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Abstract. Oracle character recognition has recently made significant
progress with the success of deep neural networks (DNNs), but it is far
from being solved. Most works do not consider the long-tailed distri-
bution issue in oracle character recognition, resulting in a biased DNN
towards head classes. To overcome this issue, we propose a two-stage
decoupled learning method to train an unbiased DNN model for long-
tailed oracle character recognition. In the first stage, we optimize the
DNN under instance-balanced sampling, obtaining a robust backbone
but biased classifier. In the second stage, we propose two strategies to
refine the classifier under class-balanced sampling. Specifically, we add a
learnable weight scaling module which can adjust the classifier to respect
tail classes; meanwhile, we integrate the KL-divergence loss to maintain
attention to head classes through knowledge distillation from the first
stage. Coupling these two designs enables us to train an unbiased DNN
model in oracle character recognition. Our proposed method achieves
new state-of-the-art performance on three benchmark datasets, includ-
ing OBC306, Oracle-AYNU and Oracle-20K.

Keywords: Oracle character recognition · Long tail · Decoupled
learning · Knowledge distillation

1 Introduction

As the earliest known writing system in China, the oracle bone script plays a
significant role in archaeology, palaeography, and history. These characters were
carved on turtle nails and animal bones for divination during the Shang Dynasty.
Recognizing them usually requires a high level of expertise, which is both time-
consuming and costly. Recently, much attention has been paid to investigat-
ing automatic recognition technologies for oracle characters. Such research has
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made great progress [1–3], but its performance still needs improvement so as to
meet the requirements of practical applications. With the burst of deep neural
networks (DNNs) and their successful applications in computer vision, natural
language processing, etc [4], researchers have recently explored DNNs in oracle
character recognition [2,3,5]. The success of DNN models usually needs a large
size of labelled training samples. However, obtaining sufficient oracle character
data is challenging due to the scarcity of sources and difficult labelling.

Thanks to the great efforts from the research community, there are some
available oracle datasets, which can be divided into two categories: real rubbing
character images and hand-copied character images. Some examples are shown
in Fig. 1. As we can see, real images scanned from turtle nails and animal bones
contain various noises, e.g., partially missing, dense white regions, and bone
fractures. One public representative dataset is OBC306, collected by [2], which
contains 309,511 character-level instances belonging to 306 classes. In contrast,
hand-copied images are high-resolution images without noise, but it needs to
invite experts to transcribe them. Two additional available datasets are Oracle-
20K [1] and Oracle-AYNU [3]. Oracle-20K contains 19,491 character images and
249 classes, while Oracle-AYNU has 2,584 classes with 39,072 instances.

Fig. 1. Examples of oracle character images.

Unfortunately, all these current oracle datasets suffer from the common issue
arising in the long-tailed distribution, as shown in Fig. 2 for the OBC306 dataset.
It is apparent that the number of samples varies significantly among classes.
Specifically, in the training set of OBC306, the top five majority classes have
over 10,000 instances while many classes have just one or two instances; in the
test set of OBC306, around 17% of classes contain fewer than ten samples, while
the largest class contains 6,474 samples. Such distribution leads the training of
DNNs to suffer from a strong bias towards head classes; consequently, the learned
model cannot learn robust classification for tail classes1. To address this issue,
Zhang et al. [3] proposed a nearest neighbour classifier with metric learning for
imbalanced oracle character recognition, and successfully improved the accuracy
1 We divide the oracle data into three categories: the classes with many samples as

head classes, the classes with few samples as tail classes, and the remainder are the
medium classes described in Sect. 4.3.
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on Oracle-AYNU and Oracle-20K. Furthermore, Li et al. [5] designed a mix-up
strategy by combining softmax loss and triplet loss, and demonstrated the state-
of-the-art performance on oracle datasets, including Oracle-20K, Oracle-AYNU,
and OBC306. Albeit these advances, the issue of long-tailed distribution is still
far from being solved in oracle character recognition.

Fig. 2. Data distributions of OBC306.

Although the long-tailed issue has not yet received extensive attention in
oracle character recognition, it has been intensively studied in general visual
recognition tasks. For example, re-sampling training samples [6,7] or adjusting
the loss value for each class [8,9] has been widely used to balance the class distri-
bution during training. In addition, some methods [10,11] utilize label frequen-
cies to shift output logits of models during training or post-processing. Some
recent efforts have also been made to re-balance DNN models. In particular,
studies [12–15] have shown that it is effective to decouple the one-stage training
process into representation learning and classifier learning for imbalanced data.
In general, such works adjust the classifier to focus on tail classes while sacri-
ficing the performance of head classes during the training. They then validate
the effectiveness on the test data with a balanced distribution across all classes.
However, the test data in the oracle datasets is also heavily long-tailed as shown
in Fig. 2. Performance sacrifice on head classes may unfortunately lead to the
degradation of the total accuracy, though the average accuracy is still improved
as presented in Table 2 of Sect. 4.4.

Motivated from the aforementioned analysis, we propose a two-stage-based
decoupled learning method for long-tailed oracle character recognition, where the
DNN model is split into a ViT [16] as the backbone network and a single fully
connected layer network as the classifier. In the first stage, we train the DNN
model with the standard cross-entropy loss under instance-balanced sampling. As
the oracle data is limited, we utilize mixup augmentation [17] to exploit current
oracle samples fully. Although a robust backbone model is learned in the first
stage, the long-tailed oracle data distribution makes the classifier strongly biased
towards the head classes. Therefore, we further propose two strategies to refine
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the classifier under class-balanced sampling in the second stage while freezing
the backbone. First, we add a learnable weight scaling (LWS) module to adjust
the classifier to respect tail classes. Second, we integrate the KL-divergence loss
to keep noticing head classes through knowledge distillation from the first stage.
Coupling these two designs enables us to train an unbiased DNN model on both
tail and head classes in oracle character recognition, thus offering the strong
potential to improve both the average and total accuracies. We evaluate the
proposed method on benchmarks including OBC306, Oracle-AYNU, and Oracle-
20K. Experimental results show that our novel design attains new state-of-the-
art performance.

2 Related Work

2.1 Oracle Character Recognition

Identifying characters from hand-copied or scanned oracle bone images has long
been considered as a challenging problem. It has attracted much attention and
achieved tremendous advances [1,2,18]. Earlier studies often adopted traditional
pattern recognition techniques on oracle character recognition. For example, the
work in [18] treated oracle bone inscriptions as undirected graphs and applied
graph isomorphism for identification. Guo et al. [1] proposed a hierarchical rep-
resentation for oracle characters, consisting of a Gabor-related low-level repre-
sentation and a sparse-encoder-related mid-level representation. Liu et al. [19]
recognized oracle characters by extracting block histogram-based features and
employing support vector machines.

Recently, DNN-based methods have also been applied in oracle character
recognition. In the early stage, researchers combined Convolutional Neural Net-
work (CNN) models with traditional feature representation [1]. Next, Huang
et al. [2] evaluated several popular CNNs (e.g., ResNet, InceptionNet) in their
established OBC306. As DNN models usually require a large number of labelled
samples for training, researchers have to make significant efforts on the oracle
data collection. To this end, Guo et al. [1] first collected about 20,000 legi-
ble oracle character images called Oracle-20k. Then, Anyang Normal University
constructed another hand-copied dataset Oracle-AYNU [1], and Huang et al. [2]
released a large-scale scanned oracle character dataset called OBC306.

Owing to the difficulty in obtaining oracle characters, current oracle data is
both rare and seriously long-tailed, making the DNN-based recognition of oracle
characters challenging. Zhang et al. [3] first investigated the seriousness of this
issue and proposed a nearest neighbour classifier with metric learning. Following
that, Li et al. [5] integrated mix-up augmentation and triplet loss to improve
the recognition performance. However, such long-tailed distribution issue is far
from being solved. In this paper, we aim to train an unbiased DNN model for
long-tailed oracle character recognition via the proposed two-stage decoupled
learning method.
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2.2 Long-Tailed Visual Recognition

It is crucial to obtain an unbiased model for all classes in long-tailed visual
recognition. Most existing works can be divided into two categories: re-sampling
and re-weighting. Re-sampling-based techniques typically obtain a more bal-
anced data distribution by over-sampling tail classes or under-sampling head
classes [6,7]. Re-weighting methods assign appropriate weights to the loss of
each class to re-balance classes [8,9]. In addition, some methods adjust model
logits during training or post-processing based on label frequencies to achieve
relatively large margins between classes, which can also strengthen the classifi-
cation of tail classes and mitigate the long-tailed distribution issue [10,11].

Recently, researchers have started studying two-stage-based decoupled learn-
ing in DNN models for imbalanced recognition instead of end-to-end learning.
Kang et al. [12] proposed to decouple the one-stage training of the DNN model
into feature representation (i.e., backbone network) and classifier learning. This
work demonstrated that it could learn well-generalized representation under the
normal instance-balanced sampling in the first training stage, and merely adjust-
ing the classifier in the second stage is effective for imbalanced recognition. Based
on this study, researchers innovated the decoupled learning scheme from different
aspects. For example, KCL [13] developed a k-positive contrastive loss to learn a
more balanced and discriminative feature representation. MiSLAS [14] proposed
to adopt mixup augmentation in the first stage to enhance the representation
learning and applied a label-aware smoothing strategy in the second stage. The
work [15], following the weight re-balancing direction, proposed to tune weight
decay in the first stage and utilized class-balanced loss with tuning weight decay
in the second stage.

Despite the effectiveness, these present approaches conduct their evaluation
on the test data, which usually follows a balanced distribution across all classes.
In case of imbalanced test data, these methods would largely degrade their per-
formance as they aim to obtain a uniform distribution during the training. Sev-
eral works have noticed such an issue which is still less explored [20,21]. In this
paper, we focus on decoupled learning for long-tailed oracle character recognition
with imbalanced test data.

2.3 Knowledge Distillation

Knowledge distillation (KD) is proposed to achieve better generalization per-
formance by transferring knowledge from pre-trained models (i.e., teachers) to
target networks (i.e., students) [22]. The concept of KD was proposed by Hin-
ton et al. [23], which transfers the knowledge via minimizing the KL-Divergence
loss between predicted logits of teachers and students. Several recent works have
explored KD for imbalanced visual recognition. Xiang et al. [24] divided the
whole dataset into subsets and trained multiple teacher models for each sub-
set. Meanwhile, a unified student model was trained by using adaptive KD in an
easy-to-hard curriculum instance selection approach. Following this multi-expert
framework, Wang et al. [20] introduced one special KD approach to simplify the
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multi-expert model by training a student network with multiple experts. In this
paper, we propose to integrate the idea of knowledge distillation in our two-stage-
based decoupled learning framework for long-tailed oracle recognition, aiming to
make the classifier not ignore the head classes by transferring the knowledge
from the first stage.

3 Main Methodology

In this paper, we develop a two-stage decoupled learning to train an unbiased
DNN model for both tail and head classes in long-tailed oracle character recogni-
tion. The overview of our work is illustrated in Fig. 3. In the first stage, the DNN
model is trained by the cross-entropy loss under instance-balanced sampling. To
be noted, we divide the DNN model into two components, i.e., backbone and
classifier. Due to the insufficient oracle data, we adopt mixup augmentation to
explore the training samples in the first stage fully. Although a well-generalized
representation can be obtained from the backbone in the first stage [12], the
classifier is usually biased to head classes because of the long-tailed distribution.
To overcome this issue, we train a learnable weight scaling (LWS) module to
adjust the classifier with the frozen backbone under class-balanced sampling in
the second stage, thus paying more attention to the tail classes. In addition, we
integrate the KL-Divergence loss in the second stage to maintain attention on
the head classes by the knowledge distillation from the first stage. In the infer-
ence stage, the oracle character images pass through the backbone and classifier
with LWS to output the final recognition result.

Fig. 3. Overall structure of the proposed scheme. LWS represents the learnable weight
scaling, aiming to adjust the classifier to respect the tail classes.
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3.1 Backbone Architecture

In terms of the excellent performance of Transformer in natural language process-
ing and computer vision areas [16,25,26], we employ ViT [16] as the backbone
network for oracle character recognition in this paper.

ViT mainly consists of patch embedding, position embedding, class token,
and Transformer encoder [27]. First, we convert an image into a sequence of 1-D
patch embeddings. Given an image X ∈ R

H×W×M (H,W,M denote the height,
width, and the number of channels, respectively), we divide X into a series of
patches denoted as Xp ∈ R

S×P×P×M , where P ×P is the patch size and S is the
number of patches (i.e., S = HW/P 2). Then, we flatten these cropped patches
to be Xp′ ∈ R

S×(P 2·M) and utilize a trainable linear projection E ∈ R
(P 2·M)×D

to generate the sequence of 1-D embedding of all patches Xp′′ ∈ R
S×D. Second,

motivated from BERT [25], we add a learnable class token xclass to the beginning
of the patch embeddings, which can be regarded as the representation of the
input image and fed into the latter classifier. Third, we integrate the learnable
position embedding Epos ∈ R

(S+1)×D to retain the position information in the
sequence as the Transformer encoder is permutation-invariant. Therefore, the
overall input to the Transformer encoder can be defined as:

Z0 = [xclass;Xp′′ ] + Epos. (1)

The Transformer encoder is composed of L layers. Every layer contains one
multi-headed self-attention (MSA) block and one multi-layer perceptron (MLP)
block. MLP includes two linear layers with a GELU. LayerNorm (LN) is applied
before each block, while residual connections are applied after each block. More
details can be seen in [27]. The process can be simply formulated as follows:

⎧
⎨

⎩

Ẑl = MSA(LN(Zl−1)) + Zl−1, l = 1 . . . L

Z̃l = MLP (LN(Ẑl)) + Ẑl, l = 1 . . . L

z = LN(Z̃L[0]).
(2)

3.2 Mixup Augmentation

Mixup [17] and its variants [28,29] have been widely adopted as data augmenta-
tion strategies in long-tailed tasks [5,14,30], which enable to improve the gener-
alization of DNN models. The basic concept of Mixup is to generate new samples
by interpolating two randomly sampled input images with their labels (X, y)
and (X ′, y′) as follows:

X̃ = λX + (1 − λ)X ′, (3)

ỹ = λy + (1 − λ)y′, (4)

where X̃ denotes the mixed new sample and its label is ỹ, λ is a mixing factor
drawn from a Beta distribution Beta(α, β) and α = β = 1 in our experiments.
We integrate this original Mixup augmentation method in the first training stage
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for better representation learning of the backbone. Since the LWS module trained
in the second stage is lightweight, we remove Mixup to reduce the complexity.
Due to the limited space, we do not compare other variants of Mixup [28,29] in
this paper, and more comparisons can be found in [5].

3.3 Decoupled Learning

In the paper, we decouple the DNN model into backbone and classifier in the
two-stage training framework, where the backbone is learned in the first stage
and the classifier is adjusted with the LWS module in the second stage for the
long-tailed oracle character recognition.

In the first stage, we adopt the ViT model as the backbone to learn the
representation z from the input X, then obtain the classification logit ŷ by
feeding z into the linear classifier. Finally, the predicted class could be given by
argmax ŷ as follows:

ŷ = C(z) = W T z + b, (5)

where C(·) represents the classifier, W denotes the weight matrix and b denotes
the bias. In this stage, the backbone and classifier are learned jointly by min-
imizing the standard cross-entropy loss between ground truth y and argmax ŷ
under instance-balanced sampling. Here, the probability of sampling data from
the class j is proportional to its cardinality nj . Therefore, the long-tailed data
distribution makes the learned model biased to head classes.

In the second stage, LWS aims to rectify the imbalanced decision boundaries
between head and tail classes via re-scaling the magnitude of weights in W for
each class. To this end, we utilize a scaling factor fj for the j-th class to adjust
the weights of the classifier:

w̃j = fj ∗ wj , (6)

where wj ∈ R
d represents the weight vector of class j. Then the whole weight

matrix W = {wj} ∈ R
d×Y is re-scaled to W̃ so that ŷ becomes W̃ T z + b,

where Y is the number of classes. In this way, merely the LWS block (denoted
as f = {fj} ∈ R

Y ) is learned by class-balanced sampling in the second stage,
while the backbone and classifier (i.e., W and b) are fixed. Under class-balanced
sampling, each class shares an equal probability of being selected. Once a class is
selected, an instance is sampled uniformly from the chosen class, so it is unbiased
sampling. To be noted, LWS is very lightweight, thereby its learning can converge
quickly in the second stage of training.

3.4 Logit-Based Knowledge Distillation

Although LWS in the second stage can promote the learned DNN model to
highlight tail classes, it will lose the importance of the head classes. However,
the oracle test data is also a long-tailed distribution, and the recognition of head
classes plays a crucial role in the overall performance. Since the model learned in
the first stage better understands the head classes, we can utilize this model to
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guide LWS in the second stage to keep attention on head classes. Motivated by
this, we propose a knowledge distillation strategy in the second training stage.

Logit-based knowledge distillation aims to transfer the knowledge from a
teacher model to a student model by aligning their logit predictions [22]. In this
paper, we leverage the first stage model as the teacher model to guide the second
stage model, where the popular soft targets [23] are adopted as our logit-based
knowledge. Specifically, given classification logits ŷ of the classes, the soft targets
can be obtained by the softmax function as follows:

pj =
exp(ŷj/T )

∑Y
t=1 exp(ŷt/T )

, (7)

where T denotes the temperature that controls the importance of each soft target
and is set to 1 in our experiments. The classical KD adopts KL-Divergence as
the distillation loss for soft targets, which can be rewritten as:

KL(pT ||pS) =
Y∑

i=1

pTi log(
pTi
pSi

). (8)

Here, pT and pS represent the teacher and student model output logits, respec-
tively. By integrating the distillation loss in the second stage, the decision bound-
aries of head classes can be protected to some extent.

3.5 Overall Training

Our work follows a two-stage training scheme, which can be summarized as
(1) representation learning by training the backbone and classifier under the
cross-entropy loss with instance-balance sampling, and (2) classifier learning by
training the integrated LWS under the cross-entropy and KL losses with class-
balanced sampling.

In the first training stage, we aim to obtain well-generalized representations
and achieve higher performance in the head classes for subsequent knowledge
transfer. According to [12], instance-balanced sampling with the cross-entropy
loss yields a more general representation than other re-sampling methods. There-
fore, we adopt this training strategy in the paper. In addition, we integrate
Mixup [17] to improve further the representation ability and recognition per-
formance motivated by the previous works [5,14]. The loss function in the first
stage is the cross-entropy loss:

Ls1 =
N∑

n=1

−ỹnlog(C(B(X̃n))), (9)

where N is the number of training samples. B(·) represents the backbone net-
work.

In the second stage, Zhong et al. [14] indicate that Mixup has negligible
or even negative effects on classifier learning. Moreover, our trainable LWS is
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lightweight. Therefore, we remove Mixup at this stage. Furthermore, to keep
noticing head classes, the distillation loss is adopted for classes with larger car-
dinalities. The overall loss function of the second stage is defined as:

Ls2 =
N∑

n=1

−ynlog(C(B(Xn))) +
∑

i∈N

KLi(pT ||pS). (10)

Here, N represents the subset of classes whose cardinality is larger than γ, indi-
cating those classes with knowledge distillation. In our experiments, we set γ as
100, 150 and 160 in OBC306, Oracle-AYNU and Oralce-20k, respectively, which
are tuned empirically.

4 Experiments

4.1 Datasets

OBC306. OBC306 [2] is currently the largest public dataset of oracle bone
scripts to our knowledge, which contains 309,551 character samples with 306
classes in total. As shown in Fig. 2, this dataset suffers from a typical long-tailed
distribution, i.e., 70 classes cover 83.82% of total samples while 52 classes have
fewer than ten samples. We remove 29 classes with only one sample since we
do not consider the out-of-vocabulary (OOV) performance. Then, the remain-
ing dataset is divided into training and test sets following a 3:1 ratio. Finally,
OBC306 used in the paper has 277 classes with 309,522 samples. The imbalance
ratios (i.e., the size of the largest class: the smallest class) of the training set
and test set are 19,424:1 and 6,474:1, respectively. To be noted, all samples in
OBC306 are oracle bone rubbing images with various noises.

Oracle-AYNU. Oracle-AYNU [3] consists of 39,072 hand-copied oracle char-
acter samples with 2,584 classes. Specifically, the cardinality of each class varies
from 2 to 287, and about 68% of classes have fewer than ten samples. We divide
the dataset into the training and test sets following a 9:1 ratio, and then the
imbalance ratios of the training set and test are 259:1 and 28:1, respectively.
We can see that this dataset also suffers a long-tailed distribution issue, but not
severe as that in OBC306.

Oracle-20K. Oracle-20K [1] contains 19,491 hand-copied samples with 249
classes, where class cardinalities range from 25 to 291. We split the dataset
into training and test sets following a ratio of 2:1, and then the imbalance ratio
of the training set and test set are 194:17 and 97:8, respectively. We can see that
its imbalanced issue is not very severe compared to the other two benchmark
datasets.

4.2 Implementation Details

We implement our model by Pytorch. In all experiments, we adopt ViT-Base [16]
pre-trained on ImageNet as the backbone model, and utilize the SGD optimizer



Decoupled Learning for Long-Tailed OCR 175

with momentum 0.9, batch size 64, image size 256 × 256. In the first stage,
the initial learning rate is 0.01 and deceased by 0.1 at the m1-th and m2-th
epochs (i.e., m1 = 15 and m2 = 20 in OBC306, m1 = 100 and m2 = 150 in
Oracle-AYNU, m1 = 150 and m2 = 200 in Oracle-20K). In the second stage,
we restart the learning rate to train the LWS module with 0.2 for OBC306 and
0.01 for both Oracle-AYNU and Oracle-20K. The learning rate is decreased by
0.1 at m′

1-th and m′
2-th epochs (i.e., m′

1 = 2 and m′
2 = 4 in both OBC306 and

Oracle-AYNU, m′
1 = 5 and m′

2 = 10 in Oracle-20K).

4.3 Evaluation Metrics

Most previous papers adopt the total accuracy as defined in Eq. (11) to evaluate
the recognition performance. However, if the test data also follows long-tailed
data distribution, this metric will be dominated by those head classes. To reflect
the effectiveness on tail classes as well, we exploit another metric additionally to
evaluate average accuracy as defined in Eq. (12). Following [5], such two metrics
are formulated by

Total =

∑Y
j=1 rj

∑Y
j=1 nj

, (11)

Average =
1
Y

Y∑

j=1

rj
nj

, (12)

where rj and nj denote the number of correctly classified samples and total
samples in the j-th class, respectively. In addition, to better demonstrate the
performance on the long-tailed distribution, we split each dataset into three
subsets, namely Head (more than 100 samples), Medium (20∼100 samples),
and Tail (fewer than 20 samples).

4.4 Ablation Study

Effects of different patch sizes of ViT. Similar to ViT [16], we also compare
the effectiveness of different patch sizes in oracle character recognition. As shown
in Fig. 4, if the patch size is too small, there will be too many less expressive
patches input to the Transformer encoder, e.g., background patches or similar
patches; if the patch size is too large, some non-trivial spatial and local infor-
mation will be lost, leading to low discriminability. We try three sizes without
pretraining, including 16 × 16, 32 × 32 and 64 × 64. The results are reported in
Table 1. We can see that 32 × 32 provides the best performance. Furthermore,
ViT usually requires pre-training on a large amount of data and then transfer-
ring to small datasets to obtain good results. Therefore, we choose the “Base”
variant of ViT with 32×32 patch size pre-trained on ImageNet as our backbone,
and fine-tune it together with the linear classifier on oracle datasets.

Effects of Different Components. In this part, we evaluate the effectiveness
of the proposed LWS and KD. For clarity, we also report the performance of
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Fig. 4. Visualization of different patch sizes.

Table 1. Comparison on OBC306, Oracle-AYNU and Oracle-20K in terms of the
average and total accuracies (%) of ViT-Base with different patch sizes.

Patch Size OBC306 Oracle-AYNU Oracle-20K

Average Total Average Total Average Total

16× 16 65.36 87.81 61.54 73.84 82.78 86.79

32× 32 68.08 88.97 66.65 77.88 87.80 90.76

64× 64 60.38 85.88 65.18 76.68 86.30 90.20

Mixup. The results are summarized in Table 2, and its first row shows the baseline
model where the backbone and classifier are jointly trained in one stage without
any proposed component. Compared with the baseline model, we can see that
Mixup (the second row in Table 2) improves the performance significantly in
terms of both the average and total accuracy, demonstrating the effectiveness of
the Mixup strategy.

To facilitate the recognition of tail classes, we learn LWS in the second stage
of training to adjust the decision boundaries from the baseline model as shown in
the third row of Table 2. We observe that LWS improves the average accuracy,
especially on OBC306 and Oracle-AYNU, with significant gains of 5.08% and
4.79%, respectively, since both datasets have many tail classes. LWS adjusts
the weights of the classifier under class-balanced sampling, which favors tail
classes while weakening the dominance of head classes. Therefore, we suppose
that the learned LWS will reduce the performance of the head classes, resulting
in a reduction of total accuracy on OBC306. As OBC306 has an extremely large
imbalance ratio (i.e., 9,424:1 and 6,474:1 in the training and test set, respectively)
and the head classes dominate the test set, a slight suppression of the head
classes significantly impacts the total accuracy. In contrast, the total accuracy
is improved on Oracle-AYNU as the tail classes account for a large proportion
in this dataset; however, the improvement is fairly smaller than the average
accuracy. Combining Mixup and LWS (the fifth row of Table 2), recognition
performance can be lifted up further, but the total accuracy on OBC306 is still
reduced significantly.

To mitigate the issue of LWS on head classes, we plug the distillation loss in
the second training stage to preserve the decision boundaries of head classes. The
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Table 2. Ablation study for three proposed components on OBC306, Oracle-AYNU,
and Oracle-20K in terms of the average and total accuracies (%). The first row is the
baseline model. Mixup: adding Mixup to the baseline model. LWS: training LWS in
the second stage. KD: adding the distillation loss in the second stage.

Mixup LWS KD OBC306 Oracle-AYNU Oracle-20K

Average Total Average Total Average Total

✕✕✕ ✕✕✕ ✕✕✕ 79.50 93.02 77.07 84.42 93.78 95.37

✔ ✕✕✕ ✕✕✕ 77.07 93.12 79.75 86.23 94.57 96.03

✕✕✕ ✔ ✕✕✕ 84.58 90.05 81.86 86.68 93.92 95.32

✔ ✔ ✕✕✕ 84.38 90.55 83.53 87.97 94.87 96.03

✔ ✔ ✔ 85.01 92.40 83.27 88.02 94.9 96.06

results are listed in the last row of Table 2. On the one hand, adding KD boosts
the total accuracy, especially on OBC306, from 90.55% to 92.40%; on the other
hand, it makes little impact on the average accuracy, with a slight increase on
OBC306 and Oracle-20K due to its effectiveness on the head classes. In summary,
by combining all the proposed components, our proposed method can achieve a
good trade-off between total and average accuracies, finally improving the overall
recognition performance significantly.

To demonstrate the effectiveness of each component in detail, we show the
total accuracy for the three subsets of OBC306 and Oracle-AYNU in Fig. 5. In
OBC306, we can see that Mixup benefits the head subset more due to the severe
long-tailed problem; after adding LWS, the accuracies of the tail and medium
classes boost while head accuracy drops significantly by 2.76%. To keep notic-
ing head classes, we adopt knowledge distillation to keep the decision bound-
aries of head classes while facilitating the tail classes. The proposed method
(Mixup+LWS+KD) obtains a fair trade-off between the head and tail classes.
Finally, it increases the tail accuracy by 3.61% compared to Mixup+LWS, with-
out much loss in head performance compared to Mixup. In Oracle-AYNU, Mixup
generates positive influences on all the three subsets. For LWS, it improves the
accuracy of tail classes while reducing the accuracy of head classes. By combin-
ing it with KD, the accuracies of all the three subsets increase compared with
the baseline model, from 94.14% to 94.68%, 93.12% to 93.19% and 74.41% to
81.69%, respectively. In summary, these results demonstrate the effectiveness of
our proposed method apparently.

4.5 Comparison to Previous Methods

In Table 3, we compare the proposed method with the previous competitive ora-
cle character recognition methods regarding average and total accuracy on three
benchmark datasets. From the table, we can see that our approach surpasses
the other methods on both average and total accuracy in all datasets. Specifi-
cally, the proposed method achieves superior performance on OBC306 with the
serious long-tailed data issue, improving the average and total accuracies over
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Fig. 5. Total accuracy of each component on the head, medium and tail classes of
OBC306 and Oracle-AYNU.

Table 3. Comparison to previous methods on Oracle-AYNU, OBC306, and Oracle-
20K. † denotes the accuracy excluding 29 classes which do not have any training samples
(The original average accuracy is reported as 70.28% on all the 306 classes [2]).

Method OBC306 Oracle-AYNU Oracle-20K

Average Total Average Total Average Total

Zhang et al. [3] – – – 83.37 – 92.43

Huang et al. [2]† 77.64 – – – – –

Li et al. [5] 80.16 91.74 79.96 83.65 93.50 94.64

Ours 85.01 92.4 83.27 88.02 94.9 96.06

the previous best oracle character recognition method [5] by 4.85% and 0.66%,
respectively. For the Oracle-AYNU dataset with more than 2,000 classes, the
proposed method achieves 83.27% in average accuracy and 88.02% in total accu-
racy, which outperforms the prior methods by a significant margin of 3.31% and
4.37%, respectively. In Oracle-20K, the long-tailed issue is not evident; however,
our proposed method can also yield better average and total results. In sum-
mary, the proposed method achieves new state-of-the-art performance on three
benchmark datasets.

4.6 Error Analyses

In Fig. 6, we present some error recognition examples of the proposed approach,
which are roughly summarized into four categories: long tail, similar looking,
intra-class variance, and severe noises. First, the long-tailed issue has not been
fully resolved, and some tail characters are mis-recognized as shown in Fig. 6(a).
Second, it is sometimes confusing for our model to identify similar characters. For
example, the characters in Fig. 6(b) look very similar between the ground truth
and prediction (e.g., in the second row, the character ‘1035’ is mis-recognized
to ‘100003’). Third, since there was no standardization of the oracle bone script
during historical periods, some characters may have a high degree of intra-class
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Fig. 6. Error examples of our model. Input columns present the input images with
their ground-truth labels underneath (characters or digital codes). Prediction columns
present samples from the corresponding incorrect predicted classes. Note that Oracle-
AYNU and OBC306 are annotated by digital codes, not by real characters like Oracle-
20K. In (a), the number in parentheses represents the number of training samples for
that class. In (c), round brackets represent they belong to the same class.

variation in shapes, structures, and number of strokes in Fig. 6(c). Last, due to
the long history, the real oracle characters on bones are polluted by serious noises
and abrasions as shown in Fig. 6(d), making them difficult to be recognized even
by humans.

5 Conclusion

In this paper, we propose a two-stage decoupled learning method for long-tailed
oracle character recognition, aiming to train an unbiased DNN model on both
tail and head classes. In the first stage, we train a ViT backbone model and a
linear classifier under the instance-balanced sampling, where mixup augmenta-
tion is utilized to exploit current oracle samples fully. In the second stage, we
propose a learnable weight scaling module to refine the classifier to respect tail
classes. Meanwhile, the KL-divergence loss is also integrated to maintain atten-
tion on head classes by the knowledge distillation from the first stage. Extensive
experiments on three oracle benchmark datasets demonstrate the effectiveness
of both LWS and KD components, finally achieving new state-of-the-art recog-
nition performance on average and total accuracy. However, there is still room
to improve further the recognition performance, especially on tail classes. In the
future, we will explore how to enhance the representation ability of the backbone
on tail classes so as to further promote the decoupled learning framework.
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