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Abstract. Recent advances in handwritten text recognition enabled to
recognize whole documents in an end-to-end way: the Document Atten-
tion Network (DAN) [9] recognizes the characters one after the other
through an attention-based prediction process until reaching the end of
the document. However, this autoregressive process leads to inference
that cannot benefit from any parallelization optimization. In this paper,
we propose Faster DAN, a two-step strategy to speed up the recogni-
tion process at prediction time: the model predicts the first character of
each text line in the document, and then completes all the text lines in
parallel through multi-target queries and a specific document positional
encoding scheme. Faster DAN reaches competitive results compared to
standard DAN, while being at least 4 times faster on whole single-page
and double-page images of the RIMES 2009, READ 2016 and MAUR-
DOR datasets. Source code and trained model weights are available at
https://github.com/FactoDeepLearning/FasterDAN.

Keywords: Handwritten Document Recognition · Document Layout
Analysis · Handwritten Text Recognition · Transformer

1 Introduction

Unconstrained offline handwritten text recognition has been studied for decades
now. Until recently, all the proposed approaches were focused on recognizing
the text from cropped parts (text regions) of the original document, leading
to a sequential multistep approach, namely text region segmentation, ordering
and recognition. Numerous advances enabled to extend the recognition stage
to handle increasingly complex inputs. In the 90’s, the use of Hidden Markov
Model (HMM) enabled to go from isolated character recognition [19] to multi-
character (word or line) recognition [12,14]. Thereafter, the democratization of
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deep neural networks, combined with the Connectionist Temporal Classification
(CTC) loss [15], made the line-level approach the standard framework to handle
handwritten document recognition [7,11,16,22,23,30,33].

Fig. 1. Reading order comparison between DAN (top) and Faster DAN (bottom).
Circles and crosses represent the start and the end of a pass, respectively. The first
pass is showed in red, and the second one in blue. The DAN (top) sequentially predicts
the characters of the whole documents in a single pass. The Faster DAN first predicts
the first character of each line (as well as the layout tokens), and then predicts the
remaining of all the text lines in parallel, in a second pass. (Color figure online)

More recently, few advanced works focused on text recognition at paragraph
level [1,2,8,32], reaching similar performance compared to line-level recognition
[10]. However, whether it is at character, word, line or paragraph level, this three-
step paradigm has many drawbacks: the errors accumulate from one step to
another, additional physical segmentation annotations are required to train the
segmentation step, the use of a rule-based ordering stage is limited for documents
with a complex layout, and the stages are performed independently, so they
cannot benefit from one another.

Based on these observations, we proposed in [9] a new end-to-end paradigm
named Handwritten Document Recognition (HDR). It aims at serializing doc-
uments in an XML-way, combining both Handwritten Text Recognition (HTR)
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and Document Layout Analysis (DLA), through layout XML-markups. We pro-
posed the Document Attention Network (DAN) [9] to tackle HDR.

It is made up of a Fully Convolutional Network (FCN) encoder to extract
features from the input image, and a transformer [29] decoder to recurrently
predict the different character and layout tokens. The DAN reached competitive
results, recognizing both text and layout at page or double-page levels, compared
to state-of-the-art line-level or paragraph-level approaches. The main drawback
of the DAN is about its autoregressive character-level prediction process, which
leads to high prediction times (a few seconds per document image).

In this paper, we propose Faster DAN, a novel approach to significantly
reduce the prediction time of end-to-end HDR, without impacting the training
time. This approach is based on a new document positional encoding whose
aim is to inject the line membership information to each predicted character. In
this way, we can parallelize the recognition of the text lines still using a single
model, while reducing the total number of iterations. The Faster DAN relies on
a two-step prediction process: a first step is dedicated to the prediction of the
layout tokens, as well as the first character of each text line; all the text lines are
then recognized in parallel in the second stage through multi-target transformer
queries. This is illustrated in Fig. 1.

We show that the Faster DAN reaches competitive results compared to the
original DAN, while being at least 4 times faster on three public datasets: READ
2016, RIMES 2009 and MAURDOR.

This paper is organized as follows. Section 2 is dedicated to the related works.
DAN background is presented in Sect. 3. We detail the proposed approach in
Sect. 4. Section 5 presents the experimental environment and the results. We
draw the conclusion in Sect. 6.

2 Related Works

Nowadays, the most popular HTR framework is made up of three stages: the
input document image is segmented into text line crops, which are then ordered
and recognized. Indeed, the concept of text line is widely used as a building block
in many works, and has been studied from different angles.

The text line has mostly been studied from the physical point of view:
the majority of the works focused on predicting text line bounding boxes,
either through a pixel-by-pixel classification task [3,21,24] or through an object-
detection approach [5,6]. Detecting the start-of-line information was also studied
as part of the segmentation stage. In [20], a model is trained to predict the coordi-
nates of the bottom-left corner of each text line, as well as their height. Similarly,
in [28,31], the authors considered the prediction of the start-of-line coordinates
as an object detection task, using a region proposal network. Scale and rotation
values are also associated to each text line to handle monotonic slanted lines.
Contrary to these works, the Faster DAN strategy we propose only relies on
language supervision: we do not need any additional physical annotations.

Recent works proposed to perform the recognition step at paragraph level
[1,2,8,33]. Although not relying on raw physical text line annotations, most
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paragraph-level text recognition works take advantage of the physical properties
of text lines in single-column layout: the whole horizontal axis is associated
to a text line, no matter its length. The authors of [32] and [8] concatenate the
representation of the different text lines, or the text line predictions, respectively,
to get back to a one-dimensional alignment problem. In [1,10], the text lines are
processed recurrently through a line-level attention mechanism.

Another approach to deal with multi-line images consists in relying on
an autoregressive character-level prediction process [2,9,25,27]. This time, the
notion of text line is limited to the use of a dedicated line break token, used
as any other character token. This way, this approach is no longer limited to
single-column document. This strategy is also used in [18] for visual question-
answering, information extraction or classification of documents, the OCR task
being reduced to pretraining. In [9], we proposed the Document Attention Net-
work to tackle Handwritten Document Recognition, by predicting opening and
closing layout markup tokens in an XML way: all the character and layout tokens
are sequentially and indifferently predicted, leading to hundreds or even thou-
sands of iterations for single-page or double-page document images. It results in
long prediction times: approximately one second for 100 characters on a single
GPU V100.

In this paper, we propose to speed up the prediction of this latter approach by
reading text lines in parallel. This way, we take the best of both worlds: we can
deal with documents with complex layout through this character-level attention,
and we use the concept of text line more directly through the prediction of the
first character of each line and by using a dedicated document positional encoding
scheme, but without using any additional physical annotations.

3 DAN Background

We proposed the Document Attention Network (DAN) in [9] for the task of
Handwritten Document Recognition. It takes an input image of a whole doc-
ument X ∈ R

Hi×Wi×Ci , where Hi, Wi, Ci are the height, the width and the
number of channels, respectively. It outputs the associated XML-like serialized
representation ŷ, i.e., a sequence of tokens, each token ŷi representing either
a layout markup or a character among an alphabet A∗. For an input docu-
ment represented by N tokens, we can note the expected output sequence as
y∗ ∈ A∗N . For instance, a three-line document, split into two paragraphs, could
be represented as:

<D><P>Line 1\ nLine 2</P><P>Line 3</P></D>

where <D> and <P> corresponds to document and paragraph markups, respec-
tively.

The DAN is made up of two main components. An FCN encoder is used to
extract 2D features f2D ∈ R

H×W×d from the input image X, with H = Hi
32 ,

W = Wi
8 and d = 256. A Transformer decoder is used to iteratively predict the

tokens ŷi. To this aim, a special start-of-transcription token is used to initialize
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the prediction (ŷ0 = <sot>) and a special end-of-transcription token is added to
the ground truth to stop it. This way, the new target sequence is y ∈ AN+1 with
yN+1 = <eot> and A = A∗ ∪ {<eot>}. During inference, a maximum number
of iterations Nmax = 3, 000 is fixed in case of the <eot> token is not predicted.

The transformer attention mechanism being invariant to the order of its input
sequences, positional encoding is added to inject the positional information: 2D
positional encoding P 2D ∈ R

H×W×d for the 2D features of the image, and 1D
positional encoding P 1D ∈ R

Nmax×d for the previously predicted tokens. Both
positional encodings are defined as a fixed encoding based on sine and cosine
functions with different frequencies, as proposed in the original Transformer
paper [29]. The image features are flattened afterward, for transformer needs:

f1D = flatten(f2D + P 2D). (1)

The DAN can be seen under the prism of the question-answering paradigm.
At iteration t, the question corresponds to the previously predicted tokens ŷt =
[ŷ0, ..., ŷt−1], referred to as context in this work, and the answer is the next
token ŷt. Formally, the tokens are first embedded through a learnable matrix
E ∈ R

(|A|+1)×d (+1 for the <sot> token), leading to et = [e0, ...,et−1], with
ei = Eŷ i

(∈ R
d). Positional embedding is then added to get the transformer

input query qt = [q0, ..., qt−1] with qi = ei + P 1D
i .

The transformer’s self-attention and cross-attention mechanisms compute an
output oi ∈ R

d for each query input qi by comparing them with the other query
tokens, and with the image features f1D, respectively. Formally,

ot = [o0, ...,ot−1] = decoder(qt ,f1D), (2)

where the decoder corresponds to a stack of 8 standard transformer decoder
layers [29]. This process being autoregressive, the query at position i can only
attend to positions from 0 to i. In addition, the intermediate computations are
preserved for each layer from one iteration to another in order to avoid computing
the same output multiple times.

A score sti is computed for each token i of the alphabet A using a single
densely-connected layer of weights W p (st ∈ R

|A|):

st = W p · ot−1. (3)

Probabilities are obtained through softmax activation: pt
i =

exp st
i∑

j exp st
j
. The pre-

dicted token at iteration t is the one whose probability is maximum:

ŷt = argmax(pt). (4)

The model is trained in an end-to-end fashion using the cross-entropy loss
over the sequence of tokens:

LDAN =
N+1∑

t=1

LCE(yt,p
t). (5)
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This autoregressive process can be parallelized during training through
teacher forcing, but this is not possible during inference. That is why we propose
the Faster DAN strategy.

4 Faster DAN

The standard character-level attention-based approach for HTR is to sequen-
tially recognize all the characters yi of the whole input image X. This way the
number of iterations, thus the prediction time, grows linearly with the number of
characters in the document. This may be negligible for isolated text line images,
for which the image feature extraction stage is predominant, but this becomes
significant for whole page images (around one second for 100 characters on a
GPU V100).

We propose the Faster DAN, a novel approach for Handwritten Document
Recognition, to noticeably reduce the prediction time. The goal is to take
advantage of the line-based structure of documents to parallelize the recogni-
tion of the text lines. Considering the layout markups and the <eot> tokens
as lines by themselves (of unit length), we can rewrite the target sequence as
y = concatenate(y1, ...,yL) where L is the number of lines in the document and
yj ∈ Anj represent the different text lines (yj

i is the character i of line j).
Using one model per line is prohibitive in terms of GPU memory consump-

tion. Instead, the parallelization is carried out among a single model which pro-
cesses multi-target queries through masking in the second pass. This is feasible
thanks to the dedicated document positional encoding scheme we propose. It is
important to note that the proposed approach is not specific to the DAN archi-
tecture. It could be used with any attention-based HDR model. However, to our
knowledge, the only available end-to-end HDR model is the DAN.

Reading Lines in Parallel. Parallelizing the recognition faces two main chal-
lenges: detecting all the text lines, and recognizing them in parallel through
transformer queries without mixing them. Moreover, since our goal is to per-
form HDR, and not only HTR, we also need to recognize the layout entities.

To tackle these issues, we opted for a two-pass process, as illustrated in
Fig. 2b. In a first pass, the model sequentially predicts the layout tokens as well
as the first character of each text lines, solving both layout recognition and text
line detection. Then, the different text lines are completed in parallel based on
their previously predicted first character. To this end, it is crucial to determine
which token belongs to which line.

Document Positional Encoding. To parallelize the recognition of the text
lines, we propose a new positional encoding scheme, as shown in Fig. 2. We asso-
ciate to each predicted token ŷj

i (with ŷ0
0 = <sot>) two 1D positional embed-

ding: one for the index of the line, and the other one for the index of the token
in the line, leading to the global positional embedding P doc ∈ R

lmax×nmax×d,



188 D. Coquenet et al.

Fig. 2. Comparison of the prediction process and positional encoding scheme between
DAN and Faster DAN. This illustrates the example of a document input with three
one-word text lines. The DAN associates a unique positional value for each token, which
continues from one text line to the next. The Faster DAN uses two positional values:
the index of the text line and the position of the token in this text line. Special (start
and end) tokens are in blue and layouts tokens are in green. (Color figure online)

where lmax is the maximum number of line and nmax is the maximum number
of characters per line. yj

i is associated to:

P doc
j,i = concatenate(P 1D’

j ,P 1D’
i ), (6)

where P 1D’ is equivalent to P 1D but encoded on half channels (P 1D’
i ∈ R

d/2).
The transformer input queries become qj

i = Eŷj
i
+P doc

j,i . The idea of injecting the
line information was already used in [27], but it was computed as a ratio with an
arbitrary maximum number of lines, and concatenated to the token embedding
directly. In addition, the position of the tokens was absolute, and not relative to
the current text line, as for the standard DAN.

First Pass. The Faster DAN follows the standard autoregressive process to
predict the first token ŷj

0 of each line j based on Eqs. 2 to 4. At iteration t,
qt = [q0

0, ..., q
t−1
0 ].

Second Pass. The standard Transformer decoding process is to give a sequence
of query tokens qt as input and keep the output corresponding to the last
token only (ot−1), as single output for iteration t. Instead, the output of the
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last token of each line oj
t−1 are kept in this second pass. We refer to this as

multi-target queries. ŷj
0 are duplicated into ŷj

1 to initiate the second pass; the
modification of the associated position in line (from 0 to 1) indicates to the
model a change of expected behavior: from the prediction of the first token of
the next line to the prediction of the next token of the current line. By setting
qt = [q0

0, ..., q
0
t−1, ..., q

L
0 , ..., q

L
t−1] (the t first tokens of all the lines), we obtain

ot = [o0
0, ...,o

0
t−1, ...,o

L
0 , ...,o

L
t−1] through Eq. 2. In this way, the tth tokens of

each line j are computed in a single iteration t:

ŷj
t = argmax(W p · oj

t−1). (7)

Extra tokens (ŷj
i with i > nj) are discarded through masking.

Context Exploitation. The naive approach to recognize the text lines in par-
allel would be to recognize them independently, by applying a mask to discard
the tokens from all the other text lines. It means that qj

i could only attend
to line j (itself) and position 0 to i in that line. However, this would lead to
an important loss of context. Instead, we propose to take advantage of all the
partially predicted text lines: qj

i can attend to all lines, from 0 to L, and from
position 0 to i in those lines, this is illustrated in Fig. 3

Fig. 3. Context comparison between DAN and Faster DAN. The colored cells represent
the current character to predict (in purple), the previously predicted tokens i.e. the
context (in blue and green), the token used for the prediction (in green), and the
remaining characters to recognize (in gray). (Color figure online)

The major drawback of parallelizing the line recognition, compared to purely
sequential recognition, is the loss of context. Indeed, the standard DAN benefits
from all the past context during prediction: this is partially available for the
Faster DAN since the past context is limited to the beginning of the text lines.
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In this way, it becomes harder for the model to focus on the correct text part,
especially for very short contexts. Indeed, a sequence of characters may appear
several times in a document, especially if this sequence is short, e.g., at the
beginning of the recognition process. We counterbalance the loss of context from
past by combining partial context from both past and future. We show the
impact of this approach in Sect. 5.6.

Training and Inference. The model is trained over the target sequence using
the cross-entropy loss:

L =
L∑

j=1

nj∑

i=0
i�=1

LCE(y
j
i ,p

j
i ). (8)

It has to be noted that the training time is not impacted by this two-step decod-
ing strategy since the whole expected sequence prediction (from both passes) is
trained in parallel through teacher forcing, with appropriate masks.

During inference, the Faster DAN reduces the number of iterations I from

IDAN =
L∑

j=1

nj = N + 1 to IFasterDAN = L+max
j

(nj),

by considering the line breaks as belonging to the lines. For example, 25 text
lines of 50 characters, structured according to 3 layout entities, leads to 1,251
iterations for the DAN, and only 76 iterations for the proposed Faster DAN.

5 Experimental Study

5.1 Datasets

We used three document-level public datasets to evaluate the proposed app-
roach: RIMES 2009 [17], READ 2016 [26] and MAURDOR [4]. Document image
examples from these three datasets are showed in Fig. 4.

RIMES 2009. The RIMES 2009 dataset corresponds to French grayscale hand-
written page images. These pages are letters produced in the context of writing
mail scenarios. Text regions are classified among one of the following 7 classes:
sender coordinates, recipient coordinates, object, date & location, opening, body
and PS & attachment. We used these classes as layout tokens.

READ 2016. The READ 2016 dataset corresponds to Early Modern German
handwritten pages from the Ratsprotokolle collection. Images are RGB encoded.
We used two versions of this dataset: single-page images and double-page images.
The layout classes are as follows: page, section, margin annotation and body.
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Fig. 4. Document image examples from the RIMES 2009, READ 2016 and MAURDOR
datasets.

MAURDOR. The MAURDOR dataset consists in a heterogeneous collection
of documents. We used the same configuration as in [9] i.e. we only use the
English and French documents, and we focus on the C3 and C4 subsets of this
dataset, which corresponds to private or professional correspondences. The doc-
uments are either handwritten, printed, or a mix of both. There is no sufficient
annotation to produce the layout tokens, so we only evaluate the HTR task on
this dataset.

Table 1 details the splits in training, validation and test, as well as the number
of characters in the alphabet and the number of layout tokens (2 by class, for
opening and closing markups) for each dataset.
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Table 1. Splits and number of character and layout tokens for each dataset.

Dataset Training Validation Test # char # layout
tokens tokens

RIMES 2009 1,050 100 100 108 14
READ 2016 (single-page) 350 50 50 89 10
READ 2016 (double-page) 169 24 24 89 10
MAURDOR (C3) 1,006 148 166 134 ✗

MAURDOR (C4) 721 111 114 127 ✗

5.2 Metrics

In addition to the standard Character Error Rate (CER) and Word Error Rate
(WER) metrics used to evaluate the text recognition performance, we proposed
two metrics in [9] to evaluate the specific layout recognition of the HDR task.
The Layout Ordering Error Rate (LOER) consists in considering the document
layout as a graph and computing the graph edit distance between the prediction
and the ground truth. The LOER aims at evaluating the layout recognition
only, considering the reading order between layout entities. Since LOER and
CER/WER only evaluate the layout and text recognition independently, the
mAPCER is used to evaluate the recognition of the layout with respect to the
text content. It is computed as the area under the precision/recall curve, as in
object detection approaches [13] for instance, but it is based on a CER threshold
instead of a IoU one. The mAPCER does not dependent on the reading order
between layout entities. That is why it is important to consider all these metrics
altogether to evaluate the HDR task.

5.3 Training Details

In [9], we used some pretraining and curriculum training strategies to speed up
the convergence of the DAN, and to not use any physical segmentation annota-
tion during training. To be fairly comparable with this work, we follow the exact
same training configuration, whose major points are as follows:

– The encoder is pretrained on synthetic isolated text line images using the
CTC loss and a dedicated FCN line-level OCR model.

– The Faster DAN is trained on a mixture of real and synthetic documents.
Using a curriculum strategy, the Faster DAN is trained on increasingly com-
plex synthetic documents through the epochs. The complexity varies from
two aspects: the number of lines contained in the document image, and the
size of this image. The ratio between synthetic and real document also evolves
during training, from 90%/10% to 20%/80%.

– A rule-based post-processing is used to make sure that the layout markups
have the correct format (no unpaired markup, for instance).
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– Whether it is for pretraining or training, input images are downsized to 150
dpi, normalized and data augmentation is performed 90% of the time.

We carried out 2-day pretraining and 4-day training on a single GPU V100 (32
Go), using automatic mixed-precision. We used the Adam optimizer with an
initial learning rate of 10−4. We do not use any external data, external language
model nor lexicon constraints.

5.4 Comparison with the State of the Art

To our knowledge, the only work performing HDR is the DAN [9]. Tables 2, 3
and 4 provide an evaluation of the Faster DAN on the READ 2016, RIMES 2009
and MAURDOR datasets, respectively, as well as a comparison with the state
of the art.

Table 2. Evaluation of the Faster DAN on the test set of the READ 2016 dataset and
comparison with the state of the art. Metrics are expressed in percentages.

Architecture READ 2016 (single-page) READ 2016 (double-page)
CER ↓ WER ↓ LOER ↓ mAPCER ↑ CER ↓ WER ↓ LOER ↓ mAPCER ↑

DAN [9] 3.43 13.05 5.17 93.32 3.70 14.15 4.98 93.09
Faster DAN 3.95 14.06 3.82 94.20 3.88 14.97 3.08 94.54

Table 3. Evaluation of the Faster DAN on the test set of the RIMES 2009 dataset
and comparison with the state of the art. Metrics are expressed in percentages.

Architecture RIMES 2009
CER ↓ WER ↓ LOER ↓ mAPCER ↑

DAN [9] 4.54 11.85 3.82 93.74
Faster DAN 6.38 13.69 4.48 91.00

Table 4. Evaluation of the Faster DAN on the test set of the MAURDOR dataset and
comparison with the state of the art. Metrics are expressed in percentages.

Architecture C3 C4 C3 & C4
CER ↓ WER ↓ CER ↓ WER ↓ CER ↓ WER ↓

DAN [9] 8.62 18.94 8.02 14.57 11.59 27.68
Faster DAN 8.93 19.00 9.88 16.52 10.50 19.64

The Faster DAN reaches competitive results compared to the DAN on the
three datasets. For the READ 2016 dataset, it even reaches state-of-the-art
results in terms of LOER and mAPCER for both single-page and double-page
versions, involving a better recognition of the layout. Results are not as good for
the RIMES 2009 dataset, which includes more variability in terms of layout. We
assume that this higher variation makes the first pass of the Faster DAN more
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difficult. This is confirmed when measuring the CER for the first pass only: it is
of 4.72% and 5.34% for READ 2016 at single-page and double-page levels, and
of 9.10% for RIMES 2009. Concerning the MAURDOR dataset, the Faster DAN
reaches competitive results on the C3 and C4 categories, taken separately, and
it reaches new state-of-the art results when mixing both categories with 10.50%
of CER, compared to 11.59% for the standard DAN.

Discussion. It has to be noted that it is more difficult to compare the text
recognition performance at document level than at line level. Indeed, the reading
order is far more complex for documents, to go from one paragraph to another,
and to one line to the next, than for isolated lines. This way, even perfectly
recognized, the CER can be severely impacted if the paragraphs are recognized
in the wrong order. On the contrary, the mAPCER is invariant to the order of
the layout entities, but it is dependent to the well recognition of the layout.

Another point to emphasize is about the severity of the errors made. There
are two types of errors to be distinguished. The first corresponds to standard
character addition, removal, or substitution cases. During the first pass of the
Faster DAN, this kind of error may have a great impact because a whole text line
may be duplicated or discarded. However, during the second pass, we assume
that the impact of such errors is rather equivalent for both DAN and Faster DAN.
The second kind of errors is related to the end-of-transcription token prediction.
Indeed, although rare, the model may not predict the end of the transcription
and loop on the same text region again and again until reaching an arbitrary
chosen iteration limit. For this later issue, the standard DAN is more impacted
than the Faster DAN. Indeed, the DAN only have one iteration limit, which
corresponds to the global number of tokens to predict for the whole document.
For the Faster DAN, we used two iteration limits: one for the number of lines,
and one for the number of characters per line. Given that the range of values for
a line length is smaller than for the whole document, the impact is less important
for the Faster DAN.

Prediction Time. Table 5 shows a comparison of the Faster DAN with the
DAN in terms of prediction times for the three datasets: RIMES 2009, READ
2016 and MAURDOR. To be fairly comparable, these times account for the
whole prediction process, including the time dedicated to the encoder part and
to formatting instructions. Additional details are given for each dataset such as
the image sizes, the number of characters, lines, and layout tokens per image,
and the number of characters per line. The values are given as average for the
test set of each dataset. As one can note, the Faster DAN is significantly faster
than the DAN for all the datasets, speeding up the prediction process by at
least 4.

We showed that the Faster DAN reaches competitive results on three
document-level datasets while being at least 4 times faster than the standard
DAN at prediction time. We now evaluate the performance on heterogeneous
documents, by mixing both RIMES 2009 and READ 2016 datasets.
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Table 5. Prediction time comparison between the DAN and the Faster DAN. Times
(in seconds) are averaged on the test set for a single document image, using a single
GPU V100.

RIMES 2009 READ 2016 MAURDOR
single-page double-page C3 C4 C3 & C4

Dataset details (averaged for a document on the test set)
width (px) 1,235 1,190 2,380 1,336 1,240 1,297
height (px) 1,751 1,755 1,755 1,658 1,754 1,697
# chars 578 528 1,062 481 706 575
# lines 18 23 47 16 22 18
# chars/line 31 22 22 30 31 30
# layout tokens 11 15 30 0 0 0
Prediction times (in seconds)
DAN [9] 5.6 4.6 8.5 5.8 7.7 6.6
Faster DAN 1.4 0.9 1.9 1.0 1.6 1.3
Speed factor x4 x5.1 x4.5 x5.8 x4.8 x5.1

5.5 Evaluation on Heterogeneous Documents

In this experiment, we mixed both RIMES 2009 and READ 2016 datasets at
single page level, for both training and evaluation. Examples from both datasets
are balanced at training time, i.e., the models have been trained on the same
number of documents for both datasets. These are the first results for such an
experiment; we also train the standard DAN for comparison purposes. Results
are shown in Table 6. As one can note, results are rather similar when training
on datasets separately or altogether, except for the DAN on the RIMES dataset
whose CER increases from 4.54% up to 7.96%.

Table 6. Evaluation of the Faster DAN on heterogeneous data (mixing READ 2016
and RIMES 2009 for both training and evaluation) and comparison with the state of
the art.

Architecture RIMES 2009 (page) READ 2016 (single-page)
CER ↓ WER ↓ LOER ↓ mAPCER ↑ CER ↓ WER ↓ LOER ↓ mAPCER ↑

DAN [9] 7.96 15.76 8.72 91.59 3.50 13.36 3.86 94.23
Faster DAN 6.73 15.22 5.56 90.10 3.81 14.30 4.32 93.57



196 D. Coquenet et al.

Table 7. Ablation study of the Faster DAN and DAN. Results (in percentages) are
given for the test set of the RIMES 2009 and READ 2016 datasets.

Architecture RIMES 2009 (page) READ 2016 (single-page) READ 2016 (double-page)
CER LOER mAPCER CER LOER mAPCER CER LOER mAPCER

Faster DAN 6.38 4.48 91.00 3.95 3.82 94.20 3.88 3.08 94.54
(1) No line encoding 79.39 6.21 0.00 75.08 11.81 0.29 75.01 10.79 5.44
(2) Single-line context 94.73 4.30 0.00 91.23 4.61 0.00 91.22 4.03 0.00
(3) First-pass context 8.27 4.90 90.73 6.68 4.50 88.37 6.87 5.22 87.93
(4) Sum PE 6.88 4.90 91.06 3.82 4.27 94.08 4.55 4.39 92.76

5.6 Ablation Study

In Table 7, we propose an ablation study of the proposed approach on the RIMES
2009 and READ 2016 datasets. The first line corresponds to the Faster DAN
baseline. In experiment (1), the document positional encoding is replaced by
standard 1d positional encoding, i.e., a unique index is associated to each token.
The model does not succeed to recognize the text, showing the necessity of
injecting line positional information to parallelize the recognition. The model
can only access to tokens of the text line to recognize in (2), also preventing the
text recognition. Indeed, it is nearly impossible to predict the next character
with only a one-character query (beginning of the second pass) since characters
are not unique in a document. For both experiments, one can note that the
LOER is nearly not impacted, this is because the layout recognition takes place
in the first pass, before the parallelization.

In experiment (3), in addition to the tokens of the text line to recognize,
the first character of all the text lines, as well as the layout markup tokens, are
available. This leads to an increase of the CER of at least 1.89 points for RIMES
2009, and up to 2.99 points for READ 2016 at double-page level, compared to
the baseline. This shows the efficiency of the text line detection performed in
the first pass, since the text recognition is parallelized, but it also demonstrates
that gathering the context from past and future lines helps to improve the per-
formance. In experiment (4), the positional encoding of the line and of the index
in the line are summed instead of being concatenated. As one can note, results
are slightly in favor of the concatenation.

6 Conclusion

In this paper, we proposed the Faster DAN, a novel approach for end-to-end
Handwritten Document Recognition. We evaluate this approach with the current
state-of-the-art architecture and showed that this approach reaches competitive
results on three document-level datasets while being at least 4 times faster.
This way, we preserved the advantages of using a single end-to-end approach,
while greatly mitigating the major drawback of prediction time. In this work,
we focused on line-level multi-target queries to show the gain in prediction time.
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However, it would also be possible to perform this parallelization at paragraph
level in order to have a more important language modeling of the past: this
would represent an in-between in terms of prediction time.
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