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Abstract. We propose a training framework for deep neural network-based hand-
written text recognizers using both labeled and unlabeled data. The proposed
framework is a semi-supervised learning (SSL) framework based on Mixed Aug-
mentations and Scheduled Pseudo-Label loss. Mixed Augmentations provide
weakly and strongly transformed variants from each original sample so that the
pseudo-label loss is computed between these two variants. The Scheduled Pseudo-
Label loss is used to gradually include the pseudo-label loss into the optimizer
to avoid the negative effect of incorrect pseudo labels. First, a student model is
pre-trained by labeled samples and used to initiate a teacher model. Subsequently,
the teacher model predicts a pseudo label from every weakly transformed variant.
On the other hand, the student model is trained using the Scheduled Pseudo-
Label loss. Next, the teacher model is incrementally updated using the student
model. Finally, it is used to evaluate. We term the framework Incremental Teacher
Model. The proposed framework was applied to four architectures of distinct
handwriting recognizers. For almost every architecture, the recognizer trained
by our method outperforms those trained by well-known SSL methods, namely
Mean Teacher, Pseudo-Labeling, and FixMatch, evaluated using different ratios
of labeled training samples on the IAM handwriting database.

Keywords: Semi-Supervised Learning · Mixed augmentations · Scheduled
Pseudo-Label loss · Training framework · Handwriting recognition

1 Introduction

Deep neural networks (DNNs) have been extensively studied in the past few decades
and employed in multiple pattern recognition tasks owing to their high performance
when large labeled datasets are available [1–3]. For handwriting recognition, DNNs
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have achieved increasing recognition accuracy [4–6] on many benchmark databases [7–
11] of Latin, Arabic, Chinese, Indic, and Japanese scripts. These models require more
labeled samples for trainingwhen the number of parameters is high [12, 13]. On the other
hand, they do not take advantage of unlabeled samples. Unlabeled samples are easier to
collect in large quantities and at a lower cost than labeled samples. For example, the two
new databases of handwritten answers, namely SCUT-EPT [14] and NCUEE-HJA [15],
have 40,000 labeled sentences and more than 190,000 unlabeled sentences, respectively.
Only a few studies have utilized unlabeled samples for handwritten text recognition
[16, 17]. Thus, we aim to create a generalized learning framework for any handwriting
recognizer that satisfies two criteria (i) Trainable with as less labeled data as possible;
(ii) Utilizable for unlabeled and labeled data.

Thus far, semi-supervised learning (SSL) methods have been established and devel-
oped to address the use of unlabeled data. Since the early deep learning era, Pseudo-
Labeling has been proposed and extended for image classification tasks [18]. In the
Pseudo-Labeling method, a pre-trained model is initialized using a small, labeled sub-
set and is then used to predict the pseudo labels of a large unlabeled subset. Next, the
unlabeled subset with the corresponding pseudo labels is used to re-train the model.
Generally, Pseudo-Labeling is similar to the teacher-student training framework, where
the initialized supervised pre-trained model is a teacher model while the training model
is a student model. The teacher model provides pseudo labels for training a student
model with unlabeled input samples. Thus, the handwriting recognizer is optimized on
both the labeled and unlabeled samples using features from the unlabeled samples.

In fact, the Pseudo-Labeling method depends on the quality of the pseudo labels,
as erroneous predictions often appear early in the training process [19]. Handwritten
text recognition (HTR) is considered a sequential labeling task requiring a sequence of
character predictions. It is difficult to employ Pseudo-Labeling for trainingHTR because
misrecognized labels might lead to incorrect predictions in the rest of the sequence.
Hence, we propose a framework, termed the Incremental Teacher Model, to gradually
extend the effect of pseudo labels during the training process. The teacher model is
incrementally updated after each epoch by its student model.

We have not focused on developing a novel handwriting recognizer in this work.
Instead, we employ the proposed framework to train existing handwriting recognition
architectures:ConvolutionalRecurrentNeuralNetwork (CRNN)with connectionist tem-
poral classification (CTC) [20], Attention-based Encoder-Decoder (AED) [21], and Self-
Attention-based CRNN with CTC [22]. These handwriting recognition architectures
utilize unlabeled data using the proposed SSL framework.

The rest of this paper is organized as follows: Sect. 2 reviews related studies on
SSL methods. Section 3 presents our proposed framework with Mixed Augmentations
and Scheduled Pseudo-Label loss. Section 4 presents the experiments and results of
the proposed framework applied to different HTR architectures. In Sect. 5, we draw
conclusions.
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2 Related Works

AlthoughDNNs have been continuously improved for higher performance, they strongly
dependon large-scale labeled datasets for training. In fact, it is difficult to efficiently adapt
them to new tasks, such as recognizing unseen or seen characters written in a newwriting
style. During the last few years, meta-learning has been widely studied to make DNNs to
learn new patterns with a few training samples [23]. It is a wide field of machine learning
that includes few-shot learning, one-shot learning, and domain adaptation [17, 24, 25].
Among them, the domain adaptation (DA) methods, particularly methods following the
SSL approach, are promising to generalize a handwriting recognizer using both labeled
and unlabeled data. Specifically, we focus on the inner-domain handwriting recognition
task where training and testing sets have the same categories.

Two main approaches are studied based on these assumptions: consistency reg-
ularization and entropy minimization. Consistency regularization is mainly based on
data augmentation and weight noise by dropout, as small changes should not signifi-
cantly affect the prediction made by the network. The consistency loss measures the
distance between the network predictions, with and without augmentations for input
samples. Some well-known methods in this approach are the �-Model [26], Temporal
Ensembling [26], Mean Teacher [27], and Virtual Adversarial Training (VAT) [28].

The �-Model employs stochastic augmentation to provide minor changes in each
input sample. It also applies dropout tomake noise on theweights of a givenDNNmodel.
The distance between the predictions of the original sample (without either augmentation
or dropout) and its variant (with both augmentation and dropout) is then minimized.
While the �-Model requires two executions of the network for every sample, Temporal
Ensembling keeps and updates the ensembled prediction of every sample during the
training process; thus, its computation cost is lower than that of the �-Model. Mean
Teacher focuses on updating the ensembled model instead of tracing the ensembled
patterns so that it helps converge faster than Temporal Ensembling. On the other hand,
VAT approximates how augmentations to be employed on each input sample affect the
output class distribution most significantly.

Entropy minimization prevents the decision boundary from lying near the low-
confidence prediction region in the feature space. A simple loss term is commonly
used to minimize the entropy for unlabeled data with all the classes. Two well-known
methods based on entropy minimization are Pseudo-Labeling [18] and Label Propaga-
tion [29]. Pseudo-Labeling trains a student model based on a teacher model’s predictions
or pseudo labels, in which the teacher model is pre-trained using supervised learning.
On the other hand, Label Propagation is to diffuse from labeled samples to unlabeled
ones according to the propagation weights computed from pairwise similarity scores.

Recent studies have combined consistency regularization and entropy minimization,
such as MixMatch [30] and FixMatch [31]. These methods apply multiple augmen-
tations on a single unlabeled sample and force the model to predict these augmented
input data similarly. By combining numerous augmentations, the trained model extracts
invariant features to improve the overall performance even using a small number of
labeled samples.



290 M. Honda et al.

3 Methodology

By extending the Pseudo-Labeling method, we propose an SSL framework integrated
with mixed augmentations and multiple losses, as shown in Fig. 1. First, an initial
handwriting recognizer as a student model is prepared using labeled data by supervised
learning. Second, mixed augmentations are applied to generate a weakly transformed
variant and a strongly transformed variant from each original sample. Third, the teacher
model produces a pseudo label from the weakly augmented variant and then computes a
pseudo-label loss on the strongly augmented variant. For the prediction from the teacher
model, the special tokens of padding or blank [PAD], start of sequence [SOS], and
unknown [UNK] should not exist. These tokens are eliminated from the predictions
to maintain the quality of the pseudo labels. Fourth, the student model is trained by
minimizing both the supervised and pseudo-label losses with a flexible ratio. The ratio
depends on the rate between labeled and unlabeled samples in a single trainingminibatch
and the number of trained epochs. Note that the pseudo-label loss is gradually used to
update the handwriting recognizer to avoid the negative effect of incorrect pseudo labels,
termed the Scheduled Pseudo-Label loss. Finally, the teacher model was incrementally
updated using the student model and used for evaluation.

Although theMean Teacher and Pseudo-Labelingmethods are the basis of this study,
they follow different training schemes. Thus, we modified their training schemes similar
to our model to achieve a fair comparison with the proposed framework in this study.

Fig. 1. Workflow of our proposed Incremental Teacher Model with Mixed Augmentations and
Scheduled Pseudo-Label loss. The single-line arrows illustrate supervised learning using labeled
samples, whereas the double-line arrows represent SSL with unlabeled samples.

3.1 Incremental Teacher Model

Updating of the models that generate pseudo labels is handled differently depending on
the research and application. In [18], the teacher model is commonly pre-trained and
fixed; therefore, the predicted pseudo labels are stable for training the student model.
This approach is good in the case where the teacher model is sufficiently trained on
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labeled data. In practice, however, many labeled samples are not always available. On
the other hand, methods that compute consistency regularization, such as Mean Teacher,
can simultaneously train the student model and the teacher model that generates the
pseudo labels in the training process. However, it might update the teacher model with
a worse student model in the early stage of the training process. Thus, we propose to
update the teacher model with the student model whenever the validation accuracy is
improved at the end of each training epoch. The teacher model is updated by copying
the weighted parameters from the student model. Finally, the teacher model was used
for evaluation. To the best of our knowledge, this is the first work applying incremental
updates of the teacher model for handwriting recognition using pseudo labels.

A well-initialized pre-trained model is essential to prepare a good teacher model to
enhance the performance of the student model later. Because RotNet has been demon-
strated to be effective for general images with complex background [32], we expected
that it would be suitable for HTR with simple background. Moreover, the handwritten
word image ratio was in range of general image ratio. Therefore, we employed RotNet,
a self-supervised learning method for predicting the rotation of images, as a pretext task.
This initialization method provides more general network weights to achieve a higher
accuracy using supervised learning or SSL in the later training process.

3.2 Mixed Augmentations

In recent years, augmentation has played an important role in avoiding overfitting during
the DNN training process [33] since it provides a large number of variants from a small
number of samples. With more variants, a well-trained DNN model with augmentation
tends to perform better extraction and focus on the invariant features. Since augmen-
tation does not require newly collected data, it is commonly employed as an efficient
method to improve the DNN performance. On the other hand, sequence-to-sequence
contrastive learning (SeqCLR) has been proposed to employ stochastic image augmen-
tation to generate two different variants from a single input sample [16]. Subsequently,
the mapping between two extracted feature sequences is computed and considered the
contrastive loss for optimization. In addition, augmentations are employed to generate
multiple variants of a single sample for training based on prediction consistency [30].

In this study, we used multiple augmentation methods to generate two variants from
a sample, which was named as “Mixed Augmentations”. One variant used smaller defor-
mations to obtain a pseudo label, while the other had larger deformations. Note that the
stochastic image augmentation in SeqCLR randomly generates two variants of an origi-
nal sample using a single transforming pipeline repeatedly. Owing to the asymmetry of
the proposed framework, two generated variants in our method are normally generated
by two different transforming pipelines (weak and strong).

Augmentations used in general image recognition, such as FixMatch [31], are com-
posed of geometric transforms for weak and multiple mixed transformations for strong
transforms. For handwriting recognition, however, geometric transforms are limited to
maintain the readability of the augmented handwritten images. Thus, we use four aug-
mentations, namely rotation, crop, perspective, and Gaussian blur, which are commonly
employed in handwriting recognition studies, as shown in Table 1. These settings are



292 M. Honda et al.

based on comparative experiments and applied consistently in experiments with many
HTR architectures and in different labeled ratio scenarios.

Table 1. Details of Mixed Augmentations.

Augmenta-tion Description Main parameter Weak
transformation

Strong
transformation

Rotation Randomly rotates
the input text image
between 0 and a
parameter value

Rotation degree
(deg)

15 15

Crop Crops and enlarges
a random area of
the image by a
specified
percentage. Note
that the aspect ratio
is maintained

Crop percentage
(%)

- 80

Perspective Generates a
perspective image
with randomly
transformed vertex
positions according
to the specified
distortion ratio

Distortion
percentage (%)

- 30

Gaussian Blur Blurs an image by
applying a
Gaussian filter. The
blur strength is
specified by
standard deviation

Sigma - 2

3.3 Scheduled Pseudo-Label Loss

For training samples X with corresponding labels Y, the supervised loss is based on the
negative log-likelihood as follows:

LSL =
∑

(X ,Y )

−logp(Y |X ) (1)

The pseudo-label loss for the unlabeled training samples X is defined as follows:

LPL =
∑

(X )
− logp

(
Y |X

)
with Y = teacher(X ) (2)
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Here, X and X are the weakly and strongly transformed variants from X, respectively.
The pseudo labels Y are predicted by the teacher model on X . Thus, the pseudo-label
loss is based on the conditional probabilities of the pseudo-label Y for the strongly

transformed variants X .
We introduce scheduling of the loss calculations for the pseudo labels of the unlabeled

samples. It is aimed to avoid the problem that the target model does not converge due to
the generation of incorrect pseudo labels in the early stages of training. Label scheduling
has been proposed besides Pseudo-Labeling, and several derivations have been consid-
ered in other related studies. In this study, we applied the Scheduled Pseudo-Label loss
as follows:

LSPL = 1

n
LSL + α(t)

1

n′ LPL (3)

where n is the total number of labeled samples, n’ is the total number of unlabeled
samples, t is the training epoch and α(t) is the scheduled weight for LPL that depends
on T1, T2, and A as shown below:

α(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0

t−T1
T2−T1

A

A

t < T1

T1 ≤ t < T2

T2 ≤ t

(4)

Thus, LPL begins to affect LSPL when the number of epochs crosses T1 and mono-
tonically increases until it reaches T2; then, A is the highest weight of LPL. In this study,
we applied T1 of 50, T2 of 250, and A of 1, so that LPL is used from the midpoint of
learning on the labeled data. Note that the current hyperparameters of the scheduled
pseudo-label loss were experimentally chosen.

4 Experiments

4.1 IAM Handwriting Database and Scenarios for SSL

We used handwritten English word-level patterns of the IAM database for evaluation
because they have been used as the benchmark for many HTR studies [7]. Although
the SSL methods have been employed for many recognition tasks, they have not been
widely applied in handwriting recognition as mentioned in the review section. For hand-
writing recognition, a sequence of characters is required for prediction instead of single
characters. Thus, preliminary experiments at the word level are the most straightforward
HTR task.

Table 2 shows four splitting scenarios derived from the RWTH Aachen University
split1 of the IAM handwriting database, where Words, Pages, and Writers denote the
numbers of labeled and unlabeled samples in the training set, the number of samples

1 https://www.openslr.org/56/.

https://www.openslr.org/56/
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in validation set, and that in the testing set, respectively. There is no writer duplication
between the labeled and unlabeled samples. These scenarios are prepared to evaluate
the SSL methods with our handwriting recognizers. These splitting scenarios satisfy the
writer-independent requirement, which is commonly used to benchmark the handwritten
English text recognizers.

Scenario 1 is the same as the supervised learning configuration without unlabeled
samples. Scenarios 2, 3, and 4 are prepared to randomly select 50%, 10%, and 1% of the
training set as the labeled training sets, respectively, while the rest is used as unlabeled
training sets.Note that the labeled training set of Scenario 4 (1% labeled) does not include
the eight character categories, which is over 10% of all character categories (8/79). Thus,
Scenario 4 is the most challenging with unseen categories and writing styles.

Table 2. Details of SSL scenarios on IAM handwriting database.

Scenarios for SSL IAM Subsets

Training set Validation
set

Testing
setLabeled Unlabeled

Scenario 1
(100% labeled
samples)

Words 55,081 0 8,895 25,920

Pages 747 0 116 336

Writers 283 0 56 161

Scenario 2
(50% labeled
samples)

Words 27,727 27,354 Same as
above

Same as above

Pages 373 374

Writers 139 144

Scenario 3
(10% labeled
samples)

Words 5,364 49,717 Same as
above

Same as above

Pages 72 675

Writers 27 256

Scenario 4
(1% labeled
samples)

Words 551 54,530 Same as above Same as above

Pages 8 739

Writers 2 281

4.2 Handwritten Text Recognition Architectures

As recognition models tested in the experiments, we used four architectures of handwrit-
ing recognizers. The first is aCRNNusingResNet as a feature extractor andBidirectional
Long Short-Term Memory (BLSTM) with CTC [20]. The second is another general
encoder–decoder architecture, where an attention layer guides the decoder (AED) [21].
The third is a Deep Convolutional Recurrent Neural Network (DCRN) derived from
AED with a simple Convolutional Neural Network (CNN) and a stacked BLSTM that
provides a deeper sequential encoder [22]. The fourth is a CRNN using multiple Self-
Attention layers for the sequential encoder (SelfAttn) [22]. These are listed in Table 3
with each major component.
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Table 3. Main components of four HTR architectures.

Components HTR Architectures

CRNN AED DCRN SelfAttn

Feature Extractor
(Local Encoder)

ResNet ResNet CNN CNN

Sequential Encoder BLSTM BLSTM Stacked
BLSTM

BLSTM
+SelfAttn

Sequential Decoder CTC LSTM
+Attention

LSTM
+Attention

CTC

4.3 Results of Different Recognition Architectures

To the best of our knowledge, no related research applied similar techniques to the HTR
problem. The related studies were proposed for general image classification. For com-
parison, we experimented using Mean Teacher [27] and Pseudo-Labeling [18] because
the proposed method is derived from them. Furthermore, we experimented using Fix-
Match [31] as this is one of the most efficient SSL methods. Note that we modified these
SSL methods to match with the training scheme used for our method.

Table 4 reports the results of four HTR architectures trained by different frameworks
in each scenario. The baseline column shows the character accuracy rate (CAR) of the
HTR architectures trained by only labeled samples, while the other columns show the
CARs of trained HTR architectures using Mean Teacher, Pseudo-Labeling, FixMatch,
and Incremental TeacherModel. For Pseudo-Labeling, we followed the default setting of
scheduling parameters reported in [18]. Note that these reported results are on the IAM
word-level testing set. The recognition rates shown here seem inferior to the state-of-
the-art results [34] since these rates are obtained without word dictionaries and language
models.

Overall, AED produced the best results in all scenarios with any training framework
(bold),whileCRNN typically produced the second-best results (underline). These results
suggest that using a ResNet-based feature extractor seems to be better than the simple
CNN. Moreover, the high complex sequential encoders of DCRN and SelfAttn did not
achieve an accuracy as high as that of the simple sequential encoders of AED andCRNN.
The performance of all the HTR architectures decreased significantly in Scenario 4 since
the labeled training set did not cover the character set.

For the related SSL methods, Pseudo-Labeling outperformed Mean Teacher and
FixMatch in almost all scenarios with all the HTR architectures. Note that in the case
of the Mean Teacher and FixMatch methods, the performance of the HTR architecture
is deteriorated in some cases, which is shown by ↓ in Table 4. Mean Teacher and
FixMatch mainly rely on the loss calculated from the distribution comparison between
pseudo labels and output, as the consistency cost is unsuitable for text line recognition.
It is considered difficult to capture the consistency because the output before decoding is
a time series of classification, which varies significantly depending on the augmentation



296 M. Honda et al.

Table 4. Character accuracy rate (%) of HTR architectures trained by Supervised Learning,Mean
Teacher, Pseudo-Labeling, FixMatch, and Incremental Teacher Model in four SSL scenarios.

with positional information. Therefore, a method that expands on the pseudo labels is
effective, and additional study is required to introduce consistency costs.

For every architecture except SelfAttn, the recognizer trained by the Incremental
Teacher Model outperforms the recognizers trained by the well-known SSL methods:
Mean Teacher, Pseudo-Labeling, and FixMatch in every scenario using only 50%, 10%,
or 1% labeled training samples on the IAM handwriting database, respectively. The
SelfAttn architecture with a simple feature extractor and a complex sequential encoder
does not perform well in Scenarios 2 and 4. Mixed Augmentations seem to be helpful
for the feature extractor rather than the sequential encoder.

Figure 2 illustrates the changes in the recognition accuracy with the increase in the
ratio of labeled data in the training set. The Incremental Teacher Model increases the
accuracy of the AED architecture by at most 15.7 percentage points (p.p.) in Scenario 3.
Despite using the 1% labeled samples for training, the accuracy of AED is increased by
6.4 p.p. Compared to Pseudo-Labeling, it improves the HTR accuracy by at least 0.9 and
at most 6.5 p.p. in Scenarios 2 and 3, respectively. These results show that the proposed
framework could leverage unlabeled data to improve the HTR efficiency.Moreover, they
give a clue about the possibility of applying HTR in practice on an unlabeled dataset by
labeling only a small portion of the dataset.

Table 5 lists six word-level samples from the IAM handwriting database with the
predictions from four architectures trained by Incremental Teacher Model. For short
words such as “of”, “the” and “friend”, CRNNandAEDcorrectly predictedwhileDCRN
and SelfAttn produced misrecognitions. For longer words, even CRNN andAED did not
perform correctly. The predictions by AED differed from the ground truth by one to two
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Fig. 2. Character accuracy rate (%) of AED trained by different methods in four SSL scenarios.

characters while those by CRNN had more differences. The predictions by DCRN were
shorter than the ground truth which might suggest that the DCRN capability is limited
in the length of its output sequences. The SelfAttn architecture performed well with its
predictions being different from the ground truth by only one to two characters.

Table 5. IAM word-level samples with predictions from four architectures trained using
Incremental Teacher Model in Scenario 3.

Samples

Ground
truth of the friend original natural respectability

CRNN of the friend oiginal malural eppectabet
AED of the friend original natusal expectability
DCRN of He find logial what repather
SelfA n of he friend origimal matual nespectability

4.4 Results of Different Augmentation Configurations

Table 6 shows our search for weak/strong transformation settings, where we trained the
AED architecture on Scenario 3 (10% of the training samples have been labeled). The
most basic augmentation is rotation by at most 15 degrees (Rot15). Thus, we conducted
a series of experiments with Rot15 as weak and strong transformations and inserted
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other augmentations into the strong transformation, such as Crop80 (randomly removed
at most 20% of an image), Blur2 (randomly applied Gaussian blur with the highest
value of sigma of 2), and Per30 (randomly and vertically distorted an image by at
most 30%). By employing more augmentations on the strong transformation, the AED
performance increases from R1 to R5. Moreover, we tried to eliminate Rot15 from weak
transformation; however, R6 performs worse than R5 at 2.3 p.p. Next, we modified
the parameters used for augmentations from the settings of R5 to make R7. The small
changes in the parameters might reduce the final recognition accuracy. Moreover, we
tested to include more augmentations in the weak transformation. As shown in the R8
and R9 rows, the recognition accuracy declines when more augmentations are applied.

Table 6. Ablation studies for different configurations of Mixed Augmentations in Scenario 3.

Weak transformation Strong transformation Character
accuracy (%)

Result IDs

Rot15 Rot15 67.79 R1

Rot15 Rot15+Crop80 69.10 R2

Rot15 Rot15+Crop80+Blur2 69.88 R3

Rot15 Rot15+Crop80+Per30 70.15 R4

Rot15 Rot15+Crop80+Per30+Blur2 72.57 R5

– Rot15+Crop80+Per30+Blur2 70.25 R6

Rot15 Rot30+Crop70+Per40+Blur2 70.70 R7

Rot15+Crop90 Rot15+Crop80+Per30+Blur2 68.55 R8

Rot15+Crop80+Per30+Blur2 Rot15+Crop80+Per30+Blur2 67.41 R9

Thus, we might assume that simple augmentations are suitable for weak trans-
formations. Moreover, we still need to search for the optimal parameters of Mixed
Augmentations.

4.5 Discussions

Based on the experiments, the AED model outperformed other models, which may
be owing to its components of a ResNet-based feature extractor and an LSTM-based
decoder with attention. These components are large and deep to extract useful features
for recognition and correctly focus on character regions. Thus, they are commonly used
to build handwriting recognizers. Because these experiments were on word-level pat-
terns only, further experiments on sentence-level are required to verify the efficacy of
the proposed framework. We believe that designing the consistency cost for long hand-
written text is challenging. As it is impractical to investigate all types of augmentation
in this study, we selected and applied the augmentations commonly used with better
performance on HTR. However, we expect that other augmentations are also possible to
be employed in the proposed framework.
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5 Conclusions

We proposed Incremental TeacherModel and demonstrated its effectiveness. It produces
a high recognition accuracy for handwritten text recognition even when only a part of the
training set is labeled. It comprises Mixed Augmentations and Scheduled Pseudo-Label
loss for handwritten text recognition. Instead of using a fixed pre-trained handwritten text
recognition (HTR) model as a teacher model to generate pseudo labels, the proposed
framework incrementally updates the teacher model using the latest recognizer. We
applied the proposed framework to four DNN architectures for handwriting recognition
and compared it with well-known semi-supervised learning methods: Mean Teacher,
Pseudo-Labeling, and FixMatch. For almost every architecture, the recognizer trained
by the Incremental Teacher Model outperforms the recognizers trained by other well-
knownSSLmethods in every scenariowhen using only 50%, 10%, or 1% labeled training
samples on the IAMhandwriting database.However,weonly confirmed the effectiveness
of our framework for word-level English, so we plan to examine the framework for
text-line-level English as well as for other languages in future works.
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