green). In
addition to PFOR, Clostridium thermocellum and Caloramator celere also possess pyruvate
formate lyase (PFL) producing formate instead of H2 and CO2 (Ciranna et al. 2013; Lal and
Levin 2016) (given in blue). Each of the thermophiles may use alternative ways to reoxidize
NADH to avoid redox imbalances in the cell, which may lead to products such as lactate and
ethanol and clostridia can also produce acetone, butyrate or butanol (given in purple). DHAP
dihydroxyacetone phosphate, EtOH ethanol, GAP glyceraldehyde-3 phosphate, Gly-3P glycerol
3 phosphate, PYR pyruvate, Rib-5P ribulose 5 phosphate, Xyl-5P xylulose 5 phosphate



optimized hydrolysing enzyme cocktail; (5) minimization in water demands; and
(6) dedicated bioreactor design and operation (Nagarajan et al. 2019).
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An alternative substrate can be glycerol of which a vast supply is available as
crude glycerol produced in the biodiesel industry (Santibanez et al. 2011). Few
studies have been focusing on T. maritima and T. neapolitana showing promising
conversion of glycerol to three H2 per glycerol (reaction 5) (Maru et al. 2013; Ngo
et al. 2011). However, it remains to be seen how microorganisms perform in crude
glycerol knowing of the presence of impurities that can be inhibitory (Sarma et al.
2012).

3.3 Dark Fermentation

There are several process parameters that affect the performance of the thermophilic
DF, i.e., the composition of the feedstock, the partial hydrogen pressure (PH2), pH,
substrate, and by-product concentration. Optimizing the conditions along with these
parameters will maximize the YH2 and the QH2.

In general, optimal operation of fermentation processes depends on the presence
of all the nutrients in adequate amounts to sustain stabilized growth. H2 is a primary
product, and thus, the quality of its production is connected to the growth quality of
the thermophiles. At laboratory scale, most nutrients applied are of analytical grade
and thus too expensive and unsustainable to be used at large scale. Also, hydroly-
sates of e.g., lignocellulosic biomass need to be supplemented with minerals and
vitamins, as they cover mainly the carbon and energy source. Therefore, cheap
sources need to be found to provide other essential nutrients containing nitrogen,
phosphorus, sulphur, trace metals, and vitamins. Examples can be manure, urine,
and whey, but they need to be tested in combination with the carbon-rich feedstock.
Other plant materials can be an alternative source, such as steam pre-treated Lucerne
that has recently been investigated (Byrne et al. 2018).

The limitation of the PH2 on hydrogen formation is quite known, and being based
on a thermodynamic constraint, it is important that hydrogen is removed from the
liquid phase as soon as it is produced. Even with sparging, supersaturation of
hydrogen may easily occur (Pauss et al. 1990; Ljunggren et al. 2011). Most studies
on DF processes at lab scale are conducted in continuous stirred tank reactors
(CSTR), which is not an adequate reactor for hydrogen production. Other bioreactor
setups have been tested such as up-flow anaerobic reactor (O-Thong et al. 2008),
packed bed reactor (Peintner et al. 2010), anaerobic sequencing blanket reactor
(Prasertsan et al. 2009), membrane reactor (Oh et al. 2004; Kim et al. 2011), trickling
filter (Van Groenestijn et al. 2009), and a biodisc-like reactor (Hiligsmann et al.
2014).The latter two bioreactor types possess a significant gas-liquid interphase that
facilitate easy mass transfer of hydrogen to the gas phase, which makes them the
most appropriate configurations for hydrogenic DF processes. Indeed, the relevance
of this interphase has been demonstrated in a dedicated study (Hiligsmann et al.
2014). The membrane reactor functioned to increase the cell and solid substrate



retention time, which improved the QH2 and YH2 by a factor 2 and 1.5, respectively
(Kim et al. 2011). However, the other reactors did not seem to fare better than the
CSTR (Christopher et al. 2021).
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Most hydrogen producers operate optimally around neutral or slightly acidic
pH. It should be kept in mind that at higher temperatures (70–80 °C), neutral pH
becomes slightly acidic. As an example, Clostridium thermocellum operates best at
60–65 °C and pH 6.5–7. However, it reaches a YH2 of 0.7–2.7 mol/mol hexose as it
has several other reduced by-products such as ethanol that diminish the hydrogen
yield (Wang and Yin 2021). Interestingly, Caloramator celer is affected by pH such
that at slightly acidic pH, hydrogen is the main reduced product, but the metabolism
shifts towards ethanol production at neutral to alkaline pH (Ciranna et al. 2014). This
shift is due to the presence of both pyruvate ferredoxin:oxidoreductase (PFOR) and
pyruvate formate lyase (PFL), which allow for metabolic flexibility.

Substrate and product inhibition has also been reported, which could be
interpreted as an effect of osmolarity (Ljunggren et al. 2011; van Niel et al. 2003).
It can be possible that especially polysaccharide degrading bacteria in their natural
niches are exposed to only low concentrations of sugar and fermentation products
and thus are never confronted with high osmolarities. Adaptation to higher sugar
concentrations through Adaptive Laboratory Evolution (ALE) could be a strategy to
obtain strains that can stand higher sugar concentrations, which will be more cost
effective. However, even though ALE was successful for several species of
Caldicellulosiruptor, the adapted strains could stand higher sugar concentrations
but were not performing better than their parental strains (Byrne et al. 2021).
Apparently, more types of adaptation are necessary to obtain improved strains, of
which one is fatty acid biosynthesis and the other are local transcription factors as
recently found in C. bescii through metabolic engineering (Sander et al. 2020).

There are several other factors to improve YH2 and QH2, which include
co-cultures and biofilm formation. Synthetic and undefined co-cultures have been
observed to result in higher YH2 and/or QH2 than pure cultures (Pachapur et al.
2015). Synthetic or designed co-cultures consist of two or more species that may
come from geographically different locations but together may display synergistic
interactions. Synthetic co-cultures have been seen to work better than undefined
co-cultures, as the latter contain microorganisms that do not contribute to improving
but instead being detrimental to YH2 and QH2 (Zeidan and van Niel 2009). Indeed,
several studies have shown improvements with synthetic co-cultures, e.g., through
stimulation of one species by the other. This has been observed for two thermophilic
clostridia species in CBP (Salimi et al. 2010) and two Caldicellulosiruptor in
conventional fermentation (Zeidan et al. 2010). The latter case saw a dependent
interrelationship that allowed both species to stably grow in continuous culture
sharing only one substrate, thereby violating the competitive exclusion principle.

An undesired characteristic of thermophilic cultures is their low cell density
(Holst et al. 1997), which limits the QH2. This could partly be due to inhibitory
effects as discussed above and might be remedied by introducing growth in biofilms
to create higher cell densities than in suspension cultures. Indeed, improved hydro-
gen production was obtained through granule formation and biofilms on material



such as plastic carriers, fibrous polymers, and acrylic wool (Ahn et al. 2005;
Koskinen et al. 2008; Pawar et al. 2015; Vongkampang 2021). In this way, QH2 of
up to 30–46 mmol H2 L

-1 h-1 could be obtained.
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3.4 Electrohydrogenesis

The second process where hydrogenic thermophiles can be exploited consists of a
microbial electrolysis cell (MEC) (Fig. 2). The working of MECs with details on
materials and experiences is described elsewhere (Van Niel 2016; Bakonyi et al.
2018; Rousseau et al. 2020). In general, microorganisms are able to convert sugars,

Fig. 2 Principle of the Microbial Electrolysis Cell (MEC) for biohydrogen production. In the
anode chamber organic acids (e.g., DF effluent containing mainly acetate (Ac-)) are converted to
CO2, protons and electrons. The electrons generated by the microbes can be either directly
transferred to the anode electrode (1) or indirectly via an electron shuttle that becomes reduced
(SRED). The electron shuttle donates its electrons to the anode electrode and becomes oxidized
(SOX). The protons diffuse through the proton exchange membrane (PEM) to the cathode chamber.
At the cathode electrons combine with the protons and oxygen to form water. As the conversion of
organic acids is endergonic, a small voltage input is required to drive the reaction. This voltage is
also necessary to overcome resistances in the system, including electrode overpotentials, solution
conductivity and the power supply (REXT) [modified after Van Niel (2016)]
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alcohols, and volatile fatty acids to produce an electrical current at the anode (e.g.,
Oh and Logan 2005), but acetate is one of the best substrates for this process for
which electricity input is required (Cheng and Logan 2007). Therefore,
electrohydrogenesis (EH) might very well integrate with the DF to configure a
two-step process able to extract the maximum of hydrogen from sugars according
to reactions (3) and (4) and several studies have confirmed this [refer review Bakonyi
et al. 2018).
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Even though MEC studies are booming, only a limited amount has focused on
operating at temperatures beyond 40 °C. In principle, MECs must perform better at
higher temperatures, because of higher rates of biochemical reactions, higher diffu-
sion rates, and diffusion of protons through the proton exchange membrane (PEM)
and thus increased current yield and YH2 (Rathinam et al. 2019). The few studies so
far have used either undefined consortia or co-cultures of various thermophiles, such
as Thermincola and Thermoanaerobacter species, which reached QH2 of up to
2.5 mmol L-1d-1 (Wang et al. 2017) and relatively low YH2 of 1.1 mol H2 mol
acetate-1 (Kyazze et al. 2010). Cells attached as biofilms to the cathode conducted
direct electron transfer, but no electron shuttles have been found so far among these
thermophiles.

3.5 Conclusions

Research in thermophilic DF processes is progressing and is on the brink of pilot
scale testing. Even though YH2 is between an acceptable 2–4 mol hexose-1, i
remains challenging to increase the QH2 by at least a factor 5–10. Therefore,
dedicated bioreactors are needed with in situ separation of fermentation
by-products and maximized hydrogen mass transfer into the gas phase. Further
improvements, such as minimizing undesired by-products formation, such as lactate,
might be accomplished through metabolic engineering. However, genetic protocols
are working for only a few hydrogen producing bacteria (Han et al. 2012; Cha et al.
2013). Further increase of hydrogen extraction from sugars can be accomplished
through coupling of the DF and EH. Both processes can be run with thermophilic
synthetic co-cultures, relying on the benefits of these type of bacteria as discussed in
this chapter. However, there are substantial challenges to improve the EH process,
including stability of electrode materials and membranes to function at elevated
temperatures (Rathinam et al. 2019). Therefore, more dedicated investigations are
needed before a thermophilic MEC is at the same developed stage as a
mesophilic one.
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4 Bioethanol

4.1 Physiology

As mentioned above, most saccharolytic thermophiles use the EMP pathway (Taylor
et al. 2009) but unlike yeast and facultative anaerobic bacteria, they use pyruvate
ferredoxin oxidoreductase (PFOR) for pyruvate degradation to acetyl CoA instead of
pyruvate decarboxylase. A second reductive step follows via alcohol dehydrogenase
rendering ethanol. Thus, these two reduction steps lead to a redox imbalance (not
observed during yeast fermentation) forcing the microorganism to make produce
oxidized products, most often by producing acetate via acetyl phosphate intermedi-
ate using phosphotransacetylase (PTA) and acetate kinase (AK) (Fig. 1). One of the
main obstacles to achieving high ethanol titers in thermophilic bacteria is the variety
of end products apart from ethanol that is produced. The theoretical yields of ethanol
are 2 moles of ethanol/mole hexose, or 1.67 mole ethanol/mole pentose degraded.
These yields are, however, never obtained because part of the substrate is converted
to biomass or other end products.

There are various factors that are known to influence ethanol production in
thermophiles, including the influence of substrate, partial pressure of hydrogen,
the initial substrate concentration, pH and temperature, and the presence of inhibi-
tory compounds. Increased partial pressure of hydrogen is known to decrease the
production of oxidized end products (acetate and butyrate) and increase reduced end
product formation (ethanol and lactate). The main reason for this is due to the
thermodynamics involved and the inhibitory effect on the key enzymes that are
responsible for hydrogen production. This results in the production of ethanol and
lactate instead of acetate and hydrogen, especially at lower temperatures. Several
investigations on the effect of pH2 on end-product formation have been performed to
show this (Brynjarsdottir et al. 2012; Jessen and Orlygsson 2012), showing that by
using either a biological scavenger (hydrogenotrophic methanogen) or chemical
(such as thiosulfate or other alternative electron acceptor), most of the substrate
ends up in acetate and hydrogen equivalents but increasing the partial pressure forces
the microorganisms to produce more reduced end products like ethanol and lactate.

Another factor of great importance is the initial substrate concentration used. It is
well known that thermophilic bacteria tolerate relatively low initial substrate con-
centration, often between 10 and 30 mM leading to incomplete substrate utilization.
This inhibition may be caused either by increased partial pressure of hydrogen in a
closed batch system or by the accumulation of acids lowering the pH in the culture
broth. Recent investigation showed that the low tolerance of initial substrate con-
centration is more likely to be caused by increased pH2, rather than the substrate or
lowering of the pH (Vipotnik et al. 2016). Yeast on the other hand do not produce
hydrogen and tolerate much higher initial substrate concentration, often greater than
1 M. Ideally, a good ethanol producer should tolerate at least 4% (v/v) ethanol for an
economical ethanol recovery to occur (Taylor et al. 2009). Unfortunately, thermo-
philes often tolerate much lower ethanol concentrations as compared with yeasts



(Scully and Orlygsson 2015) with most wild-type thermophilic bacteria tolerating
less than 3% (v/v), mainly due to their fatty acid membrane structure. Several efforts
have been made to increase the ethanol tolerance of thermophiles, some of which
have resulted in more tolerant strains but usually possessing lower ethanol yields
(Lovitt et al. 1984).
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4.2 Feedstocks

The main interest in using thermophilic bacteria is not because of their natural
tolerance towards initial partial pressure of hydrogen, initial substrate concentration
or ethanol tolerance and yields. Yeast are usually preferred for ethanol production
when using simple substrates, namely, glucose, maltose, or sucrose. However, when
using lignocellulose, a major part of biomass available today, yeast may not be the
best choice of candidate. This is mainly due to the lack of wild-type yeasts to degrade
pentoses, which is a major component in lignocellulose. Thus, in recent decades,
using thermophilic bacteria degrading the wide variety of carbohydrates present in
lignocellulose has been focused upon using species belonging to the genera of
Clostridium, Thermoanaerobacter, and Thermoanaerobacterium (Taylor et al.
2009; Scully and Orlygsson 2015; Zheng et al. 2015). More recently, there has
been a shift to using macro-algae (seaweeds) and their constituents as a raw material
for fermentation although this is still in a very early stage of investigation (Chades
et al. 2018; Moenaert et al. 2023).

One of the major challenges with utilizing second- and third-generation biomass
is the costs associated with biomass pre-treatment and enzymatic hydrolysis of
components into fermentable units. From a bioprocessing perspective, an integrated
approach is done in which multiple process steps occur. To this end, there has been
interest in microorganisms that can operate under conditions where biomass hydro-
lysis and fermentation occurs in tandem, as compared to the “traditional” approach
in which biomass is processed in discrete steps, which is referred to as separate
hydrolysis and fermentation (SHF). Simultaneous saccharification and fermentation
(SSF) involves the degradation of the biomass via the action of exogenously added
enzymes while the fermentative organism converts liberated carbohydrates to end
products. The SSF approach is typically concerned with the hydrolysis of amylose or
cellulose, liberating glucose or oligosaccharides thereof while other carbohydrates,
such as xylose, are left unfermented necessitating a second fermentation step. To this
end, situations in which multiple substrates (such as glucose and xylose) are used
simultaneously are referred to as simultaneous saccharification and co-fermentation
(SSCF). When the production of enzyme occurs in the same vessel as hydrolysis and
fermentation, the term consolidated bioprocessing (CBP) is used. Of particular
interest, Clostridium thermocellum and Caldicellulosiruptor are candidate CBP
organisms for the production of bioethanol and biohydrogen, respectively. For
more on processing approaches that combine steps, refer to the recent review by
Scully and Orlygsson (2015).
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4.3 Fermentation of Complex Biomass

The fermentation of biomass into bioethanol by thermophilic anaerobes has been
widely reported since the late 1970s. Of particular interest is more recent work on the
fermentation of lignocellulosic biomass, especially those with intrinsic cellulolytic
capabilities such as Clostridium thermocellum, and those that are particularly selec-
tive for ethanol as the dominant fermentation product. Given the large variation in
the biomass used, pre-treatment regimens, the fermentation conditions, and the
organisms used, there is a wide range of ethanol yields and productivities have
been reported in the literature with yields seldom approaching the theoretical yield of
0.51 g of ethanol per g glucose equivalent.

The highest yield of ethanol from glucose obtained is 1.9 mol ethanol/mol
glucose by Thermoanaerobacter ethanolicus (Wiegel and Ljungdahl 1981). Other
notable high yields (>1.3 mol ethanol/mol glucose) have been obtained by
Thermoanaerobacter and Thermoanaerobacterium species such as
Thermoanaerobacterium AK17 (Almarsdottir et al. 2012), Thermoanaerobacter
ethanolicus (Avci and Donmez 2006), and other Thermoanaerobacter strains
(Brynjarsdottir et al. 2012; Jessen and Orlygsson 2012). Thermoanaerobacter
ethanolicus and Thermoanerobacter finnii produce 1.43 and 1.76 mol ethanol/mol
xylose, respectively (Lacis and Lawford 1988; Fardeau et al. 1996). However, as
stated above, these yields can be manipulated by various environmental factors
(Scully and Orlygsson 2015). Thermophilic bacteria on lignocellulose never obtain
the maximum yields, mainly because of the complex structure of lignocellulose.
There have been recent investigations of yields of ethanol from various complex
biomass using thermophilic bacteria. The highest yields obtained are 9.2 mM/g corn
stover or wheat straw hydrolysates—pre-treated with acid or wet oxidation—by
Thermoanaerobacter strain BG1L1 (Georgieva and Ahring 2007; Georgieva et al.
2008). Thermoanaerobacterium strain AK17 showed ethanol yields of 2.0 (paper)
mM/g, 2.9 (grass) mM/g, and 5.8 (cellulose) mM/g biomass (Sveinsdottir et al.
2009). Optimization experiments showed an increase in ethanol yields on grass and
cellulose up to 4.0 mM g-1 and 8.6 mM g-1, respectively. The main culture factor
increasing ethanol yields was obtained by lowering the substrate concentration from
7.5 g/L to 2.5 g/L (Almarsdottir et al. 2012). Recent investigations on two
Thermoanaerobacter strains, AK5 and J1, showed promising results from various
types of hydrolysates made from chemically and enzymatically pretreated lignocel-
lulosic biomass (Brynjarsdottir et al. 2012; Jessen and Orlygsson 2012).

4.4 Genetic Engineering and Evolutionary Adaptation

For the production of ethanol from lignocellulosic biomass, several key processes
and characteristics of microorganisms are needed (Taylor et al. 2009; Scully and
Orlygsson 2015). The ideal microorganism for ethanol production should be



homoethanologenic, have broad substrate spectra, high productivity, high ethanol
tolerance, and tolerance to high initial substrate concentrations. Other factors of
importance are for instance tolerance towards inhibitory compounds, cellulolytic
properties, simple nutritional needs, low biomass production, and ease of genetic
manipulation of the strains. No wild-type organism possesses all these properties.
There are two main strategies of improving ethanol production by wild-type micro-
organisms, evolutionary adaptation, and genetic engineering (GE).
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The use of evolutionary adaptation methods to enhance ethanol production has
been applied to thermophilic bacteria, although on limited basis. In a study of
increasing the ethanol concentration tolerance of Thermoanaerobacter ethanolicus
strains, a selection based on pyruvate and iron deprivation was used (He et al. 2009).
This led to an increased ethanol tolerance (10% v/v) at 10 g/L (55 mM) glucose
concentrations. Other attempts have been made for enhancing ethanol production
that have been done by increasing ethanol tolerance of Clostridium thermocellum by
stepwise increasing and transferring cultures to increased ethanol concentrations
(Shao et al. 2011), and of Thermoanaerobacter pentosaceus, by gradually increasing
substrate concentration (Sittijunda et al. 2013).

As mentioned above, the main obstacle of using thermophilic bacteria for ethanol
production is their natural spectra of end product produced resulting in lower ethanol
yields and due to the fact that few thermophiles are cellulolytic. Genetic engineering
techniques have thus been focused upon either increasing ethanol yields of a natural
cellulolytic microorganism or by inserting cellulases to a high ethanol producing
microorganism (Shaw et al. 2009). The first attempt to use GE in a thermophilic
bacterium to increase ethanol production was performed on
Thermoanaerobacterium saccharolyticum (Desai et al. 2004). Deletion of genes
responsible for the production of other end products may be knocked out and has
been performed on Thermoanaerobacterium saccharolyticum (Shaw et al. 2008,
2010), Thermoanaerobacter mathranii (Yao and Mikkelsen 2010a, b), Clostridium
thermocellum (Argyros et al. 2011), Geobacillus thermoglucosidasius (Cripps et al.
2009), and Caldicellulosiruptor bescii (Chung et al. 2013).

Clostridium thermocellum has been intensively investigated for ethanol produc-
tion from both cellulosic biomass as well as sugars. The end products formed from
carbohydrates are ethanol, acetate, lactate, carbon dioxide, and hydrogen (Xu and
Tschirner 2014). The strain was first genetically engineered in 2006 (Tyurin et al.
2006) leading to a development of genetic systems to knock out the pta gene to
abolish acetate formation (Tyurin et al. 2006). This resulted in a strain with abnormal
growth although the cellulase activity was intact. Later work resulted in increased
ethanol yields in adapted strain (hpt, ldh, and pta) lacking both acetate and lactate
formation pathways (Tyurin et al. 2006).

Mai and coworkers developed electroporation and shuttle vectors to engineer
Thermoanaerobacterium saccharolyticum (Mai et al. 1997) later leading to a mod-
ified strain by inserting a cellobiohydrolase gene from Clostridium thermocellum
into its genome (Biswas et al. 2014). Later, the ldh gene was knocked out from the
bacterium (Desai et al. 2004) as well as knocking out both ldh and ak gene (Shaw
et al. 2008). By knocking out the energy yielding acetate formation, less biomass



was formed and ethanol yields increased. Finally, 44% increase in ethanol yields
were obtained from the strain with GE work focused on the electron transfer (Shaw
et al. 2009) where both hfs and ldh genes were knocked out that were responsible for
hydrogen and lactate formation.
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Thermoanaerobacter mathranii has been intensively genetically engineered to
improve ethanol yields. Early work focused on knocking out the ldh gene resulting
in a strain BG1L1 that produced twice as much ethanol as compared with the wild-
type strain (Sommer et al. 2004). Further work on this strain involving
overexpression of NAD(P)H-dependent alcohol dehydrogenase resulted in the for-
mation of strain BG1E1 and ethanol yields were further improved (Yao and
Mikkelsen 2010a, b).

Thermoanaerobacter BG1 “Pentacrobe”was genetically engineered by knocking
out lactate dehydrogenase, phosphotransacetylase, and acetate kinase (Andersen
et al. 2015) leading to near the maximum theoretical yields from both hexoses and
pentoses. Finally, Caldicellulosiruptor bescii was genetically engineered recently of
which the wild-type produces a mixture of lactic and acetic acid but almost no
ethanol. Substantial genetic engineering work on this strain, however, increased
ethanol to a yield of 0.66 mol ethanol/mol glucose (Chung et al. 2013).

4.5 Conclusion

Our understanding of the physiology of thermophilic anaerobic bacteria that are
capable of producing high titers of ethanol has increased immensely in the past two
decades. In general, anaerobes growing at temperatures between 50 and 80 °C
produce a wide variety of end products from sugar metabolism, ranging from highly
oxidized products like acetate and carbon dioxide or to highly reduced end products
like ethanol and lactate. Reduced end products are more likely to be produced at the
lower temperature range, but acetate and carbon dioxide at high temperatures are
produced because of the thermodynamic nature of the reaction involved. Other
environmental factors are of great importance also, like the ratio of liquid and gas
phase in the culture mixture, as well as the concentration of the initial substrate. One
of the main drawbacks of using thermophiles for ethanol production is because of
their mixed end product formation. However, several attempts have been made by
the use of genetic engineering to cut out end product formation routes of other
products than ethanol. Thermophiles, however, have advantage over wild-type
Saccharomyces cerevisae when dealing with hydrolysates made from lignocellu-
losic biomass because of their broad substrate range. On the other hand, wild-type
thermophiles have lower ethanol tolerance as compared with industrial yeasts.
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Fig. 3 Proposed biorefinery configurations to maximize biofuel and bioplastic production using
thermophilic bacteria. Abbreviations: DF dark fermentation, EtOH ethanol, EH
electrohydrogenesis, PHB poly-hydroxybutyrate, AD anaerobic digestion

5 Future Outlook

Most wastes contain a mixture of sugars, including pentoses and hexoses, which are
excellent wastes for thermophilic processes due to their capacity to convert many
types of sugars.

Caldicellulosiruptor species do not possess catabolite repression and have shown
to prefer to take up pentoses. Applying these hydrogenic thermophiles in synthetic
co-cultures with glucose-consuming ethanologens provides the opportunity to pro-
duce H2 and ethanol simultaneously in one bioreactor operating (Fig. 3). Operating
at 70–80 °C both H2 and ethanol transfer into the gas phase, possibly promoted by a
maximized gas-liquid interphase and a reduced pressure inside the bioreactor. The
byproducts, mainly organic acids, can be converted in a second reactor into other
products, for which there are several choices, such as H2, CH4, or poly-
hydroxybutyrate. This biorefinery setup will, in general, maximize volumetric pro-
ductivities and yields, making the hydrogen production economical feasible. The
main obstacles for thermophilic ethanol production to be feasible in the near future
are to increase their tolerance of higher initial substrate loadings and minimize their
end-product formation spectrum. The former challenge may be solved by using
fed-batch or continuous cultures but the latter with further use of genetic
engineering.
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Production of Fine Chemicals by 
Thermophilic, Anaerobic Bacteria 

Sean Michael Scully and Johann Orlygsson 

Abstract Thermophilic anaerobic bacteria possess many desirable metabolisms to 
produce various fine chemicals. The demand for more and more sustainable produc-
tion of various chemicals has risen in the past decades, and some of these are produced 
by strict anaerobic, thermophilic bacteria. The present investigation covers the main 
chemical pathways used to produce 1,2-propanediol, 1,3-propanediol, branched-chain 
alcohols and the main microbes involved, namely Thermoanaerobacter, 
Thermoanaerobacterium, Caloramator, Caldanaerobacterium, and Clostridium. 

1 Introduction 

Thermophilic anaerobes are well known for their capacity to produce biofuels such 
as biohydrogen and bioethanol (Taylor et al. 2009; Scully and Orlygsson 2015a). 
While both of these molecules are important in the context of moving towards a 
circular economy, they are low-value molecules and do not necessarily provide an 
easy pathway to producing other bio-based molecules required to produce the other 
materials required for our modern societies. While there are dozens of papers on the 
production of both biohydrogen and bioethanol with thermophilic anaerobes, there is 
less knowledge regarding their capacity to produce higher-value compounds such as 
higher-order alcohols and diols. This chapter focuses on the latest development in 
the production of high-value compounds like 1,2-propanediol and branched-chain 
alcohols using thermophilic anaerobes. Other fine chemicals that are produced by 
fermentation are some specific pharmaceuticals (Revuelta et al. 2018), organic acids 
such as lactic and succinic acids (Prado-Rubio et al. 2020; Prabhu et al. 2020), and 
some other specialty chemicals that are produced by mesophiles and thus not 
mentioned further here. 
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As explored by Adalsteinsson and Hreggvidsson (2023), microorganisms capable 
of growth at high temperatures are classified as thermophiles and hyperthermophiles, 
where the latter grow at temperatures at and above 80 °C. The majority of 
hyperthermophiles are Archaea whereas Bacteria comprise most of the thermophilic 
group. Several thermophilic anaerobic bacteria are capable of the production of fine 
chemicals at high temperatures by species like Clostridium, Thermoanaerobacter, 
and Caloramator but also from hyperthermophiles such as strains within the genus 
of Caldicellulosiruptor. 

The conversion of biomass to biofuel has been intensively investigated for the 
past 40 years but declined with the return of cheap oil as the main energy resource in 
the 1980s. That said, the production of other biomolecules that could offer alterna-
tives to the use of petroleum-derived feedstocks for the production of other essential 
chemical building blocks was largely overlooked. However, due to new techniques 
and ever increasing awareness of environmental issues and geopolitical instability, 
biofuel production has once again found itself in the limelight with the sustainable 
production of other molecules that received much more attention as we have 
transition towards a circular economy (Scully and Orlygsson 2015a, b). 

The term biorefining deals with the use of renewable resources, like agricultural 
crops or wastes, that are utilized for the extraction of intermediates that can either be 
further converted to biofuels or fine chemicals. The goal of the biorefinery is to 
produce both high-value, low-volume and low-value, high-volume products. Bio-
mass can be used either directly as raw material for bioprocessing or be used as 
inexpensive substrates for fermentation processes from which products can be 
extracted (Solaiman et al. 2006). The types of biomass that can be used as a raw 
material are very diverse, including corn (Gaspar et al. 2005), wheat (Koutinas et al. 
2004), sugar cane (Pye 2005), cassava (Enze 2006), and lignocellulose (Pan et al. 
2006). There are two main types of biorefinery systems. One with one type of 
biomass that is converted to one main product or a mixture of biomass types that 
are converted to various end products. To obtain high yields, various types of 
pretreatment are usually needed: mechanical, biocatalytic, and chemical. It is 
worth mentioning that another very active area of research is the use of enzymes 
from extremophiles and thermophiles in particular for the production of highly 
specialized molecules through biocatalysis and biotransformation (Arbab et al. 
2022; Ajeje et al. 2022) although this is the focus of a previous chapter (Scully 
and Orlygsson 2023). 

According to the US Department of Energy, the main chemical building blocks 
produced from biomass used to produce various types of chemicals are compounds 
like 1,4 diacids, 2,5-furan dicarboxylic acid, 3-hydroxypropionic acid, aspartic acid, 
glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, 
glycerol, sorbitol and xylitol which can be further converted to other various 
products (Turner et al. 2007). However, most of these compounds are used by 
aerobic mesophiles but not thermophiles. Apart from well-known high-volume, 
low-value end products like ethanol, there are not many fine chemicals produced 
by the fermentation of thermophilic bacteria. The main focus of this chapter is on 
1,2-propanediol, 1,3-propanediol and branched-chain alcohols.
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2 Production of 1,2-Propanediol 

The fine chemical propane-1,2-diol, also commonly referred to as α-propylene 
glycol or 1,2-propanediol (1,2-PD), is a three-carbon molecule that has a high 
boiling point and is highly hydrophilic. It is also a major commodity chemical and 
is highly valued because of its application in biodegradable plastics and polymer 
resins as well as a solvent in the anti-freezing industry, cosmetics, nutrition products, 
food industry, and hydraulic breaking system industry (Samad et al. 2015; Mhd 
Sawal et al. 2019; Siebert and Wendisch 2015; Zhao et al. 2018; Hatti-Kaul et al. 
2018). Additionally, 1,2-PD can be found in nature as two enantiomeric forms: (S)-
1,2-propandiol and (R)-1,2-propanediol. Each of these enantiomers are useful chiral 
building blocks like the conversion of 1,2-propanediol to D-2-hydroxypropionic 
acid (Gao et al. 2006). The annual sale of 1,2-PD was estimated at 1.36 million tons 
per year world wide (Tao et al. 2021). 

While 1,2-PD can be produced chemically by hydrogenolysis of carbohydrates at 
high temperatures and pressure in presence of a metal catalyst, this method is though 
outdated and its production resulted in a racemic mixture of 1,2-PD and other 
polyols such as 1,3-propanediol and higher molecular weight polyols (Lenth and 
Puis 1945). While other routes from glycerol are known, they are also problematic 
due to their low chemoselectivity and further complicated by the challenges of 
separating 1,2-PD from 1,3-propanediol. At present, 1,2-PD is mainly produced by 
the hydration of propylene oxide, a hazardous molecule derived from petroleum 
sources being not only highly flammable but also acutely toxic and carcinogenic 
(Martin and Murphy 1994). Thus, in recent years, several attractive biological 
processes have been developed using renewable energy sources. The focus in this 
review will be on the production of 1,2-PD by fermentation. 

2.1 Pathways for 1,2-Propanediol Production 

Production of 1,2-PD occurs mainly through two pathways. Firstly, by degradation 
of deoxysugars, also known as methylpentoses, (like L-fucose and L-rhamnose) to 
yield the S-enantiomer as the end product (Turner and Robertson 1979) (Fig. 1a). 
Secondly, by a route known as the methylglyoxal bypass which proceeds through 
the glycolytic intermediate dihydroxyacetone phosphate (DHAP) via the formation 
of methylglyoxal and its subsequent reduction of the R-enantiomer of 1,2-PD 
(Fig. 1b) (Saxena et al. 2010a, b). It should be noted that a third pathway has been 
observed via lactic acid degradation with hypothetical routes to both enantiomers 
being possible (Elferink et al. 2001). 

When L-rhamnose is used as a substrate, it is first phosphorylated to L-
rhamnulose-1-phosphate which is cleaved to give DHAP and L-lactaldehyde 
(Badia et al. 1985). Similarly, the degradation of L-fucose renders the same end 
products and the latter is reduced to 1,2-PD (Fig. 1a). However, using the expensive



deoxysugars as a substrate for 1,2-PD is not economically feasible due to the high 
cost of these carbohydrates although it should be noted that both L-fucose and L-
rhamnose can be sourced from various seaweeds. 
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Fig. 1 Metabolic pathways for 1,2-PD production from deoxysugars (a) and from DHAP via the 
methylglyoxal bypase (b) 

The other route to produce 1,2-PD is via the methylglyoxal pathway (Cooper 
1975). In this pathway, degradation of fructose-1,6-biphosphate is possible under 
phosphate limitation (Tran-Din and Gottschalk 1985) and the intermediate DHAP is 
converted to methylglyoxal and provides inorganic phosphate for the glyceralde-
hyde dehydrogenase reaction (Fig. 1b). Thereafter, the methylglyoxal is metabolized 
further to 1,2-PD and D (-)- lactate using the glyoxal bypass. The reduction of 
methylglyoxal to 1,2-PD can then continue via the dihydroxyacetone (acetol) 
(DeLey and Kersters 1964; Tanaka et al. 1975) or via lactaldehyde (Lin 1980). 
Finally, lactic acid bacteria have been shown to degrade lactic acid to a mixture of 
acetic acid and 1,2-PD (Elferink et al. 2001). 

2.2 Microorganisms Producing 1,2-Propanediol 

There are many microorganisms, both yeasts and bacteria, that can produce 1,2-PD 
but most of them are mesophilic. The mesophilic bacteria producing 1,2-PD are



Prevotella (Turner and Robertson 1979), Salmonella (Badia et al. 1985), Klebsiella 
(Badia et al. 1985), Clostridium (Sánchez-Riera et al. 1987; Ingvadottir et al. 2018; 
Cameron and Cooney 1986) and Lentilactobacillus (Elferink et al. 2001). Several 
fungal strains can also produce the compound (Suzuki and Onishi 1968; Dowd et al. 
1994). There is however a great variety in both substrates and organisms in what 
pathways are used. One major difference is between bacteria and fungi concerning 
1,2-PD is that the former is anaerobic but the latter aerobic. The first notification of 
1,2-PD production was however by the thermophile Clostridium thermobutyricum 
in the 1950s (Enebo 1954) from cellulose and various sugars. No information is 
obtained whether the bacterium produces the R or S enantiomer of 1,2-PD. The 
mesophiles that can degrade deoxysugars to 1,2-PD are Clostridium sphenoides 
(Tran-Din and Gottschalk 1985) and Salmonella typhimurium (Badia et al. 1985) 
and produce 1,2-PD. In case of the former, degradation of glucose, fructose, 
mannose, and cellobiose also resulted in the production of 1,2-PD but only during 
phosphate limiting conditions since the methylglyoxal synthetase is strongly 
inhibited by phosphate. A mutant of Thermoanaerobacterium 
thermosaccharolyticum (formerly Clostridium thermosaccharolyticum) was found 
to degrade common sugars to 1,2-PD with maximum yields of 0.27 g 1,2-PD/g 
glucose in a batch culture using 45.0 g/L (Cameron and Cooney 1986;  Sánchez-
Riera et al. 1987) with lactate being the major fermentation end product. Later, the 
strain was shown to produce (R)-1,2-propanediol from both pentoses (arabinose, 
xylose), and hexoses (glucose, galactose) and lactose (Cameroon et al. 1998). It was 
reported to produce 2.8 g/L of 1,2-PD from hydrolyzed whey permeate but also other 
end products like lactate, acetate, and acetol. A recent investigation of Clostridium 
strain AK1 strain, a moderate thermophile isolated from a hot spring in Iceland, 
shows the ability of the production of (S)-1,2-propanediol from L-rhamnose 
(Ingvadottir et al. 2018). Initial studies showed that the strain produced 1,2-PD 
only from rhamnose but not fucose. The effect of various environmental culture 
parameters such as initial substrate concentrations, pH, temperature, the influence of 
the partial pressure of hydrogen as well as different initial phosphate concentrations 
was tested. The strain produces maximum 6.6 mM of 1,2-PD from 10 mM of 
rhamnose, or 61% of theoretical yields. At higher substrate concentrations, lower 
yields were observed. The optimum temperature and pH of growth were at 55 °C and 
6.7, respectively. The 1,2-PD production was affected neither by partial pressure of 
hydrogen nor different initial phosphate concentrations (Ingvadottir et al. 2018). 
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Bielen and co-workers reported unpublished data of 1,2-PD formation by 
Caldicellulosiruptor saccharolyticus during growth on rhamnose (Bielen et al. 
2013). Later, investigation of all nine species of the genus was tested for growth 
and end-product formation from both L-fucose and L-rhamnose (Ingvadottir et al. 
2017). This study revealed that six of the strains degraded L-rhamnose (20 mM) to 
1,2-PD ranging from 3.05 to 7.65 mM with other end products mainly being acetate 
and hydrogen but only traces of ethanol and lactate. Three strains could degrade 
fucose to mainly 1,2-PD together with acetate and hydrogen.
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3 Production of 1,3-Propanediol 

Propane-1,3-diol commonly referred to as β-propylene glycol or 1,3-propanediol 
(1,3-PD) is a bulk chemical with applications in polymers, cosmetics, adhesives, 
lubricants, foods, laminates, solvents, antifreeze, and medicine (Homann et al. 1990; 
Colin et al. 2000; Zhu et al. 2002; Cheng et al. 2007). Prior to 1990, 1,3-PD was only 
used in small quantities as compared with other bulk chemicals because of impurities 
and difficulties to produce it. Therefore, in the past three decades, some attractive 
biological processes have been developed for the production of high purity of the 
compound from low-cost renewable materials (Saxena et al. 2009). 

Industrially, 1,3-PD has usually been produced from acrolein by Degussa DuPont 
and from ethylene oxide by Shell (Saxena et al. 2009). These chemical processes 
however involve high pressure in the hydroformylation and hydrogenation steps 
using high temperatures, expensive catalysts, and the release of toxic intermediates. 
Additionally, the yields are relatively low (40–80%) (Saxena et al. 2009). Thus, the 
interest in the past three decades has been more and more on the biological 
production of 1,3-PD mainly from glycerol (a waste product in the production of 
biodiesel) and glucose. 

3.1 Pathways Involved in the Production of 1,3-Propanediol 

The only known substrate to be converted to 1,3-PD is glycerol and the biochemistry 
of the production has been elucidated in detail (Seyfried et al. 2002; Biebl et al. 
1999). The enzymes involved are glycerol dehydratase (GHD), 1,3-propandiol 
oxidoreductase (PDOR), glycerol dehydratase (GDH), 1,3-propanediol oxidoreduc-
tase (PDOR), glycerol dehydrogenase (GHD) and dihydroxyacetone phosphate 
kinase (DHAK). The dissimilation of glycerol involves either reductive or oxidative 
pathways. The former involves vitamin B12-dependent GHD that removes water 
from glycerol to form 3-hydroxypropionaldehyde (3-HPA) which is further reduced 
to 1,3-PD by NADH linked PDOR. In the oxidative pathway, glycerol is 
dehydrogenated to dihydroxyacetone (DHA) by NAD+ linked GHD and then 
converted to dihydroxyacetone phosphate (DHAP) by an ATP-dependent DHAK 
(Saxena et al. 2009) (Fig. 2). 

Fig. 2 Pathways with 1,3-propanol production
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The biggest problems with the current fermentative techniques of 1,3-PD pro-
duction are the relatively low yields and productivities. This can however overcome 
by using fed-batch or continuous culture methods or by mutagenesis of wild strains. 

3.2 Microorganisms Producing 1,3-Propanediol 

The only microorganisms that can produce 1,3-PD are bacteria but none can ferment 
sugars directly to 1,3-PD although some can use sugars to produce glycerol that is 
converted to 1,3-PD by other bacteria. Most bacteria that can produce 1,3-PD are 
mesophilic and have been well studied in the past. The well-known 1,3-PD pro-
ducers are Klebsiella (Forage and Foster 1982; Yang et al. 2007), Clostridia 
(Forsberg 1987; Raynaud et al. 2003), Citrobacter (Homann et al. 1990; Seifert 
et al. 2001), Enterobacter (Barbirato et al. 1996) and Lactobacilli (Schutz and Radler 
1984). The only thermophiles reported are two species within the genus 
Caloramator, C. viterbiensis and C. boliviensis (Seyfried et al. 2002; Crespo et al. 
2012). Also, a study from 2001 showed that a strain most likely to belong to 
Clostridium was capable of 1,3-PD formation (Wittlich et al. 2001). Some data are 
from mixed cultures at thermophilic range in anaerobic reactors focusing on the 
production of hydrogen and 1,3-PD from crude glycerol (Sittijunda and Reungsang 
2019; Simoes et al. 2021). Caloramator viterbensis was shown to produce 1,3-PD 
from glycerol in 2002 (Seyfried et al. 2002) producing approximately 2/3 of the 
substrate to 1,3-PD and on 1/3 to acetate. To the authors’ knowledge, no experiments 
have been on the physiology to investigate enzymes or to optimize 1,2-PD with 
either of the Caloramator strains. 

4 Production of Branched-Chain Alcohols 

One of the major limitations of current biorefinery schemes using renewable biomass 
is the accumulation of protein without a strategy in place to convert protein products 
into biofuels. It has been well established that yeasts and some bacteria produce 
higher-order alcohols (sometimes referred to as “fusel alcohols”) during fermenta-
tion of amino acids. Fusel alcohols are formed during fermentation under certain 
environmental conditions including high temperature, low pH, or during nitrogen 
limitation (Hazelwood et al. 2008; Smit et al. 2009). 

It is well known that yeasts and some bacteria (Staphylococcus, Enterococcus, 
lactic acid bacteria) produce branched-chain alcohols (BCOH) from branched-chain 
amino acids (BCAA), but in low concentrations, via the Ehrlich pathway (Ehrlich 
1907; Hazelwood et al. 2008; Beck et al. 2004; Ward et al. 2000, 1999). Using 
cheaper substrates, like sugars and carbon dioxide, to produce BCOH is only 
possible through genetic engineering. The highest concentration of iso-butanol



reported in the literature is 50.8 g/L by genetically engineered E. coli from glucose, 
but usually, iso-butanol concentrations are less than 10 g/L (Huo et al. 2011). 
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Fig. 3 Proposed scheme for the degradation of branched chain amino acids to a mixture of 
branched chain fatty acids and branched chain alcohols 

Many thermophilic Clostridia can degrade amino acids to various end products. 
In most cases, the amino acids are first deaminated to their corresponding α-keto 
acids which are thereafter decarboxylated to a one-carbon shorter fatty acid 
(Orlygsson et al. 1995; Fardeau et al. 1996). The importance of interspecies hydro-
gen transfer has been well documented, especially for reduced amino acids like the 
BCAA. These amino acids degrade only when the electrons produced in the initial 
oxidative deamination step are scavenged due to the unfavorable thermodynamics 
involved (Orlygsson et al. 1995; Fardeau et al. 1996). The ΔG°′ for the degradation 
of the BCAAs to their corresponding branched-chain fatty acids (BCFA) is between 
+4.2 and + 9.7 kJ/mol (Fardeau et al. 1997). In cases where the amino acid degrading 
microorganism can use thiosulfate as an electron acceptor, degradation of these 
amino acids can take place (thiosulfate is reduced to H2S or S0 ). Another mechanism 
to degrade BCAA is co-cultivating the amino acid degrading microorganism with 
hydrogenotrophic methanogen where the electrons released are scavenged to the 
formation of methane. The catabolism of BCAAs by Thermoanaerobacter brockii 
has been studied in the presence of a hydrogen scavenging methanogen and in the 
presence of thiosulfate which led to the production of the corresponding fatty acid 
(Fardeau et al. 1997). Later, work on T. brockii and Caldanaerobacter subterraneus 
subsp. yonseiensis showed that the fermentation of BCAAs using thiosulfate as an 
electron sink resulted in the formation of a mixture of the corresponding BFCA and 
BCOH (Scully and Orlygsson 2014 (Fig. 3)). Later studies showed that this capacity 
of producing longer chain alcohols from the BCAA seems to be common among 
species within the genera of Thermoanaerobacter and Caldanaerobacter (Scully 
et al. 2015). Usually, the production of the BCFA was dominant over the alcohol, 
although some strains showed that more than 30% of the substrate ended up in the 
alcohol. 

Several other studies by the same authors on other thermophilic bacteria to 
investigate the effect of various environmental factors on BCOH formation were 
performed. In a study with Thermoanaerobacter strain AK90, it was shown that the 
BCAA were converted to their corresponding BCFA in co-culture of an 
hydrogenotrophic methanogen but to a mixture of BCFA and BCOH in the presence 
of thiosulfate (Scully and Orlygsson 2015b). Not surprisingly, no degradation of 
none of the three BCAA occurred when used as a single substrate.
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The influence of culture parameters on the degradation of BCAA was performed 
on Thermoanaerobacter strain AK85 (Scully and Orlygsson 2019). The main 
outcome from this investigation was that the concentration of the electron donor 
(thiosulfate) during the degradation of BCAA was of great importance for the ratio 
of BCFA/BCOH formed. At higher thiosulfate concentrations, a higher portion of 
the BCAA was converted to BCFA when compared with BCOH formation. It was 
however not clear from the data obtained whether the strain converts the BCAA to a 
mixture of the corresponding BCFA/BCOH or if the acid is the initial product and is 
further converted later on to BCOH. Finally, by using isotopically labelled BCFA, it 
was clear that the strain indeed produced both BCFA and BCOH from BCAA. 

Finally, in a recent study on Thermoanaerobacter pseudethanolicus, it was 
showed that by varying the partial pressure of hydrogen in the cultivation system 
could change the ratio of BCFA and BCOH produced (Scully and Orlygsson 
2020a, b). The amount of the BCOH was however significantly lower as compared 
with strain AK85. The issue of whether the BCFA is first produced in culture media 
and later during the stationary phase converted to its corresponding alcohol is 
interesting. Recent investigation on the conversion of fatty acids to their 
corresponding alcohols showed that this phenomenon is indeed active in several 
members within the genus of Thermoanaerobacter. 

5 Conversion of Volatile Fatty Acids to Alcohols 

Alcohol dehydrogenases (ADHs) of thermophilic bacteria have been of special 
interest in the past, and for instance, Thermoanaerobacter pseudethanolicus possess 
several ADSs with varying substrate specificity and cofactor preferences (Scully and 
Orlygsson 2020b). Production of higher alcohol carbon alcohol production has been 
known for a long time by using auto- or lithotrophic Clostridia such as CO and CO2-
utilizing bacteria. Recent work has also shown that some Thermoanaerobacter 
strains can covert carboxylic acids to their corresponding alcohols in the presence 
of organic substances like glucose (Hitschler et al. 2018; Scully et al. 2021) (Fig. 4). 
The potential use of cheap fatty acids as a substrate for more expensive alcohols is 
appealing and has a potential of high energy formation of higher alcohol fuels 
(Scully and Orlygsson 2014). This has been further investigated on 
Thermoanaerobacter strain AK152 where 1-propanol was produced from 
1-propionic acid. This highly ethanologenic strain converted more than 40% of the 
fatty acid to the alcohol in initial investigations but could be maximized to 57.3% 
yields by varying various culture parameters (Scully and Orlygsson 2020c). Kinetic 
studies revealed that propionate conversion rate to propanol was rapid and indeed the 
substrate for the alcohol formation was from propionate. 

Further studies on other type strains of Thermoanaerobacter, T. pseudethanolicus 
showed that the strain converts C2–C6 fatty acids to their corresponding alcohols. 
The conversion yields vary between 21.0 and 57.9% with pentanoate being the fatty 
acid with the highest conversion yields. The reduction of the higher carbon fatty



acids to their corresponding alcohols was further demonstrated by using 13 C labeled 
fatty acids and the conversion followed kinetically (Scully and Orlygsson 2020a). 
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Fig. 4 Conversion of volatile fatty acids to alcohols 

Finally, a strain of Thermoanaerobacter strain AK91 was also shown to produce 
higher carbon alcohols from their corresponding fatty acids during a study of ethanol 
production from rhubarb leaf hydrolysate (Orlygsson and Scully 2021). Indeed, this 
was the first indication of higher chain alcohol formation from fatty acids and was 
observed by using fatty acids as inhibitors for ethanol production and surprisingly 
showed that the strain was not inhibited by the fatty acids used but used as electron 
acceptors to produce their corresponding alcohol. Given the ubiquity of carboxylic 
acids, the applications of a facile means of upgrading them to their corresponding 
alcohol may be of utility. 

6 Conclusion 

Production of fine chemicals by using thermophilic anaerobic bacteria is an exciting 
field of study. Several fine chemicals that are from non-renewable resources are 
produced today, but its production is often related with the use of toxic chemicals. 
Using more environmentally friendly processes are more and more sought up today, 
especially microbiological methods that often produce racemic pure compounds. Of 
the compounds produced today by thermophilic anaerobes, 1,2- and 1,3- PD are 
produced by several genera, namely Clostridium, Thermoanaerobacterium, and 
Caldicellulosiruptor. Producing 1,2-propandiol from renewable lignocellulosic 
waste is the most promising alternative for its production. Although promising as 
cell factories for these chemicals, there are no full-scale factories using fermentation 
techniques available today. Concerning the production of BCOH from BCFA, the 
main issue is the high cost of BCAA and low concentration of these amino acids in 
protein waste. Perhaps, the most promising alternative of using thermophilic,



anaerobic bacteria is their capacity of using volatile fatty acids as electron donors, 
rendering the corresponding alcohol. This alternative opens the possibility to convert 
lignocellulose to fatty acids and further convert them to alcohols. The most likely 
process to be behind this would be a two-step fermentation process where pure 
culture of bacteria produces volatile fatty acids which are further converted to high 
energy fuel such as 1-propanol and 1-butanol. 
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Potential of Anaerobic Thermophiles 
and Future Prospects 

Johann Orlygsson 

Abstract Since the discovery of thermophilic and extremophilic bacteria, their 
potential in various biotechnological properties has been well studied. The present 
investigation dwells on the main areas of research where thermophilic bacteria are of 
great importance as well as discussion on possible future aspects of their utilization. 
The main use of thermophiles and extremophiles is within the production of biofuels 
(ethanol and hydrogen), their use in biorefineries (production of diols and branched-
chain alcohols), production of thermostable enzymes, and industrial use in general. 
The main future prospect of the use of thermophiles is to upscale the production of 
ethanol (and hydrogen) to large-scale factories, using complex lignocellulosic bio-
mass as substrate. Additionally, the production of most fine chemicals is not yet 
financially profitable as compared with the production from fossil fuels. The oppor-
tunities in this sector are most likely further genetic engineering work on present 
microorganism. Finally, although genetic engineering seems to be of more and more 
use in anaerobic thermophiles, the need for genetic tools is still lacking in their 
process. 

1 Introduction 

Thermophilic and extremophilic bacteria are metabolically active in extreme thermal 
environments. These harsh environments have resulted in the evolution of microor-
ganisms capable of growth at extremes in salt (>1.0 mol/L), low and high pH (<5.0 
or >8.0), high temperatures (>45 °C), atmospheric pressure, and many other 
(Rastogi et al. 2010; Urbieta et al. 2014a, b; Futterer et al. 2004; Giaveno et al. 
2013; Ruepp et al. 2000). Microorganisms living in such extreme environments have 
many diverse cell structures, and a variety of different metabolisms and use ultimate 
survival strategies that allow them to withstand these harsh conditions (Urbieta et al. 
2015). 
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Thermophiles in general have been exploited for various processes but the main 
emphasis in the early days was on aerobic and chemolithotrophic thermophiles. 
Bacteria that do not use oxygen for growth at high temperatures are called thermo-
philic anaerobes. These bacteria have been of interest to both basic and applied 
science. The areas of the basic nature of thermophilic anaerobes are the various 
unique forms of microorganisms and the fact that they are very likely to possess 
similar metabolism as those of early life forms on Earth. The first life forms on Earth 
evolved 3.8 billion years ago when there was very little oxygen present, indicating 
that early life forms were of anaerobic nature. Thermophilic anaerobes are even more 
interesting due to the fact that during the early evolution of life on Earth, the 
temperature was much higher compared with the present day (Wagner and Wiegel 
2008). It is however not possible to prove that the first microorganisms on Earth 
were anaerobic, but many believe that the evolution from low-temperature origin 
microorganisms evolving to adapt at higher temperatures is unlikely to happen. 
From an applied point of view, thermophilic anaerobic bacteria have been 
investigated intensively for the past few decades. Early investigations were on 
second-generation ethanol production and later hydrogen production. More recent 
investigations have since been on the production of low-volume, high-value com-
pounds like 1,2-propanediol and other fine chemicals as well as thermostable 
enzymes. This chapter focuses on thermophilic anaerobic bacteria producing both 
high-volume, low-value and low-volume, high-value compounds, and future aspects 
are issued on these microbes. 

2 Main Metabolic Pathways of Thermoanaerobic Bacteria 

Heterotrophic anaerobic bacteria growing on various organic compounds may be 
categorized into glycolytic, cellulolytic, lipolytic, and proteolytic metabolism. The 
main glycolytic metabolic pathways used by these microbes are the same as for 
mesophilic microbes; the Embden-Meyerhof and Entner-Doudoroff pathways. 
However, thermophiles, especially of the archaea origin, have many modifications 
of these two mainstream metabolisms in cells (Bielen et al. 2010; Straub et al. 2020). 

The degradation of glucose to pyruvate through the Embden-Meyerhof pathway 
(EMP) is the most common pathway used by thermophilic anaerobes. Degradation 
of glucose with EMP generates two NADHs, two pyruvates, the key intermediate in 
most organisms, together with the formation of two ATP by substrate-level phos-
phorylation. Pyruvate is the end product of glycolysis and can be converted to 
fermentation products like hydrogen, ethanol, acetate, lactate, alanine, and carbon 
dioxide. 

The carbon flow depends on the microorganisms involved and the environmental 
conditions. Pyruvate can for instance be reduced to lactate by lactate dehydrogenase 
(LDH) but the most favorable pathway for anaerobic bacteria is to oxidize pyruvate 
to acetyl-CoA, H2, and CO2 by using pyruvate: ferredoxin oxidoreductase (PFOR) 
which can be converted to acetate with concomitant ATP synthesis from the



acetyl-phosphate intermediate. Acetate is thus the oxidized product but the main 
advantage for the microorganisms is the extra ATP produced. The electrons are 
transported to reduced ferredoxin which acts as an electron donor for hydrogenases 
and H2 is produced as the reduced product. Strict anaerobes can produce H2 from 
two major breakpoints during the degradation of glucose; firstly, from a NAD(P)H 
by GAPDH and from pyruvate ferredoxin oxidoreductase (PFOR) (Jones 2008). The 
principal H2 pathway is through PFOR because of the thermodynamics hindrance of 
reoxidizing NADH (Jones 2008). It is a well-known phenomenon that the low H2 

yields observed by mesophilic and moderate thermophilic bacteria are due to the fact 
that H2 production from either ferredoxin or NAD(P)H are thermodynamically 
unfavorable (Jones 2008; Hallenbeck 2009). The redox potential of Fdred/Feox 
couple depends on the microorganism and temperature involved. In nature, high 
partial pressures of H2 are relatively uncommon because of the activity of 
H2-scavenging microbes, e.g., methanogens or sulfate-reducing bacteria (Cord-
Ruwisch et al. 1988). This results in a low partial pressure of H2 which is favourable 
for a complete oxidation of glucose to acetate and CO2. At high temperatures, the 
influence of the partial pressure of H2 is less on the key enzymes responsible for H2 

production. This is the main reason why extremophilic bacteria have been reported 
to produce up to 4 moles of H2 together with 2 moles of acetate in pure cultures and 
also for the fact that microorganisms growing at lower temperatures direct their end 
product formation to other reduced products (Pawar et al. 2013, 2015). At lower 
temperatures, the NADH ferredoxin oxidoreductase (NOR) that converts NADH to 
Fdred is strongly inhibited. The E° is – 400 mV for Fdred/Fdox couple but -320 mV 
for the NADH/NAD+ couple (Jones 2008; Hallenbeck 2009). Therefore, at low 
temperatures, elevated H2 concentrations inhibit H2 evolution at much lower con-
centrations as compared to extreme temperatures. Mesophilic and moderate thermo-
philic bacteria respond to this by directing their reducing equivalents to other more 
favorable electron acceptors and consequently produce reduced products like etha-
nol, lactate, butyrate, and alanine. 
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Carbohydrate degradation by thermophilic bacteria is well known today. Most 
mesophiles degrade sugars to a mixture of acetate, ethanol, lactate, and butyrate, 
together with the formation of hydrogen and carbon dioxide. Moderate thermophiles 
mostly produce the same end-products although butyrate is less common but not 
unknown (Scully and Orlygsson 2015). Thermophiles usually never produce buty-
rate as the volatile end product, but more generally produce ethanol and lactate (and 
hydrogen) as reduced products and acetate, and carbon dioxide as oxidized end 
products. 

Apart from the traditional fermentation glycolytic pathways, thermophilic anaer-
obes can degrade a wide variety of other organic compounds by fermentation. 
However, much less studied is amino acid degradation. The main difference in 
amino acid degradation as compared with carbohydrates is the fact that many 
amino acids are reduced and cannot be degraded unless with the help of interspecies 
hydrogen transfer or by the addition of external electron acceptors like thiosulfate 
(Fardeau et al. 1997; Scully et al. 2015). This is however not true for all amino acids 
because some of them can be degraded as a single substrate by a single



microorganism, serine, and threonine being the best examples. Amino acids are 
usually first deaminated to their corresponding keto acid which is further 
decarboxylated to its corresponding fatty acid. However, there is much more variety 
for amino acid metabolism in general depending on the thermodynamics and the 
microbes involved (Orlygsson 1994). As an example of the degradation of reduced 
amino acids, the degradation of the branched-chain amino acids is discussed. 
Leucine, isoleucine, and valine are branched-chain amino acids with 5-carbon 
(valine) and 6-carbon structures (leucine and valine). The ΔG°1 for the deamination 
step is positive (4.2 to 9.7 kJ/mol), and these amino acids cannot be degraded as a 
single substrate under anaerobic conditions (Fardeau et al. 1997; Orlygsson 1994). 
By co-cultivating the amino acid degrading bacterium with a hydrogenotrophic 
methanogen, the overall thermodynamics change dramatically, and these amino 
acids are first deaminated and then decarboxylated, resulting in a production of 
one carbon shorter branched-chain fatty acids (Scully et al. 2015). Recent investi-
gations have also shown that by cultivating Thermoanaerobacter and 
Caldanaerobacter species in the presence of thiosulfate as an electron acceptor, 
the branched-chain amino acids are degraded to a mixture of their corresponding 
fatty acid and alcohol, most likely these bacteria first produce the branched-chain 
fatty acid which can be used as an electron acceptor in competition with thiosulfate 
and convert them to the alcohol (Scully et al. 2015). 
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Examples of production of other valuable compounds produced by thermophilic, 
anaerobic bacteria are for instance production of 1,2-propanediol and 
1,3-propanediol. Production of 1,2-propanediol by fermentation occurs mainly by 
two pathways, firstly by using deoxy sugars like fucose and rhamnose, and secondly 
by using “normal” sugars via the glycolytic intermediate dihydroxyacetone phos-
phate via the formation of methylglyoxal (Saxena et al. 2010). Examples of the 
former pathway in thermophilic microorganisms are Clostridium and 
Caldicellulosiruptor (Ingvadottir et al. 2018, 2017) and Thermoanaerobacterium 
species for the latter (Sánchez-Riera et al. 1987). The only known pathway for 
1,3-propanediol formation is by using glycerol as the substrate. The only anaerobic 
thermophiles known to produce 1,3-propanediol are some members of the genus 
Caloramator (Seyfried et al. 2002). Caloramator viterbiensis degrades glycerol to a 
mixture of acetate (oxidized product) and 1,2-propanediol (reduced product). 

3 Main Use of Thermoanaerobic Bacteria in Biotechnology 

3.1 Biofuel Production 

Production of ethanol, hydrogen, and methane by thermophilic bacteria is an excit-
ing area of research. In this chapter, methane is omitted but the main focus is on 
ethanol and hydrogen. 

The stochiometry of ethanol formation from glucose is as follows:
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1 Glucose ! 2 Ethanolþ 2 CO2 ð1Þ 

Ethanol production from simple biomass like sugar cane and starch has been well 
known for many decades now and is a huge industry in many countries. This type of 
biomass is the so-called first-generation biomass with only simple sugars like 
sucrose and glucose. The vast majority of this type of biomass is fermented to 
ethanol by yeasts but not bacteria (Taylor et al. 2009). The main reason for this is 
because of the high yields of ethanol obtained by yeast and their high tolerance 
towards both substrate concentrations and high ethanol titers (Scully and Orlygsson 
2015). However, using this type of biomass for biofuel production has been criti-
cized heavily because of its competition with food and feed production. Therefore, in 
the past few decades, the focus has been on the utilization of more complex biomass, 
e.g. lignocellulosic biomass (Taylor et al. 2009; Scully and Orlygsson 2015). This 
type of biomass is however much more difficult to degrade, especially because of the 
complex sugar structure of hemicelluloses bound in lignocellulose (Hahn-Hagerdahl 
et al. 2006). Many of these sugars, e.g. xylose, arabinose, and many hexoses cannot 
be utilized by wild-type yeasts and thus lowers the ethanol yields of the process. 
Another drawback of using yeasts for the degradation of sugars released during 
pretreatment of lignocellulose is the so-called glucose effect many yeasts possess 
resulting in synchronized sugar utilization which leads to a longer degradation time 
of the substrate. However, thermophilic bacteria have much broader substrate 
spectra and can often degrade many sugars simultaneously (Taylor et al. 2009; 
Scully and Orlygsson 2015). Thus, they may be more suitable for the degradation 
of complex biomass as compared to yeasts. On the other hand, thermophilic bacteria 
also possess some negative factors like low tolerance towards ethanol and the 
production of other end products apart from ethanol, like lactate and acetate, 
lowering ethanol yields in the process (Almarsdottir et al. 2012; Brynjarsdottir 
et al. 2012). This has been circumvented by genetic engineering, mainly by knocking 
out metabolic pathways leading to the undesired end-product formation or by 
increasing ethanol tolerance (Shaw et al. 2008). 

There are several ways to convert lignocellulose to ethanol after pretreatment: 
(a) separate hydrolysis and fermentation (SHF), (b) simultaneous saccharification 
and fermentation (SSF), (c) simultaneous saccharification and co-fermentation 
(SSCF), and (d) consolidated bioprocessing (Scully and Orlygsson 2015). Most 
relevant for thermophilic ethanol production are the SHF, SSCF, and CBP type 
microorganisms because there is no need for a separate hexose and pentose fermen-
tation as needed in the SSF process. The CBP is a process where enzymatic 
production, cellulose degradation, and fermentation occurs in a single step. Thus, 
the choice of microorganisms in such a system is of great importance; it needs to 
have the enzymatic machinery to produce both cellulases and hemicellulases as well 
as to produce high titers of ethanol. No wild-type microorganism is known today to 
have such properties. Thus, active ongoing research focuses on genetic engineering, 
either to modify microorganisms that have the native ability to degrade lignocellu-
lose and are then further engineered to become a powerful ethanol producer or to
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genetically engineer microorganisms that are a good ethanol producer but do not 
have the ability to produce the enzymes needed for the biomass breakdown (Scully 
and Orlygsson 2015). 
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Apart from ethanol, many thermophilic and extremophilic bacteria show high 
yields of hydrogen production. Production of hydrogen by fermentation is a feasible 
option because of the issue of renewable energy sources. Hydrogen production by 
microbes has been known for many years, especially by studies of mesophilic 
facultative and strictly anaerobic bacteria (Pawar et al. 2015; Scully and Orlygsson 
2015). In general, the degradation of glucose to acetate is the most favorable process 
of producing hydrogen with a maximum of four moles per mole of glucose 
degraded: 

1 Glucose ! 2 Acetateþ 2 CO2 þ 4 H2 ð2Þ 

Other fermentative pathways may also yield hydrogen as a product, 
e.g. production of butyrate. However, other fermentative pathways like ethanol 
and lactate production pathways direct the electron flow away from hydrogen but 
towards to these reduced end products (Scully and Orlygsson 2015). Reaction 
equations for these reactions are as follows (and Eq. 1): 

1 Glucose ! 1 Butyrate þ 2 CO2 þ 2 H2 ð3Þ 
1 Glucose 2 Lactate 2 CO2 4 

Hydrogen may be the fuel of the future once hydrogen fuel cells for propelling 
cars are more developed. Although hydrogen production from thermophilic bacteria 
has been extensively studied in the past three decades, there is no full-scale facility 
where these bacteria are utilized for hydrogen production. As for ethanol production, 
both culture parameters and microorganism properties are of great importance. At 
lower temperatures, the reaction equilibrium tends towards the formation of more 
reduced end products (lactate and ethanol) instead of acetate and hydrogen which 
results in lower hydrogen yields. The use of complex biomass for hydrogen produc-
tion has been focused heavily upon in recent decades. Many experiments have been 
done on the use of lignocellulosic waste material using thermophilic bacteri. A 
co-culture of Clostridium thermocellum with non-cellulolytic thermophilic bacte-
rium has been used for CBP-based hydrogen production (Liu et al. 2008; Ivanova 
et al. 2009). Additionally, several species within the genus of Thermoanaerobacter 
and Thermoanaerobacterium have been performed to possess their hydrogen pro-
duction capacity from various substrates (Sigurbjornsdottir and Orlygsson 2012; 
Brynjarsdottir et al. 2014; Vipotnik et al. 2016). Because of the thermodynamic 
nature of hydrogen production, the best yields of hydrogen are with extremophilic 
bacteria, mainly belonging to the genera of Thermotoga and Caldicellulosiruptor 
(Pawar et al. 2015; Nguyen et al. 2008).
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3.2 Thermophiles and Biorefineries 

The use of thermophilic anaerobic bacteria to produce fine chemicals in low volumes 
but high in value is increasing because of the world demand for using renewable 
biomass for such production. These chemicals can be produced in biorefineries using 
sustainable processes. The fine chemicals produced by thermophiles are 
1,2-propanediol, 1,3-propanediol, and branched-chain alcohols (Altaras et al. 
2001; Raynaud et al. 2003; Scully and Orlygsson 2020a, b). The use of high 
temperature minimizes the risk of contaminants, gives better solubility of substrates, 
facilitates mixing, and enhances biomass transfer rate and bioconversion rate 
(Mesbah 2022). Relatively few thermophilic, heterotrophic anaerobes have been 
used so far and merely on a laboratory scale. 

There are mainly two pathways used to produce 1,2-PD. Firstly, deoxysugars like 
fucose and rhamnose are used as substrates (Turner and Robertson 1979) and 
secondly, the glycolytic intermediate, dihydroxyacetone phosphate (DHAP) is 
used via the formation of methylglyoxal (Saxena et al. 2010). An example of a 
thermophilic bacterium that uses the first pathway is Thermoanaerobacterium 
thermosaccharolyticum (formerly Clostridium thermosaccharolyticum) was found 
to degrade common sugars to 1,2-PD with maximum yields of 0.2 g 1,2-PD/g 
glucose in batch culture using 45 g/L (Cameron and Cooney 1986; Sánchez-Riera 
et al. 1987) with lactate being the major fermentation end product. Recently, a strain 
of Clostridium, strain AK1, a moderate thermophile isolated from a hot spring in 
Iceland, show the ability of the production of (S)-1,2-propanediol from L-rhamnose 
(Ingvadottir et al. 2018). Finally, six of the nine Caldicellulosiruptor were shown to 
produce 1,2-PD from rhamnose and three species converted fucose to 1,2-PD 
(Ingvadottir et al. 2017). 

The only known substrate to be converted to 1,3-PD is glycerol and the biochem-
istry of the production has been elucidated in detail. There are many microorganisms 
that can produce the compound but only one thermophilic bacterium, Caloramator 
viterbiensis (Seyfried et al. 2002). This strain degrades glycerol to a mixture of 
1,3-PD and acetate. 

Recent investigations have shown the ability of bacteria within the genera of 
Thermoanaerobacter and Caldanaerobacter to utilize branched-chain amino acids 
to a mixture of their corresponding branched-chain fatty acid and branched-chain 
alcohol. Because of the thermodynamics behind the oxidative deamination step of 
the branched-chain amino acids, they cannot be degraded as a single substrate unless 
with an external or biological hydrogen scavenging system (Orlygsson 1994). 
Recent studies showed that some bacteria within these two genera produced only 
the branched-chain fatty acid in a co-culture with a hydrogenotrophic methanogen, 
but produced a mixture of fatty acids and alcohols with an external electron acceptor, 
thiosulfate (Scully et al. 2015; Scully and Orlygsson 2020a, b). The most likely route 
of branched-chain alcohol formation is that first, the bacterium produces the 
branched-chain fatty acids which act as an electron acceptor and is reduced to 
their corresponding alcohol.
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Recent investigations on the ability of thermophilic bacteria within the genera of 
Thermoanaerobacter and Caldanaerobacter to convert volatile fatty acids during 
the degradation of carbohydrates to their corresponding alcohols are interesting 
shuttle to produce high carbon alcohol forming complex alcohol (Scully and 
Orlygsson 2020a, b; Scully et al. 2021). Recent studies have as discussed above 
show that long-chain alcohols can be produced from long-chain amino acids, but 
additionally, we have shown that these bacteria can also degrade carbohydrates and 
convert fatty acids to their corresponding alcohols. Thus, there seems to be a 
competition of electrons produced during carbohydrate metabolism for either adding 
them to pyruvate or to an external electron acceptor, like a fatty acid. This is a 
completely new way of producing a higher alcohol carbon molecule as known 
before (Scully et al. 2021). 

3.3 Thermophilic Enzymes 

Enzymes are categorized into six different classes based on enzyme action mecha-
nisms: ligases, isomerases, oxidoreductases, lyases, transferases, and hydrolyses 
(Rigoldi et al. 2017). Currently, more than 75% of the enzymes that are used 
commercially are hydrolyses (Elleuche and Antranikian 2013). Proteases are gener-
ally regarded as the major sub-type of the hydrolyses family and are widely used as 
detergents, in the starch industry as well as in animal feed and in the dairy industry. 
The second largest subgroup of hydroylases are enzymes degrading various carbo-
hydrates, mostly amylases and cellulases. These enzymes are widely used in pro-
ductive industrial sectors such as starch, textile, detergent, and in the baking 
industry. 

Thermophiles have evolved in extreme conditions such as temperatures ranging 
up to 120C, or extreme pH, salt, and high pressures. Thus, adapted to such extremes, 
the enzymes of thermophiles and extremophiles are of great importance. Many of 
these enzymes tolerate extremes in various harsh conditions and are thus regarded as 
a suitable source for various industrial processes (Mesbah 2022). That said, how-
ever, most enzymes currently used in industry are of mesophilic origin (Turner et al. 
2007). Below is a description of the main use of thermophilic enzymes. 

Lignocellulose is the main structural component of all plant material. Its structure 
is a carbohydrate-(cellulose and hemicellulose) and phenolic-based (lignin) bio-
polymers. Cellulose is the most abundant organic compound on Earth and is the 
major component of plant cell material. It is a linear homopolymer of glucose which 
are linked with B-1,4-glycosidic bonds, with repeating units of cellobiose. Hemicel-
lulose is the second major component of lignocellulose. This is a family of branched-
and heterogeneous polymers, and its chemical structure is different from plant 
tissues and species. The composition of hemicellulose is C5 carbon sugars (i.e., 
xylose and arabinose) and/or C6 sugars (i.e., glucose, mannose, and galactose). 
Lignin is however a nonlinear polymer, composed of randomly linked aromatic 
compounds, e.g., coniferyl, sinapyl, and coumarin alcohols which are linked to both



cellulose and hemicellulose, and acts like a barrier, preventing the penetration of 
chemicals and enzmyes (Huang et al. 2022). 
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Degradation of lignocellulose is a complex process and is dependent on many 
enzymes. Firstly, cellulose is degraded to cellobiase by the action of endoglucanases 
and exoglucanases resulting in the formation of cellobiose which is further degraded 
to glucose by the use of β-glucosidase. The hemicellulose fraction of lignocellulose 
is however more complicated because of its heterogenic structure. The most impor-
tant enzymes are xylanases because the majority of the hemicellulosic structure is 
xylan. These enzymes degrade xylan mainly to xylose but other enzymes like 
β-mannanases, arabionofuranosidases, and α-L-larabinases are also needed. Ther-
mophilic bacteria possess a broad variety of enzymes that are of huge importance for 
the degradation of lignocellulose, like xylanases, laccases, β-mannases, and cellu-
lases (Ergun and Calik 2016). Thermophilic, anaerobic bacteria that can degrade 
cellulose and hemicellulose mainly belong to two genera, Clostridium and 
Caldicellulosiruptor. The best known thermophilic bacteria to decompose cellulose 
is Clostridium thermocellum. This bacterium possesses the well-studied cellulosome 
and is capable of degrading both amorphous and crystallin cellulose (Ichikawa et al. 
2017). This bacterium is a well-known producer of various end products, like 
acetate, ethanol, hydrogen, and carbon dioxide. There are 14 species that belong to 
the extremophile genus Caldicellulosiruptor (Blumer-Schuette 2020). Most of them 
are capable of cellulose degradation. The thermophilic microorganisms that produce 
thermostable enzymes for industrial use are Pyrococcus species, Anaerocellum, and 
Thermotoga maritima producing cellulases active at 95–97 °C (Hebal et al. 2022; 
Bhalla et al. 2013) The main types of hemicellulases are endoxylanases, 
β-xylosidase, arabinofuranosidase, and acetyl-xylan esterase and more. The 
endoxylanases (EC: 3.2.1.8) mainly cleave the β-glycosidic bonds of the xylan 
backbone and release Xos as a product. The β-xylosidases (EC: 3.2.1.37) degrade 
xylobiose and other xylooligosaccharides to yield xylose. Arabinofuranosidases 
(EC: 3.2.1.55) and acetyl xylan esterases (EC:3.1.1.72) attack on side chains of 
heterogenous xylan substrate and help xylanases and β-xylosidases to degrade xylan 
completely (Collins et al. 2005). Additionally, the synergistic action of these 
enzymes facilitate xylan and lignin removal from cellulose without affecting the 
cellulose structure. The main use of hemicelluloses is in the pulp and paper industry 
where wood is used for the production of the pulp but this is most often done at high 
temperatures. Thermostable xylanases have been isolated from various thermophilic 
bacteria like Pyrococcus furiosus and Thermotoga species which are active between 
50 and 80 °C (Bhalla et al. 2013). 

The other thermostable enzymes are esterases, keratineases, and lipases. Most 
thermophilic esterases known today are from aerobic bacteria like Bacillus and 
Thermus (Finore et al. 2023). However, several investigations have been on ester-
ases from anaerobic hyperthermophiles like Thermotoga maritima and Pyrobaculum 
caldifontis (Levisson et al. 2007; Palm et al. 2011). Bacteria within the genus 
Thermoanaerobacter and Caldanaerobacter have been shown to produce thermo-
stable lipases (Cai et al. 2011; Royter et al. 2009).
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Keratin is a natural fiber that is a component of recalcitrant structure of hair, nails, 
hoofs, feathers, and horns. Keratinases are proteolytic enzymes that attack disulfide 
bridges of keratin and thus are of great importance in various areas like textile 
processing, protein supplement, biomedical industries, and more (Brandelli et al. 
2010). Keratinases are usually produced microbially from slaughterhouses, hair 
saloons, and mundan (donating hair). There is a wide variety of microorganisms 
capable of keratin degradation, both fungi, and aerobic and anaerobic bacteria. The 
thermophilic fungi that is known to degrade keratin are Epidermophyton and 
Trichophyton (Ignatova et al. 1999). Among bacteria degrading keratin, most are 
aerobic and mesophilic. Thermophilic anaerobes known to degrade the chemical are 
mainly found in the genus Thermoanaerobacter, e.g., T. keratinophilus (Kublanov 
et al. 2009; Riessen and Antranikian 2001). 

3.4 Thermophiles in Industry 

Enzymes of thermophilic origin have been used for a long time as detergents and for 
various food production (cheese, sourdough, beer, and wine) as well as for the 
production of indigo, linen, and leather (Turner et al. 2007; Blumer-Schuette et al. 
2008; Mesbah 2022). Usually, such processes are triggered by the addition of 
enzymes to the substrate, in situ production of enzymes during processing, or by 
enzymes that are present in natural products. Today, there are many enzymes that are 
used in various industrial processes such as detergent, textile, and starch that are 
produced in an industrial scale by selected thermophilic microbes. The first com-
mercial enzyme that was produced industrially was protease by Novozymes. More 
recent developments of enzyme production have been mostly done by protein and 
genetic engineering of microbes to tailor-made enzymes for various areas of appli-
cations. Most enzymes used in industrial processes are from yeast (50%), the rest 
belonging to bacteria (one-third), animals (8%), and plant (4%) (https://www. 
alliedmarketresearch.com/enzymes-market). Microbes that are used in industrial 
processes for enzyme production need to be economically feasible, easy of growth, 
and fast generation times. In the year 2020, the global market for industrial enzymes 
passed 12.46 billion dollars and its growth rate for the next two to three decades is 
estimated to be around 8% (https://www.grandviewresearch.com/industry-analysis/ 
enzymes-industry). 

Because of the robustness of thermophiles, they are often with great advantage 
compared to mesophilic microorganisms in various industrial applications (Ebaid 
et al. 2019). They usually grow faster and are more resistant to environmental 
stresses and produce thermotolerant enzymes. Their enzymes are thermostable and 
thus suitable for industrial processes that take place at high temperatures (Ebaid et al. 
2019). Higher temperatures increase the rates of biochemical reactions and at the 
same time, reduce risk for mesophilic microbial contamination (Kuhad et al. 2011; 
Cuecas et al. 2016). Additionally, high temperatures reduce energy output because 
of increased solubility and the efficiency of substrate mixing (Dai et al. 2014).

https://www.alliedmarketresearch.com/enzymes-market
https://www.alliedmarketresearch.com/enzymes-market
https://www.grandviewresearch.com/industry-analysis/enzymes-industry
https://www.grandviewresearch.com/industry-analysis/enzymes-industry


Finally, higher temperatures facilitate downstream product recovery because of 
cheaper distillation and permeation membrane separation costs (Dai et al. 2014). 
The main disadvantage of using thermophiles in the industry is the fact that they 
have been much less investigated and often lack tools form genetically engineer 
them (Crosby et al. 2019). The main infrastructure of current fermentation technol-
ogy is based on mesophilic microorganisms. Additionally, proteins usually found in 
mesophilic microorganisms are unsuitable for many thermophilic bacteria, mainly 
due to the risk of protein denaturation or poor enzymatic performance at high 
temperatures. At present, the majority of metabolic engineering microbes are well-
known standard, mesophilic microorganisms like E. coli and S. cerevisae. The main 
reason for this is the fact that thermophiles in general are more recalcitrant to genetic 
manipulation than mesophilic microorganisms (Crosby et al. 2019). 
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The discovery of the thermostable DNA polymerases 25 years back has revolu-
tionized genetic engineering and molecular biology and was rewarded with the 
Nobel Prize to Mullis and Smith in 1993. Thermostable microbes such as Thermus 
aquaticus (Kuznetsova et al. 2022), Pyrococcus furiosus (Ishino 2020), and 
Thermococcus litoralis (Terpe 2013) have been used for the production of DNA 
polymerases that survive denaturation temperatures and are now used as a routine 
work model for molecular biology world over. Another good example of the use of 
thermophilic enzymes use in industry is in the starch field. Starch degradation 
usually occurs in a two-step procedure, firstly by liquefaction of starch granules, 
and secondly by saccharification. These two steps were for a long time done at two 
different temperatures (105 °C for 5 min and 95 °C for 1 h, at pH 6.0), and at 60 °C 
for 3 h at pH 4.5. Traditionally, the key enzymes used were amylases, 
glucoamylases, and pullulanases that do not tolerate high temperatures and low pH 
used in the process, and thus, cooling and pH adjustments were necessary for the 
saccharification of starch. In 1990, the first archaeal amylase was investigated with 
an optimum temperature of 100 °C found in Pyrococcus furiosus (Koch et al. 1990). 
More recent observations involving acid-stable amylase was cloned from Bacillus 
acidicola to E. coli with a half-life of 30 min at 80 °C and pullulanase from 
Thermococcus kodakarensis KOD1 with a temperature optimum at 100 °C (Sharma 
and Satyanarayana 2012; Han et al. 2013). Many pharmaceutically active com-
pounds contain nitrogen and can be derived from amino acids (Drauz 1997). 
Thermophilic L-aminoacylase (esterase) was cloned and overexpressed from 
archaeon Thermococcus litoralis (Toogood et al. 2002). This esterase gene respon-
sible codes for pyroglutamyl carboxyl peptidase which is a cystein protease that 
cleaves the pyroglutamyl group from the N-terminus of biologcially important 
peptides. The commercial use of this enzyme is to cleave the pyroglutamyl group 
from blocked peptides. Other examples of commercial enzymes that have been 
identified are carboxyl esterase from Thermogutta terrifontis (Sayer et al. 2015), 
μ-lactamase from Sulfolobus solfataricus (Taylor et al. 1993), an α-carbonic 
anhydrase from Thermovibrio ammonificans (James et al. 2014), and transaminase 
from Sulfolobus sulfataricus (Sayer et al. 2012). 

Although extremophiles and extremozymes have shown great potential in various 
industrial applications, their commercial use is still limited. Some recent trends show



that extremozymes may emerge as available industrial enzymes (Sarimiento et al. 
2015) although their full potential is yet to be realized. As for mesophiles, the basic 
lack of knowledge concerning growth, long generation times, and low yields are 
major limiting factors for industrial applications to fulfill their promise. The major 
limiting factor is the large-scale cultivation of extremophiles because of the robust 
conditions often needed. High temperatures result in low solubility of gases that may 
be growth limiting for the thermophiles involved together with product inhibition 
and difficulties with downstream and recovery processes (Gabani and Singh 2013). 
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3.5 Other Products/Use of Thermophiles 

There are several other fields where thermophilic, anaerobic bacteria are used as for 
example conversion of glycerol to lactate, biodegradation of petroleum hydrocar-
bons, recovery of heavy metals, and remediation of textile dyes but most of these are 
done by mesophilic and aerobic thermophiles (Mehta et al. 2016). Other aerobic 
processes involved in the production of fine chemicals like 1,4, diacids, 3-hydroxy 
propionic acid, aspartic acid, glucaric acid, gluconic acid, sorbitol, and xylitol are 
also well-known products via aerobic fermentations (Turner et al. 2007). 

4 Future Outlook 

Although second-generation production of ethanol and hydrogen at high tempera-
tures has been investigated intensively, there seem to be very few full-scale facilities 
using thermohilic bacteria. The first plant-producing lignocellulosic biomass to 
produce ethanol started in Italy (BioLyfe) in 2013 but they are using mesophilic 
temperatures with yeast as the fermenters. Until 2020, more than 60 production 
plants have been started, most of them in the US but almost half of them are not 
operative now. The main reason for fully industrializing second-generation ethanol 
production is in biomass pretreatment (recalcitrance of lignocellulosic feedstock to 
chemicals or enzymes, complete delignification processes, generation of inhibititors, 
and low sugar yields), enzymatic hydrolysis (cost of enzymes, effect of solid 
loadings), and fermentation (co-fermentation, rates of sugar uptake, tolerance of 
ethanol producing bacteria for high initial substrate concentrations, inhibitors and 
products). Another factor of importance is the fact that the energy content of ethanol 
is 33% lower as compared with gasoline. Therefore, the fact that thermophilic 
bacteria within the genera of Thermoanaerobacter and Caldanaerobacter are capa-
ble of converting high-carbon fatty acids to their corresponding alcohol, in the 
presence of carbohydrates may be an interesting option in near future. Full-scale 
production plants for hydrogen do still today not exist and more interest seems to be 
for non-biological hydrogen production. Increased knowledge about the bottlenecks 
for using either photobiological or fermentative bacteria for the production of



biohydrogen is needed. Biorefineries for the production of fine chemicals known to 
be produced by thermophilic anaerobic bacteria like 1,2-propanediol, 
1,3-propanediol and branched chain alcohols are still not economically viable to 
compete with chemical production routes. Currently, none of these compounds are 
produced in a large-scale facility because of the expensive cost. The most prosing 
area of research seems to be using genetic engineering to enhance yields and lower 
the production cost. The use of extremophilic enzymes used in various processes of 
industries like paper and pulp, saccharolytic degradation, and in the field of biofuel 
production of complex biomass is an exciting field of research. In many of these 
cases, extreme temperatures are needed, and thus, the importance of thermophiles 
will be of great importance in near future. 
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The robustness and high growth rates of thermophiles give a great advantage 
compared to mesophilic microorganisms in various industries. Their enzymes are 
thermostable and thus suitable for industrial processes that take place at high 
temperatures. The main disadvantage of using thermophiles in the industry is the 
fact that they have been much less investigated and often lack tools for genetically 
engineer them. The main enzymes of interest that are produced by thermophilic 
bacteria are saccharolytic enzymes used in the sugar and detergent industries. 
Opportunities are clearly for identifying suitable microorganisms and enzymes 
because most enzymes used today are thermotolerant enzymes produced from 
mesophilic microorganisms. As for mesophiles, the basic lack of knowledge 
concerning growth, long generation times, and low yields are major limiting factors 
for industrial applications to fulfill their promise. The major limiting factor is the 
large-scale cultivation of extremophiles because of the robust conditions often 
needed. High temperatures result in low solubility of gases that may be growth 
limiting for the thermophiles involved together with product inhibition and difficul-
ties with downstream and recovery processes. 

References 

Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J (2012) Effects of various factors on ethanol 
yields from lignocellulosic biomass by Thermoanaerobacterium AK17. Biotechnol Bioeng 
109:686–694. https://doi.org/10.1002/bit.24346 

Altaras NE, Etzel MR, Cameron DC (2001) Conversion of sugars to 1,2-propanediol by 
Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 17:52–56. https:// 
doi.org/10.1021/bp000130b 

Bhalla A, Bansal N, Kumar S et al (2013) Improved lignocellulose conversion to biofuel with 
thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759. https://doi. 
org/10.1016/j.biortech.2012.10.145 

Bielen AAM, Willquist K, Engman J et al (2010) Pyrophosphate as a central energy carrier in the 
hydrogen producing extremely thermophilic Caldicellulosiruptor saccharolyticus. FEMS 
Microbiol Lett 307:48–54. https://doi.org/10.1111/j.1574-6968.2010.01957.x 

Blumer-Schuette SE (2020) Insight into thermophilic plant biomass hydrolysis from 
Caldicellulosiruptor systems biology. Microorganisms 8:385. https://doi.org/10.1016/j. 
copbio.2008.04.007

https://doi.org/10.1002/bit.24346
https://doi.org/10.1021/bp000130b
https://doi.org/10.1021/bp000130b
https://doi.org/10.1016/j.biortech.2012.10.145
https://doi.org/10.1016/j.biortech.2012.10.145
https://doi.org/10.1111/j.1574-6968.2010.01957.x
https://doi.org/10.1016/j.copbio.2008.04.007
https://doi.org/10.1016/j.copbio.2008.04.007


240 J. Orlygsson

Blumer-Schuette SE, Kataeva I, Westpheling J et al (2008) Extremely thermophilic microorganisms 
for biomass conversion: status and prospects. Science. Direct 19:210–217 

Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and the 
production and applications. Appl Microbiol Biotechnol 85:1735–1750. https://doi.org/10. 
1007/s00253-009-2398-5 

Brynjarsdottir H, Wawiernia B, Orlygsson J (2012) Ethanol production from sugars and complex 
biomass by Thermoanaerobacter AK5: the effect of electron scavenging systems on 
end-product formation. Energy Fuel 26:4568–4574. https://doi.org/10.1021/ef300754q 

Brynjarsdottir H, Scully SM, Orlygsson J (2014) Production of biohydrogen from sugars and 
lignocellulosic biomass using Thermoanaerobacter GHL15. Int J Hydrog Energy 38:14467– 
14475. https://doi.org/10.1016/j.ijhydene.2013.09.005 

Cai J, Xie Y, Song B et al. (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and 
characterization of the thermophilic lipase as a new member of the lipase family V. Appl 
Microbiol Biotechnol 89:1463–1473. doi: https://doi.org/10.1007/s00253-010-2971-y. 

Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(-)1,2-propanediol and 
acetol by Clostridium thermosaccharolyticum. Nat Biotechnol 4:719–725. https://doi.org/10. 
1038/nbt0786-651 

Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extreme xylanases. FEMS 
Microbiol Rev 29:3–23. https://doi.org/10.1016/j.femsre.2004.06.005 

Cord-Ruwisch R, Seitz H, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to 
compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. 
Arch Microbiol 149:350–357. https://doi.org/10.1007/BF00411655 

Crosby JR, Laemthong T, Lewis AP et al (2019) Extreme thermophiles as emerging metabolic 
engineering platforms. Curr Opin Biotechnol 59:55–64. https://doi.org/10.1016/j.copbio.2019. 
02.006 

Cuecas A, Cruces J, Galisteo-Lopes JF et al (2016) Cellular viscosity in prokaryotes and thermal 
stability of low molecular weight biomolecules. Biophys J 111:875–8882. https://doi.org/10. 
1016/j.bpj.2016.07.024 

Dai YM, Chen KT, Chen CC (2014) Study of the microwave lipid extraction from macroalgae for 
biodiesel production. Chem Eng J 250:267–273. https://doi.org/10.1016/j.cej.2014.04.031 

Drauz K (1997) Chiral amino acids: a versatile tool in the synthesis of pharmaceuticals and fine 
chemicals. Int J Chem Chimia 51:310–314 

Ebaid R, Wang H, Sha C et al (2019) Recent trends in hyperthermophilic enzymes production and 
future perspectives for biofuel industry. J Clean Prod 238:117925. https://doi.org/10.1016/j. 
jclepro.2019.117925 

Elleuche S, Antranikian G (2013) Starch-hydrolyzing enzymes from thermophiles. In: 
Satyanarayana T (ed) Thermophilic microbes in environmental and industrial biotechnology: 
viotechnology of thermophiles, 2nd edn. Springer, Hoboken, pp 509–533. https://doi.org/10. 
1007/978-94-007-5899-5_20 

Ergun BG, Calik P (2016) Lignocellulose degrading extremozymes produced by Pichia pastoris: 
current status and future prospects. Bioprocess Biosyst Eng 39:1–36. https://doi.org/10.1007/ 
s00449-015-1476-6 

Fardeau MI, Patel BKC, Magot M et al (1997) Utilization of serine, leucine, isoleucine and valine 
by Thermoanaerobacter brockii in the presence of thiosulfate or Methanobacterium sp. as 
electron acceptors. Anaerobe 3:405–410. https://doi.org/10.1006/anae.1997.0126 

Finore I, Feola A, Russo L et al (2023) Thermophilic bacteria and their thermozymes in composting 
processes: a review. Chem Biol Technol Agric 10:7. https://doi.org/10.1186/s40538-023-
00381-z 

Futterer O, Angelov A, Liesgang H et al (2004) Genome sequence of Picrophilus torridus and its 
implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096. https://doi.org/10. 
1073/pnas.0401356101

https://doi.org/10.1007/s00253-009-2398-5
https://doi.org/10.1007/s00253-009-2398-5
https://doi.org/10.1021/ef300754q
https://doi.org/10.1016/j.ijhydene.2013.09.005
https://doi.org/10.1007/s00253-010-2971-y
https://doi.org/10.1038/nbt0786-651
https://doi.org/10.1038/nbt0786-651
https://doi.org/10.1016/j.femsre.2004.06.005
https://doi.org/10.1007/BF00411655
https://doi.org/10.1016/j.copbio.2019.02.006
https://doi.org/10.1016/j.copbio.2019.02.006
https://doi.org/10.1016/j.bpj.2016.07.024
https://doi.org/10.1016/j.bpj.2016.07.024
https://doi.org/10.1016/j.cej.2014.04.031
https://doi.org/10.1016/j.jclepro.2019.117925
https://doi.org/10.1016/j.jclepro.2019.117925
https://doi.org/10.1007/978-94-007-5899-5_20
https://doi.org/10.1007/978-94-007-5899-5_20
https://doi.org/10.1007/s00449-015-1476-6
https://doi.org/10.1007/s00449-015-1476-6
https://doi.org/10.1006/anae.1997.0126
https://doi.org/10.1186/s40538-023-00381-z
https://doi.org/10.1186/s40538-023-00381-z
https://doi.org/10.1073/pnas.0401356101
https://doi.org/10.1073/pnas.0401356101


Potential of Anaerobic Thermophiles and Future Prospects 241

Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology 
and therapeutics. Appl Microbiol Biotechnol 97:993–1004. https://doi.org/10.1007/s00253-
012-4642-7 

Giaveno MA, MSa U, Ulloa JR et al (2013) Physiologic versatility and growth flexibility as the 
main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue 
geothermal area in Argentina. Microb Ecol 65:336–346. https://doi.org/10.1007/s00248-012-
0129-4 

Hahn-Hagerdahl B, Galbe M, Gorwa-Grauslund MF et al (2006) Bioethanol the fuel of tomorrow 
from residues today. Trends Biotechnol 24:549–556. https://doi.org/10.1016/j.tibtech.2006. 
10.004 

Hallenbeck PC (2009) Fermentative hydrogen production: Principles, progress and prognosis. Int J 
Hydrog Energy 27:1185–1193. https://doi.org/10.1016/j.ijhydene.2008.12.080 

Han T, Zeng F, Li Z et al (2013) Biochemical characterization of a recombinant pullulanase from 
Thermococcus kodakarensis KOD1. Lett Appl Microbiol 57:336–343. https://doi.org/10.1111/ 
lam.12118 

Hebal H, Hamalainen J, Makkonen L et al (2022) Enhanced activity of hyperthermostable 
Pyrococcus horikoshii endoglucanase in superbase ionic liquids. Biotechnol Lett 44:961–974. 
https://doi.org/10.1007/s10529-022-03268-5 

Huang CX, Jiang X, Shen XJ et al (2022) Lignin-enzyme interaction: A roadblock for efficient 
enzymatic hydrolysis of lignocellulosics. Renew Sustain Energy Rev 154:111–822. https://doi. 
org/10.1016/j.rser.2021.111822 

Ichikawa S, Nishida A, Yasui S et al (2017) Characterization of lignocellulose particles during 
lignocellulose degradation by Clostridium thermocellum. Biosci Biotechnol Biochem 81:2028– 
2033. https://doi.org/10.1080/09168451.2017.1364619 

Ignatova Z, Gousterova A, Spassov G et al (1999) Isolation and partial characterization of 
extracellular keratinase from wool degrading thermophilic actinocycete strain 
Thermoactionmyces candidus. Can J Microbiol 45:217–222. https://doi.org/10.1139/cjm-45-
3-217 

Ingvadottir EM, Scully SM, Orlygsson J (2017) Evaluation of the genus Caldicellulosiruptor for 
production of 1,2-propanediol from methylpentoses. Anaerobe 47:86–88. https://doi.org/10. 
1016/j.anaerobe.2017.04.015 

Ingvadottir EM, Scully SM, Orlygsson J (2018) Production of (S)-1,2-propanediol from l-rhamnose 
using the moderately thermophilic Clostridium strain AK1. Anaerobe 54:26–30. https://doi.org/ 
10.1016/j.anaerobe.2018.07.003 

Ishino Y (2020) Studies on DNA-related enzymes to elucidate molecular mechanisms underlying 
genetic information processing and their application in genetic engineering. Biosci Biotechnol 
Biochem 84:1749–1766. https://doi.org/10.1080/09168451.2020.1778441 

Ivanova G, Rakhely G, Kovacs KL (2009) Thermophilic biohydrogen production from energy 
plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J 
Hydrog Energy 34:3659–3670. https://doi.org/10.1016/j.ijhydene.2009.02.082 

James P, Isupov MN, Sayer C et al (2014) The structure of a tetrameric alpha-carbonic anhydrase 
from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that 
contribute to its thermostability. ACTA Crystallogr D Biol Crystallogr 70:2607–2618. https:// 
doi.org/10.1107/S1399004714016526 

Jones P (2008) Improving fermentative biomass-derived hydrogen production by engineered 
microbial metabolism. Int J Hydrog Energy 33:5122–5130. https://doi.org/10.1016/j.ijhydene. 
2008.05.004 

Koch P, Zablowski P, Spreinat A et al (1990) Extremely thermostable amylolytic enzyme from the 
archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:21–26 

Kublanov IV, Tsiroulnikov KB, Kaliberda EM et al (2009) Keratinase of an anaerobic thermophilic 
bacterium Thermoanaerobacter sp. strain 1004–09 isolated from a hot spring in the Baikal rift 
zone. Microbiology 78:67–75. https://doi.org/10.1134/S0026261709010093

https://doi.org/10.1007/s00253-012-4642-7
https://doi.org/10.1007/s00253-012-4642-7
https://doi.org/10.1007/s00248-012-0129-4
https://doi.org/10.1007/s00248-012-0129-4
https://doi.org/10.1016/j.tibtech.2006.10.004
https://doi.org/10.1016/j.tibtech.2006.10.004
https://doi.org/10.1016/j.ijhydene.2008.12.080
https://doi.org/10.1111/lam.12118
https://doi.org/10.1111/lam.12118
https://doi.org/10.1007/s10529-022-03268-5
https://doi.org/10.1016/j.rser.2021.111822
https://doi.org/10.1016/j.rser.2021.111822
https://doi.org/10.1080/09168451.2017.1364619
https://doi.org/10.1139/cjm-45-3-217
https://doi.org/10.1139/cjm-45-3-217
https://doi.org/10.1016/j.anaerobe.2017.04.015
https://doi.org/10.1016/j.anaerobe.2017.04.015
https://doi.org/10.1016/j.anaerobe.2018.07.003
https://doi.org/10.1016/j.anaerobe.2018.07.003
https://doi.org/10.1080/09168451.2020.1778441
https://doi.org/10.1016/j.ijhydene.2009.02.082
https://doi.org/10.1107/S1399004714016526
https://doi.org/10.1107/S1399004714016526
https://doi.org/10.1016/j.ijhydene.2008.05.004
https://doi.org/10.1016/j.ijhydene.2008.05.004
https://doi.org/10.1134/S0026261709010093


242 J. Orlygsson

Kuhad RC, Gupta R, Khasa YP et al (2011) Bioethanol production from pentose sugars: current 
status and future prospects. Renew Sust Energ Rev 15:4950–4962 

Kuznetsova AA, Fedorova OS, Kuznetsov NA (2022) Structural and molecular kinetic features of 
activities of DNA polymerase. Int J Mol Sci 23:12. https://doi.org/10.3390/ijms23126373 

Levisson M, van der O, SWM K (2007) Characterization and structural modeling of a new type of 
thermostable esterase from Thermotoga maritima. FEBS J 274:2832–2842. https://doi.org/10. 
1111/j.1742-4658.2007.05817.x 

Liu Y, Yu P, Song X et al (2008) Hydrogen production from cellulose by co-culture of Clostridium 
thermocellum JN4 and Thermoanaerobacterium thermosaccharilyticum GD17. Int J Hydrog 
Energy 33:2927–2933. https://doi.org/10.1016/j.ijhydene.2008.04.004 

Mehta R, Singhal P, Singh H et al (2016) Insight into thermophiles and their wide-spectrum 
applications. 3 Biotech 6:81. https://doi.org/10.1007/s13205-016-0368-z 

Mesbah NM (2022) Industrial biotechnology based on enzymes from extreme environments. Front 
Bioeng Biotech 10:870083. https://doi.org/10.3389/fbioe.2022.870083 

Nguyen TAD, Kim JP, Kim MS et al (2008) Optimization of hydrogen production by hyperther-
mophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermenta-
tions. Int J Hydrog Energy 33:1483–1488. https://doi.org/10.1016/j.ijhydene.2007.09.033 

Orlygsson J (1994) The role of interspecies hydrogen transfer on thermophilic protein and amino 
acid metabolism. Ph.D. thesis. Swedish University of Agricultural Sciences 

Palm GJ, Fernandez-Alvaro E, Bogdanovic X et al (2011) The crystal structure of an esterase from 
the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its 
enantioselectivity. Appl Microbiol Biotechnol 91:1061–1072. https://doi.org/10.1007/s00253-
011-3337-9 

Pawar SS, Nkemka VN, Zeidan AA et al (2013) Biohydrogen production from wheat straw 
hydrolysate using Caldicellulosiruptor saccharolyticus following by biogas production in 
two-step uncoupled process. Int J Hydrog Energy 38:9121–9130. https://doi.org/10.1016/j. 
ijhydene.2013.05.075 

Pawar SS, Vongkumpeang T, Grey C et al (2015) Biofilm formation by designed co-cultures of 
Caldicellulosiruptor species as a means to improve hydrogen productivity. Biotechnol Biofuels 
8:19. https://doi.org/10.1186/s13068-015-0201-7 

Rastogi G, Bhalla A, Adhikari A et al (2010) Characterization of thermostable cellulases produced 
by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806. https://doi.org/10. 
1016/j.biortech.2010.06.001 

Raynaud C, Sarcabal P, Meynial-Salles I et al (2003) Molecular characterization of the 
1,3-propanediol operon of Clostridium butyricum. Proc Natl Acad Sci USA 100:5010–5015. 
https://doi.org/10.1073/pnas.0734105100 

Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel 
thermophilic, anaerobic bacterium with keratinase activity. Extremophiles 5:399–408. https:// 
doi.org/10.1007/s007920100209 

Rigoldi F, Donini S, Redaelli A et al (2017) Review: engineering of thermostable enzymes for 
industrial applications. APL Bioeng 2:011501. https://doi.org/10.1063/1.4997367 

Royter M, Schmidt M, Elend C et al (2009) Thermostable lipases from the extremophilic anaerobic 
bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter 
subterraneus subsp. tengcongensis. Extremophiles 13:769–783. https://doi.org/10.1007/ 
s00792-009-0265-z 

Ruepp A, Graml W, Santos-Martinez M-L et al (2000) The genome sequence of the 
thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513. https://doi. 
org/10.1038/35035069 

Sánchez-Riera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the 
production of R(-)-1, 2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 
9:449–454. https://doi.org/10.1007/BF01027450 

Sarimiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and 
current trends. Front Bioeng Biotechnol 3:148. https://doi.org/10.3389/fbioe.2015.00148

https://doi.org/10.3390/ijms23126373
https://doi.org/10.1111/j.1742-4658.2007.05817.x
https://doi.org/10.1111/j.1742-4658.2007.05817.x
https://doi.org/10.1016/j.ijhydene.2008.04.004
https://doi.org/10.1007/s13205-016-0368-z
https://doi.org/10.3389/fbioe.2022.870083
https://doi.org/10.1016/j.ijhydene.2007.09.033
https://doi.org/10.1007/s00253-011-3337-9
https://doi.org/10.1007/s00253-011-3337-9
https://doi.org/10.1016/j.ijhydene.2013.05.075
https://doi.org/10.1016/j.ijhydene.2013.05.075
https://doi.org/10.1186/s13068-015-0201-7
https://doi.org/10.1016/j.biortech.2010.06.001
https://doi.org/10.1016/j.biortech.2010.06.001
https://doi.org/10.1073/pnas.0734105100
https://doi.org/10.1007/s007920100209
https://doi.org/10.1007/s007920100209
https://doi.org/10.1063/1.4997367
https://doi.org/10.1007/s00792-009-0265-z
https://doi.org/10.1007/s00792-009-0265-z
https://doi.org/10.1038/35035069
https://doi.org/10.1038/35035069
https://doi.org/10.1007/BF01027450
https://doi.org/10.3389/fbioe.2015.00148


Potential of Anaerobic Thermophiles and Future Prospects 243

Saxena RK, Anand P, Saran S et al (2010) Microbial production and applications of 
1,2-propanediol. Indian J Microbiol 50:2–11. https://doi.org/10.1007/s12088-010-0017-x 

Sayer C, Bommer M, Ward JM et al (2012) Crystal structure and substrate specificity of the 
thermophilic serine: pyruvate aminotransferase from Sulfolobus solfataricus. Acta Crystallogr 
D Biol Crystallogr D68:763–772. https://doi.org/10.1107/S0907444912011274 

Sayer C, Isupov MN, Bonch-Osmolovskaya E et al (2015) Structural studies of thermophilic 
esterase from a new Planctomycetes species Thermogutta terrifontis. FEBS J 282:2846–2857. 
https://doi.org/10.1111/febs.13326 

Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by 
thermophilic bacteria. Energies 8:1–30. https://doi.org/10.3390/en8010001 

Scully SM, Orlygsson J (2020a) Branched-chain amino acid catabolism of Thermoanaerobacter 
pseudethanolicus reveals route to branched-chain alcohol formation. Extremophiles 24:121– 
133. https://doi.org/10.1007/s00792-019-01140-5 

Scully SM, Orlygsson J (2020b) Biotransformation of carboxylic acids to alcohols: characterization 
of Thermoanaerobacter strain AK152 and 1-propanol production via propionate reduction. 
Microorganisms 8:6. https://doi.org/10.3390/microorganisms8060945 

Scully SM, Iloranta P, Myllymaki P et al (2015) Branched-chain alcohol formation by thermophilic 
bacteria within the genera of Thermoanaerobacter and Caldanaerobacter. Extremophiles 19: 
809–818. https://doi.org/10.1007/s00792-015-0756-z 

Scully SM, Brown AE, Mueller-Hilger Y et al (2021) Influence of culture conditions on the 
bioreduction of organic acids to alcohols by Thermoanaerobacter pseudethanolicus. Microor-
ganisms 9:1. https://doi.org/10.3390/microorganisms9010162 

Seyfried M, Lyon D, Raney FA et al. (2002) Caloramator viterbensis sp. nov., a novel thermo-
philic, glycerol-fermenting bacterium isolated from a hot spring in Italy. Int J Syst Evol 
Microbiol 52:1177–1184. doi: https://doi.org/10.1046/j.1432-1327.2001.02123.x. 

Sharma A, Satyanarayana T (2012) Cloning and expression of acid stable, high maltose forming 
Ca2+ independent alpha amylase from an acidophile Bacillus acidicola and its applicability in 
starch hydrolysis. Extremophiles 16:515–522. https://doi.org/10.1007/s00792-012-0451-2 

Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic 
bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105:13769–13774. 
https://doi.org/10.1073/pnas.0801266105 

Sigurbjornsdottir MA, Orlygsson J (2012) Combined hydrogen and ethanol production from sugars 
and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring. Appl 
Energy 97:785–791. https://doi.org/10.1016/j.apenergy.2011.11.035 

Straub CT, Schut G, Otten JK et al (2020) Modification of the glycolytic pathway in Pyrococcus 
furiosus and the implications for metabolic engineering. Extremophiles 24:511–519. https://doi. 
org/10.1007/s00792-020-01172-2 

Taylor SJC, McCague R, Wisdom R et al (1993) Development of the biocatalyctic resolution of 
2-azabicyclo [2.2.1] hept-5-en-3-one as an entry to single enantiomer carbocyclic nucleosides. 
Tetrahedron Assymetry 4:1117–1128. https://doi.org/10.1016/S0957-4166(00)80218-9 

Taylor MP, Eley KL, Martin S et al (2009) Thermophilic ethanologenesis: future prospects for 
second generation bioethanol production. Trends Biotechnol 27:398–405. https://doi.org/10. 
1016/j.tibtech.2009.03.006 

Terpe K (2013) Overview of thermostable DNA polymerases for classical PCR applications: from 
molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 
97(10243–10):254. https://doi.org/10.1007/s00253-013-5290-2 

Toogood HS, Hollingsworth EJ, Brown RC et al (2002) Thermostable L-aminoacylase from 
Thermococcus litoralis: cloning, overexpression, characterization, and applications in biotrans-
formations. Extremophiles 6:111–122. https://doi.org/10.1007/s007920100230 

Turner KW, Robertson AM (1979) Xylose, arabinose, and rhamnose fermentation by Bacteroides 
ruminicola. Appl Environ Microbiol 38:7–12. https://doi.org/10.1128/AEM.38.1.7-12.1979 

Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophilic and thermostable 
enzymes in biorefining. Microbiol Cell Fact 6:9. https://doi.org/10.1186/1475-2859-6-9

https://doi.org/10.1007/s12088-010-0017-x
https://doi.org/10.1107/S0907444912011274
https://doi.org/10.1111/febs.13326
https://doi.org/10.3390/en8010001
https://doi.org/10.1007/s00792-019-01140-5
https://doi.org/10.3390/microorganisms8060945
https://doi.org/10.1007/s00792-015-0756-z
https://doi.org/10.3390/microorganisms9010162
https://doi.org/10.1046/j.1432-1327.2001.02123.x
https://doi.org/10.1007/s00792-012-0451-2
https://doi.org/10.1073/pnas.0801266105
https://doi.org/10.1016/j.apenergy.2011.11.035
https://doi.org/10.1007/s00792-020-01172-2
https://doi.org/10.1007/s00792-020-01172-2
https://doi.org/10.1016/S0957-4166(00)80218-9
https://doi.org/10.1016/j.tibtech.2009.03.006
https://doi.org/10.1016/j.tibtech.2009.03.006
https://doi.org/10.1007/s00253-013-5290-2
https://doi.org/10.1007/s007920100230
https://doi.org/10.1128/AEM.38.1.7-12.1979
https://doi.org/10.1186/1475-2859-6-9


244 J. Orlygsson

Urbieta MS, Rascovan N, Castro C et al (2014a) Draft genome sequence of the novel 
thermoacidophilic archaeon Acidianus copahuensis strain ALE1, isolated from the Copahue 
volcanic area in Neuquen, Argentina. Genome Announc 2:e00259–e00254 

Urbieta MS, Toril EG, Giaveno MA et al (2014b) Archaeal and bacterial diversity in five different 
hydrothermal ponds in the Copahue region in Argentina. Syst Appl Microbiol 37:429–441. 
https://doi.org/10.1016/j.syapm.2014.05.012 

Urbieta MS, Donati ER, Chan KG et al (2015) Thermophiles in genomic era: biodiversity, science, 
and applications. Biotechnol Adv 33:633–647. https://doi.org/10.1016/j.biotechadv.2015. 
04.007 

Vipotnik Z, Jessen JE, Scully SM et al (2016) Effect of culture conditions on hydrogen production 
by Thermoanaerobacter strain AK68. Int J Hydrog Energy 41:181–189. https://doi.org/10. 
1016/j.ijhydene.2015.10.124 

Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Incredible anaerobes: from 
physiology to genomics to fuels. Ann NY Acad Sci. 1125:1–43

https://doi.org/10.1016/j.syapm.2014.05.012
https://doi.org/10.1016/j.biotechadv.2015.04.007
https://doi.org/10.1016/j.biotechadv.2015.04.007
https://doi.org/10.1016/j.ijhydene.2015.10.124
https://doi.org/10.1016/j.ijhydene.2015.10.124

	Contents
	Part I: General Topics
	Geothermal Habitats and Adaptations of Thermophilic Microbes
	1 Introduction: Brief History of Scientific Exploration of the Upper Thermal Boundary of Life
	2 Underlying Geology and Global Distribution of Geothermal Areas
	2.1 High- and Low-Temperature Geothermal Areas
	2.2 Surface Features in Terrestrial Geothermal Areas

	3 Other High-Temperature Environments, Natural and Anthropogenic
	4 Ecology in Geothermal Habitats
	References

	Diversity of Thermophilic Prokaryotes
	1 Introduction
	2 Deinococcota (Previously Deinococcus-Thermus)
	2.1 Thermales

	3 Nitrospirota (Previously Nitrospirae)
	3.1 Nitrospirales

	4 Chloroflexota (Previously Chloroflexi)
	4.1 Anaerolineae
	4.2 Chloroflexia
	4.3 Ktedonobacteria
	4.4 Other Chloroflexota Classes

	5 Pseudomonadota
	5.1 Acidithiobacillia
	5.2 Alphaproteobacteria
	5.3 Betaproteobacteria
	5.4 Gammaproteobacteria
	5.5 Deltaproteobacteria

	6 Campylobacterota
	6.1 Nautiliales

	7 Firmicutes
	7.1 Clostridia
	7.2 Thermoanaerobacterium
	7.3 Thermoanaerobacter and Caldanaerobacter
	7.4 Caldicellulosiruptor

	8 Thermotogae
	8.1 Thermotogales
	8.2 Kosmotogales
	8.3 Mesoaciditogales
	8.4 Petrotogales

	9 Thermodesulfobacteria
	10 Aquificota
	10.1 Aquificae

	11 Deferribacterota
	11.1 Deferribacteres

	12 Chlorobi
	12.1 Chlorobia
	12.2 Ignavibacteria

	13 Thaumarchaeota
	14 Archaeoglobi
	15 Euryarcheota
	15.1 Thermoplasmatales
	15.2 Thermococcales
	15.3 Methanopyrus

	16 Crenarchaeota
	16.1 Thermoprotei

	17 Conclusions
	References

	Molecular Basis for Thermostability
	1 Introduction
	2 Adaptations to the Cellular Membrane
	3 Adaptations to Nucleic Acids
	4 Adaptations to Proteins
	5 Future Directions
	6 Conclusions
	References

	Cultivation Techniques and Molecular Methods of Identification of Thermophilic, Anaerobic Bacteria
	1 Introduction
	2 The Trouble with Oxygen
	3 Cultivation of Anaerobic Bacteria
	3.1 The Importance of Redox Potential
	3.2 Preparation of Media for Strictly Anaerobic Bacteria
	3.3 Sterilization of Media and Cultivation Vessels
	3.4 Cultivation of Aerotolerant Anaerobic Bacteria
	3.5 Cultivation of Strictly Anaerobic Bacteria

	4 Culture-Independent Techniques for Identifying Anaerobic Bacteria
	4.1 Partial Analysis of Thermophilic, Anaerobic Bacteria by Molecular Methods
	4.2 Whole Community Analysis of Thermophilic, Anaerobic Bacteria by Molecular Methods

	5 Conclusions
	References


	Part II: Biochemistry and Physiology of Thermophiles
	Physiology of Chemoheterotrophic Thermoanaerobes
	1 Introduction
	2 Central Carbon Pathways
	2.1 Catabolite Repression and Transporters
	2.2 Hexose Metabolism
	2.3 Pentose Metabolism
	2.4 Energy Currencies

	3 Cellulolytic Fermenting Thermophiles
	4 Protein and Amino Acid-Degrading Thermophiles
	4.1 Proteolytic Thermophiles
	4.2 Amino Acid-Degrading Thermophiles

	5 Future Perspectives and Conclusions
	References


	Part III: Biotechnological Applications
	Thermostable Enzymes and Their Applications
	1 Introduction
	2 Hydrolases from Thermophilic Anaerobes
	2.1 Amylases and Pullulanases
	2.1.1 Structure of Starch
	2.1.2 Enzymes
	2.1.3 Thermophilic Starch-Degrading Enzymes: Microorganisms

	2.2 Cellulases
	2.2.1 Structure of Celluose
	2.2.2 Enzymes
	2.2.3 Thermophilic Cellulose-Degrading Enzymes: Microorganisms

	2.3 Hemicellulases
	2.3.1 Structure
	2.3.2 Enzymes
	2.3.3 Thermophilic Hemicellulose-Degrading Enzymes: Microorganisms

	2.4 Proteases and Amino Acid-Degrading Enzymes
	2.4.1 Enzymes
	2.4.2 Thermophilic Protein-Degrading Bacteria

	2.5 Esterases and Lipases
	2.5.1 Thermophilic, Anaerobic Bacteria Producing Lipases

	2.6 Pectinases
	2.6.1 Structure
	2.6.2 Enzymes
	2.6.3 Thermophilic Bacteria Degradation of Pectin


	3 Other Enzymes
	4 Conclusions
	References

	Production of Biofuels by Thermoanaerobic Bacteria
	1 Introduction
	2 Background Information
	3 Biohydrogen
	3.1 Physiology
	3.2 Feedstocks
	3.3 Dark Fermentation
	3.4 Electrohydrogenesis
	3.5 Conclusions

	4 Bioethanol
	4.1 Physiology
	4.2 Feedstocks
	4.3 Fermentation of Complex Biomass
	4.4 Genetic Engineering and Evolutionary Adaptation
	4.5 Conclusion

	5 Future Outlook
	References

	Production of Fine Chemicals by Thermophilic, Anaerobic Bacteria
	1 Introduction
	2 Production of 1,2-Propanediol
	2.1 Pathways for 1,2-Propanediol Production
	2.2 Microorganisms Producing 1,2-Propanediol

	3 Production of 1,3-Propanediol
	3.1 Pathways Involved in the Production of 1,3-Propanediol
	3.2 Microorganisms Producing 1,3-Propanediol

	4 Production of Branched-Chain Alcohols
	5 Conversion of Volatile Fatty Acids to Alcohols
	6 Conclusion
	References


	Part IV: Future Aspects
	Potential of Anaerobic Thermophiles and Future Prospects
	1 Introduction
	2 Main Metabolic Pathways of Thermoanaerobic Bacteria
	3 Main Use of Thermoanaerobic Bacteria in Biotechnology
	3.1 Biofuel Production
	3.2 Thermophiles and Biorefineries
	3.3 Thermophilic Enzymes
	3.4 Thermophiles in Industry
	3.5 Other Products/Use of Thermophiles

	4 Future Outlook
	References



