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Abstract. Digital ink (online handwriting) generation has a number of potential
applications for creating user-visible content, such as handwriting autocomple-
tion, spelling correction, and beautification. Writing is personal and usually the
processing is done on-device. Ink generative models thus need to produce high
quality content quickly, in a resource constrained environment.

In this work, we study ways to maximize the quality of the output of a trained
digital ink generative model, while staying within an inference time budget. We
use and compare the effect of multiple sampling and ranking techniques, in the
first ablation study of its kind in the digital ink domain.

We confirm our findings on multiple datasets - writing in English and Viet-
namese, as well as mathematical formulas - using two model types and two
common ink data representations. In all combinations, we report a meaningful
improvement in the recognizability of the synthetic inks, in some cases more
than halving the character error rate metric, and describe a way to select the opti-
mal combination of sampling and ranking techniques for any given computational
budget.

1 Introduction

Digital ink (online handwriting) offers users of digital surfaces a way of expression sim-
ilar to pen and paper. This mode of expression is gaining popularity with the increasing
adoption of styluses and digital pens for tablets. In its digital form, ink is a medium that
offers rich possibilities for personalized intelligent assistance for creativity and pro-
ductivity. One direct way of offering the assistance is via ink synthesis, enabling user-
facing features such as handwriting autocompletion, spelling correction, beautification,
assisted diagramming and sketching.

Making these assistance experiences convenient and comfortable requires maximiz-
ing the output quality of the models, while respecting privacy and latency constraints.
The same is true of other types of generated content, but standards might be higher in
the case of digital ink generation, for example:

– Since assistive handwriting content appears in the same space as the content gener-
ated by the user, it’s vital that the generated content is readable and not look “out-of-
place”. The users of generative image models for content creation purposes might
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be more forgiving to model mistakes, because there the model assists in the creative
process where the users don’t necessarily know what exactly they are looking for.

– Personalized assistive handwriting often requires the models to observe the user’s
handwriting and transfer that style to the generated output. Unlike other modali-
ties, handwriting is a personally-identifiable data. Therefore, it is important for the
models to run on-device, rather than server-side.

– Generating suggestions (for example when doing autocompletion in handwriting)
requires the models to be fast enough to produce their suggestions before the user has
moved on or decided to add new content themselves. When the content is produced
too slowly, it gets in the way of the user’s flow rather than helping. This problem is
further exacerbated by the constraint that the models run on-device.

In this work, we aim, given a trained generative model of digital ink and a computa-
tion budget, to produce readable outputs as often as possible, under the assumption that
the model is going to be run on-device. To achieve this goal, we consider two classes of
approaches that work well together.

Sampling. This constrained ink modelling problem resembles text and audio generation.
Following the work that has been done there [3,6,19,22,36], we first concentrate on
using perturbed probability distributions for sampling from autoregressive models. This
improves the quality within a single inference call, by picking a sampling technique
that minimizes the number of repetitive or incoherent samples. Examples of generated
digital ink can be found in Fig. 3.

Ranking. We additionally train ranking models to predict the recognizability of an ink.
We employ these models by first generating a diverse set of candidates and then ranking
them to select the best output. This improves the quality if the time budget allows for
multiple inference calls.

Our proposed ranking approach would actually work for any binary quality mea-
sure (like thresholded L2 distance in the style embedding space for style transfer [9]
or edit-aware Chamfer distance for spelling correction [26]), but we focus on recog-
nizability, since likely for any application of digital ink synthesis, the output should be
recognizable.

Our contributions are as follows1:

– We use sampling and ranking techniques for digital ink generation, and perform an
ablation study on the ranking model objective, training, and tuning. To our knowl-
edge, ours is the first work on this topic in the digital ink space.

– We show that selecting appropriate sampling parameters improves the quality of
the output significantly compared to the typically used baselines, across multiple
datasets, model types, and data representations.

– We show that ranking further improves the quality, and discover that depending
on the computational budget, the highest quality ranking models may not lead to
optimal quality. We provide practical way of selecting the ranking model.

1 A notebook accompanying this submission that can run inference on example models for each
dataset, data representation, and model type, and includes test label sets, is available here:
https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz.

https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz
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2 Related Work

Errors in Autoregressive Generative Models. Autoregressive generative models often
generate samples with artifacts [19]. Artifacts appear when the generation process gets
stuck in either high- or low-probability regions of the sampling space, and results in
two types of errors, overconfidence (usually manifested as repeated tokens) [4] and
incoherence errors, respectively. We show examples of such errors during Digital Ink
generation process in Fig. 3. This is also known as the likelihood trap [32] and stems
from exposure bias [18], which is difference between training done with ’teacher forc-
ing’ and inference [5].

Sampling. One common way of finding the trade-off between overconfidence and inco-
herence errors, often used in Text-to-Speech (TTS) and Natural Language Processing
(NLP), is sampling [4], which modifies the distribution from which the points in the
autoregressive model are sampled. Sampling from original distribution is called ances-
tral sampling; popular sampling techniques that extend it include Top-K [13] and Top-P,
or nucleus [19] sampling. Originally introduced for text generation, they propose pick-
ing a word from the distribution of the top most likely next words, limited by either
number (in Top-K) or cumulative probability (in Top-P). Variations of the sampling
techniques above include Typical sampling [27], which selects components closest to
a dynamically selected probability, Mirostat sampling [4], which select K in Top-K
sampling adaptively, and Beam search [30].

Ranking Models. Another way to improve the generation quality is to generate several
samples and choosing the best one among them. This is frequently done in information
retrieval domains such as question answering [23], text summarization [29], and code
generation [36]. Approaches most similar to ours are the ones that use ranking models
for conditional generative modeling. In [22], the ranking model is trained to predict
the best text continuation, with positive samples coming from real text and negative
samples coming from different parts of the text and model-generated continuations. In
[6], two ranking models are trained to predict the match between the generated audio
and the target label, as well as between the generated audio and the source audio used
for style extraction. They are combined with weights specified by the user, to rank audio
generated with specific style.

Handwriting Synthesis. Two of the most popular models for digital ink generation are
multi-layer LSTMs with monotonic attention over the label [15] (also known in TTS as
Tacotron [35]) and the encoder-decoder Transformer architecture [34]. Other architec-
tures include VRNN [11] used in [2], Neural ODEs [12], and Diffusion models [25].

These architectures underpin applications such as sketch generation [17] and com-
pletion [31], style transfer [21], beautification [2], spelling correction [26], and assisted
diagramming [1].

Metrics for evaluating the quality of digital ink generative models of text typically
include Character Error Rate for text generation readability [2,9,21], writer identifica-
tion for style transfer [21], and human evaluation [2,7,21].
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Most digital ink generation approaches use either ancestral sampling or greedy sam-
pling, with exception of [10], which uses biased sampling [15] for the task of generating
the synthetic training data.

To our knowledge, no studies on the effects of sampling and ranking for digital ink
generation have been performed. Similarly, no studies have looked at the relationship
between the generation speed and quality.

3 Method

Fig. 1. The diagram of the proposed solution. The input to the model is a single text label. The
generative model is run to produce B candidates. The highest scoring one according to the rank-
ing model is returned. In the generative model, we use different sampling modes to modify the
output distribution of the model. The ranking model consists of two blocks, first taking B gener-
ated inks and scoring them, then taking the R inks with the highest scores and re-ranking them.

Given an autoregressive generative model of digital ink that takes a text label as
input and produces a sequence representing digital ink as output, we are interested in
maximizing the average quality MΘS ,ΘR

(S,B,R) of the model output, while guaran-
teeing that the maximum inference time does not exceed a certain threshold Tmax. Here,
S is the sampling method used by the generative model, B is the size of the batch for
generation, and R is an inference-time parameter of the ranking model, ΘS are fixed
trained weights of the model, ΘR are the trainable parameters of the ranking model,
which we will describe below.

During inference, given a label, the generative model will use sampling method S to
produce a batch of B digital inks, which will be scored according to the ranking model
ΘR. The highest-ranking sample will be returned as the output; if B = 1, the ranking
model is bypassed. Figure 1 illustrates the approach.

Our main results concern the trade-off between the inference time and model output
quality, and are presented in Sect. 4. The rest of this section is organized as follows: we
describe our approach to measuring quality and inference time in Sect. 3.1; Sect. 3.2
outlines the data representation for digital ink and sampling methods S that can be used
with it; Sect. 3.3 describes the ranking models we use and how to train them.
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3.1 Evaluation

We propose an evaluation method linked to the system’s usability. Similar to other
works [2,9,10,21], as quality measure M we use the Character Error Rate (CER) of
a trained handwriting recognition model on the generated samples. This stems from the
assumption that the generated text is not useful if it is not readable, regardless of other
attributes like style and beauty.

A second axis of interest for usability is the inference time. We report theworst case
inference time per character. We measure the worst case latency, with the assump-
tion that exceeding the budget makes the functionality unusable for users. We measure
time per character since processing time is expected to scale linearly with the sequence
length.

3.2 Data Representation and Sampling

Two frequently used representations of the digital ink data are raw and curve represen-
tation, which both encode the ink as a sequence of input tokens in R

d × {0, 1}2, with
first d values describing the shape of the stroke between two points, and the last 2 binary
values indicating whether (i) a particular token is at the end of the stroke, and whether
(ii) it is the last token in the sequence (end of ink). For the raw representation, d = 2
and describes the offset between two adjacent points, and for the curve representation,
d = 6 and describes the parameters of Bezier curve fit to a segment of the stroke [33].

Following the approach of [15] and most of the later literature on the topic, we
parameterize the output distribution of every step of the autoregressive generative model
by a set of parameters (π, μ,Σ, es, ei), where π, μ,Σ describe weights, means, and
covariances of a mixture of Gaussians, from which R

d stroke parameters are sampled,
and es and ei describe the parameters of Bernoulli distributions from which the pen-up
(end-of-stroke) and end-of-sequence events are sampled. Σ is full-covariance matrix
for raw features (d = 2) and diagonal otherwise. We provide more details in Sect. 4.2.

Sampling. We consider two types of distortions for the output distribution: distor-
tion of the mixture weights π and distortion of the diagonal components of the
covariance matrix Σ. To distort the mixture weights, we consider several standard
approaches: Top-K (parameterized by the value of K), and Top-P and Typical sam-
pling (both parameterized by the value of P). To distort the covariance matrix, we
subtract a sampling bias value b from the diagonal elements of the covariance matrix,
before applying the softplus [14] function to it to ensure positive values. This reduces
the variance after the model has been trained, to avoid sampling in low-confidence
regions. The sampling parameters S = (s,m, b) are therefore the sampling method
s ∈ {Top-K, Top-P, Typical}, the mixture parameter m, and the sampling bias value b.

3.3 Ranking Models

Running a ranking model to order the generated samples may be computationally costly.
For this reason, we differentiate between a process to rank all candidates and one that
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ranks only the most promising ones. Following the approach commonly used in infor-
mation retrieval [23,29], our ranking approach is two-staged, with a “fast” ranker R1

that runs on all B generated outputs simultaneously, and a slower, more trustworthy
“good” ranker R2, which is used to re-rank the samples ranked highest by R1. The
inference time parameter R of the ranking model, introduced at the beginning of this
section, is the number of top samples according to R1 that are re-ranked by R2. When
R = B, this corresponds to using only R2, and when R = 1, only R1 is used. We
describe both rankers below, and provide more details about them in Sect. 4.1.

“Good” Ranker R2. Since our goal is to generate samples with lowest possible Char-
acter Error Rate, an obvious choice for R2 to use the recognizer model that measures
CER as the ranking model - that is, select the sample that is perfectly recognizable or
has the lowest character error rate. However, running the recognizer on-device can be
slow depending on the implementation, and we will see that having a faster first stage
is beneficial.

“Fast” Ranker R1. Following the approach of [6], our R1 ranker is a model learned
to predict whether the generated sample is recognizable or not, that is, whether the
recognizer would return the target label given the generated ink. In other words, this
ranker is an approximation of the “good” ranker and tries to predict its output. Since
inference time is one of the main focuses of our work, we consider a much simpler
ranking model than the one described in [6]. Instead of looking at both the generated ink
and target label, our ranker just uses the generated ink. It consists of two convolutional
layers followed by global average pooling. We study this choice of ranking model in
terms of inference speed and the types of errors that it can address in Sect. 4.

Training Dataset for R1. As described above, R1 ranker is trained to be a fast approxi-
mation of the R2 ranker, and it predicts whether synthesized ink is even close to being
recognizable. To train R1, we don’t use real data: we use the synthesizer for generating
a sample for a given text label, and R2 ranker for generating a binary label of whether
the sample is recognizable (recognition result matches the text label) or not. The pair of
generated ink and binary label is the training data for R1 (more details in Sect. 4.2).

We first train the ranking model, and then, select the sampling method S that per-
forms best on the Dtune dataset. Doing the reverse would require training a ranking
model for each possible sampling parameter setting, which would be prohibitively
expensive. This means that during training of R1, the sampling method is yet unknown.
To accommodate this, we create the training dataset for R1 by generating samples with
(s,m, b) selected at random, for each sample. This allows R1 to be robust to any future
selection of S, so that the sampling parameters can be chosen after the ranker is trained.
We evaluate this method of training dataset creation in Sect. 4.

4 Results

4.1 Setup

To show that both sampling and ranking bring forth significant improvements in gener-
ation quality, and show the robustness of the proposed approach, we will evaluate it on
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4 datasets across 3 different languages, with two frequently used model types, and two
data representations.

We consider 4 digital ink datasets for text generation: English Deepwriting [2] and
IAMonDB [24], VietnameseVNonDB [28], and an internalMath dataset of mathemat-
ical expressions. We use two data representations described in Sect. 3.2, raw and curve,
and evaluate two different model types, Tacotron [15,35] and Transformer [34].

4.2 Implementation Details

For both Tacotron and Transformer, we use 10-component Gaussian mixtures in the
model output. For Tacotron, we use one-hot encoding of labels and 3 layers of size 256
in the decoder. For Transformer, we use 2 layers with 4 attention heads and embedding
size 64 in the label encoder, and 6 layers with 4 attention heads and embedding size 128
in the decoder. We use the Pre-LN implementation [3]. We train models with Adam
with global clipnorm of 0.1, and learning rate of 1e-3 for Tacotron and learning rate
schedule described in [34] for Transformer. Models are trained for 2 × 106 steps with
batch size 256. For training the R1 ranker, we generate 105 samples with labels from
the generator training data as the training set, and 1000 samples with labels from the
generator validation data as the validation set. As described in Sect. 3, for each sample,
we select a sampling method at random to generate it. The pool of sampling methods
includes Top-P, Typical samplings with m ∈ {0.0, 0.1, . . . , 1.0} and Top-K sampling
with m ∈ {1, 2, . . . , 10}, and sampling biases b ∈ {0, 1, 5, 25, 100,∞}. The R2 ranker
is a state-of-the-art recognizer that has been trained on internal data not related to public
datasets and is an LSTM-CTC model with 6 layers of size 216 [8], which is combined
with word and character language models during beam search decoding, similar to [20].

For IAMonDB, we use testset_v for validation, testset_f for tuning sampling
parameters (via grid search over all possible samplings), and testset_t for testing. For
VNonDB, we use the version of the dataset split by individual words. Since this dataset
does not have the tuning subset, we use validation data labels for tuning sampling
parameters. For Deepwriting, since this dataset does not have tuning or testing subset,
we extracted 1500 labels whose lengths have the same mean and variance as the Deep-
writing validation data, from the labels present in the IAMonDO dataset (we include
these labels with the submission for clarity). Models were implemented in Tensorflow
and the time measurements were done after conversion to TFLite on a Samsung Galaxy
Tab S7+ tablet.

4.3 Baselines

Sampling Model Baseline.We compare the model with tuned sampling parameters, with
a model with fixed sampling method. Since different works in the literature consider
different sampling methods, to have a fair comparison to them, as to a baseline, we
report the best result with S = (Top-P,m, b),m ∈ {0.0, 1.0}, b ∈ {0.0,∞}, that
is, greedy or ancestral sampling of component with infinite or zero bias for the offset
parameters. We will refer to the optimal sampling method as Sopt, and to baseline as
Sbase.
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Ranking Model Baseline.We compare the R1 ranker that predicts the recognizability of
the generated ink, described in Sect. 3, with an approach described in [22], which trains
a model to distinguish between real and synthesized samples, with the goal of selecting
the most “real-looking” samples. We will refer to it as Rbase.

4.4 Quantitative Analysis

Table 1. CER for different sampling and ranking strategies. For Sbase and Sopt, we use B = 1,
meaning that no ranker is used. ForR1 andRbase, we useB = 5 andR = 1, meaning that “good”
R2 ranker is not used. For R2, we use B = 5 and R = 5, meaning that the samples are ranked
according to the “good” ranker only. This number is also a bound on the quality achievable with
a “fast” ranker R1.

Dataset Data Model Sbase Sopt Rbase R1 R2

Deepwriting raw Tacotron 4.6±0.6 2.6±0.2 2.3±0.3 1.7±0.2 0.7±0.1

Transformer 8.1±2.9 6.7±1.8 5.8±1.3 4.9±1.1 1.8±0.5

curve Tacotron 5.9±0.5 5.6±0.7 4.5±0.7 2.1±0.2 0.9±0.1

Transformer 8.9±1.5 6.6±0.9 4.7±0.5 2.8±0.3 1.0±0.1

IAMonDB raw Tacotron 5.8±3.1 3.8±0.7 3.7±0.9 2.6±0.4 1.3±0.1

Transformer 13.3±2.9 12.3±2.0 10.9±0.2 9.3±1.2 5.3±1.2

curve Tacotron 14.9±1.2 9.1±0.9 9.1±0.6 3.8±0.0 2.1±0.1

Transformer 16.8±1.4 12.0±1.6 11.7±1.0 8.2±0.4 3.9±0.7

VNonDB raw Tacotron 4.0±0.5 3.2±0.6 3.2±0.5 2.1±0.2 0.7±0.1

Transformer 4.3±0.9 3.7±0.6 3.0±0.4 2.6±0.4 0.8±0.1

curve Tacotron 2.1±0.1 2.2±0.2 2.2±0.2 1.8±0.2 0.7±0.1

Transformer 2.0±0.2 2.0±0.2 2.0±0.2 1.8±0.3 0.7±0.0

Math raw Tacotron 28.5±1.0 23.1±1.1 22.3±0.4 18.5±0.6 8.3±0.5

Transformer 28.1±4.0 22.8±2.5 20.3±3.0 19.7±2.9 8.3±1.1

curve Tacotron 9.4±0.5 9.4±0.6 9.0±0.1 9.0±0.1 3.1±0.1

Transformer 13.6±1.8 10.8±0.7 9.6±0.6 9.2±0.4 4.0±0.1

Effect of Sampling and Ranking. In Table 1, we compare the results of applying different
sampling and ranking techniques for all datasets, model types, and data types.

A first major finding of our study is that tuning the sampling technique helps in
almost all cases - in 13 cases out of 16, with the remaining ones being ties.

The second conclusion is that using a ranking model helps in all cases.
There is still a significant gap between the performance when using R1 and the

quality-optimal R2. However, as we show in the next paragraph, achieving such quality
comes with penalties for inference time.

Finally, we can conclude that using ranker that predicts whether the ink is recogniz-
able or not is superior to using a baseline ranker [22] that predicts whether a given ink
is real or synthetic. However the latter ranker also helps in most cases, as compared to
not using ranking at all.
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Comparison Under a Time Budget. The inference time for the model consists of 3 sep-
arate parts: (i) generating a batch of B samples; (ii) ranking them with the R1 ranker
(unlessB = R, in which case we can use justR2); (iii) Re-ranking the topR candidates
with R2 (unless B = 1 in which case the generated sample can be returned directly).
We show how these values scale with the input batch size for the model (that is, B for
generative model and R1, and R for R2), in Table 2, and the trade-off between CER
and inference time in Fig. 2.

Table 2.Model inference time per character, in milliseconds, for generative model, ranking model
R1, and recognizer R2. Average across 1000 labels, Tacotron model on Deepwriting data with
curve data representation. The generation process can be efficiently vectorized and scales sub-
linearly. The inference time of R1 is almost negligible, and the inference time of R2 scales
linearly.

Batch size Generation R1 R2

1 15.5 0.05 2.79

2 20.6 0.05 5.19

4 26.6 0.09 11.40

8 35.0 0.15 23.04

16 45.0 0.24 41.39

32 66.3 0.45 76.97

64 128.6 0.91 163.47

Here we present the comparison of model quality vs inference time budget, by vary-
ing the values of B and R.

To connect the input sequence length to inference time, we fix the maximum number
of decoding steps the model is allowed to make per input sequence symbol. In other
words, our inference time is measured as time needed for one decoding step times the
maximum allowed number of tokens per input symbol. The generation is always run
until the maximum number of frames. In the models we used for this evaluation, 99%
of the samples generated less than 5 frames per output character, which is the ratio that
we fixed.

Table 2 shows the inference time for synthesis model, R1, and R2, in ms per char-
acter as a function of the input batch size. Notice that both the autoregressive generative
model and the convolution-based ranker are able to take advantage of vectorization and
are 7.5 and 3.2 times faster for large batch sizes than if run individually. The recog-
nizer, used as R2, however, does not parallelize well due to CTC [16] decoding and
combination with language models, thus scaling linearly with the batch size.

Based on the data in Table 2, we plot the numbers for model quality and worst-case
inference time for different values of B and R in Fig. 2. Points with (B = 4, R = 2),
(B = 8, R = 4), and (B = 16, R = 8) are on the Pareto frontier, verifying our
earlier statement that there are scenarios where the best performance can be achieved
by combining the two rankers. Points (B = 2, R = 1) and (B = 4, R = 1) are also
on the frontier, verifying our statement that there are cases where the best performance
can be achieved without using the recognizer part of the ranking model at all.
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Fig. 2. Model inference time (upper bound, per char) vs CER for various values of B and R. For
each values of B, we report results for values of R in {1, 2, 4, 8, 16, 32, 64} s.t. R ≤ B. The
gray dotted line shows a Pareto-optimal frontier. Both axes on the log-scale. As visible, there are
points on the Pareto frontier that include the use of both R1 and R2, justifying our claim that
there are scenarios where optimal performance for a given computational budget can be achieved
by a combination of both.

Discussion and Limitations.We note that the findings we present here are not universal,
and the exact inference time depends on a multitude of factors such as specific gener-
ative model type and size, hardware, length of the sequence to be generated (processor
caching makes longer sequences faster on a per-character basis), ranking model type
and size (for the recognizer ranker, we rely on a model using CTC decoding which
is hard to vectorize, whereas Seq2Seq models may parallelize better, although usually
have worse accuracy). Furthermore, the average/median inference time might differ
from the worst case significantly: The generative model produces an average 3.7 output
frames per input character, compared to 5 which we used for the worst case analysis.
Also when using the recognizer as a ranker, we need not recognize all of the candidates
as we can stop at the first candidate that is perfectly recognizable, which may happen
sooner or later depending on the exact sampling type and model quality. However, we
believe that this does not invalidate our findings: depending on the time budget, better
performance may be achieved by using a fast learned ranking model or combining it
with a recognizer.

Ablation Study. In Table 3 we evaluate our choice of the construction of the ranker train-
ing dataset, and tuning of the sampling parameters for every setup (generation model
type and feature type).

Firstly, we compare our approach of generating training data for the ranker by using
random sampling parameters for every label to two other baseline approaches: (i) using
a fixed ancestral sampling when generating the training data; this intuitively makes
sense as sampling from “widest” possible distribution should cover all the whole diver-
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Table 3. Ablation study for the ranker. The first column contains the results obtained when using
R1 as the ranker. The next group of columns ablates the way of constructing the training dataset
- by always generating samples using ancestral sampling, or by always generating samples using
the sampling that yields the optimal performance when using R2 as the ranker. The last column
shows that the optimal sampling parameters are different for each setup, ablating our choice of
always tuning the sampling parameters.

Dataset Data Model R1 Ranker training data Opt. sampling

Anc. Rec.

Deepwriting raw Tacotron 1.7±0.2 1.9±0.2 2.0±0.2 Top-P, 0.9, 5.0

Transformer 4.9±1.1 5.4±1.0 5.0±0.9 Top-K, 9, ∞
curve Tacotron 2.1±0.2 2.0±0.4 2.0±0.4 Top-K, 3, ∞

Transformer 2.8±0.3 2.7±0.3 2.8±0.3 Top-K, 5, ∞
IAMonDB raw Tacotron 2.6±0.4 2.8±0.5 2.6±0.4 Top-P, 0.9, 100.0

Transformer 9.3±1.2 9.1±1.3 9.3±1.5 Top-K, 6, ∞
curve Tacotron 3.8±0.0 3.8±0.1 4.3±0.3 Top-K, 2, ∞

Transformer 8.2±0.4 8.6±0.8 8.2±0.8 Top-K, 4, ∞
VNonDB raw Tacotron 2.1±0.2 2.5±0.2 2.4±0.2 Top-P, 0.9, 100.0

Transformer 2.6±0.4 2.8±0.4 2.9±0.4 Top-P, 0.9, 5.0

curve Tacotron 1.8±0.2 2.0±0.1 1.7±0.1 Top-P, 0.4, ∞
Transformer 1.8±0.3 2.8±0.4 2.9±0.4 Top-P, 0.3, ∞

Math raw Tacotron 18.5±0.6 19.4±0.6 19.0±0.6 Top-P, 0.9, 5.0

Transformer 19.7±2.9 20.5±2.7 20.0±2.1 Top-K, 8, ∞
curve Tacotron 7.7±0.3 8.4±0.1 7.7±0.2 Top-P, 0.3, ∞

Transformer 9.2±0.4 10.2±0.5 9.3±0.1 Top-P, 0.3, ∞

sity of the generated data. (ii) for each setup, using the sampling parameters that yield
the lowest CER if R2 is used as ranker; this makes sense as R1 tries to approximate
R2, and it is reasonable to assume that their optimal sampling parameters should be
similar. We observe that on average our proposed way of constructing a training dataset
is optimal, never being more than one decimal point worse than other approaches, but
at times significantly outperforming them.

Secondly, we show that the optimal sampling parameters differ a lot between the
setups, so it is important to tune them for each setup. The only reliable signals we
observed was that for the curve representation, it is often preferable to sample more
“greedily” (lower value of K in Top-K or P in Top-P sampling) than for the raw repre-
sentation, and that the optimal samplings seem to be somewhat close between the two
model types.

4.5 Qualitative Analysis

In this section, we first attempt to confirm that: (i) the two types of errors, overconfi-
dence and incoherence, actually happen when generating digital ink samples, and (ii)
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Table 4. Number of overconfidence and incoherence errors for various values of p in Top-P
sampling, for a model with and without R1 ranker.

P No ranking Ranking with R1

Overconf Incoher Overconf Incoher

0.1 81 120 42 157

0.2 75 115 37 114

0.3 69 140 23 111

0.4 59 170 16 109

0.5 41 180 9 109

0.6 33 216 3 121

0.7 30 246 2 137

0.8 22 281 1 149

0.9 14 375 1 197

1.0 7 466 1 282

both the choice of sampling and ranking has effect on these errors. Results are pre-
sented with the Tacotronmodel on Deepwriting dataset with curve representation, but
we have observed largely similar trends for other cases. Afterwards, we present exam-
ples of model output on various datasets.

Figure 3 shows examples of generated ink with various samplings - with both inco-
herence and overconfidence examples visible. As we can observe, overconfidence errors
typically result in very long ink, that can not be recognized as the label, with repeating
pattern inside. Given this observation, we attempt to quantify the number of errors of

Fig. 3. Examples of model outputs for different sampling parameters. Input label is “abcdefg.
Hijklmn,”. Sampling parameters used are: Top - (Top-P, 0.0, ∞); Middle - (Top-P, 1.0, 0.0);
Bottom - (Top-P, 0.5, 5.0). The overconfidence error is clearly visible in the top example, while
the middle example is incoherent and hard to recognize. The bottom row shows the importance
of carefully selecting sampling for optimal performance.
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Fig. 4. Examples of model outputs. Transformer with curve representation for Math data,
Tacotron with curve representation for VNonDB data, Tacotron with raw representation for
Deepwriting data. In each case, 5 samples were generated, and sorted left-to-right according to
the score provided by theR1 ranker model, with the rightmost image being the most recognizable
according to the ranker. The first column shows some examples of samples that are not recog-
nizable and are scored low by the ranker, ex. stray strokes (first row), overconfident generation
of repeated lines (second row), misplaced tilde sign over u (fourth row), one extra diacritic (fifth
row), missing dash over t (seventh row). More examples can be obtained in demo colab: https://
colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz.

each type by looking at samples that can not be recognized (meaning the label returned
by the recognizer differs from the input label to the generative model), and within those
samples, whether the generation process reached the maximum number of steps (imply-
ing overconfidence) or not (implying incoherence). Table 4 shows the number of errors,
estimated by this approach, as a function of sampling parameters (value of p in Top-P
sampling), and it confirms the intuition about how it should behave. We can see that
as the sampling parameters go from greedy sampling closer to ancestral sampling, the
number of overconfidence errors goes down, while the number of incoherence errors
goes up. When we use the ranking model, we see that the number of incoherence sam-

https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz
https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz
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ples first goes down, and then goes up. We attribute this to the fact that as sampling
becomes more diverse, the ranking model is able to select better candidates, but as sam-
pling becomes too diverse, all candidates start being less recognizable. Overall, using
ranking seems to reduce the number of overconfidence errors by 50–90%, and number
of incoherence errors by up to 50%.

Figure 4 shows of the model outputs, sorted according to the score provided by the
ranker, left-to-right. As can be seen, the rightmost sample in every row is recogniz-
able and matches the label, while the leftmost sample is mostly not recognizable. It is
expected that in many cases at least one of 5 samples is not recognizable - if that were
not the case, that would mean that the selected sampling method is too conservative
and should be relaxed to produce samples with higher diversity (which would trade-
off having all 5 candidates recognizable in “easy” cases for improved performance in
“difficult” cases where all 5 samples were not recognizable).

5 Conclusion

In this paper, we investigated the effects of combining sampling and ranking strategies
to improve digital ink generation.

These methods, used before in other domains such as NLG and TTS, proved to be
highly useful, and complementary to each other in the case of digital ink. Until now,
however, they were not explored in this domain, with most methods using ancestral or
greedy sampling, and no candidate ranking. We evaluate sampling and ranking tech-
niques, on four datasets - two containing writing in English and one in Vietnamese, as
well as a fourth one with mathematical formulas. We test the robustness of the findings
using two model types (Tacotron and Transformer) and two common ink data repre-
sentations (raw and curve). In all the combinations, we report significant improve-
ments in the recognizability of the synthetic inks: taken together, a well-chosen sam-
pling method, followed by fast ranking consistently improve recognizability, in many
cases halving the character error rates.

An important factor in the perceived quality of ink synthesis is speed. Potential
applications, such as handwriting autocompletion, spelling correction, and beautifica-
tion usually process user inputs on-device, so ink generative models need to be fast. We
thus report the findings with respect to a given computational budget.
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