
Gernot A. Fink
Rajiv Jain
Koichi Kise
Richard Zanibbi (Eds.)

LN
CS

 1
41

90

Document Analysis
and Recognition –
ICDAR 2023
17th International Conference
San José, CA, USA, August 21–26, 2023
Proceedings, Part IV

Lecture Notes in Computer Science 14190
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Gernot A. Fink · Rajiv Jain · Koichi Kise ·
Richard Zanibbi
Editors

Document Analysis
and Recognition –
ICDAR 2023
17th International Conference
San José, CA, USA, August 21–26, 2023
Proceedings, Part IV

Editors
Gernot A. Fink
TU Dortmund University
Dortmund, Germany

Koichi Kise
Osaka Metropolitan University
Osaka, Japan

Rajiv Jain
Adobe
College Park, MN, USA

Richard Zanibbi
Rochester Institute of Technology
Rochester, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-41684-2 ISBN 978-3-031-41685-9 (eBook)
https://doi.org/10.1007/978-3-031-41685-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-41685-9

Foreword

We are delighted to welcome you to the proceedings of ICDAR 2023, the 17th IAPR
International Conference on Document Analysis and Recognition, which was held in
San Jose, in the heart of Silicon Valley in the United States. With the worst of the
pandemic behind us, we hoped that ICDAR 2023 would be a fully in-person event.
However, challenges such as difficulties in obtaining visas also necessitated the partial
use of hybrid technologies for ICDAR 2023. The oral papers being presented remotely
were synchronous to ensure that conference attendees interacted live with the presen-
ters and the limited hybridization still resulted in an enjoyable conference with fruitful
interactions.

ICDAR 2023 was the 17th edition of a longstanding conference series sponsored by
the International Association of Pattern Recognition (IAPR). It is the premier interna-
tional event for scientists and practitioners in document analysis and recognition. This
field continues to play an important role in transitioning to digital documents. The IAPR-
TC10/11 technical committees endorse the conference. The very first ICDARwas held in
St Malo, France in 1991, followed by Tsukuba, Japan (1993), Montreal, Canada (1995),
Ulm, Germany (1997), Bangalore, India (1999), Seattle, USA (2001), Edinburgh, UK
(2003), Seoul, South Korea (2005), Curitiba, Brazil (2007), Barcelona, Spain (2009),
Beijing, China (2011), Washington, DC, USA (2013), Nancy, France (2015), Kyoto,
Japan (2017), Sydney, Australia (2019) and Lausanne, Switzerland (2021).

Keeping with its tradition from past years, ICDAR 2023 featured a three-day main
conference, including several competitions to challenge the field and a post-conference
slate of workshops, tutorials, and a doctoral consortium. The conference was held at the
San Jose Marriott on August 21–23, 2023, and the post-conference tracks at the Adobe
World Headquarters in San Jose on August 24–26, 2023.

We thank our executive co-chairs, Venu Govindaraju and Tong Sun, for their support
and valuable advice in organizing the conference.We are particularly grateful to Tong for
her efforts in facilitating the organization of the post-conference in Adobe Headquarters
and for Adobe’s generous sponsorship.

The highlights of the conference include keynote talks by the recipient of the
IAPR/ICDAR Outstanding Achievements Award, and distinguished speakers Marti
Hearst, UCBerkeley School of Information; VladMorariu, Adobe Research; and Seiichi
Uchida, Kyushu University, Japan.

A total of 316 papers were submitted to the main conference (plus 33 papers to
the ICDAR-IJDAR journal track), with 53 papers accepted for oral presentation (plus
13 IJDAR track papers) and 101 for poster presentation. We would like to express
our deepest gratitude to our Program Committee Chairs, featuring three distinguished
researchers from academia, Gernot A. Fink, Koichi Kise, and Richard Zanibbi, and one
from industry, Rajiv Jain, who did a phenomenal job in overseeing a comprehensive
reviewing process and who worked tirelessly to put together a very thoughtful and
interesting technical program for the main conference. We are also very grateful to the

vi Foreword

members of the Program Committee for their high-quality peer reviews. Thank you to
our competition chairs, Kenny Davila, Chris Tensmeyer, and Dimosthenis Karatzas, for
overseeing the competitions.

The post-conference featured 8 excellent workshops, four value-filled tutorials, and
the doctoral consortium. We would like to thank Mickael Coustaty and Alicia Fornes,
the workshop chairs, Elisa Barney-Smith and Laurence Likforman-Sulem, the tutorial
chairs, and Jean-Christophe Burie and Andreas Fischer, the doctoral consortium chairs,
for their efforts in putting together a wonderful post-conference program.

We would like to thank and acknowledge the hard work put in by our Publication
Chairs, Anurag Bhardwaj and Utkarsh Porwal, who worked diligently to compile the
camera-ready versions of all the papers and organize the conference proceedings with
Springer. Many thanks are also due to our sponsorship, awards, industry, and publicity
chairs for their support of the conference.

The organization of this conference was only possible with the tireless behind-the-
scenes contributions of our webmaster and tech wizard, Edward Sobczak, and our secre-
tariat, ably managed by Carol Doermann. We convey our heartfelt appreciation for their
efforts.

Finally, we would like to thank for their support our many financial sponsors and
the conference attendees and authors, for helping make this conference a success. We
sincerely hope those who attended had an enjoyable conference, a wonderful stay in San
Jose, and fruitful academic exchanges with colleagues.

August 2023 David Doermann
Srirangaraj (Ranga) Setlur

Preface

Welcome to the proceedings of the 17th International Conference onDocument Analysis
and Recognition (ICDAR) 2023. ICDAR is the premier international event for scientists
and practitioners involved in document analysis and recognition.

This year, we received 316 conference paper submissions with authors from 42
different countries. In order to create a high-quality scientific program for the conference,
we recruited 211 regular and 38 senior program committee (PC) members. Regular PC
members provided a total of 913 reviews for the submitted papers (an average of 2.89 per
paper). Senior PC members who oversaw the review phase for typically 8 submissions
took care of consolidating reviews and suggested paper decisions in their meta-reviews.
Based on the information provided in both the reviews and the preparedmeta-reviewswe
PCChairs then selected154 submissions (48.7%) for inclusion into the scientificprogram
of ICDAR 2023. From the accepted papers, 53 were selected for oral presentation, and
101 for poster presentation.

In addition to the papers submitted directly to ICDAR 2023, we continued the tradi-
tion of teaming up with the International Journal of Document Analysis and Recognition
(IJDAR) and organized a special journal track. The journal track submissions underwent
the same rigorous review process as regular IJDAR submissions. The ICDAR PC Chairs
served as Guest Editors and oversaw the review process. From the 33 manuscripts sub-
mitted to the journal track, 13 were accepted and were published in a Special Issue of
IJDAR entitled “Advanced Topics of Document Analysis and Recognition.” In addi-
tion, all papers accepted in the journal track were included as oral presentations in the
conference program.

A very prominent topic represented in both the submissions from the journal track as
well as in the direct submissions to ICDAR2023was handwriting recognition. Therefore,
we organized a Special Track on Frontiers in Handwriting Recognition. This also served
to keep alive the tradition of the International Conference on Frontiers in Handwriting
Recognition (ICFHR) that the TC-11 community decided to no longer organize as an
independent conference during ICFHR 2022 held in Hyderabad, India. The handwriting
track included oral sessions covering handwriting recognition for historical documents,
synthesis of handwritten documents, as well as a subsection of one of the poster sessions.
Additional presentation tracks at ICDAR 2023 featured Graphics Recognition, Natural
Language Processing for Documents (D-NLP), Applications (including for medical,
legal, and business documents), additional Document Analysis and Recognition topics
(DAR), and a session highlighting featured competitions that were run for ICDAR 2023
(Competitions). Two poster presentation sessions were held at ICDAR 2023.

As ICDAR 2023 was held with in-person attendance, all papers were presented by
their authors during the conference. Exceptions were only made for authors who could
not attend the conference for unavoidable reasons. Such oral presentations were then
provided by synchronous video presentations. Posters of authors that could not attend
were presented by recorded teaser videos, in addition to the physical posters.

viii Preface

Three keynote talkswere given byMartiHearst (UCBerkeley),VladMorariu (Adobe
Research), and Seichi Uchida (Kyushu University). We thank them for the valuable
insights and inspiration that their talks provided for participants.

Finally, we would like to thank everyone who contributed to the preparation of the
scientific program of ICDAR 2023, namely the authors of the scientific papers submitted
to the journal track and directly to the conference, reviewers for journal-track papers,
and both our regular and senior PCmembers.We also thank Ed Sobczak for helping with
the conference web pages, and the ICDAR 2023 Publications Chairs Anurag Bharadwaj
and Utkarsh Porwal, who oversaw the creation of this proceedings.

August 2023 Gernot A. Fink
Rajiv Jain

Koichi Kise
Richard Zanibbi

Organization

General Chairs

David Doermann University at Buffalo, The State University of
New York, USA

Srirangaraj Setlur University at Buffalo, The State University of
New York, USA

Executive Co-chairs

Venu Govindaraju University at Buffalo, The State University of
New York, USA

Tong Sun Adobe Research, USA

PC Chairs

Gernot A. Fink Technische Universität Dortmund, Germany
(Europe)

Rajiv Jain Adobe Research, USA (Industry)
Koichi Kise Osaka Metropolitan University, Japan (Asia)
Richard Zanibbi Rochester Institute of Technology, USA

(Americas)

Workshop Chairs

Mickael Coustaty La Rochelle University, France
Alicia Fornes Universitat Autònoma de Barcelona, Spain

Tutorial Chairs

Elisa Barney-Smith Luleå University of Technology, Sweden
Laurence Likforman-Sulem Télécom ParisTech, France

x Organization

Competitions Chairs

Kenny Davila Universidad Tecnológica Centroamericana,
UNITEC, Honduras

Dimosthenis Karatzas Universitat Autònoma de Barcelona, Spain
Chris Tensmeyer Adobe Research, USA

Doctoral Consortium Chairs

Andreas Fischer University of Applied Sciences and Arts Western
Switzerland

Veronica Romero University of Valencia, Spain

Publications Chairs

Anurag Bharadwaj Northeastern University, USA
Utkarsh Porwal Walmart, USA

Posters/Demo Chair

Palaiahnakote Shivakumara University of Malaya, Malaysia

Awards Chair

Santanu Chaudhury IIT Jodhpur, India

Sponsorship Chairs

Wael Abd-Almageed Information Sciences Institute USC, USA
Cheng-Lin Liu Chinese Academy of Sciences, China
Masaki Nakagawa Tokyo University of Agriculture and Technology,

Japan

Industry Chairs

Andreas Dengel DFKI, Germany
Véronique Eglin Institut National des Sciences Appliquées (INSA)

de Lyon, France
Nandakishore Kambhatla Adobe Research, India

Organization xi

Publicity Chairs

Sukalpa Chanda Østfold University College, Norway
Simone Marinai University of Florence, Italy
Safwan Wshah University of Vermont, USA

Technical Chair

Edward Sobczak University at Buffalo, The State University of
New York, USA

Conference Secretariat

University at Buffalo, The State University of New York, USA

Program Committee

Senior Program Committee Members

Srirangaraj Setlur
Richard Zanibbi
Koichi Kise
Gernot Fink
David Doermann
Rajiv Jain
Rolf Ingold
Andreas Fischer
Marcus Liwicki
Seiichi Uchida
Daniel Lopresti
Josep Llados
Elisa Barney Smith
Umapada Pal
Alicia Fornes
Jean-Marc Ogier
C. V. Jawahar
Xiang Bai
Liangrui Peng
Jean-Christophe Burie
Andreas Dengel
Robert Sablatnig
Basilis Gatos

Apostolos Antonacopoulos
Lianwen Jin
Nicholas Howe
Marc-Peter Schambach
Marcal Rossinyol
Wataru Ohyama
Nicole Vincent
Faisal Shafait
Simone Marinai
Bertrand Couasnon
Masaki Nakagawa
Anurag Bhardwaj
Dimosthenis Karatzas
Masakazu Iwamura
Tong Sun
Laurence Likforman-Sulem
Michael Blumenstein
Cheng-Lin Liu
Luiz Oliveira
Robert Sabourin
R. Manmatha
Angelo Marcelli
Utkarsh Porwal

xii Organization

Program Committee Members

Harold Mouchere
Foteini Simistira Liwicki
Vernonique Eglin
Aurelie Lemaitre
Qiu-Feng Wang
Jorge Calvo-Zaragoza
Yuchen Zheng
Guangwei Zhang
Xu-Cheng Yin
Kengo Terasawa
Yasuhisa Fujii
Yu Zhou
Irina Rabaev
Anna Zhu
Soo-Hyung Kim
Liangcai Gao
Anders Hast
Minghui Liao
Guoqiang Zhong
Carlos Mello
Thierry Paquet
Mingkun Yang
Laurent Heutte
Antoine Doucet
Jean Hennebert
Cristina Carmona-Duarte
Fei Yin
Yue Lu
Maroua Mehri
Ryohei Tanaka
Adel M. M. Alimi
Heng Zhang
Gurpreet Lehal
Ergina Kavallieratou
Petra Gomez-Kramer
Anh Le Duc
Frederic Rayar
Muhammad Imran Malik
Vincent Christlein
Khurram Khurshid
Bart Lamiroy
Ernest Valveny
Antonio Parziale

Jean-Yves Ramel
Haikal El Abed
Alireza Alaei
Xiaoqing Lu
Sheng He
Abdel Belaid
Joan Puigcerver
Zhouhui Lian
Francesco Fontanella
Daniel Stoekl Ben Ezra
Byron Bezerra
Szilard Vajda
Irfan Ahmad
Imran Siddiqi
Nina S. T. Hirata
Momina Moetesum
Vassilis Katsouros
Fadoua Drira
Ekta Vats
Ruben Tolosana
Steven Simske
Christophe Rigaud
Claudio De Stefano
Henry A. Rowley
Pramod Kompalli
Siyang Qin
Alejandro Toselli
Slim Kanoun
Rafael Lins
Shinichiro Omachi
Kenny Davila
Qiang Huo
Da-Han Wang
Hung Tuan Nguyen
Ujjwal Bhattacharya
Jin Chen
Cuong Tuan Nguyen
Ruben Vera-Rodriguez
Yousri Kessentini
Salvatore Tabbone
Suresh Sundaram
Tonghua Su
Sukalpa Chanda

Organization xiii

Mickael Coustaty
Donato Impedovo
Alceu Britto
Bidyut B. Chaudhuri
Swapan Kr. Parui
Eduardo Vellasques
Sounak Dey
Sheraz Ahmed
Julian Fierrez
Ioannis Pratikakis
Mehdi Hamdani
Florence Cloppet
Amina Serir
Mauricio Villegas
Joan Andreu Sanchez
Eric Anquetil
Majid Ziaratban
Baihua Xiao
Christopher Kermorvant
K. C. Santosh
Tomo Miyazaki
Florian Kleber
Carlos David Martinez Hinarejos
Muhammad Muzzamil Luqman
Badarinath T.
Christopher Tensmeyer
Musab Al-Ghadi
Ehtesham Hassan
Journet Nicholas
Romain Giot
Jonathan Fabrizio
Sriganesh Madhvanath
Volkmar Frinken
Akio Fujiyoshi
Srikar Appalaraju
Oriol Ramos-Terrades
Christian Viard-Gaudin
Chawki Djeddi
Nibal Nayef
Nam Ik Cho
Nicolas Sidere
Mohamed Cheriet
Mark Clement
Shivakumara Palaiahnakote
Shangxuan Tian

Ravi Kiran Sarvadevabhatla
Gaurav Harit
Iuliia Tkachenko
Christian Clausner
Vernonica Romero
Mathias Seuret
Vincent Poulain D’Andecy
Joseph Chazalon
Kaspar Riesen
Lambert Schomaker
Mounim El Yacoubi
Berrin Yanikoglu
Lluis Gomez
Brian Kenji Iwana
Ehsanollah Kabir
Najoua Essoukri Ben Amara
Volker Sorge
Clemens Neudecker
Praveen Krishnan
Abhisek Dey
Xiao Tu
Mohammad Tanvir Parvez
Sukhdeep Singh
Munish Kumar
Qi Zeng
Puneet Mathur
Clement Chatelain
Jihad El-Sana
Ayush Kumar Shah
Peter Staar
Stephen Rawls
David Etter
Ying Sheng
Jiuxiang Gu
Thomas Breuel
Antonio Jimeno
Karim Kalti
Enrique Vidal
Kazem Taghva
Evangelos Milios
Kaizhu Huang
Pierre Heroux
Guoxin Wang
Sandeep Tata
Youssouf Chherawala

xiv Organization

Reeve Ingle
Aashi Jain
Carlos M. Travieso-Gonzales
Lesly Miculicich
Curtis Wigington
Andrea Gemelli
Martin Schall
Yanming Zhang
Dezhi Peng
Chongyu Liu
Huy Quang Ung
Marco Peer
Nam Tuan Ly
Jobin K. V.
Rina Buoy
Xiao-Hui Li
Maham Jahangir
Muhammad Naseer Bajwa

Oliver Tueselmann
Yang Xue
Kai Brandenbusch
Ajoy Mondal
Daichi Haraguchi
Junaid Younas
Ruddy Theodose
Rohit Saluja
Beat Wolf
Jean-Luc Bloechle
Anna Scius-Bertrand
Claudiu Musat
Linda Studer
Andrii Maksai
Oussama Zayene
Lars Voegtlin
Michael Jungo

Program Committee Subreviewers

Li Mingfeng
Houcemeddine Filali
Kai Hu
Yejing Xie
Tushar Karayil
Xu Chen
Benjamin Deguerre
Andrey Guzhov
Estanislau Lima
Hossein Naftchi
Giorgos Sfikas
Chandranath Adak
Yakn Li
Solenn Tual
Kai Labusch
Ahmed Cheikh Rouhou
Lingxiao Fei
Yunxue Shao
Yi Sun
Stephane Bres
Mohamed Mhiri
Zhengmi Tang
Fuxiang Yang
Saifullah Saifullah

Paolo Giglio
Wang Jiawei
Maksym Taranukhin
Menghan Wang
Nancy Girdhar
Xudong Xie
Ray Ding
Mélodie Boillet
Nabeel Khalid
Yan Shu
Moises Diaz
Biyi Fang
Adolfo Santoro
Glen Pouliquen
Ahmed Hamdi
Florian Kordon
Yan Zhang
Gerasimos Matidis
Khadiravana Belagavi
Xingbiao Zhao
Xiaotong Ji
Yan Zheng
M. Balakrishnan
Florian Kowarsch

Organization xv

Mohamed Ali Souibgui
Xuewen Wang
Djedjiga Belhadj
Omar Krichen
Agostino Accardo
Erika Griechisch
Vincenzo Gattulli
Thibault Lelore
Zacarias Curi
Xiaomeng Yang
Mariano Maisonnave
Xiaobo Jin
Corina Masanti
Panagiotis Kaddas
Karl Löwenmark
Jiahao Lv
Narayanan C. Krishnan
Simon Corbillé
Benjamin Fankhauser
Tiziana D’Alessandro
Francisco J. Castellanos
Souhail Bakkali
Caio Dias
Giuseppe De Gregorio
Hugo Romat
Alessandra Scotto di Freca
Christophe Gisler
Nicole Dalia Cilia
Aurélie Joseph
Gangyan Zeng
Elmokhtar Mohamed Moussa
Zhong Zhuoyao
Oluwatosin Adewumi
Sima Rezaei
Anuj Rai
Aristides Milios
Shreeganesh Ramanan
Wenbo Hu

Arthur Flor de Sousa Neto
Rayson Laroca
Sourour Ammar
Gianfranco Semeraro
Andre Hochuli
Saddok Kebairi
Shoma Iwai
Cleber Zanchettin
Ansgar Bernardi
Vivek Venugopal
Abderrhamne Rahiche
Wenwen Yu
Abhishek Baghel
Mathias Fuchs
Yael Iseli
Xiaowei Zhou
Yuan Panli
Minghui Xia
Zening Lin
Konstantinos Palaiologos
Loann Giovannangeli
Yuanyuan Ren
Shubhang Desai
Yann Soullard
Ling Fu
Juan Antonio Ramirez-Orta
Chixiang Ma
Truong Thanh-Nghia
Nathalie Girard
Kalyan Ram Ayyalasomayajula
Talles Viana
Francesco Castro
Anthony Gillioz
Huawen Shen
Sanket Biswas
Haisong Ding
Solène Tarride

Contents – Part IV

Posters: Handwriting

A Shallow Graph Neural Network with Innovative Node Updating
for Online Handwritten Stroke Classification . 3

Yan-Rong Wang, Da-Han Wang, Xiao-Long Yun, Yan-Ming Zhang,
Fei Yin, and Shunzhi Zhu

Improving Handwritten OCR with Training Samples Generated by Glyph
Conditional Denoising Diffusion Probabilistic Model . 20

Haisong Ding, Bozhi Luan, Dongnan Gui, Kai Chen, and Qiang Huo

Improved Learning for Online Handwritten Chinese Text Recognition
with Convolutional Prototype Network . 38

Yi Chen, Heng Zhang, and Cheng-Lin Liu

Vision Conformer: Incorporating Convolutions into Vision Transformer
Layers . 54

Brian Kenji Iwana and Akihiro Kusuda

Modeling Cross-layer Interaction for Chinese Calligraphy Style
Classification . 70

Zhigang Li, Li Liu, Taorong Qiu, Yue Lu, and Ching Y. Suen

Exploring Semantic Word Representations for Recognition-Free NLP
on Handwritten Document Images . 85

Oliver Tüselmann and Gernot A. Fink

OCR Language Models with Custom Vocabularies . 101
Peter Garst, Reeve Ingle, and Yasuhisa Fujii

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 116
Arooba Maqsood, Nauman Riaz, Adnan Ul-Hasan, and Faisal Shafait

Sampling andRanking for Digital InkGeneration on a Tight Computational
Budget . 131

Andrei Afonin, Andrii Maksai, Aleksandr Timofeev, and Claudiu Musat

xviii Contents – Part IV

Linguistic Knowledge Within Handwritten Text Recognition Models:
A Real-World Case Study . 147

Samuel Londner, Yoav Phillips, Hadar Miller, Nachum Dershowitz,
Tsvi Kuflik, and Moshe Lavee

Decoupled Learning for Long-Tailed Oracle Character Recognition 165
Jing Li, Bin Dong, Qiu-Feng Wang, Lei Ding, Rui Zhang,
and Kaizhu Huang

Faster DAN: Multi-target Queries with Document Positional Encoding
for End-to-End Handwritten Document Recognition . 182

Denis Coquenet, Clément Chatelain, and Thierry Paquet

Shared-Operation Hypercomplex Networks for Handwritten Text
Recognition . 200

Giorgos Sfikas, George Retsinas, Panagiotis Dimitrakopoulos,
Basilis Gatos, and Christophoros Nikou

DSS: Synthesizing Long Digital Ink Using Data Augmentation, Style
Encoding and Split Generation . 217

Aleksandr Timofeev, Anastasiia Fadeeva, Andrei Afonin,
Claudiu Musat, and Andrii Maksai

Precise Segmentation for Children Handwriting Analysis by Combining
Multiple Deep Models with Online Knowledge . 236

Simon Corbillé, Éric Anquetil, and Élisa Fromont

Fine-Tuning Vision Encoder–Decoder Transformers for Handwriting Text
Recognition on Historical Documents . 253

Daniel Parres and Roberto Paredes

Fine-Tuning is a Surprisingly Effective Domain Adaptation Baseline
in Handwriting Recognition . 269

Jan Kohút and Michal Hradiš

Incremental Teacher Model with Mixed Augmentations and Scheduled
Pseudo-label Loss for Handwritten Text Recognition . 287

Masayuki Honda, Hung Tuan Nguyen, Cuong Tuan Nguyen,
Cong Kha Nguyen, Ryosuke Odate, Takashi Kanemaru,
and Masaki Nakagawa

AFFGANwriting: A Handwriting Image Generation Method Based
on Multi-feature Fusion . 302

Heng Wang, Yiming Wang, and Hongxi Wei

Contents – Part IV xix

SeamFormer: High Precision Text Line Segmentation for Handwritten
Documents . 313

Niharika Vadlamudi, Rahul Krishna, and Ravi Kiran Sarvadevabhatla

SegCTC: Offline Handwritten Chinese Text Recognition via Better Fusion
Between Explicit and Implicit Segmentation . 332

Jiarong Huang, Dezhi Peng, Hongliang Li, Hao Ni, and Lianwen Jin

Adversarial Attacks on Convolutional Siamese Signature Verification
Networks . 350

Maham Jahangir, Muhammad Imran Malik, and Faisal Shafait

A System for Processing and Recognition of Greek Byzantine
and Post-Byzantine Documents . 366

Panagiotis Kaddas, Konstantinos Palaiologos, Basilis Gatos,
Vassilis Katsouros, and Katerina Christopoulou

Towards Writing Style Adaptation in Handwriting Recognition 377
Jan Kohút, Michal Hradiš, and Martin Kišš

Historical Document Image Segmentation Combining Deep Learning
and Gabor Features . 395

Maroua Mehri, Akrem Sellami, and Salvatore Tabbone

Group, Contrast and Recognize: A Self-supervised Method for Chinese
Character Recognition . 411

Xinzhe Jiang, Jun Du, Pengfei Hu, Mobai Xue, Jiefeng Ma, Jiajia Wu,
and Jianshu Zhang

Content-Aware Urdu Handwriting Generation . 428
Zeeshan Memon, Adnan Ul-Hasan, and Faisal Shafait

Weakly Supervised Information Extraction from Inscrutable Handwritten
Document Images . 445

Sujoy Paul, Gagan Madan, Akankshya Mishra, Narayan Hegde,
Pradeep Kumar, and Gaurav Aggarwal

Author Index . 465

Posters: Handwriting

A Shallow Graph Neural Network
with Innovative Node Updating for Online

Handwritten Stroke Classification

Yan-Rong Wang1, Da-Han Wang1(B), Xiao-Long Yun2, Yan-Ming Zhang2, Fei Yin2,
and Shunzhi Zhu1

1 Fujian Key Laboratory of Pattern Recognition and Image Understanding, School of Computer
and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

wangdh@xmut.edu.cn
2 National Laboratory of Pattern Recognition (NLPR), Institute of Automation of Chinese

Academy of Sciences, Beijing 100086, China

Abstract. Stroke classification is important to the layout analysis of online hand-
written documents. Due to the diversity ofwriting styles and the complexity of lay-
out structure, stroke classification is challenging. Graph neural networks (GNNs)
is one of the most effective frameworks for stroke classification. However, GNNs
has the problem of node over-compression caused by the deep structure of GNNs,
which will lead to loss of node information and hence may deteriorate the perfor-
mance of stroke classification. In this paper, we propose a shallow graph neural
networkmodel that is capable of retaining long-term receptivefield by constructing
a more reasonable graph through edge classification before the node classification
step.Moreover, a novel node learningmethod is used to integrate edge features into
nodes, where edge features not only participate in the calculation of node atten-
tion weight as in previous GNN based methods, but also participate in the final
node integration. Experiments on the IAMonDo dataset show that our proposed
method achieves an accuracy of 97.71% that is superior to existing state-of-the-art
methods, demonstrating the effectiveness of the proposed method.

Keywords: Stroke classification · Online handwritten documents · Graph
Neural Network · Node updating · Edge classification

1 Introduction

With the extensive application of handwriting devices, electronic handwritten docu-
ment is becoming increasingly widespread. The digitization of electronic handwritten
document is conducive to its preservation and retrieval. Electronic handwritten docu-
ment is composed of a series of strokes, containing coordinates, time, pen pressure and
other information. Stroke classification aims to classify the strokes into the text/non-text
classes or multiple classes including text, graphics, tables, list, formula et al. It inher-
ently is the task of layout analysis that is very important to the performance of online
handwritten document digitization systems. However, due to the diversity of writing
style and the complexity of document structure, stroke classification is challenging and
has entered its bottleneck in improving the performance recently.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-41685-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_1

4 Y.-R. Wang et al.

Many works have been proposed to push forward the study of stroke classification.
In the past, the temporal characteristics of strokes is considered as the main basis for
stroke classification. Researchers use recurrent neural network (RNN) and its variants to
model the stroke classification tasks [1–5, 20, 21]. According to the Markov property of
the stroke sequence, some works use probabilistic graphical models (PGMs) to classify
strokes [6–9, 22–28].

The development of graph neural networks (GNNs) brings more choices to solve
the stroke classification task [10–12, 29]. However, previous study [33] has shown that,
with the deepening of graph neural network, the information incorporated by nodes
increases exponentially and the node information is over-compressed, that is easy to
cause information loss. How to solve this problemwith high quality and more efficiently
requires more research efforts. We find that shallow graph neural network structures
can avoid the above problems. The key to reducing the number of network layers is a
more effective node information fusion mechanism and a reasonable graph structure that
enables the network to expand the receptive field without the superposition of layers.

In this paper, we propose a shallow graph neural network model with the strategy
of obtaining a reasonable graph construction by edge classification before the node
classification step. And then, the multi-scale fusion mechanism is adopted to integrate
the subgraph features, global features and initial node features for node classification.
There are two kinds of network layers in our framework: edge learning layer and node
learning layer that are used to update edges and nodes of the graph, respectively. It is
observed that, in previous works, edge features only participate in the calculation of
node attention coefficients but are ignored in the final node updates. Inspired by [30]
where edge features also participate in the final node integration, we propose a novel
node learning method to better utilize edge features. We combine an edge with one of
its corresponding nodes to form a composite structure named node-edge (NE) structure,
and use this structure to calculate the attention mechanism and update nodes.

The main contributions in this paper are summarized as follows:

1) We propose a shallow graph neural network framework to handle stroke classification
tasks. The strategy is to use a reasonable graph construction to expand the receptive
field of nodes, so as to avoid the node compression problem caused by network layer
superposition.

2) We propose a novel node learning method with the NE structure that contains an edge
and one of the edge’s nodes. The NE structure can be used for both node attention
score calculation and node update.

3) Our proposed framework achieves state-of-the-art accuracy on the IAMonDo dataset
[13] and the effectiveness of each module is proved by ablation experiments.

The rest of this paper is organized as follows: Sect. 2 introduces some related work.
Section 3 specifies our framework and method. Section 4 shows experimental data and
results analysis. Section 5 concludes our work.

A Shallow Graph Neural Network 5

2 Related Work

2.1 Stroke Classification

A stroke contains a series of coordinates, time, pen pressure and other information.
Three properties are embodied in strokes: temporal continuity, spatial continuity and
markov property. We will introduce the past work in three categories: recurrent neural
network (RNN) and its variants, probabilistic graphicalmodels (PGMs), andgraphneural
networks (GNNs).

Due to its temporal continuity, recurrent neural network (RNN) and its variants are
proposed for stroke classification. Degtyarenko et al. [14] proposed a new structure,
hierarchical recurrent neural network (HRNN). They divided the document into three
levels of processing: points, strokes, and objects. The model was built by layer-by-
layer integration from low-level features to high-level features. Grygoriev et al. [15]
proposed a novel fragment pooling technique for feature integration between hierarchical
levels based on HRNN. They achieved the state-of-the-art accuracy in multi-class stroke
classification task on the IAMonDo dataset [13].

Considering the Markov property of strokes, probabilistic graphical models (PGMs)
was proposed for the stroke classification task. Bishop et al. [6] applied multi-layer
perceptron (MLP) and hidden markov model (HMM) to stroke classification. Zhou et al.
[7] and Delaye et al. [8] proposed the combination of support vector machine (SVM)
and Markov Random Field (MRF) or Conditional Random Field (CRF). Li et al. [9]
replaced SVM with neural network for potential energy learning in the combination of
SVM and CRF.

Yun et al. [10] applied graph attention network to stroke classification of flowchart
by enhancing the utilization of edge features in the model. To improve the influence of
edges in graph structure, Ye et al. [11] proposed an edge graph attention network. By
updating edge features, nodes could incorporate more information between node pairs.
Yun et al. [12] proposed the Instance GNN for stroke classification, which is composed
of node classification, edge classification and node representation. The Instance GNN
improves the performance of stroke classification and clustering by post-processing.

Although these GNNs based works have achieved great progresses in stroke classi-
fication, the over-compression problem has not been fully considered and still remains
an open problem deserving further study. Moreover, it is also observed that, in the node
learning/updating procedure of GNNs, edge features only participate in the calculation
of node attention coefficients but are ignored in the final node integration. The edge
features are not fully utilized and need to be better integrated into node features.

2.2 Graph Natural Networks

As a kind of non-European structure data, graphs cannot be learned using traditional
convolution neural network until the rise of graph neural networks (GNNs).

Defferrand et al. [16] map the graph in the spatial domain to the spectral domain for
convolution operation by Laplace transform. Hamilton et al. [17] proposed graphsage
network (GraphSage) with graph sampling and message aggregation.

6 Y.-R. Wang et al.

To reflect the difference of neighbor’s influence on nodes, Velickovic et al. [18]
introduce self-attention mechanism into graph neural network. Graph attention network
(GAT) calculates the different weights between the target node and its neighbors, then
aggregating information. As an important component of a graph, edges are critical to
graph learning as well. Gong et al. [19] proposed a new structure by stacking layers with
node feature update and edge feature update alternately. Wang et al. [30] proposed the
edge-integrated attention mechanism, where edge features not only participate in the
calculation of node attention weights, but also participate in the final node integration.
This work is most relevant to our node learningmethod. Our work is the first to adopt this
strategy to the stroke classification task, and innovatively use this strategy to construct
a better graph to overcome the over-compression problem for stroke classification.

3 Proposed Method

3.1 Problem Formulation

Given a set of documents
{
d (n), i = 1, . . . ,N

}
as the training set and each document

consists of a group of strokes with different numbers
{
s(n)t , t = 1, . . . ,T (n)

}
, where N

is the number of documents and T (n) is the number of strokes of nth document. There is
a set of labels equal to the number of strokes and correspond with strokes one by one{
l(n)t ∈ L, t = 1, . . . ,T (n)

}
, where L is the number of strokes’ classes. Our task is to

design a structure to predict strokes in the test set after learning from the training set.

Fig. 1. An illustration of the training and prediction process for one input document.

3.2 Framework

Figure 1 illustrates the framework of our model. In this work, we construct the electronic
handwritten document as an initial undirected graph composed of manual node features,
edge features and adjacency matrix, and then send it to the edge classification branch
to obtain a more reasonable graph for node fusion and classification. We will introduce
the framework in three parts: constructing undirected graph, manual extraction of stroke
features and our model.

A Shallow Graph Neural Network 7

Graph Construction. In this work, an electronic handwritten document is constructed
as an undirected graph G(V ,E). Each stroke is considered as a graph node i ∈ V ,
and the relationship between a pair of strokes is considered as graph edge (i, j) ∈ E.
Following the work [12, 29], we use the spatial context and temporal context of strokes
to construct the adjacency matrix of the graph. Specifically, four types of contexts are
considered: spatial radius, temporal radius, spatial nearest and temporal nearest. If a pair
of strokes have adjacency, whether spatial adjacency or temporal adjacency, there is an
edge between these two strokes. In addition, each node has a self-connected edge.

Spatial Radius. If the spatial distance between two strokes is less than the threshold ks,
the pair of these two strokes is considered to have a spatial adjacency relationship.

Temporal Radius. If the temporal distance between two strokes is less than the threshold
kt, the pair of these two strokes is considered to have a temporal adjacency relationship.

Spatial Nearest. If the spatial distance between stroke j and stroke i is the top k among
the spatial distance between all other strokes and stroke i, this pair of stroke i and stroke
j is considered to have a spatial adjacency relationship. We define the threshold top k as
ktops.

Temporal Nearest. If the temporal distance between stroke j and stroke i is the top k
among the temporal distance between all other strokes and stroke i, this pair of stroke
i and stroke j is considered to have a temporal adjacency relationship. We define the
threshold top k as ktopt .

Feature Extraction. Each node is described by a set of stroke features, including geo-
metric features and contextual features. Each edge is described by a set of features
extracting from stroke pairs. Different from the previous work [11], we expanded 30
node features referencing [32]. Table 1 lists the additional node features differing from
[11]. Edge feature design and feature normalization are completely based on [11].

x′ = sign(x)
√|x|,

x′′ = x′−μ
σ

.
(1)

NEGraphNeural Network. We propose a shallow graph neural network model called
NEGNN with the strategy of obtaining a reasonable graph construction first. The pro-
posed method mainly contains two branches: the edge classification and the node clas-
sification branch. The edge classification branch transforms the original graph structure
into a more reasonable graph structure. It consists of two edge learning layers and one
node learning layer. In the node classification branch, the multi-scale fusion mechanism
is adopted to integrate the subgraph features, global features and initial node features. It
is composed of a multi-scale calculation layer and a final node fusion layer. These two
layers are variants of node learning layer. In the stroke classification task, the previous
node learning method only used edge features for node attention calculation, ignoring
the edge features in the final node update. Inspired by [30], an innovative node learning
method is proposed with the node-edge (NE) structure that is composed of an edge and
one of the edge’s nodes. It can be used for not only node attention calculation but also
the final node update. The architecture of the proposed NEGNN is shown in Fig. 1.

8 Y.-R. Wang et al.

Table 1. Extended node features extracted from stroke i.

Description

1 Number of sampling points

2 Ratio of duration to stroke length

3 The ratio of the length of the first and last lines to the stroke length

4 Standard deviation of sampling point from the line between the first and last point

5 Slope of the connection between the first and last points

6 Ratio of stroke length to number of sample points

7 The ratio of the first and last lines to the number of sampling points

8 Rotation angle of minimum circumscribed rectangle

9 Width of the minimum circumscribed rectangle

10 Height of the minimum circumscribed rectangle

11 Diagonal length of minimum circumscribed rectangle

12 Width of bounding box

13 Height of bounding box

14 Diagonal length of bounding box

15 Bounding box diagonal angle

16 Ratio of stroke length to bounding box diagonal angle

17 Minimum circumscribed radius

18 Variance of the distance between the sampling point and the center of the minimum
circumscribed circle

19 Variance of distance between sampling point and centroid

20 Area of bounding box

21 Area of minimum circumscribed rectangle

22 Area of minimum circumscribed circle

23 Ratio of convex hull area to bounding box area

24 Ratio of convex hull area to minimum circumscribed circle area

25 Ratio of convex hull area to minimum circumscribed rectangle area

26 The ratio of the stroke projection on the x-axis to the line between the first and last points

27 Maximum angle composed of sampling points

28 Minimum angle composed of sampling points

29 Average angle of sample point composition

30 Distance between the center of the minimum circumscribed circle and the center of mass

The original graph structure are described by three inputs: node features H =
{hi, i ∈ V }, hi ∈ R

P , edge features F = {
fij, (i, j) ∈ E

}
, fij ∈ R

Q, and adjacency matrix

A Shallow Graph Neural Network 9

A = {
aij, (i, j) ∈ E

}
, aij ∈ (0, 1), where P and Q are the numbers of node features and

edge features.
The edge classification branch transforms the original graph structure into a more

reasonable graph structure.Wefirst send the initial graph structure to the branch, and then
obtain the updated edge features and classify the edges. The result of edge classification
is the new adjacency matrix. Different from [11], the first layer of our network is not the
node learning layer, but the edge learning layer. There are two reasons why we prioritize
edge learning. Firstly, we extend the node feature without extending the edge feature so
that edge learning first would mine more context information from the extended node
features. Secondly, we expect to extract the edge features and update the adjacency
matrix before the node classification, after which we do not update the edge features any
more. Hence, more edge update layers would be more desired in the purpose of using
as few layers as possible to make the network shallow. In the edge-node-edge structure,
edge features can be updated twice within three layers, while the node-edge-node-edge
structure requires 4 layers. The output, a more reasonable graph, is composed of the
original node features, the updated edge features and the updated adjacency matrix.

In the node classification branch, we fuse node information and classify nodes using
the reasonable graph construction. In this branch, two variants of node learning layer are
applied. The first node learning layer called multi-scale calculation is used to calculate
the features of the subgraph and the global features. The subgraph features are calculated
by the normal attention coefficient. The global features are calculated by removing the
low attention coefficient and recalculated the weight of remaining scores for the whole
graph. These two features will also be classified separately. Finally, we use another node
learning layer called final fusion for multi-scale features fusion, and then carry out the
final node classification. Themotivation for this design stems from the diversity of tables,
e.g., some tables have lines and some do not. For the former kind of tables, the subgraph
features like the border of tables will quickly determine that the subgraph is a table. For
the latter kind, the global features, such as the global arrangement of the text, can help
determine whether the subgraph is a table.

A novel node learning method is adopted in both edge classification and node clas-
sification modules. Although [11, 12, 29] used edge features in the node update, they
only used it in the calculation of attention weight. Inspired by [30], we propose the NE
structure to both calculate the node attention coefficients and update nodes. For exam-
ple, NEij is calculated by edge features fij and node features hj. As for the edge learning
method, we refer to [11]. The edge learning method, node learning method and other
details are defined in the following.

Edge LearningMethod. Edge features are learned from two parts, one from the learning
between node features and another from the learning of input edge features. It is defined
as

rij = σ
(
Wh

[
hi ⊕ hj ⊕

∣∣hi − hj
∣∣]),

tij = σ
(
Wffij

)
,

fij′ = σ
(
Wr

[
rij ⊕ tij

])
,

(2)

where ⊕ is the concatenation operator, | · | is elementwise absolute function, σ(·) is
leakyReLU activation function, Wh ∈ R

3P×P , Wf ∈ R
Q×P , Wr ∈ R

2P×Q′
are learnable

10 Y.-R. Wang et al.

parameters, P is the number of input node features, Q and Q′ is the number of input and
output edge features respectively. In the last edge layer, we will update the adjacency
matrix according to the edge classification results. It is defined as

aij = argmax
(
f∗ij

)
, (3)

where f∗ij is edge features after edge fully connected layer and softmax function.

Node Learning Method with NE Structure. The NE structure is calculated at the edge
fij and node hj, and then applied to the calculation of attention coefficient and the final
node update. The node learning method of node update layer is defined as

NEij = σ
(
Wr

(
σ
(
Whhj

) ⊕ σ
(
Wf fij + b

)))
,

sij = σ
(
vTNEij

)
,

αij = esij∑
k∈Ni e

sik ,

hi′ = σ

(
∑

j∈Ni

αijNEij

)

,

hi′ = ⊕K
k=1σ

(
∑

j∈Ni

αk
ijNE

k
ij

)

,

(4)

where Wh ∈ R
P×P′

, Wf ∈ R
Q×P′

, Wr ∈ R
2P′×P′

, b ∈ R
P′
, v ∈ R

P′
are learnable

parameters and P′ is the number of output node features, Ni is the neighborhood of node
i and K is the number of attention heads. Note that, the parameters here are independent
of the edge learning layer. In multi-scale calculation layer, the node learning method for
calculation of subgraph features is as described above while the global one is defined as

s∗ij = aαij ,

α∗
ij = e

s∗ij
∑

e
s∗ij

,

h
′∗
i = σ

(∑
α∗
ijNEij

)
,

h
′∗
i = ⊕K

k=1σ
(∑

α∗k
ij NE

k
ij

)
,

(5)

where a is a hyperparameter controlling the concentration of attention. In the final fusion
layer, the NE structure is defined as

hcat = hi ⊕ hi′ ⊕ h
′∗
i ,

NEij = σ
(
Wr

(
σ
(
Wcathcatj

) ⊕ σ
(
Wf fij + b

)))
,

(6)

whereWcat ∈ R
(P+2Pmnl)×Pcls ,Wf ∈ R

Q′×Pcls ,Wr ∈ R
2Pcls×Pcls , b ∈ R

Pcls , v ∈ R
Pcls are

learnable parameters, Pmnl is the number of node features from multi-scale calculation
layer, Q′ is the number of edge features from the last edge learning layer and Pcls is the
number of node classes. The remaining learning method is consistent with node update
layer.

A Shallow Graph Neural Network 11

Others. The edge fully connected layer and node fully connected layer are simple linear
transformations. For the input x,

y = Wx + b, (7)

whereW ∈ R
C×C, b ∈ R

C are learnable parameters, C and C ′ are input dimension and
output dimension of x.

3.3 Network Training

Weuse the standard cross entropy as the loss function to optimize the training parameters.
The node classification loss and the edge classification loss are considered.

For node classification, given the output probability p ∈ R
T (n)×Pcls and the ground

truth label y ∈ {0, 1, . . . , L}T(n)
,

Lossnode(W) = − 1
T(n)

T(n)∑

t=1

L∑

l=1
δ
(
yt = l

)
logpt(l;W). (8)

For edge classification, if two strokes come from the same layout, for example, both
from the same table, the edge of these two strokes is considered to be positive edge,
otherwise negative. Given the output probability p ∈ R

Ti×Ti×2 and the ground truth
label e ∈ {0, 1}Ti×Ti ,

Lossedge(W) = − 1
T(n)*T(n)

T(n)∑

i=1

T(n)∑

j=1

2∑

l=1
δ
(
eij = l

)
logpij(l;W). (9)

The total loss consists of four parts. Edge classification loss, two kinds of node
classification loss from multi-scale calculation layer and final node classification loss
from final fusion layer.

Loss(W) = Lossedge(W) + Losssub(W) + Loss∗global(W) + Lossnode(W). (10)

We implement the NEGNN training algorithm with pytorch [31]. More training
settings is shown in Table 2.

4 Experiments

To evaluate the performance of our NEGNN model, we conduct stroke multi-
classification experiments on the IAMonDo dataset [13]. We compare the experimental
results with previous works, and verify the effect of the main modules in our model
by ablation experiments. In order to make a reasonable comparison with the previous
works, we repeat each group of experiments for 10 times, and take its mean and standard
deviation for comparison among different models.

12 Y.-R. Wang et al.

Table 2. Hyperparameters for all experiments.

Hyperparameter Value

Initial learning rate 0.0008

Dropout rate 0.1

Batch size (number of nodes) 64

Max epoch 100

Number of attention heads (K) [node layer, multi-scale calculation] [1, 1]

Number of node output features [node layer, multi-scale calculation] [32, 32]

Number of edge output features [64, 64]

Base number for multi-scale attention (a) 100

Spatial Radius threshold (ks) 30

Temporal Radius threshold (kt) 5

Spatial nearest threshold (ktops) -

Temporal nearest threshold (ktopt) -

4.1 Dataset

IAMonDo dataset is a publicly available collection of freely handwritten English online
documents written by more than 200 writers, including 1000 documents and 329849
strokes. Its layout includes text blocks, formulas, tables, lists, diagramet al. The publisher
divided the dataset into five collections, each with about 200 documents. According to
the official guidelines, we adopt set0 and set1 as the training set, while set2 and set3 are
used as verification set and test set respectively. Table 3 lists details of each set.

Table 3. Statistics of the IAMOnDo dataset number of strokes per category.

Category Training Validation Test

Graphic 37496 15481 17488

Text 79812 39796 40469

Table 13044 6562 6883

List 6337 3474 3115

Math 6659 3412 2972

A Shallow Graph Neural Network 13

4.2 Evaluation Metrics

We use accuracy to evaluate our model and report the accuracy for each class. Overall
accuracy and the accuracy for each class are defined as

accuracy =
∑N

n=1
∑T(n)

t=1 δ
(
ŷ(n)
t =y(n)

t

)

∑N
n=1 T

(n) ,

accuracy(c) =
∑N

n=1
∑T(n)

t=1 δ
(
y(n)
t =c

)
δ
(
ŷ(n)
t =y(n)

t

)

∑N
n=1 T

(n)δ
(
y(n)
t =c

) .

(11)

4.3 Comparison with Previous Methods

Table 4. Performance of different methods for multi-class stroke classification.

Method Graphic Text Table List Math Overall

A. Delaye
[24]

95.85 97.25 77.64 74.73 84.28 93.46

EGAT [11] 97.11 ± 0.38 98.35 ± 0.24 89.70 ± 1.86 76.15 ± 1.78 88.43 ± 1.53 95.81 ± 0.29

HRNN [14] 97.68 98.71 97.37 88.99 93.03 97.25 ± 0.25

HCRNN [15] 97.52 99.12 97.91 87.61 94.85 97.58 ± 0.21

NEGNN (ours) 98.07 ± 0.52 98.97 ± 0.09 95.82 ± 1.72 88.31 ± 3.04 92.62 ± 1.68 97.71 ± 0.20

Table 4 illustrates that our model has achieved the state-of-the-art accuracy for the
task of multi-class stroke classification. Since the work of HRNN and HCRNN only
reported the accuracy of each class under the highest accuracy, we cannot obtain its
average level. Compared with EGAT with 10 layers and 8 attention heads, our model
only uses 3 basic fully connected layers and 5 main learning layers with 1 attention
head to achieve this overall accuracy increasing on 1.9% up to 97.71%. In addition,
the performance of NEGNN in accuracy of each class is better than EGAT thoroughly.
Compared with the HRNN and HCRNN, the proposed NEGNN also achieves superior
performance in overall.

We perform experiments on a computer with Intel(R) Xeon(R) Silver 4208
CPU(2.10GHz) and Tesla V100-PCIE-32GB.

Table 5 presents the number of parameters, training time, test speed and layers. In
our work, the number of layers refers to layers used for node fusion after graph structural
adjustment, that is, the number of layers for node classification branches.

4.4 Ablation Study

We conducted ablation experiments from four aspects to determine the contribution of
each part: extended node features, update of adjacency matrix before node classifica-
tion branch, multi-scale fusion mechanism and the proposal of NE structure. Ablation

14 Y.-R. Wang et al.

Table 5. The number of parameters, training time, test speed and layers.

Method Parameters Training time Test speed(s/doc) Number of layers

EGAT [11] 1.63M 1680s 0.0033 10

NEGNN (ours) 0.034M 80s/epoch 0.0089 2

experimental result is shown in Table 6, Table 7, Table 8 and Table 9. The parameters
of all experiments are shown in Table 2.

Before analyzing the experiments results, a brief description of Table 6 and Table 7
is necessary. “Adj” in the table means update of the adjacency matrix. “Sub Loss” in
the table denotes that the subgraph features participate in loss calculation. “Sub Fusion”
in the table denotes that the subgraph features participate in calculation of final fusion
layer. “Global Loss” and “Global Fusion” in the table is similar to the above two phrase
while the protagonist becomes the global one. “E. F” represents whether to use extended
node features. “NE”, “EGAT [+]”, and “EGAT [cat]” denote that the node updatemethod
adopts the NE structure, EGAT, or the structure like EGAT by replacing hi + hj with
hi ⊕ hj.

Table 6. Methods and its associated modules. The NE structure is adopted for all these settings.

Adj Sub
Loss

Sub
Fusion

Global
Loss

Global
Fusion

E. F Accuracy

1 ✓ ✓ ✓ ✓ ✓ ✓ 97.71 ± 0.20

2 ✓ ✓ ✓ ✓ ✓ 97.35 ± 0.12

3 ✓ ✓ ✓ ✓ ✓ 97.4 ± 0.26

4 ✓ ✓ ✓ ✓ 97.6 ± 0.18

5 ✓ ✓ ✓ ✓ 96.67 ± 0.22

6 ✓ ✓ ✓ ✓ 97.28 ± 0.17

Table 7. Different node learning methods.

NE EGAT
[+]

EGAT
[cat]

Accuracy

1 ✓ 97.71 ± 0.20

2 ✓ 90.64 ± 1.15

3 ✓ 90.79 ± 0.6

Extended Node Features. As shown in Table 6, comparing group 1 and group 2, we
can see that it brings 0.36% growth by using extended node features. Without the use of
extended features, our model also improves the accuracy of EGAT by 1.54%.

A Shallow Graph Neural Network 15

Update of Adjacency Matrix. As shown in Table 6, Compared with the group 1 and
group 3, it can be seen that using adjacency matrix update method is slightly better than
not. Two groups of ablation experiments under extreme initial graph structure have been
added.We set up twogroups of hyperparameters separately for its ablation experiment. In
the case of ktops = 2 and ktopt = 2, the stroke in the initial construction graph can be only
connected with one neighbor, because the nearest one is itself. In the same way, we also
set another extreme set of super parameters ktops = maxT and ktopt = maxT ,wheremaxT
is the maximum number of strokes. Table 8 proves that updating the adjacency matrix
is better than not. In order to prove that the new adjacency matrix is a more reasonable
graph structure, we made statistics on the edge accuracy of the initial graph and the
edge accuracy of the new adjacency matrix. As shown in Table 9, the edge accuracy has
increased from 68.52% to 94.59%, indicating that the updated graph structure is more
reasonable.

Table 8. Performance of adjacency matrix updating under different hyperparameters.

Adj ktopk ktopt Accuracy

1 ✓ 2 2 96.91 ± 0.38

2 2 2 96.02 ± 0.36

3 ✓ MaxT MaxT 96.5 ± 0.39

4 MaxT MaxT 96.35 ± 0.43

Table 9. Statistics on the edge accuracy of the initial graph structure and the updated graph
structure.

Graph Structure Edge Accuracy

Initial 68.52

Updated 94.59

Multi-scale Fusion Mechanism. As shown in Table 6, compared with group 1 and
group 4, the difference in accuracy is only 0.11%. It indicates that subgraph features
have a small contribution to the final node classification, but it did work. Compared
with group 1 and group 5, accuracy increased by 1.04% with global features. Compared
with group 1 and group 6, the multi-scale features participating in loss calculation is
beneficial to increase the accuracy of the model by 0.43% than not.

NE Structure. As shown in Table 7, the use of NE structure is nearly 7% higher than
the use of two forms of EGAT structure. Obviously, the proposal of NE structure is the
key for the whole model to reach state-of-the-art accuracy.

16 Y.-R. Wang et al.

4.5 Error Analysis

We visualized the experimental results with the highest accuracy. Figure 2 shows some
examples of error. Through observation, we have got two inspirations, which may be
helpful for future work. Firstly, we believe that semantic information would be con-
sidered in future work. For example, according to different writing habits, the margin
between the graphics and the text beside the graphics would be large or small. Whether
the text belonging to a graphic or another layout can be distinguished by semantics.
Secondly, pay more attention to strokes at the junction of two different layouts. On
the one hand, this part of the stroke itself is easy to integrate the information of other
modules due to the wrong edge, resulting in classification errors. On the other hand, its
classification errors will also affect other strokes in its field. The improvement of edge
classification accuracy may help to classify such strokes.

Table

List

Math

Text

Graphic

Error

Fig. 2. Examples of stroke classification errors.

5 Conclusion

In this paper, we propose a shallow graph neural network model with the strategy of
obtaining reasonable graph construction first by edge classification. The receptive field of
nodes is perceived through the reasonable graph structure, rather than the superposition
of network layers. Therefore, the problemof nodes being over-compressed can be solved.

A Shallow Graph Neural Network 17

For node classification, multi-scale node information fusion mechanism is adopted so
that subgraph features, global features and original features can be all integrated into
final node features. Specially, we have innovated the node learning method in order
to integrate edge features into nodes more sufficiently. In our proposed node learning
method, edge features not only participate in the calculation of node attentionweight, but
also participate in the final node integration. Experiments on the IAMonDo dataset show
that our proposed method achieves an accuracy of 97.71%. That is superior to existing
state-of-the-art methods, demonstrating the effectiveness of the proposed method. In the
ablation experiments, we proved the effectiveness of extended feature, adjacency matrix
update, multi-scale fusion mechanism and the use of NE structure.

In the feature, several potential directions can be explored. Through error analysis,
we propose that the addition of semantics would help identify the relevance of the two
modules. For example, the text near the drawing belongs to a graphic description or a
text block. Another direction is how to improve the accuracy of edge classification. A
high accuracy of edge classification can improve the graph construction, which plays an
important role in the learning of graph neural network.

Acknowledgement. This work is supported by National Natural Science Foundation of China
(No. 61773325, 62276258), Industry University Cooperation Project of Fujian Science and Tech-
nology Department (No. 2021H6035), and the Science and Technology Planning Project of Fujian
Province (No. 2020Y9064), and Fu-Xia-Quan National Independent Innovation Demonstration
Project (No. 2022FX4).

References

1. Otte, S., Krechel, D., Liwicki, M., et al.: Local feature based online mode detection with
recurrent neural networks. In: 2012 International Conference on Frontiers in Handwriting
Recognition, pp. 533–537. IEEE (2012)

2. Indermühle, E., Frinken, V., Bunke, H.: Mode detection in online handwritten documents
usingBLSTMneural networks. In: 2012 InternationalConference onFrontiers inHandwriting
Recognition, pp. 302–307. IEEE (2012). Author, F., Author, S., Author, T.: Book title. 2nd
edn. Publisher, Location (1999)

3. Khomenko, V., Volkoviy, A., Degtyarenko, I., et al.: Handwriting text/non-text classification
on mobile device. In: The Fourth International Conference on Artificial Intelligence and
Pattern Recognition (AIPR), pp. 42–49 (2017)

4. Polotskyi, S., Deriuga, I., Ignatova, T., Melnyk, V., Azarov, H.: Improving online handwriting
text/non-text classification accuracy under condition of stroke context absence. In: Rojas, I.,
Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11506, pp. 210–221. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20521-8_18

5. Van Phan, T., Nakagawa, M.: Text/non-text classification in online handwritten documents
with recurrent neural networks. In: 2014 14th International Conference on Frontiers in
Handwriting Recognition, pp. 23–28. IEEE (2014)

6. Bishop, C.M., Svensen, M., Hinton, G.E.: Distinguishing text from graphics in on-line hand-
written ink. In: Ninth International Workshop on Frontiers in Handwriting Recognition,
pp. 142–147. IEEE (2004)

7. Zhou, X.D., Liu, C.L.: Text/non-text ink stroke classification in Japanese handwriting based
on markov random fields. In: Ninth International Conference on Document Analysis and
Recognition (ICDAR 2007), vol. 1, pp. 377–381. IEEE (2007)

https://doi.org/10.1007/978-3-030-20521-8_18

18 Y.-R. Wang et al.

8. Delaye, A., Liu, C.-L.: Text/non-text classification in online handwritten documents with
conditional random fields. In: Liu, C.-L., Zhang, C., Wang, L. (eds.) Pattern Recognition,
pp. 514–521. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33506-8_63

9. Ye, J.Y., Zhang, Y.M., Liu, C.L.: Joint training of conditional random fields and neural net-
works for stroke classification in online handwritten documents. In: 2016 23rd International
Conference on Pattern Recognition (ICPR), pp. 3264–3269. IEEE (2016)

10. Yun, X.-L., Zhang, Y.-M., Ye, J.-Y., Liu, C.-L.: Online handwritten diagram recognition with
graph attention networks. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin,
C. (eds.) Image and Graphics: 10th International Conference, ICIG 2019, Beijing, China,
August 23–25, 2019, Proceedings, Part I, pp. 232–244. Springer International Publishing,
Cham (2019). https://doi.org/10.1007/978-3-030-34120-6_19

11. Ye, J.Y., Zhang, Y.M., Yang, Q., et al.: Contextual stroke classification in online handwritten
documents with graph attention networks. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR), 993–998. IEEE (2019)

12. Yun, X.L., Zhang, Y.M., Yin, F., et al.: Instance GNN: a learning framework for joint symbol
segmentation and recognition in online handwritten diagrams. IEEE Trans. Multimedia 24,
2580–2594 (2021)

13. Indermühle, E., Liwicki,M., Bunke,H.: IAMonDo-database: an online handwritten document
database with non-uniform contents. In: Proceedings of the 9th IAPR InternationalWorkshop
on Document Analysis Systems, pp. 97–104 (2010)

14. Degtyarenko, I., Deriuga, I., Grygoriev, A., et al.: Hierarchical recurrent neural network for
handwritten strokes classification. In: ICASSP 2021–2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2865–2869. IEEE (2021)

15. Grygoriev, A., Degtyarenko, I., Deriuga, I., Polotskyi, S., Melnyk, V., Zakharchuk, D.,
Radyvonenko, O.: HCRNN: a novel architecture for fast online handwritten stroke classi-
fication. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) Document Analysis and Recognition –
ICDAR 2021: 16th International Conference, Lausanne, Switzerland, September 5–10, 2021,
Proceedings, Part II, pp. 193–208. Springer International Publishing, Cham (2021). https://
doi.org/10.1007/978-3-030-86331-9_13

16. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs
with fast localized spectral filtering. In: Advances in Neural Information Processing Systems,
pp. 3844–3852 (2016)

17. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

18. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017)

19. Gong, L., Cheng, Q.: Exploiting edge features for graph neural networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9211–9219
(2019)

20. Polotskyi, S., Radyvonenko, O., Degtyarenko, I., et al.: Spatio-temporal clustering for group-
ing in online handwriting document layout analysis with GRU-RNN. In: 2020 17th Inter-
national Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 276–281. IEEE
(2020)

21. Van Phan, T., Nakagawa, M.: Combination of global and local contexts for text/non-text
classification in heterogeneous online handwritten documents. Pattern Recogn. 51, 112–124
(2016)

22. Li, X.H., Yin, F., Liu, C.L.: Printed/handwritten texts and graphics separation in complex
documents using conditional random fields. In: 2018 13th IAPR International Workshop on
Document Analysis Systems (DAS), pp. 145–150. IEEE (2018)

https://doi.org/10.1007/978-3-642-33506-8_63
https://doi.org/10.1007/978-3-030-34120-6_19
https://doi.org/10.1007/978-3-030-86331-9_13
http://arxiv.org/abs/1710.10903

A Shallow Graph Neural Network 19

23. Wang, C., Mouchere, H., Viard-Gaudin, C., et al.: Combined segmentation and recognition of
online handwritten diagramswith high ordermarkov randomfield. In: 2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 252–257. IEEE (2016)

24. Delaye, A., Liu, C.L.: Multi-class segmentation of free-form online documents with tree
conditional random fields. Int. J. Doc. Anal. Recogn. (IJDAR) 17(4), 313–329 (2014)

25. Inatani, S., Van Phan, T., Nakagawa, M.: Comparison of MRF and CRF for Text/Non-text
classification in Japanese InkDocuments. In: 2014 14th International Conference on Frontiers
in Handwriting Recognition, pp, 684–689. IEEE (2014)

26. Delaye, A., Liu, C.L.: Graphics extraction from heterogeneous online documents with hier-
archical random fields. In: 2013 12th International Conference on Document Analysis and
Recognition, pp, 1007–1011. IEEE (2013)

27. Delaye, A., Liu, C.L.: Contextual text/non-text stroke classification in online handwritten
notes with conditional random fields. Pattern Recogn. 47(3), 959–968 (2014)

28. Delaye, A., Liu, C.L.: Context modeling for text/non-text separation in free-form online
handwritten documents. Doc. Recogn. Retrieval XX SPIE 8658, 98–109 (2013)

29. Ye, J.Y., Zhang, Y.M., Yang, Q., et al.: Joint stroke classification and text line grouping in
online handwritten documents with edge pooling attention networks. Pattern Recogn. 114,
107859 (2021)

30. Wang, Z., Chen, J., Chen, H.: EGAT: edge-featured graph attention network. In: Farkaš,
I., Masulli, P., Otte, S., Wermter, S. (eds.) Artificial Neural Networks and Machine Learn-
ing – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava,
Slovakia, September 14–17, 2021, Proceedings, Part I, pp. 253–264. Springer International
Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-86362-3_21

31. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

32. Indermühle, E.: Analysis of digital link in electronic documents. Verlag nicht ermittelbar
(2012)

33. Alon, U., Yahav, E.: On the bottleneck of graph neural networksand its practical implications.
arXiv preprint arXiv:2006.05205 (2020)

https://doi.org/10.1007/978-3-030-86362-3_21
http://arxiv.org/abs/2006.05205

Improving Handwritten OCR
with Training Samples Generated

by Glyph Conditional Denoising Diffusion
Probabilistic Model

Haisong Ding1(B), Bozhi Luan2, Dongnan Gui2, Kai Chen1(B),
and Qiang Huo1

1 Microsoft Research Asia, Beijing, China
dinghs11@mail.ustc.edu.cn, chenkai.cn@hotmail.com, qianghuo@microsoft.com

2 University of Science and Technology of China, Hefei, China
{lbz0075,gdn2001}@mail.ustc.edu.cn

Abstract. Constructing a highly accurate handwritten OCR system
requires large amounts of representative training data, which is both
time-consuming and expensive to collect. To mitigate the issue, we
propose a denoising diffusion probabilistic model (DDPM) to generate
training samples. This model conditions on a printed glyph image and
creates mappings between printed characters and handwritten images,
thus enabling the generation of photo-realistic handwritten samples with
diverse styles and unseen text contents. However, the text contents in
synthetic images are not always consistent with the glyph conditional
images, leading to unreliable labels of synthetic samples. To address this
issue, we further propose a progressive data filtering strategy to add those
samples with a high confidence of correctness to the training set. Exper-
imental results on IAM benchmark task show that OCR model trained
with augmented DDPM-synthesized training samples can achieve about
45% relative word error rate reduction compared with the one trained
on real data only.

Keywords: handwritten OCR · handwritten image generation ·
denoising diffusion probabilistic model

1 Introduction

In recent years, researchers in handwritten optical character recognition (OCR)
area are continuously making progress by leveraging advanced model architec-
tures (e.g., [7,9,10,28,33,48,49]). However, it is still a challenging problem, due
to the cursive nature of handwritten strokes and diverse writing styles. To achieve
excellent recognition accuracy for a handwritten OCR system, large amounts of
labeled handwritten images are required. The handwritten image dataset should

B. Luan and D. Gui—This work was done when Bozhi Luan and Dongnan Gui worked
as interns in MMI Group, Microsoft Research Asia, Beijing, China.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 20–37, 2023.
https://doi.org/10.1007/978-3-031-41685-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_2

Improving Handwritten OCR with GC-DDPM Generated Training Samples 21

be representative enough to cover diverse writing styles and text contents. Obvi-
ously, collecting and labeling such a dataset are both time-consuming and expen-
sive, and existing training data are limited in terms of style and content coverage.
For example, as observed in [31], in the popular IAM dataset [34], a limited num-
ber of samples are collected for each writer, and some words are only written by a
few writers. To handle this content-style data representation issue, one potential
solution is to train a handwritten image generator to synthesize training sam-
ples for handwritten OCR. For any given text and a writer style, the generator
should be able to synthesize photo-realistic handwritten images that can match
the content of the input text and style of the writer.

In the past several years, generative adversarial network (GAN) [13,27,36]
based handwritten image generation methods have achieved promising results.
Most of GAN-based handwritten image generation approaches adopt a text-to-
image framework [1,3,5,11,12,23,25,47,52]. Given an input text and a writer
embedding, it is able to generate a photo-realistic handwritten image that
matches the content of the input text and style of the writer. However, using
text as input is not sufficiently flexible to embed various contents such as adja-
cent character interval and character arrangements [31]. By rendering text to a
printed glyph image, SLOGAN [31] proposed to use an image-to-image frame-
work for handwritten image generation. It is able to generate flexible contents
by rearranging characters on the input glyph image. It is noted that these GAN-
based approaches all rely on guidance from an external handwritten recognizer
trained on real data, which implies that the ability of GANs is limited to directly
learn the mapping from texts or printed glyph images to handwritten images
without external recognition model guidance.

Recently, denoising diffusion probabilistic models (DDPMs) [18,44] achieve
superior performances compared with other generation techniques on image
generation tasks, including text-to-image generation [6,42,43,45] and image-to-
image generation [29,46]. For handwritten image generation task, [30] investi-
gated a text-to-image DDPM for online handwritten generation and achieved
promising results. [16] proposed a writer dependent glyph conditional DDPM
(GC-DDPM) for offline handwritten Chinese character generation. GC-DDPM
conditions on a printed glyph image and creates mappings between printed
Chinese characters and handwritten images. Training from samples of a small
Chinese character set, the GC-DDPM is capable of generating photo-realistic
handwritten samples of unseen Chinese character categories. In [16], the DDPM
is trained on a large-scale handwritten Chinese character database, where the
number of training samples for each writer is relatively sufficient. In this paper,
we investigate GC-DDPM on the offline English handwritten image generation
task. We conduct experiments on the popular IAM dataset [34] with limited
training samples and content-style representation coverage. We find that even
with limited training data, the GC-DDPM is still able to generate photo-realistic
handwritten images.

Since no explicit recognition model guidance is adopted in GC-DDPM, during
sampling, the model can generate noisy samples where the synthesized images do
not match the text contents in glyph conditional images. Directly adding these

22 H. Ding et al.

samples to the training set for OCR can degrade the recognition performance. To
address this problem, inspired by the self-training framework in automatic speech
recognition [21,39] and OCR [50,51], we propose a progressive data filtering
strategy to add samples with a high confidence of correctness to the training
set. Experimental results on IAM benchmark task show that the performance
of the OCR model can be significantly improved when trained with augmented
DDPM-synthesized samples.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
review related works. In Sect. 3, we adopt the GC-DDPM approach in [16] for
offline English handwritten image generation task and introduce the progressive
data filtering strategy. Experimental results are presented in Sect. 4. Finally, we
conclude this study in Sect. 5.

2 Related Works

2.1 GAN-Based Handwritten Image Generation Approaches

Handwritten image generation aims to synthesize offline handwritten images
given input texts. Most of the previous approaches directly use a text-to-image
framework based on GANs. For example, [1] proposed a GAN-based handwrit-
ten word image generator with additional guidance from an external handwritten
recognizer trained on real data. [25] further proposed a handwritten generation
model to synthesize handwritten word images that can match the given condi-
tional writing styles. ScrabbleGAN [11] and HiGAN [12] used fully-convolutional
generators, which can generate images of words and text lines with arbitrary
lengths by making the image width proportional to the length of input text.
In [5], the image widths are also automatically learned based on the input text
and style. The text-to-image handwritten image generation framework is further
improved with advanced generation model architectures such as self-attention
and deformable convolution layers [3,23,47].

Since only text inputs are leveraged, the generation model needs to learn the
mapping from text embedding to handwritten strokes, which is quite difficult.
Besides pure text, JokerGAN [52] proposed to leverage an additional text line
clue about the existence of “below the baseline” and “above the mean line”
characters to improve the generation model. By rendering text to a printed glyph
image using a standard typeset font, the resulting glyph image obviously contains
more information than text. Using the glyph image as input, SLOGAN [31]
proposed to use an image-to-image framework for handwritten image generation.
It is able to generate flexible contents by changing the positions of characters and
adjusting space interval between adjacent characters in glyph images. Besides
using text or glyph image as input, [15] proposed to synthesize handwritten
images from online handwritten samples based on StyleGAN [27].

Many of the above-mentioned approaches leveraged synthesized handwritten
images as training data to boost the performances of handwritten OCR sys-
tems, and achieved substantial improvements (e.g., [15,23,31]). In this paper,

Improving Handwritten OCR with GC-DDPM Generated Training Samples 23

we investigate DDPM to synthesize handwritten images to augment the train-
ing data for handwritten OCR.

2.2 Diffusion Model

DDPMs [18,44] have been extremely popular in image generation tasks. DDPM
defines a Markov chain of T diffusion steps. In a forward diffusion process, it
slowly corrupts data by adding random noises, then a reverse diffusion process
is learned to recreate data from Gaussian noise. It is shown in [6] that DDPMs
can outperform GANs on image synthesis. In [38], DDPMs for text-to-image
synthesis are explored. The model is able to generate photo-realistic images that
match the content of conditional text with the help of a classifier-free guidance
[19]. Furthermore, in [42,43], DDPMs have demonstrated powerful capabilities
to generate high-quality images given input texts. DDPMs are also success-
fully applied to other tasks such as image-to-image generation (e.g., [46]). [30]
investigated DDPM for online handwritten generation and achieved promising
results. [16] proposed a GC-DDPM for offline handwritten Chinese character
generation. The GC-DDPM conditions on a printed glyph image and learns the
mappings between printed Chinese character images and handwritten ones. It
is able to generate photo-realistic handwritten images of unseen Chinese char-
acter categories. In this paper, we adopt GC-DDPM to generate offline English
handwritten images.

3 Our Approach

3.1 GC-DDPM for Handwritten Image Generation

Given an input text and a writer ID (denoted as w), we adopt a writer dependent
GC-DDPM [16] to generate photo-realistic handwritten images that match the
content of the text and style of the writer. For each input text, we directly render
it to a printed glyph image using a standard glyph font. It is more suitable to
use a glyph image as input because it contains much more information about the
shapes of individual characters than pure text. We denote the glyph image as g.
As shown in Fig. 1a, let x0 denote a data sampled from a real distribution, i.e.,
x0 ∼ q(x) with a corresponding writer ID w and glyph image g. In the forward
diffusion process, small amounts of Gaussian noise are added to x in T steps,
producing a sequence {xt}T

t=1 calculated as follows:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI), xt =
√

αtxt−1 +
√

1 − αtεt , (1)

where εt ∼ N (0, I), βt ∈ (0, 1) and αt = 1 − βt. It is easy to calculate that

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I), xt =
√

ᾱtx0 +
√

1 − ᾱtε , (2)

where ε ∼ N (0, I), ᾱt =
∏t

i=1 αi. When T → ∞, ᾱT → 0, and xT ∈ N (0, I).
A nice property of the forward diffusion process is that the reverse conditional
probability is Gaussian when conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; μ̃(xt,x0), β̃tI) , (3)

24 H. Ding et al.

Fig. 1. Illustration of GC-DDPM framework for handwritten image generation.

where
μ̃(xt,x0) =

1√
αt

(xt − 1 − αt√
1 − ᾱt

εt), β̃t =
1 − ᾱt−1

1 − ᾱt
· βt . (4)

Moreover, the reverse process as shown in Fig. 1a will also be a Gaussian when
βt is sufficiently small. Therefore, we can learn a model pθ to approximate the
reverse process conditioned on g and w:

pθ (xt−1|xt,g,w) = N (xt−1;μθ (xt,g,w),Σθ (xt,g,w)) . (5)

Following [16,37], μθ (xt,g,w) and Σθ (xt,g,w) are re-parameterized as

μθ (xt,g,w) =
1√
αt

(
xt − 1 − αt√

1 − ᾱt
εθ (xt,g,w)

)
(6)

Σθ (xt,g,w) = exp
(
νθ(xt,g,w) log βt + (1 − νθ(xt,g,w)) log β̃t

)
.

A neural network is trained to estimate εθ (xt,g,w) and Σθ(xt,g,w). We
use the same hybrid objective function as in [37]. After the reverse process is
learned, conditioned on g and w, we are able to draw samples x0 according to
Eqn. (5), starting with a Gaussian noise xT ∼ N (0, I).

We adopt the same U-Net architecture in GC-DDPM [6,16] in our task. As
shown in Fig. 1b, xt and g are normalized to a fixed size. Then they are concate-
nated together and used as input to the U-Net. Time step t is embedded with
sinusoidal embedding, and then processed with a 2-layer feed-forward network
(FFN). Writer information w is embedded with a learnable embedding, followed
by L2-normalization: z = w/‖w‖2. Finally, they are added together and fed to
layers in U-Net using a feature-wise linear modulation (FiLM) operator [40].

Improving Handwritten OCR with GC-DDPM Generated Training Samples 25

In DDPM, classifier-free guidance [19] is an effective approach to improve
generation quality. Following [16], a content guidance scale γ and a style content
scale η are used. During sampling, εθ(xt,g,w) is directly replaced with

ε̃θ(xt,g,w) = εθ (xt,g,w) + γεθ (xt,g, ∅) (7)
+ ηεθ (xt, ∅,w) − (γ + η)εθ (xt∅, ∅) .

Here εθ (xt,g, ∅), εθ (xt, ∅,w) and εθ (xt, ∅, ∅) are trained together with
εθ (xt,g,w) using the same U-Net, where w, g or both are replaced with a
special token ∅.

Works in [16] synthesize offline Chinese character images which are of fixed
height and width. While in English handwritten image generation task, the
widths of the generated images should be inferred from the text and writer
style. To achieve this goal, we prepare handwritten images of words and short
phrases to train GC-DDPM, where the maximum aspect ratio of images is set
as 8. First, images are resized to a height of 64 while keeping aspect ratio. Then,
images are padded to a width of 512 with black pixels on both left and right
margins. The glyph images are also processed to the size of 64 × 512 using the
same procedure. In experiments, we find that during sampling, GC-DDPM will
learn the width of black margins based on input text and writer style. It will
generate handwritten images with clear black margins robustly. Therefore, to
get the final handwritten sample, we use a simple image processing method to
remove the padded black margins.

3.2 Progressive Data Filtering Strategy

By conditioning on glyph images and writer IDs, we expect GC-DDPM to learn
the mapping from glyph images to handwritten ones and generate high-quality
training data to improve handwritten OCR systems. However, we notice that the
generated images are not always consistent with the glyph conditional images.
Adding these data to the training set would degrade the performance and robust-
ness of the handwritten OCR system. To alleviate this problem, we propose a
progressive data filtering strategy to remove these noisy samples.

In text-to-image generation tasks, a dot product score between text and
image embeddings is used as a metric to select generated samples to improve
generation quality [42]. In the self-training framework, for each unlabeled sample
with a pseudo label, a confidence score is calculated. Only data with high confi-
dence scores are added to the training set [21,39,50,51]. Inspired by these works,
we design a metric to estimate the “confidence of correctness” for each gener-
ated handwritten image. Then samples with a high confidence of correctness are
added to the training set progressively.

Let R = {(xi,yi)} denote a real dataset with handwritten image xi and
ground truth label yi. Let S = {(x̃j , ỹj)} denote DDPM-generated synthetic
dataset with handwritten image x̃j and corresponding conditional text ỹj . First,
we train an initial OCR model M using R only. Then the trained model is used

26 H. Ding et al.

Algorithm 1: Progressive data filtering strategy
Input: Real data R = {(xi, yi)}, synthetic data S = {(x̃j , ỹj)}, initial selected

synthetic data S′ = {}, number of progressive data filtering rounds N ,
data filtering threshold τ

1 Train model M using R;
2 for n ← 1 to N do
3 S′ =

{
(x̃j , ỹj) ∈ S | c(x̃j , ỹj ; M) ≥ τ

}
;

4 Train model M using R ∪ S′ starting from random weight initialization;

5 return M , S′;

to calculate the confidence of correctness score for each x̃j in S as follows:

c(x̃j , ỹj ;M) =
L(x̃j , ŷj ;M)
L(x̃j , ỹj ;M)

, (8)

where L(x,y;M) = − log p(y|x;M) is the negative log posterior probability
calculated using recognizer M , and ŷj is the decoding result of x̃j using M .
Obviously, if ỹj = ŷj , the score equals to 1, meaning that the recognizer’s
prediction is consistent with the conditional text. Then the confidence of x̃
matching ỹ is high. If L(x̃j , ŷj ;M) 	 L(x̃j , ỹj ;M), the score is close to 0,
and the confidence of x̃ matching ỹ is low. In practice, a threshold τ ∈ (0, 1] is
used, and (x̃j , ỹj) with c(x̃j , ỹj ;M) ≥ τ is included in a selected set S′. Then,
a new OCR model can be trained with R ∪ S′. After that, the scores can be
re-calculated using the new model. This process can be repeated for multiple
rounds until the performance of the OCR model does not improve further. The
whole progressive data filtering strategy is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

We conduct experiments on the IAM dataset [34]. It contains 13,353 isolated text
line images and 115,320 word images written by 657 different writers. We use
the RWTH Aachen partition as in [22] in experiments. Following [6], diffusion
step number T is set as 1,000 with a linear noise schedule. During training, w
and g are randomly set to ∅ with probability 10%, independently. When g = ∅,
a blank glyph image will be used; when w = ∅, a special embedding will be
used. During sampling, we use DDIM [20] sampling method with 50 steps to
save sampling time. As for the handwritten OCR system, the same CTC-based
[14] model in [31] is used without leveraging external language models, and ŷj

in Eqn. (8) is decoded with the best path decoding algorithm. The total number
of parameters of the OCR model is 14M. We mainly conduct experiments on
the IAM word benchmark, except in Sect. 4.6 where we conduct experiments on
IAM text line benchmark. A word error rate (WER) of 19.47% and a character

Improving Handwritten OCR with GC-DDPM Generated Training Samples 27

Fig. 2. Real samples of words “Anglesey” written by writer 333 and synthetic hand-
written images generated with different guidance scales. Glyph conditional image is
shown in (a).

error rate (CER) of 7.27% is achieved when trained on real IAM word data only,
which is similar to the baseline result (19.12% WER and 7.39% CER) presented
in [31].

4.2 Effect of Classifier-Free Guidance Scales in GC-DDPM

Works in [16,19] show that the classifier guidance scale is able to control the trade-
off between the quality and diversity of generated samples. Figure 2 (b) shows real
samples of “Anglesey” written by writer 333. Clearly, the style and position of indi-
vidual characters vary each time the same writer writes them. Figure 2 (c) visual-
izes synthetic samples generated with different guidance scales. With higher con-
tent guidance scales, the generated samples become less diverse, which is consis-
tent with the observation in [16]. For example, in real samples, the “le” in “Angle-
sey” is either separately written, or consecutively written with a single stroke.
Synthetic samples with lower content guidance scales successfully capture both
writing variants. Whereas samples with higher content guidance scales only cap-
ture the consecutively written one. We also observe that the variance in generated
image widths becomes smaller when sampled with higher content guidance scales.
As for the style guidance scales, since the writer ID is already a distinctive guid-
ance, the sampling qualities with different scales are similar.

To evaluate the behavior of guidance scales in generating training data for
handwritten OCR, we try γ, η ∈ {0.0, 0.5, 1.0} and synthesize the whole IAM

28 H. Ding et al.

Table 1. WER and CER of handwritten OCR models on IAM word testing set trained
with synthetic dataset generated with different guidance scales.

Style scale η Content scale γ WER (%) CER (%)

0.0 0.0 20.17 7.50

0.5 21.06 7.94

1.0 21.93 8.23

0.5 0.0 20.35 7.52

0.5 21.14 7.91

1.0 21.67 8.14

1.0 0.0 20.40 7.59

0.5 20.41 7.56

1.0 21.25 7.91

IAM training set 19.47 7.27

Table 2. WER and CER of handwritten OCR models on IAM word testing set trained
with different training sets.

Training set WER(%) CER(%)

IAM training set 19.47 7.27

+ Synth-IAM-Words 11.57 3.88

+ Synth-EN-Words 14.78 5.14

+ Synth-EN-Words-WI 14.83 5.18

word training set using the exact word corpus and writer IDs. The number of
synthetic images equals to the number of images in the IAM training set. Then,
we use synthetic data only to train an OCR model and evaluate its recognition
performance on the real IAM word testing set. As shown in Table 1, with the
same η, WER increases as γ becomes higher. This shows that the diversity of
generated images is important when synthesizing training data for OCR. The
best recognition performance is achieved with both guidance scales set as 0. The
best WER is only absolute 0.7% worse than that trained on real dataset, which
demonstrates the high quality of DDPM-generated handwritten images. Based
on these observations, we set γ = 0.0, η = 0.0 in the following experiments.

In Fig. 3, we show generated samples conditioned by different writer IDs with
input words that are seen in IAM training set and out-of-vocabulary words. It
is clear that GC-DDPM is able to synthesize these words while mimicing the
writing styles (e.g., cursive, slant, stroke pattern) of the conditional writers.
It is noted that although “Z” only appears four times in the training set, the
GC-DDPM still can generate high quality handwritten images.

4.3 Augment Training Set with Synthetic Images for OCR

Next, we use synthetic handwritten images to boost handwritten OCR perfor-
mance. To evaluate the quality of generated samples of seen/unseen words, three
sets of synthetic handwritten images are generated in our experiments:

Improving Handwritten OCR with GC-DDPM Generated Training Samples 29

Fig. 3. Synthetic handwritten images conditioned by different writer IDs with different
words. Top: real samples with corresponding words from IAM writers 001, 002, 023 and
027, respectively. Middle: synthetic samples of words that are seen in IAM training set.
Bottom: synthetic samples of out-of-vocabulary words.

Fig. 4. Synthetic handwritten images of word “vector” generated using writer style
interpolations between z1 and z2.

• Synth-IAM-Words: Since the IAM training set is insufficient in terms of con-
tent and style coverage, we use GC-DDPM to generate handwritten images
for each writer. For each of the 442 writers observed in the training set, we
synthesize a handwritten image for each and every word in the entire IAM
word training corpus. As a result, the Synth-IAM-Words dataset is 442 times
the size of the original training set in terms of the number of samples.

• Synth-EN-Words: Samples in Synth-IAM-Words only contain words that have
been observed in training set. To investigate the quality of synthesized hand-
written samples of unseen words, following [11,31], an external “English
words”1 corpus is used. It contains 466,550 unique words, 98.9% of which
are not observed in the IAM training set. To generate a diverse dataset, for
each word, we synthesize 8 samples conditioning on 8 randomly selected writer
IDs. As a result, Synth-EN-Words dataset contains about 3.7M samples.

• Synth-EN-Words-WI: The above two datasets are generated with trained
writer IDs. The GC-DDPM is also able to generate unseen styles using
writer style interpolations [16]. To achieve this, given two normalized writer

1 https://github.com/dwyl/english-words/blob/master/words.txt.

https://github.com/dwyl/english-words/blob/master/words.txt

30 H. Ding et al.

embedding z1 and z2, a new embedding z can be obtained with spherical
interpolation [42]: z = z1 cos λπ

2 +z2 sin λπ
2 with interpolation factor λ ∈ [0, 1].

Figure 4 shows handwritten samples generated using writer style interpola-
tions. It is clear that as λ increases from 0 to 1, the style of generated samples
gradually shifts from z1 to z2. To evaluate the quality of synthesized hand-
written samples with interpolated styles, for each word in “English words”
corpus, we also synthesize 8 samples conditioning on 8 randomly calculated
writer interpolations. We use λ = 1/2. We name this dataset “Synth-EN-
Words-WI”. It also contains 3.7M samples.

Table 2 lists the performances of handwritten OCR models on IAM word
testing set trained with different training sets. It is clear that augmenting the
training set with synthetic handwritten images can significantly boost the recog-
nition performances. Specifically, a 40.6% WER reduction (WERR) and a 46.6%
CER reduction (CERR) are achieved with Synth-IAM-Words dataset. It shows
that the generated Synth-IAM-Words can successfully alleviate the insufficient
content and style coverage problem in training set and achieves significant OCR
performance improvements. Augmenting the training set with Synth-EN-Words
and Synth-EN-Words-WI achieves similar recognition accuracy improvements
(about 24% WERR and 29% CERR), which suggests that the synthesized qual-
ities of Synth-EN-Words and Synth-EN-Words-WI are similar.

In our experiments, we construct synthetic datasets using two corpora, the
IAM corpus and an external “English words” corpus. Words in IAM corpus
are seen in the training of DDPM, whereas most of words in “English words”
corpus are unseen. We find that the quality of synthesized data of words in
“English words” is worse than that of words in IAM corpus. This shows that the
synthesized data quality of unseen words is worse than that of seen words.

To further show the quality difference between Synth-IAM-Words and Synth-
EN-Words/Synth-EN-Words-WI, we treat their conditional texts as ground
truths and evaluate the WER using the OCR model trained on IAM train-
ing set. A 22% WER is observed on Synth-IAM-Words, while the WERs on
Synth-EN-Words and Synth-EN-Words-WI are 73% and 72%, which are sig-
nificantly higher. There are two potential reasons for this observation: (a) the
generalization ability of the OCR model trained with IAM training set is lim-
ited when recognizing unseen words, and (b) the quality of DDPM-synthesized
handwritten images of unseen words is worse than seen words. As a comparison,
we evaluate the OCR model on a subset of IAM word testing set containing
unseen words and achieve a 40.8% WER. Therefore, both reasons contribute to
the high WER. Based on these analyses, we conclude that the text contents in
synthetic images are not always consistent with the glyph conditional images,
leading to unreliable labels of synthetic data. Adding noisy data to the training
set could degrade the performance of the OCR model. Next, we will leverage
the progressive data filtering strategy to remove synthetic data with unreliable
labels.

Improving Handwritten OCR with GC-DDPM Generated Training Samples 31

Table 3. WER and CER of handwritten OCR models on IAM word testing set trained
on augmented synthetic datasets with progressive data filtering strategy.

Synthetic dataset N τ = 1.0 τ = 0.7 Use all samples

WER(%) CER(%) WER(%) CER(%) WER(%) CER(%)

Synth-IAM-Words 1 12.70 4.60 12.40 4.45 11.57 3.88

2 11.84 4.23 11.73 4.16

3 11.77 4.22 11.54 4.14

Synth-EN-Words 1 15.33 5.38 14.53 5.09 14.78 5.14

2 14.38 5.01 14.13 4.86

3 14.12 4.88 13.85 4.83

Synth-EN-Words-WI 1 15.18 5.30 14.39 4.96 14.83 5.18

2 14.43 4.99 14.20 4.96

3 14.15 4.92 14.06 4.85

Fig. 5. Samples of synthetic handwritten images in (top) Synth-IAM-Words and (bot-
tom) Synth-EN-Words sets that are removed using progressive data filtering. Wrongly
generated characters are highlighted in red. Confidence of correctness scores are listed
below. (Color figure online)

4.4 Effect of Progressive Data Filtering Strategy

To evaluate the effect of the progressive data filtering strategy, we set the num-
ber of data filtering rounds N = 3, and try τ = {1.0, 0.7}. We conduct exper-
iments on three synthetic dataset and results are listed in Table 3. We also list
the baseline results when all synthetic samples are added to the training set.
The performances of OCR models improve with more progressive data filtering
rounds. We also try to use an additional 4th round, but no further performance
improvements are observed. Compared with τ = 1.0, better performances are
achieved using τ = 0.7. This implies that τ = 0.7 achieves a better tradeoff
between numbers of high-quality and noisy samples. Compared with using all
generated samples, progressive data filtering achieves slightly better WER and

32 H. Ding et al.

Fig. 6. Visual comparisons with Alonso et al. [1], ScrabbleGAN [11] and SLOGAN
[31]. The words generated from top to bottoms are: olibrius, inventif, bonjour, ionique,
malade, golf, ski. The writer IDs of our generated samples are 135, 111, 011, 023, 001,
002, 027, respectively.

worse CER on Synth-IAM-Words. After 3 rounds, about 90% and 91% of sam-
ples in Synth-IAM-Words are added to the training set with τ = 1.0 and τ = 0.7,
respectively. On Synth-EN-Words and Synth-EN-Words-WI datasets, progres-
sive data filtering achieves much better results than using all generated samples.
With progressive data filtering, about 55% and 59% of the data are added to the
training set with τ = 1.0 and τ = 0.7, respectively. Figure 5 shows samples of
synthetic handwritten images that are removed using progressive data filtering.
The generated images can contain errors, such as missing or repeating certain
characters, or failing to distinguish some easily confused characters. The pro-
posed data filtering strategy can successfully remove these error samples. These
results show that DDPM-generated samples of unseen words are much noisier
than samples of seen words, and the progressive data filtering strategy is helpful
to remove noisy samples and achieve better OCR performance.

4.5 Comparison with Previous Methods

Figure 6 shows visual comparisons with previous methods. Our GC-DDPM app-
roach can generate photo-realistic handwritten images with fewer artifacts. In
ScrabbleGAN [11] and SLOGAN [31], the width of the generated image is deter-
mined by the length of input text or the width of glyph conditional image. Our
approach is able to generate images with variable widths according to the text
content and writer style. GC-DDPM can successfully mimic the unique style of
the conditional writer styles. For example, writer 111 usually writes “t” similarly
with “T”, and the generated stroke of “t” in “inventif” is also similar to “T”.

Besides visual comparison, we also compare the synthetic data quality using
FID metric. Following GANwriting [25] and SLOGAN [31], we generate 400
unique out-of-vocabulary (OOV) words and calculate an averaged FID [17] score

Improving Handwritten OCR with GC-DDPM Generated Training Samples 33

Table 4. Comparison with previous methods on IAM word testing set. No lexicons
and language models are applied.

Method Synthetic data WER(%) CER(%)

Kang et al. [22] No 16.39 6.43

Learn to Augment [32] + AFDM [4] No 13.35 5.13

SLOGAN (Baseline) [31] No 19.12 7.39

Dutta et al. [8] Font-based 12.61 4.88

Kang et al. [26] Font-based 17.26 6.75

SLOGAN [31] GAN-based 14.97 5.95

SLOGAN [31] + Learn to Augment [32] GAN-based 12.90 4.94

Ours (Real) No 19.47 7.27

Ours (Real + filtered synthetic data) DDPM-based 10.72 3.75

Ours (Filtered synthetic data only) DDPM-based 11.55 4.07

Table 5. Comparison of FID on out-of-vocabulary word images.

Method GANwriting [25] SLOGAN [31] GC-DDPM (ours)

FID 125.87 97.81 86.93

of each handwriting style2. As shown in Table 5, we achieve an FID score of 86.93
which is better than that of both GANwriting and SLOGAN.

Since the goal of our approach is to generate handwritten images to augment
the training set for handwritten OCR, we compare our approach with other
synthetic data augmented OCR systems on the IAM word benchmark. To push
the OCR performance to limit, we add all samples in Synth-IAM-Words, filtered
Synth-EN-Words and Synth-EN-Words using τ = 0.7 to augment the IAM train-
ing data. As shown in Table 4, we achieve a 10.72% WER and a 3.75% CER,
which are much better than previous methods using font rendered or GAN-based
synthetic images. Compared with using real IAM training data alone, we achieve
a relative 45% WERR and a relative 48% CERR. We also conduct an experiment
of using only filtered synthetic data, and achieve a 11.55% WER and a 4.07%
CER, which are significantly better than using IAM real training data only.

4.6 Experiments on IAM Text Line Dataset

Finally, we conduct experiments on the IAM text line benchmark. Although
the GC-DDPM is trained on images with maximum aspect ratio of 8, it can
generate text lines as shown in Fig. 7. We use the same CTC-based OCR model
as in IAM word experiments, and achieve a 7.05% CER. For synthetic data,

2 According to the authors of GANwriting, the exact list of 400 OOV words is no
longer available. Therefore, we follow their advice to build our own OOV word list.

34 H. Ding et al.

Fig. 7. Samples of synthetic handwritten text line images of a sentence: “The quick
brown fox jumps over the lazy dog.” .

Table 6. Comparison with previous methods on IAM text line testing set. No lexicons
and language models are applied.

Method Synthetic data WER(%) CER(%)

Puigcerver [41] No 18.40 5.80

Michael et al. [35] No – 5.24

Wick et al. [48] No – 5.67

Dutta et al. [8] Font-based 17.82 5.70

Barrere et al. [2] Font-based 16.31 4.76

Kang et al. [24] Font-based 15.45 4.67

Wick et al. (CTC) [49] Font-based 16.85 4.99

Wick et al. [49] Font-based 12.20 3.96

TrOCRSMALL [28] Font-based – 4.22

Ours (Real) No 22.11 7.05

Ours (Real + filtered synthetic data) DDPM-based 13.08 4.13

besides using the filtered synthetic word dataset, we also synthesize handwritten
text line samples using the IAM training line corpus, and filter these samples
using progressive data filtering. As shown in Table 6, we finally achieve a 4.13%
CER, which is slightly better than TrOCRSMALL. It should be noted that works
in [28,49] use advanced sequence-to-sequence framework for OCR. [49] achieves
a 4.99% CER with CTC-based model. TrOCRSMALL also leverages pre-trained
encoder and decoder with 62M total parameters. We only use a simple CTC-
based OCR model with 14M parameters, without using any image pre-processing
technique and pre-trained models.

5 Conclusion

In this paper, we investigate GC-DDPM to generate handwritten images to aug-
ment training data for handwritten OCR. The proposed GC-DDPM is able to
generate photo-realistic handwritten samples with diverse styles and text con-
tents. However, we find that the text contents in synthetic images are not always
consistent with the glyph conditional images, especially in images with out-of-
vocabulary words. Therefore, we further propose a progressive data filtering
method to remove samples with noisy labels. Experiments on both IAM word
and text line benchmarks show that the performance of the OCR model trained

Improving Handwritten OCR with GC-DDPM Generated Training Samples 35

with augmented DDPM-synthesized samples can perform much better than the
one trained on real data only.

References

1. Alonso, E., Moysset, B., Messina, R.O.: Adversarial generation of handwritten text
images conditioned on sequences. In: Proceedings of ICDAR, pp. 481–486 (2019)

2. Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B.: A light Transformer-based
architecture for handwritten text recognition. In: Proceedings of DAS, pp. 275–290
(2022)

3. Bhunia, A.K., Khan, S.H., Cholakkal, H., Anwer, R.M., Khan, F.S., Shah, M.:
Handwriting transformers. In: Proceedings of ICCV, pp. 1066–1074 (2021)

4. Bhunia, A.K., Das, A., Bhunia, A.K., Kishore, P.S.R., Roy, P.P.: Handwriting
recognition in low-resource scripts using adversarial learning. In: Proceedings of
CVPR, pp. 4767–4776 (2020)

5. Davis, B.L., Morse, B.S., Price, B.L., Tensmeyer, C., Wigington, C., Jain, R.:
Text and style conditioned GAN for the generation of offline-handwriting lines. In:
Proceedings of BMVC (2020)

6. Dhariwal, P., Nichol, A.Q.: Diffusion models beat GANs on image synthesis. In:
Proceedings of NeurIPS, vol. 34, pp. 8780–8794 (2021)

7. Diaz, D.H., Qin, S., Ingle, R.R., Fujii, Y., Bissacco, A.: Rethinking text line recog-
nition models. CoRR abs/2104.07787 (2021)

8. Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.V.: Improving CNN-RNN hybrid
networks for handwriting recognition. In: Proceedings of ICFHR, pp. 80–85 (2018)

9. d’Arce, R., Norton, T., Hannuna, S., Cristianini, N.: Self-attention networks for
non-recurrent handwritten text recognition. In: Proceedings of ICFHR, pp. 389–
403 (2022)

10. Etter, D., Rawls, S., Carpenter, C., Sell, G.: A synthetic recipe for OCR. In: Pro-
ceedings of ICDAR, pp. 864–869 (2019)

11. Fogel, S., Averbuch-Elor, H., Cohen, S., Shai Mazor, R.L.: ScrabbleGAN: semi-
supervised varying length handwritten text generation. In: Proceedings of CVPR,
pp. 4323–4332 (2020)

12. Gan, J., Wang, W.: HiGAN: handwriting imitation conditioned on arbitrary-length
texts and disentangled styles. In: Proceedings of AAAI, pp. 7484–7492 (2021)

13. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp.
2672–2680 (2014)

14. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of ICML, pp. 369–376 (2006)

15. Guan, M., Ding, H., Chen, K., Huo, Q.: Improving handwritten OCR with aug-
mented text line images synthesized from online handwriting samples by style-
conditioned GAN. In: Proceedings of ICFHR, pp. 151–156 (2020)

16. Gui, D., Chen, K., Ding, H., Huo, Q.: Zero-shot generation of training data with
denoising diffusion probabilistic model for handwritten Chinese character recogni-
tion. In: Proceedings of ICDAR (2023)

17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In:
Proceedings of NIPS, vol. 30, pp. 6626–6637 (2017)

36 H. Ding et al.

18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Proceed-
ings of NeurIPS, vol. 33, pp. 6840–6851 (2020)

19. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: Proceedings of NeurIPS,
Workshop on Deep Generative Models and Downstream Applications (2021)

20. Song, J., Chenlin Meng, S.E.: Denoising diffusion implicit models. In: Proceedings
of ICLR (2021)

21. Kahn, J., Lee, A., Hannun, A.Y.: Self-training for end-to-end speech recognition.
In: Proceedings of ICASSP, pp. 7084–7088 (2020)

22. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Distilling content from
style for handwritten word recognition. In: Proceedings of ICFHR, pp. 139–144
(2020)

23. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Content and style aware
generation of text-line images for handwriting recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 8846–8860 (2022)

24. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what
you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129,
108799 (2022)

25. Kang, L., Riba, P., Wang, Y., Rusiñol, M., Fornés, A., Villegas, M.: GANwriting:
content-conditioned generation of styled handwritten word images. In: Proceedings
of ECCV, vol. 23, pp. 273–289 (2020)

26. Kang, L., Rusiñol, M., Fornés, A., Riba, P., Villegas, M.: Unsupervised adaptation
for synthetic-to-real handwritten word recognition. In: Proceedings of WACV, pp.
3491–3500 (2020)

27. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of CVPR, pp. 4401–4410 (2019)

28. Li, M., e al.: TrOCR: transformer-based optical character recognition with pre-
trained models. CoRR abs/2109.10282 (2022)

29. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Gool, L.V.: Repaint:
inpainting using denoising diffusion probabilistic models. In: Proceedings of CVPR,
pp. 11451–11461 (2022)

30. Luhman, T., Luhman, E.: Diffusion models for handwriting generation. CoRR
abs/2011.06704 (2020)

31. Luo, C., Zhu, Y., Jin, L., Li, Z., Peng, D.: SLOGAN: handwriting style synthesis
for arbitrary-length and out-of-vocabulary text. IEEE Trans. Neural Netw. Learn.
Syst., 1–13 (2022)

32. Luo, C., Zhu, Y., Jin, L., Wang, Y.: Learn to augment: joint data augmentation and
network optimization for text recognition. In: Proceedings of CVPR, pp. 13743–
13752 (2020)

33. Ly, N.T., Nguyen, H.T., Nakagawa, M.: 2D self-attention convolutional recurrent
network for offline handwritten text recognition. In: Proceedings of ICDAR, pp.
191–204 (2021)

34. Marti, U., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn., pp. 39–46 (2002)

35. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. In: Proceedings of ICDAR, pp. 1286–1293
(2019)

36. Mirza, M., Osindero, S.: Conditional generative adversarial nets. Comput. Sci., pp.
2672–2680 (2014)

37. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
Proceedings of ICML, pp. 8162–8171 (2021)

Improving Handwritten OCR with GC-DDPM Generated Training Samples 37

38. Nichol, A.Q., et al.: Glide: towards photorealistic image generation and editing with
text-guided diffusion models. In: Proceedings of ICML, pp. 16784–16804 (2022)

39. Park, D.S., et al.: Improved noisy student training for automatic speech recogni-
tion. In: Proceedings of Interspeech, pp. 2817–2821 (2020)

40. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C.: FiLM: visual
reasoning with a general conditioning layer. In: Proceedings of AAAI, pp. 3942–
3951 (2018)

41. Puigcerver, J.: Are multidimensional recurrent layers really necessary for hand-
written text recognition? In: Proceedings of ICDAR, pp. 67–72 (2017)

42. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with CLIP latents. CoRR abs/2204.06125 (2022)

43. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language
understanding. CoRR abs/2205.11487 (2022)

44. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: Proceedings of ICML,
pp. 2256–2265 (2015)

45. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. In: Proceed-
ings of ICLR (2021)

46. Wang, T., et al.: Pretraining is all you need for image-to-image translation. CoRR
abs/2205.12952 (2022)

47. Wang, Y., Wang, H., Sun, S., Wei, H.: An approach based on Transformer and
deformable convolution for realistic handwriting samples generation. In: Proceed-
ings of ICPR, pp. 1457–1463 (2022)

48. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: Proceedings of ICDAR, pp. 112–126 (2021)

49. Wick, C., Zöllner, J., Grüning, T.: Rescoring sequence-to-sequence models for text
line recognition with CTC-prefixes. In: Proceedings of DAS, pp. 260–274 (2022)

50. Wolf, F., Fink, G.A.: Combining self-training and minimal annotations for hand-
written word recognition. In: Proceedings of ICFHR, pp. 300–315 (2022)

51. Wolf, F., Fink, G.A.: Self-training of handwritten word recognition for synthetic-
to-real adaptation. In: Proceedings of ICPR, pp. 3885–3892 (2022)

52. Zdenek, J., Nakayama, H.: JokerGAN: memory-efficient model for handwritten
text generation with text line awareness. In: Proceedings of ACM Multimedia, pp.
5655–5663 (2021)

Improved Learning for Online
Handwritten Chinese Text Recognition
with Convolutional Prototype Network

Yi Chen1,2, Heng Zhang1, and Cheng-Lin Liu1,2(B)

1 State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS),
Institution of Automation, Chinese Academy of Sciences, Beijing 100190, China

{yi.chen,liucl}@nlpr.ia.ac.cn, heng.zhang@ia.ac.cn
2 School of Artificial Intelligence, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Segmentation-based handwritten text recognition has the
advantage of character interpretability but needs a character classifier
with high classification accuracy and non-character rejection capability.
The classifier can be trained on both character samples and string sam-
ples but real string samples are usually insufficient. In this paper, we
proposed a learning method for segmentation-based online handwrit-
ten Chinese text recognition with a convolutional prototype network
as the underlying classifier. The prototype classifier is inherently resis-
tant to non-characters, and so, can be trained with character and string
samples without the need of data augmentation. The learning has two
stages: pre-training on character samples with a modified loss function
for improving non-character resistance, and weakly supervised learning
on both character and string samples for improving recognition perfor-
mance. Experimental results on the CASIA-OLHWDB and ICDAR2013-
Online datasets show that the proposed method can achieve promising
recognition performance without training data augmentation.

Keywords: online handwritten text recognition · text segmentation ·
convolutional prototype network · weakly supervised learning

1 Introduction

As people are using more and more mobile digitizing devices such as iPad,
e-books, interactive whiteboards, and smartphones, online handwritten docu-
ments are generated constantly. To facilitate the storage and retrieval of online
handwriting, research in online handwriting recognition has recently been gain-
ing more attention. Despite the already conducted intensive study in the past
decades on online handwritten character and text recognition, it is still neces-
sary to give further in-depth studies on character recognition accuracy and inter-
pretability. In the context of handwriting recognition, we mean interpretability

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 38–53, 2023.
https://doi.org/10.1007/978-3-031-41685-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_3

Improved Learning for HCTR with CPN 39

as the ability of producing character segmentation and confidence in recogni-
tion, to be consistent with human reading. In real application scenarios, there
are many challenges to robust Chinese online handwritten text recognition [1],
which poses the challenge of large character sets and as well challenges com-
mon with general online handwriting recognition. Writing styles from different
groups of people vary greatly for the writer’s age, educational background, and
personal habits. When writing online texts, even the same person can output a
strong variability in writing styles because of the different input speed, sloppi-
ness, postures (sitting, lying, or walking), and devices (mobile phones, personal
computers, and iPad). Different from offline handwriting without time informa-
tion, there are often some delayed or post-correction strokes during writing. The
large character set in Chinese handwriting makes the model design more difficult
than the model for alphabetic languages because the coverage of a large number
of character classes in the model entails more complicated training with more
training samples carrying a large number of pattern variations. Even if there is
enough training data in deep learning, confident recognition of handwriting is
still a problem that has not been completely solved.

Many methods have been proposed for online and offline handwritten text
line recognition. The methods can be categorized into two groups: explicit seg-
mentation based and implicit segmentation based. In explicit segmentation-
based methods [3–6], the input data is usually first over-segmented into a
sequence of primary components each of which is a character or part of a charac-
ter. Consecutive components are combined into candidate character patterns and
given candidate recognition classes to construct the segmentation-recognition
candidate lattice. Each path on the lattice corresponds to a segmentation recog-
nition candidate and the optimal path is obtained by dynamic programming as
the final text recognition result. For path scoring, candidate character classifi-
cation and some contexts e.g. geometric and linguistic models are integrated to
improve text line recognition. In implicit segmentation-based methods, hidden
Markov model (HMM) [7–9] is mostly used for character recognition. Adopting
the sliding window approach in HMM, the text line is first equidistantly split into
frames to be concatenated into characters for recognition. But the relationship
between contextual features is difficult to be modeled. Some end-to-end learned
deep neural networks have been applied to explicit segmentation based [10] and
implicit segmentation based [11] methods, but there are still some insufficiencies:
hard to achieve both high accuracy and good interpretability, requiring a large
number of training samples or training data augmentation/synthesis.

Aiming to overcome the need for large training data and improve the inter-
pretation of online handwritten Chinese text recognition, we propose a recogni-
tion method based on the segmentation-recognition framework with an improved
learning strategy. In the recognition model, we use the recently proposed convo-
lutional prototype network (CPN) [13] as the base character classifier to replace
the popular CNN because prototype learning can improve the intra-class com-
pactness in feature representation. For enhancing non-character rejection, we
propose a character-level learning algorithm to pre-train the CPN model and

40 Y. Chen et al.

the prototype loss (PL) is similar to the maximum likelihood regularization in
[14]. In weakly-supervised learning on string samples, the pre-trained CPN char-
acter model is fine-tuned with the negative log-likelihood (NLL) loss [4] on the
candidate lattice. Besides, to better exploit character samples for CPN training
and recognition, we propose a new character sample normalization method based
on geometric information in text lines. We conducted experiments on two online
handwriting datasets CASIA-OLHWDB and ICDAR2013-Online. The experi-
mental results demonstrate the effectiveness of the proposed method compared
with the baselines, and the benefits of our CPN-based character recognition i.e.
the CPN character model can output confident results to character recognition
and non-character rejection without non-character samples given in pre-training
and synthetic text lines in weakly supervised learning.

The rest of this paper is organized as follows: Sect. 2 reviews some related
work. Section 3 describes our proposed method with character normalization and
CPN character model learning. Section 4 presents experimental results on public
datasets, and Sect. 5 draws concluding remarks

2 Related Work

2.1 Online Chinese Handwriting Recognition

Early online Chinese handwriting recognition methods were usually based on
the segmentation-recognition framework [3,4], mainly relying on character clas-
sification model [12]. In recent ten years, the convolutional neural network
has shown superior performance on image classification [15] and has also been
applied to online Chinese handwritten character recognition [16], where online
handwritten characters are represented as offline images e.g. normalization-
cooperated direction-decomposed feature maps [17]. Liu et al. [18] proposed
a stroke sequence-dependent deep convolutional neural network (SSDCNN) by
incorporating the natural sequence information of strokes and eight-directional
features in a natural way. Ren et al. [19] regarded online handwriting as time
series and presented a novel recurrent neural network (RNN) with two virtual
unidirectional RNN for online handwritten Chinese character recognition. In the
end-to-end learning framework, Xie et al. [20] proved a character model based
on integrated CNN and RNN to be effective for online handwritten Chinese text
recognition. Chen et al. [21] proposed a compact CNN-RNN with a small foot-
print and low computation cost trained by a connectionist temporal classification
(CTC) criterion with a multi-step training strategy. For online Chinese signa-
ture segmentation and character recognition, Qin et al. [22] used a progressive
multitask learning network (PMLNet) consisting of a dual channel stroke feature
extraction block (DSF-Block), a stacked transformer encoder block (STE-Block)
and a progressive multitask learning block (PML-Block).

2.2 Prototype-Based Handwriting Recognition

Research in prototype learning for large-set handwritten character recogni-
tion seems to have peaked in the early 1990s [23]. The first prototype-based

Improved Learning for HCTR with CPN 41

handwritten Chinese character recognition method is available in [25] with a
modified LVQ3 algorithm to optimize the reference vector. Prototype learning
algorithms were reviewed in [2] for the nearest-neighbor (NN) classifier and their
performance were evaluated for handwritten character recognition. Different pro-
totype selection methods were studied for recognizing online handwritten char-
acters in [26]. Enriching each prototype as a binary discriminant function with a
threshold, one-vs-all training [27] was used for prototype classifiers in both multi-
class and binary classification. A two-stage prototype generation technique [28]
was introduced for handwriting digit recognition. Crossmodal prototype learning
was first proposed by Ao et al. [29] for zero-shot online handwritten character
recognition, where handwritten characters can be recognized by learning from
a few handwritten or even printed samples. To overcome the lack of robustness
for CNN, the CPN model was first proposed for open-set pattern recognition
with convolutional prototype learning (CPL) [30] and improved the intra-class
compactness of the feature representation. Then Gao et al. [31] applied the CPN
model for end-to-end Chinese handwritten text recognition combining the pro-
totype loss and CTC (Connectionist Temporal Classification) loss in one-vs-all
prototype learning. Motivated by the work in [31], Yu et al. [32] proposed an
efficient Chinese handwritten text line recognition method based on prototype
learning with feature-level sliding windows for classification.

In this paper, we first use the CPN model as our character classier in
the segmentation-recognition framework for handwriting recognition. Compared
with other deep learning-based handwriting recognition, convolutional proto-
type learning can get an effective and robust feature representation for character
recognition and rejection. Different from CPN-based end-to-end text recognition
[31], our method can give comparable character accuracy and simultaneously
output character segmentation results without data augmentation.

3 Methodology

3.1 Overview

As shown in Fig. 1, our online Chinese handwritten text recognition method
follows the segmentation-recognition framework [4,6] and uses a convolutional
prototype network (CPN) for character classification. The original data is first
over-segmented [33] into component sequences and successive components are
combined into candidate character patterns. All the candidate patterns are rec-
ognized by the character classifier to construct the candidate lattice, and the
optimal path on the lattice is dynamically searched with the integration of lan-
guage model and character classification for path scoring. The optimal path with
character sequence and segmentation boundaries is the final recognition result.
Before character model training and pattern recognition, we use statistics of the
relative character position and size counted from training text lines to normalize
character samples. For segmented character classification/recognition, current
methods of feature extraction from online data and from offline images yield
comparable accuracy [10,12], while offline images offer an advantage of stroke

42 Y. Chen et al.

Fig. 1. An illustration of our overall framework.

order invariance. So the normalized online character patterns are converted to
offline images for feature representation and classification. The CPN model is
first pre-trained on isolated character samples from C character classes and then
fine-tuned on weakly labeled text lines.

3.2 Character Normalization

In Chinese handwriting, as shown in Fig. 2(a) and (b), it is very difficult to recog-
nize some appearances of similar characters e.g. punctuations “”’ and “,” which
can not be distinguished without character positions and shape sizes in text
lines. Inspired by this analysis, we propose a character normalization method
before feature representation and classification. As shown in Fig. 2, the normal-
ized characters are more easily distinguishable for recognition.

For character normalization, we define two random variables i.e. zd and zh

confirming to Gaussian distribution for each character class c (c ∈ C):

{
zdc

∼ Ndc
(μdc

, σ2
dc

), (1)

zhc
∼ Nhc

(μhc
, σ2

hc
), (2)

where zdc
is the normalized distance distribution between median lines of charac-

ter samples and their located text lines, zhc
is the normalized height distribution

of character samples, and values of μdc
, σdc

, μhc
, σhc

are estimated on training

Improved Learning for HCTR with CPN 43

Fig. 2. Illustration of character normalization.

text lines. For each character sample to be normalized, random sampling is per-
formed on zdc

and zsc
to estimate the normalized distance dc and normalized

character height hc. Using dc, hc, and the width/height ratio of the character
sample, character normalization is performed successfully as shown in Fig. 2.

Both in training and inference, the character image is normalized considering
its relative size and position in the text line. In training, the size and position
information of each character class are estimated from the training dataset of
text line images, while in inference, the size and position information of the
candidate character are calculated based on the test text line image.

3.3 Character Classification Model

Fig. 3. Character classifier based on prototype learning.

The character classification model i.e. CPN is illustrated in Fig. 3, where the
character image with size 128 × 128 is encoded by CNN for feature representation
and prototype matching is used for character classification. Our CNN contains
a stack of 12 convolutional layers with 3 × 3 kernel. The number of channels
in each convolutional layer is enlarged gradually from 50 to 400 across all the
convolutional layers. A maxpooling layer is used after every 3 convolutional layers

44 Y. Chen et al.

to reduce the size of feature maps and enlarge the receptive fields. At last, the
obtained feature maps are embedded to a vector with dimensionality 400 and
then fed into a fully-connected layer to get a compact 200 dimensional feature
vector as the final representation.

The feature of each character sample x output by CNN with parameter θ is
denoted as fθ(x). In our work, for simplicity, we use only one prototype for each
character class c denoted as pc (c ∈ C). Euclidean distance dc(x) = ||fθ(x) − pc||22
is used to describe the dissimilarity between each character sample and class
prototype, then our character classification function can be denoted as:

arg min
c∈C

dc(x), (3)

where the feature of x is compared with all prototypes and classified by the
nearest-neighbor criterion.

For model learning, a confidence measure is desired to approximate the class
posterior probability p(c|x) proportional to an exponential function [34]:

p(c|x) ∝ exp(−dc(x)). (4)

In the segmentation-recognition framework, there are many non-character pat-
terns and some samples out of the C character classes i.e. outlier class denoted
as co. We set a learnable dissimilarity score dco(x) = T for outlier class, and the
outlier class posterior probability p(co|x) can be computed as:

p(co|x) ∝ exp(−dco(x)) = exp(−T). (5)

Then we can get a confidence measure based on the normalization of Eq. (4) and
Eq. (5) equivalent to the Softmax form of (C + co) classes [35]:

p(c|x) =
exp(−dc(x) + T)

1 +
∑

c∈C exp(−dc(x) + T)

=
exp(−dc(x))∑

c∈(C+co) exp(−dc(x))
,

(6)

where parameter T can be set to a constant or jointly optimized together with
θ and {pc}c∈C . If T is set to a constant, it is equivalent to setting the radius
of a sphere in the feature space. Then a character sample is judged as a non-
character if the distance to the nearest prototype is greater than the radius,
and vice versa. Considering that the feature extraction layer and classification
layer of CPN are learned together, T can be set to be learnable and optimized
simultaneously with the entire network.

3.4 Character Model Training

Character Model Pre-Training. Based on our proposed confidence measure
in Eq. (6), the character model is pre-trained on isolated samples with character
classification loss i.e. distance based cross-entropy loss (DCE):

Improved Learning for HCTR with CPN 45

LDCE = −logp(c|x) = −log
exp(−dc(x) + T)

1 +
∑

c∈C exp(−dc(x) + T)
, (7)

which encourages character sample x nearest to the prototype from the genuine
class.

To prevent the model from over-fitting and improve the character model
learning, we also use prototype loss (PL) according to [13] as regularization:

LPRE = LDCE + λ · LPL, (8)

where LPL = dc(x) = ||fθ(x) − pc||22, and λ is a hyper-parameter weighting the
PL loss. Then intra-class compact and inter-class separable feature representa-
tions can be learned with LPRE loss.

Weakly Supervised Learning. After over-segmentation and candidate pat-
tern recognition, the training text line sample X with ground truth G is con-
verted to the candidate lattice, which contains the segmentation path S and
recognition string Y . On the candidate lattice, the energy function E(Y, S,X)
[4] is defined as:

E(Y, S,X) = −
|S|−1∑
i=0

F (ysi
, si,X), (9)

where si is the i-th candidate character pattern in S with length |S|, and ysi
is

the character recognition result of si. In Eq. (9), the feature function F (ysi
, si,X)

is defined by integrating character classification and the 5-gram language model:

F (ysi
, si,X) = logp(ysi

|si) + ω · logPLM (ysi
|ysi−1 ...ysi−4), (10)

where ω is the weight of LM score, and p(ysi
|si) is given by CPN character

model as in Eq. (6). Then the posterior probability P (Y, S|X) can be computed
by normalizaiton of the exponential function of E(Y, S,X):

P (Y, S|X) =
exp(−E(Y, S,X))∑

Y0,S0
exp(−E(Y0, S0,X))

. (11)

For character model parameter estimation, we use the negative log-likelihood
(NLL) loss [4] to maximize the posterior probability P (Y = G|X) for weakly
supervised learning.

LWSL = −logP (Y = G|X), (12)

where P (Y = G|X) is computed according to Eq. (11):

P (Y = G|X) =
∑

S exp(−E(Y = G,S,X))∑
Y0,S0

exp(−E(Y0, S0,X))
. (13)

There is an exponential number of segmentation-recognition paths on the lattice,
and so the computation of Eq. (13) is performed by the forward-backward algo-
rithm [4,6]. The loss function LWSL is optimized by stochastic gradient descent
(SGD) with parameters updated iteratively on training samples.

46 Y. Chen et al.

4 Experiments

4.1 Datasets

We evaluated the performance of our approach on a large database of online
Chinese handwriting i.e. CASIA-OLHWDB [36] and the ICDAR2013-Online
Chinese handwriting recognition competition dataset (ICDAR2013-Online) [37].
We conduct a series of ablation studies to explore the effects of our models and
also compare our method with state-of-the-art. CASIA-OLHWDB, containing
both isolated characters and string samples, is divided into a training set of 816
writers and a test set of 294 writers. There are 3, 129, 496 isolated character sam-
ples of 7, 356 classes and 41, 710 handwritten text lines on CASIA-OLHWDB.
The string test set contains 10, 510 text lines from 1, 020 text pages, including
269, 674 characters of 2, 631 classes. ICDAR2013-Online competition dataset
contains 3, 432 online handwritten Chinese text lines from 60 writers.

4.2 Implementation Details

We implement experiments based on the framework of Pytorch with 4 NVIDIA
RTX 24G GPUs. The SGD optimizer is applied to train our model with a learn-
ing rate initialized to 1×10−2 in pre-training and 1×10−6 in weakly supervised
learning respectively. The learning rate will be exponentially decayed through-
out the whole training. The hyper-parameters λ and ω are set to 1 × 10−5 and
0.4. Parameter T is initialized to 10 and optimized with other parameters. All
prototypes are initialized as zero vectors. The pre-training stops at 80 epochs
and the weakly supervised training stops at 30 epochs.

4.3 Ablation Experiment

In this part, we design several ablation experiments to prove the effectiveness of
our proposed method without language model, which will be used in comparison
with state-of-the-art methods.

Effectiveness of Character Normalization. In this experiment, we use CNN
and CPN respectively as the character classifier with/without character normal-
ization. For simplicity, character models are only trained on isolated samples
and tested on CASIA-OLHWDB and ICDAR2013-Online datasets. Text line
recognition is evaluated by Correct Rate (CR) and Accurate Rate (AR) [4].

Visual features of normalized characters are combined with some geometric
information i.e. character position and size in text lines, so text line recogni-
tion results are improved with character normalization for both CNN and CPN
models as shown in Table 1. The following experiments are all performed with
character normalization.

Improved Learning for HCTR with CPN 47

Table 1. Effectiveness of character normalization for CNN and CPN models
(CharNorm).

Methods CASIA-OLHWDB ICDAR2013-Online

AR CR AR CR

CNN 80.86 83.33 77.92 81.07

CNN+CharNorm 84.28 86.22 81.67 83.57

CPN 83.17 86.42 80.25 83.79

CPN+CharNorm 87.26 89.19 84.34 86.66

Effectiveness of Prototype Learning. We use the same isolated character
data as above to train CNN and CPN respectively for text line recognition. To
further prove the advantages of CPN, we added non-character training, which
means that non-character samples are added to train character classifiers in pre-
training with isolated character samples together. These non-character samples
are constructed from parts of character samples and a combination of multiple
character samples.

One CNN model is trained with a mixture of character and non-character
(hundred thousand) samples, and the other CNN is trained without non-
character samples. Two CPN models are also trained respectively with and
without non-character samples. Experimental results are shown in Table 2. CPN
combines the advantages of both discriminant and generative models by learn-
ing prototypes and convolutional network parameters together, and so performs
better than CNN.

Table 2. Effectiveness of prototype learning with/without non-character training
(NonCharTr).

Methods CASIA-OLHWDB ICDAR2013-Online

AR CR AR CR

CNN 84.28 86.22 81.67 83.57

CPN 87.29 89.19 84.34 86.66

CNN+NonCharTr 86.82 88.17 84.23 86.19

CPN+NonCharTr 87.74 89.59 84.68 87.09

Effectiveness of Weakly Supervised Learning. In this experiment, we
first pre-train CPN and CNN using character normalization on character sam-
ples respectively with and without non-character samples. Then weakly super-
vised learning is performed by fine-tuning pre-trained models on string samples
together with character samples, which are regarded as text line samples for

48 Y. Chen et al.

Table 3. Effectiveness of weakly supervised learning (WSL) for models with different
configurations.

Methods CASIA-OLHWDB ICDAR2013-Online

AR CR AR CR

CNN 84.28 86.22 81.67 83.57

CNN+WSL 85.16 87.34 83.09 85.66

CNN+NonCharTr+WSL 89.17 91.62 87.14 89.23

CPN 87.29 89.19 84.34 86.66

CPN+WSL 89.66 91.71 87.62 89.49

CPN+NonCharTr+WSL 89.97 91.98 87.71 89.97

robust learning. The experimental results are shown in Table 3. The objective of
our weakly supervised learning is to maximize the posterior probability of ground
truth given the text line sample, so the recognition performance of all character
classification models is improved by weakly supervised learning. After weakly
supervised learning, the CPN model can still get the best recognition results
benefiting by joint parameter optimization of the convolutional network, proto-
types, and dissimilarity score T for the outlier class. Benefiting from learnable
dissimilarity score T for outlier class, CPN even trained without non-character
samples can perform better than CNN trained with additional non-character
samples and get recognition accuracies close to CPN trained with non-character
samples.

Table 4. Comparison with existing methods on the CASIA-OLHWDB competition
set, results marked by “∗” denote using implicit language model.

Methods Without LM With LM

AR CR AR CR

Shi et al. [38] 87.67 89.58 – –

Wang et al. [3] – – 92.97 93.76

Zhou et al. [39] – – 94.69 95.32

Xie et al. [20] 91.38 92.29 95.50 96.09

Xie et al. [20] 93.31* 94.47* 97.23* 97.50*

Ours 89.66 91.71 94.77 95.47

4.4 Comparison with the State-of-the-Art Methods

Comparison results with existing methods are shown in Tables 4 and 5 (LM:
n-gram language model), where we use a 5-gram statistical language model [5]
for context fusion.

Improved Learning for HCTR with CPN 49

On the CASIA-OLHWDB dataset, our method achieves recognition perfor-
mance of AR 94.77% and CR 95.47% as shown in Table 4. Xie et al. achieved
a state-of-the-art performance with a multi-spatial-context fully convolutional
recurrent network and implicit language model. To be fair, we also list their
performance without using the implicit language model, and our method can
perform comparably with state-of-arts. It is worth mentioning that under the
framework of semi-Markov conditional random fields, Zhou et al. [33] used addi-
tional geometry models and achieved a similar performance to ours.

Table 5. Comparison with existing methods on the ICDAR2013-Online competition
set, results marked by “∗” denote using the implicit language model, and the “†”
denotes using the powerful Transformer-based language model.

Methods Without LM With LM

AR CR AR CR

Shi et al. [38] 83.60 85.14 – –

Xie et al. [20] 86.85 87.82 91.81 92.67

Xie et al. [20] 88.88* 90.17* 96.50 97.15

Peng et al. [40] 91.24 91.81 – –

Peng et al. [40] 95.05† 95.46† 97.36† 97.63†
Peng et al. [10] 94.46 94.67 97.89† 98.06†
Ours 87.62 89.49 95.37 95.55

We also compare the performance of different methods on the ICDAR2013-
Online dataset in Table 5, and our recognition accuracy results are AR95.37%,
CR95.55%. The method proposed by Peng et al. [10] got a state-of-the-art result
regardless of whether the language model was used or not, which is due to the
fact that they synthesized string samples to make their model learn better and
they used a powerful Transformer-based language model. In addition, they also
designed a context regularization based on RNN layers. Our proposed method
is still potential and competitive because we can still achieve promising perfor-
mance without any data augmentation techniques when training models with
prototype learning.

4.5 Further Visualization and Analysis

Some recognition results are shown in Fig. 4, which present the superiority of
our CPN character model learning. As shown in Fig. 4(1, 2), our CPN-based
method can give more correct recognition results. But there are still some recog-
nition errors uncorrected. In Fig. 4(2), strokes from neighboring characters are
combined into one component in over-segmentation and therefore wrongly rec-
ognized. In Fig. 4(3), the error in CPN-based recognition can be corrected with a
more powerful language model. The above analysis of recognition errors indicates
our further work on text segmentation and language modeling.

50 Y. Chen et al.

Fig. 4. Recognition visualization for experimental analysis.

5 Conclusions

In this paper, we propose a new segmentation-recognition method for online
Chinese handwritten text recognition using a convolutional prototype network
(CPN) for character classification. Different from previous character model learn-
ing for candidate lattice generation from over-segmentation components, our
CPN model can be pre-trained only on closed-set character samples and still get
superior recognition accuracy compared with the classifier trained using addi-
tional non-character samples. During weakly supervised prototype learning on
the text lines, only limited training data is needed and the resulting character
classifier can also perform well compared with end-to-end recognition models,
which must be learned on big data. In the future, the recognition model can
benefit from training with augmented data and combining with more powerful
language model and geometric context model.

Acknowledgement. This work has been supported by the National Key Research
and Development Program Grant 2020AAA0109700, the National Natural Science
Foundation of China (NSFC) grant 61936003.

References

1. Liu, C.-L., Jäger, S., Nakagawa, M.: Online recognition of Chinese characters: the
state-of-the-art. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 198–213 (2004)

2. Liu, C.-L., Nakagawa, M.: Evaluation of prototype learning algorithms for nearest-
neighbor classifier in application to handwritten character recognition. Pattern
Recognit. 34(3), 601–615 (2001)

Improved Learning for HCTR with CPN 51

3. Wang, D.-H., Liu, C.-L., Zhou, X.-D.: An approach for real-time recognition of
online Chinese handwritten sentences. Pattern Recognit. 45(10), 3661–3675 (2012)

4. Zhou, X.-D., Wang, D.-H., Tian, F., Liu, C.-L., Nakagawa, M.: Handwritten Chi-
nese/Japanese text recognition using semi-Markov conditional random fields. IEEE
Trans. Pattern Anal. Mach. Intell. 35(10), 2413–2426 (2013)

5. Wu, Y.-C., Fei, Y., Liu, C.-L.: Improving handwritten Chinese text recognition
using neural network language models and convolutional neural network shape
models. Pattern Recognit. 65, 251–264 (2017)

6. Wang, Z.-X., Wang, Q.-F., Yin, F., Liu, C.-L.: Weakly supervised learning for
over-segmentation based handwritten Chinese text recognition. In: ICFHR 2020,
pp. 157–162 (2020)

7. Su, T.-H., Zhang, T., Guan, D.-J., Huang, H.-J.: Off-line recognition of realistic
Chinese handwriting using segmentation-free strategy. Pattern Recognit. 42(1),
167–182 (2009)

8. Jiang, Z.-W., Ding, X.-Q., Liu, C., Wang, Y.-W.: A novel short merged off-line
handwritten Chinese character string segmentation algorithm using hidden Markov
model. In: ICDAR 2011, pp. 668–672 (2011)

9. Jayech, K., Mahjoub, M.A., Amara, N.E.B.: Synchronous multi-stream hidden
Markov model for offline Arabic handwriting recognition without explicit segmen-
tation. Neurocomputing 214, 958–971 (2016)

10. Peng, D.-Z., et al.: Recognition of handwritten Chinese text by segmentation: a
segment-annotation-free approach. IEEE Trans. Multimed. (2022)

11. Wang, Z.-R., Jun, D., Wang, J.-M.: Writer-aware CNN for parsimonious HMM-
based offline handwritten Chinese text recognition. Pattern Recognit. 100, 107102
(2020)

12. Liu, C.-L., Yin, F., Wang, D.-H., Wang, Q.-F.: Online and offline handwritten
Chinese character recognition: benchmarking on new databases. Pattern Recognit.
46(1), 155–162 (2013)

13. Yang, H.-M., Zhang, X.-Y., Yin, F., Yang, Q., Liu, C.-L.: Convolutional prototype
network for open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44(5),
2358–2370 (2022)

14. Liu, C.-L., Sako, H., Fujisawa, H.: Effects of classifier structures and train-
ing regimes on integrated segmentation and recognition of handwritten numeral
strings. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1395–1407 (2004)

15. Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: CVPR 2012, pp. 3642–3649

16. Zhang, X.-Y., Bengio, Y., Liu, C.-L.: Online and offline handwritten Chinese char-
acter recognition: a comprehensive study and new benchmark. Pattern Recognit.
61, 348–360 (2017)

17. Liu, C.-L.: Normalization-cooperated gradient feature extraction for handwritten
character recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1465–1469
(2007)

18. Liu, X., Hu, B.-T., Chen, Q.-C., Xiang-Ping, W., You, J.-H.: Stroke sequence-
dependent deep convolutional neural network for online handwritten chinese char-
acter recognition. IEEE Trans. Neural Networks Learn. Syst. 31(11), 4637–4648
(2020)

19. Ren, H.-Q., Wang, W.-Q., Xi-Wen, Q., Cai, Y.-Q.: A new hybrid-parameter recur-
rent neural network for online handwritten Chinese character recognition. Pattern
Recognit. Lett. 128, 400–406 (2019)

52 Y. Chen et al.

20. Xie, Z.-C., Sun, Z.-H., Jin, L.-W., Ni, H., Lyons, T.J.: Learning spatial-semantic
context with fully convolutional recurrent network for online handwritten Chinese
text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1903–1917 (2018)

21. Chen, K., et al.: A compact CNN-DBLSTM based character model for online
handwritten Chinese text recognition. In: ICDAR 2017, pp. 1068–1073

22. Qin, X.-H., Zhang, H.-Y., Ke, X., Shen, Z.-H., Qi, S.-M., Liu, K.: Progressive mul-
titask learning network for online Chinese signature segmentation and recognition.
In: ICFHR 2022, pp. 153–167

23. Lee, S.-W., Song, H.-H.: Optimal design of reference models for large-set hand-
written character recognition. Pattern Recognit. 27(9), 1267–1274 (1994)

24. Niu, S.-C., et al.: Towards stable test-time adaptation in dynamic wild world. ICLR
(2023)

25. Liu, C.-L., Kim, I.-J., Kim, J.H.: High accuracy handwritten Chinese character
recognition by improved feature matching method. In: ICDAR 1997, pp. 1033–
1037

26. Raghavendra, B.S., Narayanan, C.K., Sita, G., Ramakrishnan, A.G., Sriganesh,
M.: Prototype learning methods for online handwriting recognition. In: ICDAR
2005, pp. 287–291

27. Liu, C.-L.: One-vs-all training of prototype classifier for pattern classification and
retrieval. In: ICPR 2010, pp. 3328–3331

28. Impedovo, S., Mangini, F.M., Barbuzzi, D.: A novel prototype generation technique
for handwriting digit recognition. Pattern Recognit. 47(3), 1002–1010 (2014)

29. Ao, X., Zhang, X.-Y., Liu, C.-L.: Cross-modal prototype learning for zero-shot
handwritten character recognition. Pattern Recognit. 131, 108859 (2022)

30. Yang, H.-M., Zhang, X.-Y., Yin, F., Liu, C.-L.: Robust classification with convo-
lutional prototype learning. In: CVPR 2018, pp. 3474–3482

31. Gao, L.-K., Zhang, H., Liu, C-L.: Handwritten text recognition with convolutional
prototype network and most aligned frame based CTC training. ICDAR (1), pp.
205–220 (2021)

32. Yu, M.-M., Zhang, H., Yin, F., Liu, C.-L.: An efficient prototype-based model for
handwritten text recognition with multi-loss fusion. In: ICFHR 2022, pp. 404–418

33. Heng Zhang, Cheng-Lin Liu: A Lattice-Based Method for Keyword Spotting in
Online Chinese Handwriting. ICDAR 2011: 1064–1068

34. Liu, C.-L., Nakagawa, M.: Precise Candidate Selection for Large Character Set
Recognition by Confidence Evaluation. IEEE Trans. Pattern Anal. Mach. Intell.
22(6), 636–642 (2000)

35. Jeffrey A. Barnett: Computational Methods for A Mathematical Theory of Evi-
dence. Classic Works of the Dempster-Shafer Theory of Belief Functions 2008:
197–216

36. Liu, C.-L., Yin, F., Wang, D.-H., Wang, Q.-F.: CASIA online and offline Chinese
handwriting databases. In: ICDAR 2011, pp. 37–41 (2011)

37. Yin, F., Wang, Q.-F., Zhang, X.-Y., Liu, C.-L.: ICDAR 2013 Chinese handwriting
recognition competition. In: ICDAR 2013, pp. 1464–1470

38. Shi, B.-G., Bai, X., Yao, C.: An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2017)

Improved Learning for HCTR with CPN 53

39. Zhou, X.-D., Zhang, Y.-M., Tian, F., Wang, H.-A., Liu, C.-L.: Minimum-risk train-
ing for semi-Markov conditional random fields with application to handwritten
Chinese/Japanese text recognition. Pattern Recognit. 47(5), 1904–1916 (2014)

40. Peng, D.-Z., Jin, L.-W., Wu, Y.-Q., Wang, Z.-P., Cai, M.-X.: A fast and accurate
fully convolutional network for end-to-end handwritten Chinese text segmentation
and recognition. In: ICDAR 2019, pp. 25–30

Vision Conformer: Incorporating
Convolutions into Vision Transformer

Layers

Brian Kenji Iwana1(B) and Akihiro Kusuda2

1 Kyushu University, Fukuoka, Japan
iwana@ait.kyushu-u.ac.jp

2 Nara Institute of Science and Technology, Nara, Japan

Abstract. Transformers are popular neural network models that use
layers of self-attention and fully-connected nodes with embedded tokens.
Vision Transformers (ViT) adapt transformers for image recognition
tasks. In order to do this, the images are split into patches and used
as tokens. One issue with ViT is the lack of inductive bias toward image
structures. Because ViT was adapted for image data from language mod-
eling, the network does not explicitly handle issues such as local transla-
tions, pixel information, and information loss in the structures and fea-
tures shared by multiple patches. Conversely, Convolutional Neural Net-
works (CNN) incorporate this information. Thus, in this paper, we pro-
pose the use of convolutional layers within ViT. Specifically, we propose
a model called a Vision Conformer (ViC) which replaces the Multi-Layer
Perceptron (MLP) in a ViT layer with a CNN. In addition, to use the
CNN, we proposed to reconstruct the image data after the self-attention
in a reverse embedding layer. Through the evaluation, we demonstrate
that the proposed convolutions help improve the classification ability of
ViT.

Keywords: Transformer · Vision Transformer · Convolutional Neural
Network · Character Recognition

1 Introduction

Recently, there has been a sudden rise in the popularity of Transformers [32] in
pattern recognition. They were originally proposed and popularized in the Natu-
ral Language Processing (NLP) domain [11,26,32]. Fundamentally, Transformers
are feed-forward neural networks that utilize self-attention, inner-layer residual
connections, and a specialized token-based encoding. Typically, shown in Fig. 1a,
Transformers are designed with multiple Transformer blocks, each containing a
Multi-Head Self-Attention (MHSA) layer and a fully-connected layer, and are

This research was partially supported by MEXT-Japan (Grant No. JP23K16949).
A. Kusuda—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 54–69, 2023.
https://doi.org/10.1007/978-3-031-41685-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_4&domain=pdf
http://orcid.org/0000-0002-5146-6818
https://doi.org/10.1007/978-3-031-41685-9_4

Vision Conformer 55

(a) Vision Transformer (b) Vision Conformer (Proposed)

Fig. 1. Comparison of the overall structure of ViT and the proposed method.

trained with an encoder and a decoder network. The self-attention layer uses an
attention mechanism to relate the weighted positions of an input sequence with
the other positions of the input. This self-attention helps the fully-connected
nodes to put more emphasis on the pairwise relationships of the input.

The popularity of Transformers has also spread to image recognition tasks.
Part of the trend in image-based Transformers usage is due to the success of
Transformers in image classification and object detection. For example, in semi-
nal works, Dosovitskiy et al. [12] proposed the Vision Transformer (ViT) which
breaks images into patches to be used as tokens, and Chen et al. [3] and Par-
mar et al. [25] use a sequence Transformer to do row-wise generation of images.
More recently, Transformer-based models hold the state-of-the-art results on
many computer vision benchmarks, including ImageNet [9,39], COCO [36,38],
CIFAR10/100 [12,27,31], and more.

Introduced by ViT, a common mechanism in image-based Transformers is
to break the input image into fixed-sized patches and embed the patches that
are linearly transformed into 1D vectors. This is done to adapt the images to
be used with traditionally sequential word piece token representations. The sub-
sequent patch-based token representations are used by the self-attention and
fully-connected layers of the Transformer.

One problem with ViT is that it is possible for the information to be lost
in the fixed-sized patch-based representation. Since the patches are arbitrarily
divided, there is no consideration for the objects, features, or structures that
could exist across or between multiple patches. This is because the self-attention
mechanism and fully connected layers only consider the patches as a whole.
It should be noted, that one solution to this problem is the use of hierarchical
transformers that use different-sized patches [24]. In addition, while self-attention
does create global relationships, the relationships are only pairwise relationships
and can only rely on the positional embedding for global structure.

56 B. K. Iwana and A. Kusuda

Fig. 2. An example of how ViT turns an image of a character into a sequence of patches.

This is especially true for character recognition. Due to patches being fixed
size and location, small translations in the location of the character can have a
large effect on the patch embedding. Furthermore, as shown in Fig. 2, in character
recognition, the character occupies multiple patches, and consideration for cross-
patch structures is not performed.

Conversely, Convolutional Neural Networks (CNN) [21] have been shown to
overcome these issues. The use of convolutional layers and max pooling allows
for some translation invariance [21]. Unlike fixed-size patch-based Transform-
ers, the embedding for the fully-connected layers in a CNN can represent large
overlapping receptive fields.

CNNs have shown to be a powerful tool in computer vision and pattern
recognition [29]. Thus, there is a desire to combine the advantages of CNNs and
ViT. Consequentially, many convolutional variations of ViT have been proposed.
Many Transformers, such as Convolutional vision Transformer (CvT) [33], Com-
pact Convolutional Transformer (CCT) [15], and Convolution and Self-Attention
Network (CoAtNet) [9] realize the advantages of feature extraction using convo-
lutional layers. Therefore, they combine CNNs with ViT by using convolutional
layers to improve the embeddings for Transformers.

In order to take advantage of the feature extraction, slight translation invari-
ance, and structure-preserving abilities of CNNs, we propose to incorporate a
convolutional layer inside the Transformer block. As shown in Fig. 3, the spatial
outputs of the self-attention layer are reconstructed into an image and then pro-
vided to convolutional layers. After the convolutional layers, a fully-connected
layer is used, much like a typical Transformer. Another interpretation of this
would be replacing the Multi-Layer Perceptron (MLP) of ViT with a CNN.

The contributions of this paper are as follows:

– We propose a new convolutional vision Transformer called a Vision Con-
former (ViC). The proposed ViC replaces the MLP of ViT with a CNN.

– In order to adapt the Transformer block to use a convolution, we introduce
a reverse embedding layer to reconstruct the patches from the vector embed-
dings and a reconstruction module to recompose the patches into a matrix
for the convolutional layers.

– The proposed method is evaluated on the character recognition task. We show
results on three common character recognition datasets, MNIST, EMNIST,
and KMNIST. We compare the proposed method to five state-of-the-art con-
volutional transformers and ViT.

Vision Conformer 57

(a) Vision Transformer

(b) Vision Conformer (Proposed)

(c) Other Convolutional Transformers

Fig. 3. Comparison of the steps taken in ViT, ViC, and other convolutional transform-
ers like CCT and CvT.

The code is publicly available at https://github.com/uchidalab/vision-
conformer.

2 Related Work

The most common way to use convolutions with transformer or self-attention-
based models is to use convolutional layers to extract features for the embed-
dings. For example, Coccomini et al. [7] used EfficientNet [30] to extract fea-
tures for the patches of ViT and Cross-Attention Multi-Scale Vision Transformer
(CrossViT) [2]. CvT [33] uses convolutions to generate the token embeddings.
Similarly, Convolution-enhanced image Transformers (CeiT) [37] use depth-wise
convolutions to locally enhance the tokens of a ViT. Hassani et al. proposed the
CCT [15] that replaces the standard ViT patch embedding layer with a convolu-
tional layer. CoAtNet [9] uses a hybrid of a CNN and Transformer by including
convolutional layers for the lower layers and Transformer blocks for the upper
layers. In another work, Chu et al. [4] propose a modified positional embed-
ding for ViT called Conditional Positional Embeddings (CPE). In their proposed
Conditional Positional encoding Vision Transformer (CPVT), the CPEs are con-
structed using convolutions. Pooling-based Vision Transformer (PiT) [18] uses
convolutions with stride 2 to downsample the spatial embeddings of ViT.

In addition, there are other ways convolutions are used in ViT-based models.
For example, Convolutional Vision Transformer (ConViT) [10] proposes Gated

https://github.com/uchidalab/vision-conformer
https://github.com/uchidalab/vision-conformer

58 B. K. Iwana and A. Kusuda

Positional Self-Attention (GPSA) that can be initialized as a convolutional layer.
Through this, the GPSA can learn similar properties as a convolution. In Zhang
et al. [40], a convolution is used to aggregate hierarchical transformer blocks in
their Nested Hierarchical Transformer (NesT).

There are also CNN models that utilize self-attention. For example, CNNs
using self-attention have been used for medical imaging [22,34]. The self-attention
helps establish relationships between regions of the image that is beyond the recep-
tive field of the convolutions. CNN Meets Transformer (CMT) [14] uses alternat-
ing convolutional blocks and lightweight self-attention blocks with local percep-
tion units. Transformer in Convolutional Neural Networks (TransCNN) [23] utilize
hierarchical MHSA (H-MHSA) blocks within a CNN.

Compared to these methods, as far as the authors know, the proposed method
is the only method to incorporate the convolutional layers directly into the trans-
former layers of a transformer model. Most methods that incorporate convolu-
tions into their architectures usually either use the convolutions separate from
the transformer layers or just use the self-attention as part of a CNN.

In time series recognition, namely speech recognition, the Conformer [13] is a
transformer that contains a convolution between the self-attention layer and the
fully-connected layer. Due to the similarity of the Conformer and the proposed
method, we adopt a similar name. However, the proposed method was developed
without inspiration or relation to a Conformer. And unlike the Conformer, the
proposed method is based on ViT and requires extra consideration for the patch
embeddings and image-based convolutions.

3 Vision Transformers (ViT)

Transformers are neural network models that were originally designed for
NLP [32]. They are constructed from Transformer blocks consisting of a self-
attention layer followed by a fully-connected layer with residual connections
between layers. In the traditional NLP Transformers, text is modeled using
sequences of word part tokens. These tokens are embedded into vectors and fed
to the Transformer.

ViT [12] is a Transformer that was adapted for image recognition. The novel
idea of ViT is that they proposed to use small image patches from the input
images as tokens instead of the traditional word part tokens. Another difference
is the traditional Transformer is trained in an encoder-decoder structure. Com-
paratively, ViT only uses an encoder during training. In this section, we will
provide background and describe the important features of ViT.

3.1 Image Tokenization

In order to adapt images to be used as sequences of token embeddings, ViT
breaks the image into fixed-sized patches, as shown in Fig. 1. The patches are
serialized into a sequence. Each element of the sequence is flattened and embed-
ded into a vector using a trainable linear projection. The result is a sequence

Vision Conformer 59

X = x1, . . . ,xt, . . . ,xT , where xt is a vector embedding of each patch and T is
the number of patches. Because the patches are serialized, structures that span
multiple patches are arbitrarily split based on the patch size.

Furthermore, a 1D positional embedding is added to the patch embedding.
The positional embedding indicates the position of the token in the sequence.
The purpose of the positional embedding is to retain the positional information
of the patches.

3.2 Classification Tokenization

In addition to the patch embedding a special token is used to indicate the embed-
ding to use for the classifier. This special classification token is prepended as xCLS

to X as the first element of the sequence, i.e. X = xCLS,x1, . . . ,xt, . . . ,xT . In
each layer of ViT, the first element of the sequence of embeddings is the classifi-
cation token and the subsequent elements are the patch tokens. For classification,
an MLP head is used as a classifier by attaching a fully-connected layer to the
output embedding of the topmost classification token.

3.3 Multi-Head Self-Attention

Self-attention is a special case of attention where elements of the input sequence
are weighted and multiplied with themselves. Specifically, the input sequences are
copied into a query Q, key K, and value V and weighted separately. The elements
of query Q and key K are multiplied and become the attention mechanism for
value V. In Transformers, Scaled Dot-Product Attention is used for the self-
attention mechanism. Namely, the Scaled Dot-Product Attention is defined as:

Attention(Q,K,V) = softmax
(
QKT

√
d

)
V, (1)

where 1/
√
d is a scaling factor by the number dimensions d of the input

sequences. The idea of self-attention is that the important pairwise relation-
ships between tokens should be emphasized in the representation for the fully-
connected layer.

Multi-head attention is attention that uses more than one parallel attention
blocks. In Transformers, for each Q, K, and V, multiple self-attention layers are
used and the results are concatenated. This is done to jointly attend different
combinations of pairwise matches simultaneously.

3.4 Multi-Layer Perceptron (MLP)

After the multi-head self-attention layer, ViT and other Transformers use a fully-
connected MLP layer. The input to the MLP layer is the sequence output by
self-attention, including the vector embedding related to the classification token.
Also, between each layer Layer Normalization [1] and a residual connection [16]
is used.

60 B. K. Iwana and A. Kusuda

Algorithm 1. Reverse Embedding, Reconstruction, and CNN
Require: Z(in) = zCLS, z1, . . . , zt, . . . , zT
Ensure: Z′(out) = z′

CLS, z′
1, . . . , z

′
t, . . . , z

′
T

1: zCLS,Zpatch ← Z(in) � Separate the patch embeddings
2: Zpatch ← Linear(Zpatch) � Reverse embedding
3: P ← Reshape(Zpatch)
4: I ← SpatialConcatenate(P) � Reconstruction
5: for c ← 1, C do � CNN
6: I′ ← Convolution(I)
7: end for
8: P′ ← PatchExtraction(I′)
9: Z′

patch ← Flatten(P′) � Patch embedding
10: Z′

patch ← Linear(Z′
patch)

11: Z′ ← Concatenate(zCLS,Z′
patch) + Z(in)

12: Z′(out) = MLP(Z′)

4 Vision Conformer (ViC)

The proposed Vision Conformer (ViC) is modeled on ViT [12]. As shown in
Fig. 1, we adopt a similar structure, including the same patch tokenization and
embedding and self-attention. The difference between ViT and ViC is that we
propose to replace the MLP of ViT with a CNN.

Figure 4 details the proposed ViC Encoder block. Similar to ViT, the embed-
ded patches are input and Layer Normalization [1] is applied. Next, MHSA is
used. The residual connection is then added to the output of MHSA and Layer
Normalization is applied again. After Layer Normalization, the hidden vector
Z(in) = zCLS, z1, . . . , zt, . . . , zT is split into the classification embedding zCLS

and the patch embeddings z1, . . . , zt, . . . , zT . This is done because the classifi-
cation embedding zCLS is not part of the image representation.

From there, we introduce a Reverse Embedding step, a Reconstruction mod-
ule, a CNN, and a Patch Embedding step that are applied to the patch embed-
dings Zpatch. Finally, the hidden embeddings are fed to the fully-connected MLP.

The input of this encoder block is the same patch embeddings with positional
encodings as ViT. Furthermore, the block can be stacked L number of times.
To use the proposed method for classification, an MLP head is used on the final
zCLS embedding.

4.1 Image Reconstruction

In order to use a 2D CNN within a Transformer block, the output of MHSA
needs to be a matrix. Thus, we reconstruct the image structure from the patch
embeddings. To do this, we introduce two techniques, Reverse Embedding and
Reconstruction. The process of Reverse Embedding and Reconstruction is the
reverse operation of patch embedding used on the input of ViC. Specifically,
the Reverse Embedding returns the latent vectors back to the original shape of

Vision Conformer 61

Fig. 4. Details of a ViC Encoder block within the proposed ViC. The ViC Encoder
is similar to a standard Transformer Encoder, except that after the Multi-Head Self-
Attention layer, the patch embeddings are reconstructed into an image and a CNN is
used instead of the standard MLP. To reconstruct the image, a Reverse Embedding
layer is used. Note, special tokens such as the classification token are passed directly
to the fully connected layer.

62 B. K. Iwana and A. Kusuda

the patches and the Reconstruction module recombines the patches into a single
matrix.

Algorithm 1 shows the steps required to reconstruct the image from the token
embeddings. In Algorithm 1, the input is the token embeddings Z(in) from the
output of MHSA. The output Z′(out) is either passed to the next ViC layer or
is provided to the MLP head for classification. P is the reconstructed patches
from the patch embeddings, I is the reconstructed image, and P′ and I′ are the
corresponding patches and image after the convolutions, respectively.

4.2 Reverse Embedding

First, Reverse Embedding is used to convert the latent vectors from the MHSA
into the original shape of the patches. In Reverse Embedding, a trainable linear
layer is used to restore the dimensionality of the reconstruction, as shown in
Algorithm 1 Line 2. This is used because the dimensions of the embedding d are
defined by a hyperparameter and are not necessarily related to the patch size.
After the embedding of each patch is mapped to a PhPw-dimensional vector,
where Ph is the height of the patch and Pw is the width, the embedding is
reshaped to patch pt ∈ P with the dimensions of the original patch size (Ph, Pw).

4.3 Reconstruction

Next, a feature map I is constructed from the patches. Each of the reconstructed
patches in P is concatenated spatially in the position corresponding to the orig-
inal patch location to form a matrix of the same size as the input image. With
feature map I, it is possible to treat it as if it were a feature map in a traditional
CNN.

4.4 Convolutional Neural Network (CNN)

A CNN is used inside the ViC Encoder block instead of the typical MLP. The
CNN used in the experiments contains one convolutional layer (C = 1, where
C is the number of convolutions). However, there is no restriction on the CNN
used in the ViC Encoder block. The purpose of the CNN is to use informa-
tion across patches instead of discrete flattened patches like the MLP in ViT.
Furthermore, the convolutional layers are able to help extract features from the
image representation.

4.5 Patch Embedding

To continue using the ViC Encoder block as a Transformer block, the output
of the CNN needs to be restored to a sequence of token embeddings. Thus,
we perform the same patch embedding procedure as the input of ViT and the
proposed ViC. Namely, another trainable linear projection is used to create the
patch embeddings Z′

patch.

Vision Conformer 63

Finally, the classification token zCLS is prepended back to form the full Z′.
Z′ can now be used with the MLP like a standard Transformer.

5 Experimental Results

5.1 Architecture Settings

For the experiments, the proposed method uses three of the ViC blocks (L = 3)
shown in Fig. 4. Each block uses MHSA with four heads. In addition, each block
has one convolutional layer with 3×3 convolutions at stride 1 and 32 filters each.
As suggested by Dosovitskiy et al. [12], Gaussian Error Linear Units (GeLU) [17]
is used as the activation function for all of the trainable layers, including the
convolutional layers. For the patch encodings, we use 4 × 4 pixel patches and a
patch encoding latent space with 256 dimensions.

The proposed method and all of the comparative evaluations use the same
training scheme. The networks are trained with batch size 256 for 500 epochs
using an Adam optimizer [19] with an initial learning rate of 0.001 and a weight
decay of 0.0005. The size of the input, number of input channels, and number
of classes is determined by each dataset. In addition, we use the pre-defined
training and test sets that were determined by the dataset authors.

5.2 Comparative Evaluations

In order to evaluate the proposed method, we compare it to other ViT models
that incorporate convolutions in some aspect. For a fair comparison, the shared
hyperparameters of each of the comparison methods were set to match the pro-
posed method. Namely, three Transformer blocks with four heads are used. In
addition, all of the comparative methods use the same 4 × 4 pixel patches and a
256 dimensional linear projection embedding. They are all trained for the same
500 epochs with Adam optimizer and an initial learning rate of 0.001 and a
weight decay of 0.0005. All of the networks are trained without pre-training or
data augmentation. The following comparative evaluations were performed:

– Vision Transformer (ViT). This is the baseline used to demonstrate the
usefulness of the proposed method. The ViT evaluation uses all of the same
hyperparameters, except for the convolutional layers and reverse embedding
layers.

– Compact Convolutional Transformer (CCT) [15]. CCT uses two convo-
lutional layers instead of the traditional embedding layer in ViT. The imple-
mentation uses convolutions with kernel size 3 at stride 1 like the proposed
method. In addition, CCT uses Sequence Pooling for the MLP head used for
classification.

– Convolution and Self-Attention Network (CoAtNet) [9]. CoAtNet
combines a CNN with ViT by having the lower layers be CNN blocks while
the higher layers be Transformer blocks. We use the C-T-T-T version of CoAt-
Net for comparison as it consists of one convolutional block, one depth-wise
convolutional block [28], and three Transformer blocks.

64 B. K. Iwana and A. Kusuda

– Convolutional vision Transformer (CvT) [33]. CvT uses convolutions in
two parts of the model. First, convolutions are used in the token embeddings.
Second, convolutions are used for the projections for the self-attention layer.
Again, for the experiments, the hyperparameters used were set to match the
proposed method.

– Nested Hierarchical Transformer (NesT) [40]. NesT incorporates a con-
volution into the aggregation function of hierarchical Transformer blocks.
NesT-T is used for the evaluation which includes three hierarchical layers of
8, 4, and 1 Transformer blocks each.

– Pooling-based Vision Transformer (PiT) [18]. PiT uses strided convo-
lutions to downsample the patch token embeddings. To match the proposed
method, one Transformer block is used between each downsampling, for a
total of three Transformer blocks.

Table 1. Average Test Accuracy (%) of Five Trainings

Model MNIST EMNIST KMNIST

ViC (Proposed) 99.03 87.74 95.86

ViT 98.34 86.81 92.92

CoAtNet 98.82 86.85 94.56

CCT 98.68 87.75 94.47

CvT 98.72 88.02 94.86

NesT 98.80 85.02 94.68

PiT 98.77 87.39 94.91

5.3 Results on MNIST

Dataset. The Modified National Institute of Standards and Technology
(MNIST) database [21] is a standard benchmark dataset. It is made of 28 × 28
pixel, grayscale, isolated handwritten digits. There are 10 classes, “0” to “9.”
MNIST has a pre-defined training set of 60,000 images and a test set of 10,000
images.

Results. The results of the experiments are shown in Table 1. The results are
the mean of training each model five times. This is done to increase the reliability
of the results. In the table, it can be observed that the proposed ViC was able
to achieve a higher accuracy than ViT on MNIST. In addition, it did remark-
ably better than the comparison convolutional Transformers. ViC had a 99.03%
accuracy, whereas all of the others had less than 99%. It should be noted that
the accuracies are lower than some state-of-the-art methods in literature. This
is because all of the comparisons were evaluated from scratch without the use of
techniques such as data augmentation, pre-trained weights, parameter searches,
etc.

Vision Conformer 65

5.4 Results on EMNIST

Dataset. Extended MNIST (EMNIST) [8] is an extension of MNIST that
includes alphabet characters in addition to digits. For the experiments, we
use the “balanced” subset. The subset includes 112,800 training images and
18,800 test images. There are 47 classes, 10 digits and 37 letters. The letters
include uppercase and lowercase letters in distinct classes, but with certain let-
ters merged due to ambiguity between upper and lowercase. The merged letters
are “C,” “I,” “J,” “K,” “L,” “M,” “O,” “P,” “S,” “U,” “V,” “W,” “X,” “Y,”
and “Z.” EMNIST is used because it is similar to MNIST, but is a more difficult
problem.

Results. In Table 1, the results for EMNIST are also shown. For EMNIST,
CvT and CCT had higher accuracies than the proposed method. However, the
proposed method still outperformed the standard ViT. The CvT evaluation per-
formed better than all of the comparison methods.

Fig. 5. Two examples from each class of KMNIST

5.5 Results on KMNIST

Dataset. The final character recognition dataset used is Kuzushiji-MNIST
(KMNIST) dataset [5]. KMNIST consists of 10 classes of kurzushiji, or Japanese
cursive. The 10 classes represent 10 of the classical Japanese Hiragana char-
acters. An example from each class is shown in Fig. 5. Similar to MNIST, the
images are 28×28 grayscale isolated characters. There are 60,000 training images
and 10,000 test images. KMNIST is also used as a baseline with a more difficult
character recognition task.

Results. KMNIST had the largest discrepancy between the proposed method
and ViT. ViT only had an average accuracy of 92.92%, whereas all of Trans-
formers that include convolutions had 94% or higher. The proposed method per-
formed the best at 95.86% accuracy. One possible explanation for the increase
in accuracy, especially over the original ViT, is that there are more variations of
characters within classes of KMNIST. In Fig. 5, for some characters, there are
large deformations. To some extent, adding convolutions provides some transla-
tion invariance [21].

66 B. K. Iwana and A. Kusuda

(a) MNIST (b) EMNIST (c) KMNIST

Fig. 6. The test accuracy comparing the depth of the CNN. These are the average of
5 trainings.

6 Ablation Study

In order to see the effects of the convolutional layers, we perform an ablation
study that examines the change in performance while varying the number of
convolutional layers in the ViC layers. The experimental setup is the same as
described in Sect. 5. The results of the experiments are shown in Fig. 6. On
MNIST and KMNIST, adding additional convolutional layers decreased the
accuracy. EMNIST had a slight increase in accuracy at two and four layers,
but it decreased again at six. Thus, in general, increasing the number of layers
further would not provide additional benefit.

7 Application to General Object Recognition

The proposed method is not limited to only character recognition. It can be
extended to any image recognition task. Thus, we demonstrate the ability to use
the proposed method on general object recognition.

7.1 Datasets

In order to demonstrate the use of the proposed method on other tasks, we
use four datasets. The first two datasets are the CIFAR10 and CIFAR100
datasets [20]. They are natural scene object datasets with 10 classes and 100
classes, respectively. The next dataset is the STL10 dataset [6]. The STL10
dataset is similar to CIFAR10, but contains larger images of 96 × 96 pixels. The
final dataset is the FashionMNIST dataset [35]. This dataset contains images
in a similar style to MNIST, except instead of digits, it is made of articles of
clothing.

Vision Conformer 67

Table 2. General Image Average Test Accuracy (%) of Five Trainings

Model CIFAR10 CIFAR100 FashionMNIST STL10

ViC (Proposed) 80.23 53.14 90.02 58.21

ViT 76.60 55.58 87.86 57.58

CoAtNet 63.44 32.83 88.30 53.39

CCT 77.89 50.26 89.51 51.90

CvT 77.99 46.33 89.18 46.94

NesT 67.96 38.10 88.34 51.55

PiT 69.80 41.51 90.19 51.55

7.2 Results

The results are shown in Table 2. Similar to character recognition, the pro-
posed method performed better overall when compared to ViT and convolutional
Transformers. In every case except CIFAR100, the proposed ViC did better than
ViT. However, PiT had a higher accuracy than the proposed method on Fash-
ionMNIST.

8 Conclusion

In this paper, we presented a new neural network model that combines ViT
with a CNN called a Vision Conformer (ViC). Unlike CNNs, ViT has much
less image-specific inductive bias [12]. This is because the original transformer
was designed for discrete sequences. Therefore, in order to add consideration for
image structures and local pixel relationships, we introduced convolutions into
ViT.

Specifically, we proposed replacing the MLP inside the Transformer block of
ViT with a CNN. In order to be able to do this, the internal representation should
be an image-like feature map. Thus, we propose a process of reverse embedding
and reconstruction. In the reverse embedding, we perform the opposite operation
of the patch embedding process. Namely, the latent token embeddings from
MHSA are embedded into a flattened patch-sized space using a trainable linear
projection. Next, the embeddings are reshaped into patches and reconstructed
into a feature map using spatial concatenation.

We evaluated the proposed method on character recognition. Namely, we
demonstrated that the proposed method was effective on the MNIST, EMNIST,
and KMNIST datasets. Through the experiments, we demonstrate that the pro-
posed method can improve the classification ability of ViT. In addition, we
showed that similar results were found on general image recognition tasks. In
the future, work will be done exploring the complexity and improving upon the
CNN within the proposed ViC.

68 B. K. Iwana and A. Kusuda

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Chen, C.F., Fan, Q., Panda, R.: CrossViT: cross-attention multi-scale vision trans-
former for image classification. arXiv preprint arXiv:2103.14899 (2021)

3. Chen, M., et al.: Generative pretraining from pixels. In: ICML, pp. 1691–1703
(2020)

4. Chu, X., et al.: Conditional positional encodings for vision transformers. arXiv
preprint arXiv:2102.10882 (2021)

5. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718
(2018)

6. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: AISTATS, pp. 215–223 (2011)

7. Coccomini, D., Messina, N., Gennaro, C., Falchi, F.: Combining efficientNet and
vision transformers for video deepfake detection. arXiv preprint arXiv:2107.02612
(2021)

8. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to
handwritten letters. In: IJCNN, pp. 2921–2926 (2017)

9. Dai, Z., Liu, H., Le, Q.V., Tan, M.: CoatNet: marrying convolution and attention
for all data sizes. arXiv preprint arXiv:2106.04803 (2021)

10. d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., Sagun, L.: Con-
ViT: improving vision transformers with soft convolutional inductive biases. arXiv
preprint arXiv:2103.10697 (2021)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. In: ICLR (2020)

13. Gulati, A., et al.: Conformer: convolution-augmented transformer for speech recog-
nition. In: Interspeech (2020). https://doi.org/10.21437/interspeech.2020-3015

14. Guo, J., et al.: CMT: convolutional neural networks meet vision transformers.
arXiv preprint arXiv:2107.06263 (2021)

15. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the
big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704
(2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016). https://doi.org/10.1109/cvpr.2016.90

17. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415 (2016)

18. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimen-
sions of vision transformers. arXiv preprint arXiv:2103.16302 (2021)

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
21. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2103.14899
http://arxiv.org/abs/2102.10882
http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/2107.02612
http://arxiv.org/abs/2106.04803
http://arxiv.org/abs/2103.10697
http://arxiv.org/abs/1810.04805
https://doi.org/10.21437/interspeech.2020-3015
http://arxiv.org/abs/2107.06263
http://arxiv.org/abs/2104.05704
https://doi.org/10.1109/cvpr.2016.90
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2103.16302
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

Vision Conformer 69

22. Li, M., Hsu, W., Xie, X., Cong, J., Gao, W.: SACNN: self-attention convolutional
neural network for low-dose CT denoising with self-supervised perceptual loss net-
work. IEEE Trans. Medical Imaging 39(7), 2289–2301 (2020). https://doi.org/10.
1109/tmi.2020.2968472

23. Liu, Y., Sun, G., Qiu, Y., Zhang, L., Chhatkuli, A., Van Gool, L.: Transformer in
convolutional neural networks. arXiv preprint arXiv:2106.03180 (2021)

24. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-
dows. In: ICCV (2021). https://doi.org/10.1109/iccv48922.2021.00986

25. Parmar, N., et al.: Image transformer. In: ICML, pp. 4055–4064 (2018)
26. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language

models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
27. Ridnik, T., Sharir, G., Ben-Cohen, A., Ben-Baruch, E., Noy, A.: ML-Decoder:

scalable and versatile classification head. arXiv preprint arXiv:2111.12933 (2021)
28. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:

inverted residuals and linear bottlenecks. In: CVPR (2018). https://doi.org/10.
1109/cvpr.2018.00474

29. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

30. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: ICML, pp. 6105–6114 (2019)

31. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper
with image transformers. In: ICCV (2021)

32. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
33. Wu, H., et al.: CvT: introducing convolutions to vision transformers. In: ICCV

(2021)
34. Wu, Y., Ma, Y., Liu, J., Du, J., Xing, L.: Self-attention convolutional neural net-

work for improved MR image reconstruction. Inf. Sci. 490, 317–328 (2019). https://
doi.org/10.1016/j.ins.2019.03.080

35. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

36. Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In:
ICCV (2021)

37. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution
designs into visual transformers. arXiv preprint arXiv:2103.11816 (2021)

38. Yuan, L., et al.: Florence: a new foundation model for computer vision. arXiv
preprint arXiv:2111.11432 (2021)

39. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. arXiv
preprint arXiv:2106.04560 (2021)

40. Zhang, Z., Zhang, H., Zhao, L., Chen, T., Arik, S., Pfister, T.: Nested hierarchical
transformer: towards accurate, data-efficient and interpretable visual understand-
ing. In: AAAI (2022)

https://doi.org/10.1109/tmi.2020.2968472
https://doi.org/10.1109/tmi.2020.2968472
http://arxiv.org/abs/2106.03180
https://doi.org/10.1109/iccv48922.2021.00986
http://arxiv.org/abs/2111.12933
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.ins.2019.03.080
https://doi.org/10.1016/j.ins.2019.03.080
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/2103.11816
http://arxiv.org/abs/2111.11432
http://arxiv.org/abs/2106.04560

Modeling Cross-layer Interaction
for Chinese Calligraphy Style

Classification

Zhigang Li1, Li Liu1(B), Taorong Qiu1, Yue Lu2, and Ching Y. Suen3

1 School of Mathematics and Computer Sciences, Nanchang University,
Nanchang 330031, China
liuli 033@163.com

2 School of Communication and Electronic Engineering, East China Normal
University, Shanghai 200241, China

3 Centre for Pattern Recognition and Machine Intelligence, Concordia University,

Montreal H3G 1M8, Canada

Abstract. Chinese calligraphy style classification plays a significant role
in Chinese calligraphy study. It is a fine-grained classification problem
since the difference among different styles is extremely subtle. We propose
a novel convolutional neural network equipped with the cross-layer interac-
tion module to address the issue of Chinese calligraphy style classification
in this paper. In our proposed network, a multi-scale attention mechanism
is first presented, with which the input image can be characterized at mul-
tiple levels. Then we model the interaction between any two layers in the
network using Hadamard product. In addition, for each input image, we
generate its profile image, which is fed to the network together with the
input image. In order to evaluate the effectiveness of the proposed network,
we conduct extensive experiments on two datasets. The results show that
modeling cross-layer interaction is beneficial for the fine-grained Chinese
calligraphy style classification task. The multi-scale attention mechanism
can highlight the informative part of the image at multiple scales, which
can boost the classification performance. Since the profile image can give
clues about the stroke compactness of the characters, it is useful in cap-
turing the subtle difference among different styles. The proposed network
achieves the accuracies of 98.62% and 95.92% on the two datasets respec-
tively, which compares favorably with state-of-the-art methods.

Keywords: Chinese calligraphy style classification · Cross-layer
interaction · Multi-scale attention · Profile image

1 Introduction

Chinese calligraphy is an important part of Chinese culture. It is renowned all
over the world for its beauty and elegance. In recent years, more and more
calligraphy works have been scanned and stored in digital libraries like CADAL
(China Academic Digital Associative Library). Considering the large quantities
of scanned calligraphy works, a concern is raised naturally: How to employ the
machine learning techniques to promote the calligraphy-related research?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 70–84, 2023.
https://doi.org/10.1007/978-3-031-41685-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_5

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 71

In this paper, we mainly address the issue of Chinese calligraphy style classifi-
cation, which plays a vital role in Chinese calligraphy study. As stated in [1], the
problem of Chinese calligraphy style classification is often confused with Chinese
calligraphy font classification. Regarding Chinese calligraphy font, it refers to a
broad categorization of Chinese scripts. There are mainly five Chinese calligra-
phy fonts, viz. seal, clerical, cursive, semi cursive and standard. However, Chi-
nese calligraphy styles are formed by famous Chinese calligraphers. For instance,
there are Yan style, Ou style, Liu style and Zhao style, which are formed by the
four famous calligraphers: Yan Zhenqing, Ouyang Xun, Liu Gongquan, and Zhao
Mengfu, respectively. The characteristic of each style is largely determined by
the personality trait of the corresponding calligrapher. Compared with Chinese
calligraphy font, the difference among different Chinese calligraphy styles is sub-
tle which is hard for untrained eyes to discern as can been seen from Fig. 1.
Therefore, Chinese calligraphy style classification is a challenging fine-grained
image classification problem.

Fig. 1. Comparison between Chinese calligraphy font and Chinese calligraphy style.

We propose a novel convolutional neural network equipped with the cross-
layer interaction module to solve the Chinese calligraphy style classification
problem in this paper. As stated above, Chinese calligraphy style classification
is a fine-grained classification problem. In this way, it is of great significance
to extract discriminative features from the image. A lot of methods have been
proposed to deal with the issue of fine-grained image classification. For exam-
ple, the informative regions are first segmented from the image in [2]. For each
region, discriminative features are then extracted. Despite the promising results
obtained, segmenting informative regions from the image is a non-trivial task
itself. In this paper, we employ the attention mechanism to focus on the infor-
mative part of the image. Since different styles may vary at different scales, we
propose a multi-scale attention mechanism, with which the input image can be
characterized at multiple levels. As indicated in [3–5], it is insufficient to employ

72 Z. Li et al.

a single convolutional network layer to describe the image for fine-grained classi-
fication. So we employ multiple layers to depict the image. To be more specific,
we fully exploit the interaction between different layers to characterize the image
based on Hadamard product. The final image representation is generated by con-
catenating the interactions between different combinations of two layers. Since
different styles are often different in terms of stroke compactness, we generate
the profile image for each input image. The profile image is fed to the net-
work together with the input image. In order to validate the effectiveness of the
proposed network, we conduct extensive comparison and ablation experiments
on two datasets. The proposed network demonstrates promising results, which
outperforms state-of-the-art methods.

The remainder of the paper is organized as follows. Related work is sum-
marized in Sect. 2. We detail the proposed method in Sect. 3. Experiments are
elaborated in Sect. 4. Section 5 concludes the paper and provides suggestions for
future work.

2 Related Works

In this section, we briefly review the works that are most relevant to our proposed
method.

2.1 Chinese Calligraphy Style Classification

To address the issue of Chinese calligraphy style classification, early methods
adopt handcrafted feature-based methods. For example, Zhang et al. [6] first
extract features like the thickness of the horizontal and vertical strokes from the
image, and then employ the Bayesian classifier for style classification. In [7], three
types of character features, namely, position features, proportion features and
projection features, are extracted from the image. Subsequently, these features
are fed to the SVM classifier for classification.

Deep learning is introduced to solve the problem of Chinese calligraphy
style classification in [8], where three convolutional neural networks (CNN), viz.
Local Convolution Neural Network (LCNN), Global Convolution Neural Network
(GCNN), Two Pathway Convolution Neural Network (TPCNN), are proposed.
In [1], a novel CNN structure is presented, which is equipped with the squeeze-and-
excitation (SE) [9] block and Haar wavelet modules. Since SE block only highlights
the channel-wise feature maps, it is replaced with the Convolution Block Atten-
tion Module (CBAM) [10] in [11], with CBAM focusing not only channel but also
the spatial dimension. Liu et al. [12] present a siamese network to deal with the
issue of Chinese calligraphy style classification. The siamese network is composed
of two streams sharing weights. Each stream is further extended as a classifica-
tion network. The siamese network is trained to jointly minimize two types of loss:
constrastive loss and cross-entropy loss, which are complementary to each other.
In [13], a sword-like model called SwordNet is presented to solve the Chinese callig-
raphy style classification problem. The skip connections are added in the network
to enhance the model’s generalization ability.

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 73

2.2 Fine-Grained Image Classification

Since Chinese calligraphy style classification is a fine-grained classification prob-
lem, we present a brief overview of the fine-grained image classification methods
found in the literature.

Fig. 2. Architecture of the proposed network.

As indicated in [15], extracting discriminative image features plays a vital role
in fine-grained classification. A hierarchical bilinear pooling (HBP) framework
is proposed in [15] to solve the fine-grained classification problem. Considering
that HBP models feature interaction on the whole image, including the noisy
background, it may reduce the discrimnative power of the extracted features. To
address this issue, Tan et al. [16] present a model called Hierarchical Bilinear
Pooling with Aggregated Slack Mask (HBPASM). It can generate a RoI-aware
image feature representation, which outperforms the HBP model. In [17], a chan-
nel interaction network (CIN) is proposed. To be more specific, a self-channel
interaction (SCI) module is presented for a single image to explore channel-wise
correlation within the image. Besides, a contrastive channel interaction (CCI)
module is proposed for an image pair to model the cross-sample channel interac-
tion. Ruan et al. [18] propose a Spatial Attentive Comparison Network (SACN),
which can deal with the fine-grained classification problem with only a few sam-
ples. Three modules are involved in the proposed network, viz. feature extrac-
tion module, selective-comparison similarity module, and classification module.
A weakly supervised approach for fine-grained image classification is presented
in [19]. It also consists of three components: object detection, ObjectMask, and

74 Z. Li et al.

classification. He et al. [20] exploit the layered triplet loss to solve the fine-grained
image classification problem. Different from the commonly-used triplet loss that
selects samples based on only a single criterion, the loss function is designed with
the coarse to fine scheme in this work. In [21], a multilayer feature fusion (MFF)
network with parallel convolutional block (PCB) mechanism is proposed. Com-
pared with the original convolutional blocks, PCB has more effective residual
connection ability in extracting the region of interest.

3 Proposed Method

The overall architecture of our proposed network is illustrated in Fig. 2. It is built
on a lightweight backbone with the detailed configurations shown in Table 1. The
details of the proposed network will be given in the following sections.

Table 1. Detailed configuration of backbone in the proposed network.

Layer Kernel Stride Padding

Conv 5 × 5 × 1 × 32 1 2

MaxPooling + BN + ReLU 3 × 3 1

Conv 5 × 5 × 32 × 32 1 2

MaxPooling + BN + ReLU 3 × 3 1

Conv 5 × 5 × 32 × 64 1 2

MaxPooling + BN + ReLU 3 × 3 1

Conv 5 × 5 × 64 × 32 1 2

AvgPooling + BN + ReLU 3 × 3 1

Global Average Pooling

3.1 Profile Image Generation

Given an image I with the height and width being H and W respectively, we
generate its profile image I ′ as follows:

I ′ = Hv • Hh (1)

where Hv and Hh denote the vertical and horizontal projections of the image I
respectively. • represents the outer product.

For clarity, a sample image is shown in Fig. 3(a). Its vertical and horizontal
projections are demonstrated in Fig. 3(b) and Fig. 3(c) respectively. The final
profile image is illustrated in Fig. 3(d). One can observe that the profile image
is informative which can give some clues about the stroke compactness of the
image. So we feed the profile image together with the original image to the
network. In detail, the profile image is stacked with the original image along the
channel dimension as shown in Fig. 2.

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 75

(a) Sample image (b) Vertical pro-
jection

(c) Horizontal
projection

(d)

Fig. 3. Generating profile image for a sample image.

3.2 Multi-scale Attention

In order to highlight the informative part of the image, we present a multi-scale
attention module as shown in Fig. 4. It can process the input at multiple scales,
which is shown to be useful for fine-grained feature learning.

Fig. 4. The proposed multi-scale attention module.

More specifically, given a feature map X ∈ RC×W×H from a layer of the
network, where C, W and H denote the channel dimension, width and height
of the feature map respectively, we apply multi-scale convolutional filters with
kernel sizes of 1 × 1, 3 × 3, 5 × 5, which generate three output feature maps
X1 ∈ R1×W×H , X2 ∈ R1×W×H and X3 ∈ R1×W×H . Afterwards, they are
aggregated as Y through element-wise addition.

76 Z. Li et al.

To emphasize the discriminative information both in spatial and channel
dimensions, we attach Y with two branches, with one branch corresponding to
channel attention and the other branch spatial attention. In detail, the spatial
attention is achieved by a convolutional operation with C convolutional filters
with the kernel size of 1 × 1. The obtained spatial attention map is denoted as
Ys ∈ RC×W×H . Regarding the channel attention, we first stretch Y as a one-
dimensional feature, and then feed it to a fully-connected layer to obtain the
channel attention map Yc ∈ RC×1×1. Given the spatial attention map Ys and
the channel attention map Yc, the final attention map Ŷ is generated as follows:

Ŷ = σ(Ys ⊗ Yc) (2)

where σ(·) represents the sigmoid function, and ⊗ denotes the channel-wise
multiplication.

Hence we can apply the attention map Ŷ to the feature map X as follows:

X ′ = X � Ŷ (3)

where � is the element-wise multiplication, and X ′ is the enhanced feature map.

3.3 Cross-layer Interaction

Since different layers of the convolutional neural network play different roles in
representing an image, it is usually insufficient to employ a single layer for image
representation in the fine-grained classification tasks. Therefore, we employ mul-
tiple layers in our work. To be more specific, we make use of the cross-layer
interaction in generating image representation.

Formally, since the feature maps from different layers are usually different
in spatial resolution, we first exploit a 1 × 1 convolution to normalize them to
the same resolution. Given the feature maps X ∈ RC×W×H and Y ∈ RC×W×H

from two different layers, we compute their interaction based on the Hadamard
product as follows:

Z = X ◦ Y (4)

where Z ∈ RC×W×H and ◦ denotes the Hadamard product. As there are only
a few layers in the proposed network, the interaction between any two different
layers is computed. In addition, we compute the interaction between a layer
and itself, which has shown to be useful according to preliminary experiments.
Afterwards, we apply the global average pooling to the interactions of different
combinations of layers. Then the generated features are concatenated to form
the final image representation as illustrated in Fig. 2.

During training, we employ two cross-entropy losses to jointly optimize the
network as demonstrated in Fig. 2. In greater details, the total loss is formally
defined as follows:

Ltotal = L1 + α L2 (5)

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 77

where L1 and L2 denote the two cross-entropy losses, respectively. α is the weight
coefficient which can be employed to balance the two losses.

4 Experiments

In order to validate the effectiveness of our proposed network, we have conducted
extensive experiments. The datasets employed in our study are first introduced.
Then the ablation experiments are performed to demonstrate the efficacy of each
module in the proposed network. Finally, we compare the proposed approach
with several state-of-the-art methods.

4.1 Datasets

We test the performance of the proposed network on two datasets, and their
details are listed below:

Liu style Ou style Yan style Zhao style

(a) Samples from CCS dataset.

Liu style Ou style Yan style Zhao style

(b) Samples from eCCS dataset.

Fig. 5. Samples from the two datasets.

(1) CCS (Chinese Calligraphy Style) dataset
This dataset is made publicly available in Zhang et al.’s work [1]. It is com-

posed of 3, 200 character images with four styles: Ou style, Yan style, Liu style
and Zhao style. Hence there are 800 images for each style. The size of each image
is 64 × 64. All the images are in BMP format. Several samples from this dataset
are illustrated in Fig. 5(a).

(2) eCCS (extended Chinese Calligraphy Style) dataset
To the best of our knowledge, there are no other public datasets for Chinese

calligraphy style classification. As the CCS dataset is small, it may be hard to
test the generalization ability of the proposed method. To address this issue,
we have expanded the CCS dataset and created the eCCS dataset. To be more
specific, we collect more samples for each style. In this way, the number of images
for each style has been extended to 1, 800. Afterwards, we apply Gaussian noise

78 Z. Li et al.

with the mean 0 and variance 0.04 to each image in the dataset to better simulate
the real-life scenario. Overall, the newly created eCCS dataset consists of 7, 200
images. Several samples from this dataset are illustrated in Fig. 5(b), from which
one can observe that this dataset is more challenging compared with the CCS
dataset.

For the CCS dataset, we follow the train-validation-test split employed in [1].
The eCCS dataset is split into training, validation and test sets with a ratio
of 8 : 1 : 1. We conducted five random splits in this study, and the average
classification accuracy was used as the evaluation metric.

4.2 Implementation Details

The network is trained with the Adam optimizer. The learning rate is ini-
tially set as 0.01 and is decayed by a factor of 10 after 50 epochs. The net-
work is trained for 60 epochs. The size of the minibatch is 64 and the momen-
tum is set as 0.9. As shown in Eq. (5), a weight coefficient α is introduced
to balance the two losses. We set α = 1.25 in our study, which has shown
to be effective in the preliminary experiments. All the experiments are imple-
mented with the PyTorch framework and we employ NVIDIA GeForce GTX
1080 graphics card for acceleration. The source code will be made available
at https://github.com/chnlzg/Calligraphy-classification.

4.3 Ablation Study

In order to verify the effectiveness of each module in our proposed network,
we conducted ablation experiments on eCCS dataset. The results are given in

Table 2. Ablation study results.

Backbone Two losses Profile image Multi-scale attention Cross-layer interaction Accuracy(%)

� 90.46

� � 93.97

� � 92.53

� � 93.04

� � 92.85

� � � 94.10

� � � 94.54

� � � 94.38

� � � 94.18

� � � 93.67

� � � 94.08

� � � � 94.84

� � � � 94.89

� � � � 94.86

� � � � 94.38

� � � � � 95.92

https://github.com/chnlzg/Calligraphy-classification

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 79

Table 2. As shown in this table, employing the backbone only results in unsatis-
factory performance. The classification accuracy of the network is increased to
93.97%, 92.53%, 93.04% and 92.85% when the two loss, profile image generation,
multi-scale attention, and cross-layer interaction modules are introduced indi-
vidually. The results indicate that each module is helpful in learning fine-grained
features. In addition, the performance of the proposed network is further boosted
when more modules are considered. When all the modules are involved, an accu-
racy of 95.92% was achieved, confirming that all the modules are complementary
to each other.

4.4 Effect of the Proposed Multi-scale Attention Model

Fig. 6. Comparison of the proposed multi-scale attention model with several well-
known attention models.

To show the effectiveness of the proposed multi-scale attention model, we com-
pare it with several well-known attention models including SE, CBAM and
ECA [24]. The comparison results are shown in Fig. 6. We can see that the
proposed multi-scale attention model outperforms the other attention models,
which suggests that highlighting the image at multiple scales is beneficial for
improving the fine-grained classification performance.

4.5 Comparison with State-of-the-art Methods

We further compared our proposed network with several state-of-the-art Chinese
calligraphy style classification methods. In detail, Dai et al.’s method [8], Zhang
et al.’s method [1], Liu et al.’s method [12], Chen et al.’s method [14] and Zhang
et al.’s method [11] are employed for comparison. Besides, we compare our pro-
posed approach with two well-known fine-grained image classification methods,
namely, Yu et al.’s method [15] and Tan et al.’s method [16]. Moreover, two popu-
lar generic image classification methods: Li et al.’s method [22] and Howard et al.’s
method [23] are also employed for comparison. The comparison results on the two
datasets are shown in Tables 3 and 4, respectively. In addition to the classification
accuracy, we also give the number of parameters required in each method.

80 Z. Li et al.

Table 3. Comparison of the proposed model with many state-of-the-art methods on
CCS dataset.

Models Accuracy(%) Number of parameters

Dai et al. [8] 93.19 41,560,260

Zhang et al. [1] 97.88 286,448

Liu et al. [12] 82.63 16,328,906

Chen et al. [14] 96.75 11,178,584

Zhang et al. [11] 98.50 289,002

Yu et al. [15] 96.12 73,962,628

Tan et al. [16] 97.12 33,993,604

Li et al. [22] 89.25 24,113,692

Howard et al. [23] 82.87 1,662,492

Proposed method 98.62 600,892

Considering that obtaining enough training samples may be difficult under
some circumstances, we have tested the performance of different methods with
a limited number of training images on eCCS dataset. To be more specific, we
reduce the training set size with a rate of r. The performance comparison among
different methods with r = 0.8 and r = 0.6 is shown in Table 5. For instance,
when r = 0.8, it refers to that we randomly sample 80% of the images from each
class on the training set.

Table 4. Comparison of the proposed method with many state-of-the-art methods on
eCCS dataset.

Models Accuracy(%)

Dai et al. [8] 70.43

Zhang et al. [1] 90.22

Liu et al. [12] 81.38

Chen et al. [14] 89.32

Zhang et al. [11] 90.41

Yu et al. [15] 91.74

Tan et al. [16] 90.71

Li et al. [22] 74.21

Howard et al. [23] 68.59

Proposed method 95.92

From the tables, the following observations can be made:
(1) The generic image classification methods perform poorly on the two

datasets. In contrast, the two fine-grained classification methods perform much
better, which confirms that Chinese calligraphy style classification is a fine-
grained classification problem. To achieve effective Chinese calligraphy style clas-
sification, fine-grained features are required.

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 81

(2) Compared with CCS dataset, the performance of all the methods deteri-
orate on the more challenging eCCS dataset. For example, Zhang et al’s method
[11] performs well on CCS dataset, yet an accuracy drop of 8.09% is observed
on eCCS dataset. Our proposed method achieves promising results on both of
the two datasets, which compares favorably with all the methods. Besides, the
number of parameters in our proposed network is reasonable.

Table 5. Comparison of the proposed method with many state-of-the-art methods on
eCCS dataset with different training set reduction rates.

Accuracy(%)

Models r=0.8 r=0.6

Dai et al. [8] 72.22 72.08

Zhang et al. [1] 87.50 83.80

Liu et al. [12] 77.22 75.00

Chen et al. [14] 85.82 83.97

Zhang et al. [11] 88.10 85.11

Yu et al. [15] 90.41 88.32

Tan et al. [16] 88.72 88.26

Li et al. [22] 72.09 65.95

Howard et al. [23] 62.45 57.15

Proposed method 94.54 93.23

(3) From Table 5, we can see that the classification accuracy of all the meth-
ods is decreased when the size of the training set becomes small. Yet, our pro-
posed approach can still maintain satisfying performance. For instance, the pro-
posed method achieves an accuracy of 93.23% with r = 0.6, greatly outperform-
ing the other methods.

4.6 Error Analysis

In order to gain a better understanding of our proposed method, we present the
confusion matrix as shown in Fig. 7. We can see that Ou style suffers from the
lowest classification accuracy. It is heavily confused with Zhao style. The possible
reason is that Ouyang Xun’s calligraphy has a great impact on that of Zhao
Mengfu, resulting in the great resemblance of their calligraphy. Furthermore, the
second largest confusion lies between Liu style and Ou style. It is mainly because
Liu Gongquan has learned a lot from Ouyang Xun. Hence their calligraphy look
so much alike which leads to misclassification. Several misclassified samples are
shown in Fig. 8.

82 Z. Li et al.

Fig. 7. Confusion matrix of our proposed network.

Fig. 8. Several misclassified samples.

5 Conclusions

In this paper, we address the issue of Chinese calligraphy style classification,
which plays a vital role in Chinese calligraphy study. It is a challenging prob-
lem due to that the difference among different styles is subtle. We propose a
novel convolutional neural network with the cross-layer interaction module to
deal with this fine-grained classification problem. In order to characterize the
image at multiple scales, we present a multi-scale attention mechanism. Instead
of employing a single layer for image representation, we exploit multiple layers
and model the interaction between different layers, which has shown to be useful
for fine-grained image classification. Besides, we generate the profile image for
each input image, and feed the profile image together with the input image to
the network. The network is trained to jointly optimize two cross-entropy losses,
which have shown to be complementary to each other. In order to validate the

Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification 83

proposed approach, extensive experiments have been conducted on two datasets.
The efficacy of all the modules in the proposed network has been demonstrated
in the ablation experiments. The proposed approach has achieved the accuracies
of 98.62% and 95.92% on the two datasets respectively, which compare favor-
ably with state-of-the-art methods. It can achieve promising results even with a
small training set. However, the datasets employed in our study only consist of
four calligraphy styles. We will extend the datasets by collecting more styles in
the future and will investigate the performance of our proposed method on the
extended datasets.

References

1. Zhang, J., Guo, M., Fan, J.: A novel CNN structure for fine-grained classification
of Chinese calligraphy styles. Int. J. Doc. Anal. Recogn. 22(2), 177–88 (2019)

2. Peng, Y., He, X., Zhao, J.: Object-part attention model for fine-grained image
classification. IEEE Trans. Image Process. 27(3), 1487–1500 (2017)

3. He, M., Cheng, Q., Qi, G.: Weakly supervised semantic and attentive data mixing
augmentation for fine-grained visual categorization. IEEE Access 10, 35814–35823
(2022)

4. Guang, J., Liang, J.: CMSEA: compound model scaling with efficient attention for
fine-grained image classification. IEEE Access 10, 18222–18232 (2022)

5. Melnyk, P., You, Z., Li, K.: A high-performance CNN method for offline hand-
written Chinese character recognition and visualization. Soft. Comput. 24(11),
7977–7987 (2020)

6. Zhang, X., Nagy, G.: Style comparisons in calligraphy. In: Document Recognition
and Retrieval XIX, pp. 177–186 (2012)

7. Zhang, Y., Liu, Y., He, J., Zhang, J.: Recognition of calligraphy style based on
global feature descriptor. In: Proceedings of the International Conference on Mul-
timedia and Expo (ICME), pp. 1–6 (2013)

8. Dai, F., Tang, C., Lv, J.: Classification of calligraphy style based on convolutional
neural network. In: Proceedings of the International Conference on Neural Infor-
mation Processing (ICONIP), pp. 359–370 (2018)

9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7132–7141 (2018)

10. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention
module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01234-2 1

11. Zhang, J., Yu, W., Wang, Z., Li, J., Pan, Z.: Attention-enhanced CNN for Chinese
calligraphy styles classification. In: Proceedings of the International Conference on
Virtual Reality (ICVR), pp. 352–358 (2021)

12. Liu, L., et al.: Multi-loss Siamese convolutional neural network for Chinese calligra-
phy style classification. In: Proceedings of the International Conference on Neural
Information Processing (ICONIP), pp. 425–432 (2021)

13. Li, X., Wang, J., Zhang, H., Huang, Y., Huang, H.: SwordNet: Chinese character
font style recognition network. IEEE Access 10, 8388–8398 (2022)

https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1

84 Z. Li et al.

14. Chen, J., Mu, S., Xu, S., Ding, Y.: HENet: forcing a network to think more for
font recognition. In: Proceedings of the International Conference on Advanced
Information Science and System (AISS), pp. 1–5 (2021)

15. Yu, C., Zhao, X., Zheng, Q., Zhang, P., You, X.: Hierarchical bilinear pooling
for fine-grained visual recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 595–610. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01270-0 35

16. Tan, M., Wang, G., Zhou, J., Peng, Z., Zheng, M.: Fine-grained classification via
hierarchical bilinear pooling with aggregated slack mask. IEEE Access 7, 117944–
117953 (2019)

17. Gao, Y., Han, X., Wang, X., Huang, W., Scott, M.: Channel interaction networks
for fine-grained image categorization. In: Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 10818–10825 (2020)

18. Ruan, X., Lin, G., Long, C., Lu, S.: Few-shot fine-grained classification with spatial
attentive comparison. Knowl.-Based Syst. 218, 106840 (2021)

19. Chen, J., Hu, J., Li, S.: Learning to locate for fine-grained image recognition.
Comput. Vis. Image Underst. 206, 103184 (2021)

20. He, G., Li, F., Wang, Q., Bai, Z., Xu, Y.: A hierarchical sampling based triplet
network for fine-grained image classification. Pattern Recogn. 115, 107889 (2021)

21. Wang, L., He, K., Feng, X., Ma, X.: Multilayer feature fusion with parallel convo-
lutional block for fine-grained image classification. Appl. Intell. 52(3), 2872–2883
(2022)

22. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the
International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 510–519 (2019)

23. Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the International
Conference on Computer Vision (ICCV), pp. 1314–1324 (2019)

24. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel
attention for deep convolutional neural networks. In: Proceedings of the Inter-
national Conference on Computer Vision and Pattern Recognition (CVPR), pp.
11531–11539 (2020)

https://doi.org/10.1007/978-3-030-01270-0_35

Exploring Semantic Word
Representations for Recognition-Free

NLP on Handwritten Document Images

Oliver Tüselmann(B) and Gernot A. Fink

Department of Computer Science, TU Dortmund University, 44227 Dortmund,
Germany

{oliver.tuselmann,gernot.fink}@cs.tu-dortmund.de

Abstract. A semantic analysis of documents offers a wide range of
practical application scenarios. Thereby, the combination of handwrit-
ing recognizer and textual NLP models constitutes an intuitive solution.
However, due to the difficulty of recognizing handwriting and the error
propagation problem, optimized architectures are required. Recognition-
free approaches proved to be robust, but often produce poorer results
compared to recognition-based methods. In our opinion, a major reason
for this is that recognition-free approaches do not use largely pre-trained
semantic word embeddings, which proves to be one of the most pow-
erful method in the textual domain. To overcome this limitation, we
explore and evaluate several semantic embeddings for word image repre-
sentation. We are able to show that context-based embedding methods
are well suited for static word representations and that they are more
predictive at word image level compared to classical static embedding
methods. Furthermore, our recognition-free approach with pre-trained
semantic information outperforms recognition-free as well as recognition-
based approaches from the literature on several Named Entity Recogni-
tion benchmark datasets.

1 Introduction

Due to the combination of visual and textual properties, the semantic analysis of
handwritten document images constitutes both an exciting and challenging field
of research. Even though the focus of the Document Image Analysis community
has been on visual rather than semantic tasks in the past, the community is
steadily shifting towards the semantic analysis and understanding of document
images [1,20,24,34–36]. Thereby, classical Natural Language Processing (NLP)
tasks like Named Entity Recognition (NER) [1,38], Named Entity Linking [35]
and Question Answering [24,36] have already been investigated for handwritten
document images.

An intuitive approach for realizing NLP tasks on handwritten document
images is to combine the advances from the visual and textual domain, using a
two-stage model [38]. Thereby, a Handwritten Text Recognizer (HTR) transfers
a given document into a textual representation and the outcome is processed
by a textual NLP model. Unfortunately, despite advances in machine learning,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 85–100, 2023.
https://doi.org/10.1007/978-3-031-41685-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_6&domain=pdf
http://orcid.org/0000-0002-8892-3306
http://orcid.org/0000-0002-7446-7813
https://doi.org/10.1007/978-3-031-41685-9_6

86 O. Tüselmann and G. A. Fink

Document Word
Image Embeddings

Recognition-free NER Model

ORGo

...

BLSTM...

......

... ...

...

...

o
Semantic Word Image Embedder

Fig. 1. An Overview of our proposed recognition-free NLP approach on word-
segmented handwritten document images with NER as the downstream task.

HTR approaches are still not perfect and can cause many recognition errors
[38]. Several publications show that recognition errors have a strong negative
impact on the performance of NLP models, mainly caused by error propagation
[14,38]. To overcome this limitation, recognition-free end-to-end architectures
are favored for documents that are difficult to recognize [24].

Even though recognition-free approaches can alleviate the error propagation
problem, they are outperformed by two-stage recognition-based approaches on
several semantic tasks [24,38]. In our opinion, this is mainly due to the funda-
mental drawback of not using pre-trained semantic word embeddings, which is
one of the most powerful advantages of the NLP domain [40]. To overcome this
limitation, we explore and evaluate which textually pre-trained semantic embed-
dings from the NLP domain are best suited for representing semantic information
in word images. Furthermore, we incorporates these semantic embeddings into
a recognition-free NLP framework for handwritten document images (see Fig. 1)
and evaluate the performance on several NER datasets.

The remainder of this paper is organized as follows. Section 2 introduces
related work in the fields of semantic word embeddings and NER on handwritten
document images. In Sect. 3, we present our recognition-free NLP framework and
specifically focus on textually pre-trained semantic word embeddings for word
image representation. We evaluate these representations and the framework for
NER on handwritten document images in Sect. 4. Finally, we summarize our
results in Sect. 5.

Semantic Representations for NLP on Handwritten Document Images 87

2 Related Work

This section reviews related work regarding the main concepts used in our pro-
posed recognition-free NLP framework. We provide an overview of syntactic and
semantic word embedding methods and show how they are predicted from word
image level. We further present related work in the field of NER on document
images.

2.1 Word Embeddings

Processing textual words using electronic devices, requires a transformation of
these words into numeric representations. Current methods realize such a trans-
formation by using word embeddings. They find their application throughout all
NLP tasks and many other domains [31]. Thereby, the use of specialized embed-
ding techniques lead to a significant performance improvement in a wide variety
of areas, including NLP [31] and Document Image Analysis tasks [24,32,36].
Even though there are numerous embedding methods, we will only consider
semantic and syntactic word embedding approaches in the following.

The majority of semantic word embedding approaches are based on the dis-
tributional hypothesis [15]. This hypothesis states that words occurring in simi-
lar contexts tend to have similar meanings. Approaches can be roughly divided
into static [4,25] and context-based methods [2,8,27]. Static approaches gen-
erate embeddings independently of their context and thus map a word always
to the same vector representation [4,25]. These methods have the fundamental
drawback of ignoring the fact that a word can have various meanings in dif-
ferent contexts. In recent years, several context-based embeddings approaches
have been published [2,8,27]. These approaches are trained on language mod-
eling tasks and rely on recurrent neural networks [2,27] or transformer-based
architectures [8]. The change from static to context sensitive embeddings led to
better results in almost all tasks in the NLP domain [10]. For a detailed overview
of semantic word embeddings in the textual domain, see [31].

While semantic information refers to the meaning of a word, syntactic infor-
mation represents its structural properties. Even though syntactic word embed-
dings seem to have a minor importance in the field of textual semantic anal-
ysis tasks, they are commonly used in the Document Image Analysis domain
[32,34,36]. Syntactic word embeddings (e.g. Pyramidal Histogram of Character
[3]) are often used in the field of handwritten word images to allow a similarity
comparison between a textual query and a word image [3,32,34].

2.2 Word Image Mapping

Currently, methods based on Convolutional Neural Networks (CNNs) are most
suitable for obtaining semantic and syntactic word embeddings at the word image
level [20,37,39]. A variety of approaches have been published for realizing a syn-
tactic representation on word image level [19,32,39]. Whereas semantic embed-
ding approaches follow a unified strategy by predicting textually pre-trained

88 O. Tüselmann and G. A. Fink

embeddings for word images [20,34,37,39]. First approaches in this area map
word images into a textually pre-trained semantic space by using a two-stage
CNN-based approach [37,39]. Thereby, the word images are converted into a
feature representation and afterwards mapped into the semantic space. End-
to-end approaches are able to outperform two-stage architectures on semantic
word image mapping [20,34]. Recently, the realization of a combined syntactic
and semantic word image representation has been investigated [20,34].

2.3 Named Entity Recognition

Named Entity Recognition (NER) is a sequence labeling task with a long tradi-
tion in NLP [40]. The goal of this task is to extract named entities (e.g. places,
person, organizations) from an unstructured text. Traditional approaches mainly
rely on handcrafted rules, dictionaries or ontologies [40]. Today, methods using
neural architectures outperform traditional ones [2,8,21]. Especially, the com-
bination of a Long Short-Term Memory (LSTM) and a Conditional Random
Field (CRF) yields state-of-the-art scores on many benchmarking datasets [21].
Similar to many other NLP tasks, the use of pre-trained semantic word embed-
dings leads to a considerable performance gain on most benchmarks [2,8]. For a
detailed overview of NER in the textual domain, see [40].

There is a wide range of applications in the field of NER on document
images. In the following we focus on approaches that work directly on word
image level and not on already transcribed text. Publications in this field can
be grouped according to their focus on machine-printed [9,14] and handwrit-
ten document images [1,30,33,38]. A further categorization of the works can be
made on the basis of segmentation-free [6,11] and segmentation-based [1,30,33]
approaches. Thereby, segmentation-free approaches work on the entire document
image, whereas segmentation-based approaches require a line or word segmen-
tation. A combination of a CNN and an LSTM has proven to be particularly
successful for segmentation-based NER approaches [1,30,33]. Furthermore, it has
been shown that integrating additional information (e.g. part-of-speech tags) [30]
or using an attention mechanism [1] can lead to further improvements in this
domain. Tueselmann et al. showed recently, that a two-stage architecture con-
sisting of an HTR and a textual NER model is able to outperform end-to-end
approaches on several NER datasets [38].

3 Method

In this section, we present our recognition-free NLP framework for word seg-
mented handwritten document images (see Fig. 1). The approach consists of
a textually pre-trained semantic word embedding, a word image mapper and
a recognition-free NLP model. Thereby, the word image mapper processes the
word images in the order in which they occur on a pre-segmented document
image and predicts a semantic word embedding for each of them. Afterwards,
these embeddings are transferred to a recognition-free NLP model (e.g. NER),

Semantic Representations for NLP on Handwritten Document Images 89

which fulfills the appropriate task. This framework closely follows the two-stage
recognition-based approach as proposed in [38], however, we avoid an explicit
recognition step and obtain the semantic word representations directly on word
image level.

3.1 Semantic Word Embeddings

Semantic word embeddings play an important role in tasks related to text under-
standing and lead to considerable improvements in almost all areas of NLP [31].
Especially, context-based approaches achieved major performance gains [8,27].
In the field of handwritten document image analysis, however, only static word
embeddings have been used so far [20,37,39]. The main reason for this is most
probably that already the mapping of context-independent embeddings poses
a major challenge [37]. Recently, Ethayarajh showed in [10] that contextual-
ized semantic representations (e.g. BERT) contain powerful types of context-
independent embeddings in their first layers. These representations are able to
outperform traditional context-independent approaches on many static seman-
tic benchmarks [10]. Given these new insights, we evaluate in this work whether
these outcomes can be transferred to the word image domain. Furthermore, we
investigate which word embedding approaches from the textual domain are best
suited for obtaining a powerful semantic word image representation. In the fol-
lowing, we provide a short overview of word embedding methods that we consider
in our evaluation.

For our recognition-free NLP framework, we evaluate static [4,17,26] as well
as contextualized [2,8,27] semantic embedding approaches. A classical static
method is GloVe [26] which determines its semantic representations by using
coincidence statistics between a target word and its context words defined by a
fixed context window. This approach has the major disadvantage of being unable
to predict embeddings for words that were not part of the training. To overcome
this limitation, subword-based approaches like FastText (FT) [4] and BytePair
[17] have been published which split words into subwords and combine their
embeddings into a single representation. The drawback of static methods is that
the word order is not taken into account. Context-based methods are used to
encode this type of information. The training of these models focuses on language
modeling. First approaches like ELMO [27] and Flair [2] use LSTM-based archi-
tectures. A fundamental difference between these two approaches is that Flair
processes the textual input purely character based while ELMO uses a mixture
of character and static word embeddings. State-of-the-art methods like BERT
[8] are based on transformers and subword-based representations. Furthermore,
we consider combinations of semantic representations in our evaluation, as they
often lead to performance improvements in the textual domain [13].

3.2 Word Image Representation

For obtaining semantic word image representations, we use the same modified
ResNet architecture (Attribute-ResNet) as proposed in [34]. The Attribute-

90 O. Tüselmann and G. A. Fink

Fig. 2. Our proposed architecture for realizing a robust recognition-free NER system
incorporating semantic information.

ResNet uses a ResNet34 architecture [16] for feature extraction, whereby the
global average pooling layer at the end of the network is replaced with a Tem-
poral Pyramid Pooling (TPP) layer. The output of the TPP layer is transferred
into a three-layered Fully-Connected Network (FCN). This FCN has as many
neurons in the last layer as there are dimensions in the word representation to be
predicted (e.g. FastText = 300). Except for the final layer, the ReLU activation
function is applied to the output of all layers in the network.

3.3 Named Entity Recognition

The NER approach roughly follows the architecture proposed by Toledo et al.
[33]. Figure 2 provides an overview of our model. The first step of our approach is
the prediction of semantic word image representations for each word image from
the document (d1, ..., dT). We further capture relations among these represen-
tations by using a two-layered Bidirectional-LSTM (BLSTM). Finally, a linear
layer is applied to each hidden layer of the BLSTM in order to obtain a named
entity tag for each word image (y1, ..., yT).

Semantic Representations for NLP on Handwritten Document Images 91

4 Experiments

We evaluate the semantic quality of word embeddings for handwritten word
images by using an efficient strategy from the textual NLP domain, which con-
sists of an intrinsic and an extrinsic evaluation [29]. In this context, an intrinsic
evaluation involves tasks that are simple and fast to compute and allows infer-
ence about the performance on real-world tasks. An extrinsic evaluation, on
the other hand, focuses on the actual task (e.g. NER, QA) and is thus more
time-consuming.

For our intrinsic and extrinsic experiments, we describe the evaluation
datasets, implementation details as well as evaluation protocols. We further
present and discuss the results of the two evaluations in this section.

4.1 Datasets

For our experiments, both intrinsic and extrinsic evaluation datasets are
required. In order to compare with approaches from the literature, we use the
IAM-DB, GNHK and sGMB datasets for our intrinsic evaluation. Similar to [38],
we use the IAM-DB, sGMB, and George Washington datasets for our extrinsic
evaluation. Moreover, the HW-Synth dataset is used for pre-training the word
image mapper.

IAM-DB. The IAM Database [23] is a major benchmark for a variety of hand-
written document image tasks. The documents contain modern English sentences
written by a total of 657 different people. The database consists of 1539 scanned
text pages containing a total of 13353 text lines and 115320 words. Tueselmann
et al. manually annotated the dataset with named entity labels and proposed
an optimized semantic split into train, validation and test data [38]. There are
two versions of this dataset available with different label sets containing 6 and
18 classes.

HW-Synth. The HW-Synth (HW) dataset [18] provides a collection of synthet-
ically rendered word images. The dataset is often used for pre-training handwrit-
ten models. The word images are generated by True Type Fonts that resemble
handwriting. The vocabulary consists of the 12000 most common words from the
English language. For each word, 50 training and 4 test images are generated.
The font is randomly sampled from over 300 publicly available fonts.

GNHK. The GoodNotes Handwriting Kollection (GNHK) dataset [22] includes
unconstrained camera-captured document images of English handwritten notes.
It consists of 687 documents containing a total of 9363 text lines and 39026
words. The official partitioning divides the data into training and test sets with
a ratio of 75% and 25%, respectively.

92 O. Tüselmann and G. A. Fink

SGMB. The synthetic Groningen Meaning Bank (sGMB) dataset [6] consists of
synthetically generated handwritten document pages obtained from the corpus
of the Groningen Meaning Bank [5]. The dataset provides unstructured English
text and splits the data into 38048 training, 5150 validation and 18183 test word
images. The label set consists of the following categories: Geographical Entity,
Organization, Person, Geopolitical Entity and Time indicator.

George Washington. The George Washington (GW) dataset [28] consists
of 20 pages of correspondences between George Washington and his associates
dating from 1755. The documents were written by a single person in historical
English. The word images are labeled with the following categories: Cardinal,
Date, Location, Organization and Person.

4.2 Implementation Details

The semantic network follows the same training and optimization strategy as
described in [34]. To obtain gold standard semantic embeddings for our word
images, we used the Flair framework [2]. Thereby, we used the uncased, base
model of BERT and the default English models for ELMO, BytePair and GloVe.
For the Flair embeddings, the pre-trained forward and backward English models
are used and for FastText the Common Crawl English model [12]. Furthermore,
the PHOC representation consists of layers 2, 3, 4, 5 and an alphabet with char-
acters a − z and 0 − 9. It is important to note that for all embeddings, we have
lower-cased the transcriptions and followed the same alphabet as used for PHOC.
In our experiments we realize a combined representation of semantic approaches
by concatenating their embeddings.

The BLSTM model of our NER architecture uses a hidden layer size of 256
and a dropout of 0.5. For optimization we use the Cross Entropy Loss and the
ADAM optimizer. The learning rate is initially set to 0.001 and divided by two
whenever the training loss does not decrease in a certain range within 10 epochs.
We follow the label smoothing approach proposed by [7]. There is no sentence
segmentation and all word images of a document are processed simultaneously.

4.3 Evaluation Protocol

Since we evaluate the use of various textual semantic embeddings for word image
representation intrinsically as well as extrinsically, several metrics and protocols
are required. For this purpose, we use syntactic and semantic metrics for our
intrinsic evaluation and NER task for our extrinsic evaluation.

Intrinsic Evaluation. For an intrinsic evaluation of the word image represen-
tation methods introduced in Sect. 3.1, a semantic as well as syntactic metric is
required. We use the exact same metrics and protocols as described in [20,34].
Thereby, word spotting [3,20,32] is used as the syntactic and Word Analogy
(WA) [25] as the semantic quality measure. Word spotting is a retrieval-based

Semantic Representations for NLP on Handwritten Document Images 93

Fig. 3. Inspecting the quality of each layer (1-12) in the BERT model for use as static
word embedding on the IAM, GNHK and sGMB dataset. The quality is determined
using the WA score measured in accuracy [%].

task, which obtains a ranking of word images from a collection of document
images based on its similarity w.r.t. a given query. There exists a variety of dif-
ferent query types with Query-by-Example (QbE) and Query-by-String (QbS)
being the most prominent ones. In QbE applications, the query is a word image,
whereas in QbS it is a textual string representation. Mean Average Precision
(mAP) is the de-facto standard metric for evaluating retrieval tasks.

In the WA task, three words a, b and c are given and the goal is to infer the
fourth word d that satisfies the following condition: a is to b as c is to d. We
use the collection of human-defined WA examples proposed in [25]. Note, that
questions which contain words that are not part of the test corpus of a dataset
are excluded from the evaluation. The accuracy of correctly predicted analogies
is used as the final semantic evaluation score.

Named Entity Recognition. We use the macro F1-score with the exact same
protocol as described in [38]. The F1-score can be interpreted as a weighted
average of precision (P) and recall (R) and is formally defined as shown in Eq. 1.
In macro F1 the precision, recall and F1-scores are calculated per class and are
finally averaged. It is important to note that we exclude the non-entity (O) class
in our evaluation.

F1 = 2 ∗ precision ∗ recall

precision + recall
(1)

4.4 Intrinsic Evaluation

We evaluate the capability of various textual semantic word representations to
represent semantic in word images. For this purpose, we first present and evalu-
ate our method for extracting static embeddings from context-based approaches.
Afterwards, we determine the quality of the semantic word representations intro-
duced in Sect. 3.1 on the gold standard annotations of each dataset using WA.
Finally, we evaluate the prediction of semantic word representations at word-
image level both semantically and syntactically.

94 O. Tüselmann and G. A. Fink

Fig. 4. WA scores for different word embedding methods from the NLP domain on the
gold standard annotations of the IAM, GNHK and sGMB datasets. The results are
given in accuracy [%].

Table 1. Performances on the four evaluated datasets using accuracy [%] for the WA
task (semantic) and mAP for QbE and QbS word spotting (syntactic).

Method IAM GW sGMB GNHK

QbE QbS WA QbE QbS WA QbE QbS WA QbE QbS WA

PHOC 91.9 96.2 23.9 96.7 96.8 – 95.7 94.2 20.3 81.5 81.8 28.1

FastText (FT) 86.5 72.0 80.5 95.3 79.5 – 89.7 63.5 75.6 75.2 53.2 70.2

BytePair 87.0 72.2 58.6 94.8 82.2 – 94.2 71.0 85.7 73.4 50.7 60.3

GloVe 87.1 72.2 67.7 96.2 78.6 – 95.0 71.3 85.9 76.9 53.7 66.1

BERT 89.2 74.8 85.1 96.6 81.3 – 95.4 74.6 79.6 77.6 55.3 67.4

Flair 87.4 85.8 49.2 94.7 92.4 – 95.8 82.5 35.8 77.2 67.2 38.4

ELMO 87.5 78.5 86.8 96.4 91.1 – 94.5 75.9 78.6 74.7 58.6 73.6

ELMO + BERT 88.5 78.9 88.9 92.7 81.5 – 94.2 76.0 77.9 77.7 61.1 77.3

ELMO + FT 87.3 78.6 87.4 96.2 90.5 – 94.4 75.7 77.7 78.1 62.0 76.9

BERT + FT 88.4 74.3 85.1 95.7 83.6 – 95.5 74.2 79.1 78.8 57.8 60.3

ELMO + Flair 90.2 85.0 74.8 96.3 93.7 – 94.6 77.9 54.1 78.0 65.8 55.0

For obtaining static embeddings from context-based approaches, we utilize
the findings of Ethayarajh [10] and use the layer from the context-based model
that provides the best static characteristics. Figure 3 visualizes the word analogy
scores of each layer within the context-based BERT model. The results show that
the performances of the individual layers differ considerably. Thereby, the first
layers seem to be able to realize a powerful static word representation. Whereby,
the fifth layer proves to be most suitable due to its performance on all three
datasets. From the fifth layer onwards, the quality decreases and the last layers
seem to be rather context-sensitive and thus poorly represent static information.

Figure 4 visualizes the WA scores for our considered semantic word repre-
sentations on the gold standard annotations of the three datasets introduced in
Sect. 4.1. The static embeddings extracted from the context-based approaches
(BERT, ELMO) clearly demonstrate improved or similar scores compared to

Semantic Representations for NLP on Handwritten Document Images 95

Fig. 5. NER results for predicted word embeddings at the word image level. We report
the macro F1 scores [%] for the examined semantic word embeddings on the four
evaluation datasets.

the static approaches (FastText, GloVe, BytePair). The combination of seman-
tic embeddings seems to be promising, especially the combination of the ELMO
and BERT embedding achieves good results on all datasets. Flair is a purely
character-based embedding and leads to comparatively low scores in our evalu-
ation.

Interestingly, the static approaches lead to high WA scores on the sGMB
dataset. That is primarily due to the different examples in the WA task for each
dataset, since only examples are considered in which the result of the analogy
occurs as a word image in the test set. Since the sGMB dataset consists of sev-
eral news texts, the analogies comprise more than 90% of pure relations between
countries and cities. Those relations seem to be very well encoded in the static
embeddings (FastText, BytePair, GloVe). This raises the question regarding the
usefulness of intrinsic metrics for evaluating semantic quality and whether the
focus should rather be on downstream tasks when evaluating semantic represen-
tations.

The results obtained for predicting the semantic embeddings at word image
level generally follow the trends observed in the WA scores on the textual gold
standard data. The BERT and ELMO representations improved the QbS and
QbE scores and thus encode better syntactic information. Especially, the ELMO
embedding appears to be much more suitable based on its mixture of character
and word representation. Flair can achieve high syntactic scores, however, the
performance on the semantic evaluation measure is quite low. Similar to the gold
standard annotation, the combination of ELMO and BERT is able to achieve
high semantic scores on almost all datasets.

4.5 Extrinsic Evaluation

We use the challenging and well-known NER task for our extrinsic evalua-
tion. Figure 5 provides the performances of our intrinsically evaluated seman-
tic embeddings on several NER datasets measured in macro F1 score [%].
The embeddings used so far in the literature for building recognition-free NLP

96 O. Tüselmann and G. A. Fink

Table 2. NER performances for the evaluated datasets measured in precision (P),
recall (R) and macro-F1 (F1) scores.

Method IAM (6) IAM (18) GW sGMB

P R F1 P R F1 P R F1 P R F1

Annotation-NER [38] 87.3 87.6 87.5 68.5 61.0 63.5 96.5 84.7 89.6 81.9 79.2 80.2

HTR-NER [38] 83.3 71.0 76.4 64.8 47.5 53.6 86.9 78.3 81.3 80.1 72.7 75.8

Rowtula et al. [30] 65.5 47.6 54.6 36.9 28.0 30.3 76.4 59.8 66.6 62.7 58.1 60.1

Toledo et al. [33] 50.2 31.4 37.4 35.4 13.4 18.0 72.5 33.5 45.3 44.3 35.3 38.8

Ours (ELMO+BERT) 86.4 74.6 79.7 78.1 51.2 55.3 96.2 79.5 83.0 80.6 72.0 75.6

approaches (PHOC and FastText) perform rather poorly on these datasets com-
pared to our newly introduced semantic representations. While the Flair embed-
ding can only achieve comparatively low values particularly on the IAM dataset,
the BERT and ELMO representations achieve good performances. Especially
the combination of semantic embeddings proves to be promising and leads to
the highest scores on all datasets. There is a correlation between the WA scores
from the intrinsic evaluation and the F1 scores achieved on the NER task, how-
ever, it is not possible to generally conclude that a higher WA score leads to
improved results on the downstream task.

To compare our recognition-free NER model with approaches from the litera-
ture, we use a combination of ELMO and BERT as the semantic representation.
The results are shown in Table 2. Thereby, Annotation-NER is a recognition-
based approach that works on the gold standard annotations of the datasets
and thus reflects the NER performances under perfect recognition. The results
show that our approach obtains considerably superior scores compared to the
recognition-free approaches from the literature ([30,33]). This demonstrates the
importance of using pre-trained semantic information. Moreover, except on the
sGMB dataset, our approach is able to outperform the purely recognition-based
approach of [38] (HTR-NER). Thereby, our approach obtains a similar perfor-
mance on the sGMB dataset and the recognition-based approach benefits from
low recognition errors due to the synthetic nature of this dataset. In the case
of the IAM dataset, it should be noted that the word image mapper was pre-
trained on the word spotting split of the dataset and thus a potential test set
leak could exist.

4.6 Discussion

Further interesting research questions are, what is the best way to incorpo-
rate semantic information into our architecture and whether this information
is beneficial. For this purpose, we examine three approaches. The first app-
roach is the same as in the previous sections. Here, we train the word mapping
network separately from the downstream task and subsequently freeze the pre-
trained network while training on the downstream tasks. Thus, the parameters
in the Attribute-ResNet are not adjusted during the training process. The second

Semantic Representations for NLP on Handwritten Document Images 97

Fig. 6. Examine whether the pre-training (pre) of the image mapper (mapper) is help-
ful and how to integrate it most effectively into the NLP model.

approach also trains the semantic model separately, however, during training of
the downstream task, the parameters of the Attribute-ResNet can be adjusted.
The last approach is an end-to-end approach, which does not rely on a seman-
tically pre-trained network and is similar to the approach of [33]. Whereas the
Attribute-ResNet is used instead of the PHOCNet [32].

The results clearly show that a pre-training of the Attribute-ResNet is
extremely important. Furthermore, the results show that changing the param-
eters of the Attribute-ResNet during the training of the downstream task is
counterproductive. This is probably due to the fact that the datasets are quite
small and thus quickly lead to overfitting when the large number of parameters
in the ResNet are adjustable.

5 Conclusions

In this work, we present a recognition-free framework for NLP tasks on word-
segmented handwritten document images. Our approach focuses on the predic-
tion of textually pre-trained semantic embeddings for word images. For this
purpose, we intrinsically evaluated both static and context-based approaches
and demonstrate that the context-based approaches and especially their combi-
nation are often more suitable than the previously used static embeddings such
as FastText. In our extrinsic evaluation on several Named Entity Recognition
datasets, we can support the findings from the intrinsic evaluations and show
that our approach can outperform both recognition-free as well as recognition-
based approaches from the literature.

References

1. Adak, C., Chaudhuri, B.B., Lin, C., Blumenstein, M.: Detecting named entities in
unstructured Bengali manuscript images. In: Proceedings International Conference
on Document Analysis and Recognition, pp. 196–201. Sydney, Australia (2019)

2. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: Proceedings International Conference on Computational Linguistics,
pp. 1638–1649. Santa Fe, NM, USA (2018)

98 O. Tüselmann and G. A. Fink

3. Almazán, J., Gordo, A., Fornés, A., Valveny, E.: Word spotting and recognition
with embedded attributes. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2552–
2566 (2014)

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

5. Bos, J., Basile, V., Evang, K., Venhuizen, N., Bjerva, J.: The Groningen mean-
ing bank. In: Proceedings Joint Symposium on Semantic Processing, pp. 463–496.
Trento, Italy (2013)

6. Carbonell, M., Fornés, A., Villegas, M., Lladós, J.: A neural model for text local-
ization, transcription and named entity recognition in full pages. Pattern Recogn.
Lett. 136, 219–227 (2020)

7. Carbonell, M., Villegas, M., Fornés, A., Lladós, J.: Joint recognition of handwrit-
ten text and named entities with a neural end-to-end model. In: International
Workshop on Document Analysis Systems, pp. 399–404. Vienna, Austria (2018)

8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pp.
4171–4186. Minneapolis, MN, USA (2019)

9. Ehrmann, M., Romanello, M., Bircher, S., Clematide, S.: Introducing the CLEF
2020 HIPE shared task: Named entity recognition and linking on historical news-
papers. In: European Conference on Information Retrieval, pp. 524–532. Lisbon,
Portugal (2020)

10. Ethayarajh, K.: How contextual are contextualized word representations? Com-
paring the geometry of BERT, ELMo, and GPT-2 embeddings. In: Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pp. 55–65.
Hong Kong (2019)

11. Fornés, A., et al.: ICDAR2017 competition on information extraction in histori-
cal handwritten records. In: Proceedings International Conference on Document
Analysis and Recognition, pp. 1389–1394. Kyoto, Japan (2017)

12. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word
vectors for 157 languages. In: Proceedings International Conference on Language
Resources and Evaluation. Miyazaki, Japan (2018)

13. Gupta, P., Jaggi, M.: Obtaining better static word embeddings using contextual
embedding models. In: Joint Conference of the Annual Meeting of the Association
for Computational Linguistics and the International Joint Conference on Natural
Language Processing, pp. 5241–5253. Bangkok, Thailand (2021)

14. Hamdi, A., Jean-Caurant, A., Sidère, N., Coustaty, M., Doucet, A.: Assessing and
minimizing the impact of OCR quality on named entity recognition. In: Interna-
tional Conference on Theory and Practice of Digital Libraries, pp. 87–101. Lyon,
France (2020)

15. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: Conference on Computer Vision and Pattern Recognition, pp. 770–778. Las
Vegas, NV, USA (2016)

17. Heinzerling, B., Strube, M.: BPEmb: Tokenization-free pre-trained subword
embeddings in 275 languages. In: Proceedings International Conference on Lan-
guage Resources and Evaluation. Miyazaki, Japan (2018)

18. Krishnan, P., Jawahar, C.V.: Generating synthetic data for text recognition. CoRR
abs/1608.04224 (2016)

19. Krishnan, P., Jawahar, C.V.: HWNet v2: an efficient word image representation
for handwritten documents. Int. J. Doc. Anal. Recogn. 22, 387–405 (2019)

Semantic Representations for NLP on Handwritten Document Images 99

20. Krishnan, P., Jawahar, C.V.: Bringing semantics into word image representation.
Pattern Recogn. 108, 107542 (2020)

21. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 260–270.
San Diego, CA, USA (2016)

22. Lee, A.W.C., Chung, J., Lee, M.: GNHK: a dataset for English handwriting in
the wild. In: Proceedings International Conference on Document Analysis and
Recognition, pp. 399–412. Lausanne, Switzerland (2021)

23. Marti, U., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

24. Mathew, M., Gómez, L., Karatzas, D., Jawahar, C.V.: Asking questions on hand-
written document collections. Int. J. Doc. Anal. Recogn. 24, 235–249 (2021)

25. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. In: International Conference on Learning Representations.
Scottsdale, AZ, USA (2013)

26. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word rep-
resentation. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543. Doha, Qatar (2014)

27. Peters, M.E., et al.: Deep contextualized word representations. In: Annual Conf.
of the North American Chapter of the Association for Computational Linguistics,
pp. 2227–2237. New Orleans, LA, USA (2018)

28. Rath, T.M., Manmatha, R.: Word spotting for historical documents. Int. J. Doc.
Anal. Recogn. 9(2–4), 139–152 (2007)

29. Resnik, P., Lin, J.: The Handbook of Computational Linguistics and Natural Lan-
guage Processing, chap. 11, pp. 271–295 (2010)

30. Rowtula, V., Krishnan, P., Jawahar, C.V.: PoS tagging and named entity recogni-
tion on handwritten documents. In: International Conference on Natural Language
Processing. Patiala, India (2018)

31. Sezerer, E., Tekir, S.: A survey on neural word embeddings. CoRR abs/2110.01804
(2021)

32. Sudholt, S., Fink, G.A.: PHOCNet: a deep convolutional neural network for word
spotting in handwritten documents. In: Proceedings of the International Con-
ference on Frontiers in Handwriting Recognition, pp. 277–282. Shenzhen, China
(2016)

33. Toledo, J.I., Carbonell, M., Fornés, A., Lladós, J.: Information extraction from his-
torical handwritten document images with a context-aware neural model. Pattern
Recogn. 86, 27–36 (2019)

34. Tüselmann, O., Brandenbusch, K., Chen, M., Fink, G.A.: A weighted combina-
tion of semantic and syntactic word image representations. In: Proceedings of the
International Conference on Frontiers in Handwriting Recognition, pp. 285–299.
Hyderabad, India (2022)

35. Tüselmann, O., Fink, G.A.: Named entity linking on handwritten document
images. In: International Workshop on Document Analysis Systems, pp. 199–213.
La Rochelle, France (2022)

36. Tüselmann, O., Müller, F., Wolf, F., Fink, G.A.: Recognition-free question answer-
ing on handwritten document collections. In: Proceedings of the International Con-
ference on Frontiers in Handwriting Recognition, pp. 259–273. Hyderabad, India
(2022)

100 O. Tüselmann and G. A. Fink

37. Tüselmann, O., Wolf, F., Fink, G.A.: Identifying and tackling key challenges in
semantic word spotting. In: Proceedings of the International Conference on Fron-
tiers in Handwriting Recognition, pp. 55–60. Dortmund, Germany (2020)

38. Tüselmann, O., Wolf, F., Fink, G.A.: Are end-to-end systems really necessary for
NER on handwritten document images? In: Proceedings of the International Con-
ference on Document Analysis and Recognition, pp. 808–822. Lausanne, Switzer-
land (2021)

39. Wilkinson, T., Brun, A.: Semantic and verbatim word spotting using deep neural
networks. In: Proceedings of the International Conference on Frontiers in Hand-
writing Recognition, pp. 307–312. Shenzhen, China (2016)

40. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition
from deep learning models. In: Proceedings of the International Conference on
Computational Linguistics, pp. 2145–2158. Santa Fe, NM, USA (2018)

OCR Language Models with Custom
Vocabularies

Peter Garst(B), Reeve Ingle, and Yasuhisa Fujii

Google, Mountain View, CA 94303, USA
{pgarst,reeveingle,yasuhisaf}@google.com

Abstract. Language models are useful adjuncts to optical models for
producing accurate optical character recognition (OCR) results. One fac-
tor which limits the power of language models in this context is the exis-
tence of many specialized domains with language statistics very different
from those implied by a general language model - think of checks, medical
prescriptions, and many other specialized document classes. This paper
introduces an algorithm for efficiently generating and attaching a domain
specific word based language model at run time to a general language
model in an OCR system. In order to best use this model the paper also
introduces a modified CTC beam search decoder which effectively allows
hypotheses to remain in contention based on possible future completion
of vocabulary words. The result is a substantial reduction in word error
rate in recognizing material from specialized domains.

Keywords: OCR · Language model · Fine tuning

1 Introduction

Optical character recognition (OCR) is a fundamental tool enabling many appli-
cations, such as visual search, document digitization, understanding and trans-
lating scene text, and support for the visually impaired [4,18,19,22,26,30].

OCR systems range from the very general, supporting arbitrary input in
many of the world’s writing systems [9,23,27], to the very specific, for example
for bank checks [8,15] or license plates [1,11]. The aim of this paper is to describe
a system which allows general OCR systems to be quickly and easily configured
for specialized tasks at run time, in many cases providing the benefits of a
custom system engineered for a specific application at very small cost. The lever
for making this change is the language model.

It has been clear for decades that language models can improve OCR results
by estimating the prior probability of OCR outputs [5,24]. Originally this was
accomplished by postprocessing the output of OCR systems, in effect applying a
spelling checker of some sort to the output. More recent systems often integrate
language models into their decoders [9,12,20].

Independent of their application in OCR systems, there has been a long
history of creating language models with some specificity. Adaptation of speech
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 101–115, 2023.
https://doi.org/10.1007/978-3-031-41685-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_7

102 P. Garst et al.

recognition systems and handwriting recognition systems to individual users has
been studied for a long time, and in many cases modifications to the associated
language models has been part of that [7,16]. Many of these systems create an
adapted language model as a sum or interpolation of two models of the same
type.

Standalone language models, used for tasks like question answering or sum-
marization, also benefit from specialization or fine tuning [6,10]. There is, for
example, a language model trained to work well on radiology reports [29].

The combination of task specific language models with successful general pur-
pose OCR engines leads to many specialized applications, such as recognition
of receipts, invoices, tax forms, medical prescriptions or notes, and many oth-
ers. Some of the specialized language models used in other applications require
extensive training, but in order to provide fast and simple run time configura-
tion the models discussed here require only a vocabulary list and some frequency
information for the words in the vocabulary.

The goal of this paper is to define language models and an OCR decoder
architecture which efficiently solves the specialization problem for many appli-
cations. These are our contributions:

– We define simple language models for words and regular expressions which
may contain domain specific vocabularies

– We provide tools to generate these models from domain text, and also allow
flexible user configuration

– These models may be quickly added to existing general purpose language
models at run time

– We modify the CTC decoder to support these models with a limited kind of
lookahead

2 Custom Vocabulary Models

2.1 Baseline System

Test images for this work may be either line images or full page images. In the full
page image case, the full recognition system includes some preliminary material
which finds text lines in the image and feeds those to a line recognizer. If the test
set contains line images, then the line recognizer may consume them directly.
Only the line recognizer varies between the baseline and experimental systems,
so we will focus on that and treat the line segmentation code as a constant part
of the environment.

The baseline line recognizer is a general purpose OCR system using a CTC
[14] beam search decoder [12]. The input line image is divided into frames (pos-
sibly with an overlapping sliding window), and at each frame the beam search
maintains a list of hypotheses, each of which is an assignment of a character label
to each preceding frame. In general multiple frames are mapped to one output
character, with a special blank label to indicate a transition from a character to
an identical character.

OCR Language Models with Custom Vocabularies 103

Each hypothesis has a score. At each frame, the decoder accepts the optical
model score for each possible label in that frame. The decoder generates a new
hypothesis for each preceding hypothesis and each possible label for the new
frame. The score for the new hypothesis combines the score for the preceding
hypothesis; the optical score for the proposed new label; the cost of a character
unigram prior; transition costs for new characters, blank labels, and repeated
characters; and, in the first frame for a new character, the cost of a character
language model. The parameter values are optimized to minimize the character
error rate on a development set with a black-box optimization [13].

The decoder maintains a list of the best scoring hypotheses, keeping only the
best N , and also pruning those too far away from the best. N is called the beam
width, and is typically 30 for the baseline recognizer.

The subject of this paper is the last component, the language model score.
The baseline system includes a character based language model which estimates
the probability of each possible next character in the search, given the left context
of the characters already present in the hypothesis. At the frame in which the
CTC search transitions to a new character, a weighted negative log probability
of the new character is added to the score. In the baseline system the same
pretrained language model is applied to all input.

2.2 Custom Vocabularies

We wish to specify a set of words which are likely to appear in input images,
and boost the score of any hypothesis in the beam search which contains one.
There are a number of properties of the vocabulary to specify:

– The algorithm supports both literal words and regular expressions.
– The literal words may be case sensitive or insensitive.
– Vocabulary entries may optionally be anchored to the start or end of word.
– Each vocabulary entry has a weight.

There are two reasons for drawing a distinction between literal words and
regular expressions. The first is just implementation efficiency. The second is
that the scoring algorithms, which we will discuss below, work better for fixed
length vocabulary items. In the current system that is just the literal words, but
this should be applied to other fixed length regular expressions as well.

As we will see the scoring algorithm includes a number of hyperparameters
as well. A vocabulary with these items specified is the essential information a
user must supply, along with the input data, to benefit from this algorithm.
Vocabulary sizes in tests so far have ranged from a handful of items to a few
tens of thousands of items.

The tools used in the tests below can generate the vocabulary from sample
text, so in general this should not be a burdensome requirement. The user is
free to specify some or all of the vocabulary if there are words of particular
importance in an application.

Ideally one would retune the CTC parameters and language model weights
after adding a custom vocabulary, but that would not be consistent with the

104 P. Garst et al.

goal of adding new vocabularies at runtime with low latency, and in practice
good results appear not to require this.

2.3 Designing Appropriate Vocabularies

In some applications the vocabulary may be clear. In processing prescriptions,
the medication names are the words the user is most concerned to recognize
correctly. In other applications the user may have a body of data from a specific
domain, but the appropriate vocabulary is not clear.

The essential element of designing a vocabulary is choosing appropriate
weights for the words. If the user already has a specific vocabulary this is all
that is required. Otherwise, we may process a body of text from the domain,
finding the common words and calculating their weights, and use some cutoff on
the weight values to choose the vocabulary. We use three factors in choosing the
weight for a word.

1. The length of the word. The scoring formula adds a value proportional to the
length of the word, to give a per-character change in the score, but this does
not fully capture the effect of word length. Short words tend to have many
more possible confusions in the text than long words, so if short and long
words have the same per-character score delta there will be more short false
positives than long ones. Thus the weight for longer words should be higher.
In the PubMed dataset below “palmitoylation” is a common word which is
not easily confusable with others - it benefits from a high weight.

2. The empirical word distribution. A body of text produces an empirical prob-
ability distribution for the words. Frequent words should get higher weights.

3. The language model distribution. We have a base language model which can
estimate the probability distribution for the next character, given the left
context. For each word in a body of text this leads to a language model score
for the word.

We have experimented with a number of functions of these factors and settled
on a simple form:

(c0 + c1 · length + c2 · (frequency/lm score)), (1)

where the cn are parameters chosen to minimize the OCR error rate. That is, the
weight is higher for long words, and for words which are frequent in the domain
text but do not score well in the baseline language model.

We have done a black-box optimization [13] to choose these parameters in
a number of data sets and chosen values which work well in a variety of cases,
although there is some difference in the optimal values for different kinds of
tasks. Ideally one would do a fresh training for each data set, but that may
not be feasible with fast run time configuration. In the future weight formulas
which account for the coverage by the vocabulary of the target text and the
confusability of the vocabulary items may provide more precise choice of the
parameters.

OCR Language Models with Custom Vocabularies 105

2.4 Language Model State

The language model represents regular expressions and literal words separately
as finite state machines. Classes available in the OpenFST toolkit [3] represent
the machines. The regular expressions in the vocabulary are separately com-
piled, with final state weights representing the weight of the expression in the
vocabulary. These are then combined into a single state machine and optimized.
Each state has two scores: one is the weight of the regular expression with that
as a valid final state, if any; and the other is the best weight for which the state
represents a prefix.

The literal words are handled similarly, with the vocabulary compiled into a
trie, or prefix tree. Each node in the trie has two numbers attached: one is the
weight of the word which ends at that node, or 0 if there is none; and the other
is the weight of the best word for which the node is a prefix. These two state
machines, plus the baseline character model and a number of hyperparameters,
comprise the custom vocabulary model.

Each hypothesis in the beam search includes a language model state, which
depends just on the textual transcription of that hypothesis, not the way it is
divided into frames. The essential properties of the state are that it can generate
a score, and that appending a new character leads us to a new state. The state
includes independent components for the states of the base character model, the
regular expressions, and the literal words.

Given a hypothesis which contains a sequence of characters “abcd” in its
transcript, we must consider that a vocabulary word may start with the character
a, or with the character b, and so on. Thus the decoder state for the literal words,
for example, will be a vector of trie states from the trie representing the literal
vocabulary. If we use Trie(“abcd”) to represent the state of the trie we get by
traversing the string “abcd” from the start state, then the literal word portion
of the decoder state will be [Trie(“abcd”), Trie(“bcd”), Trie(“cd”), Trie(“d”)].
As we decode many of these strings will be invalid - that is, not a valid prefix
for any of the vocabulary words - so the vector will in practice be pretty small.
Thus the full decoder language model state contains the state of the character
model, whatever that may be; a vector of states from the literal vocabulary trie;
and a vector of states from the regular expression state machine:

(C, VL, VR) (2)

where C is the character model state, VL is the vector of valid trie states, and
VR is the vector of valid regular expression states.

If the model configuration anchors the vocabulary words to the word start
position there will be many fewer valid states active at any one time. For the
literal words we could also use the Aho-Corasick algorithm [2,17] to generate a
single state machine valid for any starting position in the string.

2.5 Scoring the Language Model

Suppose we have a hypothesis in the beam search and we wish to transition to
a new character c. We have the language model state for the hypothesis and

106 P. Garst et al.

Fig. 1. State transition for the literal word part of the language model state. In this
example the vocabulary contains can, cat, any and not. The first box is the literal word
state after seeing “ca”, and the second box after we accept “n”. In the second state
“can” contributes to the base score, and all the other words in contention contribute
to the best score.

the new character, and we must produce the new language model state and the
score, containing both the base score for the material we have seen and the best
score representing possible future word completions.

The underlying character model produces a score which is part of both base
and best scores, and transitions its part of the state C to a new character model
state however it chooses.

For the word part of the state, each element of VL transitions to a new trie
state with the addition of the character c. In some cases the transition will be
invalid and the state will drop out; in the other cases the trie generates both a
base and a best score. If it is consistent with the model configuration, we may
also add a new state to the vector by transitioning from the start state of the
trie with the character c. All these actions together generate the word part of
the next state.

The base score for this word transition is the optimal value among all the
base values for valid trie transitions. It represents the most valuable word in the
vocabulary completed by the new character c. Similarly, the best score is the
optimal value among all the best scores for the valid transitions, reflecting the
most valuable partially completed vocabulary word. These word base and best
scores are part of the base and best scores for the whole model. Figure 1 shows
an example.

The actions for the regular expression state list is similar. Adding this part
in, at the end we have a new language model state, containing a new character
model state and new word and regular expression state vectors; and we have
base and best scores for all the parts together.

OCR Language Models with Custom Vocabularies 107

2.6 Dual Criterion Beam Search

We have seen that there are two scores we attach to a hypothesis during the
beam search, representing what we have seen and what we hope to see. Because
beam search capacity is a limited resource, neither alone is a reliable guide to
which hypotheses we should keep. If we rely only on the current scores we may
eliminate a vocabulary word because of some poorly formed characters in the
middle, reducing the recall on the in vocabulary words in the image. If we rely
only on the hopeful scores we may force out some hypotheses with mediocre
current scores, and then the hopeful hypotheses may drop out anyway if the
data goes in a different direction. Figure 2 visualizes this problem. Thus we keep
hypotheses in the beam search if the base score is good, or if the best score is
good.

The dual criterion beam search is presented in Algorithm 1.

Algorithm 1. Dual criterion beam search for one frame
Input: hypotheses from the previous frame, and candidate characters for this frame

1. Generate a new set of hypotheses using the scoring algorithm outlined above, based
on the hypotheses from the previous frame and the possible characters for the new
frame. Each hypothesis will have a base score and a best score.

2. Pick out the top up to N hypotheses, using the base score, subject to a constraint
on the width of the beam. These will remain in the beam for the following frame.
In the base system these are all the hypotheses kept by the algorithm.

3. Pick out up to M additional hypotheses, based on the best score, subject to the
constraint that the best score is no worse than the worst base score hypothesis in
the original set of N . The union of these two sets is the set of hypotheses presented
to the next frame.

Most of the benefit of the custom vocabulary comes from the language model,
but in some cases the dual criterion beam search provides an additional improve-
ment.

2.7 Performance Considerations

This algorithm is useful in the context of a running OCR service, for which users
wish to specify at run time a custom vocabulary which applies to some group of
input images. As such, there are two latency figures of concern.

The additional computation required to maintain the additional beam
hypotheses and to score the finite state machines associated with the custom
vocabulary is negligible for common vocabulary sizes compared to the effort
required to generate the optical model scores. If at some point greater efficiency
becomes important the Aho-Corasick algorithm could be used to simplify and
streamline the processing.

108 P. Garst et al.

Fig. 2. Conceptual diagram to show the need of dual criterion beam search. The black
solid line is the best hypothesis without the cost bonus. The red and blue dashed lines
are hypotheses with a cost boost at frame t′. If we use a single criterion, the decoding
can successfully find the best hypothesis for (a) but could fail for (b) because the
hypotheses expanded for the boosted hypothesis can easily dominate the beam. The
proposed algorithm keeps the top-N and M hypotheses for each case to deal with the
problem. (Color figure online)

The more important latency value is for initialization - given a configuration
file containing the vocabulary and associated parameters, and a running baseline
OCR service, how long does it take until the service is ready to use the model?
Constructing the appropriate state machines from a textual representation is
straightforward, and times in the range 2 - 10 ms. on common desktop hardware
are typical. This initialization time would be amortized over as many images as
are used with the custom model.

3 Experimental Results

We explore these algorithms with three data sets, with different characteristics
and different levels of information available. None of these data sets is perfect.
The PubMed set has the most complete and accurate ground truth informa-
tion, and is large enough to use better quality statistical tests in validating the
algorithm. The other data sets don’t have enough information for real statistical
rigor, but give at least a qualitative sense of how the algorithm performs in other
situations.

3.1 PubMed Research Papers

The PubMed Data Set. This data set is synthetic, based on a set of related
biomedical research papers from PubMed, https://pubmed.ncbi.nlm.nih.gov [28].

https://pubmed.ncbi.nlm.nih.gov

OCR Language Models with Custom Vocabularies 109

Fig. 3. Sample images from the PubMed dataset

IFITM3 (Interferon induced transmembrane protein 3, https://www.ncbi.nlm.
nih.gov/gene/10410) [21] is implicated in the immune response to influenza, Sars-
Cov-2, and other viruses, and is an active current research topic. We took 19
research papers from PubMed related to this topic and used the Pango (https://
pango.gnome.org/) [25] typesetter program to generate text line images with ran-
dom fonts and styles from their text. We then used two different levels of random
degradation on the initial images to generate images more challenging for OCR.
Figure 3 shows typical images generated in this manner.

This synthetic data set is not an exact model for real images one might see
as OCR input, but it provides an excellent experimental platform for judging
the relative efficacy of different algorithms. The original images are too easy for
this test, with word error rates under 0.5% for the baseline OCR system, but
the other two versions were used for much of the development and tuning of the
system. At each degradation level the data set contains 40898 lines and 183619
words.

Table 1. Heavily degraded PubMed recognition results as a function of vocabulary
size

Vocab size coverage All text In vocabulary

WER change win ratio WER change win ratio

Baseline Custom Baseline Custom

200 0.223 7.10 6.34 –10.7% 3.62 6.00 1.96 –67.4% 14.45

400 0.287 6.28 –11.6% 3.74 5.14 1.66 –67.7% 14.48

800 0.365 6.19 –12.9% 4.10 4.51 1.45 –67.8% 14.88

1200 0.424 6.12 –13.9% 4.44 4.29 1.39 –67.6% 14.83

Fig. 4. A win: corrected “First Line of Antivirel Defenso.”

PubMed Results. Table 1 shows several figures of merit for these models as
a function of vocabulary size. These results used the more heavily degraded
version of the data set. These figures were generated using a jackknife protocol,
with one paper at a time left out, and the vocabulary automatically generated.

https://www.ncbi.nlm.nih.gov/gene/10410
https://www.ncbi.nlm.nih.gov/gene/10410
https://pango.gnome.org/
https://pango.gnome.org/

110 P. Garst et al.

Table 2. Lightly degraded PubMed recognition results as a function of vocabulary size

Vocab size coverage All text In vocabulary

WER change win ratio WER change win ratio

Baseline Custom Baseline Custom

200 0.223 1.65 1.47 –11.0% 4.50 1.32 0.16 –88.2% 22.64

400 0.287 1.46 –11.7% 4.72 1.08 0.14 –86.9% 17.53

800 0.365 1.46 –11.8% 4.52 0.86 0.12 –86.5% 17.10

1200 0.424 1.46 –11.6% 4.11 0.75 0.11 –84.7% 13.62

Fig. 5. Losses: changed correct “significant” to “significant” and “normal” to “formal”

At each vocabulary size we see the vocabulary coverage, the relative change in
word accuracy, and the win ratio. The coverage is the portion of all the words in
the document which are in vocabulary. The win ratio is the ratio of the number
of errors corrected by the model to the number of words which were correct
in the base model but changed to an incorrect value in the custom vocabulary
model. The figure includes these values for the entire documents, and just for
the in vocabulary words, as in some applications the accuracy on these items
may be important to the user.

Note that the in vocabulary baseline accuracy changes with different vocab-
ulary sizes. This is because the set of in vocabulary words changes from line to
line. Each word will get exactly the same baseline results on each line, but the
set of included words changes.

The model configuration anchored the vocabulary items to word start, and a
word is considered in vocabulary if it benefits from the algorithm. For example,
if “with” is in the vocabulary, then “within” is considered an in vocabulary word
in the data set.

Table 2 shows the same results with the more lightly degraded version of the
data set, with baseline word error rate 1.65. The baseline in vocabulary error
rate varies with the vocabulary size, but is generally lower than the overall error
rate.

Figures 4 and 5 show some wins and losses on this data set.

3.2 Handwritten Prescriptions

The Prescription Data Set. This data set contains full page images of hand-
written prescriptions. A sample is shown in Fig. 6. The ground truth for these
images contains only the list of medications mentioned in each prescription, and
not the other text elements or the locations of the medication words. This limits

OCR Language Models with Custom Vocabularies 111

Fig. 6. This prescription contains amitop, migrol, xenadom and cyptan

the available options for analyzing OCR performance on these images, but the
Jaccard Index can be used as an important measure of algorithm quality.

The Jaccard Index will be a perfect 1 if the OCR system finds all the medica-
tions in a prescription, without introducing any false positives. Given an image,
if GT is the set of ground truth vocabulary words in the image, and R is the set
of recognized vocabulary words in the image, then the index is

J(R,GT) =
|R ∩ GT |
|R ∪ GT | (3)

The Jaccard Index has important limitations, but it is an appropriate metric
for this application. It provides no information on location or order, but none is
required in the output. This data set also has the property that each vocabulary
word appears at most once in an image, which is helpful in interpreting the
metric.

112 P. Garst et al.

The vocabulary contains 41844 words, consisting of names of medications,
with 6111 of them actually used in at least one image. The data set contains
9647 images, with 47712 in vocabulary words altogether.

Table 3. Handwritten prescription recognition results as a function of vocabulary size

Vocabulary size Jaccard Index

0 0.193

500 0.201

1000 0.209

5000 0.271

10000 0.257

41844 0.178

Prescriptions Results. For this data set we have for each image a list of the
medicine names in the image, and we use the Jaccard Index as the figure of merit
for the model. This is a challenging data set, containing images of messy hand-
written prescriptions. As noted, this data set contains full page images rather
than line images, so the error rates may include segmentation errors as well as
recognition errors, but the segmentation material is the same in all experiments
so we will ignore it.

This data set allows us to further explore the results of vocabulary size. The
initial size is 41844 words. This includes some synonyms and abbreviations, but
is larger than any list of commonly prescribed medications - the mobile version
of the Physician’s Desk Reference, for example, has about 2500 medications. The
images actually use 6111 of the medication names.

Table 3 shows the Jaccard Index achieved by this model as a function of
vocabulary size. For this experiment, to test vocabulary size V we split the
input images into 5 parts. We used a word list generated by the first four parts
to create a model for evaluating the fifth part. The list contains vocabulary
words actually used in the first 4 parts, filled out to size V by adding random
words from the master list. If more than V words are actually used in the first 4
parts, we select them by the weight as discussed above. The values in the table
are pooled from evaluating all 5 data slices in this manner.

In this data set we see that including too many words is counterproductive,
and better results are obtained by focusing on the common words. We might
achieve better results if we had truly accurate frequency information for the
whole vocabulary.

3.3 Retail Price Tags

The Price Tags Data. The next data set contains real images of price tags
attached to items in a store. The vocabulary for this data is somewhat limited,

OCR Language Models with Custom Vocabularies 113

containing a lot of brand names and a number of common phrases (“for a lim-
ited time only”). There are also many elements of the images well described by
regular expressions, like monetary amounts or quantities (“32 oz.”). The data
set contains 101 images with 385 annotated lines.

Price Tags Results. The price tag task is different from the previous ones in
several respects.

– The vocabulary covers essentially the whole document.
– Regular expressions are an important part of the vocabulary.
– Because of the small data set size, the training text for vocabulary statistics

is the same as the test set text.

Because of the last item, the results are optimistic, but are suggestive of
results one could obtain in the field.

The vocabulary included a few hand selected regular expressions; future work
may allow us to generate them automatically from sample text, as we do the
literal word lists. They are:

– \$ \d+
– \d+\.\d
– \d+ ?(CT | LB | OZ | EA | ML | MG)

Table 4 shows the results. We see that almost all the changes are corrections.
This table also shows the effects of the dual criterion beam search. The two beam
search columns use the same custom vocabulary language model, but the first
uses the baseline single criterion beam search, and the second the dual criterion
beam search.

Table 4. Recognition results on price tags

WER Win ratio

Baseline Single Beam Search Dual Beam Search

15.16 10.93 10.45 24.5

4 Conclusions

We observed that in a variety of data sets from different domains, language
models incorporating custom domain specific vocabularies may be leveraged to
substantially improve the accuracy of optical character recognition models. The
language models support both literal words and regular expressions, and have a
number of configuration options which enhance flexibility.

We introduced algorithms which permit these custom models to be automat-
ically derived from a body of text in the target domain. Users may also partially

114 P. Garst et al.

or completely design their own models in special cases, for example if there is a
list of key words which the user is particularly concerned to recognize correctly.

We also introduced a modified CTC decoder to support these models which
in effect provides in-vocabulary lookahead in order to use information about
partially completed as well as complete words to improve accuracy.

The models discussed here introduce no significant overhead to the recogni-
tion process, and they may be added to an OCR service at run time with low
latency.

Future work will aim to further improve the algorithms for combining the
models. It would also be useful to better address low information situations, in
effect adapting to specialized input streams rather than designing a model based
on prior knowledge about a domain.

References

1. Agbemenu, A.S., Yankey, J., Addo, E.O.: An automatic number plate recognition
system using OPENCV and tesseract OCR engine. Int. J. Comput. Appl. 180(43),
1–5 (2018)

2. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

3. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A General
and Efficient Weighted Finite-State Transducer Library. In: Holub, J., Ždárek,
J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76336-9 3

4. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: Photoocr: reading text in uncon-
trolled conditions. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 785–792 (2013)

5. Bokser, M.: Omni document technologies. Proc. IEEE 80(7), 1066–1078 (1992)
6. Caseiro, D., Trancoso, I.: A specialized on-the-fly algorithm for lexicon and lan-

guage model composition. IEEE Trans. Audio Speech Lang. Process. 14(4), 1281–
1291 (2006)

7. Chen, X., et al.: Recurrent neural network language model adaptation for multi-
genre broadcast speech recognition. In: Sixteenth Annual Conference of the Inter-
national Speech Communication Association (2015)

8. Chin, F., Wu, F.: A microprocessor-based optical character recognition check
reader. In: Proceedings of 3rd International Conference on Document Analysis
and Recognition, vol. 2, pp. 982–985. IEEE (1995)

9. Diaz, D.H., Qin, S., Ingle, R., Fujii, Y., Bissacco, A.: Rethinking text line recogni-
tion models. arXiv preprint arXiv:2104.07787 (2021)

10. Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi, H., Smith, N.: Fine-
tuning pretrained language models: Weight initializations, data orders, and early
stopping. arXiv preprint arXiv:2002.06305 (2020)

11. Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recogni-
tion (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol.
23(2), 311–325 (2013). https://doi.org/10.1109/TCSVT.2012.2203741

12. Fujii, Y., Genzel, D., Popat, A.C., Teunen, R.: Label transition and selection prun-
ing and automatic decoding parameter optimization for time-synchronous Viterbi
decoding. In: Proceedings of the 13th International Conference on Document Anal-
ysis and Recognition, pp. 756–760. IEEE, August 2015

https://doi.org/10.1007/978-3-540-76336-9_3
http://arxiv.org/abs/2104.07787
http://arxiv.org/abs/2002.06305
https://doi.org/10.1109/TCSVT.2012.2203741

OCR Language Models with Custom Vocabularies 115

13. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J.E., Sculley, D. (eds.):
Google Vizier: A Service for Black-Box Optimization (2017). http://www.kdd.org/
kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization

14. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: ICML (2006)

15. Jackel, L.D., Sharman, D., Stenard, C.E., Strom, B.I., Zuckert, D.: Optical char-
acter recognition for self-service banking. AT&T Techn. J. 74(4), 16–24 (1995).
https://doi.org/10.1002/j.1538-7305.1995.tb00189.x

16. Jelinek, F., Merialdo, B., Roukos, S., Strauss, M.: A dynamic language model for
speech recognition. In: Speech and Natural Language: Proceedings of a Workshop
Held at Pacific Grove, California, February 19–22, 1991 (1991)

17. Lee, T.H.: Generalized aho-corasick algorithm for signature based anti-virus appli-
cations. In: 16th International Conference on Computer Communications and Net-
works, pp. 792–797. IEEE (2007)

18. Nagy, G.: Twenty years of document image analysis in pami. IEEE Trans. Pattern
Anal. Mach. Intell. 22(1), 38–62 (2000)

19. Neat, L., Peng, R., Qin, S., Manduchi, R.: Scene text access: a comparison of
mobile OCR modalities for blind users. In: Proceedings of the 24th International
Conference on Intelligent User Interfaces, pp. 197–207 (2019)

20. Sabir, E., Rawls, S., Natarajan, P.: Implicit language model in LSTM for OCR. In:
2017 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), vol. 7, pp. 27–31. IEEE (2017)

21. Sayers, E.W., et al.: Database resources of the national center for biotechnology
information. Nucleic Acids Res. 49(D1), D10 (2021)

22. Shen, H., Coughlan, J.M.: Towards a real-time system for finding and reading signs
for visually impaired users. ICCHP 2(7383), 41–47 (2012)

23. Smith, R.: An overview of the tesseract OCR engine. In: Ninth International Con-
ference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633.
IEEE (2007)

24. Smith, R.: Limits on the application of frequency-based language models to OCR.
In: 2011 International Conference on Document Analysis and Recognition, pp.
538–542. IEEE (2011)

25. Taylor, O.: Pango, an open-source unicode text layout engine (2004)
26. Thakare, S., Kamble, A., Thengne, V., Kamble, U.: Document segmentation and

language translation using tesseract-OCR. In: 2018 IEEE 13th International Con-
ference on Industrial and Information Systems (ICIIS), pp. 148–151. IEEE (2018)

27. Walker, J., Fujii, Y., Popat, A.C.: A web-based OCR service for documents. In:
Proceedings of the 13th IAPR International Workshop on Document Analysis Sys-
tems (DAS), Vienna, Austria, vol. 1 (2018)

28. White, J.: Pubmed 2.0. Medical reference services quarterly 39(4), 382–387 (2020)
29. Yan, A., McAuley, J., Lu, X., Du, J., Chang, E.Y., Gentili, A., Hsu, C.N.: Radbert:

adapting transformer-based language models to radiology. Radiol. Artif. Intell.
4(4), e210258 (2022)

30. Zhu, Y., Yao, C., Bai, X.: Scene text detection and recognition: recent advances
and future trends. Front. Comp. Sci. 10, 19–36 (2016)

http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://doi.org/10.1002/j.1538-7305.1995.tb00189.x

A Unified Architecture for Urdu Printed
and Handwritten Text Recognition

Arooba Maqsood1,2(B), Nauman Riaz1(B), Adnan Ul-Hasan1,
and Faisal Shafait1,2(B)

1 National Center of Artificial Intelligence (NCAI), National University of Sciences
and Technology (NUST), Islamabad, Pakistan

{amaqsood.mscs20seecs,nriaz.mscs20seecs,adnan.ulhassan}@seecs.edu.pk
2 School of Electrical Engineering and Computer Science (SEECS), National

University of Sciences and Technology (NUST), Islamabad, Pakistan
faisal.shafait@seecs.edu.pk

Abstract. Urdu text recognition (handwritten or printed) remains a
challenging task due to its diverse writing styles and fonts. State-of-
the-art Transformer-based OCR systems are computationally expensive
because they rely on computationally expensive pretraining over text
images. To address this challenge, we propose a robust architecture that
utilizes a custom CNN block with a Transformer encoder for image
understanding and a pre-trained Transformer decoder on Urdu language
modeling. The presented model generalized well even for scarce training
data without the need for pre-training on synthetic text images. Exper-
iments show that our proposed architecture outperforms the state-of-
the-art methods for Urdu printed and handwritten text recognition on
several publicly available datasets including UPTI, NUST-UHWR, and
MMU-OCR-21. We also combined printed and handwriting datasets to
train our architecture and propose a single unified model; capable of rec-
ognizing both printed and handwritten text for maximum variations of
fonts and writing styles with state-of-the-art results.

Keywords: OCR · Urdu Text Recognition · Handwriting Recognition

1 Introduction

Optical Character Recognition (OCR) technology has a rich history and is widely
used by different industries and organizations to digitize their data in order to
perform data analysis, streamline day-to-day operations and automate their pro-
cesses [1]. Additionally, this technology is being used by the immigration depart-
ment to recognize passports, the city traffic police to recognize license plates, and
banking institutions to process demand drafts and checks automatically and to
preserve and digitize historical writing [15]. The OCR systems can also be used
to improve assistive technologies for blind and visually impaired people [6].

Urdu OCR has attracted tremendous research interest over the past ten
years. According to the Ethnologue1, Urdu is among the 10 most spoken lan-
guages in the world with over 230 million native speakers. Even though there
1 https://www.ethnologue.com/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 116–130, 2023.
https://doi.org/10.1007/978-3-031-41685-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_8&domain=pdf
https://www.ethnologue.com/
https://doi.org/10.1007/978-3-031-41685-9_8

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 117

is a sizable global audience for the Urdu language and it is written and spoken
in many countries, there has been little to no advancement in having its script
recognized [10].

Fig. 1. An example of the Naskh and Nastaleeq scripts depicting the difference in their
writing style and alignment. The beginning characters of the Naskh script are aligned
along a straight baseline, whereas the characters of the Nastaleeq script have a baseline
that is diagonal and shifts from right to left.

The Urdu language has a complex writing script with over 24,000 unique
ligatures and different joining rules [13]. One possible reason for the complexity of
Urdu script is its writing styles and scripts [15]. Devani, Kofi, Naskh, Nastaleeq,
Riqa, and Taluth are only a few of the writing styles used in Urdu. The two most
well-known of these are Naskh and Nastaleeq [4]. The majority of the printed
material currently in circulation is in the Nastaleeq script, whereas the more
prevalent script for digital content is Naskh [6]. Figure 1 illustrates an example
sentence to show how these two scripts differ from one another.

It is evident from Fig. 1 that there are notable changes between the two
scripts in terms of ligature formation and character shape variation. Due to
diverse variations, a system trained on the Nastaleeq script performs poorly in
recognizing text in the Naskh [1]. In order to have a larger range of applications, it
would be useful to create an Urdu OCR system that can recognize text written
in any script. Practically all of the current Urdu OCRs were created for the
Nastaleeq scripts and are, therefore, useless when the source images have text
in other scripts [6].

Additionally, the handwritten text also poses challenges in its recogni-
tion [15]. When it comes to handwriting, humans are extremely inventive, which
results in a wide variety of writing styles, character formations, etc. Every per-
son has a unique writing style (refer to Fig. 2), so teaching a model to recognize
an unseen handwriting style is a difficult task. Therefore, while addressing text
recognition, it is important to take into account several features of handwritten
text, including writing styles, the type of paper used, the thickness of strokes,
human mistakes, and a number of other issues.

118 A. Maqsood et al.

Fig. 2. Sample images of different writing styles for handwritten text.

To the best of our knowledge, there exists no system that can recognize both
handwritten and printed real-world Urdu text samples. Many of the current chal-
lenges, including speech recognition, machine translation, text summarization,
and image captioning, have a single end-to-end solution in deep learning [6].
When developing an end-to-end OCR system, all of the OCR’s substitute tasks
(i.e. printed text recognition, offline handwriting recognition, etc.) can be con-
tained within a single model.

Printed text is easier to recognize as it is usually well-formed and printed
with a consistent font. But on the other hand, handwriting text recognition is
a challenging task due to the diverse variability in writing styles. Both forms of
text are commonly encountered together in real-world scenarios. This motivates
us to develop a unified model that can recognize both forms of text and can
improve accuracy and efficiency in text recognition tasks.

Developing a unified model is valuable for digitizing Urdu documents that
contain a mix of printed and handwritten text, such as application forms,
invoices, receipts, and affidavits. One such system can facilitate a seamless tran-
scription of different Urdu text forms; improving the usability of Urdu language
technology for everyday tasks and helping preserve manuscripts and documents,
making them easily accessible to a wider audience.

Hence, we aim to propose an end-to-end OCR system optimized as a single,
unified entity that will be capable of recognizing both printed and handwritten
text for a maximum variation of script and writing styles. The major contribu-
tions of our work are:

1. We propose a Transformer based text recognition model that employs a Con-
volutional Neural Network to extract image embeddings. The whole architec-
ture is trained using CTC loss at the transformer encoder for image under-
standing and cross-entropy loss at the transformer decoder for language mod-
eling.

2. We propose a unified architecture that gives state-of-the-art results both for
printed and handwritten text recognition for the Urdu language.

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 119

The paper is mainly divided into the following sections. Section 2 gives a
summary of the related work in the field of Urdu text recognition. Section 3
discusses the proposed technique for the task at hand. Section 4 describes the
experimental setup including preprocessing steps and implementation details.
Section 5 provides the findings and their interpretation. Lastly, Sect. 6 concludes
the study and provides future research directions.

2 Related Work

In this section, we present the previous approaches for both Urdu printed and
handwritten text recognition.

2.1 Printed Text Recognition

The approaches discussed in [2,3] rely on Recurrent Neural Network (RNN)
and Convolutional Neural Network (CNN) blocks for the identification of Urdu
ligatures. Naz et al. [2] used the stack of Multi-Dimensional Long Short Term
Memory (MDLSTM) layers and feedforward neural networks followed by an
output layer for sequence labeling using Connectionist Temporal Classification
(CTC) loss for printed Urdu text recognition. Experimentally it was shown that
the proposed model achieved an accuracy of 98% on the UPTI dataset. RNNs
are widely used in situations when there is a temporal relationship between
the inputs, but the nature of this interaction is less clear when it comes to
visuals. To address this problem, in another study by Naz et al. [3], the authors
proposed a hybrid model that comprises a CNN block followed by the MDLSTM
block. The CNN block is added for implicit feature extraction from the images
that help learn refined representations from the input image. On the publicly
available Urdu Printed Text-line Image (UPTI) dataset, the proposed model
had an accuracy of 98.12% for the classification of Urdu ligatures. Despite these
changes, the architecture fails to generalize on varying scripts of Urdu. The
proposed model lacks an implicit or explicit language model and relies on image
signals only.

The authors in [7,9,12,16] developed a combined framework for the detec-
tion and recognition of text in video frames and natural scenes. In Mirza et
al.’s study [16], text detection in video frames is carried out by fine-tuning
Faster R-CNN [5] (model for object detection). Whereas, for text recognition, the
authors proposed the UrduNet model (combination of CNN and LSTM blocks).
An extensive series of experiments resulted in an 88.3% F1-score for text detec-
tion and an 87% recognition rate for text recognition on their custom dataset. In
another study for text recognition in video frames, Rehman et al. [9] proposed a
simple model that comprises a CNN block that acts as a feature extractor, a bi-
directional GRU block for sequence recognition, and finally a classification layer
that classifies feature vectors from prior layers into characters. The authors used
the AcTiVComp20 and NUST-Urdu Ticker Text (NUST-UTT) [9] datasets for
testing the proposed model and achieving encouraging results. Narwani et al. [12]

120 A. Maqsood et al.

also focused on text recognition in natural scenes and also proposed an Urdu
Scene Text Dataset (USTD) that contains images from real scenes like roads and
streets. To prove the validity of their dataset, the authors provided an extensive
comparison with baselines for both text detection (including ResNet-50, EAST,
and Seglink) and recognition (including variants of CRNN). The end-to-end
combination of ResNet-50 with CRNN outperformed with an F1-score of 0.66.
Since Urdu Nastaleeq text uses a modified version of Arabic script, there is still
a challenge in localizing, detecting, and recognizing it. To further improve the
baselines, the authors in [7], enhanced approaches for both text detection and
recognition. The Connected Component Analysis (CCA) and Long Short-Term
Memory (LSTM) units are used in the initial stage to detect text. The detected
text is recognized in the second phase using a hybrid Convolution Neural Net-
work and Recurrent Neural Network (CNN-RNN) architecture. The proposed
method performs better than the ones currently in use, with an overall accuracy
of 97.47% due to the use of CCA, which has the capability to process higher
dimensional data as well.

The different scripts of Urdu have variations in cursive writing styles which
pose a challenge in text recognition and most of the systems for Urdu OCR
are developed that do not cater to these variations of writing styles. To further
aid the research in this direction, the authors of [10] focused on developing a
framework that can recognize the text irrespective of its script and writing style.
The authors not only created a large-scale multi-font printed Urdu text recogni-
tion data set but also presented extensive experimentation using the CNN-based
ResNet-18 model with an accuracy of 85 percent. Further addressing the scarcity
of multi-font and multi-lines datasets for the Urdu language, the authors of [6]
presented a very large ‘Multi-level and Multi-script Urdu (MMU-OCR-21)’ cor-
pus. The corpus is made up of over 602,472 images in total, including ground
truth for text-line and word images in three well-known fonts. Additionally, the
authors provided extensive experimentation with text-line and word-level images
using a variety of cutting-edge deep learning baselines with encouraging results.

The previous approaches discussed for printed text recognition so far rely
only on information from the text image and do not incorporate language mod-
eling. Moreover, to capture the temporal information the authors relied only on
networks like RNNs, GRUs, and LSTMs, which suffer from vanishing gradients
for very large sequences which is the case in text line recognition. The lack of
language understanding and extensive use of RNNs hinders the generalization
of these models on varying Urdu text fonts and thus a generalized OCR system
cannot be proposed for the Urdu language.

2.2 Handwritten Text Recognition

The authors in [8,11,14] presented analytical approaches based on implicit char-
acter segmentation. Similar to the approach in [3], the authors [8] employed a
CNN block that works as a feature extractor and an LSTM block for sequence
classification of the Urdu characters. The experimentation on custom data of

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 121

6,000 unique handwritten text lines gave a character recognition accuracy of
83.69%. The authors proposed to extend their experimentation to other publi-
cally available datasets for better generalization of their approach. Similar to the
idea of Naz et al. [2], the authors of [14] used a similar approach based on CNN
block as a feature extractor and an MDLSTM block as the classifier. The authors
provided an extensive comparison of several baseline datasets and achieved sat-
isfying results. Mushtaq et al. [11] also used CNNs as they produce effective
results compared to traditional handmade feature extraction methods and do
not require explicit feature engineering. The authors achieved a recognition rate
of 98.82% on their custom dataset.

Zia et al. [13] demonstrates how convolutional-recursive architecture can be
utilized to recognize recursive text effectively. The papers aimed to address the
challenges of recognizing the complex ligatures in the Urdu Language by devel-
oping a robust architecture based on CNN-RNN blocks aided by an n-gram
language model (LM). In this proposed model, the implicit character level seg-
mentation is done using CNN, and RNN acts as the classifier. On top of these
blocks, the n-gram language model acts as a spelling corrector. The reported
character error rate (CER) for this approach is 5.82%. Additionally, to address
the scarcity of Urdu language datasets, the authors also presented a dataset
named ‘NUST-UHWR’. The authors used a character-level deep learning model
on the output of which a word-level n-gram model acts as a spelling corrector.
This architecture fails to recognize out-of-vocab words. In order to address these
issues, Riaz et al. [15] mapped the problem of handwritten text recognition as a
Seq2Seq problem. The authors proposed an encoder-decoder Conv. Transformer
model that not only leverages the task at hand by capturing the inter-language
dependencies and caters to diverse alignments of characters at the embedding
level. Due to the inherent property of how transformers work, the proposed
model also learns a language model for language understanding hence eliminat-
ing the need for an explicit language model as proposed by Zia et al. [13] and
also effectively handles the out-of-vocab words. Riaz et al’s [15] approach gave
the CER of 5.31% on the publicly available NUST-UHWR [13] dataset. The
authors trained the Conv-Transformer architecture from scratch and thus the
language model learning for the decoder of the transformer is restricted to text
image datasets. The decoder can be pre-trained on an Urdu language modeling
task on a large Urdu text dataset like Urdu News Dataset 1M [17].

3 Methodology

Taking our inspiration from [15,20] and addressing the lack of language modeling
in current Urdu OCR systems, we propose a composition of CNN along with a
transformer architecture as shown in Fig. 3.

In [20], the authors proposed TrOCR, which is a transformer architecture that
uses vision transformers as encoders [22,26]. These vision transformers rely on
heavy pretraining over synthetic text images before fine-tuning over the respec-
tive task of text recognition. The scalability of vision transformers over huge

122 A. Maqsood et al.

Fig. 3. Overview of the Proposed Architecture. The proposed architecture comprises a
custom Convolutinal block coupled with a Transformer encoder for image understand-
ing and a pre-trained Transformer decoder on Urdu language modeling.

datasets gives state-of-the-art results but on the other hand, they struggle in
cases where data is not abundant and overfit very quickly lacking generalization.
Moreover, due to the n2 computational complexity of the transformers [19], the
image is resized to reduce the spatial resolution leading to reduced training times
but on the other hand information loss as well.

To address these issues, we propose a CNN block (as shown in Fig. 3) before
the transformer which uses max pooling layers to reduce the spatial resolution
of the feature maps. Essentially, the max-pooling layers capture the important
features and eradicate the problem of information loss due to resizing of original
images. Moreover, the presence of attention layers in the transformer encoder
after the convolutional block is used to capture the global context of the text
images, and then a transformer decoder is used for language understanding.
We use character-level tokenization since the publicly available Urdu text image
datasets are smaller in size.

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 123

3.1 Convolutional Encoder

We use simple convolutional blocks with max pooling layers to reduce the spatial
resolution of feature maps and rely mostly on a transformer encoder for text
image understanding. The configuration of CNN is shown in Fig. 3. We follow
the standard practices of building convolution blocks using batch normalization
and dropout layers. The dimension of the feature map after the convolution block
is (W/4, 1, 256) where W is the original image width. This is reshaped to (W/4,
256) and fed into the transformer encoder. The height is reduced to 1 whereas the
depth of the feature map is treated as embedding vectors. So we have a sequence
length of W/4 and an embedding dimension of 256. These configurations of
convolutional blocks give the best results for Urdu text recognition. The sparsity
of connections in CNNs leads to better generalization when trained on smaller
datasets of text images.

3.2 Transformer Encoder-Decoder

The features extracted from CNN are used as input to the transformer encoder.
We use trainable vectors for positional embeddings that are fused with the fea-
ture maps at the transformer encoder end. The embeddings generated after the
transformer encoder are fed to the decoder as keys and values for cross atten-
tion [21] and also through a linear layer that changes the embedding dimension
to vocab size (refer to Fig. 3). Log Softmax probabilities are generated over the
vocab dimension and then CTC loss is calculated using the ground truth dur-
ing training. We use 3 stacks of transformer encoder layers with the embedding
dimension of 256 and 8 attention heads for multi-head attention.

We use a pre-trained vanilla transformer decoder on the Urdu language mod-
eling task over the ‘Urdu News Corpus 1M Dataset’ [17] with sinusoidal position
encodings [21]. The configuration of the transformer decoder is the same as the
transformer encoder. Softmax probabilities are generated over the vocab dimen-
sion and cross-entropy loss is calculated at the decoder end during training. The
decoder is trained in a teacher-forcing manner and both the CTC loss and cross-
entropy loss are used for backpropagation and training the model. The use of
both CTC and cross-entropy Loss leads to effective training of the architecture.

3.3 Data Augmentations

To add diversity and enhance the generalization of the decoder, we use Tiling and
Corruption (TACo) technique [24] for data augmentation. As per this technique,
tiling is the process of dividing an input image into many, tiny, equal-sized tiles.
As part of the corruption stage after tiling, a portion of the tiles is swapped out
for corrupted ones. The enhanced image is then created by stitching the tiles
back together in the same sequence. A sample instance of this process can be
seen in Fig. 4).

124 A. Maqsood et al.

Fig. 4. The figure shows samples of input images after applying the TACo augmen-
tations. (a) shows a respective example from the NUST-UHWR handwriting dataset.
(b) shows input sample from UPTI2.0 dataset for printed text.

4 Experimental Setup

Different experiments were carried out for Urdu Text Recognition to provide a
comparison with the baselines and the current state-of-the-art. The details of
the datasets, implementation and hyper-parameters are discussed below.

4.1 Datasets Used

To evaluate the performance of our proposed model, we utilized both printed and
handwritten open-source datasets for the Urdu language. The different datasets
used for experimentation in this study include:

Urdu News Dataset 1M [17]: This dataset provides a text corpus of more
than 1 million Urdu news articles for four different subject areas: business and
economics, science and technology, entertainment, and sports. The dataset is
used for pretraining the decoder for URDU language modeling. We use this
pre-trained decoder in our proposed architecture for all experiments.

UPTI2.0 [18]: The dataset was formed by collecting sample images from the
web, new articles, and books. It contains around 120,000 unique text lines in four
different scripts namely Alvi Nastaleeq, Jameel Nori Nastaleeq, Pak Nastaleeq,
and Nafees Nastaleeq. This dataset is primarily used for training our architecture
and showing generalization capabilities on other datasets like URTI.

URTI [31]: The dataset comprises text lines that have been scanned from
printed and calligraphic Urdu magazines, newspapers, poems, and novels. There
are 694 text lines from novels, 971 text lines from periodicals, 233 text lines
from books, and 282 text lines from poetry. Due to the diversity of fonts in this

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 125

dataset, it is not included in training and is kept only for testing and inference
purposes. It serves well to test the generalization capability of our architecture.

NUST-UHWR [13]: This dataset is obtained from a variety of websites, includ-
ing social networking and news websites; and contains a total of 10,606 samples
of handwritten Urdu text recognition.

MMU-OCR-21 [6]: It is the largest collection of printed Urdu text. The corpus
is made up of over 602,472 images in total, including ground truth for text-line
and word images in three well-known scripts.

4.2 Implementation Details and Hyperparameters

We evaluate our model separately for printed and handwriting text recognition
with state-of-the-art OCR systems at first and then propose a unified training
approach to train a single model for inference on both tasks.

For printed text recognition, different configurations of printed text datasets
for training and testing are used. At first UPTI 2.0 is utilized for training and
URTI for inference. The same dataset splits are used as in [18]. This config-
uration tests the generalization of different state-of-the-art architectures with
ours. Furthermore, our architecture is evaluated on datasets MMU-OCR-2021
with training and testing configurations as in [6]. For unconstrained offline Urdu
handwriting recognition, we utilize the NUST-UHWR dataset. The same train-
ing and testing splits are employed as presented in [13,15].

Our proposed architecture gives state-of-the-art results for all configurations
which inspire us to further test its generalization potential. For this purpose, we
combine printed and handwritten text images from UPTI 2.0 and NUST-UHWR
respectively for training the architecture. The training is converged against a
validation set of equal printed and handwritten text samples from the same
datasets. The model is tested against the URTI dataset for printed and NUST-
UHWR testing split for handwriting text images. The results are presented and
discussed in Sect. 5.

The proposed architecture is trained on RTX 3080 GPU with a batch size
of 8. All the text images are resized to (1600 × 64), keeping the aspect ratio.
‘GELU’ [32] is used as an activation function throughout the architecture with
dropout layers having a probability of 0.1 (refer to Fig. 3). We utilize AdamW [23]
optimizer with a learning rate of 3× 103 for updating the weights. During train-
ing, we calculate the CTC and cross-entropy loss on the transformer encoder and
decoder output respectively. For inference, the decoder part of the transformer
gives the best results after utilizing beam search compared to the transformer
encoder.

126 A. Maqsood et al.

Table 1. Comparison of CERs of various architectures on URTI [31] to show general-
ization after training on multi-font subset of UPTI2.0 [18].

Subset Character Error Rate (CER%)

BDLSTM [18] MDLSTM [3] CLE Nastaliq [28] TrOCR [20] Proposed Printed

Magazine 50.69 47.44 50.3 18.4 11.85

Book 58.10 56.73 50.12 23.76 19.23

Poetry 59.40 58.38 64.55 22.47 17.17

Novel 57.70 58.99 38.65 28.75 21.68

Table 2. Comparison of CERs of CNN+LSTM based architectures with our proposed
model on MMU-OCR-21 dataset [6].

Models Character Error Rate (CER%)

train val test

CNN+BLSTM+CTC [6] 0.1 7.4 7.2

VGG-16+BLSTM+CTC [6] 35.5 49.0 49.0

Encoder-Decoder [27] 0.1 7.4 7.3

Proposed Printed 2.0 6.6 6.7

5 Results and Analysis

We perform extensive experimentation and provide results that establish a new
state-of-the-art in Urdu printed and handwritten text recognition. To first test
the generalization of our model in comparison with other baselines for printed
text (referred as proposed printed), we carry out training on 80,000 images con-
taining each script in equal proportion from UPTI 2.0 that cover 18,000 lig-
atures [18]. The training converged against a validation set of 10,000 images.
Then we benchmarked our model against various other architectures on the
URTI dataset.

The results are shown in Table 1. BDLSTM, MDLSTM, and CLE Nastaliq
did not generalize well when tested on variations of scripts. The absence of CNN
and language modeling in all these models leads to reducing the generalizability
and yielding unsatisfactory results. TrOCR is trained from scratch and it quickly
overfits during training. Transformers in general require heavy pretraining before
fine-tuning over a specific task. This is quite evident from our results.

Our proposed printed model gives the best CER on different scripts compared
to other architectures with a significant margin (as given in Table 1). The use
of Convolution before the Transformer proves to work best for small datasets,
improving generalization.

Next, we benchmark our printed model against various CNN-based architec-
tures (refer to Table 2) on the MMU-OCR-21 dataset [6]. The CNN+BLSTM [6]
and VGG16+BLSTM [6] use CTC loss for transcription without any language
modeling. Encoder-Decoder [27] architecture comprises a CNN + LSTM encoder

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 127

Table 3. Comparison of CER between baselines and our proposed HWR model for
handwritten text recognition on NUST-UHWR test split [13].

Models (CER%)

Val Test

BLSTM [25] 27.39 27.05

Modified CRNN [30] 18.57 19.34

MDLSTM [33] 14.11 19.15

CNN-RNN [29] 13.25 14.12

BiGRU [34] 13.50 13.28

TrOCR [20] 20.12 21.34

Conv. Recursive [13] 7.25 7.35

Conv. Transformer [15] 6.0 6.4

Proposed HWR 5.9 6.2

Table 4. Performance of our proposed model on URTI dataset [31] for printed text
recognition and NUST-UHWR test split [13] for handwriting text recognition after
unified training on single dataset.

Dataset CER(%)

URTI dataset [31] Magazine 8.11

Book 13.32

Poetry 12.39

Novel 22.34

NUST-UHWR test split [13] 6.6

and an LSTM language modeling decoder. Our proposed printed architecture
gives superior results on validation and testing sets in comparison. Higher CER
on the training set is due to the TACo augmentations we use during training.
The printed model achieves state of the art for Urdu printed text recognition.

For offline handwriting text recognition, we propose to use the same proposed
architecture (referred as proposed HWR) using the NUST-UHWR [13] dataset.
The same splits were used as in [13,15]. The results are shown in Table 3. Our
proposed HWR model performs superior in terms of CER compared to other
architectures.

The proposed printed and HWR model gives better generalization when
trained on small datasets for both Urdu printed and handwriting recognition.
This encourages us to train this model on a unified dataset of printed and hand-
written text to define a single model (namely proposed unified) for both tasks.
We take the same 80,000 multi-font printed text images from UPTI 2.0 as
described in previous experiments and append the UHWR train split of 8483
handwriting text images to create the unified dataset. We train our architecture

128 A. Maqsood et al.

Table 5. CER of our proposed unified model on URTI keeping fixed samples from
UPTI 2.0 and gradually increasing NUST UHWR samples on each stage for training.

URTI dataset [31] Character Error Rate (CER%)

25% handwriting sample 50% handwriting sample 75% handwriting sample

Magazine 10.12 10.43 9.73

Book 16.73 14.24 13.87

Poetry 16.74 16.32 14.34

Novel 21.69 23.54 23.43

on this dataset and test it against the URTI and UHWR test split. The results are
shown in Table 4. The unified training on a single architecture gives state-of-the-
art results for both printed and handwriting recognition. A marginal decrease
in CER over the URTI dataset can be seen. Additionally, the URTI dataset
comprises text lines that have been scanned from machine-printed magazines,
newspapers and novels, and calligraphic handwritten Urdu poems, this indicates
that the training and testing data distributions are not entirely the same. This
leads to significant variation in CERs of different splits of the URTI dataset.

We perform analysis on the unified architecture by keeping the printed text
samples fixed and training it on fewer handwriting samples. The handwriting
samples are gradually increased for each stage. Each stage is then tested over
the URTI dataset as shown in Table 5. URTI consists of a diverse range of fonts
including calligraphy. The results in the table show that with an increase in the
handwriting dataset for training the model consistently performs better. The
diversity of different handwriting styles aids the model in generalizing better to
diverse sets of fonts in URTI.

We demonstrate that utilizing both handwriting and printed text for unified
training leads to better results for both tasks despite the different distributions
in URTI and diverse writing styles in UHWR, our architecture was able to
generalize substantially better than current state-of-the-art Urdu OCR models.
These findings suggest that a real-world application using such an architecture
would produce correct results due to its superior generalization.

6 Conclusion

In this paper, we present an end-to-end Transformer based OCR model for text
recognition that utilizes a CNN architecture to extract image embeddings and
a pre-trained transformer decoder for language modeling. To the best of our
knowledge, we are the first ones to propose a single end-to-end framework that
recognizes both printed and handwritten Urdu text images. Vision transformers
despite being the new advancement in computer vision suffer from overfitting
when it comes to small datasets. They rely on computationally expensive pre-
training over synthetic text images and fail if trained from scratch on datasets
with moderate sizes. This effect is greatly reduced when we utilize the general-
ization capabilities of a CNN to extract image embeddings and then pass them

A Unified Architecture for Urdu Printed and Handwritten Text Recognition 129

through the transformer network to benefit from the attention mechanism. The
hyperparameters of our model are tuned for efficient results on smaller datasets.
The scalability of our model on larger datasets is yet to be tested which is pro-
posed as a future direction.

References

1. Khan, N.H., Adnan, A.: Urdu optical character recognition systems: present con-
tributions and future directions. IEEE Access 6, 46019–46046 (2018)

2. Naz, S., Umar, A.I., Ahmed, R., Razzak, M.I., Rashid, S.F., Shafait, F.: Urdu
Nasta’liq text recognition using implicit segmentation based on multi-dimensional
long short term memory neural networks. In: SpringerPlus, 5(1), pp. 1–16 (2016)

3. Naz, S., et al.: Urdu nastaliq recognition using convolutional-recursive deep learn-
ing. Neurocomputing 243, 80–87 (2017)

4. Naz, S., Hayat, K., Razzak, M.I., Anwar, M.W., Madani, S.A., Khan, S.U.: The
optical character recognition of urdu-like cursive scripts. Pattern Recogn. 47(3),
1229–1248 (2014)

5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, 28 (2016)

6. Nasir, T., Malik, M.K., Shahzad, K.: MMU-OCR-21: towards end-to-end urdu text
recognition using deep learning. IEEE Access 9, 124945–124962 (2021)

7. Umair, M., et al.: A multi-layer holistic approach for cursive text recognition. Appl.
Sci. 12(24), 12652 (2022)

8. Hassan, S., Irfan, A., Mirza, A., Siddiqi, I.: Cursive handwritten text recognition
using Bi-directional LSTMs: a case study on urdu handwriting. In: 2019 Interna-
tional Conference on Deep Learning and Machine Learning in Emerging Applica-
tions (Deep-ML), pp. 67–72. IEEE (2019)

9. Rehman, A., Ul-Hasan, A., Shafait, F.: High performance Urdu and Arabic video
text recognition using convolutional recurrent neural networks. In: Barney Smith,
E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 336–352. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86198-8 24

10. Rehman, A.U., Hussain, S.U.: Large scale font independent Urdu text recognition
system. In: arXiv, preprint: arXiv:2005.06752 (2020)

11. Mushtaq, F., Misgar, M.M., Kumar, M., Khurana, S.S.: UrduDeepNet: offline
handwritten Urdu character recognition using deep neural network. Neural Com-
put. Appl. 33(22), 15229–15252 (2021)

12. Narwani, K., Lin, H., Pirbhulal, S., Hassan, M.: Towards AI-enabled approach for
Urdu text recognition: a legacy for Urdu image apprehension. In: IEEE Access
(2022)

13. Zia, N., Naeem, M.F., Raza, S.M.K., Khan, M.M., Ul-Hasan, A., Shafait, F.: A con-
volutional recursive deep architecture for unconstrained Urdu handwriting recog-
nition. Neural Comput. Appl. 34(2), 1635–1648 (2022)

14. Husnain, M., et al.: Recognition of Urdu handwritten characters using convolu-
tional neural network. Appl. Sci. 9(13), 2758 (2019)

15. Riaz, N., Arbab, H., Maqsood, A., Nasir, K.B., Ul-Hasan, A., Shafait, F.: Conv-
transformer architecture for unconstrained Off-Line Urdu handwriting recognition.
Int. J. Document Anal. Recogn. (IJDAR) 25, 373–384 (2022)

https://doi.org/10.1007/978-3-030-86198-8_24
http://arxiv.org/abs/2005.06752

130 A. Maqsood et al.

16. Mirza, A., Zeshan, O., Atif, M., Siddiqi, I.: Detection and Recognition of Cursive
Text from Video Frames. In: EURASIP J. Image Video Process. 2020(1), 1–19
(2020)

17. Hussain, K., Mughal, N., Ali, I., Hassan, S., Daudpota, S.M.: Urdu News Dataset
1M. In: Mendeley Data, 3 (2021)

18. Naeem, M.F., Awan, A.A., Shafait, F., ul-Hasan, A.: Impact of ligature coverage on
training practical Urdu OCR systems. In: 2017 14th IAPR International Confer-
ence on Document Analysis and Recognition (ICDAR), vol. 1, pp. 131–136. IEEE
(2017)

19. Riaz, N., Latif, S., Latif, R.: From transformers to reformers. In: 2021 International
Conference on Digital Futures and Transformative Technologies (ICoDT2), pp. 1–
6. IEEE (2021)

20. Li, M., et al.: TrOCR: transformer-based optical character recognition with pre-
trained models. In: arXiv, preprint arXiv:2109.10282 (2021)

21. Vaswani, A., et al.: Attention is All You Need. In: Advances in Neural Information
Processing Systems, 30 (2017)

22. Dosovitskiy, A., et al.: An Image is Worth 16x16 words: Transformers for Image
Recognition at Scale. In: arXiv preprint arXiv:2010.11929 (2020)

23. Loshchilov, I., & Hutter, F.: Decoupled Weight Decay Regularization. In: arXiv
preprint arXiv:1711.05101 (2017)

24. Chaudhary, K., Bali, R.: Easter2. 0: Improving convolutional models for handwrit-
ten text recognition. In: arXiv preprint arXiv:2205.14879 (2022)

25. Ul-Hasan, A., Ahmed, S.B., Rashid, F., Shafait, F., Breuel, T.M.: Offline printed
Urdu nastaleeq script recognition with bidirectional LSTM networks. In: 2013 12th
International Conference on Document Analysis and Recognition, pp. 1061–1065.
IEEE (2013)

26. Bao, H., Dong, L., Piao, S., Wei, F.: Beit: BERT pre-training of Image Transform-
ers. In: arXiv preprint arXiv:2106.08254 (2021)

27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence-to-sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

28. Hussain, S., Niazi, A., Anjum, U., Irfan, F.: Adapting tesseract for complex scripts:
an example for Urdu nastalique. In: 2014 11th IAPR International Workshop on
Document Analysis Systems, pp. 191–195. IEEE (2014)

29. Safarzadeh, V.M., Jafarzadeh, P.: Offline Persian handwriting recognition with
CNN and RNN-CTC. In: 2020 25th International Computer Conference, Computer
Society of Iran (CSICC), pp. 1–10. IEEE (2020)

30. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

31. Shafait, F., Keysers, D., Breuel, T.M.: Layout analysis of Urdu document images.
In: 006 IEEE International Multitopic Conference, pp. 293–298. IEEE (2006)

32. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs). In: arXiv
preprint arXiv:1606.08415 (2016)

33. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimen-
sional recurrent neural networks. In: Advances in Neural Information Processing
Systems, vol. 21 (2008)

34. Chen, L., Yan, R., Peng, L., Furuhata, A., Ding, X.: Multi-layer recurrent neural
network based offline Arabic handwriting recognition. In: 2017 1st International
Workshop on Arabic Script Analysis and Recognition (ASAR), pp. 6–10. IEEE
(2017)

http://arxiv.org/abs/2109.10282
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2205.14879
http://arxiv.org/abs/2106.08254
http://arxiv.org/abs/1606.08415

Sampling and Ranking for Digital Ink
Generation on a Tight Computational Budget

Andrei Afonin1, Andrii Maksai2(B), Aleksandr Timofeev1, and Claudiu Musat2

1 EPFL, Lausanne, Switzerland
2 Google Research, Zürich, Switzerland

amaksai@google.com

Abstract. Digital ink (online handwriting) generation has a number of potential
applications for creating user-visible content, such as handwriting autocomple-
tion, spelling correction, and beautification. Writing is personal and usually the
processing is done on-device. Ink generative models thus need to produce high
quality content quickly, in a resource constrained environment.

In this work, we study ways to maximize the quality of the output of a trained
digital ink generative model, while staying within an inference time budget. We
use and compare the effect of multiple sampling and ranking techniques, in the
first ablation study of its kind in the digital ink domain.

We confirm our findings on multiple datasets - writing in English and Viet-
namese, as well as mathematical formulas - using two model types and two
common ink data representations. In all combinations, we report a meaningful
improvement in the recognizability of the synthetic inks, in some cases more
than halving the character error rate metric, and describe a way to select the opti-
mal combination of sampling and ranking techniques for any given computational
budget.

1 Introduction

Digital ink (online handwriting) offers users of digital surfaces a way of expression sim-
ilar to pen and paper. This mode of expression is gaining popularity with the increasing
adoption of styluses and digital pens for tablets. In its digital form, ink is a medium that
offers rich possibilities for personalized intelligent assistance for creativity and pro-
ductivity. One direct way of offering the assistance is via ink synthesis, enabling user-
facing features such as handwriting autocompletion, spelling correction, beautification,
assisted diagramming and sketching.

Making these assistance experiences convenient and comfortable requires maximiz-
ing the output quality of the models, while respecting privacy and latency constraints.
The same is true of other types of generated content, but standards might be higher in
the case of digital ink generation, for example:

– Since assistive handwriting content appears in the same space as the content gener-
ated by the user, it’s vital that the generated content is readable and not look “out-of-
place”. The users of generative image models for content creation purposes might

A. Afonin—Work done as a student researcher at Google Research, Zürich, Switzerland.
A. Afonin and A. Maksai—These authors contributed equally to this work and share first author-
ship.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 131–146, 2023.
https://doi.org/10.1007/978-3-031-41685-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_9

132 A. Afonin et al.

be more forgiving to model mistakes, because there the model assists in the creative
process where the users don’t necessarily know what exactly they are looking for.

– Personalized assistive handwriting often requires the models to observe the user’s
handwriting and transfer that style to the generated output. Unlike other modali-
ties, handwriting is a personally-identifiable data. Therefore, it is important for the
models to run on-device, rather than server-side.

– Generating suggestions (for example when doing autocompletion in handwriting)
requires the models to be fast enough to produce their suggestions before the user has
moved on or decided to add new content themselves. When the content is produced
too slowly, it gets in the way of the user’s flow rather than helping. This problem is
further exacerbated by the constraint that the models run on-device.

In this work, we aim, given a trained generative model of digital ink and a computa-
tion budget, to produce readable outputs as often as possible, under the assumption that
the model is going to be run on-device. To achieve this goal, we consider two classes of
approaches that work well together.

Sampling. This constrained ink modelling problem resembles text and audio generation.
Following the work that has been done there [3,6,19,22,36], we first concentrate on
using perturbed probability distributions for sampling from autoregressive models. This
improves the quality within a single inference call, by picking a sampling technique
that minimizes the number of repetitive or incoherent samples. Examples of generated
digital ink can be found in Fig. 3.

Ranking. We additionally train ranking models to predict the recognizability of an ink.
We employ these models by first generating a diverse set of candidates and then ranking
them to select the best output. This improves the quality if the time budget allows for
multiple inference calls.

Our proposed ranking approach would actually work for any binary quality mea-
sure (like thresholded L2 distance in the style embedding space for style transfer [9]
or edit-aware Chamfer distance for spelling correction [26]), but we focus on recog-
nizability, since likely for any application of digital ink synthesis, the output should be
recognizable.

Our contributions are as follows1:

– We use sampling and ranking techniques for digital ink generation, and perform an
ablation study on the ranking model objective, training, and tuning. To our knowl-
edge, ours is the first work on this topic in the digital ink space.

– We show that selecting appropriate sampling parameters improves the quality of
the output significantly compared to the typically used baselines, across multiple
datasets, model types, and data representations.

– We show that ranking further improves the quality, and discover that depending
on the computational budget, the highest quality ranking models may not lead to
optimal quality. We provide practical way of selecting the ranking model.

1 A notebook accompanying this submission that can run inference on example models for each
dataset, data representation, and model type, and includes test label sets, is available here:
https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz.

https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 133

2 Related Work

Errors in Autoregressive Generative Models. Autoregressive generative models often
generate samples with artifacts [19]. Artifacts appear when the generation process gets
stuck in either high- or low-probability regions of the sampling space, and results in
two types of errors, overconfidence (usually manifested as repeated tokens) [4] and
incoherence errors, respectively. We show examples of such errors during Digital Ink
generation process in Fig. 3. This is also known as the likelihood trap [32] and stems
from exposure bias [18], which is difference between training done with ’teacher forc-
ing’ and inference [5].

Sampling. One common way of finding the trade-off between overconfidence and inco-
herence errors, often used in Text-to-Speech (TTS) and Natural Language Processing
(NLP), is sampling [4], which modifies the distribution from which the points in the
autoregressive model are sampled. Sampling from original distribution is called ances-
tral sampling; popular sampling techniques that extend it include Top-K [13] and Top-P,
or nucleus [19] sampling. Originally introduced for text generation, they propose pick-
ing a word from the distribution of the top most likely next words, limited by either
number (in Top-K) or cumulative probability (in Top-P). Variations of the sampling
techniques above include Typical sampling [27], which selects components closest to
a dynamically selected probability, Mirostat sampling [4], which select K in Top-K
sampling adaptively, and Beam search [30].

Ranking Models. Another way to improve the generation quality is to generate several
samples and choosing the best one among them. This is frequently done in information
retrieval domains such as question answering [23], text summarization [29], and code
generation [36]. Approaches most similar to ours are the ones that use ranking models
for conditional generative modeling. In [22], the ranking model is trained to predict
the best text continuation, with positive samples coming from real text and negative
samples coming from different parts of the text and model-generated continuations. In
[6], two ranking models are trained to predict the match between the generated audio
and the target label, as well as between the generated audio and the source audio used
for style extraction. They are combined with weights specified by the user, to rank audio
generated with specific style.

Handwriting Synthesis. Two of the most popular models for digital ink generation are
multi-layer LSTMs with monotonic attention over the label [15] (also known in TTS as
Tacotron [35]) and the encoder-decoder Transformer architecture [34]. Other architec-
tures include VRNN [11] used in [2], Neural ODEs [12], and Diffusion models [25].

These architectures underpin applications such as sketch generation [17] and com-
pletion [31], style transfer [21], beautification [2], spelling correction [26], and assisted
diagramming [1].

Metrics for evaluating the quality of digital ink generative models of text typically
include Character Error Rate for text generation readability [2,9,21], writer identifica-
tion for style transfer [21], and human evaluation [2,7,21].

134 A. Afonin et al.

Most digital ink generation approaches use either ancestral sampling or greedy sam-
pling, with exception of [10], which uses biased sampling [15] for the task of generating
the synthetic training data.

To our knowledge, no studies on the effects of sampling and ranking for digital ink
generation have been performed. Similarly, no studies have looked at the relationship
between the generation speed and quality.

3 Method

Fig. 1. The diagram of the proposed solution. The input to the model is a single text label. The
generative model is run to produce B candidates. The highest scoring one according to the rank-
ing model is returned. In the generative model, we use different sampling modes to modify the
output distribution of the model. The ranking model consists of two blocks, first taking B gener-
ated inks and scoring them, then taking the R inks with the highest scores and re-ranking them.

Given an autoregressive generative model of digital ink that takes a text label as
input and produces a sequence representing digital ink as output, we are interested in
maximizing the average quality MΘS ,ΘR

(S,B,R) of the model output, while guaran-
teeing that the maximum inference time does not exceed a certain threshold Tmax. Here,
S is the sampling method used by the generative model, B is the size of the batch for
generation, and R is an inference-time parameter of the ranking model, ΘS are fixed
trained weights of the model, ΘR are the trainable parameters of the ranking model,
which we will describe below.

During inference, given a label, the generative model will use sampling method S to
produce a batch of B digital inks, which will be scored according to the ranking model
ΘR. The highest-ranking sample will be returned as the output; if B = 1, the ranking
model is bypassed. Figure 1 illustrates the approach.

Our main results concern the trade-off between the inference time and model output
quality, and are presented in Sect. 4. The rest of this section is organized as follows: we
describe our approach to measuring quality and inference time in Sect. 3.1; Sect. 3.2
outlines the data representation for digital ink and sampling methods S that can be used
with it; Sect. 3.3 describes the ranking models we use and how to train them.

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 135

3.1 Evaluation

We propose an evaluation method linked to the system’s usability. Similar to other
works [2,9,10,21], as quality measure M we use the Character Error Rate (CER) of
a trained handwriting recognition model on the generated samples. This stems from the
assumption that the generated text is not useful if it is not readable, regardless of other
attributes like style and beauty.

A second axis of interest for usability is the inference time. We report theworst case
inference time per character. We measure the worst case latency, with the assump-
tion that exceeding the budget makes the functionality unusable for users. We measure
time per character since processing time is expected to scale linearly with the sequence
length.

3.2 Data Representation and Sampling

Two frequently used representations of the digital ink data are raw and curve represen-
tation, which both encode the ink as a sequence of input tokens in R

d × {0, 1}2, with
first d values describing the shape of the stroke between two points, and the last 2 binary
values indicating whether (i) a particular token is at the end of the stroke, and whether
(ii) it is the last token in the sequence (end of ink). For the raw representation, d = 2
and describes the offset between two adjacent points, and for the curve representation,
d = 6 and describes the parameters of Bezier curve fit to a segment of the stroke [33].

Following the approach of [15] and most of the later literature on the topic, we
parameterize the output distribution of every step of the autoregressive generative model
by a set of parameters (π, μ,Σ, es, ei), where π, μ,Σ describe weights, means, and
covariances of a mixture of Gaussians, from which R

d stroke parameters are sampled,
and es and ei describe the parameters of Bernoulli distributions from which the pen-up
(end-of-stroke) and end-of-sequence events are sampled. Σ is full-covariance matrix
for raw features (d = 2) and diagonal otherwise. We provide more details in Sect. 4.2.

Sampling. We consider two types of distortions for the output distribution: distor-
tion of the mixture weights π and distortion of the diagonal components of the
covariance matrix Σ. To distort the mixture weights, we consider several standard
approaches: Top-K (parameterized by the value of K), and Top-P and Typical sam-
pling (both parameterized by the value of P). To distort the covariance matrix, we
subtract a sampling bias value b from the diagonal elements of the covariance matrix,
before applying the softplus [14] function to it to ensure positive values. This reduces
the variance after the model has been trained, to avoid sampling in low-confidence
regions. The sampling parameters S = (s,m, b) are therefore the sampling method
s ∈ {Top-K, Top-P, Typical}, the mixture parameter m, and the sampling bias value b.

3.3 Ranking Models

Running a ranking model to order the generated samples may be computationally costly.
For this reason, we differentiate between a process to rank all candidates and one that

136 A. Afonin et al.

ranks only the most promising ones. Following the approach commonly used in infor-
mation retrieval [23,29], our ranking approach is two-staged, with a “fast” ranker R1

that runs on all B generated outputs simultaneously, and a slower, more trustworthy
“good” ranker R2, which is used to re-rank the samples ranked highest by R1. The
inference time parameter R of the ranking model, introduced at the beginning of this
section, is the number of top samples according to R1 that are re-ranked by R2. When
R = B, this corresponds to using only R2, and when R = 1, only R1 is used. We
describe both rankers below, and provide more details about them in Sect. 4.1.

“Good” Ranker R2. Since our goal is to generate samples with lowest possible Char-
acter Error Rate, an obvious choice for R2 to use the recognizer model that measures
CER as the ranking model - that is, select the sample that is perfectly recognizable or
has the lowest character error rate. However, running the recognizer on-device can be
slow depending on the implementation, and we will see that having a faster first stage
is beneficial.

“Fast” Ranker R1. Following the approach of [6], our R1 ranker is a model learned
to predict whether the generated sample is recognizable or not, that is, whether the
recognizer would return the target label given the generated ink. In other words, this
ranker is an approximation of the “good” ranker and tries to predict its output. Since
inference time is one of the main focuses of our work, we consider a much simpler
ranking model than the one described in [6]. Instead of looking at both the generated ink
and target label, our ranker just uses the generated ink. It consists of two convolutional
layers followed by global average pooling. We study this choice of ranking model in
terms of inference speed and the types of errors that it can address in Sect. 4.

Training Dataset for R1. As described above, R1 ranker is trained to be a fast approxi-
mation of the R2 ranker, and it predicts whether synthesized ink is even close to being
recognizable. To train R1, we don’t use real data: we use the synthesizer for generating
a sample for a given text label, and R2 ranker for generating a binary label of whether
the sample is recognizable (recognition result matches the text label) or not. The pair of
generated ink and binary label is the training data for R1 (more details in Sect. 4.2).

We first train the ranking model, and then, select the sampling method S that per-
forms best on the Dtune dataset. Doing the reverse would require training a ranking
model for each possible sampling parameter setting, which would be prohibitively
expensive. This means that during training of R1, the sampling method is yet unknown.
To accommodate this, we create the training dataset for R1 by generating samples with
(s,m, b) selected at random, for each sample. This allows R1 to be robust to any future
selection of S, so that the sampling parameters can be chosen after the ranker is trained.
We evaluate this method of training dataset creation in Sect. 4.

4 Results

4.1 Setup

To show that both sampling and ranking bring forth significant improvements in gener-
ation quality, and show the robustness of the proposed approach, we will evaluate it on

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 137

4 datasets across 3 different languages, with two frequently used model types, and two
data representations.

We consider 4 digital ink datasets for text generation: English Deepwriting [2] and
IAMonDB [24], VietnameseVNonDB [28], and an internalMath dataset of mathemat-
ical expressions. We use two data representations described in Sect. 3.2, raw and curve,
and evaluate two different model types, Tacotron [15,35] and Transformer [34].

4.2 Implementation Details

For both Tacotron and Transformer, we use 10-component Gaussian mixtures in the
model output. For Tacotron, we use one-hot encoding of labels and 3 layers of size 256
in the decoder. For Transformer, we use 2 layers with 4 attention heads and embedding
size 64 in the label encoder, and 6 layers with 4 attention heads and embedding size 128
in the decoder. We use the Pre-LN implementation [3]. We train models with Adam
with global clipnorm of 0.1, and learning rate of 1e-3 for Tacotron and learning rate
schedule described in [34] for Transformer. Models are trained for 2 × 106 steps with
batch size 256. For training the R1 ranker, we generate 105 samples with labels from
the generator training data as the training set, and 1000 samples with labels from the
generator validation data as the validation set. As described in Sect. 3, for each sample,
we select a sampling method at random to generate it. The pool of sampling methods
includes Top-P, Typical samplings with m ∈ {0.0, 0.1, . . . , 1.0} and Top-K sampling
with m ∈ {1, 2, . . . , 10}, and sampling biases b ∈ {0, 1, 5, 25, 100,∞}. The R2 ranker
is a state-of-the-art recognizer that has been trained on internal data not related to public
datasets and is an LSTM-CTC model with 6 layers of size 216 [8], which is combined
with word and character language models during beam search decoding, similar to [20].

For IAMonDB, we use testset_v for validation, testset_f for tuning sampling
parameters (via grid search over all possible samplings), and testset_t for testing. For
VNonDB, we use the version of the dataset split by individual words. Since this dataset
does not have the tuning subset, we use validation data labels for tuning sampling
parameters. For Deepwriting, since this dataset does not have tuning or testing subset,
we extracted 1500 labels whose lengths have the same mean and variance as the Deep-
writing validation data, from the labels present in the IAMonDO dataset (we include
these labels with the submission for clarity). Models were implemented in Tensorflow
and the time measurements were done after conversion to TFLite on a Samsung Galaxy
Tab S7+ tablet.

4.3 Baselines

Sampling Model Baseline.We compare the model with tuned sampling parameters, with
a model with fixed sampling method. Since different works in the literature consider
different sampling methods, to have a fair comparison to them, as to a baseline, we
report the best result with S = (Top-P,m, b),m ∈ {0.0, 1.0}, b ∈ {0.0,∞}, that
is, greedy or ancestral sampling of component with infinite or zero bias for the offset
parameters. We will refer to the optimal sampling method as Sopt, and to baseline as
Sbase.

138 A. Afonin et al.

Ranking Model Baseline.We compare the R1 ranker that predicts the recognizability of
the generated ink, described in Sect. 3, with an approach described in [22], which trains
a model to distinguish between real and synthesized samples, with the goal of selecting
the most “real-looking” samples. We will refer to it as Rbase.

4.4 Quantitative Analysis

Table 1. CER for different sampling and ranking strategies. For Sbase and Sopt, we use B = 1,
meaning that no ranker is used. ForR1 andRbase, we useB = 5 andR = 1, meaning that “good”
R2 ranker is not used. For R2, we use B = 5 and R = 5, meaning that the samples are ranked
according to the “good” ranker only. This number is also a bound on the quality achievable with
a “fast” ranker R1.

Dataset Data Model Sbase Sopt Rbase R1 R2

Deepwriting raw Tacotron 4.6±0.6 2.6±0.2 2.3±0.3 1.7±0.2 0.7±0.1

Transformer 8.1±2.9 6.7±1.8 5.8±1.3 4.9±1.1 1.8±0.5

curve Tacotron 5.9±0.5 5.6±0.7 4.5±0.7 2.1±0.2 0.9±0.1

Transformer 8.9±1.5 6.6±0.9 4.7±0.5 2.8±0.3 1.0±0.1

IAMonDB raw Tacotron 5.8±3.1 3.8±0.7 3.7±0.9 2.6±0.4 1.3±0.1

Transformer 13.3±2.9 12.3±2.0 10.9±0.2 9.3±1.2 5.3±1.2

curve Tacotron 14.9±1.2 9.1±0.9 9.1±0.6 3.8±0.0 2.1±0.1

Transformer 16.8±1.4 12.0±1.6 11.7±1.0 8.2±0.4 3.9±0.7

VNonDB raw Tacotron 4.0±0.5 3.2±0.6 3.2±0.5 2.1±0.2 0.7±0.1

Transformer 4.3±0.9 3.7±0.6 3.0±0.4 2.6±0.4 0.8±0.1

curve Tacotron 2.1±0.1 2.2±0.2 2.2±0.2 1.8±0.2 0.7±0.1

Transformer 2.0±0.2 2.0±0.2 2.0±0.2 1.8±0.3 0.7±0.0

Math raw Tacotron 28.5±1.0 23.1±1.1 22.3±0.4 18.5±0.6 8.3±0.5

Transformer 28.1±4.0 22.8±2.5 20.3±3.0 19.7±2.9 8.3±1.1

curve Tacotron 9.4±0.5 9.4±0.6 9.0±0.1 9.0±0.1 3.1±0.1

Transformer 13.6±1.8 10.8±0.7 9.6±0.6 9.2±0.4 4.0±0.1

Effect of Sampling and Ranking. In Table 1, we compare the results of applying different
sampling and ranking techniques for all datasets, model types, and data types.

A first major finding of our study is that tuning the sampling technique helps in
almost all cases - in 13 cases out of 16, with the remaining ones being ties.

The second conclusion is that using a ranking model helps in all cases.
There is still a significant gap between the performance when using R1 and the

quality-optimal R2. However, as we show in the next paragraph, achieving such quality
comes with penalties for inference time.

Finally, we can conclude that using ranker that predicts whether the ink is recogniz-
able or not is superior to using a baseline ranker [22] that predicts whether a given ink
is real or synthetic. However the latter ranker also helps in most cases, as compared to
not using ranking at all.

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 139

Comparison Under a Time Budget. The inference time for the model consists of 3 sep-
arate parts: (i) generating a batch of B samples; (ii) ranking them with the R1 ranker
(unlessB = R, in which case we can use justR2); (iii) Re-ranking the topR candidates
with R2 (unless B = 1 in which case the generated sample can be returned directly).
We show how these values scale with the input batch size for the model (that is, B for
generative model and R1, and R for R2), in Table 2, and the trade-off between CER
and inference time in Fig. 2.

Table 2.Model inference time per character, in milliseconds, for generative model, ranking model
R1, and recognizer R2. Average across 1000 labels, Tacotron model on Deepwriting data with
curve data representation. The generation process can be efficiently vectorized and scales sub-
linearly. The inference time of R1 is almost negligible, and the inference time of R2 scales
linearly.

Batch size Generation R1 R2

1 15.5 0.05 2.79

2 20.6 0.05 5.19

4 26.6 0.09 11.40

8 35.0 0.15 23.04

16 45.0 0.24 41.39

32 66.3 0.45 76.97

64 128.6 0.91 163.47

Here we present the comparison of model quality vs inference time budget, by vary-
ing the values of B and R.

To connect the input sequence length to inference time, we fix the maximum number
of decoding steps the model is allowed to make per input sequence symbol. In other
words, our inference time is measured as time needed for one decoding step times the
maximum allowed number of tokens per input symbol. The generation is always run
until the maximum number of frames. In the models we used for this evaluation, 99%
of the samples generated less than 5 frames per output character, which is the ratio that
we fixed.

Table 2 shows the inference time for synthesis model, R1, and R2, in ms per char-
acter as a function of the input batch size. Notice that both the autoregressive generative
model and the convolution-based ranker are able to take advantage of vectorization and
are 7.5 and 3.2 times faster for large batch sizes than if run individually. The recog-
nizer, used as R2, however, does not parallelize well due to CTC [16] decoding and
combination with language models, thus scaling linearly with the batch size.

Based on the data in Table 2, we plot the numbers for model quality and worst-case
inference time for different values of B and R in Fig. 2. Points with (B = 4, R = 2),
(B = 8, R = 4), and (B = 16, R = 8) are on the Pareto frontier, verifying our
earlier statement that there are scenarios where the best performance can be achieved
by combining the two rankers. Points (B = 2, R = 1) and (B = 4, R = 1) are also
on the frontier, verifying our statement that there are cases where the best performance
can be achieved without using the recognizer part of the ranking model at all.

140 A. Afonin et al.

Fig. 2. Model inference time (upper bound, per char) vs CER for various values of B and R. For
each values of B, we report results for values of R in {1, 2, 4, 8, 16, 32, 64} s.t. R ≤ B. The
gray dotted line shows a Pareto-optimal frontier. Both axes on the log-scale. As visible, there are
points on the Pareto frontier that include the use of both R1 and R2, justifying our claim that
there are scenarios where optimal performance for a given computational budget can be achieved
by a combination of both.

Discussion and Limitations.We note that the findings we present here are not universal,
and the exact inference time depends on a multitude of factors such as specific gener-
ative model type and size, hardware, length of the sequence to be generated (processor
caching makes longer sequences faster on a per-character basis), ranking model type
and size (for the recognizer ranker, we rely on a model using CTC decoding which
is hard to vectorize, whereas Seq2Seq models may parallelize better, although usually
have worse accuracy). Furthermore, the average/median inference time might differ
from the worst case significantly: The generative model produces an average 3.7 output
frames per input character, compared to 5 which we used for the worst case analysis.
Also when using the recognizer as a ranker, we need not recognize all of the candidates
as we can stop at the first candidate that is perfectly recognizable, which may happen
sooner or later depending on the exact sampling type and model quality. However, we
believe that this does not invalidate our findings: depending on the time budget, better
performance may be achieved by using a fast learned ranking model or combining it
with a recognizer.

Ablation Study. In Table 3 we evaluate our choice of the construction of the ranker train-
ing dataset, and tuning of the sampling parameters for every setup (generation model
type and feature type).

Firstly, we compare our approach of generating training data for the ranker by using
random sampling parameters for every label to two other baseline approaches: (i) using
a fixed ancestral sampling when generating the training data; this intuitively makes
sense as sampling from “widest” possible distribution should cover all the whole diver-

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 141

Table 3. Ablation study for the ranker. The first column contains the results obtained when using
R1 as the ranker. The next group of columns ablates the way of constructing the training dataset
- by always generating samples using ancestral sampling, or by always generating samples using
the sampling that yields the optimal performance when using R2 as the ranker. The last column
shows that the optimal sampling parameters are different for each setup, ablating our choice of
always tuning the sampling parameters.

Dataset Data Model R1 Ranker training data Opt. sampling

Anc. Rec.

Deepwriting raw Tacotron 1.7±0.2 1.9±0.2 2.0±0.2 Top-P, 0.9, 5.0

Transformer 4.9±1.1 5.4±1.0 5.0±0.9 Top-K, 9, ∞
curve Tacotron 2.1±0.2 2.0±0.4 2.0±0.4 Top-K, 3, ∞

Transformer 2.8±0.3 2.7±0.3 2.8±0.3 Top-K, 5, ∞
IAMonDB raw Tacotron 2.6±0.4 2.8±0.5 2.6±0.4 Top-P, 0.9, 100.0

Transformer 9.3±1.2 9.1±1.3 9.3±1.5 Top-K, 6, ∞
curve Tacotron 3.8±0.0 3.8±0.1 4.3±0.3 Top-K, 2, ∞

Transformer 8.2±0.4 8.6±0.8 8.2±0.8 Top-K, 4, ∞
VNonDB raw Tacotron 2.1±0.2 2.5±0.2 2.4±0.2 Top-P, 0.9, 100.0

Transformer 2.6±0.4 2.8±0.4 2.9±0.4 Top-P, 0.9, 5.0

curve Tacotron 1.8±0.2 2.0±0.1 1.7±0.1 Top-P, 0.4, ∞
Transformer 1.8±0.3 2.8±0.4 2.9±0.4 Top-P, 0.3, ∞

Math raw Tacotron 18.5±0.6 19.4±0.6 19.0±0.6 Top-P, 0.9, 5.0

Transformer 19.7±2.9 20.5±2.7 20.0±2.1 Top-K, 8, ∞
curve Tacotron 7.7±0.3 8.4±0.1 7.7±0.2 Top-P, 0.3, ∞

Transformer 9.2±0.4 10.2±0.5 9.3±0.1 Top-P, 0.3, ∞

sity of the generated data. (ii) for each setup, using the sampling parameters that yield
the lowest CER if R2 is used as ranker; this makes sense as R1 tries to approximate
R2, and it is reasonable to assume that their optimal sampling parameters should be
similar. We observe that on average our proposed way of constructing a training dataset
is optimal, never being more than one decimal point worse than other approaches, but
at times significantly outperforming them.

Secondly, we show that the optimal sampling parameters differ a lot between the
setups, so it is important to tune them for each setup. The only reliable signals we
observed was that for the curve representation, it is often preferable to sample more
“greedily” (lower value of K in Top-K or P in Top-P sampling) than for the raw repre-
sentation, and that the optimal samplings seem to be somewhat close between the two
model types.

4.5 Qualitative Analysis

In this section, we first attempt to confirm that: (i) the two types of errors, overconfi-
dence and incoherence, actually happen when generating digital ink samples, and (ii)

142 A. Afonin et al.

Table 4. Number of overconfidence and incoherence errors for various values of p in Top-P
sampling, for a model with and without R1 ranker.

P No ranking Ranking with R1

Overconf Incoher Overconf Incoher

0.1 81 120 42 157

0.2 75 115 37 114

0.3 69 140 23 111

0.4 59 170 16 109

0.5 41 180 9 109

0.6 33 216 3 121

0.7 30 246 2 137

0.8 22 281 1 149

0.9 14 375 1 197

1.0 7 466 1 282

both the choice of sampling and ranking has effect on these errors. Results are pre-
sented with the Tacotronmodel on Deepwriting dataset with curve representation, but
we have observed largely similar trends for other cases. Afterwards, we present exam-
ples of model output on various datasets.

Figure 3 shows examples of generated ink with various samplings - with both inco-
herence and overconfidence examples visible. As we can observe, overconfidence errors
typically result in very long ink, that can not be recognized as the label, with repeating
pattern inside. Given this observation, we attempt to quantify the number of errors of

Fig. 3. Examples of model outputs for different sampling parameters. Input label is “abcdefg.
Hijklmn,”. Sampling parameters used are: Top - (Top-P, 0.0, ∞); Middle - (Top-P, 1.0, 0.0);
Bottom - (Top-P, 0.5, 5.0). The overconfidence error is clearly visible in the top example, while
the middle example is incoherent and hard to recognize. The bottom row shows the importance
of carefully selecting sampling for optimal performance.

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 143

Fig. 4. Examples of model outputs. Transformer with curve representation for Math data,
Tacotron with curve representation for VNonDB data, Tacotron with raw representation for
Deepwriting data. In each case, 5 samples were generated, and sorted left-to-right according to
the score provided by theR1 ranker model, with the rightmost image being the most recognizable
according to the ranker. The first column shows some examples of samples that are not recog-
nizable and are scored low by the ranker, ex. stray strokes (first row), overconfident generation
of repeated lines (second row), misplaced tilde sign over u (fourth row), one extra diacritic (fifth
row), missing dash over t (seventh row). More examples can be obtained in demo colab: https://
colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz.

each type by looking at samples that can not be recognized (meaning the label returned
by the recognizer differs from the input label to the generative model), and within those
samples, whether the generation process reached the maximum number of steps (imply-
ing overconfidence) or not (implying incoherence). Table 4 shows the number of errors,
estimated by this approach, as a function of sampling parameters (value of p in Top-P
sampling), and it confirms the intuition about how it should behave. We can see that
as the sampling parameters go from greedy sampling closer to ancestral sampling, the
number of overconfidence errors goes down, while the number of incoherence errors
goes up. When we use the ranking model, we see that the number of incoherence sam-

https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz
https://colab.research.google.com/drive/1AkwmDOkEIkifbOYEBdcB9PrR_Ll-fcmz

144 A. Afonin et al.

ples first goes down, and then goes up. We attribute this to the fact that as sampling
becomes more diverse, the ranking model is able to select better candidates, but as sam-
pling becomes too diverse, all candidates start being less recognizable. Overall, using
ranking seems to reduce the number of overconfidence errors by 50–90%, and number
of incoherence errors by up to 50%.

Figure 4 shows of the model outputs, sorted according to the score provided by the
ranker, left-to-right. As can be seen, the rightmost sample in every row is recogniz-
able and matches the label, while the leftmost sample is mostly not recognizable. It is
expected that in many cases at least one of 5 samples is not recognizable - if that were
not the case, that would mean that the selected sampling method is too conservative
and should be relaxed to produce samples with higher diversity (which would trade-
off having all 5 candidates recognizable in “easy” cases for improved performance in
“difficult” cases where all 5 samples were not recognizable).

5 Conclusion

In this paper, we investigated the effects of combining sampling and ranking strategies
to improve digital ink generation.

These methods, used before in other domains such as NLG and TTS, proved to be
highly useful, and complementary to each other in the case of digital ink. Until now,
however, they were not explored in this domain, with most methods using ancestral or
greedy sampling, and no candidate ranking. We evaluate sampling and ranking tech-
niques, on four datasets - two containing writing in English and one in Vietnamese, as
well as a fourth one with mathematical formulas. We test the robustness of the findings
using two model types (Tacotron and Transformer) and two common ink data repre-
sentations (raw and curve). In all the combinations, we report significant improve-
ments in the recognizability of the synthetic inks: taken together, a well-chosen sam-
pling method, followed by fast ranking consistently improve recognizability, in many
cases halving the character error rates.

An important factor in the perceived quality of ink synthesis is speed. Potential
applications, such as handwriting autocompletion, spelling correction, and beautifica-
tion usually process user inputs on-device, so ink generative models need to be fast. We
thus report the findings with respect to a given computational budget.

References

1. Aksan, E., Deselaers, T., Tagliasacchi, A., Hilliges, O.: Cose: compositional stroke embed-
dings. arXiv preprint arXiv:2006.09930 (2020)

2. Aksan, E., Pece, F., Hilliges, O.: Deepwriting: making digital ink editable via deep generative
modeling. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (2018)

3. Baevski, A., Auli, M.: Adaptive input representations for neural language modeling. arXiv
preprint arXiv:1809.10853 (2018)

4. Basu, S., Ramachandran, G.S., Keskar, N.S., Varshney, L.R.: Mirostat: a neural text decod-
ing algorithm that directly controls perplexity (2020). https://doi.org/10.48550/ARXIV.2007.
14966. https://arxiv.org/abs/2007.14966

http://arxiv.org/abs/2006.09930
http://arxiv.org/abs/1809.10853
https://doi.org/10.48550/ARXIV.2007.14966
https://doi.org/10.48550/ARXIV.2007.14966
https://arxiv.org/abs/2007.14966

Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget 145

5. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction
with recurrent neural networks (2015). https://doi.org/10.48550/ARXIV.1506.03099.https://
arxiv.org/abs/1506.03099

6. Betker, J.: TorToiSe text-to-speech, April 2022. https://github.com/neonbjb/tortoise-tts
7. Cao, N., Yan, X., Shi, Y., Chen, C.: AI-sketcher: a deep generative model for producing

high-quality sketches. In: Proceedings of the AAAI Conference on Artificial Intelligence
(2019)

8. Carbune, V., et al.: Fast multi-language LSTM-based online handwriting recognition (2020)
9. Chang, J., Shrivastava, A., Koppula, H., Zhang, X., Tuzel, O.: Style equalization: Unsuper-

vised learning of controllable generative sequence models. arXiv preprint arXiv:2110.02891
(2021)

10. Chang, J.H.R., et al.: Data incubation-synthesizing missing data for handwriting recognition.
In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4188–4192. IEEE (2022)

11. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent latent vari-
able model for sequential data (2015). https://doi.org/10.48550/ARXIV.1506.02216. https://
arxiv.org/abs/1506.02216

12. Das, A., Yang, Y., Hospedales, T., Xiang, T., Song, Y.Z.: Sketchode: learning neural sketch
representation in continuous time. In: International Conference on Learning Representations
(2021)

13. Fan, A., Lewis, M., Dauphin, Y.: Hierarchical neural story generation (2018). https://doi.org/
10.48550/ARXIV.1805.04833, https://arxiv.org/abs/1805.04833

14. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–
323. JMLR Workshop and Conference Proceedings (2011)

15. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

16. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classifica-
tion: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings
of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

17. Ha, D., Eck, D.: A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477 (2017)

18. He, T., Zhang, J., Zhou, Z., Glass, J.R.: Quantifying exposure bias for open-ended language
generation (2020)

19. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural text degener-
ation (2019). https://doi.org/10.48550/ARXIV.1904.09751. https://arxiv.org/abs/1904.09751

20. Keysers, D., Deselaers, T., Rowley, H., Wang, L., Carbune, V.: Multi-language online hand-
writing recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

21. Kotani, A., Tellex, S., Tompkin, J.: Generating handwriting via decoupled style descriptors.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357,
pp. 764–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_45

22. Krishna, K., Chang, Y., Wieting, J., Iyyer, M.: Rankgen: improving text generation with
large ranking models (2022). https://doi.org/10.48550/ARXIV.2205.09726. https://arxiv.org/
abs/2205.09726

23. Liu, B., Wei, H., Niu, D., Chen, H., He, Y.: Asking questions the human way: scalable
question-answer generation from text corpus. In: Proceedings of the Web Conference 2020,
pp. 2032–2043 (2020)

24. Liwicki, M., Bunke, H.: IAM-OnDB-an on-line English sentence database acquired from
handwritten text on a whiteboard. In: ICDAR 2005. IEEE (2005)

25. Luhman, T., Luhman, E.: Diffusion models for handwriting generation (2020). https://doi.
org/10.48550/ARXIV.2011.06704, https://arxiv.org/abs/2011.06704

https://doi.org/10.48550/ARXIV.1506.03099.
https://arxiv.org/abs/1506.03099
https://arxiv.org/abs/1506.03099
https://github.com/neonbjb/tortoise-tts
http://arxiv.org/abs/2110.02891
https://doi.org/10.48550/ARXIV.1506.02216
https://arxiv.org/abs/1506.02216
https://arxiv.org/abs/1506.02216
https://doi.org/10.48550/ARXIV.1805.04833
https://doi.org/10.48550/ARXIV.1805.04833
https://arxiv.org/abs/1805.04833
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1704.03477
https://doi.org/10.48550/ARXIV.1904.09751
https://arxiv.org/abs/1904.09751
https://doi.org/10.1007/978-3-030-58610-2_45
https://doi.org/10.48550/ARXIV.2205.09726
https://arxiv.org/abs/2205.09726
https://arxiv.org/abs/2205.09726
https://doi.org/10.48550/ARXIV.2011.06704
https://doi.org/10.48550/ARXIV.2011.06704
https://arxiv.org/abs/2011.06704

146 A. Afonin et al.

26. Maksai, A., Rowley, H., Berent, J., Musat, C.: Inkorrect: online handwriting spelling correc-
tion (2022). https://doi.org/10.48550/ARXIV.2202.13794. https://arxiv.org/abs/2202.13794

27. Meister, C., Pimentel, T., Wiher, G., Cotterell, R.: Typical decoding for natural language
generation (2022). https://doi.org/10.48550/ARXIV.2202.00666. https://arxiv.org/abs/2202.
00666

28. Nguyen, H., Nguyen, C., Bao, P., Nakagawa, M.: A database of unconstrained Vietnamese
online handwriting and recognition experiments by recurrent neural networks. Pattern
Recognition (2018)

29. Ravaut, M., Joty, S., Chen, N.F.: Summareranker: a multi-task mixture-of-experts re-ranking
framework for abstractive summarization. arXiv preprint arXiv:2203.06569 (2022)

30. Reddy, R.: Speech understanding systems: A summary of results of the five-year research
effort at carnegie mellon university. Tech. rep. (1977)

31. Ribeiro, L., Bui, T., Collomosse, J., Ponti, M.: Sketchformer: transformer-based represen-
tation for sketched structure. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2020)

32. See, A., Pappu, A., Saxena, R., Yerukola, A., Manning, C.D.: Do massively pretrained
language models make better storytellers? (2019). https://doi.org/10.48550/ARXIV.1909.
10705, https://arxiv.org/abs/1909.10705

33. Song, Y.: Béziersketch: A generative model for scalable vector sketches. University of Sur-
rey, Tech. rep. (2020)

34. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing
systems (2017)

35. Wang, Y., et al.: Tacotron: towards end-to-end speech synthesis. arXiv preprint
arXiv:1703.10135 (2017)

36. Zhang, T., et al.: Coder reviewer reranking for code generation. arXiv preprint
arXiv:2211.16490 (2022)

https://doi.org/10.48550/ARXIV.2202.13794
https://arxiv.org/abs/2202.13794
https://doi.org/10.48550/ARXIV.2202.00666
https://arxiv.org/abs/2202.00666
https://arxiv.org/abs/2202.00666
http://arxiv.org/abs/2203.06569
https://doi.org/10.48550/ARXIV.1909.10705
https://doi.org/10.48550/ARXIV.1909.10705
https://arxiv.org/abs/1909.10705
http://arxiv.org/abs/1703.10135
http://arxiv.org/abs/2211.16490

Linguistic Knowledge Within
Handwritten Text Recognition Models: A

Real-World Case Study

Samuel Londner1(B), Yoav Phillips2, Hadar Miller3, Nachum Dershowitz4,
Tsvi Kuflik3, and Moshe Lavee2

1 School of Engineering, Tel Aviv University, Tel Aviv, Israel
samuell@mail.tau.ac.il

2 Department of Jewish History and Thought, University of Haifa, Haifa, Israel
3 Department of Information Systems, University of Haifa, Haifa, Israel

4 School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract. State-of-the-art handwritten text recognition models make
frequent use of deep neural networks, with recurrent and connectionist
temporal classification layers, which perform recognition over sequences
of characters. This architecture may lead to the model learning statis-
tical linguistic features of the training corpus, over and above graphic
features. This in turn could lead to degraded performance if the evalua-
tion dataset language differs from the training corpus language.

We present a fundamental study aiming to understand the inner work-
ings of OCR models and further our understanding of the use of RNNs
as decoders. We examine a real-world example of two graphically simi-
lar medieval documents but in different languages: rabbinical Hebrew and
Judeo-Arabic. We analyze, computationally and linguistically, the cross-
language performance of the models over these documents, so as to gain
some insight into the implicit language knowledge the models may have
acquired. We find that the implicit language model impacts the final word
error by around 10%. A combined qualitative and quantitative analysis
allow us to isolate manifest linguistic hallucinations. However, we show
that leveraging a pretrained (Hebrew, in our case) model allows one to
boost the OCR accuracy for a resource-scarce language (such as Judeo-
Arabic).

All our data, code, and models are openly available at https://github.
com/anutkk/ilmja.

Keywords: Optical character recognition · Handwritten text
recognition · Transfer learning · Language model · Hebrew manuscripts

1 Introduction

Modern optical character recognition (OCR) algorithms have come a long way
in their ability to accurately recognize handwritten text. However, it remains an

Supported in part by the Deutsch Foundation, the Israeli Ministry of Science and
Technology (grant number 3-17516) and a grant from Tel Aviv University Center for
Al and Data Science (TAD) in collaboration with Google, as part of the initiative “AI
and DS for Social Good”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 147–164, 2023.
https://doi.org/10.1007/978-3-031-41685-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_10&domain=pdf
https://github.com/anutkk/ilmja
https://github.com/anutkk/ilmja
https://doi.org/10.1007/978-3-031-41685-9_10

148 S. Londner et al.

open question whether these algorithms are able to capture linguistic features of
the text in addition to graphical features. These algorithms use neural networks,
specifically ending with recurrent layers and connectionist temporal classification
(CTC) layers [16,27]. This architecture may lead to the model learning statistical
linguistic features of the training corpus, over and above graphic features. And
this would lead to sensitivity of the model towards the document language and to
degraded performance if the evaluation dataset language differs from the training
corpus language.

This paper investigates this question by examining the performance of OCR
algorithms on two manuscripts written by the same scribe, one in medieval
Judeo-Arabic and the other in medieval rabbinic Hebrew, but both in the same
Hebrew script. Manuscripts in Hebrew script demonstrate high variability due to
the wide dispersion of Jewish communities across different geo-cultural milieus.
The use of manuscripts written by the selfsame person allows us to control
for graphical features and focus on the rôle of linguistic knowledge in OCR
performance. Our hypothesis is that OCR algorithms that are able to capture
linguistic features will show higher accuracy in recognizing the handwritten text.
By analyzing this real-world experimental design, we aim to shed light on the
extent to which linguistic knowledge is incorporated in modern OCR algorithms.

If our hypothesis is supported, it would have important practical implications
for the development and deployment of OCR algorithms. Specifically, it would
suggest that it may not be possible to use a single OCR model for multiple
languages with comparable accuracies, but rather a separate model for each
language would be required. Accordingly, building multilingual OCR systems
and making them more cost-effective so as to support a wider range of languages
requires additional research and engineering.

One potential application of this idea is to use a model trained on a rela-
tively data-rich language as a starting point for recognizing other, poorer lan-
guages resource-wise. For example, a model trained on Hebrew could be fine-
tuned on Judeo-Arabic, a related Semitic language with relatively little avail-
able data. This approach would allow us to leverage the larger amount of avail-
able training data for Hebrew to improve OCR performance for Judeo-Arabic.
The Ktiv database of the National Library of Israel1 lists 61,096 known, extant
manuscripts and fragments in Judeo-Arabic.

Overall, the results of this study have the potential to inform the design
and implementation of OCR systems for multiple languages, with implications
for a range of applications including historical document preservation, digital
humanities, and language learning.

2 Related Work

2.1 Handwritten Text Recognition

We use off-the-shelf methods for automatic page segmentation, layout analy-
sis, and line segmentation. Machine-learning based systems have seen wide use
1 https://www.nli.org.il/en/discover/manuscripts/hebrew-manuscripts.

https://www.nli.org.il/en/discover/manuscripts/hebrew-manuscripts

Linguistic Knowledge Within Handwritten Text Recognition Models 149

recently for these tasks [2,6,9,10,12,17,31,35,45], the majority using combina-
tions of CNNs and LSTMs. Traditional computer-vision methods have advan-
tages for some types of manuscripts [33,35]. State-of-the-art methods have been
implemented in kraken [22] and eScriptorium [23] for mixed models in various
scripts, including Hebrew, and for a wide range of manuscript types.

The current best transcription results for such manuscripts are achieved
by combinations of CNNs and BLSTMs [11,19,22]. OCR efforts working with
medieval Hebrew manuscripts include [23–25]. The Sofer Mahir project (https://
sofermahir.hypotheses.org) applied kraken’s OCR to 20 large manuscripts of
early rabbinic compositions. In the Tikkoun Sofrim project [24,44], crowdsourc-
ing and machine learning have been used to correct the errors of the auto-
matic transcriptions of several large manuscripts of medieval exegetical litera-
ture. Character error rates (CER) of 2–3% were attained usually for manuscripts
with homogeneous layout and script but only around 9% when there were com-
plications. Modern end-to-end systems (segmentation plus OCR) include [5,20].

2.2 Implicit Linguistic Knowledge in OCR Models

Previous works have employed synthetic data to show OCR models’ sensitivity
to language, and thus that they implicitly learn linguistic features. The authors
of [43] test the performance of an LSTM-based OCR trained on one language
and tested on other languages. The difference in performance is indicative of the
model’s reliance on an implicit language model (LM). However, no explanation
or linguistic analysis is provided. Moreover, no attention is paid to the fact that
the languages being compared, English and French, share linguistic features and
even complete lexemes to a significant degree. The authors of [32] established
and characterized the strength of the implicit LM in LSTM-based OCR sys-
tems by synthesizing printed English text and shuffling the characters in each
sentence. This approach, although proving the existence of the implicit internal
language model, is not applicable to evaluate the cross-lingual generalization
capability (or lack thereof) of pretrained language models. Furthermore, in the
experiment described in [32], shuffling characters does not affect the distribution
of characters, thus leaving some linguistic hints to the (hypothesized) LM.

In this work, we combine an in-depth linguistic qualitative analysis and a
quantitative approach to examine the degree of reliance of OCR models on lin-
guistic features. We account for similarities and differences between the lan-
guages and present specific examples of seemingly linguistic “hallucinations” in
OCR models. To the best of our knowledge, this is the first time such a hybrid
approach is applied in the field of digital humanities with the goal to isolate
and quantify the influence of language on the OCR model’s performance. Tak-
ing into account the fact that synthesizing data is less relevant for historical
manuscripts, we leverage a real-world case of two manuscripts, in two different
languages, which share the same graphical features, having been written by the
same scribe.

https://sofermahir.hypotheses.org
https://sofermahir.hypotheses.org

150 S. Londner et al.

2.3 Transfer Learning

Manuscript handwriting styles are highly dependent on time, place, training,
and individual predilections. Improving over state-of-the-art models by leverag-
ing transfer learning is an obvious choice. Models pretrained over a large corpus
are fine-tuned on the first few annotated pages of a manuscript in order to help
decipher the rest of the manuscript. In this way, the representation learned over
a source dataset can be refined to solve the target task, namely transcribing doc-
uments of a smaller, disjoint dataset [14]. Recent research [1,18] shows that the
optimal method to improve accuracy is to fine-tune the parameters of the whole
recognition model, while the first layer can be frozen without any meaningful
performance degradation. In [15], the authors successfully apply this concept for
Latin-alphabet handwriting to historical handwritten Italian titles of plays. The
technique also allows one to transfer the representation from Arabic printed text
to genuine handwriting [29]. Transductive methods, using purely synthetic data
with data rendering and augmentation, along with domain adaptation, cycle-
consistent adversarial networks, and a combination of a domain-adversarial neu-
ral network approach with a convolutional recurrent neural network architecture,
have been used to advantage in [20] for Tibetan Buddhist historical texts in a
variety of scripts.

3 Linguistic Background

Judeo-Arabic is a general term describing an Arabic-based Jewish language or
ethnolect, with a wide variety of regional dialects, which gradually developed in
Jewish communities across Arabic-speaking Islamic regions, from the 8th cen-
tury until the mid-20th century. Although these dialects were influenced by local
variants of Arabic, they had their own distinct characteristics that distinguished
them as a unique communal dialect. On the other hand, most Judeo-Arabic
dialects shared common features forming a distinctive Jewish ethnolect. The
most common distinctive feature is the Hebrew orthography that was common
to all Judeo-Arabic dialects (apart of some Karaite writings that used Arabic
characters). The implementation of Hebrew orthography was mostly phonetic;
therefore, it may have differed from one Jewish community to another due to
different local pronunciation tendencies. Another common feature was the gram-
matical and syntactical integration of Hebrew roots, words, and phrases into the
Arabic. Most manuscripts written in the Middle Ages, roughly between the 10th
and the 13th centuries, as is the case for the manuscripts with which we will
be working, were written in a relatively high register defined as Classical Judeo-
Arabic (CJA). Simply put, this means that the core Arabic elements of the text
are similar to its literary Arabic counterpart, while the differences between the
various dialects within CJA are relatively mild [21,36].

For the purpose of this investigation, words were classified into four different
linguistic categories:

1,2. The two basic groups are Hebrew and Judeo-Arabic. Under Hebrew we
included the odd Aramaic words that are frequent in Hebrew medieval works

Linguistic Knowledge Within Handwritten Text Recognition Models 151

and hence are assumed to be part of the linguistic knowledge of a model
trained on Hebrew manuscripts. Each word in the manuscript is classified
either as Hebrew (including Aramaic) or Judeo-Arabic.

3. A third category comprises homographs (distinct words that are written
in the same manner): Since our manuscripts, like most Hebrew and Judeo-
Arabic texts, lack vowels (the Hebrew and Arabic alphabets are partial
abjads), many of them can be read both as a Hebrew word and as an Arabic
word with divergent meanings.

4. The fourth group classified consists of abbreviated words. Our manuscripts,
like most Hebrew and Judeo-Arabic texts, have a tendency to abbreviate
words by dropping one or more letters at the end and adding an apostro-
phe or dot on top of the last letter of the shortened word, as in
for . Shortening, which is not common in Arabic texts, is also
applied to Arabic words in Judeo-Arabic texts, as for instance, for

. Thus, we have a Hebrew textual convention applied to both
Hebrew and Arabic words. For completeness of the comparison of the
model’s performance between both languages, we group these potentially
ambiguous strings in a separate category.

As in many Judeo-Arabic manuscripts, our scribe tended to separate the Ara-
bic definitive article from the rest of the word. The abundant use of the definitive
article in Arabic with the graphical effect of this Judeo-Arabic phenomenon was
analysed separately. It should be noted that the definitive article [Arabic ,
which in our manuscript may be signified by the ligature], stripped of its
context, was usually classified as a homograph since it can be read as Hebrew or
Arabic, although the adjacent word to which it refers was not necessarily Arabic.
In a case like , the definitive form may be classified as a
homograph and the noun as Hebrew [7].

4 Data

For our experiments, we use the manuscripts, MS Genève Comites Latentes 146
[3] and Oxford Bodleian Library MS Huntington 115 [30]. See Fig. 1. MS Genève
146 contains a rabbinic homiletic work from late antiquity, Midrash Tanh. uma.
MS Huntingtion 115 contains Kitab al-Tuffāh. a, an unpublished Judeo-Arabic
homiletic work by Shamariah Hacohen (d. between 1124–1137) [13,26,28]. The
majority of MS Huntington 115 (from p. 103r on) was copied by the same scribe
who copied MS Genève 146, in an Oriental Hebrew Script of the 14th century.

The main evaluation set is composed of 5 pages from MS Huntington 115. It
amounts to 1559 words, or 5818 characters. The manuscript was first transcribed
using a base OCR system. The transcription was then manually corrected by two
experts of the language and the relevant literature. The resulting ground-truth
text is not corrected, that is, it includes “typos” that actually appear in the
data. Labeling was performed using eScriptorium [23].

A character k-gram, also known as a “k-mer”, is a sequence of k consec-
utive letters of the alphabet or other characters (spaces and punctuation). As
detailed below, for advanced analysis, we compare k-mer distributions of our

152 S. Londner et al.

Fig. 1. Sample pages of the manuscripts used.

texts with the distributions within two larger literary bases: one for rabbinic
Tanh.umic Hebrew (which parallels the language of MS Genève 146) and another
for Judeo-Arabic (parallel to MS Huntington 115). The Tanh.umic Hebrew

Linguistic Knowledge Within Handwritten Text Recognition Models 153

corpus is a subset of Sefaria’s dataset [34],2 and the Judeo-Arabic corpus is
from the Friedberg Judeo-Arabic Corpus [42].3

5 Methodology

5.1 Training

We fine-tune a pretrained model over Hebrew and test it over Judeo-Arabic
and conversely. Transfer learning is an efficient approach to attain state-of-the-
art OCR performance over a specific data distribution with a limited amount
of data. The pretrained model, which is composed of four convolutional layers,
three LSTM layers and a CTC layer, has been trained over a heterogeneous batch
of generic medieval manuscripts [41]. We fine-tune it to get optimal performance
over a specific manuscript, using the Adam optimizer (constant learning rate:
0.001, momentum: 0.9). Fine-tuning is performed using the kraken package.4

Fine-tuning the models’ parameters [41] over the first few pages of the
manuscript (whose ground-truth text is known) indeed improves performance
dramatically. Preliminary results show that character accuracy can be boosted
by around 18% by fine-tuning the recognition models over only three labeled
pages (see Fig. 2). It appears that the maximum achievable accuracy with the
current architecture and limited data scope is approximately 96–98%, as evi-
denced by state-of-the-art results for pretrained models in larger datasets [41].
When fine-tuning a model on a manuscript that exhibits a similar graphical
and linguistic distribution to the pretraining dataset, only a minimal quantity
of data is necessary to optimize the model’s weights for the new manuscript,
which accounts for the observed “saturation” phenomenon. As such, the partic-
ular choice of the source model does not seem to impact performance, nor does
adding more labeled data. We note that the same technique can be applied to
segmentation models.

We use a model pretrained on a corpus of biblical and rabbinical Hebrew [41].
The same base model is used for fine-tuning over Hebrew as well as Judeo-Arabic.
n.b. The original models were taken from [41] and are available from kraken’s
Zenodo archive [37–40].5

5.2 Inference

OCR is generally composed of two steps: segmentation of the image into lines
and recognition of the identified segments as text. The model is applied to images
and their corresponding ground-truth segmentation, generating output through

2 See https://www.sefaria.org/texts. We selected all the available texts from books
that belong to the Tanh.umic Hebrew corpus: Tanh. uma, Pesikta Rabbati, Shemot
Rabbah, Bemidbar Rabbah, and Devarim Rabbah.

3 See https://ja.genizah.org/Home.aspx.
4 https://kraken.re/, https://github.com/mittagessen/kraken.
5 https://zenodo.org/communities/ocr models.

https://www.sefaria.org/texts
https://ja.genizah.org/Home.aspx
https://kraken.re/
https://github.com/mittagessen/kraken
https://zenodo.org/communities/ocr_models

154 S. Londner et al.

Fig. 2. Character accuracy achieved by transfer learning, as a function of additional
labeled lines used for fine-tuning. Models courtesy [41].

CNN, RNN, and CTC layers. These outputs are exported to files and subse-
quently evaluated against ground truth, as elaborated next.

To neutralize the impact of incorrect segmentation as much as possible, we
use manual ground-truth segmentation and focus only on the recognition net-
work.

5.3 Evaluation

Some characters in Judeo-Arabic do not exist in Hebrew, mainly diacritics. We
ignored these signs in the comparison, since a model trained on Hebrew material
cannot generate Judeo-Arabic–specific symbols.

We compare character error rate (CER) in Table 1 and the word error rate
(WER) in Table 2 over the complete evaluation sets. Although previous work [32,
43] dealt only with CER, we include WER in our analysis, since we expect the
hypothesised implicit language model to affect WER more significantly than
CER.

We present results for four subsets of words in the Judeo-Arabic evaluation
set: (a) all words; (b) Hebrew words; (c) homographs (Judeo-Arabic spelled like
other Hebrew words); (d) words in Judeo-Arabic that do not exist in Hebrew.
This classification was performed manually by experts. It allows us to infer the
level – if any – of the linguistic features the model may have learned: character
level, part-of-word level, or word level. For example, if the model learned fea-
tures related to k-mer distributions, but not features related to word n-gram
distributions, we would except the homograph group error rate to be similar to
the Hebrew error rate. On the other hand, if the model learned language mod-
eling features related to context, we may expect the homograph group to have
a higher error rate, since the inter-word context in the evaluation set is very

Linguistic Knowledge Within Handwritten Text Recognition Models 155

Table 1. CER [percent].

Set Hebrew model Judeo-Arabic model

Hebrew MS 6.7 9.1

Judeo-Arabic MS – All 8.2 6.3

Judeo-Arabic MS – Hebrew 5.2 –

Judeo-Arabic MS – Hebrew homographs 5.8 –

Judeo-Arabic MS – Arabic 8.0 –

Table 2. WER [percent].

Set Hebrew model Judeo-Arabic model

Hebrew MS 13.9 24.6

Judeo-Arabic MS – All 17.1 14.0

Judeo-Arabic MS – Hebrew 12.7 –

Judeo-Arabic MS – Hebrew homographs 10.0 –

Judeo-Arabic MS – Arabic 21.2 –

dissimilar from the training-set context. To facilitate the manual comparison,
we used Dicta’s Synopsis Builder [4,8].

For reference, we include the resulting error rates of the reciprocate Judeo-
Arabic model over the whole Hebrew and Judeo-Arabic datasets. Note that
diacritics are ignored in the evaluation.

We also compare distributions of errors of the model trained over MS Genève
146 over the MS Genève 146 holdout test set and the MS Huntington 115 dataset.
See Fig. 4 for confusion matrices. Moreover, to account for the different distri-
bution of characters in the two languages, we normalize each column in the
confusion matrix by the number of respective characters in the ground truth;
see Fig. 5. We also report the actual error rate distribution by character in Fig. 6.

To see if the model reproduces statistical patterns from Tanh.umic Hebrew,
we compare the distribution of 1,2,3-mers in the transcription in Hebrew and
Judeo-Arabic. For this specific comparison, we ignore differences of ligature;
specifically, is considered identical to . The numerical scores are
cosine metrics between the (sorted) distributions. Results are detailed in Fig. 3.

6 Results and Analysis

6.1 Error Rates

The main result leading our analysis is the difference in the error rates between
the Hebrew model’s transcriptions over Hebrew and Arabic words (the first and
last rows in Tables 1 and 2). We note that the CER difference, although existent
(around 2% – consistent with previous results [32,43]), is modest compared to

156 S. Londner et al.

(a) 1-mer cosine similarities (b) 2-mer cosine similarities

(c) 3-mer cosine similarities

Fig. 3. Comparison of character distributions. “Huntington 115 GT” denotes the dis-
tribution of ground-truth text in the Judeo-Arabic manuscript MS Huntington 115,
whereas “Huntington 115 HTR” denotes the distribution of the transcription performed
by the model trained on MS Genève 146.

the WER gap of more than 8%. This gap is preserved in the overall error rates,
without distinction between subsets of words (second row in Tables 1 and 2). This
is a strong indication that an implicit language model exists and is sensitive to
the specific language of the transcribed text. The fact that the error rates for
the Hebrew and homograph words (third and fourth rows in Tables 1 and 2)
are similar to the pure Hebrew error rate indicates that the learned linguistic
features are intraword and not interword, that is, they are on the k-mer level.

An additional finding is the difference between the normalized error rates per
character between the holdout Hebrew text and the whole Judeo-Arabic dataset
(Fig. 6). The modest but significant gaps may be explained by the sensitivity of
the model to language.

This conclusion is further reinforced by the converse finding that the Judeo-
Arabic model performs much better on the Judeo-Arabic holdout test set that
on the Hebrew text, by a margin of more than 10%. Incidentally, since the base
pretrained model was trained on Hebrew data only, and fine-tuned on a limited

Linguistic Knowledge Within Handwritten Text Recognition Models 157

(a) Judeo-Arabic (Huntington 115) (b) Hebrew (holdout MS Genève 146)

Fig. 4. Confusion matrices of the Hebrew model, evaluated over Judeo-Arabic and
Hebrew.

(a) Judeo-Arabic (Huntington 115) (b) Hebrew (holdout MS Genève 146)

Fig. 5. Normalized confusion matrices of the Hebrew model, evaluated over Judeo-
Arabic and Hebrew. Units are in percent of corresponding characters in GT.

amount of Judeo-Arabic data, this shows that the implicit language model can
be relatively easily updated. This means that – provided the graphemes are
close enough – transferring the graphical knowledge and updating the language
model by transfer learning may allow the leveraging of pretrained models for the
benefit of data-scarce languages. Further research may analyze the influence of
fine-tuning only the part of the model that is suspected to act as an implicit
language model, namely the recurrent layers.

On the other hand, the k-mer distribution of the transcribed text (see Fig. 3)
is significantly more similar to the corresponding distribution of the ground-
truth Judeo-Arabic text than to Hebrew distributions (Tanh.uma or MS Genève
146).

158 S. Londner et al.

Fig. 6. Comparison of error rate per character. The outlier frequencies of and
are due to the low number of these characters in the holdout MS Genève 146 test set.
Kolmogorov-Smirnov test after normalization: statistic = 0.129, p = 0.963.

Fig. 7. Examples of erroneous readings.

We theorize that although the model’s output mainly depends on purely
graphical features, in case of ambiguous readings linguistic features “tip the
scale”. A potential explanation for the observed phenomenon could be the fol-
lowing: The RNN, positioned at the conclusion of the model, likely functions
as a self-supervised conditional language model, primarily utilizing the target
text during the training process. To validate this theory, we performed a semi-
qualitative analysis of the identified errors.

6.2 Graphical Errors

In many cases, a graphic issue can explain mistakes: the ink bleeding from the
reverse side of the page causes confusions (Fig. 7d), or the scribe made a slight
emendation or wrote the letter in a manner that resembles another letter, and
so forth. For example, in Fig. 7a it seems that the scribe wrote the letter by

Linguistic Knowledge Within Handwritten Text Recognition Models 159

Table 3. Errors excluding graphical issues.

Language Words Error count Error rate [%]

Hebrew 524 58 11.07

Arabic 499 90 18.04

Homographs 405 27 6.67

Other 54 11 20.37

Total 1482 186 –

mistake, and then emended it to the correct letter by adding the upper right
stroke, which is hardly seen. Indeed the model read . Another type of mistake
that is not related to acquisition of the language is due to segmentation and hence
should not be counted as evidence for the question of semantic knowledge. For
instance, in Fig. 7b, the segmentation missed the exact beginning of the line, and
hence the ligature was read as the last letter in it, .

The scribe tends to write wide letters to fill the space at the end of line,
so it comes out adjusted (see Fig. 7c). The model did not “learn” this feature,
frequently failing for such stretched letters. However, a human reader who knows
the language has the ability to overcome graphic issues, and our assumption is
that since we taught the model full lines, we should expect some knowledge about
frequencies of letters, that would help the model to overcome graphic issues.

6.3 Evidence for Linguistically Triggered Errors

To validate our assumption, we excluded mistakes obviously caused by a graphi-
cal reason (i.e. segmentation, ink bleed). Indeed, the ratio between the mistakes
in both language did not change. See Table 3.

Subject to the danger of the rule of small numbers, the following report
suggests an analysis based on a qualitative review of the material and some
quantitative related analyses. We examined all mistakes and noted the following
phenomena.

The most frequent mistake is the replacement of in place of .
The shapes of these two letters are very similar, and our scribe writes them in
an extremely inconsistent manner. In many cases, without the semantic context,
a human reader will be unable to distinguish between them. The directionality
of the mistakes is very clear. Only one time was read as , while
was read as 35 times (19% of its appearances in the examined pages).

There are 20 mistakes in Judeo-Arabic words (out of 89 words containing
the letter and 499 words in total) and 15 mistakes are in Hebrew words or
homographs (out of 84 words containing the letter and 954 words in total). This
clearly shows a typical cause for the larger proportions of mistakes in Judeo-
Arabic. At least in 11 cases the mistake created a valid word in Hebrew, so if
there is any accumulation of linguistic knowledge it could not support the model
decision making in those cases. Of special importance are two cases in which

160 S. Londner et al.

the model also split the word wrongly, so that a valid Hebrew word is created:
becomes , becomes

. Note that and are valid Hebrew words.
In both Rabbinic and Biblical Hebrew, the frequency of is double

that of . This explains why the model mistakes dalet for resh and not
vice versa. In Judeo-Arabic the ratio changes significantly, possibly because the
Hebrew letter represents, in Arabic, both and usually
written with a diacritic, .6 In this case, which is the most glaring one, we can
clearly see that the frequency of single letter is the cause of the different ratio
of mistakes in the two languages.

Another frequent mistake is the reading of as .
These characters are graphically similar. This case is important because final
mem always comes at the end of a word. Indeed, 11 out the 12 errors are
ones in which the model read final mem as the last letter rather than the
actual samekh. Another case of reading final mem mistakenly was also at
the end of the word. Out of these mistakes, there are three striking cases in
which the samekh was in a middle of the word, but the model both read it
as final mem and split the word wrongly after the final mem, clearly demon-
strating an inclination to represent the frequency of appearance of a space
after final mem. For instance, in Fig. 7e, the OCR model erroneously mis-
took a for a , and hallucinated a space after the mistaken , turning

into . A model trained on Judeo-
Arabic would probably be familiar with the sequence which is part
of the conjugation . Additional errors of this genre
include being mistaken for
, and for .

Except once, all final mem mistakes are in Judeo-Arabic words. More telling
is the following observation: Out of a total nine cases of samekh at the end of a
Judeo-Arabic word, seven were wrongly read! Samekh appears in the middle of
a word in Judeo-Arabic 36 times, and only one of them was read as final mem in
the middle of word. In the three other cases, samekh in the middle of the word
was read as final mem and followed by an imaginary space (presented above).

In Hebrew, the corpus has only 2 words ending with samekh, one read as final
mem, and none of the total 24 cases of samekh in the middle of a Hebrew word
was read as final mem. Indeed the frequency of final mem versus samekh at the
end of the word in the Hebrew MS Genève 146 gold transcription is about 30:1.
It seems obvious that the model “learned” that samekh hardly ever appears at
the end of a word and that a final mem is final.

Another hint for a certain acquisition of knowledge concerns the frequency
of letters and sequences is the reading of zayin as vav , as shown in Table 4.
Once again, these are two similar letters, though much more distinguishable to
the human eye in the hand of this specific scribe. Zayin is very rare, whereas

6 As mentioned, since diacritics are not used in standard Hebrew, and do not appear
in the Hebrew model’s training data, we should ignore them in our analysis and
error rate computation.

Linguistic Knowledge Within Handwritten Text Recognition Models 161

Table 4. Zayin/vav confusions.

Hebrew Judeo-Arabic

Total (mistakes/words) zayin 5/25 4/18

Beginning of a word 5/16 1/2

Middle of a word 0/9 3/16

vav is very frequent, and hence the clear directionality of the mistakes (as in
the case of resh and dalet). The model read zayin as vav 9 times, 5 of them
in the beginning of a word. This is related to the frequent function of vav as a
conjunction, which appears at the beginning of a word.

Zayin is much more frequent in Hebrew than in Judeo-Arabic, especially at
the beginning of a word. As a result, this is a rare case where the OCR model’s
character error rate is significantly higher in Hebrew than in Judeo-Arabic.

7 Conclusion

This paper presents a fundamental study aiming to understand the inner work-
ings of OCR models and further our understanding of the use of RNN as
decoders. We find that a network concluded by a RNN, trained to recognize
words in one language, suffers a bias for that language, and therefore performs
less well on texts in another natural (not artificial) language with the same
alphabet and distribution of letters. Specifically, our combined quantitative and
qualitative analysis shows that although OCR models mainly base their output
on graphical features, linguistic features play a significant rôle in the transcrip-
tion process and affect the final word accuracy by around 10%. By combining a
qualitative approach to the linguistic features of the transcription and a quan-
titative analysis of the error distributions, we were able to isolate specific cases
of seemingly linguistic hallucinations. We surmise that the decoder functions as
a self-supervised conditional language model, primarily utilizing the target text
during the training process.

The results demonstrate the need to train specific models for languages other
than Hebrew in Hebrew script. Our conclusions are probably relevant to other
Jewish languages in Hebrew script, such as Yiddish and Ladino (Judeo-Español),
to Aramaic, and perhaps to the different languages written in Arabic characters.

Moreover, the existence of a low-level internal language model in OCR models
suggests that post-OCR correction using a character-level or k-mer language
model may be less likely to be helpful than using a semantic language model.

It may be feasible to moderate the extent of learning, such as by training on
multilingual datasets or randomized synthetic data, although this may result in
reduced accuracy for the original target language due to the implicit language
model’s capacity to “pre-correct” errors. An alternative approach involving train-
ing on a data-rich language and subsequently fine-tuning all or part of the net-
work on a closely related data-poor language may yield superior outcomes. In

162 S. Londner et al.

fact, the similarities between the languages leave the door open for fine-tuning
pretrained models over less data-rich datasets, although special attention needs
to be given to language-specific glyphs such as diacritics.

References

1. Aradillas, J.C., Murillo-Fuentes, J.J., Olmos, P.M.: Boosting offline handwrit-
ten text recognition in historical documents with few labeled lines. IEEE
Access, pp. 76674–76688 (2021). https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=9438636

2. Barakat, B., Droby, A., Kassis, M., El-Sana, J.: Text line segmentation for challeng-
ing handwritten document images using fully convolutional network. In: Proceed-
ings of the 16th International Conference on Frontiers in Handwriting Recognition
(ICFHR), pp. 374–379. IEEE (2018)

3. Bibliothèque de Genève: Comites Latentes 146: Midrash Tanhuma (Leviticus-
Numbers-Deuteronomy) (2015). https://www.e-codices.unifr.ch/en/list/one/bge/
cl0146

4. Brill, O., Koppel, M., Shmidman, A.: FAST: Fast and accurate synoptic texts.
Digital Scholarship in the Humanities 35(2), 254–264 (2020)

5. Carbonell, M., Mas, J., Villegas, M., Fornés, A., Lladós, J.: End-to-end handwritten
text detection and transcription in full pages. In: Proceedings of the International
Conference on Document Analysis and Recognition Workshops (ICDARW), vol.
5, pp. 29–34. IEEE (2019)

6. Chen, K., Seuret, M., Liwicki, M., Hennebert, J., Ingold, R.: Page segmentation of
historical document images with convolutional autoencoders. In: Proceedings of the
13th International Conference on Document Analysis and Recognition (ICDAR),
pp. 1011–1015. IEEE (2015)

7. Connolly, M.M.: Splitting definitives: the separation of the definite article in
medieval and pre-modern written Judeo-Arabic. J. Jewish Lang. 9(1), 32–76 (2021)

8. Dicta: Synopsis Builder. https://synoptic.dicta.org.il
9. Diem, M., Kleber, F., Fiel, S., Grüning, T., Gatos, B.: cBAD: ICDAR2017 compe-

tition on baseline detection. In: Proceedings of the 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1355–1360.
IEEE (2017)

10. Droby, A., Kurar Barakat, B., Madi, B., Alaasam, R., El-Sana, J.: Unsupervised
deep learning for handwritten page segmentation. In: Proceedings of the 17th Inter-
national Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 240–
245. IEEE (2020)

11. Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.V.: Improving CNN-RNN hybrid
networks for handwriting recognition. In: Proceedings of the 16th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 80–85. IEEE
(2018)

12. Fink, M., Layer, T., Mackenbrock, G., Sprinzl, M.: Baseline detection in historical
documents using convolutional U-nets. In: Proceedings of the 13th IAPR Interna-
tional Workshop on Document Analysis Systems (DAS), pp. 37–42. IEEE (2018)

13. Gan-Zvi, M.: Parashat Pinchas in Kitáb-al-Tuffaha and the Early Judeo-Arabic
Homiletics. Master’s thesis, The University of Haifa (2018)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438636
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9438636
https://www.e-codices.unifr.ch/en/list/one/bge/cl0146
https://www.e-codices.unifr.ch/en/list/one/bge/cl0146
https://synoptic.dicta.org.il
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Linguistic Knowledge Within Handwritten Text Recognition Models 163

15. Granet, A., Morin, E., Mouchère, H., Quiniou, S., Viard-Gaudin, C.: Transfer
learning for handwriting recognition on historical documents. In: Proceedings of the
7th International Conference on Pattern Recognition Applications and Methods
(ICPRAM) (2018)

16. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning (ICML),
pp. 369–376 (2006)

17. Grüning, T., Leifert, G., Strauß, T., Michael, J., Labahn, R.: A two-stage method
for text line detection in historical documents. Int. J. Document Anal. Recogn.
(IJDAR) 22(3), 285–302 (2019). https://doi.org/10.1007/s10032-019-00332-1

18. Jaramillo, J.C.A., Murillo-Fuentes, J.J., Olmos, P.M.: Boosting handwriting text
recognition in small databases with transfer learning. In: Proceedings of the 16th
International Conference on Frontiers in Handwriting Recognition (ICFHR), pp.
429–434. IEEE (2018)

19. Kahle, P., Colutto, S., Hackl, G., Mühlberger, G.: Transkribus-a service platform
for transcription, recognition and retrieval of historical documents. In: Proceedings
of the 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), vol. 4, pp. 19–24. IEEE (2017)

20. Keret, S., Wolf, L., Dershowitz, N., Werner, E., Almogi, O., Wangchuk, D.: Trans-
ductive learning for reading handwritten Tibetan manuscripts. In: Proceedings of
the International Conference on Document Analysis and Recognition (ICDAR),
pp. 214–221. IEEE (2019)

21. Khan, G.: Judeo-Arabic. In: Handbook of Jewish Languages, pp. 22–63. Brill (2016)
22. Kiessling, B.: Kraken – An universal text recognizer for the humanities. In: Digital

Humanities (DH2019) (2019)
23. Kiessling, B., Tissot, R., Stokes, P., Stökl Ben Ezra, D.: eScriptorium: an open

source platform for historical document analysis. In: Proceedings of the Interna-
tional Conference on Document Analysis and Recognition Workshops (ICDARW),
vol. 2, pp. 19–19. IEEE (2019)

24. Kuflik, T., et al.: Tikkoun Sofrim combining HTR and crowdsourcing for auto-
mated transcription of Hebrew medieval manuscripts. In: Digital Humanities
(DH2019) (2019)

25. Kurar Barakat, B., El-Sana, J., Rabaev, I.: The Pinkas dataset. In: Proceedings
of the International Conference on Document Analysis and Recognition (ICDAR),
pp. 732–737. IEEE (2019)

26. Lavee, M.: Literary canonization at work: the authority of aggadic midrash and
the evolution of havdalah poetry in the Genizah. AJS Rev. 37(2), 285–313 (2013)

27. Liwicki, M., Graves, A., Fernàndez, S., Bunke, H., Schmidhuber, J.: A novel app-
roach to on-line handwriting recognition based on bidirectional long short-term
memory networks. In: Proceedings of the 9th International Conference on Docu-
ment Analysis and Recognition (ICDAR) (2007)

28. Nahra, R.: Kitab al-Tuffãh. a: A Collection of Judaeo-Arabic Homilies on the Torah,
from the End of the 11th or the Beginning of the 12th Century. Introduction with
an Edition of the Homilies on the Book of Bereshit. Ph.D. thesis, Hebrew University
of Jerusalem (2016), [Hebrew]

29. Noubigh, Z., Mezghani, A., Kherallah, M.: Transfer learning to improve Arabic
handwriting text recognition. In: Proceedings of the 21st International Arab Con-
ference on Information Technology (ACIT), pp. 1–6. IEEE (2020)

30. Oxford University, Bodleian Library: MS. Huntington 115 (2015). https://www.e-
codices.unifr.ch/en/list/one/bge/cl0146

https://doi.org/10.1007/s10032-019-00332-1
https://www.e-codices.unifr.ch/en/list/one/bge/cl0146
https://www.e-codices.unifr.ch/en/list/one/bge/cl0146

164 S. Londner et al.

31. Reul, C., et al.: OCR4all-An open-source tool providing a (semi-) automatic OCR
workflow for historical printings. Appl. Sci. 9(22), 4853 (2019)

32. Sabir, E., Rawls, S., Natarajan, P.: Implicit language model in LSTM for OCR.
In: Proceedings of the 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), vol. 7, pp. 27–31. IEEE (2017)

33. Sadeh, G., Wolf, L., Hassner, T., Dershowitz, N., Stökl Ben Ezra, D.: Viral tran-
script alignment. In: Proceedings of the 13th International Conference on Docu-
ment Analysis and Recognition (ICDAR), pp. 711–715. IEEE (2015)

34. Sefaria Inc: A living library of Torah texts online, December 2021. https://github.
com/Sefaria/Sefaria-Export

35. Seuret, M., Stökl Ben Ezra, D., Liwicki, M.: Robust heartbeat-based line segmen-
tation methods for regular texts and paratextual elements. In: Proceedings of the
4th International Workshop on Historical Document Imaging and Processing, pp.
71–76 (2017)

36. Stillman, N.A.: The Judeo-Arabic heritage. In: Zion, Z. (ed.) Sephardic & Mizrahi
Jewry: From the Golden Age of Spain to Modern Times, pp. 40–54. NYU Press
(2005)

37. Stökl Ben Ezra, D.: Medieval Hebrew manuscripts in Ashkenazi bookhand (2021).
https://zenodo.org/record/5468478. Accessed 31 Jan 22

38. Stökl Ben Ezra, D.: Medieval Hebrew manuscripts in Italian bookhand, version 1.0
(2012). https://zenodo.org/record/5468573. Accessed 31 Jan 22

39. Stökl Ben Ezra, D.: Medieval Hebrew manuscripts in Sephardi bookhand, version
1.0 (2021). https://zenodo.org/record/5468665. Accessed 31 Jan 22

40. Stökl Ben Ezra, D.: Medieval Hebrew manuscripts, version 1.0 (2021). https://
zenodo.org/record/5468286. Accessed 31 Jan 22

41. Stökl Ben Ezra, D., Brown-DeVost, B., Jablonski, P., Lapin, H., Kiessling, B.,
Lolli, E.: BiblIA-a general model for medieval Hebrew manuscripts and an open
annotated dataset. In: Proceedings of the 6th International Workshop on Historical
Document Imaging and Processing (HIP), pp. 61–66 (2021)

42. The Friedberg Jewish Manuscript Society: The Friedberg Judeo-Arabic Project
(2014). https://ja.genizah.org/. Accessed 2022 01 08

43. Ul-Hasan, A., Breuel, T.M.: Can we build language-independent OCR using LSTM
networks? In: Proceedings of the 4th International Workshop on Multilingual OCR,
pp. 1–5 (2013)

44. Wecker, A.J., et al.: Tikkoun Sofrim: Making ancient manuscripts digitally accessi-
ble: The case of Midrash Tanhuma. ACM J. Comput. Cultural Heritage (JOCCH)
15(2), 1–20 (2022)

45. Xu, Y., He, W., Yin, F., Liu, C.L.: Page segmentation for historical handwritten
documents using fully convolutional networks. In: Proceedings of the 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), vol. 1,
pp. 541–546. IEEE (2017)

https://github.com/Sefaria/Sefaria-Export
https://github.com/Sefaria/Sefaria-Export
https://zenodo.org/record/5468478
https://zenodo.org/record/5468573
https://zenodo.org/record/5468665
https://zenodo.org/record/5468286
https://zenodo.org/record/5468286
https://ja.genizah.org/

Decoupled Learning for Long-Tailed
Oracle Character Recognition

Jing Li1, Bin Dong2, Qiu-Feng Wang1(B), Lei Ding2, Rui Zhang3,
and Kaizhu Huang4

1 School of Advanced Technology, Xi’an Jiaotong-Liverpool University,
Suzhou, China

Jing.Li19@student.xjtlu.edu.cn, Qiufeng.Wang@xjtlu.edu.cn
2 Ricoh Software Research Center(Beijing) Co., Ltd., Beijing, China

{Bin.Dong,Lei.Ding}@cn.ricoh.com
3 School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University,

Suzhou, China
Rui.Zhang02@xjtlu.edu.cn

4 Data Science Research Center, Duke Kunshan University, Suzhou, China
Kaizhu.Huang@dukekunshan.edu.cn

Abstract. Oracle character recognition has recently made significant
progress with the success of deep neural networks (DNNs), but it is far
from being solved. Most works do not consider the long-tailed distri-
bution issue in oracle character recognition, resulting in a biased DNN
towards head classes. To overcome this issue, we propose a two-stage
decoupled learning method to train an unbiased DNN model for long-
tailed oracle character recognition. In the first stage, we optimize the
DNN under instance-balanced sampling, obtaining a robust backbone
but biased classifier. In the second stage, we propose two strategies to
refine the classifier under class-balanced sampling. Specifically, we add a
learnable weight scaling module which can adjust the classifier to respect
tail classes; meanwhile, we integrate the KL-divergence loss to maintain
attention to head classes through knowledge distillation from the first
stage. Coupling these two designs enables us to train an unbiased DNN
model in oracle character recognition. Our proposed method achieves
new state-of-the-art performance on three benchmark datasets, includ-
ing OBC306, Oracle-AYNU and Oracle-20K.

Keywords: Oracle character recognition · Long tail · Decoupled
learning · Knowledge distillation

1 Introduction

As the earliest known writing system in China, the oracle bone script plays a
significant role in archaeology, palaeography, and history. These characters were
carved on turtle nails and animal bones for divination during the Shang Dynasty.
Recognizing them usually requires a high level of expertise, which is both time-
consuming and costly. Recently, much attention has been paid to investigat-
ing automatic recognition technologies for oracle characters. Such research has
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 165–181, 2023.
https://doi.org/10.1007/978-3-031-41685-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_11

166 J. Li et al.

made great progress [1–3], but its performance still needs improvement so as to
meet the requirements of practical applications. With the burst of deep neural
networks (DNNs) and their successful applications in computer vision, natural
language processing, etc [4], researchers have recently explored DNNs in oracle
character recognition [2,3,5]. The success of DNN models usually needs a large
size of labelled training samples. However, obtaining sufficient oracle character
data is challenging due to the scarcity of sources and difficult labelling.

Thanks to the great efforts from the research community, there are some
available oracle datasets, which can be divided into two categories: real rubbing
character images and hand-copied character images. Some examples are shown
in Fig. 1. As we can see, real images scanned from turtle nails and animal bones
contain various noises, e.g., partially missing, dense white regions, and bone
fractures. One public representative dataset is OBC306, collected by [2], which
contains 309,511 character-level instances belonging to 306 classes. In contrast,
hand-copied images are high-resolution images without noise, but it needs to
invite experts to transcribe them. Two additional available datasets are Oracle-
20K [1] and Oracle-AYNU [3]. Oracle-20K contains 19,491 character images and
249 classes, while Oracle-AYNU has 2,584 classes with 39,072 instances.

Fig. 1. Examples of oracle character images.

Unfortunately, all these current oracle datasets suffer from the common issue
arising in the long-tailed distribution, as shown in Fig. 2 for the OBC306 dataset.
It is apparent that the number of samples varies significantly among classes.
Specifically, in the training set of OBC306, the top five majority classes have
over 10,000 instances while many classes have just one or two instances; in the
test set of OBC306, around 17% of classes contain fewer than ten samples, while
the largest class contains 6,474 samples. Such distribution leads the training of
DNNs to suffer from a strong bias towards head classes; consequently, the learned
model cannot learn robust classification for tail classes1. To address this issue,
Zhang et al. [3] proposed a nearest neighbour classifier with metric learning for
imbalanced oracle character recognition, and successfully improved the accuracy
1 We divide the oracle data into three categories: the classes with many samples as

head classes, the classes with few samples as tail classes, and the remainder are the
medium classes described in Sect. 4.3.

Decoupled Learning for Long-Tailed OCR 167

on Oracle-AYNU and Oracle-20K. Furthermore, Li et al. [5] designed a mix-up
strategy by combining softmax loss and triplet loss, and demonstrated the state-
of-the-art performance on oracle datasets, including Oracle-20K, Oracle-AYNU,
and OBC306. Albeit these advances, the issue of long-tailed distribution is still
far from being solved in oracle character recognition.

Fig. 2. Data distributions of OBC306.

Although the long-tailed issue has not yet received extensive attention in
oracle character recognition, it has been intensively studied in general visual
recognition tasks. For example, re-sampling training samples [6,7] or adjusting
the loss value for each class [8,9] has been widely used to balance the class distri-
bution during training. In addition, some methods [10,11] utilize label frequen-
cies to shift output logits of models during training or post-processing. Some
recent efforts have also been made to re-balance DNN models. In particular,
studies [12–15] have shown that it is effective to decouple the one-stage training
process into representation learning and classifier learning for imbalanced data.
In general, such works adjust the classifier to focus on tail classes while sacri-
ficing the performance of head classes during the training. They then validate
the effectiveness on the test data with a balanced distribution across all classes.
However, the test data in the oracle datasets is also heavily long-tailed as shown
in Fig. 2. Performance sacrifice on head classes may unfortunately lead to the
degradation of the total accuracy, though the average accuracy is still improved
as presented in Table 2 of Sect. 4.4.

Motivated from the aforementioned analysis, we propose a two-stage-based
decoupled learning method for long-tailed oracle character recognition, where the
DNN model is split into a ViT [16] as the backbone network and a single fully
connected layer network as the classifier. In the first stage, we train the DNN
model with the standard cross-entropy loss under instance-balanced sampling. As
the oracle data is limited, we utilize mixup augmentation [17] to exploit current
oracle samples fully. Although a robust backbone model is learned in the first
stage, the long-tailed oracle data distribution makes the classifier strongly biased
towards the head classes. Therefore, we further propose two strategies to refine

168 J. Li et al.

the classifier under class-balanced sampling in the second stage while freezing
the backbone. First, we add a learnable weight scaling (LWS) module to adjust
the classifier to respect tail classes. Second, we integrate the KL-divergence loss
to keep noticing head classes through knowledge distillation from the first stage.
Coupling these two designs enables us to train an unbiased DNN model on both
tail and head classes in oracle character recognition, thus offering the strong
potential to improve both the average and total accuracies. We evaluate the
proposed method on benchmarks including OBC306, Oracle-AYNU, and Oracle-
20K. Experimental results show that our novel design attains new state-of-the-
art performance.

2 Related Work

2.1 Oracle Character Recognition

Identifying characters from hand-copied or scanned oracle bone images has long
been considered as a challenging problem. It has attracted much attention and
achieved tremendous advances [1,2,18]. Earlier studies often adopted traditional
pattern recognition techniques on oracle character recognition. For example, the
work in [18] treated oracle bone inscriptions as undirected graphs and applied
graph isomorphism for identification. Guo et al. [1] proposed a hierarchical rep-
resentation for oracle characters, consisting of a Gabor-related low-level repre-
sentation and a sparse-encoder-related mid-level representation. Liu et al. [19]
recognized oracle characters by extracting block histogram-based features and
employing support vector machines.

Recently, DNN-based methods have also been applied in oracle character
recognition. In the early stage, researchers combined Convolutional Neural Net-
work (CNN) models with traditional feature representation [1]. Next, Huang
et al. [2] evaluated several popular CNNs (e.g., ResNet, InceptionNet) in their
established OBC306. As DNN models usually require a large number of labelled
samples for training, researchers have to make significant efforts on the oracle
data collection. To this end, Guo et al. [1] first collected about 20,000 legi-
ble oracle character images called Oracle-20k. Then, Anyang Normal University
constructed another hand-copied dataset Oracle-AYNU [1], and Huang et al. [2]
released a large-scale scanned oracle character dataset called OBC306.

Owing to the difficulty in obtaining oracle characters, current oracle data is
both rare and seriously long-tailed, making the DNN-based recognition of oracle
characters challenging. Zhang et al. [3] first investigated the seriousness of this
issue and proposed a nearest neighbour classifier with metric learning. Following
that, Li et al. [5] integrated mix-up augmentation and triplet loss to improve
the recognition performance. However, such long-tailed distribution issue is far
from being solved. In this paper, we aim to train an unbiased DNN model for
long-tailed oracle character recognition via the proposed two-stage decoupled
learning method.

Decoupled Learning for Long-Tailed OCR 169

2.2 Long-Tailed Visual Recognition

It is crucial to obtain an unbiased model for all classes in long-tailed visual
recognition. Most existing works can be divided into two categories: re-sampling
and re-weighting. Re-sampling-based techniques typically obtain a more bal-
anced data distribution by over-sampling tail classes or under-sampling head
classes [6,7]. Re-weighting methods assign appropriate weights to the loss of
each class to re-balance classes [8,9]. In addition, some methods adjust model
logits during training or post-processing based on label frequencies to achieve
relatively large margins between classes, which can also strengthen the classifi-
cation of tail classes and mitigate the long-tailed distribution issue [10,11].

Recently, researchers have started studying two-stage-based decoupled learn-
ing in DNN models for imbalanced recognition instead of end-to-end learning.
Kang et al. [12] proposed to decouple the one-stage training of the DNN model
into feature representation (i.e., backbone network) and classifier learning. This
work demonstrated that it could learn well-generalized representation under the
normal instance-balanced sampling in the first training stage, and merely adjust-
ing the classifier in the second stage is effective for imbalanced recognition. Based
on this study, researchers innovated the decoupled learning scheme from different
aspects. For example, KCL [13] developed a k-positive contrastive loss to learn a
more balanced and discriminative feature representation. MiSLAS [14] proposed
to adopt mixup augmentation in the first stage to enhance the representation
learning and applied a label-aware smoothing strategy in the second stage. The
work [15], following the weight re-balancing direction, proposed to tune weight
decay in the first stage and utilized class-balanced loss with tuning weight decay
in the second stage.

Despite the effectiveness, these present approaches conduct their evaluation
on the test data, which usually follows a balanced distribution across all classes.
In case of imbalanced test data, these methods would largely degrade their per-
formance as they aim to obtain a uniform distribution during the training. Sev-
eral works have noticed such an issue which is still less explored [20,21]. In this
paper, we focus on decoupled learning for long-tailed oracle character recognition
with imbalanced test data.

2.3 Knowledge Distillation

Knowledge distillation (KD) is proposed to achieve better generalization per-
formance by transferring knowledge from pre-trained models (i.e., teachers) to
target networks (i.e., students) [22]. The concept of KD was proposed by Hin-
ton et al. [23], which transfers the knowledge via minimizing the KL-Divergence
loss between predicted logits of teachers and students. Several recent works have
explored KD for imbalanced visual recognition. Xiang et al. [24] divided the
whole dataset into subsets and trained multiple teacher models for each sub-
set. Meanwhile, a unified student model was trained by using adaptive KD in an
easy-to-hard curriculum instance selection approach. Following this multi-expert
framework, Wang et al. [20] introduced one special KD approach to simplify the

170 J. Li et al.

multi-expert model by training a student network with multiple experts. In this
paper, we propose to integrate the idea of knowledge distillation in our two-stage-
based decoupled learning framework for long-tailed oracle recognition, aiming to
make the classifier not ignore the head classes by transferring the knowledge
from the first stage.

3 Main Methodology

In this paper, we develop a two-stage decoupled learning to train an unbiased
DNN model for both tail and head classes in long-tailed oracle character recogni-
tion. The overview of our work is illustrated in Fig. 3. In the first stage, the DNN
model is trained by the cross-entropy loss under instance-balanced sampling. To
be noted, we divide the DNN model into two components, i.e., backbone and
classifier. Due to the insufficient oracle data, we adopt mixup augmentation to
explore the training samples in the first stage fully. Although a well-generalized
representation can be obtained from the backbone in the first stage [12], the
classifier is usually biased to head classes because of the long-tailed distribution.
To overcome this issue, we train a learnable weight scaling (LWS) module to
adjust the classifier with the frozen backbone under class-balanced sampling in
the second stage, thus paying more attention to the tail classes. In addition, we
integrate the KL-Divergence loss in the second stage to maintain attention on
the head classes by the knowledge distillation from the first stage. In the infer-
ence stage, the oracle character images pass through the backbone and classifier
with LWS to output the final recognition result.

Fig. 3. Overall structure of the proposed scheme. LWS represents the learnable weight
scaling, aiming to adjust the classifier to respect the tail classes.

Decoupled Learning for Long-Tailed OCR 171

3.1 Backbone Architecture

In terms of the excellent performance of Transformer in natural language process-
ing and computer vision areas [16,25,26], we employ ViT [16] as the backbone
network for oracle character recognition in this paper.

ViT mainly consists of patch embedding, position embedding, class token,
and Transformer encoder [27]. First, we convert an image into a sequence of 1-D
patch embeddings. Given an image X ∈ R

H×W×M (H,W,M denote the height,
width, and the number of channels, respectively), we divide X into a series of
patches denoted as Xp ∈ R

S×P×P×M , where P ×P is the patch size and S is the
number of patches (i.e., S = HW/P 2). Then, we flatten these cropped patches
to be Xp′ ∈ R

S×(P 2·M) and utilize a trainable linear projection E ∈ R
(P 2·M)×D

to generate the sequence of 1-D embedding of all patches Xp′′ ∈ R
S×D. Second,

motivated from BERT [25], we add a learnable class token xclass to the beginning
of the patch embeddings, which can be regarded as the representation of the
input image and fed into the latter classifier. Third, we integrate the learnable
position embedding Epos ∈ R

(S+1)×D to retain the position information in the
sequence as the Transformer encoder is permutation-invariant. Therefore, the
overall input to the Transformer encoder can be defined as:

Z0 = [xclass;Xp′′] + Epos. (1)

The Transformer encoder is composed of L layers. Every layer contains one
multi-headed self-attention (MSA) block and one multi-layer perceptron (MLP)
block. MLP includes two linear layers with a GELU. LayerNorm (LN) is applied
before each block, while residual connections are applied after each block. More
details can be seen in [27]. The process can be simply formulated as follows:

⎧
⎨

⎩

Ẑl = MSA(LN(Zl−1)) + Zl−1, l = 1 . . . L

Z̃l = MLP (LN(Ẑl)) + Ẑl, l = 1 . . . L

z = LN(Z̃L[0]).
(2)

3.2 Mixup Augmentation

Mixup [17] and its variants [28,29] have been widely adopted as data augmenta-
tion strategies in long-tailed tasks [5,14,30], which enable to improve the gener-
alization of DNN models. The basic concept of Mixup is to generate new samples
by interpolating two randomly sampled input images with their labels (X, y)
and (X ′, y′) as follows:

X̃ = λX + (1 − λ)X ′, (3)

ỹ = λy + (1 − λ)y′, (4)

where X̃ denotes the mixed new sample and its label is ỹ, λ is a mixing factor
drawn from a Beta distribution Beta(α, β) and α = β = 1 in our experiments.
We integrate this original Mixup augmentation method in the first training stage

172 J. Li et al.

for better representation learning of the backbone. Since the LWS module trained
in the second stage is lightweight, we remove Mixup to reduce the complexity.
Due to the limited space, we do not compare other variants of Mixup [28,29] in
this paper, and more comparisons can be found in [5].

3.3 Decoupled Learning

In the paper, we decouple the DNN model into backbone and classifier in the
two-stage training framework, where the backbone is learned in the first stage
and the classifier is adjusted with the LWS module in the second stage for the
long-tailed oracle character recognition.

In the first stage, we adopt the ViT model as the backbone to learn the
representation z from the input X, then obtain the classification logit ŷ by
feeding z into the linear classifier. Finally, the predicted class could be given by
argmax ŷ as follows:

ŷ = C(z) = W T z + b, (5)

where C(·) represents the classifier, W denotes the weight matrix and b denotes
the bias. In this stage, the backbone and classifier are learned jointly by min-
imizing the standard cross-entropy loss between ground truth y and argmax ŷ
under instance-balanced sampling. Here, the probability of sampling data from
the class j is proportional to its cardinality nj . Therefore, the long-tailed data
distribution makes the learned model biased to head classes.

In the second stage, LWS aims to rectify the imbalanced decision boundaries
between head and tail classes via re-scaling the magnitude of weights in W for
each class. To this end, we utilize a scaling factor fj for the j-th class to adjust
the weights of the classifier:

w̃j = fj ∗ wj , (6)

where wj ∈ R
d represents the weight vector of class j. Then the whole weight

matrix W = {wj} ∈ R
d×Y is re-scaled to W̃ so that ŷ becomes W̃ T z + b,

where Y is the number of classes. In this way, merely the LWS block (denoted
as f = {fj} ∈ R

Y) is learned by class-balanced sampling in the second stage,
while the backbone and classifier (i.e., W and b) are fixed. Under class-balanced
sampling, each class shares an equal probability of being selected. Once a class is
selected, an instance is sampled uniformly from the chosen class, so it is unbiased
sampling. To be noted, LWS is very lightweight, thereby its learning can converge
quickly in the second stage of training.

3.4 Logit-Based Knowledge Distillation

Although LWS in the second stage can promote the learned DNN model to
highlight tail classes, it will lose the importance of the head classes. However,
the oracle test data is also a long-tailed distribution, and the recognition of head
classes plays a crucial role in the overall performance. Since the model learned in
the first stage better understands the head classes, we can utilize this model to

Decoupled Learning for Long-Tailed OCR 173

guide LWS in the second stage to keep attention on head classes. Motivated by
this, we propose a knowledge distillation strategy in the second training stage.

Logit-based knowledge distillation aims to transfer the knowledge from a
teacher model to a student model by aligning their logit predictions [22]. In this
paper, we leverage the first stage model as the teacher model to guide the second
stage model, where the popular soft targets [23] are adopted as our logit-based
knowledge. Specifically, given classification logits ŷ of the classes, the soft targets
can be obtained by the softmax function as follows:

pj =
exp(ŷj/T)

∑Y
t=1 exp(ŷt/T)

, (7)

where T denotes the temperature that controls the importance of each soft target
and is set to 1 in our experiments. The classical KD adopts KL-Divergence as
the distillation loss for soft targets, which can be rewritten as:

KL(pT ||pS) =
Y∑

i=1

pTi log(
pTi
pSi

). (8)

Here, pT and pS represent the teacher and student model output logits, respec-
tively. By integrating the distillation loss in the second stage, the decision bound-
aries of head classes can be protected to some extent.

3.5 Overall Training

Our work follows a two-stage training scheme, which can be summarized as
(1) representation learning by training the backbone and classifier under the
cross-entropy loss with instance-balance sampling, and (2) classifier learning by
training the integrated LWS under the cross-entropy and KL losses with class-
balanced sampling.

In the first training stage, we aim to obtain well-generalized representations
and achieve higher performance in the head classes for subsequent knowledge
transfer. According to [12], instance-balanced sampling with the cross-entropy
loss yields a more general representation than other re-sampling methods. There-
fore, we adopt this training strategy in the paper. In addition, we integrate
Mixup [17] to improve further the representation ability and recognition per-
formance motivated by the previous works [5,14]. The loss function in the first
stage is the cross-entropy loss:

Ls1 =
N∑

n=1

−ỹnlog(C(B(X̃n))), (9)

where N is the number of training samples. B(·) represents the backbone net-
work.

In the second stage, Zhong et al. [14] indicate that Mixup has negligible
or even negative effects on classifier learning. Moreover, our trainable LWS is

174 J. Li et al.

lightweight. Therefore, we remove Mixup at this stage. Furthermore, to keep
noticing head classes, the distillation loss is adopted for classes with larger car-
dinalities. The overall loss function of the second stage is defined as:

Ls2 =
N∑

n=1

−ynlog(C(B(Xn))) +
∑

i∈N

KLi(pT ||pS). (10)

Here, N represents the subset of classes whose cardinality is larger than γ, indi-
cating those classes with knowledge distillation. In our experiments, we set γ as
100, 150 and 160 in OBC306, Oracle-AYNU and Oralce-20k, respectively, which
are tuned empirically.

4 Experiments

4.1 Datasets

OBC306. OBC306 [2] is currently the largest public dataset of oracle bone
scripts to our knowledge, which contains 309,551 character samples with 306
classes in total. As shown in Fig. 2, this dataset suffers from a typical long-tailed
distribution, i.e., 70 classes cover 83.82% of total samples while 52 classes have
fewer than ten samples. We remove 29 classes with only one sample since we
do not consider the out-of-vocabulary (OOV) performance. Then, the remain-
ing dataset is divided into training and test sets following a 3:1 ratio. Finally,
OBC306 used in the paper has 277 classes with 309,522 samples. The imbalance
ratios (i.e., the size of the largest class: the smallest class) of the training set
and test set are 19,424:1 and 6,474:1, respectively. To be noted, all samples in
OBC306 are oracle bone rubbing images with various noises.

Oracle-AYNU. Oracle-AYNU [3] consists of 39,072 hand-copied oracle char-
acter samples with 2,584 classes. Specifically, the cardinality of each class varies
from 2 to 287, and about 68% of classes have fewer than ten samples. We divide
the dataset into the training and test sets following a 9:1 ratio, and then the
imbalance ratios of the training set and test are 259:1 and 28:1, respectively.
We can see that this dataset also suffers a long-tailed distribution issue, but not
severe as that in OBC306.

Oracle-20K. Oracle-20K [1] contains 19,491 hand-copied samples with 249
classes, where class cardinalities range from 25 to 291. We split the dataset
into training and test sets following a ratio of 2:1, and then the imbalance ratio
of the training set and test set are 194:17 and 97:8, respectively. We can see that
its imbalanced issue is not very severe compared to the other two benchmark
datasets.

4.2 Implementation Details

We implement our model by Pytorch. In all experiments, we adopt ViT-Base [16]
pre-trained on ImageNet as the backbone model, and utilize the SGD optimizer

Decoupled Learning for Long-Tailed OCR 175

with momentum 0.9, batch size 64, image size 256 × 256. In the first stage,
the initial learning rate is 0.01 and deceased by 0.1 at the m1-th and m2-th
epochs (i.e., m1 = 15 and m2 = 20 in OBC306, m1 = 100 and m2 = 150 in
Oracle-AYNU, m1 = 150 and m2 = 200 in Oracle-20K). In the second stage,
we restart the learning rate to train the LWS module with 0.2 for OBC306 and
0.01 for both Oracle-AYNU and Oracle-20K. The learning rate is decreased by
0.1 at m′

1-th and m′
2-th epochs (i.e., m′

1 = 2 and m′
2 = 4 in both OBC306 and

Oracle-AYNU, m′
1 = 5 and m′

2 = 10 in Oracle-20K).

4.3 Evaluation Metrics

Most previous papers adopt the total accuracy as defined in Eq. (11) to evaluate
the recognition performance. However, if the test data also follows long-tailed
data distribution, this metric will be dominated by those head classes. To reflect
the effectiveness on tail classes as well, we exploit another metric additionally to
evaluate average accuracy as defined in Eq. (12). Following [5], such two metrics
are formulated by

Total =

∑Y
j=1 rj

∑Y
j=1 nj

, (11)

Average =
1
Y

Y∑

j=1

rj
nj

, (12)

where rj and nj denote the number of correctly classified samples and total
samples in the j-th class, respectively. In addition, to better demonstrate the
performance on the long-tailed distribution, we split each dataset into three
subsets, namely Head (more than 100 samples), Medium (20∼100 samples),
and Tail (fewer than 20 samples).

4.4 Ablation Study

Effects of different patch sizes of ViT. Similar to ViT [16], we also compare
the effectiveness of different patch sizes in oracle character recognition. As shown
in Fig. 4, if the patch size is too small, there will be too many less expressive
patches input to the Transformer encoder, e.g., background patches or similar
patches; if the patch size is too large, some non-trivial spatial and local infor-
mation will be lost, leading to low discriminability. We try three sizes without
pretraining, including 16 × 16, 32 × 32 and 64 × 64. The results are reported in
Table 1. We can see that 32 × 32 provides the best performance. Furthermore,
ViT usually requires pre-training on a large amount of data and then transfer-
ring to small datasets to obtain good results. Therefore, we choose the “Base”
variant of ViT with 32×32 patch size pre-trained on ImageNet as our backbone,
and fine-tune it together with the linear classifier on oracle datasets.

Effects of Different Components. In this part, we evaluate the effectiveness
of the proposed LWS and KD. For clarity, we also report the performance of

176 J. Li et al.

Fig. 4. Visualization of different patch sizes.

Table 1. Comparison on OBC306, Oracle-AYNU and Oracle-20K in terms of the
average and total accuracies (%) of ViT-Base with different patch sizes.

Patch Size OBC306 Oracle-AYNU Oracle-20K

Average Total Average Total Average Total

16× 16 65.36 87.81 61.54 73.84 82.78 86.79

32× 32 68.08 88.97 66.65 77.88 87.80 90.76

64× 64 60.38 85.88 65.18 76.68 86.30 90.20

Mixup. The results are summarized in Table 2, and its first row shows the baseline
model where the backbone and classifier are jointly trained in one stage without
any proposed component. Compared with the baseline model, we can see that
Mixup (the second row in Table 2) improves the performance significantly in
terms of both the average and total accuracy, demonstrating the effectiveness of
the Mixup strategy.

To facilitate the recognition of tail classes, we learn LWS in the second stage
of training to adjust the decision boundaries from the baseline model as shown in
the third row of Table 2. We observe that LWS improves the average accuracy,
especially on OBC306 and Oracle-AYNU, with significant gains of 5.08% and
4.79%, respectively, since both datasets have many tail classes. LWS adjusts
the weights of the classifier under class-balanced sampling, which favors tail
classes while weakening the dominance of head classes. Therefore, we suppose
that the learned LWS will reduce the performance of the head classes, resulting
in a reduction of total accuracy on OBC306. As OBC306 has an extremely large
imbalance ratio (i.e., 9,424:1 and 6,474:1 in the training and test set, respectively)
and the head classes dominate the test set, a slight suppression of the head
classes significantly impacts the total accuracy. In contrast, the total accuracy
is improved on Oracle-AYNU as the tail classes account for a large proportion
in this dataset; however, the improvement is fairly smaller than the average
accuracy. Combining Mixup and LWS (the fifth row of Table 2), recognition
performance can be lifted up further, but the total accuracy on OBC306 is still
reduced significantly.

To mitigate the issue of LWS on head classes, we plug the distillation loss in
the second training stage to preserve the decision boundaries of head classes. The

Decoupled Learning for Long-Tailed OCR 177

Table 2. Ablation study for three proposed components on OBC306, Oracle-AYNU,
and Oracle-20K in terms of the average and total accuracies (%). The first row is the
baseline model. Mixup: adding Mixup to the baseline model. LWS: training LWS in
the second stage. KD: adding the distillation loss in the second stage.

Mixup LWS KD OBC306 Oracle-AYNU Oracle-20K

Average Total Average Total Average Total

✕✕✕ ✕✕✕ ✕✕✕ 79.50 93.02 77.07 84.42 93.78 95.37

✔ ✕✕✕ ✕✕✕ 77.07 93.12 79.75 86.23 94.57 96.03

✕✕✕ ✔ ✕✕✕ 84.58 90.05 81.86 86.68 93.92 95.32

✔ ✔ ✕✕✕ 84.38 90.55 83.53 87.97 94.87 96.03

✔ ✔ ✔ 85.01 92.40 83.27 88.02 94.9 96.06

results are listed in the last row of Table 2. On the one hand, adding KD boosts
the total accuracy, especially on OBC306, from 90.55% to 92.40%; on the other
hand, it makes little impact on the average accuracy, with a slight increase on
OBC306 and Oracle-20K due to its effectiveness on the head classes. In summary,
by combining all the proposed components, our proposed method can achieve a
good trade-off between total and average accuracies, finally improving the overall
recognition performance significantly.

To demonstrate the effectiveness of each component in detail, we show the
total accuracy for the three subsets of OBC306 and Oracle-AYNU in Fig. 5. In
OBC306, we can see that Mixup benefits the head subset more due to the severe
long-tailed problem; after adding LWS, the accuracies of the tail and medium
classes boost while head accuracy drops significantly by 2.76%. To keep notic-
ing head classes, we adopt knowledge distillation to keep the decision bound-
aries of head classes while facilitating the tail classes. The proposed method
(Mixup+LWS+KD) obtains a fair trade-off between the head and tail classes.
Finally, it increases the tail accuracy by 3.61% compared to Mixup+LWS, with-
out much loss in head performance compared to Mixup. In Oracle-AYNU, Mixup
generates positive influences on all the three subsets. For LWS, it improves the
accuracy of tail classes while reducing the accuracy of head classes. By combin-
ing it with KD, the accuracies of all the three subsets increase compared with
the baseline model, from 94.14% to 94.68%, 93.12% to 93.19% and 74.41% to
81.69%, respectively. In summary, these results demonstrate the effectiveness of
our proposed method apparently.

4.5 Comparison to Previous Methods

In Table 3, we compare the proposed method with the previous competitive ora-
cle character recognition methods regarding average and total accuracy on three
benchmark datasets. From the table, we can see that our approach surpasses
the other methods on both average and total accuracy in all datasets. Specifi-
cally, the proposed method achieves superior performance on OBC306 with the
serious long-tailed data issue, improving the average and total accuracies over

178 J. Li et al.

Fig. 5. Total accuracy of each component on the head, medium and tail classes of
OBC306 and Oracle-AYNU.

Table 3. Comparison to previous methods on Oracle-AYNU, OBC306, and Oracle-
20K. † denotes the accuracy excluding 29 classes which do not have any training samples
(The original average accuracy is reported as 70.28% on all the 306 classes [2]).

Method OBC306 Oracle-AYNU Oracle-20K

Average Total Average Total Average Total

Zhang et al. [3] – – – 83.37 – 92.43

Huang et al. [2]† 77.64 – – – – –

Li et al. [5] 80.16 91.74 79.96 83.65 93.50 94.64

Ours 85.01 92.4 83.27 88.02 94.9 96.06

the previous best oracle character recognition method [5] by 4.85% and 0.66%,
respectively. For the Oracle-AYNU dataset with more than 2,000 classes, the
proposed method achieves 83.27% in average accuracy and 88.02% in total accu-
racy, which outperforms the prior methods by a significant margin of 3.31% and
4.37%, respectively. In Oracle-20K, the long-tailed issue is not evident; however,
our proposed method can also yield better average and total results. In sum-
mary, the proposed method achieves new state-of-the-art performance on three
benchmark datasets.

4.6 Error Analyses

In Fig. 6, we present some error recognition examples of the proposed approach,
which are roughly summarized into four categories: long tail, similar looking,
intra-class variance, and severe noises. First, the long-tailed issue has not been
fully resolved, and some tail characters are mis-recognized as shown in Fig. 6(a).
Second, it is sometimes confusing for our model to identify similar characters. For
example, the characters in Fig. 6(b) look very similar between the ground truth
and prediction (e.g., in the second row, the character ‘1035’ is mis-recognized
to ‘100003’). Third, since there was no standardization of the oracle bone script
during historical periods, some characters may have a high degree of intra-class

Decoupled Learning for Long-Tailed OCR 179

Fig. 6. Error examples of our model. Input columns present the input images with
their ground-truth labels underneath (characters or digital codes). Prediction columns
present samples from the corresponding incorrect predicted classes. Note that Oracle-
AYNU and OBC306 are annotated by digital codes, not by real characters like Oracle-
20K. In (a), the number in parentheses represents the number of training samples for
that class. In (c), round brackets represent they belong to the same class.

variation in shapes, structures, and number of strokes in Fig. 6(c). Last, due to
the long history, the real oracle characters on bones are polluted by serious noises
and abrasions as shown in Fig. 6(d), making them difficult to be recognized even
by humans.

5 Conclusion

In this paper, we propose a two-stage decoupled learning method for long-tailed
oracle character recognition, aiming to train an unbiased DNN model on both
tail and head classes. In the first stage, we train a ViT backbone model and a
linear classifier under the instance-balanced sampling, where mixup augmenta-
tion is utilized to exploit current oracle samples fully. In the second stage, we
propose a learnable weight scaling module to refine the classifier to respect tail
classes. Meanwhile, the KL-divergence loss is also integrated to maintain atten-
tion on head classes by the knowledge distillation from the first stage. Extensive
experiments on three oracle benchmark datasets demonstrate the effectiveness
of both LWS and KD components, finally achieving new state-of-the-art recog-
nition performance on average and total accuracy. However, there is still room
to improve further the recognition performance, especially on tail classes. In the
future, we will explore how to enhance the representation ability of the backbone
on tail classes so as to further promote the decoupled learning framework.

Acknowledgements. This research was funded by National Natural Science Founda-
tion of China (NSFC) no.62276258, Jiangsu Science and Technology Programme (Nat-
ural Science Foundation of Jiangsu Province) no. BE2020006-4, and Xi’an Jiaotong-
Liverpool University’s Key Program Special Fund no. KSF-T-06.

180 J. Li et al.

References

1. Guo, J., Wang, C., Roman-Rangel, E., et al.: Building hierarchical representations
for oracle character and sketch recognition. IEEE Trans. Image Process. 1, 104–118
(2016)

2. Huang, S., Wang, H., Liu, Y., et al.: OBC306: a large-scale oracle bone charac-
ter recognition dataset. In: Proceedings of International Conference on Document
Analysis and Recognition (ICDAR), pp. 681–688 (2019)

3. Zhang, Y.-K., Zhang, H., Liu, Y.-G., et al.: Oracle character recognition by nearest
neighbor classification with deep metric learning. In: Proceedings of International
Conference on Document Analysis and Recognition (ICDAR), pp. 309–314 (2019)

4. Huang, K., Hussain, A., Wang, Q.-F., Zhang, R.: Deep Learning: Fundamentals,
Theory and Applications, vol. 2 (2019)

5. Li, J., Wang, Q.-F., Zhang, R., Huang, K.: Mix-up augmentation for oracle charac-
ter recognition with imbalanced data distribution. In: Proceedings of International
Conference on Document Analysis and Recognition (ICDAR), pp. 237–251 (2021)

6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

7. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning
from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

8. Cui, Y., Jia, M., Lin, T.-Y., et al.: Class-balanced loss based on effective num-
ber of samples. In: Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9268–9277 (2019)

9. Cao, K., Wei, C., Gaidon, A., et al.: Learning imbalanced datasets with label-
distribution-aware margin loss. In: Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), pp. 1565–1576 (2019)

10. Menon, A.K., Jayasumana, S., Rawat, A.S., et al.: Long-tail learning via logit
adjustment. In: Proceedings of International Conference on Learning Representa-
tions (ICLR) (2021)

11. Wu, T., Liu, Z., Huang, Q., et al.: Adversarial robustness under long-tailed distribu-
tion. In: Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8659–8668 (2021)

12. Kang, B., Xie, S., Rohrbach,, M., et al.: Decoupling representation and classifier
for long-tailed recognition. In: Proceedings of International Conference on Learning
Representations (ICLR) (2020)

13. Kang, B., Li, Y., Xie, S., et al.: Exploring balanced feature spaces for representation
learning. In: Proceedings of International Conference on Learning Representations
(ICLR) (2021)

14. Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recogni-
tion. In: Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 16489–16498 (2021)

15. Alshammari, S., Wang, Y.-X., Ramanan, D., Kong S.: Long-tailed recognition via
weight balancing. In: Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6887–6897 (2022)

16. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words:
transformers for image recognition at scale. In: Proceedings of International Con-
ference on Learning Representations (ICLR) (2021)

17. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk
minimization. In: Proceedings of International Conference on Learning Represen-
tations (ICLR) (2018)

Decoupled Learning for Long-Tailed OCR 181

18. Li, Q., Yang, Y., Wang, A.: Recognition of inscriptions on bones or tortoise shells
based on graph isomorphism. Jisuanji Gongcheng yu Yingyong (Comput. Eng.
Appl.) 47(8), 112–114 (2011)

19. Liu, Y., Liu, G.: Oracle bone inscription recognition based on SVM. J. Anyang
Normal Univ. 2, 54–56 (2017)

20. Wang, X., Lian, L., Miao, Z., et al.: Long-tailed recognition by routing diverse
distribution-aware experts. In: Proceedings of International Conference on Learn-
ing Representations (ICLR) (2021)

21. Zhang, Y., Hooi, B., Hong, L., Feng, J.: Self-supervised aggregation of diverse
experts for test-agnostic long-tailed recognition. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS) (2022)

22. Gou, J., Baosheng, Yu., Maybank, S.J., Tao, D.: Knowledge distillation: a survey.
Int. J. Comput. Vision 129(6), 1789–1819 (2021)

23. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network
(2015)

24. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge
distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58558-7 15

25. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pp. 4171–4186 (2019)

26. He, K., Chen, X., Xie, S., et al.: Masked autoencoders are scalable vision learn-
ers. In: Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 15979–15988 (2022)

27. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Pro-
ceedings of Advances in Neural Information Processing Systems (NeurIPS), pp.
5998–6008 (2017)

28. Verma, V., Lamb, A., Beckham, C., et al.: Manifold mixup: better representa-
tions by interpolating hidden states. In: Proceedings of International Conference
on Machine Learning (ICML), pp. 6438–6447 (2019)

29. Yun, S., Han, D., Chun, S., et al.: Cutmix: regularization strategy to train strong
classifiers with localizable features. In: Proceedings of International Conference on
Computer Vision (ICCV), pp. 6022–6031 (2019)

30. Zhang, Y., Wei, X.-S., Zhou, B., Wu, J.: Bag of tricks for long-tailed visual recog-
nition with deep convolutional neural networks. In: Proceedings of Association for
the Advancement of Artificial Intelligence (AAAI), pp. 3447–3455 (2021)

https://doi.org/10.1007/978-3-030-58558-7_15

Faster DAN: Multi-target Queries
with Document Positional Encoding

for End-to-End Handwritten Document
Recognition

Denis Coquenet1(B) , Clément Chatelain2,3 , and Thierry Paquet2,4

1 Conservatoire National des Arts et Métiers, CEDRIC, Paris, France
denis.coquenet@lecnam.net

2 LITIS Laboratory, EA 4108, Rouen Cedex, France
{clement.chatelain,thierry.paquet}@litislab.eu

3 Rouen University, Mont-Saint-Aignan, France
4 INSA of Rouen, Saint-Etienne-du-Rouvray, France

Abstract. Recent advances in handwritten text recognition enabled to
recognize whole documents in an end-to-end way: the Document Atten-
tion Network (DAN) [9] recognizes the characters one after the other
through an attention-based prediction process until reaching the end of
the document. However, this autoregressive process leads to inference
that cannot benefit from any parallelization optimization. In this paper,
we propose Faster DAN, a two-step strategy to speed up the recogni-
tion process at prediction time: the model predicts the first character of
each text line in the document, and then completes all the text lines in
parallel through multi-target queries and a specific document positional
encoding scheme. Faster DAN reaches competitive results compared to
standard DAN, while being at least 4 times faster on whole single-page
and double-page images of the RIMES 2009, READ 2016 and MAUR-
DOR datasets. Source code and trained model weights are available at
https://github.com/FactoDeepLearning/FasterDAN.

Keywords: Handwritten Document Recognition · Document Layout
Analysis · Handwritten Text Recognition · Transformer

1 Introduction

Unconstrained offline handwritten text recognition has been studied for decades
now. Until recently, all the proposed approaches were focused on recognizing
the text from cropped parts (text regions) of the original document, leading
to a sequential multistep approach, namely text region segmentation, ordering
and recognition. Numerous advances enabled to extend the recognition stage
to handle increasingly complex inputs. In the 90’s, the use of Hidden Markov
Model (HMM) enabled to go from isolated character recognition [19] to multi-
character (word or line) recognition [12,14]. Thereafter, the democratization of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 182–199, 2023.
https://doi.org/10.1007/978-3-031-41685-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_12&domain=pdf
http://orcid.org/0000-0001-5203-9423
http://orcid.org/0000-0001-8377-0630
http://orcid.org/0000-0002-2044-7542
https://github.com/FactoDeepLearning/FasterDAN
https://doi.org/10.1007/978-3-031-41685-9_12

Faster DAN 183

deep neural networks, combined with the Connectionist Temporal Classification
(CTC) loss [15], made the line-level approach the standard framework to handle
handwritten document recognition [7,11,16,22,23,30,33].

Fig. 1. Reading order comparison between DAN (top) and Faster DAN (bottom).
Circles and crosses represent the start and the end of a pass, respectively. The first
pass is showed in red, and the second one in blue. The DAN (top) sequentially predicts
the characters of the whole documents in a single pass. The Faster DAN first predicts
the first character of each line (as well as the layout tokens), and then predicts the
remaining of all the text lines in parallel, in a second pass. (Color figure online)

More recently, few advanced works focused on text recognition at paragraph
level [1,2,8,32], reaching similar performance compared to line-level recognition
[10]. However, whether it is at character, word, line or paragraph level, this three-
step paradigm has many drawbacks: the errors accumulate from one step to
another, additional physical segmentation annotations are required to train the
segmentation step, the use of a rule-based ordering stage is limited for documents
with a complex layout, and the stages are performed independently, so they
cannot benefit from one another.

Based on these observations, we proposed in [9] a new end-to-end paradigm
named Handwritten Document Recognition (HDR). It aims at serializing doc-
uments in an XML-way, combining both Handwritten Text Recognition (HTR)

184 D. Coquenet et al.

and Document Layout Analysis (DLA), through layout XML-markups. We pro-
posed the Document Attention Network (DAN) [9] to tackle HDR.

It is made up of a Fully Convolutional Network (FCN) encoder to extract
features from the input image, and a transformer [29] decoder to recurrently
predict the different character and layout tokens. The DAN reached competitive
results, recognizing both text and layout at page or double-page levels, compared
to state-of-the-art line-level or paragraph-level approaches. The main drawback
of the DAN is about its autoregressive character-level prediction process, which
leads to high prediction times (a few seconds per document image).

In this paper, we propose Faster DAN, a novel approach to significantly
reduce the prediction time of end-to-end HDR, without impacting the training
time. This approach is based on a new document positional encoding whose
aim is to inject the line membership information to each predicted character. In
this way, we can parallelize the recognition of the text lines still using a single
model, while reducing the total number of iterations. The Faster DAN relies on
a two-step prediction process: a first step is dedicated to the prediction of the
layout tokens, as well as the first character of each text line; all the text lines are
then recognized in parallel in the second stage through multi-target transformer
queries. This is illustrated in Fig. 1.

We show that the Faster DAN reaches competitive results compared to the
original DAN, while being at least 4 times faster on three public datasets: READ
2016, RIMES 2009 and MAURDOR.

This paper is organized as follows. Section 2 is dedicated to the related works.
DAN background is presented in Sect. 3. We detail the proposed approach in
Sect. 4. Section 5 presents the experimental environment and the results. We
draw the conclusion in Sect. 6.

2 Related Works

Nowadays, the most popular HTR framework is made up of three stages: the
input document image is segmented into text line crops, which are then ordered
and recognized. Indeed, the concept of text line is widely used as a building block
in many works, and has been studied from different angles.

The text line has mostly been studied from the physical point of view:
the majority of the works focused on predicting text line bounding boxes,
either through a pixel-by-pixel classification task [3,21,24] or through an object-
detection approach [5,6]. Detecting the start-of-line information was also studied
as part of the segmentation stage. In [20], a model is trained to predict the coordi-
nates of the bottom-left corner of each text line, as well as their height. Similarly,
in [28,31], the authors considered the prediction of the start-of-line coordinates
as an object detection task, using a region proposal network. Scale and rotation
values are also associated to each text line to handle monotonic slanted lines.
Contrary to these works, the Faster DAN strategy we propose only relies on
language supervision: we do not need any additional physical annotations.

Recent works proposed to perform the recognition step at paragraph level
[1,2,8,33]. Although not relying on raw physical text line annotations, most

Faster DAN 185

paragraph-level text recognition works take advantage of the physical properties
of text lines in single-column layout: the whole horizontal axis is associated
to a text line, no matter its length. The authors of [32] and [8] concatenate the
representation of the different text lines, or the text line predictions, respectively,
to get back to a one-dimensional alignment problem. In [1,10], the text lines are
processed recurrently through a line-level attention mechanism.

Another approach to deal with multi-line images consists in relying on
an autoregressive character-level prediction process [2,9,25,27]. This time, the
notion of text line is limited to the use of a dedicated line break token, used
as any other character token. This way, this approach is no longer limited to
single-column document. This strategy is also used in [18] for visual question-
answering, information extraction or classification of documents, the OCR task
being reduced to pretraining. In [9], we proposed the Document Attention Net-
work to tackle Handwritten Document Recognition, by predicting opening and
closing layout markup tokens in an XML way: all the character and layout tokens
are sequentially and indifferently predicted, leading to hundreds or even thou-
sands of iterations for single-page or double-page document images. It results in
long prediction times: approximately one second for 100 characters on a single
GPU V100.

In this paper, we propose to speed up the prediction of this latter approach by
reading text lines in parallel. This way, we take the best of both worlds: we can
deal with documents with complex layout through this character-level attention,
and we use the concept of text line more directly through the prediction of the
first character of each line and by using a dedicated document positional encoding
scheme, but without using any additional physical annotations.

3 DAN Background

We proposed the Document Attention Network (DAN) in [9] for the task of
Handwritten Document Recognition. It takes an input image of a whole doc-
ument X ∈ R

Hi×Wi×Ci , where Hi, Wi, Ci are the height, the width and the
number of channels, respectively. It outputs the associated XML-like serialized
representation ŷ, i.e., a sequence of tokens, each token ŷi representing either
a layout markup or a character among an alphabet A∗. For an input docu-
ment represented by N tokens, we can note the expected output sequence as
y∗ ∈ A∗N . For instance, a three-line document, split into two paragraphs, could
be represented as:

<D><P>Line 1\ nLine 2</P><P>Line 3</P></D>

where <D> and <P> corresponds to document and paragraph markups, respec-
tively.

The DAN is made up of two main components. An FCN encoder is used to
extract 2D features f2D ∈ R

H×W×d from the input image X, with H = Hi
32 ,

W = Wi
8 and d = 256. A Transformer decoder is used to iteratively predict the

tokens ŷi. To this aim, a special start-of-transcription token is used to initialize

186 D. Coquenet et al.

the prediction (ŷ0 = <sot>) and a special end-of-transcription token is added to
the ground truth to stop it. This way, the new target sequence is y ∈ AN+1 with
yN+1 = <eot> and A = A∗ ∪ {<eot>}. During inference, a maximum number
of iterations Nmax = 3, 000 is fixed in case of the <eot> token is not predicted.

The transformer attention mechanism being invariant to the order of its input
sequences, positional encoding is added to inject the positional information: 2D
positional encoding P 2D ∈ R

H×W×d for the 2D features of the image, and 1D
positional encoding P 1D ∈ R

Nmax×d for the previously predicted tokens. Both
positional encodings are defined as a fixed encoding based on sine and cosine
functions with different frequencies, as proposed in the original Transformer
paper [29]. The image features are flattened afterward, for transformer needs:

f1D = flatten(f2D + P 2D). (1)

The DAN can be seen under the prism of the question-answering paradigm.
At iteration t, the question corresponds to the previously predicted tokens ŷt =
[ŷ0, ..., ŷt−1], referred to as context in this work, and the answer is the next
token ŷt. Formally, the tokens are first embedded through a learnable matrix
E ∈ R

(|A|+1)×d (+1 for the <sot> token), leading to et = [e0, ...,et−1], with
ei = Eŷ i

(∈ R
d). Positional embedding is then added to get the transformer

input query qt = [q0, ..., qt−1] with qi = ei + P 1D
i .

The transformer’s self-attention and cross-attention mechanisms compute an
output oi ∈ R

d for each query input qi by comparing them with the other query
tokens, and with the image features f1D, respectively. Formally,

ot = [o0, ...,ot−1] = decoder(qt ,f1D), (2)

where the decoder corresponds to a stack of 8 standard transformer decoder
layers [29]. This process being autoregressive, the query at position i can only
attend to positions from 0 to i. In addition, the intermediate computations are
preserved for each layer from one iteration to another in order to avoid computing
the same output multiple times.

A score sti is computed for each token i of the alphabet A using a single
densely-connected layer of weights W p (st ∈ R

|A|):

st = W p · ot−1. (3)

Probabilities are obtained through softmax activation: pt
i =

exp st
i∑

j exp st
j
. The pre-

dicted token at iteration t is the one whose probability is maximum:

ŷt = argmax(pt). (4)

The model is trained in an end-to-end fashion using the cross-entropy loss
over the sequence of tokens:

LDAN =
N+1∑

t=1

LCE(yt,p
t). (5)

Faster DAN 187

This autoregressive process can be parallelized during training through
teacher forcing, but this is not possible during inference. That is why we propose
the Faster DAN strategy.

4 Faster DAN

The standard character-level attention-based approach for HTR is to sequen-
tially recognize all the characters yi of the whole input image X. This way the
number of iterations, thus the prediction time, grows linearly with the number of
characters in the document. This may be negligible for isolated text line images,
for which the image feature extraction stage is predominant, but this becomes
significant for whole page images (around one second for 100 characters on a
GPU V100).

We propose the Faster DAN, a novel approach for Handwritten Document
Recognition, to noticeably reduce the prediction time. The goal is to take
advantage of the line-based structure of documents to parallelize the recogni-
tion of the text lines. Considering the layout markups and the <eot> tokens
as lines by themselves (of unit length), we can rewrite the target sequence as
y = concatenate(y1, ...,yL) where L is the number of lines in the document and
yj ∈ Anj represent the different text lines (yj

i is the character i of line j).
Using one model per line is prohibitive in terms of GPU memory consump-

tion. Instead, the parallelization is carried out among a single model which pro-
cesses multi-target queries through masking in the second pass. This is feasible
thanks to the dedicated document positional encoding scheme we propose. It is
important to note that the proposed approach is not specific to the DAN archi-
tecture. It could be used with any attention-based HDR model. However, to our
knowledge, the only available end-to-end HDR model is the DAN.

Reading Lines in Parallel. Parallelizing the recognition faces two main chal-
lenges: detecting all the text lines, and recognizing them in parallel through
transformer queries without mixing them. Moreover, since our goal is to per-
form HDR, and not only HTR, we also need to recognize the layout entities.

To tackle these issues, we opted for a two-pass process, as illustrated in
Fig. 2b. In a first pass, the model sequentially predicts the layout tokens as well
as the first character of each text lines, solving both layout recognition and text
line detection. Then, the different text lines are completed in parallel based on
their previously predicted first character. To this end, it is crucial to determine
which token belongs to which line.

Document Positional Encoding. To parallelize the recognition of the text
lines, we propose a new positional encoding scheme, as shown in Fig. 2. We asso-
ciate to each predicted token ŷj

i (with ŷ0
0 = <sot>) two 1D positional embed-

ding: one for the index of the line, and the other one for the index of the token
in the line, leading to the global positional embedding P doc ∈ R

lmax×nmax×d,

188 D. Coquenet et al.

Fig. 2. Comparison of the prediction process and positional encoding scheme between
DAN and Faster DAN. This illustrates the example of a document input with three
one-word text lines. The DAN associates a unique positional value for each token, which
continues from one text line to the next. The Faster DAN uses two positional values:
the index of the text line and the position of the token in this text line. Special (start
and end) tokens are in blue and layouts tokens are in green. (Color figure online)

where lmax is the maximum number of line and nmax is the maximum number
of characters per line. yj

i is associated to:

P doc
j,i = concatenate(P 1D’

j ,P 1D’
i), (6)

where P 1D’ is equivalent to P 1D but encoded on half channels (P 1D’
i ∈ R

d/2).
The transformer input queries become qj

i = Eŷj
i
+P doc

j,i . The idea of injecting the
line information was already used in [27], but it was computed as a ratio with an
arbitrary maximum number of lines, and concatenated to the token embedding
directly. In addition, the position of the tokens was absolute, and not relative to
the current text line, as for the standard DAN.

First Pass. The Faster DAN follows the standard autoregressive process to
predict the first token ŷj

0 of each line j based on Eqs. 2 to 4. At iteration t,
qt = [q0

0, ..., q
t−1
0].

Second Pass. The standard Transformer decoding process is to give a sequence
of query tokens qt as input and keep the output corresponding to the last
token only (ot−1), as single output for iteration t. Instead, the output of the

Faster DAN 189

last token of each line oj
t−1 are kept in this second pass. We refer to this as

multi-target queries. ŷj
0 are duplicated into ŷj

1 to initiate the second pass; the
modification of the associated position in line (from 0 to 1) indicates to the
model a change of expected behavior: from the prediction of the first token of
the next line to the prediction of the next token of the current line. By setting
qt = [q0

0, ..., q
0
t−1, ..., q

L
0 , ..., q

L
t−1] (the t first tokens of all the lines), we obtain

ot = [o0
0, ...,o

0
t−1, ...,o

L
0 , ...,o

L
t−1] through Eq. 2. In this way, the tth tokens of

each line j are computed in a single iteration t:

ŷj
t = argmax(W p · oj

t−1). (7)

Extra tokens (ŷj
i with i > nj) are discarded through masking.

Context Exploitation. The naive approach to recognize the text lines in par-
allel would be to recognize them independently, by applying a mask to discard
the tokens from all the other text lines. It means that qj

i could only attend
to line j (itself) and position 0 to i in that line. However, this would lead to
an important loss of context. Instead, we propose to take advantage of all the
partially predicted text lines: qj

i can attend to all lines, from 0 to L, and from
position 0 to i in those lines, this is illustrated in Fig. 3

Fig. 3. Context comparison between DAN and Faster DAN. The colored cells represent
the current character to predict (in purple), the previously predicted tokens i.e. the
context (in blue and green), the token used for the prediction (in green), and the
remaining characters to recognize (in gray). (Color figure online)

The major drawback of parallelizing the line recognition, compared to purely
sequential recognition, is the loss of context. Indeed, the standard DAN benefits
from all the past context during prediction: this is partially available for the
Faster DAN since the past context is limited to the beginning of the text lines.

190 D. Coquenet et al.

In this way, it becomes harder for the model to focus on the correct text part,
especially for very short contexts. Indeed, a sequence of characters may appear
several times in a document, especially if this sequence is short, e.g., at the
beginning of the recognition process. We counterbalance the loss of context from
past by combining partial context from both past and future. We show the
impact of this approach in Sect. 5.6.

Training and Inference. The model is trained over the target sequence using
the cross-entropy loss:

L =
L∑

j=1

nj∑

i=0
i�=1

LCE(y
j
i ,p

j
i). (8)

It has to be noted that the training time is not impacted by this two-step decod-
ing strategy since the whole expected sequence prediction (from both passes) is
trained in parallel through teacher forcing, with appropriate masks.

During inference, the Faster DAN reduces the number of iterations I from

IDAN =
L∑

j=1

nj = N + 1 to IFasterDAN = L+max
j

(nj),

by considering the line breaks as belonging to the lines. For example, 25 text
lines of 50 characters, structured according to 3 layout entities, leads to 1,251
iterations for the DAN, and only 76 iterations for the proposed Faster DAN.

5 Experimental Study

5.1 Datasets

We used three document-level public datasets to evaluate the proposed app-
roach: RIMES 2009 [17], READ 2016 [26] and MAURDOR [4]. Document image
examples from these three datasets are showed in Fig. 4.

RIMES 2009. The RIMES 2009 dataset corresponds to French grayscale hand-
written page images. These pages are letters produced in the context of writing
mail scenarios. Text regions are classified among one of the following 7 classes:
sender coordinates, recipient coordinates, object, date & location, opening, body
and PS & attachment. We used these classes as layout tokens.

READ 2016. The READ 2016 dataset corresponds to Early Modern German
handwritten pages from the Ratsprotokolle collection. Images are RGB encoded.
We used two versions of this dataset: single-page images and double-page images.
The layout classes are as follows: page, section, margin annotation and body.

Faster DAN 191

Fig. 4. Document image examples from the RIMES 2009, READ 2016 and MAURDOR
datasets.

MAURDOR. The MAURDOR dataset consists in a heterogeneous collection
of documents. We used the same configuration as in [9] i.e. we only use the
English and French documents, and we focus on the C3 and C4 subsets of this
dataset, which corresponds to private or professional correspondences. The doc-
uments are either handwritten, printed, or a mix of both. There is no sufficient
annotation to produce the layout tokens, so we only evaluate the HTR task on
this dataset.

Table 1 details the splits in training, validation and test, as well as the number
of characters in the alphabet and the number of layout tokens (2 by class, for
opening and closing markups) for each dataset.

192 D. Coquenet et al.

Table 1. Splits and number of character and layout tokens for each dataset.

Dataset Training Validation Test # char # layout
tokens tokens

RIMES 2009 1,050 100 100 108 14
READ 2016 (single-page) 350 50 50 89 10
READ 2016 (double-page) 169 24 24 89 10
MAURDOR (C3) 1,006 148 166 134 ✗

MAURDOR (C4) 721 111 114 127 ✗

5.2 Metrics

In addition to the standard Character Error Rate (CER) and Word Error Rate
(WER) metrics used to evaluate the text recognition performance, we proposed
two metrics in [9] to evaluate the specific layout recognition of the HDR task.
The Layout Ordering Error Rate (LOER) consists in considering the document
layout as a graph and computing the graph edit distance between the prediction
and the ground truth. The LOER aims at evaluating the layout recognition
only, considering the reading order between layout entities. Since LOER and
CER/WER only evaluate the layout and text recognition independently, the
mAPCER is used to evaluate the recognition of the layout with respect to the
text content. It is computed as the area under the precision/recall curve, as in
object detection approaches [13] for instance, but it is based on a CER threshold
instead of a IoU one. The mAPCER does not dependent on the reading order
between layout entities. That is why it is important to consider all these metrics
altogether to evaluate the HDR task.

5.3 Training Details

In [9], we used some pretraining and curriculum training strategies to speed up
the convergence of the DAN, and to not use any physical segmentation annota-
tion during training. To be fairly comparable with this work, we follow the exact
same training configuration, whose major points are as follows:

– The encoder is pretrained on synthetic isolated text line images using the
CTC loss and a dedicated FCN line-level OCR model.

– The Faster DAN is trained on a mixture of real and synthetic documents.
Using a curriculum strategy, the Faster DAN is trained on increasingly com-
plex synthetic documents through the epochs. The complexity varies from
two aspects: the number of lines contained in the document image, and the
size of this image. The ratio between synthetic and real document also evolves
during training, from 90%/10% to 20%/80%.

– A rule-based post-processing is used to make sure that the layout markups
have the correct format (no unpaired markup, for instance).

Faster DAN 193

– Whether it is for pretraining or training, input images are downsized to 150
dpi, normalized and data augmentation is performed 90% of the time.

We carried out 2-day pretraining and 4-day training on a single GPU V100 (32
Go), using automatic mixed-precision. We used the Adam optimizer with an
initial learning rate of 10−4. We do not use any external data, external language
model nor lexicon constraints.

5.4 Comparison with the State of the Art

To our knowledge, the only work performing HDR is the DAN [9]. Tables 2, 3
and 4 provide an evaluation of the Faster DAN on the READ 2016, RIMES 2009
and MAURDOR datasets, respectively, as well as a comparison with the state
of the art.

Table 2. Evaluation of the Faster DAN on the test set of the READ 2016 dataset and
comparison with the state of the art. Metrics are expressed in percentages.

Architecture READ 2016 (single-page) READ 2016 (double-page)
CER ↓ WER ↓ LOER ↓ mAPCER ↑ CER ↓ WER ↓ LOER ↓ mAPCER ↑

DAN [9] 3.43 13.05 5.17 93.32 3.70 14.15 4.98 93.09
Faster DAN 3.95 14.06 3.82 94.20 3.88 14.97 3.08 94.54

Table 3. Evaluation of the Faster DAN on the test set of the RIMES 2009 dataset
and comparison with the state of the art. Metrics are expressed in percentages.

Architecture RIMES 2009
CER ↓ WER ↓ LOER ↓ mAPCER ↑

DAN [9] 4.54 11.85 3.82 93.74
Faster DAN 6.38 13.69 4.48 91.00

Table 4. Evaluation of the Faster DAN on the test set of the MAURDOR dataset and
comparison with the state of the art. Metrics are expressed in percentages.

Architecture C3 C4 C3 & C4
CER ↓ WER ↓ CER ↓ WER ↓ CER ↓ WER ↓

DAN [9] 8.62 18.94 8.02 14.57 11.59 27.68
Faster DAN 8.93 19.00 9.88 16.52 10.50 19.64

The Faster DAN reaches competitive results compared to the DAN on the
three datasets. For the READ 2016 dataset, it even reaches state-of-the-art
results in terms of LOER and mAPCER for both single-page and double-page
versions, involving a better recognition of the layout. Results are not as good for
the RIMES 2009 dataset, which includes more variability in terms of layout. We
assume that this higher variation makes the first pass of the Faster DAN more

194 D. Coquenet et al.

difficult. This is confirmed when measuring the CER for the first pass only: it is
of 4.72% and 5.34% for READ 2016 at single-page and double-page levels, and
of 9.10% for RIMES 2009. Concerning the MAURDOR dataset, the Faster DAN
reaches competitive results on the C3 and C4 categories, taken separately, and
it reaches new state-of-the art results when mixing both categories with 10.50%
of CER, compared to 11.59% for the standard DAN.

Discussion. It has to be noted that it is more difficult to compare the text
recognition performance at document level than at line level. Indeed, the reading
order is far more complex for documents, to go from one paragraph to another,
and to one line to the next, than for isolated lines. This way, even perfectly
recognized, the CER can be severely impacted if the paragraphs are recognized
in the wrong order. On the contrary, the mAPCER is invariant to the order of
the layout entities, but it is dependent to the well recognition of the layout.

Another point to emphasize is about the severity of the errors made. There
are two types of errors to be distinguished. The first corresponds to standard
character addition, removal, or substitution cases. During the first pass of the
Faster DAN, this kind of error may have a great impact because a whole text line
may be duplicated or discarded. However, during the second pass, we assume
that the impact of such errors is rather equivalent for both DAN and Faster DAN.
The second kind of errors is related to the end-of-transcription token prediction.
Indeed, although rare, the model may not predict the end of the transcription
and loop on the same text region again and again until reaching an arbitrary
chosen iteration limit. For this later issue, the standard DAN is more impacted
than the Faster DAN. Indeed, the DAN only have one iteration limit, which
corresponds to the global number of tokens to predict for the whole document.
For the Faster DAN, we used two iteration limits: one for the number of lines,
and one for the number of characters per line. Given that the range of values for
a line length is smaller than for the whole document, the impact is less important
for the Faster DAN.

Prediction Time. Table 5 shows a comparison of the Faster DAN with the
DAN in terms of prediction times for the three datasets: RIMES 2009, READ
2016 and MAURDOR. To be fairly comparable, these times account for the
whole prediction process, including the time dedicated to the encoder part and
to formatting instructions. Additional details are given for each dataset such as
the image sizes, the number of characters, lines, and layout tokens per image,
and the number of characters per line. The values are given as average for the
test set of each dataset. As one can note, the Faster DAN is significantly faster
than the DAN for all the datasets, speeding up the prediction process by at
least 4.

We showed that the Faster DAN reaches competitive results on three
document-level datasets while being at least 4 times faster than the standard
DAN at prediction time. We now evaluate the performance on heterogeneous
documents, by mixing both RIMES 2009 and READ 2016 datasets.

Faster DAN 195

Table 5. Prediction time comparison between the DAN and the Faster DAN. Times
(in seconds) are averaged on the test set for a single document image, using a single
GPU V100.

RIMES 2009 READ 2016 MAURDOR
single-page double-page C3 C4 C3 & C4

Dataset details (averaged for a document on the test set)
width (px) 1,235 1,190 2,380 1,336 1,240 1,297
height (px) 1,751 1,755 1,755 1,658 1,754 1,697
chars 578 528 1,062 481 706 575
lines 18 23 47 16 22 18
chars/line 31 22 22 30 31 30
layout tokens 11 15 30 0 0 0
Prediction times (in seconds)
DAN [9] 5.6 4.6 8.5 5.8 7.7 6.6
Faster DAN 1.4 0.9 1.9 1.0 1.6 1.3
Speed factor x4 x5.1 x4.5 x5.8 x4.8 x5.1

5.5 Evaluation on Heterogeneous Documents

In this experiment, we mixed both RIMES 2009 and READ 2016 datasets at
single page level, for both training and evaluation. Examples from both datasets
are balanced at training time, i.e., the models have been trained on the same
number of documents for both datasets. These are the first results for such an
experiment; we also train the standard DAN for comparison purposes. Results
are shown in Table 6. As one can note, results are rather similar when training
on datasets separately or altogether, except for the DAN on the RIMES dataset
whose CER increases from 4.54% up to 7.96%.

Table 6. Evaluation of the Faster DAN on heterogeneous data (mixing READ 2016
and RIMES 2009 for both training and evaluation) and comparison with the state of
the art.

Architecture RIMES 2009 (page) READ 2016 (single-page)
CER ↓ WER ↓ LOER ↓ mAPCER ↑ CER ↓ WER ↓ LOER ↓ mAPCER ↑

DAN [9] 7.96 15.76 8.72 91.59 3.50 13.36 3.86 94.23
Faster DAN 6.73 15.22 5.56 90.10 3.81 14.30 4.32 93.57

196 D. Coquenet et al.

Table 7. Ablation study of the Faster DAN and DAN. Results (in percentages) are
given for the test set of the RIMES 2009 and READ 2016 datasets.

Architecture RIMES 2009 (page) READ 2016 (single-page) READ 2016 (double-page)
CER LOER mAPCER CER LOER mAPCER CER LOER mAPCER

Faster DAN 6.38 4.48 91.00 3.95 3.82 94.20 3.88 3.08 94.54
(1) No line encoding 79.39 6.21 0.00 75.08 11.81 0.29 75.01 10.79 5.44
(2) Single-line context 94.73 4.30 0.00 91.23 4.61 0.00 91.22 4.03 0.00
(3) First-pass context 8.27 4.90 90.73 6.68 4.50 88.37 6.87 5.22 87.93
(4) Sum PE 6.88 4.90 91.06 3.82 4.27 94.08 4.55 4.39 92.76

5.6 Ablation Study

In Table 7, we propose an ablation study of the proposed approach on the RIMES
2009 and READ 2016 datasets. The first line corresponds to the Faster DAN
baseline. In experiment (1), the document positional encoding is replaced by
standard 1d positional encoding, i.e., a unique index is associated to each token.
The model does not succeed to recognize the text, showing the necessity of
injecting line positional information to parallelize the recognition. The model
can only access to tokens of the text line to recognize in (2), also preventing the
text recognition. Indeed, it is nearly impossible to predict the next character
with only a one-character query (beginning of the second pass) since characters
are not unique in a document. For both experiments, one can note that the
LOER is nearly not impacted, this is because the layout recognition takes place
in the first pass, before the parallelization.

In experiment (3), in addition to the tokens of the text line to recognize,
the first character of all the text lines, as well as the layout markup tokens, are
available. This leads to an increase of the CER of at least 1.89 points for RIMES
2009, and up to 2.99 points for READ 2016 at double-page level, compared to
the baseline. This shows the efficiency of the text line detection performed in
the first pass, since the text recognition is parallelized, but it also demonstrates
that gathering the context from past and future lines helps to improve the per-
formance. In experiment (4), the positional encoding of the line and of the index
in the line are summed instead of being concatenated. As one can note, results
are slightly in favor of the concatenation.

6 Conclusion

In this paper, we proposed the Faster DAN, a novel approach for end-to-end
Handwritten Document Recognition. We evaluate this approach with the current
state-of-the-art architecture and showed that this approach reaches competitive
results on three document-level datasets while being at least 4 times faster.
This way, we preserved the advantages of using a single end-to-end approach,
while greatly mitigating the major drawback of prediction time. In this work,
we focused on line-level multi-target queries to show the gain in prediction time.

Faster DAN 197

However, it would also be possible to perform this parallelization at paragraph
level in order to have a more important language modeling of the past: this
would represent an in-between in terms of prediction time.

Acknowledgments. This work was granted access to the HPC resources of IDRIS
under the allocation 2020-AD011012155.

References

1. Bluche, T.: Joint line segmentation and transcription for end-to-end handwritten
paragraph recognition. In: Advances in Neural Information Processing Systems
(NIPS), vol. 29, pp. 838–846 (2016)

2. Bluche, T., Louradour, J., Messina, R.O.: Scan, attend and read: end-to-end hand-
written paragraph recognition with MDLSTM attention. In: International Confer-
ence on Document Analysis and Recognition (ICDAR), pp. 1050–1055 (2017)

3. Boillet, M., Kermorvant, C., Paquet, T.: Robust text line detection in historical
documents: learning and evaluation methods. Int. J. Doc. Anal. Recogn. (IJDAR)
25, 95–114 (2022)

4. Brunessaux, S., et al.: The Maurdor project: improving automatic processing of
digital documents. In: International Workshop on Document Analysis Systems
(DAS), pp. 349–354 (2014)

5. Carbonell, M., Fornés, A., Villegas, M., Lladós, J.: A neural model for text local-
ization, transcription and named entity recognition in full pages. Pattern Recogn.
Lett. 136, 219–227 (2020)

6. Chung, J., Delteil, T.: A computationally efficient pipeline approach to full
page offline handwritten text recognition. In: Workshop on Machine Learning
(WML@ICDAR), pp. 35–40 (2019)

7. Coquenet, D., Chatelain, C., Paquet, T.: Recurrence-free unconstrained handwrit-
ten text recognition using gated fully convolutional network. In: 17th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 19–24 (2020)

8. Coquenet, D., Chatelain, C., Paquet, T.: SPAN: a simple predict & align network
for handwritten paragraph recognition. In: Lladós, J., Lopresti, D., Uchida, S.
(eds.) ICDAR 2021. LNCS, vol. 12823, pp. 70–84. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86334-0_5

9. Coquenet, D., Chatelain, C., Paquet, T.: Dan: a segmentation-free document atten-
tion network for handwritten document recognition. IEEE Trans. Pattern Anal.
Mach. Intell. (2023). https://doi.org/10.1109/TPAMI.2023.3235826

10. Coquenet, D., Chatelain, C., Paquet, T.: End-to-end handwritten paragraph text
recognition using a vertical attention network. Trans. Pattern Anal. Mach. Intell.
(TPAMI) 45(1), 508–524 (2023)

11. Coquenet, D., Soullard, Y., Chatelain, C., Paquet, T.: Have convolutions already
made recurrence obsolete for unconstrained handwritten text recognition ? In:
Workshop on Machine Learning (WML@ICDAR), pp. 65–70 (2019)

12. El-Yacoubi, M.A., Gilloux, M., Sabourin, R., Suen, C.Y.: An hmm-based approach
for off-line unconstrained handwritten word modeling and recognition. Trans. Pat-
tern Anal. Mach. Intell. (TPAMI) 21(8), 752–760 (1999)

13. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The
pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338
(2010)

https://doi.org/10.1007/978-3-030-86334-0_5
https://doi.org/10.1007/978-3-030-86334-0_5
https://doi.org/10.1109/TPAMI.2023.3235826

198 D. Coquenet et al.

14. Gilloux, M., Lemarié, B., Leroux, M.: A hybrid radial basis function net-
work/hidden markov model handwritten word recognition system. In: Third Inter-
national Conference on Document Analysis and Recognition (ICDAR), pp. 394–397
(1995)

15. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: International Conference on Machine Learning (ICML), vol. 148, pp. 369–376
(2006)

16. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimen-
sional recurrent neural networks. In: Advances in Neural Information Processing
Systems (NIPS), vol. 21, pp. 545–552 (2008)

17. Grosicki, E., Carré, M., Brodin, J., Geoffrois, E.: Results of the RIMES evaluation
campaign for handwritten mail processing. In: 10th International Conference on
Document Analysis and Recognition (ICDAR), pp. 941–945 (2009)

18. Kim, G., et al.: Ocr-free document understanding transformer. In: Avidan, S.,
Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS,
vol. 13688, pp. 498–517. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-19815-1_29

19. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network.
In: Advances in Neural Information Processing Systems, vol. 2 (1989)

20. Moysset, B., Kermorvant, C., Wolf, C.: Full-page text recognition: learning where
to start and when to stop. In: International Conference on Document Analysis and
Recognition (ICDAR), pp. 871–876 (2017)

21. Oliveira, S.A., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning app-
roach for document segmentation. In: 16th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pp. 7–12 (2018)

22. Ptucha, R.W., Such, F.P., Pillai, S., Brockler, F., Singh, V., Hutkowski, P.: Intel-
ligent character recognition using fully convolutional neural networks. Pattern
Recogn. 88, 604–613 (2019)

23. Puigcerver, J.: Are multidimensional recurrent layers really necessary for hand-
written text recognition? In: 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), pp. 67–72 (2017)

24. Renton, G., Soullard, Y., Chatelain, C., Adam, S., Kermorvant, C., Paquet, T.:
Fully convolutional network with dilated convolutions for handwritten text line
segmentation. Int. J. Doc. Anal. Recogn. (IJDAR) 21(3), 177–186 (2018)

25. Rouhou, A.C., Dhiaf, M., Kessentini, Y., Salem, S.B.: Transformer-based approach
for joint handwriting and named entity recognition in historical documents. Pattern
Recogn. Lett. 155, 128–134 (2022)

26. Sánchez, J., Romero, V., Toselli, A.H., Vidal, E.: ICFHR2016 competition on hand-
written text recognition on the READ dataset. In: 15th International Conference
on Frontiers in Handwriting Recognition (ICFHR), pp. 630–635 (2016)

27. Singh, S.S., Karayev, S.: Full page handwriting recognition via image to sequence
extraction. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS,
vol. 12823, pp. 55–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86334-0_4

28. Tensmeyer, C., Wigington, C.: Training full-page handwritten text recognition
models without annotated line breaks. In: International Conference on Document
Analysis and Recognition (ICDAR), pp. 1–8 (2019)

29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NIPS), vol. 30, pp. 5998–6008 (2017)

https://doi.org/10.1007/978-3-031-19815-1_29
https://doi.org/10.1007/978-3-031-19815-1_29
https://doi.org/10.1007/978-3-030-86334-0_4
https://doi.org/10.1007/978-3-030-86334-0_4

Faster DAN 199

30. Voigtlaender, P., Doetsch, P., Ney, H.: Handwriting recognition with large multi-
dimensional long short-term memory recurrent neural networks. In: International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 228–233 (2016)

31. Wigington, C., Tensmeyer, C., Davis, B., Barrett, W., Price, B., Cohen, S.: Start,
follow, read: end-to-end full-page handwriting recognition. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 372–388.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_23

32. Yousef, M., Bishop, T.E.: OrigamiNet: weakly-supervised, segmentation-free, one-
step, full page text recognition by learning to unfold. In: Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 14698–14707 (2020)

33. Yousef, M., Hussain, K.F., Mohammed, U.S.: Accurate, data-efficient, uncon-
strained text recognition with convolutional neural networks. Pattern Recogn. 108,
107482 (2020)

https://doi.org/10.1007/978-3-030-01231-1_23

Shared-Operation Hypercomplex
Networks for Handwritten Text

Recognition

Giorgos Sfikas1(B), George Retsinas2, Panagiotis Dimitrakopoulos3,
Basilis Gatos4, and Christophoros Nikou3

1 Department of Surveying and Geoinformatics Engineering, School of Engineering,
University of West Attica, Athens, Greece

gsfikas@uniwa.gr
2 School of Electrical and Computer Engineering,

National Technical University of Athens, Athens, Greece
gretsinas@central.ntua.gr

3 Department of Computer Science and Engineering, University of Ioannina,
Ioannina, Greece

p.dimitrakopoulos@uoi.gr, cnikou@cse.uoi.gr
4 Computational Intelligence Laboratory, Institute of Informatics and

Telecommunications, National Center for Scientific Research “Demokritos”,
Athens, Greece

bgat@iit.demokritos.gr

Abstract. Parameterized hypercomplex layers have recently emerged
as very useful alternatives of standard neural network layers. They allow
for the construction of extremely lightweight architectures, with little
to no sacrifice of accuracy. We propose networks of Shared-Operation
Parameterized Hypercomplex layers, where the operation parameteriza-
tion is co-learned by all layers in tandem. In this manner, we mitigate
the computational burden of operation parameterization, which grows
cubically with respect to the hypercomplex dimension. We attain good
word and character error rate at only a small fraction of the memory
footprint of non-hypercomplex models as well as previous non-shared
operation hypercomplex ones (up to −96.8% size reduction).

Keywords: Parameterized Hypercomplex Layers · Hypercomplex
Algebra · Handwritten Text Recognition · Low memory footprint

1 Introduction and Related Work

Handwritten Text Recognition (HTR) is one of the major pattern recognition
tasks in the field of document image processing. The most typical use-case
involves segmented lines of text images as inputs, which are to be automati-
cally converted to a string of characters. While the task itself is similar to that
of Optical Character Recognition (OCR), which conventionally involves recog-
nition of printed text, handwritten text offers a significantly greater challenge.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 200–216, 2023.
https://doi.org/10.1007/978-3-031-41685-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_13

Shared-Operation Hypercomplex Networks for HTR 201

The variability of handwriting style, which may be important not only between
writers, but within the output of the same writer is one of the major difficulties.
Indeed, it is not an uncommon occurence to have a learning system that fails,
when trained on one writer or group of writers and tested on another [24,25].

Current state-of-the-art systems for HTR include different variants of Deep
Neural Networks. Due to the sequential nature of text, Recurrent Neural Net-
works (RNN) have been a popular choice of neural network for HTR. Combined
with Connectionist Temporal Classification (CTC)-based objectives, which allow
for a loss value to be computed during training and without requiring exact
alignment between prediction and target, RNNs have been the basis of various
excellent-performing systems [6,21]. Sequence-to-sequence models constistute an
alternative approach to HTR, which is based on decoupling encoding to a feature
vector and decoding to the target string as two separate network components.
Compared to Convolutional Neural Networks (CNNs), RNNs have the advan-
tage of capturing information dependencies in a sequential manner, and usually
have led to better HTR models w.r.t. to the former. Encoding prior knowledge
about the nature of our inputs is primarily enforced through the inherent induc-
tive bias that is represented by each model. Specifically, convolutional layers
model statistical dependence of some form for each time frame w.r.t. neighbour-
ing frames, or spatial dependence of line image cues w.r.t. spatially close pixels.
The dependence range is hard-coded in the form of the characteristics of each
convolution, and primarily as the size of each kernel, along with other hyperpa-
rameters (dilation, stride). On this note, there has been important recent work
on flexible, adaptive convolutional operations, e.g. [9,27]. With recurrent layers
on the other hand, we encode our belief that our data are inherently sequential.
Forward and backward dependencies are captured easily through bidirectional
recurrent variants. Compared to CNNs however, RNNs are known to be difficult
to train and converge to an acceptable solution. To this end, architectures that
combine convolutional and recurrent components have been proposed [23,26]. A
very much used recipe involves a convolutional backbone that is charged with
transforming the input segmented image into a useful feature map. This fea-
ture map is then pooled or reshaped into a sequence of features that is fed
into a recurrent component [13,23,26]. Regarding convolutional-recurrent model
architecture, a technique that has also worked well involves supplying the main
recurrent network with an auxiliary CTC-based component [26,36]. This can be
understood as a penalty on cross-entropy loss over a recurrent decoder. In prac-
tice, this CTC shortcut can be fully convolutional, including 2D and 1D (tem-
poral) convolutions, which translates to less recurrent components and faster
convergence.

Transformers have emerged as an antagonist to both convolutional and recur-
rent architectures, in the sense of the aspiration to replace either one for most
important vision tasks. Initially proposed in a Natural Language Processing
setting [34], they have been tailored for tasks that can be cast as sequential
processing, and can in principle capture complex, far-reaching input interdepen-
dencies [20]. The main ingredient in transformers is the self-attention opera-
tion. Input sequence vectors are transformed into a set of “keys”, “queries” and

202 G. Sfikas et al.

“values” through learnable, shared transformations which create a dictionary of
features that are subsequently recombined as a softmax-weighted average and
transformed through a fully-connected layer into an output sequence. Multiple
transformations for the same inputs have shown to work well in practice, which
corresponds to the so-called multi-head variant of self-attention, or simply multi-
head self-attention. In turn, cascades of multi-head self-attention can be grouped
together to form so-called transformer layers [20]. Use of transformers has been
explored in the field of HTR by recent work, where excellent results are reported
[8]; interestingly, transformers are however related to inherent shortcomings such
as poorly handling text repetitions [35], which in turn are rooted to the indirect
manner that they handle sequence positional dependence. Another important
disadvantage is that models that fully depend on a transformer structure tend
to be orders of magnitude larger than their non-transformer counterparts [36].

A direction of research that is orthogonal to optimizing HTR accuracy w.r.t.
to NN architectural components and structure, involves creating a network that
is as resource-demanding as possible. Network size in terms of numbers of param-
eters is one such metric. The general trend in learning is to have ever-larger
models, with NN sizes reaching billions of parameters in some tasks [20]. The
largest models in HTR are Transformer-based and comprise hundreds of millions
of parameters [36]. In a real application setting, where budget constraints may
be very tight (e.g. on embedded devices), large models are unfortunately inap-
plicable. To this end, a host of works have explored sparsity in neural networks
[4,12,22,39], where, in broad terms, the goal is to train NNs with as many zero-
ed connections as possible, at as less of an accuracy loss as possible. A family
of techniques involves augmenting the training objective with terms that will
encourage model sparsity. In [12], a L0 term is added to the total objective. In
[39], a variational inference model is proposed, where model weights follow a
zero-mean prior, pushing the posterior towards small magnitudes; values that
are under a threshold are pruned. Feature pyramid components are connected
with group-wise factors in [4], and in this context variational inference amounts
to a neural architecture search scheme. Hypercomplex networks are another
group of techniques that follow a very different philosophy in achieving net-
work sparsity. They lead to models which have alternate layers of standard NN
layers (fully-connected, convolutional, etc.) but which enforce extensive param-
eter sharing. Quaternion neural networks were the first type of hypercomplex
networks [7,16]. By treating model neurons and weights as quaternionic, which
are inherently 4-dimensional, an impressive 75% economy in model size is easily
attained. After quaternionic versions of convolutional networks [17,40], propos-
als for other types of quaternionic layer have followed suit, like recurrent layers,
transformers, or extensions to graph neural networks [15,19,32]. Generalizing
this paradigm, parameterized hypercomplex networks have recently been pro-
posed as an alternative to quaternionic networks, where the level of parameter
sharing is defined as a model hyperparameter. Crucially, in parameterized hyper-
complex networks the manner in which weight tuples are multiplied is learnable.
This type of multiplication has been named Parameterized Hypercomplex Multi-
plication (PHM) [38], and has lead to models that were (in practice) downscaled
up to 16×.

Shared-Operation Hypercomplex Networks for HTR 203

In this work, we argue that the marginal benefit with respect to increasing
network size, structure and training complexity is a critical factor when it comes
to choosing an architecture for our HTR model. Is using a model that is 10x
or 100x larger than the previous baseline worth it, only to obtain a decrease
in Character Error Rate (CER) by 1–2% as an end result? Also, it is hard to
tell whether small accuracy differences generalize well and whether they lead to
any improvement on out-of-distribution test data. We believe that a trade-off of
benchmark accuracy and resource requirements should be considered. In light of
the aforementioned considerations, we propose a HTR model that uses a new,
even more compact model of Parameterized Hypercomplex Layers that builds on
a Convolutional-Recurrent architecture with a CTC shortcut [23,26]. Our model
achieves good HTR results at a model size as small as ∼ 500, 000 parameters,
which amounts to up to 32-fold compression or 3.1% the size of our baseline
model.

The paper is structured as follows. We begin with a brief outline of the pre-
requisites for hypercomplex algebra and define hypercomplex layers in Sect. 2.
In Sect. 3 we present the proposed Shared Hypercomplex architecture for Hand-
written Text Recognition. We evaluate the discussed models in Sect. 4, where
we show that the proposed model using shared-operation hypercomplex layers
performs very adequately on an HTR task while being significantly smaller than
competing models; also, we test the model against non-hypercomplex architec-
tures given a tight resource budget. We close with concluding remarks on our
contribution and future work in Sect. 5.

2 Hypercomplex Numbers and Hypercomplex Layers

2.1 Quaternions

Hypercomplex algebras are mathematical structures of numbers of “intrinsically
high” dimensionality. Historically, quaternions (the set of which is denoted as
H in this text) were the first type of hypercomplex numbers, discovered by
Hamilton in the 19th century [10]. Motivated by extending complex numbers C,
which are made up of a real and an imaginary part, to an algebra of a multitude
of parts, quaternions were defined as numbers q:

q = a + bi + cj + dk, (1)

where a, b, c, d ∈ R and i, j,k are imaginary units. The three imaginary units,
along with the real unit, are deemed independent and perpendicular to one
another. They can also be rewritten as a sum of a scalar part S(q) = a and
a vector part V (q) = bi + cj + dk, isomorphic to R and R

3 respectively. All
imaginary units admit to being square roots of negative unity:

i2 = j2 = k2 = −1, (2)

a property which actually extends to infinite elements in H. Additive and mul-
tiplication rules are necessary to define an algebra, of which the first is quite

204 G. Sfikas et al.

straightforward; corresponding real or imaginary parts are added together, with
no operations acting between different number real or imaginary parts. Formally,

p + q = (ap + aq) + (bp + bq)i + (cp + cq)j + (dp + dq)k, (3)

where p = ap + bpi + cpj + dpk and q = aq + bqi + cqj + dqk. Multiplication
of quaternions requires first defining a way to multiply imaginary units. Except
Eq. 2, we have

ij = k, jk = i,ki = j, ji = −k, jk = −i,ki = −j, (4)

and the real unity acts as a multiplicative identity as in R. Note that from Eq. 4
we have the corollary that in general pq �= qp, so multiplication is not commuta-
tive in H (but it still is associative). Combined with a transitive property over
our definition of addition, we have the rule of multiplication (also referred to as
a “Hamilton” product):

pq = S(p)S(q) − V (p) · V (q) + S(p)V (q) + S(q)V (p) + V (p) × V (q), (5)

where · is the inner product and × is the cross product. Note from the above,
that for “pure” quaternions (S(p) = S(q) = 0) that are also perpendicular, the
multiplication rule becomes simply a cross product V (p) × V (q). The multipli-
cation rule can be written in an expanded form as:

pq =(apaq − bpbq − cpcq − dpdq)+ (6)
(apbq + bpaq + cpdq − dpcq)i+ (7)
(apcq − bpdq + cpaq + dpbq)j+ (8)
(apdq + bpcq − cpbq + dpaq)k, (9)

where we replaced S(·) and V (·) with their definitions. Especially interestingly
regarding the proposed model in this work, we can rewrite the above in a matrix-
vector form, as:

⎡
⎢⎢⎣
apq
bpq
cpq
dpq

⎤
⎥⎥⎦ = Pq =

⎡
⎢⎢⎣
ap −bp −cp −dp
bp ap −dp cp
cp dp ap −bp
dp −cp bp ap

⎤
⎥⎥⎦

⎡
⎢⎢⎣
aq
bq
cq
dq

⎤
⎥⎥⎦ , (10)

where for the resulting quaternion pq we write pq = apq+bpqi+cpqj+dpqk. With
a slight abuse of notation we write q also to denote the vector ∈ R

4 that includes
the coefficients of quaternion q, and we write P for the matrix that corresponds
to quaternion p. Matrices structured as P form a 4-dimensional subspace of R4×4

that is isomorphic to H, to which we shall refer to as S4. It is straightforward to
see that a basis for S4 is formed by the following matrices:

A4
1 = I4, A

4
2 =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ , A4

3 =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ , A4

4 =

⎡
⎢⎢⎣

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

(11)

Shared-Operation Hypercomplex Networks for HTR 205

i.e. any matrix in S4 can be written as a linear combination of {Ai}4i=1, and
{Ai}4i=1 are linearly independent. Hence, we can rewrite Eq. 10 as:

⎡
⎢⎢⎣
apq
bpq
cpq
dpq

⎤
⎥⎥⎦ = (apA4

1 + bpA
4
2 + cpA

4
3 + dpA

4
4)

⎡
⎢⎢⎣
aq
bq
cq
dq

⎤
⎥⎥⎦ . (12)

Now, supposing that we need to multiply N quaternions p1, p2, · · · , pN with
N quaternions q1, q2, · · · , qN , we can rewrite this process again as a matrix-
vector product qN = PNqN , where our input and resulting vectors are now of
dimensions equal to 4N , and the transformation matrix is ∈ R

4N×4N . Depending
on whether we want to multiply only N pairs of quaternions piqi for ∀i ∈ [1, N] or
all possible pairs of pi ∀i ∈ [1, N] and qj ∀j ∈ [1, N], we’ll have a dimensionality
equal to 4N or 4N2 respectively. This is still much less than the containing
space of 4N × 4N , for which dim{R4N×4N} = 16N2. Furthermore, the matrix
PN can be written as a sum of Kronecker products of matrices A1, A2, A3, A4

with matrices that contain the elements of p1, p2, · · · , pN [38]. Recall that the
Kronecker product of A ∈ R

k×l and B ∈ R
m×n is defined as:

A ⊗ B =

⎡
⎢⎣
a11B . . . a1lB

...
. . .

...
ak1B . . . aklB

⎤
⎥⎦ , (13)

where A ⊗ B ∈ R
km×ln. Note that in general A ⊗ B �= B ⊗ A, but the two

results are related through a “perfect shuffle” permutation [33]. This means
that, depending on whether we stack quaternion elements in input and result-
ing vectors as a1p, a

2
p, a

3
p, · · · , d2p, d3p, d4p or a1p, b

1
p, c

1
p, · · · , bNp , cNp , dNp , we can either

use a sum of factors with Ai matrices multiplying from the left or from the
right. Writing a set of quaternion products as a single Kronecker-factored prod-
uct is important with respect to the generalization of the Hamilton product to
Parameterized Hypercomplex Multiplication, which we discuss in Subsect. 2.2.

Higher-order Hypercomplex Numbers. Quaternions aside, there exist other types
of hypercomplex numbers of dimensionality higher than 4. As a rule of the
thumb, the more we progress to higher dimensions, the less “easy-to-use”
each hypercomplex algebra becomes; for example, quaternions have a non-
commutative but associative multiplication rule but octonions and sedenions,
of dimensionalities equal to 8 and 16 respectively, are neither commutative nor
associative.

2.2 Quaternion and Parameterized Hypercomplex Layers

The restatement of the Hamilton product as a matrix-vector product (Eq. 10)
has in fact provided the basis for the definition of quaternion layers as part of
quaternionic extensions of standard layers in neural networks. As a multiplica-
tion by a matrix corresponds to a linear transformation, this construction has

206 G. Sfikas et al.

been used as a replacement of standard linear transformation components. Fur-
thermore, a linear transformation matrix sized M × N , which would normally
have a dimension equal to MN , when replaced with its quaternionic counterpart
only has a dimension equal to four times less, MN/4, as we saw in the previous
subsection. In practical terms, this means that the layer uses four times less
parameters for each quaternionic component. As linear components are ubiqui-
tous in neural networks, whole networks can be revamped to their quaternionic
versions [18].

Fig. 1. An illustration of the proposed idea. Standard Parameterized Hypercomplex
Networks use multiple layers that are parameterized using two sets of matrices: {Ai}ni=1

and {Fi}ni=1, of which the former can be thought of a learnable generalization of the
Hamilton product rules. In this work, with “Shared-Operation” Hypercomplex Net-
works, we argue that learning only one set of {Ai}ni=1 for the whole network, is enough
to construct a useful and very light-weight model.

The major constraint related to quaternionic neural networks is that dimen-
sionality is reduced according to a fixed factor of four. Zhang et al. [38] have
proposed a generalization of the aforementioned construction from quaternions
and four-fold economy to arbitrary-dimension hypercomplex constructions. The
matrix W in all cases is defined as a decomposition into matrices {Ai}Nn=1 and
{Fi}Nn=1. This is based on writing the transformation matrix W for a given linear
component as a sum of Kronecker factors:

W =
n∑

i=1

Ai ⊗ Fi, (14)

where Ai ∈ R
n×n and Fi ∈ R

f/n×g/n. The resulting matrix W is of size f × g,
but the total number of independent parameters is significantly less. Indeed, we
have a total of n3 + fg/n parameters, where supposing that n is much less than
either input and output dimensionalities f or g, the second parameter should be

Shared-Operation Hypercomplex Networks for HTR 207

dominant. For a total of L independent linear components in the network, we
have Ln3 + Lfg/n free parameters.

3 Proposed Model for Handwritten Text Recognition

3.1 Shared-Operation Parameterized Hypercomplex Layer

In this work, we propose the use of a new variant of Parameterized Hypercom-
plex Multiplication Networks (PHM), to which we refer to as Shared-Operation
Hypercomplex Network (SOHN). “Operation sharing” in SOHN refers to hav-
ing a shared component that is learned by all hypercomplex layers jointly. Our
motivation is related to the three following points:

a) In standard PHM, layer linear components are decomposed as sums of Kro-
necker products of the form

∑
i Ai ⊗ Fi. The two sets of matrices Ai, Fi

are related to a different intuitive use. Matrices Ai are related to how the
shared parameter groups interact with one another. Note for example, that
we can understand the quaternionic case as a special case of parameterized
hypercomplex multiplication where n = 4 and Ai are as in Eq. 11. These
matrices control the structure of the resulting Kronecker product, and they
are a direct consequence of the definition of the Hamilton product, which in
turn stems from the multiplication rules that were set so that H can form
an algebra. In the parameterized hypercomplex case, we no longer have these
constraints, and in a sense the equivalent of the Hamilton product is re-learnt
for arbitrary n.

b) The number of what we called “independent” linear layers in our network
can in effect be significantly larger than the number of layers themselves. For
example, for a Hypercomplex LSTM layer, we have 4 or 8 linear transforma-
tions assuming unidirectional or bidirectional recurrence; these correspond to
each of the related gates (input, output, forget, cell input). For the convolu-
tional case, we can also write a convolution in a matrix-vector form Wx + b
with W as a circulant matrix, but it will suffice to deal with a form where
parameters are packed in an order-4 tensor as in [5,31]). Nevertheless, the
complexity factor related to the size of the Ai matrices can quickly (w.r.t.
increasing n) become significant. (In our HTR experiments, we show that
choosing n = 32 accounts for almost half the network parameter complexity).

c) Also importantly, in practice we have observed that results for PHM/n = 4
and quaternionic variants are similar in terms of network accuracy/efficiency
(e.g. [31]). This may hint that learning a separate set of multiplication rules
for each linear component is unnecessary.

For reasons of clarity of presentation, we consider a case where we have
only feed-forward connections and all linear operations are hypercomplex; this
case can easily be extended to recurrent connections and NNs that include non-
hypercomplex layers. Formally, we write our network as a cascade of L layers, i.e.:

SOHN(x; {Ai}ni=1, {F (1)
i }ni=1, {F (2)

i }ni=1, · · · , {F (L)
i }ni=1) =

208 G. Sfikas et al.

l(L)({Ai}ni=1, {F (L)
i }ni=1) ◦ · · · ◦ l(1)({Ai}ni=1, {F (1)

i }ni=1)(x), (15)
each layer uses parameterized hypercomplex operations:

y(j) = PHM(y(j−1); {Ai}ni=1, {F (j)
i }ni=1), (16)

where yj is the output of layer j. In practical terms, a SOHN can be implemented
by adding skip connections starting from a single learnable tensor of size n×n×n
which would represent the Ai matrices, towards all hypercomplex layers. An
illustration of this idea can be seen in Fig. 1.

3.2 Model Architecture

As a baseline architecture, in the sense of choosing the layout, number of blocks,
channels, dimensionality and other component features, we have followed the
convolutional-recurrent architecture proposed in [23]. Written as a Python-style
data structure –this will come in handy for comparing architectures in Sect. 4–
we denote architecture as [(2, 64),mpool, (4, 128),mpool, (4, 256)], (256, 3). A list
of tuples corresponds to convolutional backbone of ResNet blocks, and the final
tuple corresponds to the setup of the recurrent component before the softmax
output. Tuples for the convolutional backbone signify (number of ResNet blocks,
number of channels). “mpool” signifies a 2×2 max-pooling operation. Regarding
the tuple corresponding to the recurrent component, it signifies (hidden feature
dimensionality, number of LSTM layers). After the final convolutional block, a
column-wise max-pooling follows, which branches out to two routes. The first,
“main” route is fed to the LSTM recurrent component, followed by a fully-
connected layer which maps the output number of channels to the number of
output classes, so we get a sequence of softmax-activated probability vectors as a
result. This result is fed to a CTC loss. The second route that branches after the
column-wise max-pooling operation, is transformed to softmax-activated prob-
ability vectors directly, i.e. bypassing the recurrent component. This again is
fed to a CTC loss that is weighed down (0.1×) with respect to the loss that
corresponds to the first, recurrent route; this architectural choice has shown to
aid convergence in recurrent architectures [23,26]. In all cases, we have opted
for using channel size of convolutional and recurrent layers that are multiples
of the highest hypercomplex parameter that we have used, n = 32. This choice
was made so as to ease comparisons between different hyperparameter choices.
Setting channel sizes according to this rule was not possible in a number of cases,
namely regarding input and output size. In these cases, we use 1 × 1 convolu-
tion to transform a tensor from or to the desired channel size. Dropout with
probability 20% is used between recurrent layers (Fig. 2).

4 Experiments

4.1 Datasets

We have tested our models on three document image datasets: IAM [14], Rimes
[1], and Memoirs [28]. Excerpts from the three datasets can be compared in
Fig. 3.

Shared-Operation Hypercomplex Networks for HTR 209

Fig. 2. The proposed shared-operation architecture for HTR.

IAM. The IAM dataset encompasses text produced by 657 different writers,
split into writer-independent partitions (we use the same training/validation/set
partition as in [21]). There is a total of 6482 lines for the training set, 976 lines
for the validation set, and 2915 lines for the test set. IAM is written in a Latin
script and in the English language.

RIMES. RIMES encompasses 11333 lines in the training set and 778 lines in the
test set. It is written in a Latin script and in the French language.

Memoirs. The Memoirs dataset [28] comprises 46 manuscripts, written in the
19th as a personal diary of Sophia Trikoupi, sister of a contemporary Greek prime
minister. We have a total of 4, 941 words, which correspond to 385 lines for the
training set, 129 lines for the validation set and 179 lines of text for the test set.
We use the training and test partitions defined in [28].1 All experiments follow
the setting of line-level recognition, with a lexicon-free unconstrained greedy
CTC decoding scheme.

4.2 Varying the Hypercomplex Dimension and PHM vs SOHN

In Table 1 we report results of HTR on the three aforementioned datasets. We
have run different variants of the proposed hypercomplex model, using either
standard Parameterized Hypercomplex Multiplication [38] (PHM), or the pro-
posed Shared-Operation Hypercomplex variant (SOHN). In both cases we report
1 The dataset is publicly available at https://github.com/sfikas/sophia-trikoupi-

handwritten-dataset/.

https://github.com/sfikas/sophia-trikoupi-handwritten-dataset/
https://github.com/sfikas/sophia-trikoupi-handwritten-dataset/

210 G. Sfikas et al.

Fig. 3. Excerpts from the datasets used for our experiments.

the employed hypercomplex parameter (n). Different values for n correspond to
different structure of the Ai and Fi Kronecker factors, and in general a higher
value for n leads to more compression. The exception to this rule comes when
the cubic factor of complexity O(n3) for the Ai matrices surpasses that of the
Fi matrices, i.e. O(fg/n). In the SOHN variant the former is significantly mit-
igated, as we only require a single n3-sized tensor for the whole network, hence
the savings in parameter size. (Note that the difference in accuracy between [23]
stems from the custom implementation of LSTM that was written to extend
to the hypercomplex variants – the architecture of the “Retsinas et al.” and

Shared-Operation Hypercomplex Networks for HTR 211

Fig. 4. Comparison of HTR models in terms of model size and test set error rate.
The area of each circle is proportional to the number of trainable parameters of a
variant in a model family. Different circle sizes for SOHN and PHM correpond to
different hyperparameter values (n = 16 and n = 32 for the larger and smaller radii
respectively).

“Real-valued” models as referenced in Table 1 is otherwise identical). A graph-
ical illustration can also be examined in Fig. 4, where we present a comparison
of both error rate and model size.

4.3 PHM Model vs Real-Valued Model on a Resource Budget

We have compared against a variants of CNN-RNN with a constrained, fixed
budget of trainable parameters. We have tested models on two different budgets,
namely 500 thousand and 750 thousand parameters, which we can examine in
Tables 2 and 3 respectively. In these cases, we used the proposed SOHN models
for hypercomplex dimensions n = 16 and n = 32, and compared against non-
hypercomplex models that use approximately the same number of parameters.
As there is naturally more than one way to build a model given a set budget, we
built different non-hypercomplex models in order to have as much an unbiased
and fair comparison as possible. The setups for these model variants are:

1. [(4, 64)], (64, 2) (500k parameters)
2. [(1, 64)], (100, 2) (513k parameters)
3. [(1, 64)],mpool, (1, 128)], (64, 2) (576k parameters)
4. [(2, 32),mpool, (2, 64),mpool, (2, 64)], (96, 1) (521k parameters)
5. [(2, 8),mpool, (4, 8),mpool, (4, 8)], (112, 2) (494k parameters)
6. [(1, 64),mpool, (2, 112)], (64, 2) (746k parameters)
7. [(2, 96)], (100, 2) (768k parameters)
8. [(2, 16),mpool, (4, 18),mpool, (4, 32)], (128, 2) (744k parameters)

where we have used the same convention to represent architectural choices as in
Sect. 3.

212 G. Sfikas et al.

Table 1. Comparison of HTR models in terms of model size and test set error rate.
Model size is evaluated in terms of model number of parameters, and error rate is
evaluated in terms of CER over the test set of three different datasets (IAM [14],
RIMES [1], Memoirs [28]). For both considered metrics, a lower value is more desirable.
Both works of Li et al. [11] and Wick et al. (+syn) [36] use additional synthetic data in
training, while for the rest only the predefined training set is used to train the model.

#Millions of Params IAM RIMES Memoirs

Li et al. (+syn) [11] 334 3.42 − −
Li et al. (+syn) [11] 558 2.89 − −
Wick et al. (+syn) [36] 4.8 3.96 − −
Wick et al. [36] 4.8 5.09 − −
Yousef et al. [37] 3.4 4.9 − −
Diaz et al. [3] 12 2.75 − −
Retsinas et al. [23] 10 4.62 2.75 −
Real-valued model 10 6.2 3.9 11.2

PHM/n = 2 model 5.1 6.5 6.5 11.4

Quaternion model 2.6 6.9 4.3 11.8

PHM/n = 4 model 2.6 6.9 7.0 11.4

PHM/n = 8 model 1.4 7.5 4.7 11.8

PHM/n = 16 model 1.03 7.4 4.5 12.4

SOHN/n = 16 model 0.74 8.6 5.5 12.7

PHM/n = 32 model 2.8 6.6 3.9 12.1

SOHN/n = 32 model 0.46 8.9 5.7 12.6

As a remark on the results of Tables 2, 3, we can state that it seems that
trimming down a network to less parameters leads to error rates that vary widely;
some of the compared variants are much worse than the proposed SOHN models,
while others come quite close. We can however deduce that while applying a
Shared-Operation architecture invariably leads to a slight detriment of accuracy,
attempting to enforce a constrained budget on a real-valued architecture is very
much dependent on the way the baseline network is “pruned-down”.

Shared-Operation Hypercomplex Networks for HTR 213

Table 2. Peformance comparison of HTR models on a budget of 500k parameters.
Loss, CER and WER over the IAM test set are reported. See text for details.

Model type Number of Parameters Test Loss Best CER Best WER

Ours (SOHN/n=32) 459k 25.3 8.9 29.6

Non-PHM variant #1 500k 35.4 16.6 50.9

Non-PHM variant #2 513k 72.4 37.2 82.7

Non-PHM variant #3 576k 44.8 17.3 52.9

Non-PHM variant #4 521k 27.3 9.0 30.6

Non-PHM variant #5 494k 61.7 26.3 65.4

Table 3. Peformance comparison of HTR models on a budget of 750k parameters.
Loss, CER and WER over the IAM test set are reported. See text for details.

Model type Number of Parameters Test Loss Best CER Best WER

Ours (SOHN/n=16) 742k 26.4 8.6 28.9

Non-PHM variant #6 746k 34.2 13.1 42.2

Non-PHM variant #7 768k 53.7 23.6 64.5

Non-PHM variant #8 744k 31.2 10.9 34.9

5 Conclusion and Future Work

We have presented a new type of hypercomplex architecture called Shared-
Operation Hypercomplex Networks. This scheme is based on the idea that the
multiplication operation matrices used in hypercomplex layers can be shared
across the network. As more parameters are shared, the computational com-
plexity alongside the trainable parameters is significantly reduced. Our claims
are to an extent corroborated by the reported experimental results, which test
SOHN based networks and PHM variants of our method against the current
state of the art in handwritten text recognition. While cutting down the number
of matrices to a single one does not throw off the model mechanics and adequate
error rates are still achieved, our experiments suggest that learning multiple Ai

matrices (as in standard PHM) is still beneficial, and by no means the difference
in accuracy between PHM and SOHN is insignificant. In general however, inte-
gration of the proposed method results in high network compression with small
accuracy drop. For future work, we plan to extend the model with other ways
of constraining the expenses related to the two Kronecker factors, like low-rank
approximations or other types of factorizations. Another direction of research
could involve imposing contraints in the form of a probabilistic prior over the Ai

matrices, which could in this context help regulate between choosing a global,
shared representation versus a local representation [29,30]. In terms of appli-
cations, interesting use cases include segmentation-free HTR frameworks [2] or
word-level recognition systems [26].

214 G. Sfikas et al.

Acknowledgments. This research has been partially co - financed by the EU
and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call “OPEN INNOVATION IN CUL-
TURE”, project Bessarion (T6YBΠ - 00214).

References

1. Augustin, E., Carré, M., Grosicki, E., Brodin, J.M., Geoffrois, E., Prêteux, F.:
Rimes evaluation campaign for handwritten mail processing. In: International
Workshop on Frontiers in Handwriting Recognition (IWFHR 2006), pp. 231–235
(2006)

2. Coquenet, D., Chatelain, C., Paquet, T.: DAN: a segmentation-free document
attention network for handwritten document recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 45, 8227–8243 (2023)

3. Diaz, D.H., Qin, S., Ingle, R., Fujii, Y., Bissacco, A.: Rethinking text line recogni-
tion models. arXiv preprint arXiv:2104.07787 (2021)

4. Dimitrakopoulos, P., Sfikas, G., Nikou, C.: Variational feature pyramid networks.
In: International Conference on Machine Learning, pp. 5142–5152. PMLR (2022)

5. Grassucci, E., Zhang, A., Comminiello, D.: Lightweight convolutional neural net-
works by hypercomplex parameterization. arXiv preprint arXiv:2110.04176 (2021)

6. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376. ACM (2006)

7. Isokawa, T., Kusakabe, T., Matsui, N., Peper, F.: Quaternion neural network and
its application. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS
(LNAI), vol. 2774, pp. 318–324. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45226-3 44

8. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what
you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129,
108766 (2022)

9. Knigge, D.M., et al.: Modelling long range dependencies in ND: from task-specific
to a general purpose CNN. arXiv preprint arXiv:2301.10540 (2023)

10. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Application
to Orbits, Aerospace and Virtual Reality. Princeton University Press, Princeton
(1999)

11. Li, M., et al.: TROCR: transformer-based optical character recognition with pre-
trained models. arXiv preprint arXiv:2109.10282 (2021)

12. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312 (2017)

13. Markou, K., et al.: A convolutional recurrent neural network for the handwritten
text recognition of historical greek manuscripts. In: Del Bimbo, A., et al. (eds.)
ICPR 2021. LNCS, vol. 12667, pp. 249–262. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-68787-8 18

14. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

15. Nguyen, T.D., Phung, D., et al.: Quaternion graph neural networks. In: Asian
Conference on Machine Learning, pp. 236–251. PMLR (2021)

16. Nitta, T.: A quaternary version of the backpropagation algorithm. In: Proceedings
of ICNN 1995 - International Conference on Neural Networks, pp. 2753–2756 (1995)

http://arxiv.org/abs/2104.07787
http://arxiv.org/abs/2110.04176
https://doi.org/10.1007/978-3-540-45226-3_44
https://doi.org/10.1007/978-3-540-45226-3_44
http://arxiv.org/abs/2301.10540
http://arxiv.org/abs/2109.10282
http://arxiv.org/abs/1712.01312
https://doi.org/10.1007/978-3-030-68787-8_18
https://doi.org/10.1007/978-3-030-68787-8_18

Shared-Operation Hypercomplex Networks for HTR 215

17. Parcollet, T., Morchid, M., Linarès, G.: Quaternion convolutional neural networks
for heterogeneous image processing. In: ICASSP 2019–2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8514–8518.
IEEE (2019)

18. Parcollet, T., Morchid, M., Linarès, G.: A survey of quaternion neural networks.
Artif. Intell. Rev. 53(4), 2957–2982 (2020)

19. Parcollet, T., et al.: Quaternion recurrent neural networks. arXiv preprint
arXiv:1806.04418 (2018)

20. Prince, S.J.: Understanding Deep Learning. MIT Press (2023). https://udlbook.
github.io/udlbook/

21. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), vol. 1, pp. 67–72. IEEE (2017)

22. Retsinas, G., Elafrou, A., Goumas, G., Maragos, P.: Online weight pruning via
adaptive sparsity loss. In: 2021 IEEE International Conference on Image Processing
(ICIP), pp. 3517–3521. IEEE (2021)

23. Retsinas, G., Sfikas, G., Gatos, B., Nikou, C.: Best practices for a handwritten text
recognition system. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS 2022. LNCS,
vol. 13237, pp. 247–259. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06555-2 17

24. Retsinas, G., Sfikas, G., Louloudis, G., Stamatopoulos, N., Gatos, B.: Compact
deep descriptors for keyword spotting. In: 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 315–320. IEEE (2018)

25. Retsinas, G., Sfikas, G., Nikou, C.: Iterative weighted transductive learning for
handwriting recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR
2021. LNCS, vol. 12824, pp. 587–601. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-86337-1 39

26. Retsinas, G., Sfikas, G., Nikou, C., Maragos, P.: From Seq2Seq to handwritten
word embeddings. In: British Machine Vision Conference (BMVC) (2021)

27. Romero, D.W., Bruintjes, R.J., Tomczak, J.M., Bekkers, E.J., Hoogendoorn, M.,
van Gemert, J.C.: Flexconv: continuous kernel convolutions with differentiable ker-
nel sizes. arXiv preprint arXiv:2110.08059 (2021)

28. Sfikas, G., Giotis, A.P., Louloudis, G., Gatos, B.: Using attributes for word spot-
ting and recognition in polytonic greek documents. In: 2015 13th International
Conference on Document Analysis and Recognition (ICDAR), pp. 686–690. IEEE
(2015)

29. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: MR brain tissue classification
using an edge-preserving spatially variant Bayesian mixture model. In: Metaxas,
D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp.
43–50. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8 6

30. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Majorization-minimization mix-
ture model determination in image segmentation. In: CVPR 2011, pp. 2169–2176.
IEEE (2011)

31. Sfikas, G., Retsinas, G., Gatos, B., Nikou, C.: Hypercomplex generative adversarial
networks for lightweight semantic labeling. In: El Yacoubi, M., Granger, E., Yuen,
P.C., Pal, U., Vincent, N. (eds.) ICPRAI 2022, Part I. LNCS, vol. 13363, pp.
251–262. Springer, Cham (2022)

32. Tay, Y., et al.: Lightweight and efficient neural natural language processing with
quaternion networks. arXiv preprint arXiv:1906.04393 (2019)

33. Van Loan, C.F.: The ubiquitous kronecker product. J. Comput. Appl. Math.
123(1–2), 85–100 (2000)

http://arxiv.org/abs/1806.04418
https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://doi.org/10.1007/978-3-031-06555-2_17
https://doi.org/10.1007/978-3-031-06555-2_17
https://doi.org/10.1007/978-3-030-86337-1_39
https://doi.org/10.1007/978-3-030-86337-1_39
http://arxiv.org/abs/2110.08059
https://doi.org/10.1007/978-3-540-85988-8_6
http://arxiv.org/abs/1906.04393

216 G. Sfikas et al.

34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

35. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: Lladós, J., Lopresti, D., Uchida, S. (eds.)
ICDAR 2021. LNCS, vol. 12823, pp. 112–126. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86334-0 8

36. Wick, C., Zöllner, J., Grüning, T.: Rescoring sequence-to-sequence models for text
line recognition with CTC-prefixes. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS
2022. LNCS, vol. 13237, pp. 260–274. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06555-2 18

37. Yousef, M., Hussain, K.F., Mohammed, U.S.: Accurate, data-efficient, uncon-
strained text recognition with convolutional neural networks. Pattern Recogn. 108,
107482 (2020)

38. Zhang, A., et al.: Beyond fully-connected layers with quaternions: Parameterization
of hypercomplex multiplications with 1/n parameters. In: International Conference
on Learning Representations (ICLR 2021) (2021)

39. Zhao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., Tian, Q.: Variational convolu-
tional neural network pruning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2780–2789 (2019)

40. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In:
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11212, pp. 645–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01237-3 39

https://doi.org/10.1007/978-3-030-86334-0_8
https://doi.org/10.1007/978-3-030-86334-0_8
https://doi.org/10.1007/978-3-031-06555-2_18
https://doi.org/10.1007/978-3-031-06555-2_18
https://doi.org/10.1007/978-3-030-01237-3_39
https://doi.org/10.1007/978-3-030-01237-3_39

DSS: Synthesizing Long Digital Ink Using Data
Augmentation, Style Encoding and Split

Generation

Aleksandr Timofeev1(B), Anastasiia Fadeeva2(B), Andrei Afonin1(B),
Claudiu Musat2(B), and Andrii Maksai2(B)

1 EPFL, Lausanne, Switzerland
aleksandr.timofeev.m@gmail.com, afonin.ad@phystech.edu

2 Google Research, Zürich, Switzerland
fadeich@google.com, cmusat@google.com, amaksai@google.com

Abstract. As text generative models can give increasingly long answers, we
tackle the problem of synthesizing long text in digital ink. We show that the com-
monly used models for this task fail to generalize to long-form data and how
this problem can be solved by augmenting the training data, changing the model
architecture and the inference procedure. These methods use contrastive learning
technique and are tailored specifically for the handwriting domain. They can be
applied to any encoder-decoder model that works with digital ink. We demon-
strate that our method reduces the character error rate on long-form English data
by half compared to baseline RNN and by 16% compared to the previous app-
roach that aims at addressing the same problem. We show that all three parts of
the method improve recognizability of generated inks. In addition, we evaluate
synthesized data in a human study and find that people perceive most of gener-
ated data as real.

Keywords: digital ink · online handwriting · generative models · length
generalization

1 Introduction

With the growing usage of tablets and styluses, handwriting is an increasingly used
human computer interaction (HCI) method. Recent developments in natural language
processing make the interaction increasingly bidirectional. In the past handwriting was
mostly used to facilitate the input of information for the human user, making its recog-
nition the primary digital ink task [6,24]. With the advent of highly capable digital
assistants [40] however, the interactions are becoming ever more natural. One way to
add to this immersive HCI experience is to have the digital assistant respond in the
same modality as the user input—handwriting. Handwriting synthesis is the process
of converting printed text labels into handwriting. Traditionally, this was proposed for

A. Timofeev and A. Afonin—Work done as a student researcher at Google Research, Zürich,
Switzerland.
A. Timofeev and A. Fadeeva—These authors contributed equally to this work and share first
authorship.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 217–235, 2023.
https://doi.org/10.1007/978-3-031-41685-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_14&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_14

218 A. Timofeev et al.

user-facing features like autocompletion and error correction [1]. These tasks all need to
deal only with short textual sequences—operating mostly on a word level. For instance,
in the case of error correction, only the misspelled word needs to be replaced. Whereas,
responses from recent text generative models can contain multiple paragraphs of text.
We propose methods to synthesize long inks to accommodate those responses.

The primary trait of synthesized ink is that it needs to be readable in order to be
useful to a user. This observation leads to character error rate being the evaluation of
choice in the past work on synthesis [7,30]. For applications like autocompletion, sim-
ilarity between the writer’s style and generated ink is critical [1,30]. In the current
work we adopt recognisability metric (CER) but the evaluation of stylistic similarity is
beyond the scope of this paper.

Some concerns about the synthesis quality are directly linked to the length of the
ink. Ensuring the stability of the generated ink style is one of them, as it is needed to
construct an immersive experience, where the generated ink is consistent and looks real
to people. The presence of artifacts is another, as the number of artifacts is linked to
the ink size. We tackle evaluations in both a qualitative and quantitative way, to see
which methods of generating long inks are the best and whether they are good enough
by human standards.

We propose three distinct methods of improving long generation. To extend the ink
generation to long inks we propose data augmentation to bridge the gap between train-
ing and test conditions. To improve style consistency for long ink generation we utilize
contrastive learning for style transfer. To ensure synthesis generalization to any input
length we propose split generation. We show their impact using two different synthe-
sis model architectures—LSTM and Transformer-based, on two ink representations—
points and Bézier curves.

We compare ink synthesizer using the three improvements with both internal and
external baselines and we observe recognizability improvements ranging from 16% to
50%, depending on the architecture. To sum up,

– we create a system that successfully synthesizes long digital ink1

– we blend three different approaches: Data augmentation, Style encoder and Split
generation (we refer to it as DSS), resulting in large improvements in ink recogniz-
ability across multiple ink representations and architectures

– we perform an ablation study to quantify the additive individual impact of the three
proposed components

– we run a user study to strengthen the quantitative analysis with a qualitative one,
showing that most of the synthetic ink is perceived as real

2 Related Work

Handwriting synthesis has been a topic of interest for many years [13]. Digital ink can
be represented in images which carry information about stroke style, color, and width,
as well as in the background they are drawn on [2,15] or sequence of coordinates with
time information [16]. Both of those representations have their benefits. In this study
we will focus on sequence-based approaches.

1 A notebook to test model inference is available here: https://colab.research.google.com/drive/
1SB_vyDcsdSq1CtE9IOD9opBR9IDgG0ly.

https://colab.research.google.com/drive/1SB_vyDcsdSq1CtE9IOD9opBR9IDgG0ly
https://colab.research.google.com/drive/1SB_vyDcsdSq1CtE9IOD9opBR9IDgG0ly

DSS 219

Digital ink synthesis is a generation task where a model receives text as input and
outputs a sequence of coordinates that represents handwriting. Methods in this field
have evolved from parametric models with a set of handmade style features [26] and
sigma lognormal modeling [12] to deep neural networks such as LSTM [16] and Trans-
formers [42]. Sequence to sequence models are frequently used for machine translation
[39], speech recognition [19], speech synthesis [43] and abstractive text summarization
[31]. These models can be applied to ink generation as well [16]. Mixture density net-
work [5] are commonly used as the last layer to generate coordinates or Bézier curves
[38] to capture a variety of possible next strokes.

Generation of personalized handwriting is of particular research interest due to
many appealing applications like spelling correction [1] and completion [37]. In this
setting a model has two inputs - text to generate and style ink. It outputs an ink with
the text in the given style. Style determines the appearance of the output ink but doesn’t
change the content that is written. In the existing approaches, style is usually repre-
sented by a vector [1] or sequence of embeddings [7]. In this work we adopt style
transfer to guarantee style consistency of long digital inks.

Previous studies in other domains suggest that deep neural networks tend to degrade
in quality on long-form inputs [3,41]. For recurrent models LSTM [17] block and atten-
tion mechanisms [42] were proposed to facilitate long sequence modeling. However,
even with those methods the gap in quality between training and out-of-distribution
lengths is still present for encoder-decoder RNN models [9,22].

For transformer models incorporating positional information together with long data
in training is a key to modelling long sequences [21,33,36]. In tasks where long-form
training data is unavailable, self-supervised pre-training can help achieve state of the art
performance across all lengths [10]. However, this pre-training requires a vast amount
of unlabeled data that is not available in the handwriting domain.

While the previous methods focused on improvements in various architectures, they
all rely on the existence of these long sequences in the training data. For the tasks
where long training data is unavailable, data augmentation is one way to improve quality
for long sequences [32,41]. In the case of speech recognition, simulating long-form
data improved the quality by 27% [32] and for machine translation data augmentation
boosted the performance by 30% [23].

In this paper we will evaluate common architectures for digital ink synthesis on
long-form data. We will also investigate the affect of possible improvements like data
augmentation and style conditioning on the out-of-domain length quality.

3 Method

In this section we propose the methods that focus on improving generalization of
encoder-decoder to long sequences models in the digital ink domain. It is especially
important because handwriting data collection is complex as it needs special equipment
such as electronic whiteboard [27] or a tablet [1]. Thus, methods that address the issue
without additional data collection are of particular interest.

3.1 Data Augmentation

One of possible approaches to improve performance on longer sequences is to create
synthetic long training examples. This idea was explored for speech recognition where

220 A. Timofeev et al.

speech fragments from the same person were concatenated together [28]. Our approach
also concatenates inks but instead of samples from the same writer we use stylistically
similar inks. Algorithm 1 shows our general method of long ink construction from the
original training dataset D. Thanks to uniform sampling in the algorithm 1 (denoted
as U) we can get a set of long inks by simply calling the function multiple times.
Algorithm 1 receives the following inputs:

– Style model f : receives two inks and outputs a score from 0 to 1 which represents
the similarity between the writing styles.

– Concatenation function: receives two inks and outputs one ink which consists of two
parts (example in Fig. 1).

– batch size bs controls the diversity of the result dataset, with higher values the prob-
ability of overlap between two long inks increases.

– Similarity threshold t controls the style consistency, with lower values the chance to
concatenate inks with different styles increases.

In the following two subsections we describe the style model and concatenation func-
tion in more detail.

Algorithm 1: algorithm for generating a long sample
Input : training dataset D, target length l, batch size bs, threshold t, style model f ,

concat function
Output: long ink r

1 r ∼ U(D);
2 while |r| < l do
3 ink0, . . . , inkbs ∼ U(D);
4 ∀ ink ∈ inks: similarity(ink) = f(r, ink);
5 candidates = {i ∈ inks | similarities(i) ≥ t or i = argmax similarity};
6 ink ∼ U(candidates);
7 r=concat(r, ink);
8 end
9 return r;

Fig. 1. Example of two inks concatenation. In order to put inks on one line, we match the medians
of their histograms and scale the second ink to have the same height.

DSS 221

Style Model. We train a model to have similar representations of different texts written
in the same style. We use the fact that most inks are stylistically consistent, so we can
use different parts of one ink as examples with different text but similar style. To achieve
this we use contrastive learning technique. We train a classifier to distinguish between
pieces of one ink versus pieces from different inks. We adapt the SimCLR approach
from [8] where two inputs xi and xj are mapped with the same function g into two
representations hi and hj of a fixed size and then the similarity of these vectors is
computed:

similarity(i, j) = cos(hi, hj)

This similarity represents how close in style inks xi and xj are. To generate training
data for this task we randomly split existing inks into three pieces - beginning part,
random gap and final part (we randomly choose two cut points in an ink). The random
gap is used to generate multiple training examples from one ink. During training we
want a similarity of parts from one ink to be close to 1 and for parts from different inks
- to be around 0. During inference we use a full ink to compute the style representation
and subsequently in similarity computation.

Ink Concatenation. In order to obtain long samples we need a method to merge two
inks into one line. In case of misalignment, a training set may lose style consistency,
which can lead to model performance degradation. Concatenation can be achieved using
a baseline - imaginary line on which handwriting is written. We estimate baselines for
both inks and apply an rigid transformation to one of them. There are many language
specific baseline estimation methods [35], but for the purposes of this study we use a
more general method of horizontal projection, shown in Fig. 1. During concatenation we
add spaces in between inks which can be adjusted for the languages without space sepa-
ration like Chinese. Hereby, we generate synthetic long samples from training examples
with a similar style.

3.2 Generation with Style Conditioning

Autoregressive models are known to suffer from accumulation of mistakes during
inference [4,25]. This problem becomes even more pressing for generation of long
sequences. In order to overcome this, we explicitly add a style conditioning into the ink
generation model. Conditioning on style is commonly used for style transfer [1,7,18],
but we use it as a tool to mitigate past mistakes in generation.

We propose to train an encoder-decoder model with style conditioning end-to-end,
as shown in Fig. 2. Encoder inputs the text label and the style model receives an example
of ink to generate a style representation vector which is used in the decoding process.
Training style model weights at the same time as encoder-decoder parameters helps to
adapt style information to a given encoder-decoder model. For model optimisation we
combine the negative log likelihood which is typically used to train generative models
with SimCLR loss [8]:

L (x) = LNLL +LSimCLR = −
∑

i≤n

log P(xi|x<i) +LSimCLR(x)

222 A. Timofeev et al.

Fig. 2. On the left - training of generative model with style conditioning. On the right - split
generation procedure with two words.

The first part of this loss is a likelihood to correctly generate an ink x. This part depends
on encoder, decoder and style function f weights, as we use style embedding in the
decoder’s input. The second part of this loss ensures that function f outputs style rep-
resentation and doesn’t contain information about written text. Similar to the previous
section we use the SimCLR approach from [8] where two inputs xi and xj are mapped
with the same function f into two representations hi and hj of a fixed size and then the
similarity of these vectors is computed as cos(hi, hj). InLSimCLR we generate from ink
x two pieces x:k and xl: (for some random k and l, k < l). These pieces are supposed
to have high similarity, whereas similarity between x:k and the ink pieces from other
inks should be low.

During training we use a piece of target ink as a style input, which can cause target
leaking asLNLL uses the full target including the style input. However, the use of Sim-
CLR loss promotes independence of style and the text content, therefore no additional
steps are needed to prevent target leaking.

During inference we use a separate set of inks for style extraction. Additionally, we
use a full ink in the style model rather than just a piece and provide this embedding
on each step of decoding as a reminder to the model. This helps avoid the style drift,
where the model slowly changes the style of the writing until it becomes completely
unrecognizable. Thus, we incorporated a style model into the long ink synthesizer to
improve style consistency of long generation.

3.3 Split Generation

We propose an inference technique for long sequences inspired by dynamic overlap-
ping inference in recognition [9]. The idea is to split a long input into separate pieces
and calculate their results separately. We split a label at the word boundaries and the
maximum number of words in one piece is a hyperparameter of this method, shown in
Fig. 2. This way we retain the capability to generate cursive handwriting. The main idea
of this method is to find the input length that is optimal for model’s performance and
use it in the inference. However, the main drawback of generating ink pieces separately
is the fact that the result parts don’t share any information. An example is shown in
Fig. 4 random arrangement.

DSS 223

In case of a style mismatch between pieces, people can easily recognize that the
ink is synthetic. We propose to use the model with style conditioning from the previous
subsection in order to ensure style consistency of the individual generated pieces, that
we combine together to obtain the result ink. To merge pieces together, we match the
medians of their horizontal projections, as in the data augmentation step Fig. 1. We
don’t need to match their scale as they are already similar due to style conditioning.

Mismatch in slope between pieces is also easily recognizable by humans (see
Fig. 3). To fix this problem we can sample multiple candidates and choose the most
horizontal among them using linear regression on the y trajectory. This problem occurs
because training inks are not always written horizontally and similar model behavior in
split generation leads to mismatched slopes seen in Fig. 3.

Fig. 3. Reason to generate multiple samples and choose the most straight ink in each part of Split
Generation.

3.4 Combining Proposed Methods

The proposed methods are complementary to each other as they focus on different parts
of an encoder-decoder model. In the training phase, we propose the following order of
actions:

1. train a style model with SimCLR loss on dataset D
2. generate an augmented dataset D̂ with longer inks from D
3. train an encoder-decoder model with style conditioning on D ∪ D̂

The final result is the trained encoder-decoder model with style conditioning. In the
inference, we suggest the following sequence of steps:

1. choose an ink for style extraction
2. split input text by n words
3. run inference of the encoder-decoder model on each piece with the same style input
4. combine pieces into the result ink

4 Experiments

4.1 Setup

In this section we will apply our modifications to two architectures - RNN [16] and
Transformer [42]. A classic approach to ink synthesis [16] proposed a multi-layer
LSTM model with monotonic attention over the labels and gaussian mixture model

224 A. Timofeev et al.

output for ink synthesis. In our RNN implementation the label encoder is simply one-
hot encoding of input characters with dictionary size 70. The decoder consists of an
LSTM with 128 units, GMM monotonic attention layer (size 128, one attention head
and 10 components), two LSTM blocks with 256 units, a dense layer and an output
GMM model with 10 components [16].

In the transformer model we use a standard encoder-decoder architecture with an
output GMM head similar to the RNNmodel. In both encoder and decoder we use sinu-
soidal positional embeddings [42]. The transformer label encoder has 4 self-attention
blocks (8 heads, 16 units per head, ReLU activation and drop-out rate 0.1). The decoder
has 6 standard cross-attention blocks (4 heads, 32 units per head, ReLU activation and
drop-out rate 0.1) followed by two dense layers with ReLU activation.

We train both models with batch size of 128 and the Adam optimizer. For the RNN
model we use learning rate 1e-4 and for transformer learning rate is 1e-3 with the sched-
ule from [42]. We train each of these models with two different ink representations -
raw [16] and curve [11]. At inference time, all transformers and the raw RNN models
use random sampling of the GMM with bias ∞ similar to [16]. For the curve RNN we
use greedy sampling due to better validation performance.

Style Encoder. For style encoding we use a model that consists of one bidirectional
LSTM layer with 256 units, followed by a unidirectional LSTM layer with 256 units
that outputs the last state and three dense layers on top with sizes 256, 256 and 16.
In order to condition a model on a given style we sum a style vector with the decoder
input.

Datasets. We train our models on the DeepWriting dataset which contains more than
34,000 handwritten samples in English [1]. Examples in the training dataset on average
consist of 12 characters and 2.8 words. To evaluate the quality of long generation quan-
titatively and qualitatively we need a suitable source of handwriting in English. For this
purpose, we use IAMonDo which consists of 1,000 pages with English handwriting,
diagrams and drawings in them [20]. We extracted handwriting from those pages and
split them into three categories - long - more than 7 words, medium - 4–7 words and
short - less than 4 words. For short samples we chose a threshold to match the mean
length in the training set (ss shown in Table 1). We then split the rest of the inks into two
sets to see progression of quality from in-distribution to increasingly out-of-distribution
lengths. For clarity, we include the label sets with our submission2.

Evaluation Metric. Following [29] we measure the recognizability of generated inks
with Character Error Rate (CER) on a set of test labels. Our recognizer is an RNNmodel
trained on a private dataset described in [6]. It performs well on all lengths present in
the test sets, see the results on the original data in Table 9.

2 A notebook with test sets and model inference https://colab.research.google.com/drive/1SB_
vyDcsdSq1CtE9IOD9opBR9IDgG0ly.

https://colab.research.google.com/drive/1SB_vyDcsdSq1CtE9IOD9opBR9IDgG0ly
https://colab.research.google.com/drive/1SB_vyDcsdSq1CtE9IOD9opBR9IDgG0ly

DSS 225

Table 1. Dataset statistics for train, validation and test datasets.

dataset words mean characters (std) samples characters

DeepWriting train 2.8 (1.2) 12.41 (5.08) 34K 421K

valid 2.8 (1.2) 12.30 (4.97) 680 8K

IAMonDO long > 7 48.22 (9.06) 310 15K

medium 4–7 30.52 (7.98) 864 26K

short < 4 10.91 (5.63) 811 9K

Baseline Model. We compare our method to the VRNNmodel [1] which generates one
character at a time and propagates RNN states between characters to control the style.
This model easily generates long input text (see Table 2) as very limited information is
shared between the characters. Another result of this procedure is that characters are
rarely connected in the final handwriting. Thus, this model struggles to generate cursive
writing.

4.2 Quantitative Results

In this section we apply proposed changes to two architectures with two different ink
representations - raw [16] and curve [11]. We train each model 3 times in order to com-
pute the variance between runs. In Table 2 we present the mean CER and standard devi-
ation of the models without any changes and with proposed improvements. Comparing
baseline models we see that RNN models degrade on long inputs less than transform-
ers, which matches previous results in the text domain [33]. It is expected as positional
embeddings for remote positions are unknown to the transformer model, hurting accu-
racy, while RNN has monotonic attention which helps with longer sequences. However,
even in case of RNN models CER gets 2 times worse for curve setup and 5 times for
raw between short and long validation datasets. Thus, all four models can benefit from
better out-of-domain length generalisation.

Table 2. Recognizability comparison of our method with baseline models and the VRNN model
[1]. Datasets: long > 7 words, medium 4–7 words, short < 4 words.

model CER long CER medium CER short CER avg

VRNN [1] 5.94 (0.22) 5.05 (0.04) 4.8 (0.1) 5.26

transformer curve DSS 3.96 (0.23) 4.0 (0.37) 5.3 (0.57) 4.42

base 60.62 (3.05) 34.91 (3.36) 10.35 (0.47) 35.29

transformer raw DSS 12.73 (1.23) 9.89 (1.61) 8.83 (2.06) 10.48

base 64.34 (1.11) 41.24 (2.15) 11.4 (1.4) 38.99

RNN curve DSS 6.6 (0.39) 6.03 (0.95) 7.08 (0.95) 6.57

base 12.25 (0.78) 9.27 (0.93) 5.29 (0.28) 8.94

RNN raw DSS 4.42 (0.55) 4.22 (0.51) 4.56 (0.48) 4.4

base 21.48 (5.18) 11.74 (3.18) 4.11 (0.43) 12.44

226 A. Timofeev et al.

In this section we provide details on the hyperparameters utilized for our results
and the criteria for their selection. For each of four models we added 10K long sam-
ples built from train dataset and picked the optimal target length l based on validation
quality presented in Table 11 (in the appendix). In style condition during inference we
used random examples from DeepWriting validation dataset as a source of style. This
ensured that we did not introduce any stylistic bias compared to unconditional gener-
ation, as the distribution of validation dataset matches the training dataset. In order to
determine the best number of words in the split generation we applied data augmen-
tation method to validation dataset. We matched the target length of this dataset to the
long test dataset. Then, we evaluated models with additional data and style conditioning
on the said dataset. Results are presented in Table 12 (in the appendix).

In conclusion, our method significantly outperforms the baseline in all four cases,
with curve transformer as well as raw RNN showing the best overall quality. This qual-
ity is also better than VRNN model [1] which requires character segmentation in the
training data. This information is absent in most open source handwriting datasets [34].
In our results we show that without any additional annotation, superior quality is attain-
able across all three target lengths.

4.3 Ablation Study

In this section we remove each of the three changes that we proposed from the combi-
nation and measure the quality to show that all three changes contribute to the optimal
model performance. In addition, we do a more detailed ablation study on the curve
transformer setup, as it provides the best overall quality.

Impact of Data Augmentation. In order to measure the impact of synthetic long data,
we remove it from training. All of the other parameters stay the same and we train a new
set of models only on the original data. This experiment is especially important because
split generation significantly reduces the input text length during inference. However,
data augmentation improves model performance on short samples as well (see Table 11
in the appendix) possibly due to the moderate size of the training set.

Table 3. Effect of data augmentation.

models data CER long CER medium CER short CER avg

transformer curve yes 3.96 (0.23) 4.0 (0.37) 5.3 (0.57) 4.42

no 6.61 (0.5) 6.89 (0.29) 7.71 (0.95) 7.07

transformer raw yes 12.73 (1.23) 9.89 (1.61) 8.83 (2.06) 10.48

no 13.35 (0.59) 11.42 (1.08) 11.21 (1.23) 11.99

RNN curve yes 6.6 (0.39) 6.03 (0.95) 7.08 (0.95) 6.57

no 6.78 (0.62) 6.05 (0.64) 6.85 (0.64) 6.56

RNN raw yes 4.42 (0.55) 4.22 (0.51) 4.56 (0.48) 4.4

no 4.85 (0.6) 4.66 (0.83) 4.94 (1.04) 4.82

DSS 227

In Table 3 we can see that for transformers augmented data plays a very important
role. The decrease in quality is almost 60% for curve transformer and around 16% for
raw transformer. As mentioned in the main results, transformer models fail to generalize
to long-form sequences due to constant positional embeddings unseen at training time.
The restriction is overcome through the use of synthetic long data. However, for raw
RNNmodel the loss is also quite significant - around 10%, which shows that augmented
data is beneficial in most cases.

Fig. 4. Style, random and same ink arrangements.

In DSS we propose to concatenate existing training examples based on their style
similarity. We compare this approach to repetition of the same ink many times and con-
catenation of random samples into one ink. In Fig. 4 we can see that random arrange-
ment doesn’t preserve style consistency which is an important quality of digital inks.
On the other hand, repetition of the same ink returns stylistically consistent inks but
lacks diversity in text. These strategies decrease recognizability compared to style-
based arrangement in the curve transformer setup, as shown in Table 4.

Table 4. Different data augmentation strategies for curve transformer setup.

data arrangement CER long CER medium CER short CER avg

style 3.96 (0.23) 4.0 (0.37) 5.3 (0.57) 4.42

random 5.01 (0.52) 4.96 (0.33) 5.58 (0.49) 5.18

repetition 7.15 (0.34) 7.02 (0.6) 8.56 (0.57) 7.58

Impact of Style Encoding. Next, we remove style encoder from encoder-decoder
architecture, leaving everything else unchanged. In Table 5 we show results for split
generation where we generate label pieces independently and don’t share any informa-
tion between them (rows with no style). In this case split generation returns stylistically
inconsistent inks similar to random data augmentation as shown in Fig. 4. In a quali-
tative evaluation, we show that stylistically inconsistent inks are 33% less likely to be
recognized as real. For RNN models character error rate is better without style than
with style conditioning, but it is not the case for transformer models where CER gets
significantly higher without any style - 110% for the curves setup.

We also compare these results to a different method of ensuring style consistency,
proposed in [16]. In split generation we can prime a model on the style ink before gener-
ating each piece by teacher-forcing a style input and asking a model to complete it with
input text. This way we get result ink with similar style to the style ink. We implicitly
determine consistency of the result by using the same style ink in each piece of split
generation. The main disadvantage of this approach is that by doing a completion of

228 A. Timofeev et al.

Table 5. Effect of style encoding. No style rows show metrics for stylistically inconsistent inks
(see random arrangement in Fig. 4). In priming we prompt a model with the style ink before target
ink generation.

models style CER long CER medium CER short CER avg

transformer curve yes 3.96 (0.23) 4.0 (0.37) 5.3 (0.57) 4.42

prime 6.34 (0.65) 6.19 (0.7) 7.39 (1.69) 6.64

no 10.02 (1.77) 10.32 (1.04) 7.73 (0.74) 9.36

transformer raw yes 12.73 (1.23) 9.89 (1.61) 8.83 (2.06) 10.48

prime 17.92 (1.99) 23.06 (2.31) 18.74 (2.95) 19.91

no 13.15 (2.55) 10.16 (2.56) 9.81 (2.21) 11.04

RNN curve yes 6.6 (0.39) 6.03 (0.95) 7.08 (0.95) 6.57

prime 7.49 (0.63) 6.85 (0.3) 7.69 (0.69) 7.34

no 5.14 (0.95) 4.45 (0.96) 4.42 (0.95) 4.67

RNN raw yes 4.42 (0.55) 4.22 (0.51) 4.56 (0.48) 4.4

prime 4.49 (1.46) 4.25 (1.28) 4.08 (1.13) 4.27

no 3.66 (0.2) 3.59 (0.86) 2.16 (0.45) 3.14

style ink we increase the target ink length which may result in subpar quality. In Table 5
we can see that for curve transformer completion decreases CER by 30% compared to
no style and for RNN raw the quality of completion is similar to style encoding.

Impact of Split Generation. Finally, we evaluate models quality without split gen-
eration. Table 6 shows that models with fully autoregressive inference perform by 30–
100% worse than with split generation. The gap in quality is especially pronounced for
long evaluation sets as we split the labels there into many pieces. Whereas, the quality
on short data stays almost the same as in many cases we don’t split targets there. How-
ever, raw RNN even without split generation still performs similarly to VRNN (see
Table 2).

Table 6. Effect of split generation.

model split CER long CER medium CER short CER avg

transformer curve yes 3.96 (0.23) 4.0 (0.37) 5.3 (0.57) 4.42

no 10.6 (1.42) 10.6 (1.42) 5.33 (0.53) 8.84

transformer raw yes 12.73 (1.23) 9.89 (1.61) 8.83 (2.06) 10.48

no 22.44 (4.37) 22.4 (2.04) 9.88 (1.6) 18.24

RNN curve yes 6.6 (0.39) 6.03 (0.95) 7.08 (0.95) 6.57

no 14.82 (2.87) 10.28 (1.43) 7.43 (0.97) 10.84

RNN raw yes 4.42 (0.55) 4.22 (0.51) 4.56 (0.48) 4.4

no 7.32 (1.95) 4.86 (0.95) 4.54 (0.5) 5.57

DSS 229

In Table 7 we show that quality can vary quite a bit depending on the number of
words in one split. It may seem that generating only one word at a time is the most
simple task and that would lead to the best performance. However, we noticed that
curve transformer fails to generate one word with punctuation at the end probably due
to lack of similar data in training. Thus, it is important to choose number of words that
is most suited for each model. This value is consistent for curve transformer between
different datasets: long synthetic validation in Table 12, long and medium validation in
Table 7.

Table 7. Different number of words in split generation for curve transformer setup.

n words CER long CER medium CER short CER avg

1 6.3 (0.67) 5.96 (0.75) 6.96 (0.97) 6.41

2 4.66 (0.5) 4.56 (0.33) 5.62 (0.23) 4.95

3 3.96 (0.23) 4.0 (0.37) 5.3 (0.57) 4.42

5 4.53 (0.01) 4.83 (0.2) 5.3 (0.57) 4.89

4.4 Qualitative Evaluation

Fig. 5. Examples of inks from human study.

To ensure that the generated samples are not only recognizable but also look realis-
tic, we performed a human evaluation. In it, we asked the participants to evaluate a mix
of generated and real inks - 100 each with long texts from IAMonDO dataset, see exam-
ples in Fig. 5. Our model’s performance was evaluated on long texts because baseline
models struggled the most with generating long samples (see Table 2). We used a curve
transformer model with style encoding, split generation of two words as the direction

230 A. Timofeev et al.

pattern (see Fig. 3) is less pronounced there compared to three words. We also use the
sampling of 5 candidates to pick the most horizontal ink. In Table 10 in the appendix we
show that picking the most horizontal pieces in split generation of two words doesn’t
significantly decrease recognition quality.

We study whether people can differentiate between real and generated data by show-
ing one ink at a time with a question “Does this ink look real?”. We collected 600
responses from 12 people who has worked with digital ink before (3 answers per ink).
The results are presented in Table 8. The majority of generated inks were labeled as
real - 79%, as a result the F1 score of human answers is only 0.34. To check whether
original inks are labeled real with higher probability we use Fisher’s exact test [14].
We get the p-value equal to 0.04. Thus, we can reject the null hypothesis and conclude
that original inks are more likely to be labeled real than generated ones. To sum up,
generated inks are frequently perceived as real but there is still a statistically significant
difference between the two datasets.

Table 8. Human study results.

data look real consistent style no artifacts readable

real 0.89 0.96 0.77 0.8

generated 0.79 0.85 0.7 0.77

Moreover, we asked about the style consistency, presence of artifacts like additional
lines or dots and readability of the ink see in Fig. 6. In the latter two cases the gap
between real and original quality is not as pronounced as in the first two and is not
statistically significant. We see that according to people real and generated inks have
similar readability which matches our quantitative results (see Tables 9 and 10). It is also
important to note that generated inks with artifacts are 42% less likely to be perceived
as real and for style inconsistency this number is 33%.

Fig. 6.Human study questionnaire on the left and examples of synthesizer’s mistakes on the right.
The mistakes are marked with rectangles.

DSS 231

5 Conclusion

We have presented three improvements to encoder-decoder models for digital ink gen-
eration - data augmentation, style conditioning and split generation. We have been able
to decrease character error rate compared to baseline RNN model by 50% (baseline
RNN curve 8.94 vs DSS transformer curve 4.42) and by 16% compared to the previ-
ous approach. We’ve shown that all three proposed methods play an important part in
optimal model performance: data augmentation is very important for transformer mod-
els, style conditioning has higher recognisability than priming in split generation, split
generation has the biggest impact on quality among the three parts of our approach. In
addition, we have conducted a qualitative evaluation where we have verified the quality
of generated long inks. People perceive most of synthesized inks as real, but there is
still a statistically significant discrepancy between answers in real and generated buck-
ets. We believe that our findings regarding long ink synthesis can be used in real world
applications and as a stepping stone for future research in this field.

6 Appendix

Table 9. Recognizer CER on test data, caused
by data noise and the model’s mistakes.

metric value

CER long 4.8

CER medium 4.41

CER short 5.5

CER avg 4.9

Table 10. CER of the curve transformer on long
test with and without the most horizontal ink.

n words 1 attempt 5 attempts

1 6.29 (0.67) 7.43 (0.53)

2 4.64 (0.48) 5.0 (0.17)

3 3.98 (0.26) 4.26 (0.32)

5 4.53 (0.01) 4.71 (0.36)

232 A. Timofeev et al.

Table 11. CER for different lengths in data
augmentation procedure with candidate pool of
15K and threshold 0.5. We compare sets with
average lengths of 26, 37, 48, 65, 79, 100. For
RNNmodels, training with lengths> 26 results
in poor performance.

model mean length CER valid

transformer curves – 8.0 (0.69)

26 7.46 (1.02)

37 7.58 (1.56)

48 6.19 (0.42)

65 6.98 (0.23)

79 6.08 (0.66)

100 6.62 (0.36)

transformer raw – 9.72 (1.85)

48 9.97 (1.1)

65 9.08 (3.68)

79 11.01 (2.6)

RNN curves – 5.94 (0.74)

26 5.23 (0.5)

RNN raw - 3.4 (0.58)

26 2.06 (0.64)

Table 12. CER for different number of words
in split generation on synthetic long validation
dataset.

model n words CER long valid

transformer curves 1 8.0 (0.64)

2 6.03 (0.27)

3 5.57 (0.18)

5 5.78 (0.2)

transformer raw 1 17.83 (0.92)

2 14.21 (1.17)

3 14.63 (0.23)

5 20.17 (3.48)

RNN curves 1 7.15 (0.87)

2 7.47 (0.76)

3 7.92 (0.95)

5 9.28 (1.03)

RNN raw 1 7.4 (0.34)

2 7.17 (0.37)

3 6.66 (0.31)

5 7.03 (0.7)

References

1. Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making Digital Ink Editable via Deep Gen-
erative Modeling. In: SIGCHI Conference on Human Factors in Computing Systems. CHI
2018, New York, NY, USA. ACM (2018)

2. Alonso, E., Moysset, B., Messina, R.O.: Adversarial generation of handwritten text images
conditioned on sequences. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR), pp. 481–486 (2019)

3. Anil, C., et al.: Exploring length generalization in large language models. In: Oh, A.H., Agar-
wal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems
(2022). https://openreview.net/forum?id=zSkYVeX7bC4

4. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.M.: Scheduled sampling for sequence predic-
tion with recurrent neural networks. arXiv:abs/1506.03099 (2015)

5. Bishop, C.M.: Mixture density networks (1994)
6. Carbune, V., et al.: Fast multi-language LSTM-based online handwriting recognition. Int. J.

Doc. Anal. Recogn. (IJDAR) 23, 89–102 (2020)
7. Chang, J.H.R., Shrivastava, A., Koppula, H.S., Zhang, X., Tuzel, O.: Style equalization:

Unsupervised learning of controllable generative sequence models (2022). https://arxiv.org/
abs/2110.02891

8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning
of visual representations (2020)

https://openreview.net/forum?id=zSkYVeX7bC4
http://arxiv.org/1506.03099
https://arxiv.org/abs/2110.02891
https://arxiv.org/abs/2110.02891

DSS 233

9. Chiu, C.C., et al.: RNN-T models fail to generalize to out-of-domain audio: causes and solu-
tions, pp. 873–880 (2021). https://doi.org/10.1109/SLT48900.2021.9383518

10. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-xl: atten-
tive language models beyond a fixed-length context (2019). https://doi.org/10.48550/ARXIV.
1901.02860, https://arxiv.org/abs/1901.02860

11. Das, A., Yang, Y., Hospedales, T., Xiang, T., Song, Y.-Z.: BézierSketch: a generative model
for scalable vector sketches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV
2020. LNCS, vol. 12371, pp. 632–647. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-58574-7_38

12. Djioua, M., Plamondon, R.: An interactive system for the automatic generation of huge hand-
writing databases from a few specimens. In: 2008 19th International Conference on Pattern
Recognition, pp. 1–4 (2008)

13. Elarian, Y., Abdel-Aal, R., Ahmad, I., Parvez, M.T., Zidouri, A.: Handwriting synthesis: clas-
sifications and techniques. Int. J. Document Anal. Recogn. (IJDAR) 17(4), 455–469 (2014).
https://doi.org/10.1007/s10032-014-0231-x

14. Fisher, R.A.: On the interpretation of from contingency tables, and the calculation of p. J.
Roy. Stat. Soc. 85 (1922). http://www.medicine.mcgill.ca

15. Gan, J., Wang, W.: HIGAN: handwriting imitation conditioned on arbitrary-length texts and
disentangled styles. In: AAAI Conference on Artificial Intelligence (2021)

16. Graves, A.: Generating sequences with recurrent neural networks. arXiv:abs/1308.0850
(2013)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80
(1997). https://doi.org/10.1162/neco.1997.9.8.1735

18. Hsu, W.N., et al.: Disentangling correlated speaker and noise for speech synthesis via data
augmentation and adversarial factorization. In: ICASSP 2019–2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5901–5905 (2019).
https://doi.org/10.1109/ICASSP.2019.8683561

19. Huber, C., Hussain, J., Stüker, S., Waibel, A.H.: Instant one-shot word-learning for context-
specific neural sequence-to-sequence speech recognition. In: 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pp. 1–7 (2021)

20. Indermühle, E., Liwicki, M., Bunke, H.: Iamondo-database: an online handwritten document
database with non-uniform contents. In: International Workshop on Document Analysis Sys-
tems (2010)

21. Ke, G., He, D., Liu, T.Y.: Rethinking the positional encoding in language pre-training (2020)
22. Koehn, P., Knowles, R.: Six challenges for neural machine translation. In: Proceedings of

the First Workshop on Neural Machine Translation, Vancouver, August 2017, pp. 28–39.
Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/W17-3204,
https://aclanthology.org/W17-3204

23. Kondo, S., Hotate, K., Hirasawa, T., Kaneko, M., Komachi, M.: Sentence concatenation
approach to data augmentation for neural machine translation, pp. 143–149 (2021). https://
doi.org/10.18653/v1/2021.naacl-srw.18

24. Krishnan, P., Jawahar, C.: HWNET v2: an efficient word image representation for handwrit-
ten documents. Int. J. Doc. Anal. Recogn. (IJDAR) 22, 387–405 (2019)

25. Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., Bengio, Y.: Professor forcing: a
new algorithm for training recurrent networks (2016)

26. Lin, Z., Wan, L.: Style-preserving English handwriting synthesis. Pattern Recogn. 40(7),
2097–2109 (2007). https://doi.org/10.1016/j.patcog.2006.11.024, https://www.sciencedirect.
com/science/article/pii/S0031320306004985

https://doi.org/10.1109/SLT48900.2021.9383518
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.1901.02860
https://arxiv.org/abs/1901.02860
https://doi.org/10.1007/978-3-030-58574-7_38
https://doi.org/10.1007/978-3-030-58574-7_38
https://doi.org/10.1007/s10032-014-0231-x
http://www.medicine.mcgill.ca
http://arxiv.org/1308.0850
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICASSP.2019.8683561
https://doi.org/10.18653/v1/W17-3204
https://aclanthology.org/W17-3204
https://doi.org/10.18653/v1/2021.naacl-srw.18
https://doi.org/10.18653/v1/2021.naacl-srw.18
https://doi.org/10.1016/j.patcog.2006.11.024
https://www.sciencedirect.com/science/article/pii/S0031320306004985
https://www.sciencedirect.com/science/article/pii/S0031320306004985

234 A. Timofeev et al.

27. Liwicki, M., Bunke, H.: Iam-ondb - an on-line English sentence database acquired from
handwritten text on a whiteboard. In: Eighth International Conference on Document Analysis
and Recognition (ICDAR 2005), vol. 2, pp. 956–961 (2005). https://doi.org/10.1109/ICDAR.
2005.132

28. Lu, Z., et al.: Input length matters: improving RNN-T and MWER training for long-form
telephony speech recognition (2021)

29. Luo, C., Zhu, Y., Jin, L., Li, Z., Peng, D.: Slogan: Handwriting style synthesis for
arbitrary-length and out-of-vocabulary text (2022). https://doi.org/10.48550/ARXIV.2202.
11456, https://arxiv.org/abs/2202.11456

30. Maksai, A., Rowley, H., Berent, J., Musat, C.: INKORRECT: online handwriting spelling
correction (2022)

31. Nallapati, R., Zhou, B., dos Santos, C., Gulcehre, C., Xiang, B.: Abstractive text summariza-
tion using sequence-to-sequence RNNs and beyond. In: Proceedings of the 20th SIGNLL
Conference on Computational Natural Language Learning, Berlin, Germany, August 2016,
pp. 280–290. Association for Computational Linguistics (2016). https://doi.org/10.18653/
v1/K16-1028, https://aclanthology.org/K16-1028

32. Narayanan, A., Prabhavalkar, R., Chiu, C.C., Rybach, D., Sainath, T.N., Strohman, T.: Rec-
ognizing long-form speech using streaming end-to-end models. In: 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pp. 920–927 (2019). https://doi.
org/10.1109/ASRU46091.2019.9003913

33. Neishi, M., Yoshinaga, N.: On the relation between position information and sentence length
in neural machine translation. In: Proceedings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), Hong Kong, China, November 2019, pp. 328–338. Asso-
ciation for Computational Linguistics (2019). https://doi.org/10.18653/v1/K19-1031, https://
aclanthology.org/K19-1031

34. Nguyen, H., Nguyen, C., Bao, P., Nakagawa, M.: A database of unconstrained vietnamese
online handwriting and recognition experiments by recurrent neural networks. Pattern
Recogn. 78, 291–306 (2018)

35. Pechwitz, M., Margner, V.: Baseline estimation for Arabic handwritten words. In: Proceed-
ings Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 479–484
(2002). https://doi.org/10.1109/IWFHR.2002.1030956

36. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-
text transformer (2019). https://doi.org/10.48550/ARXIV.1910.10683, https://arxiv.org/abs/
1910.10683

37. Ribeiro, L.S.F., Bui, T., Collomosse, J., Ponti, M.: Sketchformer: Transformer-based
representation for sketched structure (2020). https://doi.org/10.48550/ARXIV.2002.10381,
https://arxiv.org/abs/2002.10381

38. Schaldenbrand, P., Liu, Z., Oh, J.: Styleclipdraw: Coupling content and style in text-to-
drawing translation (2022). https://doi.org/10.48550/ARXIV.2202.12362, https://arxiv.org/
abs/2202.12362

39. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Proceedings of the 27th International Conference on Neural Information Processing Systems.
NIPS 2014, Cambridge, MA, USA, vol. 2, pp. 3104–3112. MIT Press (2014)

40. Thoppilan, R., et al.: LAMDA: language models for dialog applications (2022)
41. Varis, D., Bojar, O.: Sequence length is a domain: length-based overfitting in transformer

models, pp. 8246–8257 (2021). https://doi.org/10.18653/v1/2021.emnlp-main.650

https://doi.org/10.1109/ICDAR.2005.132
https://doi.org/10.1109/ICDAR.2005.132
https://doi.org/10.48550/ARXIV.2202.11456
https://doi.org/10.48550/ARXIV.2202.11456
https://arxiv.org/abs/2202.11456
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://aclanthology.org/K16-1028
https://doi.org/10.1109/ASRU46091.2019.9003913
https://doi.org/10.1109/ASRU46091.2019.9003913
https://doi.org/10.18653/v1/K19-1031
https://aclanthology.org/K19-1031
https://aclanthology.org/K19-1031
https://doi.org/10.1109/IWFHR.2002.1030956
https://doi.org/10.48550/ARXIV.1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.48550/ARXIV.2002.10381
https://arxiv.org/abs/2002.10381
https://doi.org/10.48550/ARXIV.2202.12362
https://arxiv.org/abs/2202.12362
https://arxiv.org/abs/2202.12362
https://doi.org/10.18653/v1/2021.emnlp-main.650

DSS 235

42. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in
Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017), https://
proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

43. Zhang, J.X., Ling, Z.H., Dai, L.R.: Forward attention in sequence- to-sequence acoustic mod-
eling for speech synthesis. In: 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4789–4793 (2018). https://doi.org/10.1109/ICASSP.2018.
8462020

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ICASSP.2018.8462020
https://doi.org/10.1109/ICASSP.2018.8462020

Precise Segmentation for Children
Handwriting Analysis by Combining
Multiple Deep Models with Online

Knowledge

Simon Corbillé1(B) , Éric Anquetil2 , and Élisa Fromont1

1 Univ Rennes, IRISA, 35000 Rennes, France
{simon.corbille,elisa.fromont}@irisa.fr
2 INSA Rennes, IRISA, 35000 Rennes, France

eric.anquetil@irisa.fr

Abstract. We present a strategy, called Seq2Seg, to reach both pre-
cise and accurate recognition and segmentation for children handwritten
words. Reaching such high performance for both tasks is necessary to give
personalized feedback to children who are learning how to write. The first
contribution is to combine the predictions of an accurate Seq2Seq model
with the predictions of a R-CNN object detector. The second one is to
refine the bounding box predictions provided by the detector with a seg-
mentation lattice computed from the online signal. An ablation study
shows that both contributions are relevant, and their combination is effi-
cient enough for immediate feedback and achieves state of the art results
even compared to more informed systems.

Keywords: Handwriting Recognition and Segmentation · R-CNN
object detector · Seq2Seq network · French Children Handwriting

1 Introduction

The paradox of Sayre [1] is a famous problem in the handwriting recognition
domain. This dilemma claims that a handwritten word cannot be recognized
without being segmented in letters and at the same time cannot be segmented
in letters without the word being recognized. To tackle the handwriting recogni-
tion task, the systems use an analytic or a holistic approach. The analytic app-
roach segments the handwriting and tries to recognize letters, while the holistic
approach tries to recognize the whole word without explicit segmentation. State-
of-the-art methods use holistic approaches based on deep learning model. They
are designed for recognition only and are efficient in solving this task. How-
ever, in a context of learning spelling, the letter segmentation provided by these
approaches is not precise enough to provide a useful spatial feedback on spelling
mistake to a user.

We aim at designing a support system for learning cursive handwrit-
ing at school and more particularly in a dictation context. Tackling both the
challenges of recognition and segmentation of children handwriting may
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 236–252, 2023.
https://doi.org/10.1007/978-3-031-41685-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_15&domain=pdf
http://orcid.org/0000-0002-8788-7198
http://orcid.org/0000-0002-1760-5095
http://orcid.org/0000-0003-0133-3491
https://doi.org/10.1007/978-3-031-41685-9_15

Precise Segmentation for Children Handwriting Analysis 237

Fig. 1. Examples of cursive children handwriting. The oral French instruction given to
the children is provided in orange and examples of feedback are drawn in red. Line a
shows some degraded handwriting, line b, phonetic errors and line c shows other types
of errors in a context of learning spelling. (Color figure online)

allow a system to provide a fine-grained analysis on the handwritten words and to
deliver immediate spelling feedback to children. The children are in a learn-
ing process and therefore, their handwriting is degraded and contains misspelling
errors. Line a of Fig. 1 illustrates several examples of degraded handwriting. We
can see that a distortion of the letter “e” can be interpreted as a letter “l” and
vice versa for the word “elle” in the third position of this line. Line b shows
several examples of phonetic errors. In the first example, where the instruction
is “mes” [mε], the child writes “mai” [me], which sounds very similar in French.
These homophonic errors can be anticipated in automatic systems using a lan-
guage model that would take into account the contextual information. However,
other types of errors in a context of learning spelling illustrated in line c such as
dyslexia and out-of-vocabulary words cannot. The first example of line c shows
a common mistake in French where the child confuses the letters “b” and “d”
which are phonetically close.

To provide an accurate recognition and segmentation of the children hand-
written words, we propose the two following contributions included in the
Seq2Seg system:

– We present an original combination strategy using a model dedicated to recog-
nition and an object detector dedicated to segmentation. The recognition
model is used to recognize a word and to select the segmentation predictions
of the object detector corresponding to the letters of the recognized word.

– We use an segmentation lattice [2–4] which encodes expert knowledge to refine
the letter segmentation provided by the object detector and thus improve the
precision of the segmentation.

238 S. Corbillé et al.

This paper is organized as follows. The related works are described in Sect. 2.
The contributions are detailed in Sect. 3. Section 4 presents an ablation study of
our approach and compares it with the state of the art. We conclude in Sect. 5.

2 Related Work

This section presents works related to the recognition and segmentation of
handwritten words. The first part introduces the latest methods in the hand-
writing recognition domain. The second part sets out the limits of these methods
for a segmentation task and presents the state of the art in children handwrit-
ing recognition and segmentation. Finally, we provide a brief presentation of
object detection models to show their relevance in an handwriting segmentation
context.

2.1 Handwriting Recognition

The state of the art in handwriting recognition is achieved by the Sequence-
to-Sequence (Seq2Seq) [5,6] and Transformer [7,8] networks. Seq2Seq use an
encoder-decoder paradigm enhanced by an attention mechanism, while Trans-
formers are based on a feature extractor followed by multi-head attention mech-
anisms. Transformers are slightly more accurate but need much more data to
be optimized than Seq2Seq. This is often dealt with data generation and data
augmentation techniques.

In our work, a rather small dataset is available compare to adult handwriting
ones than can be found in [9,10] due to the cost associated with data collection
in schools and degraded handwriting annotations. We thus decided to rely upon
a Seq2Seq network for word recognition because of its good compromise accu-
racy/need of labeled data.

2.2 Handwriting Segmentation

To our knowledge, there is no (reasonable sized) public dataset for handwriting
(semantic) segmentation, i.e., handwriting words with annotations at the letter
pixel level. This task is particularly tedious and time-consuming but is not nec-
essary, nowadays, to achieve excellent recognition results for the architectures
mentioned above. For this reason, handwriting letter segmentation methods are
difficult to compare quantitatively. For the networks designed for handwriting
recognition, the letter segmentation can be computed from the position of the
receptive field associated to the letter prediction. The width and height of the
receptive field being fixed, this approach, which lacks flexibility, does not pro-
vide a precise segmentation. Furthermore, most networks are trained with the
connectionist temporal classification (CTC) [11] approach. CTC manages the
alignment between an input data sequence and an output sequence of frames
of variable size. CTC is known to have a peaky behavior [12] i.e., it predict
one frame per letter. This impacts the segmentation performance since a frame

Precise Segmentation for Children Handwriting Analysis 239

has a fixed size while a handwritten letter has a variable one. In [13,14], the
authors modified CTC to enforce a better alignment between the frames and
the real letters. However, despite these efforts, the segmentation was still lacking
precision.

The authors of [4] and its extensions [15,16] use an analytic approach to
reach the state of the art in children handwriting recognition and segmentation.
The letter recognition is made from letter splitting hypotheses coming from
a segmentation lattice [2–4]. Then, the method selects the best path of the
lattice where his associated word is closest to the instruction or to a phonetically
close word. However, this system uses a language model to guide the analysis
of children handwriting using assumptions of probable phonetic errors. It is thus
specific and dedicated to the French language and cannot be easily adapted to
other languages. Moreover, as already shown in the Introduction in Fig. 1, some
children errors cannot be prevented using a language model. In this work, we
want to achieve results on par with [15] without relying on a language model.

2.3 Object Detection

We rely on an existing, very successful, two-stage deep learning-based object
detector [17] to perform a precise localization of the letters in the handwritten
words. Two-stage detectors [17–19] are known to be a little bit more precise
for localization than their one-stage counterparts [20–23] even though they are
usually slower. Object detectors provide a joint classification of objects into
classes and a regression of the bounding boxes that best localize each object in
an image (or in a video frame). In a two-stage detector, candidate regions are
generated by a RPN (region-proposal network) and processed to perform the
detection task.

Based on the output of the object detector (i.e. labeled bounding boxes), the
final segmentation is obtained using all the handwriting pixels within the pre-
dicted bounding box. Note that in our work, the image of the handwriting comes
from an online signal, therefore, this image is noise-free both on the background
and on the handwriting pixels. This makes it possible to extract the letter seg-
mentation from the bounding box coordinates. Also note that we could have used
the semantic segmentation output of an instance-based semantic segmentation
network such as Mask-RCNN [17] to directly segment the letters. However, the
complexity in terms of parameters of such segmentation networks (the semantic
segmentation part of the network is usually independent from the object detec-
tion part), and the limited number of realistic labeled children words to train it,
made bounding boxes of traditional object detectors better candidates to tackle
our segmentation problem when the segmentation target is too ambiguous.

240 S. Corbillé et al.

3 Methods

We propose Seq2Seg, a method to combine two deep learning models (Seq2Seq
and R-CNN) and expert online knowledge to accurately segment and recognize
children handwritten words. Seq2Seg, illustrated in Fig. 2 leverages each method
to provide a precise semantic segmentation of the children words. The first level
(Level A) uses a model dedicated to the recognition task as an oracle to filter
out the bounding box’s predictions of the object detector. Level B uses an
expert segmentation lattice [2–4] to refine the letter segmentation associated to
the bounding boxes predicted by the object detector. The segmentation lattice
use online data, while the object detector and the recognizer use online data
converted to offline.

Fig. 2. Summary of levels A and B contributions.

In our work, we use the Seq2Seq architecture defined in [15] as the text
recognition model and the R-CNN architecture defined in [17] as the object
detector. The Seq2Seq performs well on the recognition task but provides an
imprecise segmentation while R-CNN performs well on the segmentation task
but is less accurate in recognition than the Seq2Seq (see Table 2 in Sect. 4 for
the detailed results).

Precise Segmentation for Children Handwriting Analysis 241

3.1 Level A: Filtering Bounding Boxes Predictions with an Accurate
Recognition Model

The recognition model is trained solely on the recognition task and outputs a
word. From this word, one can deduce, in particular, the number of letters to be
segmented. This information makes it possible to select a fixed number of object
detector segmentation predictions during the inference and use the more
accurate recognition result of the recognition model. The process of selecting the
predictions from the object detector can be difficult and ambiguous in certain
cases, as illustrated in Fig. 3: e.g., in a letter “m”, two letters “n” can be recognized
but they cannot be both true at the same time so here, a more global view is
necessary to choose the right segmentation. The use of the precise recognition
model, providing that it does not introduce other errors, makes it possible to
remove these ambiguities.

Fig. 3. Examples of ambiguity in object detector predictions: the correct prediction is
in full line and the wrong ones in dash.

The object detector has several output x-ordered predictions. The goal is
to select the object detector prediction corresponding to the letter segmenta-
tion. This method illustrated in Fig. 4 is broken down into three steps: (Step 1)
we compute all object detector prediction sequences; (Step 2) we filter
the sequences according to the length of the word recognized by the
recognition model; (Step 3) we compute the score associated with each
sequence. The final selected sequence is the one with the highest score. R-CNN
natively includes two Non-Maximum Suppression (NMS) phases to filter out its
predictions. The first is applied to the regions proposals to reduce the number of
proposals to consider, while the second is applied to predictions (bounding boxes
and labels) to keep the best prediction for the objects predictions with the same
label. In a letter-in-word detection context, there is little overlap between letters
unlike a classic COCO-style object detection. In order to handle the cases where
several letter predictions are nested as emphasized in Fig. 3, we have added an
NMS on the predictions of the model which is independent of the class. Our
method uses the predictions before the last NMS to have a wide variety of pre-
diction to filter with segmentation ambiguities. The purpose of the method is to
remove these ambiguities.

242 S. Corbillé et al.

Fig. 4. Level A: Example the three steps of the process of filtering object detector
predictions with the result of a recognition model.

(1) Compute All the Prediction Sequences: consider a directed graph
G(V,E), where V and E correspond to the sets of vertices and edges. For each
prediction of the object detector ordered by xmin from the bounding box coor-
dinates, a vertex is added in G as illustrated in Fig. 4. The weight of an edge
eij = (vi, vj) ∈ E is computed as eij = 1 − IoUPixel between the predictions
ordered by xmin associated to the vertices. IoUPixel stands for the Intersection
Over Union of the handwriting pixels contained in the two bounding boxes cor-
responding to the two vertices: the predictions with the higher overlap have a
weaker link. A sequence of predictions ordered by xmin corresponds to a graph
path, i.e. a list of connected vertices in the graph.

(2) Filter the Sequences According to the Length of the Word Pre-
dicted by the Recognition Model: there are three selection scenarios
(Table 3 in Sect. 4 details the result of each type of scenario):

– Perfect matching: The number of predicted letters of the object detector
and of the recognition model is equal. In this case, we expect our filtering to

Precise Segmentation for Children Handwriting Analysis 243

only improve the recognition part of the object detector (that we do not use
explicitly).

– Matching: The number of predicted letters of the object detector and of the
recognition model is different but there is at least one possible matching in
the solutions. In this case, we expect that the use of the word classifier as an
oracle will help to remove some ambiguities for the object detector. This may
improve both the recognition and the segmentation.

– No matching: The number of predicted letters of the object detector and
of the recognition model is different and there is no possible matching in the
predictors’ solutions. In this case, both the classification and the segmentation
of the object detector are used (the Seq2Seq is ignored). In practice, in this
case, we noticed that the Seq2seq was either predicting an additional letter
or was missing one. It is thus important for the object detector to be able
to ignore the oracle prediction when there is a strong conflict between both
models. This filtering might thus improve the overall recognition results since
the object detector will take over the Seq2Seq but only for the most difficult
predictions.

(3) Compute the Score Associated with Each Sequence: the score of
a sequence of size Na takes into account the degree of overlap between all the
bounding boxes involved in the sequence. In particular, it minimizes the inter-
letter overlap and also includes a coverage criterion to ensure a good coverage
of the entire handwritten text. The overlapping score, soverlap, is the product of
all edge weights weight v in the path of the graph G(V,E) corresponding to a
sequence:

soverlap = ΠNa
i=1weight vi (1)

The larger the overlap, the lower the score is. On the contrary to classic COCO-
style object detection contexts [24], in the handwriting context, there is almost
no overlap between objects to detect except for the ligature area between the
letters. To compute the coverage score and to count each pixel only once, we
add the number of pixels contained in each prediction and the number of pixels
contained in the intersection of the two predictions is subtracted from the number
of pixels contained in each prediction. Then, the predicted number of pixels is
divided by the total number of pixels as follows:

scover = (ΣNa
i=1Np predi − ΣNa

i=2Np inter(predi−1, predi))/Np total (2)

The final salignment score is defined as:

salignement = soverlap + scover (3)

The output of the Seq2Seg model is the semantic segmentation computed
from the bounding boxes of the sequence with the highest salignment score
together with the predictions of the Seq2Seq model for each letter. We can note
that the efficiency of this method in terms of computation time depends on the
size of the generated graphs. In our children handwriting context, the graphs

244 S. Corbillé et al.

associated with the words are small because the words are smaller than 10 let-
ters. The computation time of this method is therefore low enough to provide
immediate feedback.

3.2 Level B: Use of a Segmentation Lattice Based on Online
Handwriting

The online handwriting can be split a priori into different segmentation
hypotheses grouped in a segmentation lattice using heuristics (and without
letter recognition). This process is detailed in [2] and consolidated in [4]. Further-
more, the online signal makes it possible to obtain a first automatic semantic
segmentation for each hypothesis where two classes are considered: background
and handwriting. Our goal is to use this lattice to find the “nearest” hypotheses
of the segmentation lattice associated to the bounding boxes predicted by the
object detector as illustrated in Fig. 5.

Fig. 5. Example of bounding boxes refinement with the online segmentation lattice.
IoUPixel is used to select the best lattice hypothesis.

The similarity between the lattice nodes and the bounding boxes is computed
with an IoUPixel i.e. an Intersection-over-Union between the handwriting pix-
els contained in a bounding box (easily accessible as explained before) and the
ones in a node of the segmentation lattice. By associating the hypotheses of the
lattice with the bounding boxes, this method refines the coordinates of the

Precise Segmentation for Children Handwriting Analysis 245

bounding boxes and thus increase the precision of the segmentation
of the object detector. Moreover, this approach also provides a better segmen-
tation for slant handwriting than the “bounding box to segmentation” trivial
correspondence proposed in Sect. 2.3. This is illustrated in Fig. 5 for the letter
“l” and “o”.

4 Experiments

4.1 Dataset

Children cursive handwriting is acquired on pen-based tablet at schools.
The French handwritten words are acquired as an online signal encoded by a
sequence of points represented by two coordinates (x, y), a pressure and a times-
tamp. The online signal is used to compute the segmentation lattice presented
in the previous section and is converted into an image with linked points and a
thickness of 2 on the links. The input images are padded (x axis) and resized
(y axis) at 1 280×128 pixels to fit the used deep learning models. Table 1 details
the datasets used to train/test the deep learning models (which are all variants
of the acquired children words). The original dataset is composed of 8 054 French
handwritten cursive words annotated at the word level that are useful to train
the Seq2Seq network. Besides, 2 126 words are annotated (i.e. segmented) at the
letter level to train the R-CNN object detector. The number of letter-annotated
data being limited, we redefined the splits compared to [15] and between the two
models, to better train the object detector. The children writers are different for
the training and the testing and the test set is the same for all models. Due to
GDPR restrictions on children’s private data, this dataset is not public.

Table 1. Details on the data used to train the deep learning models.

Models Annotation type Training Validation Test Total

Seq2Seq Words 6 022 1 000 1 032 8 054
R-CNN Letters 918 176 1 032 2 126
R-CNN with synthesis Letters 27 540 176 1 032 28 748

To better train the R-CNN model (that is data greedy), we perform data
augmentation only on the training set (called “with synthesis” in the table).
Among a list of usual offline deformations (stretching, slant) and more recent
ones (stroke stretching, curvature [25]), each word is augmented 30 times with
random parameters.

246 S. Corbillé et al.

4.2 Implementation and Evaluation Metrics

Implementation: The Seq2Seq model follows the same architecture and train-
ing protocol as in [15]. The model performs poorly with only children hand-
writing dataset and to our knowledge, there is no other children handwriting
dataset available. Therefore the model is pre-trained on an adult handwriting
dataset [10] and then fine-tuned on the children handwriting dataset. The model
is trained during 200 epochs with a batch size of 16. The RMS prop optimizer is
used with a learning rate of 0.001. Since the test set is different, we reevaluate
the method from [15] on our dataset. The R-CNN with a ResNet-FPN backbone
is trained during 60 epochs with a batch size of 4. The AdamW [26] optimizer is
used with a learning rate of 0.0001. The R-CNN parameters are indicated in the
original article [17] except that we ignore the Mask branch, we use the Complete
Intersection Over Union (CIoU) [27] criterion to match the ground truths and
the predictions during the training phase. We also add an NMS filtering inde-
pendent of the class on the outputs to handle nested predictions as explained
in Sect. 3.1. We set all parameters of the R-CNN model on the validation set
using the Mean Average Precision (MAP) performance score before evaluating
the best model on the test set.

Metrics: To evaluate the performance of our Seq2Seg approach, we use the
usual Character Error Rate (CER) and Word Error Rate (WER) with a Dam-
erau Leveinshtein [28] distance for the recognition performance. We use Inter-
section Over Union (IoU) and IoU at pixel level to evaluate the segmentation
performance. As explained before, the IoUPixel focuses on the handwriting lines
and ignores the (mostly white) background.

4.3 Quantitative Results

We first perform an ablation study to measure the impact of our different contri-
butions as well as the choice of features extractor backbone in object detector.
Then, we compare our approach to the state-of-the-art models on our data. All
experiments are evaluated in terms of recognition, segmentation and com-
puting speed on the test set. While the networks are trained on GPU, the
processing time is computed on a laptop with an Intel Core i7-8665U CPU.
Indeed, education applications are run on a pen-based tablet, where an internet
connection is not always available. Therefore, timing analysis is more relevant
on a CPU-equipped laptop. We consider acceptable an analysis time lower than
2 s to deliver immediate feedback to the children.

Table 2 shows the results of the ablation study, where Level A corresponds to
the filtering method of the object detector predictions with the result of a recog-
nition model presented in Sect. 3.1 and Level B corresponding to the refinement
of the bounding boxes coordinates of the object detector with a segmentation
lattice presented in Sect. 3.2. We denote Seq2Seq as the result of the encoder
part and use only the encoder result in this work, as recommended in [15]. We
can see in the table that the choice of a deeper backbone (we tried 18 to 101

Precise Segmentation for Children Handwriting Analysis 247

Table 2. Ablation study of the object detector backbone and impact of our contri-
butions. Recognition is evaluated with Character Error Rate (CER) and Word Error
Rate (WER) (lower values are better). Segmentation is evaluated with Intersection
Over Union (IoU) and IoUPixel (higher values are better). The Average time is the
averaged number of seconds for a method to analyze a word.

Recognition Segmentation Time
Method Backbone CER (%)WER (%)IoU (%)IoUPixel (%)Average Time (s)
Seq2Seq [15] 5.3 19.4 48.4 59.4 0.12

ResNet-18 FPN 12.0 36.4 78.6 80.3 1.25

R-CNN [17]
ResNet-34 FPN 12.2 37.7 79.6 81.3 1.29
ResNet-50 FPN 11.4 34.7 80.5 81.5 1.61
ResNet-101 FPN 10.7 34.2 81.0 82.2 2.17

Level A

ResNet-18 FPN 5.2 19.0 81.7 83.6 1.43
ResNet-34 FPN 5.0 18.6 82.3 84.0 1.47
ResNet-50 FPN 5.2 18.9 82.8 84.0 1.79
ResNet-101 FPN 5.1 19.0 82.0 83.5 2.35

Level B

ResNet-18 FPN 12.0 36.4 82.6 85.0 1.40
ResNet-34 FPN 12.2 37.7 83.3 85.9 1.44
ResNet-50 FPN 11.4 34.7 83.8 86.3 1.77
ResNet-101 FPN 10.7 34.2 84.4 87.1 2.32

Seq2Seg: Levels A + B

ResNet-18 FPN 5.2 19.0 85.9 88.3 1.58
ResNet-34 FPN 5.0 18.6 86.1 88.9 1.62
ResNet-50 FPN 5.2 18.9 86.3 89.0 1.95
ResNet-101 FPN 5.1 19.0 85.6 88.4 2.50

layers) in the object detector (R-CNN) improves the performance in recogni-
tion and segmentation (-1.3% of CER from ResNet 18 to ResNet 101; +1.9% of
IoUPixel from 18 to 101 layers). On the other hand, the computing time increases
of more than 2 s. The Seq2Seq model remains much more accurate in recognition
(CER/WER) than all versions of the R-CNN. The choice of the backbone had
no significant impact on our contribution (see bottom part of the table). We
chose the backbone ResNet-34 FPN for the next experiments due to its speed
and slightly better performance in recognition.

Level A: filtering the object detector’s predictions with the results of the
Seq2Seq allows us to obtain slightly better results in recognition (CER of 5%)
than the Seq2Seq alone (CER of 5.3%). The reasons for this are given in the"no
matching case" of the second step of the first contribution presented in Sect. 3.1.
Furthermore, this method selects the bounding boxes to maximize the coverage
and minimize the overlap of the handwriting and thus improves the segmentation
of the object detector. Table 3 details the different scenarios of filtering and
their contributions to the performance compared to the object detector and the
Seq2Seq performance alone:

248 S. Corbillé et al.

– In the scenario where the number of predictions of the two models is equal,
the Level A improves only the recognition performance as expected. This
scenario concerns most of the words.

– In the scenario where the number of predictions is different and a matching
exist, the gain is the highest. Indeed, the strategy makes it possible to filter
the bad predictions of the object detector.

– For a few words, nothing is filtered out and thus this contribution does not
improve the object detector performance. In practice, this corresponds to
words for which the recognizer makes more mistakes than the object detector.

Table 3. Number of words by scenario of filtering between R-CNN and Seq2Seq.
Performance of models alone and level A contribution. R-CNN uses ResNet34-FPN
backbone.

R-CNN Seq2Seq Level A
Filtering type #Words CER (%) IoU (%) CER (%) IoU (%) CER (%) IoU (%)

Perfect Matching 857 8.0 85.6 3.8 50.2 3.8 85.6
Matching 164 34.7 47.9 11.5 40.0 11.5 64.6
No Matching 11 1.8 87.2 36.6 31.3 1.8 87.2

Level B: refining the bounding boxes coordinates by the use of a segmen-
tation lattice improves the R-CNN segmentation performance for a small com-
puting cost.

The results of the competitors are shown in Table 4. The best recognition and
segmentation performance on our dataset are given by [15] with a small margin
compared to Seq2Seg (+0.1% CER, +1.6% IoUPixel), a high computation cost
(5,07s, +3,45s compared to Seq2Seg) and using a language model. To overcome
this computation cost, the authors of [15] have proposed a pruning strategy
(shown in the second line). This strategy degrades the recognition performance as
well as the segmentation one which makes it significantly lower than Seq2Seg
for recognition and segmentation (-2.6% CER, -4.3% WER, +1.3% IoU,
+2.6% IoUPixel).

The following section presents a qualitative analysis of the results obtained
and shows the limits associated with the children handwriting recognition and
segmentation tasks.

4.4 Qualitative Results

This section presents a qualitative analysis of the results obtained by Seq2Seg.
The goal is to visualize the effect of each contribution, i.e. the impact of
Level A and Level B contributions. In these visualization examples, the out-
put of the object detector corresponds to the predictions before the last
NMS was performed independently of the class of the predicted bounding box.

Precise Segmentation for Children Handwriting Analysis 249

Table 4. Comparison to state-of-the-art approaches. Recognition is evaluated with
Character Error Rate (CER) and Word Error Rate (WER) (lower values are better).
Segmentation is evaluated with Intersection Over Union (IoU) and IoUPixel (higher
values are better). The Average time is the averaged number of seconds for a method
to analyze a word. LM stand for "Language Model".

Recognition Segmentation Time
Method LM CER (%) WER (%) IoU (%) IoUPixel (%) Average Time (s)

Fusion competition [15] Yes 4.9 16.1 89.2 90.5 5.07
Fusion competition (pruning) [15] Yes 7.6 22.9 84.8 86.3 0.72
Seq2Seg (Our) No 5.0 18.6 86.1 88.9 1.62

Figure 6 emphasizes the relevance of Level A contribution. The filtering process
by the recognition model selects the correct number of letters by minimizing the
overlap and maximizing the coverage rate. Moreover, the use of the segmentation
lattice in Level B contribution produces a precise segmentation of the handwrit-
ing words especially in example 1 where the bounding boxes of the letters “i”
and “t” overlap.

Fig. 6. Examples with an accurate recognition and a precise segmentation.

Figure 7 illustrates examples where the recognition model makes errors. In
example 1, there is no matching between the prediction of the recognition model
and the object detector. We can see that the Seq2Seq makes recognition errors
and therefore its associated filtering would be wrong. In this case, the bounding
boxes and labels predicted by the object detector are used and provide an accu-
rate result in recognition and segmentation. Example 2 shows a case where the

250 S. Corbillé et al.

filtering by the recognition model leads to a segmentation error. In addition, we
can note the omission of the drawing of the point of the “i” in example 2 which
is quite common in a context of learning how to write.

Fig. 7. Examples where the recognition model makes errors: in example 1, there is no
matching between the recognition model and the object detector. In example 2 the
filtering leads to an under-segmentation error.

Note that evaluating the quality of the handwriting segmentation with the
currently used metrics is difficult. Indeed, it is not easy to define an absolute
segmentation ground truth for some letters due to the ligature area between
letters. Thus, a prediction can have an IoU lower than 100% with the ground
truth while the associated segmentation is correct. Moreover, the ground truth
class associated with a degraded letter can vary according to the annotator
(confusion between the letter “e” and the letter “l”, “a” and “o” ...). Taking into
account the uncertainty in the predictions might be helpful to know when a
(human) teacher should take over the automated system to provide a more useful
advice to the children.

5 Conclusion

We presented Seq2Seg, an original combination strategy which uses a model ded-
icated to recognition as an oracle to filter out the segmentation predictions of an
object detector and then refines the segmentation using an expert segmentation
lattice. Seq2Seg produces the best of both worlds: the accurate recognition of a
Seq2Seq and the precise segmentation provided by an R-CNN object detector.
Seq2Seg is efficient enough to provide immediate feedback to children learning

Precise Segmentation for Children Handwriting Analysis 251

how to write and it outperforms the state of the art results on this task without
the use of a language model. This last point makes Seq2Seg much more flexible to
other learning contexts. Our future work will focus on evaluating and improving
the quality of the feedback in school contexts. In particular, we plan to better
leverage the uncertainty of the decisions (both for the Seq2Seq and the object
detector), for example by allowing the system to reject hypotheses, to prevent
giving erroneous feedback to the children.

References

1. Sayre, K.M.: Machine recognition of handwritten words: a project report. Pattern
Recognit. 5(3), 213–228 (1973)

2. Anquetil, E., Lorette, G.: Perceptual model of handwriting drawing application to
the handwriting segmentation problem. In: 4th International Conference Document
Analysis and Recognition (ICDAR 1997), 2-Volume Set, 18–20 August 1997, Ulm,
Germany, Proceedings, p. 112. IEEE Computer Society (1997)

3. Anquetil, E., Lorette, G.: On-line handwriting character recognition system based
on hierarchical qualitative fuzzy modelling. In: Progress in Handwriting Recogni-
tion, pp. 109–116 (1997)

4. Simonnet, D., Girard, N., Anquetil, É., Renault, M., Thomas, S.: Evaluation of
children cursive handwritten words for e-Education. Pattern Recogn. Lett. 121,
133–139 (2019)

5. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. In: 2019 International Conference on Doc-
ument Analysis and Recognition, ICDAR 2019, Sydney, Australia, 20–25 Septem-
ber 2019, pp. 1286–1293. IEEE (2019)

6. Coquenet, D., Chatelain, C., Paquet, T.: End-to-end handwritten paragraph text
recognition using a vertical attention network. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022)

7. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what
you read: Non-recurrent handwritten text-line recognition. Pattern Recognit. 129,
108766 (2022)

8. Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B.: Transformers for Historical
Handwritten Text Recognition. In: Doctoral Consortium - ICDAR 2021, Lausanne,
Switzerland (2021)

9. Marti, U.-V., Bunke, H.: A full English sentence database for off-line handwriting
recognition. In: Fifth International Conference on Document Analysis and Recog-
nition, ICDAR 1999, 20–22 September 1999, Bangalore, India, pp. 705–708. IEEE
Computer Society (1999)

10. Liwicki, M., Bunke, H.: IAM-OnDB - an on-line English sentence database acquired
from handwritten text on a whiteboard. In: Eighth International Conference on
Document Analysis and Recognition (ICDAR 2005), 29 August - 1 September
2005, Seoul, Korea, pages 956–961. IEEE Computer Society (2005)

11. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Machine Learning, Proceedings of the Twenty-Third International Conference
(ICML 2006), Pittsburgh, Pennsylvania, USA, 25–29 June 2006, vol. 148 of ACM
International Conference Proceeding Series, pp. 369–376. ACM (2006)

252 S. Corbillé et al.

12. Zeyer, A., Schlüter, R., Ney, H.: Why does CTC result in peaky behavior? CoRR,
abs/2105.14849 (2021)

13. Liu, H., Jin, S., Zhang, C.: Connectionist temporal classification with maximum
entropy regularization. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R., (edn.), Advances in Neural Information Processing
Systems vol. 31, pp. 839–849 (2018)

14. Li, H., Wang, W.: Reinterpreting CTC training as iterative fitting. Pattern Recog-
nit. 105, 107392 (2020)

15. Krichen, O., Corbillé, S., Anquetil, E., et al.: Combination of explicit segmentation
with Seq2Seq recognition for fine analysis of children handwriting. IJDAR 25, pp.
339–350 (2022). https://doi.org/10.1007/s10032-022-00409-4

16. Krichen, O., Corbillé, S., Anquetil, E., Girard, N., Nerdeux, P.: Online analysis
of children handwritten words in dictation context. In: Barney Smith, E.H., Pal,
U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 125–140. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-86198-8_10

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October
2017, pp. 2980–2988. IEEE Computer Society (2017)

18. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R., (edn.) Advances in Neural Information Processing
Systems. vol. 28, pp. 91–99 (2015)

19. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards
balanced learning for object detection. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, pp. 821–830. Computer Vision Foundation/IEEE
(2019)

20. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified,
real-time object detection. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp.
779–788. IEEE Computer Society (2016)

21. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal speed and accu-
racy of object detection. CoRR, abs/2004.10934 (2020)

22. Li, C., et al.: YOLOv6: A single-stage object detection framework for industrial
applications. CoRR, abs/2209.02976 (2022)

23. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. CoRR, abs/2207.02696
(2022)

24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

25. Mouchère, H., Bayoudh, S., Anquetil, E., Miclet, L.: Synthetic on-line handwrit-
ing generation by distortions and analogy. In: 13th Conference of the Interna-
tional Graphonomics Society (IGS2007), pp. 10–13, Melbourne, Australia, Novem-
ber 2007

26. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, 6–9 May 2019. OpenReview.net (2019)

27. Wang, X., Song, J.-Y.: ICIoU: improved loss based on complete intersection over
union for bounding box regression. IEEE Access 9, 105686–105695 (2021)

28. Damerau, F.: A technique for computer detection and correction of spelling errors.
Commun. ACM 7(3), 171–176 (1964)

https://doi.org/10.1007/s10032-022-00409-4
https://doi.org/10.1007/978-3-030-86198-8_10
https://doi.org/10.1007/978-3-319-10602-1_48

Fine-Tuning Vision Encoder–Decoder
Transformers for Handwriting Text

Recognition on Historical Documents

Daniel Parres1(B) and Roberto Paredes1,2

1 PRHLT Research Center, Universitat Politècnica de València, Valencia, Spain
{dparres,rparedes}@prhlt.upv.es

2 Valencian Graduate School and Research Network of Artificial Intelligence,
Camı́ de Vera s/n, 46022 Valencia, Spain

Abstract. Handwritten text recognition (HTR) has seen significant
advancements in recent years, mainly due to the incorporation of deep
learning techniques. One area of HTR that has garnered particular inter-
est is the transcription of historical documents, as there is a vast amount
of records available that have yet to be processed, potentially resulting
in a loss of information due to deterioration.

Currently, the most widely used HTR approach is to train convolu-
tional recurrent neural networks (CRNN) with connectionist temporal
classification loss. Additionally, language models based on n-grams are
often utilized in conjunction with CRNNs. While transformer models
have revolutionized natural language processing, they have yet to be
widely adopted in the context of HTR for historical documents.

In this paper, we propose a new approach for HTR on historical doc-
uments that involves fine-tuning pre-trained transformer models, specif-
ically vision encoder–decoder models. This approach presents several
challenges, including the limited availability of large amounts of training
data for specific HTR tasks. We explore various strategies for initial-
izing and training transformer models and present a model that out-
performs existing state-of-the-art methods on three different datasets.
Specifically, our proposed model achieves a word error rate of 6.9% on
the ICFHR 2014 Bentham dataset, 14.5% on the ICFHR 2016 Ratspro-
tokolle dataset, and 17.3% on the Saint Gall dataset.

Keywords: Transformers · Fine-tuning · Handwritten Text
Recognition · Historical Documents

1 Introduction

Handwritten text recognition (HTR) is a rapidly advancing field within computer
science, with a focus on document analysis and recognition. The goal of HTR is
to transcribe the text in a document using machine learning techniques.

This research paper focuses on the application of HTR techniques on histor-
ical documents. In museums, archives, and libraries, a wide variety of ancient
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 253–268, 2023.
https://doi.org/10.1007/978-3-031-41685-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_16&domain=pdf
http://orcid.org/0000-0002-2078-0329
http://orcid.org/0000-0002-5192-0021
https://doi.org/10.1007/978-3-031-41685-9_16

254 D. Parres and R. Paredes

documents are stored, many of which are at risk of deterioration. This can lead
to the loss of valuable information, including content and annotations or correc-
tions that may be of historical or cultural significance. To preserve and make
these documents more accessible for scientific and cultural research, it is crucial
to develop technologies that can recognize and transcribe the handwritten text.

The current primary approach for HTR is based on using artificial neural
network (ANN) algorithms [5,20,25]. These neural network models take images
of a document as input and must be trained with their corresponding transcrip-
tions. Typically, the page image is divided into individual lines of text, and the
model learns to transcribe these lines and produce a sequence of words or tokens.
However, historical documents present unique challenges, such as variations in
writing styles, faint ink, stamps, skewed images, lines with considerable slope
variation, and slanted scripts. These issues make it difficult for existing models
to achieve accurate recognition, thus leading to a more challenging problem

2 Related Work

In recent years, the most successful approaches for HTR have come from using
ANNs. While hidden markov models (HMM) have been used in the past [6,13,
31], they have the drawback of only considering the current observation and not
the context in which it occurs. In contrast, recurrent neural networks (RNN) such
as long short term memory (LSTM) cells [12] can take into account the previous
context internally and can memorize both long and short dependencies.

Connectionist temporal classification (CTC) [10] loss is a crucial compo-
nent in current state-of-the-art HTR techniques. CTC-based architectures are
the standard ANN models used for transcribing text. Early approaches utilized
linear recurrent layers to process the input image and generate the output. How-
ever, recent state-of-the-art methods involve using convolutional neural networks
(CNN) and RNNs, known as convolutional recurrent neural networks (CRNN)
[5,20,25]. Additionally, language models based on character n-grams are applied
to the ANN output to improve the results further [5,20,25].

The gated convolutional recurrent neural network (GCRNN) architecture
is proposed by Bluche and Messina [5], building on the success of CRNNs in
HTR. Using GCRNN topology and a large amount of external data in different
languages, the authors achieved the best state-of-the-art results on the IAM
[19] and Rimes [2] datasets. These results suggest a new methodology based on
starting with a well-trained pre-existing model and fine-tuning it to a specific
task.

Recently, there has been an increasing interest in applying transformer mod-
els [33] to HTR [3,15,24,34]. These proposals typically use a transformer decoder
to generate the character sequence, and a CNN-based encoder to extract image
features. These extracted features are fed into a set of operators similar to those
found in a transformer block. However, these proposals still rely on a CNN back-
bone and do not use a purely transformer-based design for end-to-end training.
Despite the interest, these transformer-based ANNs for HTR perform on pair or
slightly worse than traditional CRNN-based approaches [3,15,24,34].

Fine-Tuning VED Transformers for HTR on Historical Documents 255

3 Our Approach

This paper proposes to use the vision encoder–decoder (VED) architecture,
which employs pure transformer models, for HTR of historical documents. The
VED architecture comprises two main parts: an optical encoder model that pro-
cesses visual information and a generative text decoder model that produces
the transcription based on the visual information provided by the encoder. The
encoder aims to understand the image, and the decoder generates text transcrip-
tion accordingly.

3.1 Encoder. Vision Transformer

In the field of computer vision (CV), a wide variety of problems involve image
processing to solve a task, such as classification and segmentation. Currently, the
state-of-the-art ANNs for image processing are CNNs. A CNN takes as input an
image and uses learnable filters that slide along the image to extract relevant
features and produce feature maps. Some of the most widely used CNN architec-
tures in various tasks are ResNet [11], VGG [23], Inception [26], and EfficientNet
[30].

Recently, transformers have also begun to be applied to CV problems and
have shown to be able to achieve similar, or even superior results than CNNs
[8,18,32]. One of the advantages of using transformers in vision problems is
that they are less computationally expensive during training than CNNs. These
architectures are called vision transformers, and the best-known proposal is ViT
[8]. Inspired by the original transformer [33], ViT treats images as sequences by
dividing the image into patches, linear projecting each patch, and feeding it into
the model. The image patches or embeddings are essentially treated as tokens
in natural language processing (NLP).

As vision transformers are a recent neural architecture, this paper proposes
to analyze the performance of using pre-trained ViT as the optical model in
our VED architecture, which the aim to improve the results and performance of
HTR on historical documents.

3.2 Decoder. NLP Transformer

The transformer architecture has dramatically advanced the NLP field achieving
state-of-the-art results by being trained on massive datasets. Given the success
of transformers in various language tasks, it is worth exploring their potential
use in HTR on historical documents.

Deep learning has increasingly relied on models trained on large datasets
in recent years. However, training neural architectures on large datasets can be
costly, resource-intensive, and not accessible to everyone. To overcome this issue,
models trained on one task can be adapted for other or similar problems. This
is because models can transfer their knowledge. Therefore, using pre-trained
models on specific tasks can perform better than training models with random
weight initialization.

256 D. Parres and R. Paredes

An example of a pre-trained model in NLP is BERT [7], a transformer-
based language representation model. BERT is trained on a large amount of
text, considering the context, and can be fine-tuned for different NLP tasks.
Similarly, RoBERTa [17] replicates BERT, but with optimized training strategies
that result in a more robust model. It has been used for various NLP tasks such
as [14,35]. Due to its flexibility and good results, this study proposes to use pre-
trained RoBERTa as the decoder in our VED architecture for HTR on historical
documents.

3.3 Vision Encoder–Decoder

The VED architecture proposed in this paper is a transformer-based model, in
which the encoder is a pre-trained vision transformer (ViT), and the decoder is
a pre-trained RoBERTa. Unlike other state-of-the-art HTR proposals that use
transformers to estimate character-by-character transcriptions [3,15,24,34], our
proposed model estimates transcriptions at the wordpiece level. Additionally,
our proposed model does not use the CTC loss for transcription computation
and does not rely on an external language model. This allows for end-to-end
training without additional post-processing in the inference phase.

VED models typically consist of two stages. The first step involves the pro-
cessing of the image by the encoder. The second stage implies the decoder, gen-
erating the transcription auto-regressively, considering the previous text input
using a mask-attention mechanism and the encoder information using a cross-
attention mechanism. In our VED, the decoder is a RoBERTa, where the cross-
attention blocks have been added and initialized randomly.

Pre-trained models can achieve better results than untrained or randomly
initialized models. However, fine-tuning the models for the specific task is crucial
for success. Fine-tuning is a process that involves adjusting a pre-trained model
for a different task. Nevertheless, without proper fine-tuning, the model can lose
its learned knowledge and lead to poor results compared to a model initialized
with random weights. Therefore, this paper aims to study the fine-tuning process
of the pre-trained transformer model and demonstrate that it is not necessary to
use large amounts of data to obtain similar or better results than state-of-the-art
models.

4 Experiments and Results

This section presents the experiments conducted to perform an in-depth analysis
of the VED model. Each experiment followed the standard practice of using a
validation set and grid search to explore optimal parameterization. Grid search
is a widely recognized technique for hyperparameter optimization in neural net-
works, allowing the exploration of parameter values to obtain the best model
performance. Once the model has converged, the test set is evaluated, and the
results are presented in the corresponding tables or figures.

Fine-Tuning VED Transformers for HTR on Historical Documents 257

In this study, we begin by introducing the historical text datasets used in
our experiments. We then compare the performance of our VED model with
state-of-the-art models on each dataset to demonstrate its superior performance.
Next, we conduct a detailed fine-tuning analysis to achieve competitive results.
Specifically, we investigate the optimal combination of learning rate and opti-
mizer and analyze the importance of each model component, such as training
the encoder, decoder, and cross-attention individually. Finally, we demonstrate
that good fine-tuning enables the model to transcribe text in different languages
without requiring a large amount of data.

4.1 Datasets

This study focuses on evaluating the performance of transformer models in the
task of historical HTR on various databases. The first database used is one of
the most widely extended datasets in this field, the Bentham Papers, presented
at ICFHR 2014 [27]. This dataset comprises 433 pages of text written in English.
We propose to investigate the model’s adaptability in the second database by uti-
lizing the Ratsprotokolle dataset presented at ICFHR 2016 [28], which comprises
450 pages of text in German. Additionally, we include the Saint Gall dataset [9]
in our analysis. This dataset is a collection of Latin texts characterized by long
sequences of lengthy words. All three datasets are divided into training, valida-
tion, and test sets, as outlined in Table 1, which presents the number of lines
and partitions of each dataset used in this work.

Table 1. Number of lines per partition of each dataset.

Dataset Name Train Validation Test

ICFHR 2014 Bentham [27] 9, 198 1, 415 860

ICFHR 2016 Ratsprotokolle [28] 8, 367 1, 043 1, 140

Saint Gall [9] 468 235 707

For the experiments, the lines of the datasets presented in Table 1 are seg-
mented with corresponding transcripts. The images of the text lines and their
transcriptions (or ground truth) are required to train an HTR system. During
training, the optical model or encoder is fed with the images, while the decoder
inputs are the transcriptions.

4.2 Model Initialization Analysis

This section presents an analysis of the best weight initialization and fine-
tuning strategies for our VED model, which is composed of a ViT encoder and
a RoBERTa decoder. Four experimental setups are evaluated, with all experi-
ments being conducted on the ICFHR 2014 Bentham dataset. The learning rate

258 D. Parres and R. Paredes

is adjusted during training, decreasing linearly when results no longer improve
after multiple epochs. Data augmentation techniques such as cutout, gaussian
blur, erosion, dilation, underline, and rotation of the input images are applied to
the training set. In contrast, no data augmentation is applied to the transcrip-
tions. The loss function used throughout the experiments is cross-entropy.

Table 2. Analysis of the initialization of weights and fine-tuning strategies of the VED
model in the ICFHR 2014 dataset.

Models WER (%) CER (%)

VED + fine-tunning 93.5 73.6

VED–frozen + fine-tunning 87.5 68.5

TrOCR 31.1 16.4

TrOCR + fine-tunning 6.9 2.7

In the first experiment, the VED model is initialized with the pre-trained
weights of ViT (Imagenet) and RoBERTa, with the cross-attention layers being
initialized with random values. The same pre-trained weights are used in the
second experiment, but fine-tuning is performed in two steps. In the first step,
the entire model is frozen except for the cross-attention layers. Once the cross-
attention layers are trained, the whole model is unfrozen, and a second fine-
tuning is performed. This second experiment is referred to as VED–frozen.

For the third experiment, the VED model is initialized with the weights of
the optical character recognition (OCR) transformer model called TrOCR [16].
The TrOCR model is composed of a ViT encoder and a RoBERTa decoder. The
critical point of this model is that it has undergone extensive pre-training on a
diverse set of English text recognition tasks. The objective of this experiment is
to evaluate the performance of the original TrOCR model on the ICFHR 2014
Bentham dataset without any fine-tuning.

In the final experiment, the VED model is initialized with the TrOCR weights
and fine-tuned using the ICFHR 2014 Bentham dataset.

Table 2 summarizes the WER and character error rate (CER) of all four
experiments on the ICFHR 2014 Bentham test dataset. The results indicate
that fine-tuning the pre-trained VED (Imagenet and RoBERTa) on the ICFHR
2014 Bentham dataset yields the worst performance. On the other hand, fine-
tuning the VED–frozen model slightly improves the previous result. Significant
improvement is obtained using the original TrOCR model. Finally, using the
TrOCR-initialized model and performing a fine-tuning on the ICFHR 2014 Ben-
tham dataset provides the best performance.

Therefore, using and fine-tuning the TrOCR model weights allows us to trans-
fer and adapt OCR knowledge to HTR on historical documents.

Fine-Tuning VED Transformers for HTR on Historical Documents 259

4.3 Benchmarking with the State of the Art

In this section, we compare the performance of the VED model initialized with
TrOCR weights and fine-tuned to other state-of-the-art approaches on three
different datasets: ICFHR 2014 Bentham, ICFHR 2016 Ratsprotokolle, and Saint
Gall.

Table 3. WER and CER perfomance (%) of different state-of-the-art methods on
ICFHR 2014 Bentham test.

Models WER (%) CER (%)

Discriminative HMMs + word 2-gram [31] 17.2 6.7

Bluche [5] + char 9-gram [25] 16.8 6.7

CRNN + regex/lexicon LM [27] 14.6 5.0

CRNN + word 2-gram [4] 14.1 5.0

CRNN (Laia) [20,29] 12.7 6.2

LIMSI [27] 11.0 3.9

HTR-Flor + character 9-gram [25] 9.8 4.0

CRNN (Laia) [20] + character 7-gram [29] 9.7 5.0

A2IA [27] 8.6 2.9

TrOCR [16] 31.1 16.4

Ours 6.9 2.7

Table 3 presents the results for the ICFHR 2014 Bentham dataset. The table
is divided into two parts, the first one presents the state-of-the-art results for
ICFHR 2014 Bentham, and the second one contains the original TrOCR model
and our fine-tuned version.

Among the state-of-the-art models, A2IA has the lowest error rates, with
8.6% WER and 2.9% CER. A2IA is an MDLSTM model that performs extensive
pre-training with a large amount of external data. Additionally, it employs a
hybrid word/character-gram language model and CTC loss.

The results show that using the original TrOCR model without fine-tuning
performs worse than the state of the art, with a WER of 31.1% and a CER of
16.4%. On the other hand, fine-tuning the TrOCR model on the ICFHR 2014
Bentham dataset provides state-of-the-art results, outperforming A2IA with a
WER of 6.9% and a CER of 2.7%.

The ICFHR 2016 Ratsprotokolle dataset is a collection of German docu-
ments, making it more interesting than many other HTR databases on historical
manuscripts. Most of them are English or Latin texts. The first part of Table 4
shows the best state-of-the-art proposals for ICFHR 2016 Ratsprotokolle. Fur-
thermore, the second part shows the original TrOCR model and our fine-tuned
version.

As discussed above, A2IA is an MDLSTM model that uses word/character-
gram language models. In this case, the A2IA model has been subjected to an

260 D. Parres and R. Paredes

Table 4. WER and CER perfomance (%) of different state-of-the-art methods on
ICFHR 2016 Ratsprotokolle test.

Models WER (%) CER (%)

ParisTech [28] 46.6 18.5

LITIS [28] 26.1 7.3

BYU [28] 21.1 5.4

A2IA [28] 21.0 5.1

CRNN + char 10-gram [28] 20.9 4.8

RWTH [28] 20.9 4.8

CRNN (Laia) [20,29] 19.0 4.8

CRNN (Laia) [20] + character 8-gram [29] 17.5 4.5

TrOCR [16] 121.7 97.0

Ours 14.5 3.8

extensive pre-train of letters written in modern German. Despite this pre-train
in German, the A2IA model does not obtain the best results. Instead, the CRNN
model Laia, together with a character 8-gram, obtains the best error rates in the
first part of the table (17.5% WER and 4.5% CER).

The error rates of the original TrOCR and the fine-tuned version are pre-
sented in the second part of Table 4. The original TrOCR obtains a poor perfor-
mance for both WER and CER. We observed that the transcriptions generated
by the model are longer than the ground truth. These transcriptions seem to be
hallucinations of the model since, in most cases, the model proposes meaningless
transcriptions. These poor results may be because the TrOCR model has worked
exclusively with English text and has never seen anything in German.

In contrast, our fine-tuned version achieves the best state-of-the-art error
rates with 14.5% WER and 3.8% CER. These results are striking because this
model is initialized with the TrOCR weights, which produces poor transcrip-
tions. However, fine-tuning can adapt the model capabilities to a task in another
language producing the best results.

Table 5. WER and CER perfomance (%) of different state-of-the-art methods on Saint
Gall test.

Models WER (%) CER (%)

Shonenkov [22] 26.2 3.7

Bluche [5] + char 11-gram [25] 23.7 6.0

CRNN (Laia) [20] + character 11-gram [25] 23.4 6.0

Abdallah [1] 23.0 7.3

HTR-Flor + character 11-gram [25] 21.1 5.2

Sai Suryateja + character 11-gram [21] 18.6 3.9

TrOCR [16] 103.9 43.5

Ours 17.3 2.5

Fine-Tuning VED Transformers for HTR on Historical Documents 261

Finally, like the previous two tables, Table 5 is divided into two parts. The
word and character errors in the Saint Gall dataset are presented in Table 5. The
proposal that achieves the best results in the first part of the table is from Sai
Suryateja, with 18.6% WER and 3.9% CER. As for the results of the transform-
ers, the original TrOCR again has very high error rates. However, fine-tuning
the weights, our proposal fits the Latin model very well and outperforms all
the state-of-the-art results with 17.3% WER and 2.5% CER. These results are
remarkable for two factors: the first is that Saint Gall is a Latin database, and
the second is that the sentences to be transcribed are considerably longer than
usual.

As demonstrated, our proposed model can obtain the most competitive state-
of-the-art results in English, German and Latin. It has also been shown that the
original TrOCR model obtains high error rates; this is why a good fine-tuning
strategy is mandatory.

4.4 TrOCR Fine-Tuning Analysis

The VED model outperforms the other state-of-the-art models in HTR on his-
torical documents thanks to the original weights provided by TrOCR and the
fine-tuning performed. Due to the importance of fine-tuning, the following exper-
iments focus on analyzing the most critical hyper-parameters, such as learning
rate, optimizer, dataset size and freezing strategies.

Learning Rate and Optimizer. When fine-tuning a pre-trained model, there
are various parameters to configure, including the optimization algorithm and
learning rate. These parameters play a crucial role in determining the perfor-
mance of the fine-tuned model. Popular optimization algorithms for fine-tuning
transformer models trained for NLP and CV include stochastic gradient descent
(SGD), Adam, and AdamW. Therefore, it is of particular interest to investigate
the model’s behavior when using these three optimization algorithms.

Table 6. Fine-tuning analysis of transformers using as metric WER and CER in
ICFHR 2014 Bentham test.

Optimizer Learning rate WER (%) CER (%)

SGD 5e−5 13.0 5.3

5e−6 20.7 9.5

5e−7 35.7 18.8

Adam 5e−5 42.3 29.7

5e−6 7.8 3.2

5e−7 7.3 2.7

AdamW 5e−5 44.0 28.3

5e−6 6.9 2.7

5e−7 7.3 2.8

262 D. Parres and R. Paredes

Our study began with a pre-trained transformer and aimed to transfer its
knowledge to historical HTR. The learning rate, in particular, is a critical factor
that must be carefully chosen. Since we want to make the most of the pre-trained
model, the learning rate values must be small. To this end, we analyzed different
learning rate values to estimate the optimal value for knowledge transfer in the
HTR task. Specifically, we propose to use three different learning rates: 5e−5,
5e−6, and 5e−7.

All of these experiments were conducted using the ICFHR 2014 Bentham
database. Based on the results shown in Table 6, we found that SGD performed
better with higher learning rates than Adam or AdamW. Adam, when using the
learning rate that achieved the best results using SGD, resulted in the worst
metrics. The same was true for AdamW. Additionally, we observed that for a
learning rate of 5e−7, Adam and AdamW produced similar WER and CER
scores. However, the best fine-tuning for the transformer model was achieved
using AdamW with a learning rate of 5e−6.

Freezing Strategies. It is of interest to investigate the impact of different com-
ponents of the VED architecture on fine-tuning. Specifically, identifying oppor-
tunities to optimize the training process and reduce the number of parameters
that need to be adjusted for a given task is a crucial area to explore. To this
end, we conducted three different experiments. All three experiments used frozen
VED models and aimed to train only a single part of the transformer.

In the first experiment, we trained only the cross-attention layers. The
encoder parameters were adjusted in the second experiment, and only the
decoder was trained in the third experiment. These three experiments allowed us
to study the critical components of the VED model. The fine-tuning performed
in the three experiments consisted of training for 50 epochs using AdamW as
the optimization algorithm, a learning rate of 5e−6, and a linear learning rate
scheduler.

Table 7. Freezing study of ICFHR 2014 Bentham test dataset.

Dataset Name Fine-tuning WER (%) CER (%)

ICFHR 2014 Bentham Fine-tuning only cross-attention 13.5 6.2

Fine-tuning only Encoder 7.1 2.5

Fine-tuning only Decoder 14.5 6.8

Fine-tuning whole model 6.9 2.7

We evaluated the performance of our VED model on the ICFHR 2014 Ben-
tham, ICFHR 2016 Ratsprotokolle, and Saint Gall datasets and presented the
results in Tables 7 to 9. These tables are divided into two parts. The first part
shows the results of the three freezing experiments, and the second part presents
the results when the entire transformer is trained.

Fine-Tuning VED Transformers for HTR on Historical Documents 263

Table 7 shows that training only the cross-attention layers or the decoder for
the ICFHR 2014 Bentham dataset did not result in competitive results. However,
freezing the entire VED except for the encoder resulted in an excellent perfor-
mance, surpassing the CER of the VED model where the entire architecture
was trained. This highlights the importance of the optical model of the VED
for handwriting text recognition on historical document images. Furthermore,
training only the encoder reduced the training time by more than half.

Table 8. Freezing study of ICFHR 2016 Ratsprotokolle test dataset.

Dataset Name Fine-tuning WER (%) CER (%)

ICFHR 2016 Ratsprotokolle Fine-tuning only cross-attention 44.9 18.8

Fine-tuning only Encoder 24.8 6.6

Fine-tuning only Decoder 44.6 21.7

Fine-tuning whole model 14.5 3.8

Table 9. Freezing study of Saint Gall test dataset.

Dataset Name Fine-tuning WER (%) CER (%)

Saint Gall Fine-tuning only cross-attention 42.9 9.9

Fine-tuning only Encoder 23.3 3.2

Fine-tuning only Decoder 36.6 8.9

Fine-tuning whole model 17.3 2.5

Table 8 presents the results of the experiments conducted on the ICFHR
2016 Ratsprotokolle dataset. The results of the experiments are similar in cases
where only the cross-attention layers or the decoder are trained, as these tend
to produce the highest error rates.

When training only the optical model, specifically the vision transformer,
the VED model achieves competitive results. However, since this dataset is in
German, it is not sufficient to adapt the optical model alone to overcome the
performance of state-of-the-art models. It is necessary to train the entire network
to obtain the best performance.

Table 9 presents the results obtained from the experiments conducted on the
Saint Gall dataset. Similar to the results presented in Tables 7 and 8, training
only the vision transformer allows us to achieve competitive results with the
state of the art and reduces the training time by more than half. However, as
the text in this dataset is in Latin, it is necessary to fine-tune the decoder to
achieve results that surpass the state of the art.

The results of the three case studies demonstrate that the VED model’s
vision transformer component is the most critical component. Additionally, very
competitive results can be obtained by focusing on training the encoder alone.
However, when applying the VED model to tasks involving languages other

264 D. Parres and R. Paredes

Fig. 1. Performance of the VED model versus the rest of the state-of-the-art models
in the ICFHR 2014 Bentham test dataset.

than English, it is necessary to fine-tune the entire network to achieve optimal
performance. This knowledge can significantly reduce training times by more
than half.

Dataset Size. This section aims to examine the amount of data necessary for
the VED model to produce results that compare favorably with state-of-the-
art models. We used varying amounts of randomly selected samples from the
training dataset to train the model.

We conducted seven experiments for the ICFHR 2014 Bentham database,
each using a different number of samples: 500, 1000, 2000, 4000, 6000, 8000, and
all available samples. The results of these experiments are illustrated in Fig. 1,
along with their corresponding WERs.

Our VED model, trained on 4000 random samples, achieved a WER of 8.8%,
which is comparable to the best state-of-the-art model, A2IA, which achieved
a WER of 8.6% using all available ICFHR 2014 data, including its synthetic
dataset. These results suggest that our VED model does not require the entire
dataset to achieve competitive performance and that it can be trained with a
relatively small amount of data.

Figure 2 presents the results of an experiment conducted on the ICFHR 2016
Ratsprotokolle database. The experiment aims to assess the performance of our
model under different training conditions. To this end, we perform six experi-
ments, each using a different subset of the data: 500, 1000, 2000, 4000, 6000, and
all available samples.

We found that our model can achieve competitive results with state-of-the-art
models when using only half of the total data. However, when we increased the

Fine-Tuning VED Transformers for HTR on Historical Documents 265

Fig. 2. Performance of the VED model versus the rest of the state-of-the-art models
in the ICFHR 2016 Ratsprotokolle test dataset.

Fig. 3. Performance of the VED model versus the rest of the state-of-the-art models
in the Saint Gall test dataset.

amount of data used to two-thirds of the total dataset, our model outperformed
all other state-of-the-art models.

It is worth noting that the difference between VED and the other state-of-
the-art models is less pronounced in Fig. 2 when compared to the experiment
illustrated in Fig. 1. This may be because TrOCR weights are specialized for
working with English text, and thus, the model might have an easier time work-
ing with this type of text.

266 D. Parres and R. Paredes

The Saint Gall dataset presents a unique challenge, comprising only 468
training examples. To evaluate the efficacy of our model, we conduct experiments
using a range of training data, specifically 100, 200, 300, 400, and all 468 lines.
The results of these experiments are presented in Fig. 3.

We observe that when using only 300 training lines, our transformer model
surpasses the performance of other state-of-the-art models, as evidenced by its
lower WER. The only exception is the proposal by Sai Suryateja, which out-
perform our model in this particular scenario. However, when we increase the
training data to 400 lines, our model achieved the most competitive results
among the models evaluated.

The proposed VED model can outperform other state-of-the-art approaches,
even when fine-tuned using a smaller dataset, demonstrating its flexibility and
generalization capabilities. This suggests that the VED model can adapt to new
languages and historical document tasks with limited training data.

5 Conclusion

The use of pre-trained models is a prevalent approach in deep learning. This prac-
tice is particularly crucial for HTR on historical documents due to the scarcity
of large databases for training ANNs. The results of this work demonstrate that
using the TrOCR weights initialization and an appropriate fine-tuning can sur-
pass state-of-the-art results on three different datasets.

Additionally, we have also conducted an analysis of the fine-tuning process
and found that using AdamW with a learning rate value of 5e−6 provides the
best performance for adapting the model to recognize historical texts. Further-
more, our research shows that the proposed VED architecture can be adapted
to different languages, and that focusing on specific modules during training can
lead to competitive results while reducing the training time by half, particularly
for English text recognition. Our analysis of the train dataset size also showed
that appropriate fine-tuning enables the model to achieve competitive results
with a smaller dataset.

Acknowledgements. Work partially supported by the Universitat Politècnica de
València under the PAID-01-22 programme, by grant PID2020-116813RB-I00 funded
by MCIN/AEI/ 10.13039/501100011033, by the support of valgrAI - Valencian Grad-
uate School and Research Network of Artificial Intelligence and the Generalitat Valen-
ciana, and co-funded by the European Union.

References

1. Abdallah, A., Hamada, M., Nurseitov, D.: Attention-based fully gated CNN-BGRU
for Russian handwritten text. J. Imaging 6, 141 (2020)

2. Augustin, E., Carré, M., Grosicki, E., Brodin, J.M., Geoffrois, E., Preteux, F.:
RIMES evaluation campaign for handwritten mail processing. In: Proceedings of
the International Workshop on Frontiers in Handwriting Recognition, pp. 231–235
(2006)

Fine-Tuning VED Transformers for HTR on Historical Documents 267

3. Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B.: A light transformer-based
architecture for handwritten text recognition. In: Proceedings of the Document
Analysis Systems, pp. 275–290 (2022)

4. Bluche, T.: Deep neural networks for large vocabulary handwritten text recogni-
tion, Ph.D. thesis, Université Paris-Sud (2015)

5. Bluche, T., Messina, R.: Gated convolutional recurrent neural networks for mul-
tilingual handwriting recognition. In: Proceedings of the 14th IAPR International
Conference on Document Analysis and Recognition, pp. 646–651 (2017)

6. Bunke, H., Roth, M., Schukat-Talamazzini, E.: Off-line cursive handwriting recog-
nition using hidden markov models. Pattern Recogn. 28, 1399–1413 (1995)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

8. Dosovitskiy, A., et al.: An image is worth 16× 16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

9. Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., Stolz, M.: Ground truth
creation for handwriting recognition in historical documents. In: Proceedings of
the 9th IAPR International Workshop on Document Analysis Systems, pp. 3–10
(2010)

10. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376 (2006)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

13. Hu, J., Gek Lim, S., Brown, M.K.: Writer independent on-line handwriting recog-
nition using an HMM approach. Pattern Recogn. 33, 133–147 (2000)

14. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: MDETR
- modulated detection for end-to-end multi-modal understanding. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 1780–1790
(2021)

15. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what
you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129,
108766 (2022)

16. Li, M., et al.: TrOCR: transformer-based optical character recognition with pre-
trained models. arXiv preprint arXiv:2109.10282 (2021)

17. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

18. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-
dows. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022 (2021)

19. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5, 39–46 (2002)

20. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: Proceedings of the 14th IAPR International Conference
on Document Analysis and Recognition, pp. 67–72 (2017)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2109.10282
http://arxiv.org/abs/1907.11692

268 D. Parres and R. Paredes

21. Sai Suryateja, S., Veerraju, P., Vijay Kumar Naidu, P., Ravi Kumar, C.V.:
Improvement in efficiency of the state-of-the-art handwritten text recognition mod-
els. Turkish J. Comput. Math. Educ. 12, 7549–7556 (2021)

22. Shonenkov, A., Karachev, D., Novopoltsev, M., Potanin, M., Dimitrov, D.: Stack-
Mix and Blot augmentations for handwritten text recognition. arXiv preprint
arXiv:2108.11667 (2021)

23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

24. Singh, S.S., Karayev, S.: Full page handwriting recognition via image to sequence
extraction. In: Proceedings of the Document Analysis and Recognition - Interna-
tional Conference on Document Analysis and Recognition, pp. 55–69 (2021)

25. de Sousa Neto, A.F., Bezerra, B.L.D., Toselli, A.H., Lima, E.B.: HTR-Flor: a deep
learning system for offline handwritten text recognition. In: Proceedings of the 33rd
Brazilian Symposium on Computer Graphics and Image Processing Conference on
Graphics, Patterns and Images, pp. 54–61 (2020)

26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

27. Sánchez, J.A., Romero, V., Toselli, A.H., Vidal, E.: ICFHR2014 competition on
handwritten text recognition on Transcriptorium datasets (HTRtS). In: Proceed-
ings of the 14th International Conference on Frontiers in Handwriting Recognition,
pp. 785–790 (2014)

28. Sánchez, J.A., Romero, V., Toselli, A.H., Vidal, E.: ICFHR2016 competition on
handwritten text recognition on the READ dataset. In: Proceedings of the 15th
International Conference on Frontiers in Handwriting Recognition, pp. 630–635
(2016)

29. Sánchez, J.A., Romero, V., Toselli, A.H., Villegas, M., Vidal, E.: A set of bench-
marks for handwritten text recognition on historical documents. Pattern Recogn.
94, 122–134 (2019)

30. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: Proceedings of the 36th International Conference on Machine Learning,
pp. 6105–6114 (2019)

31. Toselli, A.H., Vidal, E.: Handwritten text recognition results on the Bentham col-
lection with improved classical N-Gram-HMM methods. In: Proceedings of the
3rd International Workshop on Historical Document Imaging and Processing, pp.
15–22 (2015)

32. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training
data-efficient image transformers & distillation through attention. In: Proceedings
of the 38th International Conference on Machine Learning, pp. 10347–10357 (2021)

33. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the Advances in
Neural Information Processing Systems, pp. 5998–6008 (2017)

34. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: Proceedings of the Document Analysis and
Recognition - International Conference on Document Analysis and Recognition,
pp. 112–126 (2021)

35. Zaheer, M., et al.: Big Bird: transformers for longer sequences. In: Proceedings of
the Advances in Neural Information Processing Systems, pp. 17283–17297 (2020)

http://arxiv.org/abs/2108.11667
http://arxiv.org/abs/1409.1556

Fine-Tuning is a Surprisingly Effective
Domain Adaptation Baseline
in Handwriting Recognition

Jan Kohút(B) and Michal Hradǐs

Faculty of Information Technology, Brno University of Technology,
Brno, Czech Republic

{ikohut,ihradis}@fit.vutbr.cz

Abstract. In many machine learning tasks, a large general dataset and a
small specialized dataset are available. In such situations, various domain
adaptation methods can be used to adapt a general model to the target
dataset. We show that in the case of neural networks trained for hand-
writing recognition using CTC, simple fine-tuning with data augmenta-
tion works surprisingly well in such scenarios and that it is resistant to
overfitting even for very small target domain datasets. We evaluated the
behavior of fine-tuning with respect to augmentation, training data size,
and quality of the pre-trained network, both in writer-dependent and
writer-independent settings. On a large real-world dataset, fine-tuning
on new writers provided an average relative CER improvement of 25%
for 16 text lines and 50% for 256 text lines.

Keywords: Handwritten text recognition · OCR · Data
augmentation · Fine-tuning

1 Introduction

In handwriting recognition, an OCR trained on a large and general dataset is
often used to transcribe new writers. These writer-independent models provide
good accuracy; however, when the writing style of the new writer differs from the
general dataset, the transcription accuracy degrades and some form of domain
adaptation may become necessary. In fact, we believe that some form of domain
adaptation should be performed whenever a larger collection of consistent texts
is to be transcribed. Although unsupervised strategies may be used, a couple of
text lines from the target collection can be manually transcribed with minimal
effort while often providing superior accuracy improvement.

In this paper, we explore domain adaption of large convolutional-recurrent
CTC neural networks [5,10,29,32] from a large general dataset of mostly mod-
ern handwriting to specific documents written in various languages and scripts.
Specifically, we fine-tune a general model to a small number of annotated text
lines from a target document with practical strategies for early stopping. We

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 269–286, 2023.
https://doi.org/10.1007/978-3-031-41685-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_17&domain=pdf
http://orcid.org/0000-0003-0774-8903
http://orcid.org/0000-0002-6364-129X
https://doi.org/10.1007/978-3-031-41685-9_17

270 J. Kohút and M. Hradǐs

show that this simple approach is a surprisingly effective domain adaptation
baseline, especially with suitable data augmentation, even for an extremely low
amount of annotated target data. The proposed approach is stable, simple to
implement, and provides consistent improvements in a wide range of situations.
In fact, the fine-tuning approach is used in our text recognition web application
PERO OCR1 with great user feedback.

The specific contributions of this paper are as follows: (1) study of CTC
network domain adaptation by fine-tuning on small datasets (1–256 text lines);
(2) evaluation of possible variation of the improvement for multiple target docu-
ments written in different scripts and styles; (3) hyperparameter selection strate-
gies suitable for fine-tuning in realistic scenarios; (4) convergence and overfit-
ting analysis on small target datasets; (5) proposal of effective data augmen-
tations and their evaluation; (6) strong evidence that fine-tuning is effective
also in writer-dependent scenario (fine-tuning to documents or writer from the
training set); (7) new dataset of 19 manuscripts suitable for domain adapta-
tion experiments in various European languages and scripts with at least 512
hand-transcribed lines each.

2 Related Work

Modern handwritten text recognition approaches are either based on Connec-
tionist Temporal Classification (CTC) [12] or are full seq2seq models with an
autoregressive decoder. CTC models [5,10,29,32] are usually based on a stack
of convolutional layers, followed by LSTM blocks [15]. Older seq2seq architec-
tures [6,27] use encoders with similar architectures and decoders composed of
LSTM blocks which are usually enhanced by various attention mechanisms.
Lately, the recurrent layers were replaced by Transformers [36] blocks where
information in a sequence is distributed purely by self-attention mechanism. Text
recognition Transformers [3,9,16,22,37] similarly to other models use convolu-
tional layers in the encoder. Based on the available literature, the mentioned
architectures provide comparable transcription accuracy [9,16,27], while some
works indicate that seq2seq model may prove to be superior as larger datasets
become available [37].

Similar to our approach, several works [2,30,31,34] explored domain adap-
tation of CTC-based models by fine-tuning. However, the experiments did not
explore the limits of such an approach (e.g. fine-tuning to less than a dozen
lines), did not explore possible strategies for choosing hyperparameters, and did
not explore the tendency of overfitting in these scenarios. Also, some of the find-
ings and observed behaviors are not consistent (e.g. effect of data augmentation).

Aradillas et al. [2] experimented with domain adaptation from IAM [24]
dataset to Washington [21] and Parzival [11] datasets, and between different
partitions of the READ dataset [35]. Their conclusions are that it is better to
fine-tune the network than selected network layers and that geometric augmen-
tation [38] of the target domain degrades final accuracy. This is contrary to
1 https://pero-ocr.fit.vutbr.cz.

https://pero-ocr.fit.vutbr.cz

Handwriting Recognition Domain Adaptation Baseline 271

our findings, where our data augmentation combined with fine-tuning brought
substantial increases in accuracy. Soullard et al. [34] also experimented with
fine-tuning on the READ dataset. Similar to us, they used cross-validation to
estimate the optimal number of fine-tuning iterations. They used random rota-
tion and scaling as data augmentation for both source and target domains. They
also experimented with writers-specific language models which further improved
results. Reul et al. [30] tested domain adaptation using fine-tuning on German
medieval manuscripts in Gothic and Bastarda scripts. They utilized data aug-
mentation in the form of several binarization strategies, both for source model
training and fine-tuning. They used an ensemble of models combined with a vot-
ing strategy optimized with cross-validation. However, the stopping criterion of
the fine-tuning was controlled by the testing datasets error. They observed that
the closer the source model data was to the target data, the better the results
after fine-tuning.

Bhunia et al. [4] approached domain adaptation to new writers as a meta-
learning task, where the goal is to train a general model that can be effectively
adapted to new domains with a single update and few words. They found that a
single-shot adaptation of such a general model is superior to fine-tuning a model
trained in a standard fashion. However, the experiments were restricted to word-
level IAM and RIMES [13] datasets and 16 adaptation words images. Instead
of training a general model, Kohut et al. [20] proposed a model with dedicated
writer-dependent parameters which can handle multiple writers simultaneously.
While adapting to a new writer, optimizing a new set of writer-dependent param-
eters brought worse performance than fine-tuning all parameters.

As speech and handwritten text recognition are closely related, we also
present a short overview of domain adaptation from this field. Hank Liao [23]
explored how a simple neural acoustic model may be adapted to speakers by
fine-tuning the input layer, the output layer, or the entire network. Adapting
the input layer was better than adapting the output layer, adapting all layers
was even better. In order to overcome overfitting, some strategies [26,40] regu-
larize the fine-tuning process by minimizing the divergence between the feature
distributions of the original network and of the fine-tuned one, where the fea-
tures might be taken from any layer. These approaches require evaluation of the
original network while fine-tuning the new one. Dong Yu et al. [40] minimized
the senone distributions divergence by adding the Kullback-Leibler term to the
loss function, which is equivalent to constructing the fine-tuning ground truth
as linear interpolating of the fine-tuned and original model senone distribution.
Meng et al. [25,26] forced the distribution of hidden features to be close with
an adversarial approach, which is equivalent to minimizing the Jensen-Shannon
divergence.

In scenarios where no annotated data for the target domain are avail-
able, unsupervised approaches in the form of consistency regularization [1] and
pseudo-labeling [18,28,39] may be used. In scenarios where both annotated and
unannotated data are available, supervised and unsupervised approaches may be
combined to get the best out of both worlds. For example, fine-tuning together
with pseudo-labeling [7].

272 J. Kohút and M. Hradǐs

Fig. 1. Black, samples from the large general source CzechHWR dataset. ID with
Color, representative words of 19 target writers. (Color figure online)

3 CzechHWR Dataset

We collected a large dataset of mainly 19th and 20th century Czech handwrit-
ten documents which, in our opinion, is a realistic example of a general dataset
for training writer-independent models. The CzechHWR dataset was created
from three main sources: documents processed by users of our text recognition
web application PERO OCR, a collection of Czech letters transcribed by lin-
guists [14], and Czech chronicles transcribed specifically for handwriting recogni-
tion. From the OCR application, we collected 295k text lines manually corrected
by the users (after reviewing one or two pages from each user). The documents
are mostly written in Czech modern cursive script, although a marginal part is
written in German Kurrent and in several medieval scripts. The original sources
are mainly military diaries, chronicles, letters, and notes. The Czech letters [14]
consists of 2000 letters (87k text line annotations) from 20th century, mostly
handwritten in Czech modern cursive with a limited amount of typeset ones.
We manually annotated approximately 2 pages of 277 distinct Czech chronicles,
resulting in 553 pages with 24k text lines.

The final CzechHWR dataset contains 406k annotated text lines and our
estimate of distinct writers is 4.5k. The level of penmanship and readability
differs, ranging from scribbles to calligraphy, although the tendency is towards
fairly readable texts, see the left side of Fig. 1. The training (TRN) and testing
(TST) subsets contain 379k and 5k lines. Due to the fact that writers with a
small number of total lines are not sufficiently represented in TST, we created
TSTW, which contains lines of all writers that have at least 20 lines in TRN.
Table 1 shows the distribution of writers in the CzechHWR dataset according
to the number of lines per writer with the respective amounts of lines for each
subset.

We chose additional 19 writers from our PERO OCR web application as the
small target datasets for fine-tuning2, each writer is represented by at least 512
lines, and each line is at least 30 characters long. For each writer, an image of a

2 https://pero.fit.vutbr.cz/handwriting adaptation dataset.

https://pero.fit.vutbr.cz/handwriting_adaptation_dataset

Handwriting Recognition Domain Adaptation Baseline 273

Table 1. The distribution of writers (NW) in the CzechHWR dataset according to the
number of lines per writer (NWL) with the respective amounts of lines for each subset.

NWL 1–19 20–49 50–99 100–199 200–499 500–999 1000– ALL

TRN 13k 79k 82k 43k 24k 16k 122k 379k

TST 169 1k 1.1k 566 287 198 1.7k 5k

TSTW 0 4.5k 6.2k 3.2k 2k 1.1k 5.4k 22.4k

NW ∼1.1k ∼2.3k ∼1.2k ∼322 ∼79 ∼21 ∼54 ∼5.1k

representative word is shown in Fig. 1, the colors match the colors in fine-tuning
experiments graphs (Fig. 7 and Fig. 9), and the IDs match the IDs in Table 3.
The scripts of these target writers range from some which are very similar to
the majority of CzechHWR to some which are very different.

Our neural network architecture is similar to the state-of-the-art architec-
tures for text recognition [5,10,29,32] trained with CTC loss [12]. It consists of
a convolutional stage (CNN), inspired by the standard VGG arhitectures [33],
and a parallel bidirectional LSTM [15] recurrent stage (RNN), which processes
the input at multiple scales.

We trained the network with Adam [17] optimizer for 500k iterations up until
convergence. We used polynomial warmup of a third order to gradually increase
the learning rate from 0 to 3 × 10−4 in the first 10k iterations. At iterations
200k and 400k, we used the warmup again, but the learning rate maximums
were 0.7 × 10−4 and 0.175 × 10−4. The batch size was set to 32 and we used
the B1C1G1M1 augmentation (see Sect. 4). The system reached CER of 0.51%,
2.17%, 2.26% on TRN, TST, and TSTW subsets respectively, and the CER on
augmented TRN subset was 2.4%. The distribution of test CER on the small
target datasets, had a mean of 5.17%, a standard deviation of 4.82%, a minimum
of 0.62%, and a maximum of 14.46%.

Architecture Details. The architecture is equivalent to our baseline TS-Net
architecture [19], a more detailed description together with a detailed diagram
can be found in the referenced work. CNN is a sequence of 4 convolutional blocks,
where each block has 2 convolutional layers with numbers of output channels set
to 64, 128, 256, and 512, respectively. All convolutional blocks except the last
one are followed by a max pooling layer. The CNN subsamples an input text
line image by a factor of 4 in width. The RNN consists of three parallel LSTM
branches and one final LSTM layer. The branches process scaled variants of the
input with two LSTM layers, the scaling factors are 1, 0.5, and 0.25. The outputs
are upsampled back to the original dimension and their summation is processed
by the final LSTM layer. Each LSTM layer is bidirectional and has a hidden
feature size of 256 for both directions. The output of RNN is processed by a 1D
convolutional layer with a kernel size of 3.

274 J. Kohút and M. Hradǐs

Table 2. Our augmentations as combinations of four basic ones: NoiseBlurGamma
(B), Color (C), Geometry (G), and Masking (M). The number of dots specifies the
level of augmentation intensity (1, 2, 3).

N
O

N
E

B
1

B
1
C

1

B
1
G

1

B
1
C

1
G

1

B
1
C

1
G

1
M

1

B
2
C

1
G

1
M

1

B
2
C

2
G

1
M

1

B
2
C

1
G

2
M

1

B
2
C

1
G

3
M

1

B
2
C

2
G

2
M

1

B
2
C

2
G

3
M

1

B
2
C

2
G

2
M

2

B
2
C

2
G

3
M

2

BlurNoiseGamma • • • • • •• •• •• •• •• •• •• ••
Color • • • • •• • • •• •• •• ••

Geometry • • • • • •• ••• •• ••• •• •••
Masking • • • • • • • •• ••

4 Data Augmentations

We chose various augmentations strategies to enlarge the amount of data arti-
ficially and to regularize the fine-tuning process. We used combinations of
four basic augmentations: NoiseBlurGamma, Color, Geometry, and Masking.
NoiseBlurGamma applies random motion blur, gauss noise, and gamma correc-
tion. Color randomly changes brightness, contrast, saturation, and hue changes.
Geometry randomly adjusts text slant, horizontal scale, and vertical scale. Mask-
ing stands for random noise patch masking. The height of a noise patch is the
same as the height of text line images, the width is chosen randomly up to the
width of approximately two letters, and multiple masking patches can be applied
to a single text line image. The intuition behind noise masking is to strengthen
the language modeling capability of the system.

Table 2 shows the final augmentations in columns as combinations of the
basic ones. If a basic augmentation is a part of the final one, the probability of
applying it on the input is 0.2 for the NoiseBlurGamma, 0.333 for the Color, 0.66
for the Geometry, and 0.5 for the Masking, therefore all the augmentations allow
the network to see the original text line images. The number of dots specifies the
level of augmentation intensity, the higher the number, the greater the range of
randomness in the respective image operations. There are two levels (1, 2) for
NoiseBlurGamma (B), Color (C), and Masking (M) augmentations, and three
levels (1, 2, 3) for Geometry (G) augmentation. We refer to the final augmen-
tations with abbreviations e.g. augmentation B2C1G3M1 is a combination of
NoiseBlurGamma level 2, Color level 1, Geometry level 3, and Masking level 1.

Figures 2, 3, and 4 show augmented versions of the top left text line image
with NoiseBlurGamma, Color, and Geometry, respectively. For each level of aug-
mentation intensity, there is a separate section of lines and only extreme samples
are shown.

Handwriting Recognition Domain Adaptation Baseline 275

Fig. 2. Augmented versions of top left text line image with NoiseBlurGamma augmen-
tation. Intensity 1 is shown in the top section and intensity 2 in the bottom one. Only
the extreme samples of the distributions are shown.

Fig. 3. Augmented versions of top left text line image with Color augmentation. Inten-
sity 1 is shown in the top section and intensity 2 in the bottom one. Only the extreme
samples of the distributions are shown. (Color figure online)

5 Writer-Independent Scenario

In writer-independent scenario experiments, we fine-tuned the source baseline
model trained on the CzechHWR dataset to the 19 target writers. Experiments
were based on writer fine-tuning runs. A writer fine-tuning run consisted of
drawing 512 random lines of the respective target writer and splitting them into
256 testing and 256 adaptation ones. The adaptation lines were furthermore
divided into 9 line clusters: 1, 2, 4, 8, 16, 32, 64, 128, and 256, where the numbers
referred to the number of adaptation lines in them, and a smaller cluster was
always a subset of all the larger ones. The numbers of fine-tuning iterations were
200, 200, 400, 800, 1000, 1500, 2000, 2500, and 3000 for 1, 2, 4, 8, 16, 32, 64,
128, and 256 adaptation lines, respectively. We run 10 fine-tuning runs for each
writer resulting in total 19 × 9 × 10 baseline model fine-tunings. Additionally,
we run 19 × 5 × 10 4-fold cross-validations for the line clusters 16, 32, 64, 128,
and 256, as cross-validation on less than 16 lines is not reliable.

We estimated the optimal number of fine-tuning iterations, with different
estimation strategies (ET). The baseline estimation strategies were Last Itera-
tion (L) and Oraculum (O). Last Iteration (L) returned the last/maximum iter-
ation. Oraculum (O) returned the iteration of minimal CER on testing lines. As
there are no testing lines in practice, we experimented with estimation strate-
gies based on 4-fold cross-validation computed on adaptation lines. Minimum

276 J. Kohút and M. Hradǐs

Fig. 4. Augmented versions of top left text line image with Geometry augmentation.
Intensity 1 is shown in the top section, intensity 2 in the middle one, and intensity 3
in the bottom one. Only the extreme samples of the distributions are shown.

Iteration Average Across Chunks (A) smoothed each of 4 cross-validation test
loss curves with window size 4, averaged the smoothed loss curves, and returned
the iteration of the minimum loss. Mean Minimum Iteration Per Chunk (M)
smoothed each of 4 cross-validation test loss curves with window size 4, took
the iteration of the minimum loss per each smoothed loss curve, and returned
the mean of these iterations. Max Minimum Iteration Per Chunk (X) estimated
the optimal fine-tuning iteration in the same way as M, but at the end, instead
of mean, returned the maximum. Note, as we tested every 20 iterations, the
window size of 4 spanned across 80 iterations.

We also experimented with a scenario, where there are multiple target writers
with testing lines available and we want to assume a static number of fine-tuning
iterations for a new target writer for which we do not have any testing lines.
The optimal static iteration was estimated on the writers with testing lines as
the iteration of the minimum value of the writers’ fine-tuning test curve. The
writers’ fine-tuning test curve was calculated as an average of writer fine-tuning
curves, which were normalized by their minimums. Each writer’s fine-tuning
curve was calculated as an average of 10 fine-tuning test loss curves (10 fine-
tuning runs), which were smoothed with a window size of 4. We refer to this
estimation strategy as Static Iteration (S). To compare it to others, we evaluate
it in a 1 to N-1 manner, where N is the number of all target writers.

As the estimation based on loss often underestimated the number of optimal
iterations (see Fig. 9), we also experimented with simple modifications of X and
S, denoted as XR and SR, which multiplied the estimated iterations by a positive
factor R of 1.5 and 3. Estimations of these strategies were limited by the actual
number of fine-tuning iterations.

Choosing Augmentation for Fine-Tuning. Figure 5 compares the perfor-
mance of models fine-tuned with different augmentations (see Sect. 4) to the
performance of the baseline model, which served as the starting point for the

Handwriting Recognition Domain Adaptation Baseline 277

Fig. 5. The performance of models fine-tuned with different augmentations expressed
as a relative reduction of the baseline model test CER. The means and the standard
deviations represent the target writer distribution.

fine-tuning. The comparison is expressed as a relative reduction of the baseline
model test CER and it is given by:

F −B

B
, (1)

where B is the test CER of the baseline model and F is the test CER of its fine-
tuned variant. Due to the high number of augmentations, we run fine-tuning
runs just with the line cluster 64. X1.5 was used as the estimation strategy
for choosing the fine-tuning iteration of minimal CER. For each augmentation,
the mean and the standard deviation of test CER reductions on all 19 target
writers are shown. In all experiments, test CER reduction on a writer is the
mean of test CER reductions across all 10 fine-tuning runs. Fine-tuned models
consistently outperformed the baseline model on most of the target writers and
they did not worsen the accuracy on any. NoiseBlurGamma, Geometry, and
Masking augmentations improved the performance significantly, whereas Color
augmentation had almost no effect. The higher levels of augmentation intensity
(2, 3), did not bring any essential variations in performance. Even though the
Geometry augmentations affected the writing style significantly (see Fig. 4), they
consistently brought better performance for the fine-tuning. On average, for line
cluster 64, fine-tuning without any augmentation (NONE) reduced the baseline
CER by 25%, while combinations of all the basic augmentations reduced the
CER by an additional 10%. Fine-tuning with data augmentations brought larger
standard deviations across target writers. Furthermore, we only experiment with
augmentations NONE and B1C1G1M1.

Pre-trained Quality of the Baseline Model. Figure 6 compares fine-tuning
of baseline models trained for different amounts of iterations on the CzechHWR
dataset. The performance is expressed as a relative reduction of the fully-trained
baseline model test CER (500k). The boxplots represent the target writer distri-
bution. As with the previous experiment, we run the fine-tuning runs only for line

278 J. Kohút and M. Hradǐs

Fig. 6. Fine-tuning of baseline models trained for different amounts of iterations on
the CzechHWR dataset. The performance is expressed as a relative reduction of the
fully-trained baseline model (500k) test CER. The boxplots represent the target writer
distribution. See the text for a description of the model fine-tuned from scratch (0).

cluster 64 and estimated the optimal fine-tuning iterations with X1.5. The more
well-trained the baseline model, the greater and more stable the performance
across the target writers.

The architecture fine-tuned from scratch is almost identical to ours (described
in Sect. 3), where the only essential difference is that the convolutional layers are
initialized from VGG [33] architecture trained on ImageNet [8]. The fine-tuning
was done on line cluster 256, for 10k iterations, and we estimated the number of
optimal fine-tuning iterations with the Oraculum strategy (no cross-validation
involved). In comparison to the well-trained baseline model, the performance
was far worse for most of the writers, although there were exceptions among
writers whose writing styles were not sufficiently represented in the CzechHWR
dataset. Even though that VGG was trained on four times more lines and the
Oraculum estimating strategy was used, it is surprising, that for writers with
German Kurrent and Ghotic script, it evened out the fine-tuned well-trained
baseline model.

Fine-Tuning Runs. Figure 7 shows relative test CER reductions of the base-
line model test CER on the target writers for complete fine-tuning runs, with
and without augmentation. The estimation strategy for choosing the fine-tuning
iteration with minimal test CER was S3 for line clusters 1, 2, 4, 8 and X1.5 for
line clusters 16, 32, 64, 128, and 256. Each writer is represented by a differ-
ent color (see Fig. 1 for images of representative words). Static iteration setup
improved the performance even for 1 adaptation line, however, it overfitted two
writers for all cluster lines. Cross-validation setups improved the performance
on all cluster lines, except for the same two writers in the case of line clusters
16 and 32.

Handwriting Recognition Domain Adaptation Baseline 279

Fig. 7. Relative reductions of the baseline model test CER on the target writers for
complete fine-tuning runs, with and without augmentation. The estimation strategy
for choosing the fine-tuning iteration with minimal test CER was S3 for 1–8 and X1.5

for 16–256 adaptation lines.

Table 3. Test CER (in %) of the baseline model (0) and test CER after fine-tuning with
B1C1G1M1 augmentation on 16 and 64 adaptation lines on all target writer datasets
(the writer ID in the header corresponds to the ID in Fig. 1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 6.5 2.3 2.5 1.0 12.7 4.1 1.8 10.2 1.4 1.3 11.0 9.4 1.2 2.0 2.1 14.5 0.6 0.6 13.2

16 3.3 2.6 1.3 1.0 8.3 3.7 1.6 4.9 1.2 1.0 7.4 6.8 1.0 1.4 1.2 12.9 0.4 0.6 10.1

64 2.4 2.3 1.0 1.0 6.6 3.1 1.5 2.9 0.9 0.8 5.5 5.2 0.8 1.2 1.0 11.0 0.3 0.5 7.8

Generally, the more adaptation lines, the greater the performance. Fine-
tuning with B1C1G1M1 augmentation consistently outperformed fine-tuning
without any augmentation, although there is a higher risk of worsening the
performance when fine-tuning with smaller amounts of lines. The distribution
across the target writers is Gaussian-like, while the augmentation shifts the
mean, and stretches the standard deviation. The largest CER reductions (up
to 82%) were achieved for distinct yet to some extent source-like writing scripts
such as Kurrent or Czech block letters. The average CER reductions (up to 60%)
were achieved for vastly different scripts such as Ghotic, and for harder-to-read
source-like scripts. For easy-to-read source-like scripts, smaller CER reductions
(up to 10%) were achieved for larger amounts of adaptation lines, whereas over-
fitting led to worse performance (up to 15%) for smaller amounts of lines.

Table 3 shows the test CER of the baseline model (0) and the test CER after
fine-tuning with B1C1G1M1 augmentation on 16 and 32 adaptation lines on all
target writer datasets (the writer ID in the header corresponds to the ID in
Fig. 1).

280 J. Kohút and M. Hradǐs

Fig. 8. Compares different estimation strategies (ET) for choosing the fine-tuning iter-
ations with minimal test CER. The performance is expressed as a normalized relative
reduction of the baseline test CER.

Figure 8 compares different estimation strategies for choosing the optimal
number of fine-tuning iterations. An estimation strategy is shown as a distri-
bution across the respective normalized writers’ CER reductions, where the
normalization is done across the estimate strategy dimension with the Oracle
strategy, and the line cluster dimension is subsequently aggregated by mean.
We calculated these statistics only on line clusters 16, 32, 64, 128, and 256, and
we omitted three writers, as the normalization was not possible because some
fine-tuned models worsen the performance of the baseline. The best estimation
strategy for fine-tuning without adaptation is L. Generally, the estimation strat-
egy which provides more fine-tuning iterations is better, we give our explanation
of this phenomenon while discussing the fine-tuning curves. For fine-tuning with
augmentation X1.5 and X3 brought the largest CER reductions among cross-
validation approaches, and S3 among the static iteration approaches.

For S3, the ratios between the estimated number of fine-tuning iterations and
the number of adaptation lines were 180, 90, 60, 38, 33, 30, 24, 15, and, 9, for
1, 2, 4, 8, 16, 32, 64, 128, and 256 lines, respectively. The difference between
the ratios of different writers was negligible. This suggests that there is a fixed
relation between the number of optimal fine-tuning iterations and the number of
adaptation lines, which on average outperforms the cross-validation approaches.
The target writer distribution for the L strategy is more skewed towards the
poorer CER reductions, note that L can be seen as another variant of S.

Fine-Tuning Curves. To get a deeper insight into the fine-tuning process with
B1C1G1M1 augmentation, we show aggregations of fine-tuning curves in Fig. 9.
Line cluster fine-tuning curves for each line cluster in the left column graphs
were computed with the Static Iteration (S) estimation strategy on all 19 target
writers, for the CER graphs, the calculation is based on the test CER fine-tuning
curves. The graphs in the right column show writer fine-tuning curves for line
cluster 16 before aggregation, note that the colors match the colors in Fig. 1 and
Fig. 7.

On average, for all line clusters, the fine-tuning curves had a U-like shape and
the minimum test CER was always achieved later than the respective minimum
test loss. For line cluster 16, the amount of fine-tuning iterations to achieve the
optimal CER reduction varied among different writers, and some of them (darker

Handwriting Recognition Domain Adaptation Baseline 281

Fig. 9. Fine-tuning curves for B1C1G1M1 augmentation.

brown and blue) suffered from overtraining, this can also be seen in Fig. 7. The
CER fine-tuning curves were smooth and had a negative slope up until the loss
curves started to grow more dramatically, from this point they were prone to
high noise. This phenomenon is more drastic for cross-validation, especially for a
lower amount of adaptation lines. Therefore, the estimation of the minimal test
CER fine-tuning iteration based on loss fine-tuning curves should be derived
from iterations of a slightly uncertain region behind the minimum. Returning
to the left graphs, we can see that on average the optimal level of uncertainty
is higher for higher amounts of adaptation lines, which is the motivation behind
XR and SR estimation strategies.

By inspecting the fine-tuning curves for the fine-tuning without augmenta-
tion, we found out that the baseline model quickly overfitted the adaptation lines.
The loss on test lines got to the minimum around the first 100 iterations and
started to increase afterward. Surprisingly, at this point, the CER saturated or
even kept getting slightly better for the remaining iterations. This phenomenon
might have been caused by the fact that after the model overfitted the adapta-
tion lines the training loss was minimal and the subsequent iterations produced
only slightly less confident models which turned out to be more accurate. This
explains why using the L estimation strategy brought the best CER reductions.

282 J. Kohút and M. Hradǐs

Fig. 10. Relative test CER reductions for fine-tuning in the writer-dependent scenario
on 78 writers from the CzechHWR dataset together with the baseline test CER.

5.1 Writer-Dependent Scenario

This section describes fine-tuning of the baseline model on writers from the
source CzechHWR dataset. To cover different numbers of training lines, we chose
one random writer per each group of writers with the same number of lines,
which resulted in 315 writers. The baseline model was fine-tuned for 1000, 2000,
3000, and 6000 iterations for writers with the number of lines more than or
equal to 1, 100, 500, and 1000. To eliminate noise bias from the result statistics,
we estimated a function that took the number of writer training lines as the
input and output the number of fine-tuning iterations. The estimation was done
as a polynomial fitting on a dataset of (N, I)W tuples, where W was the fine-
tuned writer, N was the number of its training lines, and I was the fine-tuning
iteration with minimal test CER. Polynomial fitting with additional parameters
in the form of train and test loss/CER did not bring any improvements.

Figure 10 shows the relative CER reductions for 78 writers together with
the baseline test CER. We do not show results for writers with less than 500
training lines, due to the insufficient number of testing lines in the CzechHWR
dataset (see Table 1). The colored dashed lines are the means of the writers’
CER reductions. Fine-tuning without augmentation was prone to overfitting
but still brought a 6% CER reduction on average. Fine-tuning with B1C1G1M1
augmentation almost eliminated overfitting and brought a 15% CER reduction
on average. These results show that our baseline model was not able to handle a
vast number of writing styles present in the CzechHWR dataset, even though it
was well-trained and for the last 100k iterations with a small learning rate did
not bring any further improvements. We believe that fine-tuning in this writer-
dependent scenario allows the model to adapt to otherwise ambiguous aspects
of the text – that it is not just due to a low modeling capacity of the model with
respect to the size and variability of the general dataset. An ensemble of writer-
dedicated models, where each of these models would be a fine-tuned variant of
the shared baseline model, seems to be a reasonable baseline for handwritten
text recognition in the writer-dependent scenario.

Handwriting Recognition Domain Adaptation Baseline 283

6 Conclusion

Our experiments show that fine-tuning is a very efficient domain adaptation
method for handwritten text recognition. In the writer-independent scenario, it
improved the recognition accuracy of the baseline model by 20% to 45% rel-
atively, for 16–256 adaptation lines, when choosing the number of fine-tuning
iterations by cross-validation. We further showed that it is possible to estimate
a fixed ratio between the number of fine-tuning iterations and the number of
adaptation text lines, which outperformed the cross-validation technique. This
indicates that in live handwriting recognition applications, this mapping can be
estimated for a specific general model on a small number of exemplar documents
and that fine-tunning for new documents can be performed with a predefined
number of iterations conditioned only on the amount of available target data
without risking overfitting or accuracy degradation. This fine-tuning with this
fixed stopping criterion works even for a very small number of text lines. In our
experiments, the improvements for 2–8 text lines were 10% to 20% on average,
and even a single adaption text line without augmentations improved transcrip-
tion accuracy by 5% on average. Fine-tuning was surprisingly resistant to overfit-
ting even for an extremely low number of text lines and the region of an optimal
number of fine-tuning iterations proved to be wide and easy to localize. Data
augmentation proved to be an important component of the fine-tuning process
with a combination of geometry, blur, and noise masking providing 1.5× larger
improvement over fine-tuning without any augmentation.

Surprisingly, the fine-tuning was effective also on documents from the original
training set (in the writer-dependent scenario) where the observed improvement
reached 15%.

The experimental result reported in this paper has strong practical implica-
tions for handwriting recognition applications. The conclusion is that this type
of fine-tuning should be always used and that it is safe to do so. We have already
implemented this strategy in our text recognition web application PERO OCR3,
where users can repeatedly transcribe a document, where each transcription first
fine-tunes the selected model to already corrected lines in the document.

We have performed preliminary experiments with Transformer-based
sequence-to-sequence models. They tend to overfit the adaptation text lines while
the noise masking augmentation makes the overfitting even worse. We presume
that such behavior is due to the autoregressive decoder which learns the text
of the adaptation lines. We are looking at several methods how to mitigate this
behavior including self-training with dedicated language models, constraining
the change of the model, and others.

Acknowledgment. This work has been supported by the Ministry of Culture Czech
Republic in NAKI III project semANT - Semantic Document Exploration
(DH23P03OVV060).

3 https://pero-ocr.fit.vutbr.cz.

https://pero-ocr.fit.vutbr.cz

284 J. Kohút and M. Hradǐs

References

1. Aberdam, A., Ganz, R., Mazor, S., Litman, R.: Multimodal semi-supervised learn-
ing for text recognition. arXiv preprint arXiv:2205.03873 (2022)

2. Aradillas, J.C., Murillo-Fuentes, J.J., Olmos, P.M.: Boosting offline handwritten
text recognition in historical documents with few labeled lines. IEEE Access 9,
76674–76688 (2021)

3. Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B.: A light transformer-based
architecture for handwritten text recognition. In: Uchida, S., Barney, E., Eglin, V.
(eds.) DAS 2022. LNCS, vol. 13237, pp. 275–290. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06555-2 19

4. Bhunia, A.K., Ghose, S., Kumar, A., Chowdhury, P.N., Sain, A., Song, Y.Z.:
MetaHTR: towards writer-adaptive handwritten text recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15830–15839 (2021)

5. Bluche, T., Messina, R.: Gated convolutional recurrent neural networks for mul-
tilingual handwriting recognition. In: 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol. 01, pp. 646–651 (2017).
https://doi.org/10.1109/ICDAR.2017.111

6. Chowdhury, A., Vig, L.: An efficient end-to-end neural model for handwritten text
recognition. arXiv preprint arXiv:1807.07965 (2018)

7. Das, D., Jawahar, C.V.: Adapting OCR with limited supervision. In: Bai, X.,
Karatzas, D., Lopresti, D. (eds.) DAS 2020. LNCS, vol. 12116, pp. 30–44. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57058-3 3

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

9. Diaz, D.H., Qin, S., Ingle, R.R., Fujii, Y., Bissacco, A.: Rethinking text line recog-
nition models. CoRR abs/2104.07787 (2021). https://arxiv.org/abs/2104.07787

10. Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.V.: Improving CNN-RNN hybrid
networks for handwriting recognition. In: 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 80–85 (2018). https://doi.org/
10.1109/ICFHR-2018.2018.00023

11. Fischer, A., et al.: Automatic transcription of handwritten medieval documents.
In: 2009 15th International Conference on Virtual Systems and Multimedia, pp.
137–142. IEEE (2009)

12. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376 (2006)

13. Grosicki, E., Abed, H.E.: ICDAR 2009 handwriting recognition competition. In:
2009 10th International Conference on Document Analysis and Recognition, pp.
1398–1402 (2009). https://doi.org/10.1109/ICDAR.2009.184

14. Hladká, Z.: 111 let českého dopisu v korpusovém zpracováńı (2013)
15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
16. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what

you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129,
108766 (2022)

http://arxiv.org/abs/2205.03873
https://doi.org/10.1007/978-3-031-06555-2_19
https://doi.org/10.1007/978-3-031-06555-2_19
https://doi.org/10.1109/ICDAR.2017.111
http://arxiv.org/abs/1807.07965
https://doi.org/10.1007/978-3-030-57058-3_3
https://arxiv.org/abs/2104.07787
https://doi.org/10.1109/ICFHR-2018.2018.00023
https://doi.org/10.1109/ICFHR-2018.2018.00023
https://doi.org/10.1109/ICDAR.2009.184

Handwriting Recognition Domain Adaptation Baseline 285

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference
Track Proceedings (2015)

18. Kǐsš, M., Beneš, K., Hradǐs, M.: AT-ST: self-training adaptation strategy for OCR
in domains with limited transcriptions. In: Lladós, J., Lopresti, D., Uchida, S. (eds.)
ICDAR 2021. LNCS, vol. 12824, pp. 463–477. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86337-1 31

19. Kohút, J., Hradǐs, M.: TS-net: OCR trained to switch between text transcription
styles. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol.
12824, pp. 478–493. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86337-1 32

20. Kohút, J., Hradǐs, M., Kǐsš, M.: Towards writing style adaptation in handwriting
recognition (2023)

21. Lavrenko, V., Rath, T.M., Manmatha, R.: Holistic word recognition for handwrit-
ten historical documents. In: First International Workshop on Document Image
Analysis for Libraries. Proceedings, pp. 278–287. IEEE (2004)

22. Li, M., et al.: TROCR: transformer-based optical character recognition with pre-
trained models. In: AAAI 2023, February 2023. https://www.microsoft.com/en-
us/research/publication/trocr-transformer-based-optical-character-recognition-
with-pre-trained-models/

23. Liao, H.: Speaker adaptation of context dependent deep neural networks. In: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
7947–7951. IEEE (2013)

24. Marti, U.V., Bunke, H.: The Iam-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5, 39–46 (2002)

25. Meng, Z., Gaur, Y., Li, J., Gong, Y.: Speaker adaptation for attention-based end-
to-end speech recognition. CoRR abs/1911.03762 (2019), http://arxiv.org/abs/
1911.03762

26. Meng, Z., Li, J., Gong, Y.: Adversarial speaker adaptation. CoRR abs/1904.12407
(2019). http://arxiv.org/abs/1904.12407

27. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. In: 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR), pp. 1286–1293. IEEE (2019)

28. Nagai, A.: Recognizing Japanese historical cursive with pseudo-labeling-aided
CRNN as an application of semi-supervised learning to sequence labeling. In: 2020
17th International Conference on Frontiers in Handwriting Recognition (ICFHR),
pp. 97–102. IEEE (2020)

29. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), vol. 01, pp. 67–72 (2017). https://doi.org/10.
1109/ICDAR.2017.20

30. Reul, C., Tomasek, S., Langhanki, F., Springmann, U.: Open source handwrit-
ten text recognition on medieval manuscripts using mixed models and document-
specific finetuning. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS 2022. LNCS,
vol. 13237, pp. 414–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06555-2 28

31. Reul, C., Wick, C., Nöth, M., Büttner, A., Wehner, M., Springmann, U.: Mixed
model OCR training on historical Latin script for out-of-the-box recognition and
finetuning. In: The 6th International Workshop on Historical Document Imaging
and Processing, pp. 7–12 (2021)

https://doi.org/10.1007/978-3-030-86337-1_31
https://doi.org/10.1007/978-3-030-86337-1_31
https://doi.org/10.1007/978-3-030-86337-1_32
https://doi.org/10.1007/978-3-030-86337-1_32
https://www.microsoft.com/en-us/research/publication/trocr-transformer-based-optical-character-recognition-with-pre-trained-models/
https://www.microsoft.com/en-us/research/publication/trocr-transformer-based-optical-character-recognition-with-pre-trained-models/
https://www.microsoft.com/en-us/research/publication/trocr-transformer-based-optical-character-recognition-with-pre-trained-models/
http://arxiv.org/abs/1911.03762
http://arxiv.org/abs/1911.03762
http://arxiv.org/abs/1904.12407
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1007/978-3-031-06555-2_28
https://doi.org/10.1007/978-3-031-06555-2_28

286 J. Kohút and M. Hradǐs

32. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. CoRR
abs/1507.05717 (2015). http://arxiv.org/abs/1507.05717

33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

34. Soullard, Y., Swaileh, W., Tranouez, P., Paquet, T., Chatelain, C.: Improving text
recognition using optical and language model writer adaptation. In: 2019 Inter-
national Conference on Document Analysis and Recognition (ICDAR), pp. 1175–
1180. IEEE (2019)

35. Strauß, T., Leifert, G., Labahn, R., Hodel, T., Mühlberger, G.: ICFHR 2018 compe-
tition on automated text recognition on a read dataset. In: 2018 16th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 477–482. IEEE
(2018)

36. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

37. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: Lladós, J., Lopresti, D., Uchida, S. (eds.)
ICDAR 2021. LNCS, vol. 12823, pp. 112–126. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86334-0 8

38. Wigington, C., Stewart, S., Davis, B., Barrett, B., Price, B., Cohen, S.: Data
augmentation for recognition of handwritten words and lines using a CNN-LSTM
network. In: 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), vol. 1, pp. 639–645. IEEE (2017)

39. Wolf, F., Fink, G.A.: Self-training of handwritten word recognition for synthetic-
to-real adaptation. In: 2022 26th International Conference on Pattern Recognition
(ICPR), pp. 3885–3892. IEEE (2022)

40. Yu, D., Yao, K., Su, H., Li, G., Seide, F.: Kl-divergence regularized deep neural
network adaptation for improved large vocabulary speech recognition. In: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
7893–7897. IEEE (2013)

http://arxiv.org/abs/1507.05717
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-030-86334-0_8
https://doi.org/10.1007/978-3-030-86334-0_8

Incremental Teacher Model with Mixed
Augmentations and Scheduled Pseudo-label

Loss for Handwritten Text Recognition

Masayuki Honda1 , Hung Tuan Nguyen1(B) , Cuong Tuan Nguyen1 ,
Cong Kha Nguyen2 , Ryosuke Odate2 , Takashi Kanemaru2 ,

and Masaki Nakagawa1

1 Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, Japan
s183611u@st.go.tuat.ac.jp, {fx7297,fx4102}@go.tuat.ac.jp,

nakagawa@cc.tuat.ac.jp
2 Hitachi Ltd., Tokyo, Japan

{cong_kha.nguyen.zz,ryosuke.odate.qs,

takashi.kanemaru.kf}@hitachi.com

Abstract. We propose a training framework for deep neural network-based hand-
written text recognizers using both labeled and unlabeled data. The proposed
framework is a semi-supervised learning (SSL) framework based on Mixed Aug-
mentations and Scheduled Pseudo-Label loss. Mixed Augmentations provide
weakly and strongly transformed variants from each original sample so that the
pseudo-label loss is computed between these two variants. The Scheduled Pseudo-
Label loss is used to gradually include the pseudo-label loss into the optimizer
to avoid the negative effect of incorrect pseudo labels. First, a student model is
pre-trained by labeled samples and used to initiate a teacher model. Subsequently,
the teacher model predicts a pseudo label from every weakly transformed variant.
On the other hand, the student model is trained using the Scheduled Pseudo-
Label loss. Next, the teacher model is incrementally updated using the student
model. Finally, it is used to evaluate. We term the framework Incremental Teacher
Model. The proposed framework was applied to four architectures of distinct
handwriting recognizers. For almost every architecture, the recognizer trained
by our method outperforms those trained by well-known SSL methods, namely
Mean Teacher, Pseudo-Labeling, and FixMatch, evaluated using different ratios
of labeled training samples on the IAM handwriting database.

Keywords: Semi-Supervised Learning · Mixed augmentations · Scheduled
Pseudo-Label loss · Training framework · Handwriting recognition

1 Introduction

Deep neural networks (DNNs) have been extensively studied in the past few decades
and employed in multiple pattern recognition tasks owing to their high performance
when large labeled datasets are available [1–3]. For handwriting recognition, DNNs

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 287–301, 2023.
https://doi.org/10.1007/978-3-031-41685-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_18&domain=pdf
http://orcid.org/0000-0002-7138-9645
http://orcid.org/0000-0003-4751-1302
http://orcid.org/0000-0003-2556-9191
http://orcid.org/0000-0002-2760-8724
http://orcid.org/0000-0002-9467-2275
http://orcid.org/0000-0001-5714-5305
http://orcid.org/0000-0001-7872-156X
https://doi.org/10.1007/978-3-031-41685-9_18

288 M. Honda et al.

have achieved increasing recognition accuracy [4–6] on many benchmark databases [7–
11] of Latin, Arabic, Chinese, Indic, and Japanese scripts. These models require more
labeled samples for trainingwhen the number of parameters is high [12, 13]. On the other
hand, they do not take advantage of unlabeled samples. Unlabeled samples are easier to
collect in large quantities and at a lower cost than labeled samples. For example, the two
new databases of handwritten answers, namely SCUT-EPT [14] and NCUEE-HJA [15],
have 40,000 labeled sentences and more than 190,000 unlabeled sentences, respectively.
Only a few studies have utilized unlabeled samples for handwritten text recognition
[16, 17]. Thus, we aim to create a generalized learning framework for any handwriting
recognizer that satisfies two criteria (i) Trainable with as less labeled data as possible;
(ii) Utilizable for unlabeled and labeled data.

Thus far, semi-supervised learning (SSL) methods have been established and devel-
oped to address the use of unlabeled data. Since the early deep learning era, Pseudo-
Labeling has been proposed and extended for image classification tasks [18]. In the
Pseudo-Labeling method, a pre-trained model is initialized using a small, labeled sub-
set and is then used to predict the pseudo labels of a large unlabeled subset. Next, the
unlabeled subset with the corresponding pseudo labels is used to re-train the model.
Generally, Pseudo-Labeling is similar to the teacher-student training framework, where
the initialized supervised pre-trained model is a teacher model while the training model
is a student model. The teacher model provides pseudo labels for training a student
model with unlabeled input samples. Thus, the handwriting recognizer is optimized on
both the labeled and unlabeled samples using features from the unlabeled samples.

In fact, the Pseudo-Labeling method depends on the quality of the pseudo labels,
as erroneous predictions often appear early in the training process [19]. Handwritten
text recognition (HTR) is considered a sequential labeling task requiring a sequence of
character predictions. It is difficult to employ Pseudo-Labeling for trainingHTR because
misrecognized labels might lead to incorrect predictions in the rest of the sequence.
Hence, we propose a framework, termed the Incremental Teacher Model, to gradually
extend the effect of pseudo labels during the training process. The teacher model is
incrementally updated after each epoch by its student model.

We have not focused on developing a novel handwriting recognizer in this work.
Instead, we employ the proposed framework to train existing handwriting recognition
architectures:ConvolutionalRecurrentNeuralNetwork (CRNN)with connectionist tem-
poral classification (CTC) [20], Attention-based Encoder-Decoder (AED) [21], and Self-
Attention-based CRNN with CTC [22]. These handwriting recognition architectures
utilize unlabeled data using the proposed SSL framework.

The rest of this paper is organized as follows: Sect. 2 reviews related studies on
SSL methods. Section 3 presents our proposed framework with Mixed Augmentations
and Scheduled Pseudo-Label loss. Section 4 presents the experiments and results of
the proposed framework applied to different HTR architectures. In Sect. 5, we draw
conclusions.

Incremental Teacher Model with Mixed Augmentations 289

2 Related Works

AlthoughDNNs have been continuously improved for higher performance, they strongly
dependon large-scale labeled datasets for training. In fact, it is difficult to efficiently adapt
them to new tasks, such as recognizing unseen or seen characters written in a newwriting
style. During the last few years, meta-learning has been widely studied to make DNNs to
learn new patterns with a few training samples [23]. It is a wide field of machine learning
that includes few-shot learning, one-shot learning, and domain adaptation [17, 24, 25].
Among them, the domain adaptation (DA) methods, particularly methods following the
SSL approach, are promising to generalize a handwriting recognizer using both labeled
and unlabeled data. Specifically, we focus on the inner-domain handwriting recognition
task where training and testing sets have the same categories.

Two main approaches are studied based on these assumptions: consistency reg-
ularization and entropy minimization. Consistency regularization is mainly based on
data augmentation and weight noise by dropout, as small changes should not signifi-
cantly affect the prediction made by the network. The consistency loss measures the
distance between the network predictions, with and without augmentations for input
samples. Some well-known methods in this approach are the �-Model [26], Temporal
Ensembling [26], Mean Teacher [27], and Virtual Adversarial Training (VAT) [28].

The �-Model employs stochastic augmentation to provide minor changes in each
input sample. It also applies dropout tomake noise on theweights of a givenDNNmodel.
The distance between the predictions of the original sample (without either augmentation
or dropout) and its variant (with both augmentation and dropout) is then minimized.
While the �-Model requires two executions of the network for every sample, Temporal
Ensembling keeps and updates the ensembled prediction of every sample during the
training process; thus, its computation cost is lower than that of the �-Model. Mean
Teacher focuses on updating the ensembled model instead of tracing the ensembled
patterns so that it helps converge faster than Temporal Ensembling. On the other hand,
VAT approximates how augmentations to be employed on each input sample affect the
output class distribution most significantly.

Entropy minimization prevents the decision boundary from lying near the low-
confidence prediction region in the feature space. A simple loss term is commonly
used to minimize the entropy for unlabeled data with all the classes. Two well-known
methods based on entropy minimization are Pseudo-Labeling [18] and Label Propaga-
tion [29]. Pseudo-Labeling trains a student model based on a teacher model’s predictions
or pseudo labels, in which the teacher model is pre-trained using supervised learning.
On the other hand, Label Propagation is to diffuse from labeled samples to unlabeled
ones according to the propagation weights computed from pairwise similarity scores.

Recent studies have combined consistency regularization and entropy minimization,
such as MixMatch [30] and FixMatch [31]. These methods apply multiple augmen-
tations on a single unlabeled sample and force the model to predict these augmented
input data similarly. By combining numerous augmentations, the trained model extracts
invariant features to improve the overall performance even using a small number of
labeled samples.

290 M. Honda et al.

3 Methodology

By extending the Pseudo-Labeling method, we propose an SSL framework integrated
with mixed augmentations and multiple losses, as shown in Fig. 1. First, an initial
handwriting recognizer as a student model is prepared using labeled data by supervised
learning. Second, mixed augmentations are applied to generate a weakly transformed
variant and a strongly transformed variant from each original sample. Third, the teacher
model produces a pseudo label from the weakly augmented variant and then computes a
pseudo-label loss on the strongly augmented variant. For the prediction from the teacher
model, the special tokens of padding or blank [PAD], start of sequence [SOS], and
unknown [UNK] should not exist. These tokens are eliminated from the predictions
to maintain the quality of the pseudo labels. Fourth, the student model is trained by
minimizing both the supervised and pseudo-label losses with a flexible ratio. The ratio
depends on the rate between labeled and unlabeled samples in a single trainingminibatch
and the number of trained epochs. Note that the pseudo-label loss is gradually used to
update the handwriting recognizer to avoid the negative effect of incorrect pseudo labels,
termed the Scheduled Pseudo-Label loss. Finally, the teacher model was incrementally
updated using the student model and used for evaluation.

Although theMean Teacher and Pseudo-Labelingmethods are the basis of this study,
they follow different training schemes. Thus, we modified their training schemes similar
to our model to achieve a fair comparison with the proposed framework in this study.

Fig. 1. Workflow of our proposed Incremental Teacher Model with Mixed Augmentations and
Scheduled Pseudo-Label loss. The single-line arrows illustrate supervised learning using labeled
samples, whereas the double-line arrows represent SSL with unlabeled samples.

3.1 Incremental Teacher Model

Updating of the models that generate pseudo labels is handled differently depending on
the research and application. In [18], the teacher model is commonly pre-trained and
fixed; therefore, the predicted pseudo labels are stable for training the student model.
This approach is good in the case where the teacher model is sufficiently trained on

Incremental Teacher Model with Mixed Augmentations 291

labeled data. In practice, however, many labeled samples are not always available. On
the other hand, methods that compute consistency regularization, such as Mean Teacher,
can simultaneously train the student model and the teacher model that generates the
pseudo labels in the training process. However, it might update the teacher model with
a worse student model in the early stage of the training process. Thus, we propose to
update the teacher model with the student model whenever the validation accuracy is
improved at the end of each training epoch. The teacher model is updated by copying
the weighted parameters from the student model. Finally, the teacher model was used
for evaluation. To the best of our knowledge, this is the first work applying incremental
updates of the teacher model for handwriting recognition using pseudo labels.

A well-initialized pre-trained model is essential to prepare a good teacher model to
enhance the performance of the student model later. Because RotNet has been demon-
strated to be effective for general images with complex background [32], we expected
that it would be suitable for HTR with simple background. Moreover, the handwritten
word image ratio was in range of general image ratio. Therefore, we employed RotNet,
a self-supervised learning method for predicting the rotation of images, as a pretext task.
This initialization method provides more general network weights to achieve a higher
accuracy using supervised learning or SSL in the later training process.

3.2 Mixed Augmentations

In recent years, augmentation has played an important role in avoiding overfitting during
the DNN training process [33] since it provides a large number of variants from a small
number of samples. With more variants, a well-trained DNN model with augmentation
tends to perform better extraction and focus on the invariant features. Since augmen-
tation does not require newly collected data, it is commonly employed as an efficient
method to improve the DNN performance. On the other hand, sequence-to-sequence
contrastive learning (SeqCLR) has been proposed to employ stochastic image augmen-
tation to generate two different variants from a single input sample [16]. Subsequently,
the mapping between two extracted feature sequences is computed and considered the
contrastive loss for optimization. In addition, augmentations are employed to generate
multiple variants of a single sample for training based on prediction consistency [30].

In this study, we used multiple augmentation methods to generate two variants from
a sample, which was named as “Mixed Augmentations”. One variant used smaller defor-
mations to obtain a pseudo label, while the other had larger deformations. Note that the
stochastic image augmentation in SeqCLR randomly generates two variants of an origi-
nal sample using a single transforming pipeline repeatedly. Owing to the asymmetry of
the proposed framework, two generated variants in our method are normally generated
by two different transforming pipelines (weak and strong).

Augmentations used in general image recognition, such as FixMatch [31], are com-
posed of geometric transforms for weak and multiple mixed transformations for strong
transforms. For handwriting recognition, however, geometric transforms are limited to
maintain the readability of the augmented handwritten images. Thus, we use four aug-
mentations, namely rotation, crop, perspective, and Gaussian blur, which are commonly
employed in handwriting recognition studies, as shown in Table 1. These settings are

292 M. Honda et al.

based on comparative experiments and applied consistently in experiments with many
HTR architectures and in different labeled ratio scenarios.

Table 1. Details of Mixed Augmentations.

Augmenta-tion Description Main parameter Weak
transformation

Strong
transformation

Rotation Randomly rotates
the input text image
between 0 and a
parameter value

Rotation degree
(deg)

15 15

Crop Crops and enlarges
a random area of
the image by a
specified
percentage. Note
that the aspect ratio
is maintained

Crop percentage
(%)

- 80

Perspective Generates a
perspective image
with randomly
transformed vertex
positions according
to the specified
distortion ratio

Distortion
percentage (%)

- 30

Gaussian Blur Blurs an image by
applying a
Gaussian filter. The
blur strength is
specified by
standard deviation

Sigma - 2

3.3 Scheduled Pseudo-Label Loss

For training samples X with corresponding labels Y, the supervised loss is based on the
negative log-likelihood as follows:

LSL =
∑

(X ,Y)

−logp(Y |X) (1)

The pseudo-label loss for the unlabeled training samples X is defined as follows:

LPL =
∑

(X)
− logp

(
Y |X

)
with Y = teacher(X) (2)

Incremental Teacher Model with Mixed Augmentations 293

Here, X and X are the weakly and strongly transformed variants from X, respectively.
The pseudo labels Y are predicted by the teacher model on X . Thus, the pseudo-label
loss is based on the conditional probabilities of the pseudo-label Y for the strongly

transformed variants X .
We introduce scheduling of the loss calculations for the pseudo labels of the unlabeled

samples. It is aimed to avoid the problem that the target model does not converge due to
the generation of incorrect pseudo labels in the early stages of training. Label scheduling
has been proposed besides Pseudo-Labeling, and several derivations have been consid-
ered in other related studies. In this study, we applied the Scheduled Pseudo-Label loss
as follows:

LSPL = 1

n
LSL + α(t)

1

n′ LPL (3)

where n is the total number of labeled samples, n’ is the total number of unlabeled
samples, t is the training epoch and α(t) is the scheduled weight for LPL that depends
on T1, T2, and A as shown below:

α(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0

t−T1
T2−T1

A

A

t < T1

T1 ≤ t < T2

T2 ≤ t

(4)

Thus, LPL begins to affect LSPL when the number of epochs crosses T1 and mono-
tonically increases until it reaches T2; then, A is the highest weight of LPL. In this study,
we applied T1 of 50, T2 of 250, and A of 1, so that LPL is used from the midpoint of
learning on the labeled data. Note that the current hyperparameters of the scheduled
pseudo-label loss were experimentally chosen.

4 Experiments

4.1 IAM Handwriting Database and Scenarios for SSL

We used handwritten English word-level patterns of the IAM database for evaluation
because they have been used as the benchmark for many HTR studies [7]. Although
the SSL methods have been employed for many recognition tasks, they have not been
widely applied in handwriting recognition as mentioned in the review section. For hand-
writing recognition, a sequence of characters is required for prediction instead of single
characters. Thus, preliminary experiments at the word level are the most straightforward
HTR task.

Table 2 shows four splitting scenarios derived from the RWTH Aachen University
split1 of the IAM handwriting database, where Words, Pages, and Writers denote the
numbers of labeled and unlabeled samples in the training set, the number of samples

1 https://www.openslr.org/56/.

https://www.openslr.org/56/

294 M. Honda et al.

in validation set, and that in the testing set, respectively. There is no writer duplication
between the labeled and unlabeled samples. These scenarios are prepared to evaluate
the SSL methods with our handwriting recognizers. These splitting scenarios satisfy the
writer-independent requirement, which is commonly used to benchmark the handwritten
English text recognizers.

Scenario 1 is the same as the supervised learning configuration without unlabeled
samples. Scenarios 2, 3, and 4 are prepared to randomly select 50%, 10%, and 1% of the
training set as the labeled training sets, respectively, while the rest is used as unlabeled
training sets.Note that the labeled training set of Scenario 4 (1% labeled) does not include
the eight character categories, which is over 10% of all character categories (8/79). Thus,
Scenario 4 is the most challenging with unseen categories and writing styles.

Table 2. Details of SSL scenarios on IAM handwriting database.

Scenarios for SSL IAM Subsets

Training set Validation
set

Testing
setLabeled Unlabeled

Scenario 1
(100% labeled
samples)

Words 55,081 0 8,895 25,920

Pages 747 0 116 336

Writers 283 0 56 161

Scenario 2
(50% labeled
samples)

Words 27,727 27,354 Same as
above

Same as above

Pages 373 374

Writers 139 144

Scenario 3
(10% labeled
samples)

Words 5,364 49,717 Same as
above

Same as above

Pages 72 675

Writers 27 256

Scenario 4
(1% labeled
samples)

Words 551 54,530 Same as above Same as above

Pages 8 739

Writers 2 281

4.2 Handwritten Text Recognition Architectures

As recognition models tested in the experiments, we used four architectures of handwrit-
ing recognizers. The first is aCRNNusingResNet as a feature extractor andBidirectional
Long Short-Term Memory (BLSTM) with CTC [20]. The second is another general
encoder–decoder architecture, where an attention layer guides the decoder (AED) [21].
The third is a Deep Convolutional Recurrent Neural Network (DCRN) derived from
AED with a simple Convolutional Neural Network (CNN) and a stacked BLSTM that
provides a deeper sequential encoder [22]. The fourth is a CRNN using multiple Self-
Attention layers for the sequential encoder (SelfAttn) [22]. These are listed in Table 3
with each major component.

Incremental Teacher Model with Mixed Augmentations 295

Table 3. Main components of four HTR architectures.

Components HTR Architectures

CRNN AED DCRN SelfAttn

Feature Extractor
(Local Encoder)

ResNet ResNet CNN CNN

Sequential Encoder BLSTM BLSTM Stacked
BLSTM

BLSTM
+SelfAttn

Sequential Decoder CTC LSTM
+Attention

LSTM
+Attention

CTC

4.3 Results of Different Recognition Architectures

To the best of our knowledge, no related research applied similar techniques to the HTR
problem. The related studies were proposed for general image classification. For com-
parison, we experimented using Mean Teacher [27] and Pseudo-Labeling [18] because
the proposed method is derived from them. Furthermore, we experimented using Fix-
Match [31] as this is one of the most efficient SSL methods. Note that we modified these
SSL methods to match with the training scheme used for our method.

Table 4 reports the results of four HTR architectures trained by different frameworks
in each scenario. The baseline column shows the character accuracy rate (CAR) of the
HTR architectures trained by only labeled samples, while the other columns show the
CARs of trained HTR architectures using Mean Teacher, Pseudo-Labeling, FixMatch,
and Incremental TeacherModel. For Pseudo-Labeling, we followed the default setting of
scheduling parameters reported in [18]. Note that these reported results are on the IAM
word-level testing set. The recognition rates shown here seem inferior to the state-of-
the-art results [34] since these rates are obtained without word dictionaries and language
models.

Overall, AED produced the best results in all scenarios with any training framework
(bold),whileCRNN typically produced the second-best results (underline). These results
suggest that using a ResNet-based feature extractor seems to be better than the simple
CNN. Moreover, the high complex sequential encoders of DCRN and SelfAttn did not
achieve an accuracy as high as that of the simple sequential encoders of AED andCRNN.
The performance of all the HTR architectures decreased significantly in Scenario 4 since
the labeled training set did not cover the character set.

For the related SSL methods, Pseudo-Labeling outperformed Mean Teacher and
FixMatch in almost all scenarios with all the HTR architectures. Note that in the case
of the Mean Teacher and FixMatch methods, the performance of the HTR architecture
is deteriorated in some cases, which is shown by ↓ in Table 4. Mean Teacher and
FixMatch mainly rely on the loss calculated from the distribution comparison between
pseudo labels and output, as the consistency cost is unsuitable for text line recognition.
It is considered difficult to capture the consistency because the output before decoding is
a time series of classification, which varies significantly depending on the augmentation

296 M. Honda et al.

Table 4. Character accuracy rate (%) of HTR architectures trained by Supervised Learning,Mean
Teacher, Pseudo-Labeling, FixMatch, and Incremental Teacher Model in four SSL scenarios.

with positional information. Therefore, a method that expands on the pseudo labels is
effective, and additional study is required to introduce consistency costs.

For every architecture except SelfAttn, the recognizer trained by the Incremental
Teacher Model outperforms the recognizers trained by the well-known SSL methods:
Mean Teacher, Pseudo-Labeling, and FixMatch in every scenario using only 50%, 10%,
or 1% labeled training samples on the IAM handwriting database, respectively. The
SelfAttn architecture with a simple feature extractor and a complex sequential encoder
does not perform well in Scenarios 2 and 4. Mixed Augmentations seem to be helpful
for the feature extractor rather than the sequential encoder.

Figure 2 illustrates the changes in the recognition accuracy with the increase in the
ratio of labeled data in the training set. The Incremental Teacher Model increases the
accuracy of the AED architecture by at most 15.7 percentage points (p.p.) in Scenario 3.
Despite using the 1% labeled samples for training, the accuracy of AED is increased by
6.4 p.p. Compared to Pseudo-Labeling, it improves the HTR accuracy by at least 0.9 and
at most 6.5 p.p. in Scenarios 2 and 3, respectively. These results show that the proposed
framework could leverage unlabeled data to improve the HTR efficiency.Moreover, they
give a clue about the possibility of applying HTR in practice on an unlabeled dataset by
labeling only a small portion of the dataset.

Table 5 lists six word-level samples from the IAM handwriting database with the
predictions from four architectures trained by Incremental Teacher Model. For short
words such as “of”, “the” and “friend”, CRNNandAEDcorrectly predictedwhileDCRN
and SelfAttn produced misrecognitions. For longer words, even CRNN andAED did not
perform correctly. The predictions by AED differed from the ground truth by one to two

Incremental Teacher Model with Mixed Augmentations 297

22

27

32

37

42

47

52

57

62

67

72

77

82

1% 10% 50% 100%

C
h

a
ra

c
te

r
A

c
c
u

ra
c
y

 R
a
te

 (
%

)

Ratio of the labeled training set

Baseline

Mean Teachers

Pseudo Labeling

FixMatch

Incremental Teacher Model

Fig. 2. Character accuracy rate (%) of AED trained by different methods in four SSL scenarios.

characters while those by CRNN had more differences. The predictions by DCRN were
shorter than the ground truth which might suggest that the DCRN capability is limited
in the length of its output sequences. The SelfAttn architecture performed well with its
predictions being different from the ground truth by only one to two characters.

Table 5. IAM word-level samples with predictions from four architectures trained using
Incremental Teacher Model in Scenario 3.

Samples

Ground
truth of the friend original natural respectability

CRNN of the friend oiginal malural eppectabet
AED of the friend original natusal expectability
DCRN of He find logial what repather
SelfA n of he friend origimal matual nespectability

4.4 Results of Different Augmentation Configurations

Table 6 shows our search for weak/strong transformation settings, where we trained the
AED architecture on Scenario 3 (10% of the training samples have been labeled). The
most basic augmentation is rotation by at most 15 degrees (Rot15). Thus, we conducted
a series of experiments with Rot15 as weak and strong transformations and inserted

298 M. Honda et al.

other augmentations into the strong transformation, such as Crop80 (randomly removed
at most 20% of an image), Blur2 (randomly applied Gaussian blur with the highest
value of sigma of 2), and Per30 (randomly and vertically distorted an image by at
most 30%). By employing more augmentations on the strong transformation, the AED
performance increases from R1 to R5. Moreover, we tried to eliminate Rot15 from weak
transformation; however, R6 performs worse than R5 at 2.3 p.p. Next, we modified
the parameters used for augmentations from the settings of R5 to make R7. The small
changes in the parameters might reduce the final recognition accuracy. Moreover, we
tested to include more augmentations in the weak transformation. As shown in the R8
and R9 rows, the recognition accuracy declines when more augmentations are applied.

Table 6. Ablation studies for different configurations of Mixed Augmentations in Scenario 3.

Weak transformation Strong transformation Character
accuracy (%)

Result IDs

Rot15 Rot15 67.79 R1

Rot15 Rot15+Crop80 69.10 R2

Rot15 Rot15+Crop80+Blur2 69.88 R3

Rot15 Rot15+Crop80+Per30 70.15 R4

Rot15 Rot15+Crop80+Per30+Blur2 72.57 R5

– Rot15+Crop80+Per30+Blur2 70.25 R6

Rot15 Rot30+Crop70+Per40+Blur2 70.70 R7

Rot15+Crop90 Rot15+Crop80+Per30+Blur2 68.55 R8

Rot15+Crop80+Per30+Blur2 Rot15+Crop80+Per30+Blur2 67.41 R9

Thus, we might assume that simple augmentations are suitable for weak trans-
formations. Moreover, we still need to search for the optimal parameters of Mixed
Augmentations.

4.5 Discussions

Based on the experiments, the AED model outperformed other models, which may
be owing to its components of a ResNet-based feature extractor and an LSTM-based
decoder with attention. These components are large and deep to extract useful features
for recognition and correctly focus on character regions. Thus, they are commonly used
to build handwriting recognizers. Because these experiments were on word-level pat-
terns only, further experiments on sentence-level are required to verify the efficacy of
the proposed framework. We believe that designing the consistency cost for long hand-
written text is challenging. As it is impractical to investigate all types of augmentation
in this study, we selected and applied the augmentations commonly used with better
performance on HTR. However, we expect that other augmentations are also possible to
be employed in the proposed framework.

Incremental Teacher Model with Mixed Augmentations 299

5 Conclusions

We proposed Incremental TeacherModel and demonstrated its effectiveness. It produces
a high recognition accuracy for handwritten text recognition even when only a part of the
training set is labeled. It comprises Mixed Augmentations and Scheduled Pseudo-Label
loss for handwritten text recognition. Instead of using a fixed pre-trained handwritten text
recognition (HTR) model as a teacher model to generate pseudo labels, the proposed
framework incrementally updates the teacher model using the latest recognizer. We
applied the proposed framework to four DNN architectures for handwriting recognition
and compared it with well-known semi-supervised learning methods: Mean Teacher,
Pseudo-Labeling, and FixMatch. For almost every architecture, the recognizer trained
by the Incremental Teacher Model outperforms the recognizers trained by other well-
knownSSLmethods in every scenariowhen using only 50%, 10%, or 1% labeled training
samples on the IAMhandwriting database.However,weonly confirmed the effectiveness
of our framework for word-level English, so we plan to examine the framework for
text-line-level English as well as for other languages in future works.

Acknowledgement. We thank anonymous reviewers for helpful comments on the manuscript.
This work is partially supported by the joint research budget from Hitachi, Ltd. and Kakenhi (S)
18H05221.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional
neural networks. In: The 25thNeural Information Processing Systems, pp. 1106–1114 (2012).
https://doi.org/10.1145/3065386

2. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: The 9th ISCA Speech
Synthesis Workshop, p. 125 (2016). https://doi.org/10.1109/ICASSP.2009.4960364

3. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from the 2015
MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach. Intell. 39, 652–663
(2017). https://doi.org/10.1109/TPAMI.2016.2587640

4. Graves, A., Schmidhuber, J.J.: Offline handwriting recognition with multidimensional recur-
rent neural networks. In: The 21st International Conference onNeural Information Processing
Systems, pp. 545–552 (2008). https://doi.org/10.1007/978-1-4471-4072-6

5. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text
recognition? In: The 14th International Conference on Document Analysis and Recognition,
pp. 67–72 (2017). https://doi.org/10.1109/ICDAR.2017.20

6. Bluche, T.: Joint line segmentation and transcription for end-to-end handwritten para-
graph recognition. In: The 30th International Conference on Neural Information Processing
Systems, pp. 838–846 (2016). https://doi.org/10.5555/3157096.3157190

7. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline hand-
writing recognition. Int. J. Doc. Anal. Recognit. 5, 39–46 (2003). https://doi.org/10.1007/s10
0320200071

8. Shivram, A., Ramaiah, C., Setlur, S., Govindaraju, V.: IBM-UB-1: a dual mode unconstrained
english handwriting dataset. In: The 12th International Conference on Document Analysis
and Recognition, pp. 13–17 (2013). https://doi.org/10.1109/ICDAR.2013.12

https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICASSP.2009.4960364
https://doi.org/10.1109/TPAMI.2016.2587640
https://doi.org/10.1007/978-1-4471-4072-6
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.5555/3157096.3157190
https://doi.org/10.1007/s100320200071
https://doi.org/10.1109/ICDAR.2013.12

300 M. Honda et al.

9. Mahmoud, S.A., et al.: KHATT: an open Arabic offline handwritten text database. Pattern
Recognit. 47, 1096–1112 (2014). https://doi.org/10.1016/j.patcog.2013.08.009

10. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: CASIA online and offline Chinese handwriting
databases. In: The 11th International Conference on Document Analysis and Recognition,
pp. 37–41 (2011). https://doi.org/10.1109/ICDAR.2011.17

11. Kumar Bhunia, A., et al.: Handwriting trajectory recovery using end-to-end deep encoder-
decoder network. In: The 24th International Conference on Pattern Recognition, pp. 3639–
3644 (2018). https://doi.org/10.1109/ICPR.2018.8546093

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The
29th IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016).
https://doi.org/10.1109/CVPR.2016.90

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolu-
tional networks. In: The 30th IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

14. Zhu, Y., Xie, Z., Jin, L., Chen, X., Huang, Y., Zhang, M.: SCUT-EPT: new dataset and
benchmark for offlineChinese text recognition in examination paper. IEEEAccess.7, 370–382
(2019). https://doi.org/10.1109/ACCESS.2018.2885398

15. Nguyen, H.T., Nguyen, C.T., Oka, H., Ishioka, T., Nakagawa, M.: Handwriting recognition
and automatic scoring for descriptive answers in Japanese language tests. In: Porwal, U.,
Fornés, A., Shafait, F. (eds.) ICFHR 2022. LNCS, vol. 13639, pp. 274–284. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-21648-0_19

16. Aberdam, A., et al.: Sequence-to-sequence contrastive learning for text recognition. In: The
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15297–15307
(2021). https://doi.org/10.1109/CVPR46437.2021.01505

17. Kang, L., Rusiñol, M., Fornés, A., Riba, P., Villegas, M.: Unsupervised adaptation for
synthetic-to-real handwritten word recognition. In: The IEEE/CVF Winter Conference on
Applications of Computer Vision (2020). https://doi.org/10.1109/WACV45572.2020.909
3392

18. Lee, D.-H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep
neural networks. In: ICML 2013 Workshop: Challenges in Representation Learning, pp. 1–6
(2013)

19. Rizve,M.N., Duarte, K., Rawat, Y.S., Shah,M.: In defense of pseudo-labeling: an uncertainty-
aware pseudo-label selection framework for semi-supervised learning. In: The 9th Interna-
tional Conference on Learning Representations (2022). https://doi.org/10.48550/arXiv.2101.
06329

20. Xie, Z., Sun, Z., Jin, L., Feng, Z., Zhang, S.: Fully convolutional recurrent network for
handwritten Chinese text recognition. In: The 23rd International Conference on Pattern
Recognition, pp. 4011–4016 (2016). https://doi.org/10.1109/ICPR.2016.7900261

21. Sueiras, J., Ruiz, V., Sanchez, A., Velez, J.F.: Offline continuous handwriting recognition
using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). https://
doi.org/10.1016/J.NEUCOM.2018.02.008

22. Ly, N.T., Ngo, T.T., Nakagawa, M.: A self-attention based model for offline handwritten text
recognition. In: Wallraven, C., Liu, Q., Nagahara, H. (eds.) ACPR 2022. LNCS, vol. 13189,
pp. 356–369. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02444-3_27

23. Munkhdalai, T., Yu, H.: Meta networks. In: The 34th International Conference on Machine
Learning, pp. 2554–2563 (2017). https://doi.org/10.48550/arXiv.1703.00837

24. Souibgui, M.A., Fornés, A., Kessentini, Y., Megyesi, B.: Few shots are all you need: a pro-
gressive learning approach for low resource handwritten text recognition. Pattern Recogn.
Lett. 160, 43–49 (2022). https://doi.org/10.1016/J.PATREC.2022.06.003

https://doi.org/10.1016/j.patcog.2013.08.009
https://doi.org/10.1109/ICDAR.2011.17
https://doi.org/10.1109/ICPR.2018.8546093
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/ACCESS.2018.2885398
https://doi.org/10.1007/978-3-031-21648-0_19
https://doi.org/10.1109/CVPR46437.2021.01505
https://doi.org/10.1109/WACV45572.2020.9093392
https://doi.org/10.48550/arXiv.2101.06329
https://doi.org/10.1109/ICPR.2016.7900261
https://doi.org/10.1016/J.NEUCOM.2018.02.008
https://doi.org/10.1007/978-3-031-02444-3_27
https://doi.org/10.48550/arXiv.1703.00837
https://doi.org/10.1016/J.PATREC.2022.06.003

Incremental Teacher Model with Mixed Augmentations 301

25. Chakrapani Gv, A., Chanda, S., Pal, U., Doermann, D.: One-shot learning-based handwritten
word recognition. In: Palaiahnakote, S., Sanniti di Baja, G.,Wang, L., Yan,W.Q. (eds.) ACPR
2019. LNCS, vol. 12047, pp. 210–223. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-41299-9_17

26. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: The 5th Interna-
tional Conference on Learning Representations (2016). https://doi.org/10.48550/arXiv.1610.
02242

27. Tarvainen,A.,Valpola,H.:Mean teachers are better rolemodels:Weight-averaged consistency
targets improve semi-supervised deep learning results. In: The 31st International Conference
on Neural Information Processing Systems, pp. 1195–1204 (2017). https://doi.org/10.48550/
arxiv.1703.01780

28. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell.
41, 1979–1993 (2017). https://doi.org/10.48550/arxiv.1704.03976

29. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised
learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5065–5074 (2019). https://doi.org/10.1109/CVPR.2019.00521

30. Berthelot, D., Carlini, N., Goodfellow, I., Oliver, A., Papernot, N., Raffel, C.: MixMatch:
a holistic approach to semi-supervised learning. In: The 33rd International Conference on
Neural Information Processing Systems, pp. 5049–5059 (2019). https://doi.org/10.48550/
arXiv.1905.02249

31. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and con-
fidence. In: The 34th International Conference on Neural Information Processing Systems,
pp. 596–608 (2020). https://doi.org/10.5555/3495724.3495775

32. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting
image rotations. In: The 6th International Conference on Learning Representations (2018).
https://doi.org/10.48550/arXiv.1803.07728

33. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J.
Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0

34. Bhunia, A.K., Das, A., Bhunia, A.K., Kishore, P.S.R., Roy, P.P.: Handwriting recognition in
low-resource scripts using adversarial learning. In: The IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 4762–4771 (2019). https://doi.org/10.1109/
CVPR.2019.00490

https://doi.org/10.1007/978-3-030-41299-9_17
https://doi.org/10.48550/arXiv.1610.02242
https://doi.org/10.48550/arxiv.1703.01780
https://doi.org/10.48550/arxiv.1704.03976
https://doi.org/10.1109/CVPR.2019.00521
https://doi.org/10.48550/arXiv.1905.02249
https://doi.org/10.5555/3495724.3495775
https://doi.org/10.48550/arXiv.1803.07728
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/CVPR.2019.00490

AFFGANwriting: A Handwriting Image
Generation Method Based
on Multi-feature Fusion

Heng Wang1,2,3 , Yiming Wang1,2,3 , and Hongxi Wei1,2,3(B)

1 School of Computer Science, Inner Mongolia University, Hohhot 010021, China
2 Provincial Key Laboratory of Mongolian Information Processing Technology,

Hohhot, China
3 National and Local Joint Engineering Research Center of Mongolian Information

Processing Technology, Hohhot, China

cswhx@imu.edu.cn

Abstract. Recently, reliable quality images can be generated due to the
development of adversarial generative networks. Nevertheless, computer-
generated images are still not comparable to humans in terms of hand-
writing image generation. In this paper, a novel method (i.e. AFFGAN-
writing) based on multi-scale features fusion has been proposed for hand-
writing image generation. In AFFGANwriting, a style encoder based on
VGG19 has been designed to extract features in different scales. In this
way, a variety of global features (e.g. stroke thickness, inclination and so
on) and local features (e.g. continuous strokes, personalized writing and
so forth) can be obtained. After that, the global features and the local
features can be fused together to generate much more realistic hand-
writing images by multiple feature fusion modules of AFFGANwriting.
Experimental results demonstrate that the proposed method can be com-
petent for the task of handwriting images generation and outperforms
various baseline and state-of-the-art methods. The code is available at:
https://github.com/wh807088026/AFFGanWriting.

Keywords: handwriting image generation · feature fusion · generative
adversarial network · style encoder

1 Introduction

Handwriting image generation is an attractive field. Its aim is to generate realistic
handwriting image according to a specified text and a certain style. The gener-
ated handwriting images can be used for data augmentation so as to improve the
performance of handwritten text recognition. In the literature, the approaches
of handwriting image generation can be divided into two categories: online gen-
eration and offline generation. With regard to the online handwriting generation
approaches, the sequence-based models (e.g. RNN) were extensively used and
trained by a dataset with stroke sequence information. For the offline hand-
writing generation approaches, generative adversarial networks (GANs) were
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 302–312, 2023.
https://doi.org/10.1007/978-3-031-41685-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_19&domain=pdf
http://orcid.org/0000-0002-0007-3483
http://orcid.org/0009-0006-9994-3691
http://orcid.org/0000-0002-2570-4544
https://github.com/wh807088026/AFFGanWriting
https://doi.org/10.1007/978-3-031-41685-9_19

AFFGANwriting 303

generally utilized and trained by a dataset of word images and labels. Since a
dataset of word images with labels are easier to be collected, offline handwriting
generation gets more attention than online handwriting generation. Moreover,
offline handwriting generation approaches are able to directly produce handwrit-
ing images.

In this paper, we concentrate on obtaining word images by means of offline
handwriting generation. At present, the most representative word-level genera-
tion model is GANwriting [1]. However, the major drawback of GANwriting is
suffering from simplicity of writing style. To solve the above problem of GAN-
writing, a novel handwriting image generation method (called AFFGANwriting)
has been proposed in this paper. To be specific, a well-designed style encoder
in AFFGANwriting was used for obtaining multi-scale features including global
features and local features. Furthermore, multiple fusion modules in AFFGAN-
writing were utilized to combine the global features with the local features. It
results in generating much more realistic handwriting images. The main contri-
butions of our proposed method consist of the following two aspects:

(1) To avoid simplicity of writing style, multi-scale features can be obtained by
a style encoder based on VGG19 in AFFGANwriting. These features can
reflect the overall styles (i.e. global features) and partial styles (i.e. local
features) of handwriting word images.

(2) Three kinds of feature fusion schemes, such as Concatenation Feature Fusion
(CFF), Summation Feature Fusion (SFF) and Attentional Feature Fusion
[2] (AFF), are compared with each other to improve the quality of the
generated handwriting images.

2 Related Work

For the task of online handwriting generation, Graves et al. [3] firstly presented
an approach based on Long Short-Term Memory (LSTM). The approach can
predict the future position of pixels based on their previous location. After that,
Aksan et al. [4] proposed a Variational RNN (VRNN) based method in this
task. The inputs of VRNN are composed of text contents and writing styles.
Subsequently, the VRNN was replaced with a Stochastic Temporal Convolutional
Network by Aksan et al. in [5]. By this way, the problem of homogeneous writing
style can be solved, which results in being superior to VRNN.

Compared with online handwriting generation, the task of offline handwriting
generation only needs a dataset of handwritten images with labels for training,
which is more convenient to collect such a dataset in practice. In recent years,
GANs [6] have been successfully utilized to attain the aim of offline handwriting
generation. Zhu et al. [7] designed a CycleGAN to generate Chinese handwrit-
ing images. Alonso et al. [8] also employed GANs to generate handwriting word
images. But, it suffers from the problem of style collapse. Aiming at the above
problem, a ScrabbleGAN was presented by Fogel et al. in [9] to synthesize hand-
writing words in random styles. In addition, Davis et al. [10] adopted GANs to
generate text line images rather than word images.

304 H. Wang et al.

Recently, Kang et al. [1] proposed a state-of-the-art model (called GAN-
writing) for generating high-quality handwriting word images according to the
provided styles. Whereafter, SmartPatch was put forward based on GANwriting
in [11], in which a novel discriminator was introduced to improve the artifacts
in GANwriting. Meanwhile, Gan et al. [13] proposed a new network structure
called HiGAN, which can simultaneously learn multiple handwriting styles from
different authors. And then, the different styles are randomly integrated together
to generate handwritten word images. Bhunia et al. [12] proposed a transformer
based network called Handwriting Transformers, in which transformers were
used to solve the problem of styles entanglement. Kang et al. [14] proposed a
method to produce long text-line samples with diverse handwriting styles, and
used the new vFID as the evaluation standard. The work of Wang et al. [19]
proposed the FDF module for learning local style variations and addressed the
problem of artifacts by adding a focal frequency loss.

In the above-mentioned approaches, writing styles are only captured from
whole word images. The corresponding styles are considered as global features
of word images. However, some kind of local features of handwriting word images
are ignored during the procedure of handwriting images generation. In contrast,
several meaningful local features not only can be extracted by our proposed
AFFGANwriting but also will be fused with the global features to generate
more realistic handwriting word images.

3 Methodology

The work of this paper is a continuation of GANwriting. First, the GANwriting
generator was added feature fusion modules, which enables the network to fuse
local and global features. Then, the style encoder is improved so that the style
encoder can extract features of different scales. Figure 1 depicts the improved
network structure. The improved network is mainly composed of Style encoder,
Content encoder, Generator and learning objectives.

3.1 Style Encoder

The style encoder S is to separate the author’s handwriting style FS . N = 50
word images Xi of an author Wi is randomly selected. The style encoder S
mainly uses a VGG19 [15] network as the backbone network and encodes the
word images Xi into the corresponding style-latent space. To obtain multi-scale
features, the outputs of multiple intermediate layers (such as ReLU-5 1, ReLU-
4 1 and ReLU-3 1) were fed into the generator simultaneously.

3.2 Content Encoder

The content encoder C can encode a one-hot encoded character vector of a
given character into two vectors, FC and fC . The character-wise encoding FC

is combined with the handwriting style FS output from the style encoder S

AFFGANwriting 305

Fig. 1. The overview of the handwriting generation method

to create FCS , which is sent to the generator. Global string encoding fC is a
one-dimensional vector that is divided into 3 pairs α and β injected into the
generator.

3.3 Generator

This part mainly uses four bilinear interpolations as the upampling layer and
finally passes through a tanh activation function layer. The model should assem-
ble the semantic information of features at different levels, so the generator G
must be able to accept features of different scales and fuse them. Furthermore,
the desired content features cannot be lost in style feature fusion. Therefore, a
feature fusion strategy has been designed to accomplish this aim.

3.4 Feature Fusion

Our approach considers both global style and local style. Let FCS be the com-
bination of the calligraphic style attributes and the textual content information
character-wise. Let FS be the calligraphy style feature map output by style
encoder S. The style encoder S is used to extract multi-scale feature maps,
extract the output FS of ReLU-5 1, ReLU-4 1 and ReLU-3 1 layers and fuse
with FCS . AdaIN [16] is used as a normalization layer and combined with α and
β of Global string encoding fC segmentation to prevent the problem of losing
the style of the content in multiple fusions. In addition, to take full advantage

306 H. Wang et al.

Fig. 2. (a) The structure of Concatenation Feature Fusion (CFF) module; (b) The
structure of Summation Feature Fusion (SFF) module.

of the shallow and deep features, three feature fusion modules are aggregated
in the generator. The three feature fusion modules are interspersed between the
upsampling layers. The feature map size output by the style encoder S interme-
diate layer is aligned with the result size output by the upsampling layer. The
results are entered sequentially. The feature F output by this module is the input
FCS of the next feature fusion module after the upsampling layer. This paper
will introduce three different ways of feature fusion (as shown in Figs. 2 and 3).

3.4.1 Concatenation Feature Fusion (CFF)
Since the dimensions of FCS and the middle layer’s output FS are different,

to facilitate splicing, the output features of the middle layer first go through
MaxPooling to align the dimensions of FS and FCS . Then perform Batch Nor-
malization separately and finally splicing. The dimension of the spliced tensor is
2C ×H ×W and after C Point-wise Conv, the dimension is reduced to the input
FCS dimension C ×H ×W . Thus, the concatenation feature map Z ∈ R

C×H×W

becomes:

Z = PWCov (Concat (BN (FCS) , BN (MP (FS)))) , (1)

PWCov is point-wise convolution, and BN denotes the batch normalization.
MP is the max pooling operation, and Concat is the concatenation operation.
After feature splicing and dimensionality reduction, content features are lost to a
certain extent. GANwriting’s improved AdaIN normalization is used to combine

AFFGANwriting 307

the fused style features with the α and β segmented by Global string encoding.
Then, AdaIN is defined as:

AdaIN(Z,α, β) = α

(
Z − μ(Z)

σ(Z)

)
⊕ β (2)

⊕ is broadcasting addition.μ is channel-wise mean and σ is standard deviations.

3.4.2 Summation Feature Fusion (SFF)
The summation feature fusion method is like the concatenation feature fusion
method, except that the concatenation in CFF is turned into an addition oper-
ation with a weight ratio of 1:1. Of course, since the addition does not change
the dimension of the feature map, there is no need to go through the Point-wise
Conv layer after the operation. Thus, the summation feature map Z ∈ R

C×H×W

becomes:

Z = BN (FCS) ⊕ BN (MP (FS)) , (3)

The final representation of SFF is like CFF, and the output Z is finally fed
into AdaIN to fuse with text features.

3.4.3 Attentional Feature Fusion (AFF)
When performing simple concatenation or summation feature fusion, we found
that the features that need to be fused have significant semantic inconsistency,
which significantly impacts the fusion weights of different layers on the quality
of the generated images. To eliminate this affect, Attentional Feature Fusion
(AFF) [2] is used to fuse features of different scales, which employs a Multi-scale
Channel Attention Module (MS-CAM). Unlike the CFF fusion module, broad-
casting addition operation can be used for aligning the dimensions of FS and
FCS . And then, the result will be sent to MS-CAM. The MS-CAM is divided into
two parts: Global channel Attention and Local channel Attention. The formula
L(X) for Local channel Attention is formally defined as:

L(X) = BN (PWConv2 (δ (BN (PWConv1(X))))) (4)

where δ denotes the Rectified Linear Unit (ReLU), PWConv1 and PWConv2 are
two different point-wise convolution (PWConv) layers. The difference between
Global channel Attention and Local channel Attention is to perform a global
average pooling operation on the input features first. Global Average Pooling
(GAP). Therefore, the formula G(X) of Global channel Attention is formally
defined as:

G(X) = BN (PWConv2 (δ (BN (PWConv1(GPA(X)))))) (5)

308 H. Wang et al.

Fig. 3. (a) The structure of Attentional Feature Fusion (AFF) module; (b) The struc-
ture of Multi-scale Channel Attention Module (MS-CAM) in AFF.

The MS-CAM module adds the results of L(X) and G(X) and maps the results
to [0, 1] through the Sigmoid function. So the formula M(X) of MS-CAM is:

M(X) = sigmoid(L(X) ⊕ G(X)) (6)

⊕ is broadcasting addition. Finally, the Attentional Feature Fusion feature map
Z ∈ R

C×H×W is defined as:

Z (FCS , FS) = M (FCS ⊕ FS) + (1 − M (FCS ⊕ FS)) ⊗ FS (7)

⊗ is elementwise multiplication. The output of MS-CAM is the weight of feature
fusion. To make a weighted average of FS and FCS , this value is subtracted from
1. Through training, let the network determine the respective weights. The final
representation of AFF is like CFF and SFF, and the output Z is finally fed into
AdaIN to fuse with text features.

3.5 Training and Loss Objectives

Our training is based on the original GANwriting paradigm. It contains three
contents: (1) A discriminator model. It is used to distinguish the generated
samples from actual samples; (2) A writer identifier model. It determines the
generated image style attributes to guide the network to generate images with
characteristic style attributes; (3) A Recognizer model. It was used to predict
the correct text label for a given handwritten text image consisting of a VGG-19
network.

AFFGANwriting 309

4 Experimental Results

4.1 Dataset and Experimental Settings

The IAM dataset [17] was used to evaluated our proposed method. The dataset
was collected and released by the University of Bern’s Computer Vision and
Artificial Intelligence Research Group in 2002. The dataset consists of 9862 text
lines and 62857 handwritten word images by 500 different authors. In our exper-
iments, 44419 word images written by 340 authors are taken as the training set.
The rest of 18436 word images are used as the testing set, which are all belong to
out-of-vocabulary. In our experiments, the height and width of each word image
is normalized to 64 pixels and 216 pixels, separately. Frechet Inception Distance
(FID) [18] is used as an evaluation metric. Adam is selected as optimizer with
an initial learning rate of 0.00001. The number of training epochs is set to 4000.
The proposed method is implemented in PyTorch and trained on Tesla P40.

Table 1. The comparative results between the proposed method and baselines.

Method FID

GANwriting [1] 51.16

HiGAN [13] 49.71

SmartPatch [11] 40.33

Handwriting Transformers [12] 42.05

Wang et al. [19] 33.96

SFFGANwriting (ours) 36.50

CFFGANwriting (ours) 33.69

AFFGANwriting (ours) 28.65

4.2 Baselines

GANwriting [1], SmartPatch [11], HiGAN [13], Handwriting Transformers [12]
and Wang et al. [19] have been considered as our baselines. They are the most
advanced and reproducible methods in the field of handwritten image genera-
tion. During the experiment, we found that different FID calculation methods
have a great impact on the results. But many researchers ignored this prob-
lem and made unfair comparisons, such as HiGAN [13]. Only SmartPatch [11]
describes the experimental device for FID calculation in the paper and code,
which is consistent with the actual code, so we choose the experimental setup of
SmartPatch as our FID calculation method. The specific FID calculation setting
is based on 339 training set authors as style reference. Each author generates a
fixed 114 words and performs FID calculation with the training set image.

310 H. Wang et al.

Fig. 4. Randomly chose to synthesize samples. The first column is the author’s style, a
total of three styles have been selected, and each style provides three reference images.
Three words (i.e. Allies, fifty and gripped) are generated by different style. The sec-
ond to eighth columns are the five baselines (i.e. GANwriting, HiGAN, SmartPatch,
Handwriting Transformers and Wang et al.) and three proposed methods.

Experimental results are listed in Table 1. We can see that our proposed
method is superior to the five baselines. Moreover, three kinds of feature fusion
schemes have been compared with each other. The scheme of AFF outperforms
SFF and CFF. Especially when testing HiGAN, the FID obtained by using the
same weight according to the calculation method in his paper is 8.07, while using

AFFGANwriting 311

our method is 49.71. This also further proves that the FID calculation setting
has a great impact on the results.

Finally, to further demonstrate the effectiveness of our method, we randomly
sample some of the generated images and compare them (as shown in Fig. 4).
A total of three different reference styles are selected, and each style gives three
different authentic images. Using these style images, we generated three other
words, Allies, fifty, and gripped, using seven methods for comparison.

According to the person’s writing angle, the process of imitation should
include the global writing style and the local writing style. The overall writ-
ing style should consist of the thickness, depth, inclination, roundness, etc., of
the handwriting. Local writing styles should consist of continuous strokes, per-
sonalized writing of specific letters, etc. As shown in Fig. 4, in terms of global
style, our method clearly shows the thickness and inclination of handwriting.
Furthermore, in the performance of inclination, especially “Allies”, our method
significantly outperforms the other five methods. Moreover, in the representa-
tion of local writing style, our method also reflects the personalized writing of
continuous strokes and specific letters, such as “es” in the second style. HiGAN
can generate words of unspecified length, but it will randomly generate artifacts
at the end of the word when generating reference styles.

5 Conclusion

In this paper, AFFGANwriting has been proposed to attain the aim of hand-
writing images generation. On one hand, multi-scale features can be obtained by
a well-designed style encoder based on VGG19 to avoid simplicity of style. On
the other hand, three kinds of fusion schemes (including SFF, CFF and AFF)
have been adopted to fuse multi-scale features. Additionally, three kinds of fusion
schemes have been compared with each other and the best one (i.e. AFF) has
been determined. Through the above improvements, the proposed AFFGAN-
writing is the state-of-the-art approach, which results in generating much more
realistic handwriting word images.

Acknowledgment. This study is supported by the Project for Science and Tech-
nology of Inner Mongolia Autonomous Region under Grant 2019GG281, the Natural
Science Foundation of Inner Mongolia Autonomous Region under Grant 2019ZD14,
and the Program for Young Talents of Science and Technology in Universities of Inner
Mongolia Autonomous Region under Grant NJYT-20-A05.

References

1. Kang, L., Riba, P., Wang, Y., Rusiñol, M., Fornés, A., Villegas, M.: GANwriting:
content-conditioned generation of styled handwritten word images. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp.
273–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1 17

https://doi.org/10.1007/978-3-030-58592-1_17

312 H. Wang et al.

2. Dai, Y., Gieseke, F., Oehmcke, S., et al.: Attentional feature fusion. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
3560–3569 (2021)

3. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

4. Aksan, E., Pece, F., Hilliges, O.: DeepWriting: Making digital ink editable via
deep generative modeling. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pp. 1–14 (2018)

5. Aksan, E., Hilliges, O.: STCN: stochastic temporal convolutional networks. arXiv
preprint arXiv:1902.06568, 2019

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial net-
works. Commun. ACM 63, 139–144 (2020)

7. Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2223–2232 (2017)

8. Alonso, E., Moysset, B., Messina, R.: Adversarial generation of handwritten text
images conditioned on sequences. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 481–486. IEEE (2019)

9. Fogel, S., Averbuch-Elor, H., Cohen, S., et al.: Scrabblegan: semi-supervised vary-
ing length handwritten text generation. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 4324–4333 (2020)

10. Davis, B., Tensmeyer, C., Price, B., et al.: Text and style conditioned GAN for
generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020)

11. Mattick, A., Mayr, M., Seuret, M., Maier, A., Christlein, V.: SmartPatch: improv-
ing handwritten word imitation with patch discriminators. In: Lladós, J., Lopresti,
D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 268–283. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86549-8 18

12. Bhunia, A.K., Khan, S., Cholakkal, H., et al.: Handwriting transformers. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1086–1094 (2021)

13. Gan, J., Wang, W.: HiGAN: handwriting imitation conditioned on arbitrary-length
texts and disentangled styles. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 7484–7492 (2021)

14. Kang, L., Riba, P., Rusinol, M., et al.: Content and style aware generation of text-
line images for handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell.
44(12), 8846–8860 (2021)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

16. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1501–1510 (2017)

17. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5, 39–46 (2002)

18. Heusel, M., Ramsauer, H., Unterthiner, T., et al.: GANs trained by a two time-
scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process.
Syst. 30 (2017)

19. Wang, Y., Wang, H., Sun, S., et al.: An approach based on transformer and
deformable convolution for realistic handwriting samples generation. In: 2022 26th
International Conference on Pattern Recognition (ICPR), pp. 1457–1463. IEEE
(2022)

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1902.06568
http://arxiv.org/abs/2009.00678
https://doi.org/10.1007/978-3-030-86549-8_18
http://arxiv.org/abs/1409.1556

SeamFormer: High Precision Text Line
Segmentation for Handwritten

Documents

Niharika Vadlamudi(B) , Rahul Krishna , and Ravi Kiran Sarvadevabhatla

Centre for Visual Information Technology, International Institute of Information
Technology, Hyderabad 500032, India

niharika.vadlamudi@research.iiit.ac.in, ravi.kiran@iiit.ac.in

Abstract. Historical manuscripts often contain dense unstructured text
lines. The large diversity in sizes, scripts and appearance makes precise
text line segmentation extremely challenging. Existing line segmentation
approaches often associate diacritic elements incorrectly to text lines and
also address above mentioned challenges inadequately. To tackle these
issues, we introduce SeamFormer, a novel approach for high precision
text line segmentation in handwritten manuscripts. In the first stage
of our approach, a multi-task Transformer deep network outputs coarse
line identifiers which we term ‘scribbles’ and the binarized manuscript
image. In the second stage, a scribble-conditioned seam generation pro-
cedure utilizes outputs from first stage and feature maps derived from
manuscript image to generate tight-fitting line segmentation polygons. In
the process, we incorporate a novel diacritic feature map which enables
improved diacritic and text line associations. Via experiments and eval-
uations on new and existing challenging palm leaf manuscript datasets,
we show that SeamFormer outperforms competing approaches and gen-
erates precise text line segmentations.

Keywords: Text Line Segmentation · Historical Manuscripts

1 Introduction

Identifying text lines in ancient handwritten documents is an important problem
in document image understanding [8,14,15,17,26,53]. Since historical documents
usually contain text written in a highly unstructured manner with dense and non-
standard layouts, the problem is challenging. The challenge aspect is particularly
apparent for palm leaf manuscripts of South-East Asia and the Indian subconti-
nent. Western manuscripts predominantly use processed animal-skin (vellum) as
their base material. Though these are not immune to ravages of time, palm leaf
manuscripts are relatively more fragile. Also, palm leaves are thin, delicate and
prone to damage. Moreover, the already faintly written text may fade over time
and become indistinguishable from digitization noise. Document analysis tasks
on palm leaf manuscripts involve characteristic challenges such as degradation,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 313–331, 2023.
https://doi.org/10.1007/978-3-031-41685-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_20&domain=pdf
http://orcid.org/0000-0001-6596-428X
http://orcid.org/0000-0002-8734-5751
http://orcid.org/0000-0003-4134-1154
https://doi.org/10.1007/978-3-031-41685-9_20

314 N. Vadlamudi et al.

Fig. 1. An example to illustrate the importance of precise line segmentation in palm
leaf manuscripts. The ground truth upper and lower portions of the enclosing line anno-
tation are shown in red. The prediction is shown in blue. The green shaded portions
indicate crucial text fragments omitted by prediction causing the semantic interpre-
tation of text to change. For e.g., pink dashed region encloses a word from the
Indic language Telugu which means ‘moral duty’. The incorrect boundary prediction
causes the resulting line to contain a word with a drastically different meaning.
means ‘price’. (Color figure online)

low contrast, variable inter-character and inter-line spacing and morphological
distortions in character shapes [25,38,44]. The large diversity in spatial dimen-
sions, languages, scripts, writing styles and presence of non-textual elements
further compound the challenge for text line segmentation.

The output of text line segmentation is often processed by a subsequent Opti-
cal Character Recognition (OCR) module. Obtaining high precision segmenta-
tion maps of text lines which could be used as masks compactly enclosing the
reference text is extremely crucial. Using such masks within the OCR pipeline
reduces semantic noise from adjoining line fragments generally present in the
text-line’s bounding box and potentially increases OCR performance. Indic and
South-East Asian manuscript texts are characterized by orthographic text frag-
ments such as diacritics. These components typically exist at varying distances
from the parent text line. Due to the semantics associated with such components,
omission or incorrect association of diacritics to text lines during segmentation
can result in a dramatically modified linguistic interpretation of the text (see
Fig. 1). Therefore, it is essential to develop segmentation approaches for palm
leaf manuscripts which are highly precise. The performance of existing line seg-
mentation approaches fall short in this aspect.

To tackle the challenge, we propose SeamFormer, a robust text line seg-
mentation framework for palm leaf manuscripts. SeamFormer is configured as
a two stage pipeline (Sect. 3). In the first stage, the manuscript image is pro-
cessed by a multi-task Transformer deep network to obtain the binarized image
and coarse identifiers for each text line which we term ‘scribbles’ (Sect. 3.1).
In the second stage (Sect. 3.2), the extracted scribbles, binarized image and
custom-designed feature maps are fed to a scribble-conditioned seam generation
algorithm which generates the desired tight fitting polygons enclosing the indi-
vidual text lines. Via experiments and evaluations on new and existing palm leaf
manuscript datasets, we show that SeamFormer generates significantly superior
line segmentations compared to other competing approaches (Sect. 5).

The source code, pretrained models and associated material are available at
https://ihdia.iiit.ac.in/seamformer.

https://ihdia.iiit.ac.in/seamformer

SeamFormer 315

2 Related Work

Many approaches have been proposed for text line segmentation in other (i.e.
non palm leaf) historical documents. To encourage research, many historical
document datasets with line segmentation annotations have been introduced
and utilized in competitions at premier document analysis venues - refer to the
comprehensive survey paper by Nikolaidou et al. [34] for details.

Early approaches favoured the use of classical digital image processing tech-
niques followed by post processing. Alaei et al. [1] employ a painting technique for
foregrounding smearing to tackle unconstrained handwritten text line segmenta-
tion for diverse languages. Grouping techniques utilizing nearest neighbor [35],
learning algorithms [39], and heuristic rules [28] have also been employed for
text line segmentation. Projection profiles are another popular top-down app-
roach to isolate text lines [10,19,31,37,54]. However, profile-based approaches
cannot cope with highly curved lines and uneven layouts. Adaptive Local Con-
nectivity Map (ALCM) [45,46] is another technique for localizing and extracting
text lines directly from gray-scale images. Generally, these approaches employ
handcrafted processing elements with hyperparameters which do not general-
ize well across multiple datasets. The methods tend to require dataset specific
techniques for isolating text line elements (e.g. strokes, diacritics) and often fail
to disentangle touching components across consecutive text lines – a common
occurrence in handwritten documents.

In recent years, a number of deep learning based approaches have been
employed as well [6,7,9,27,29,30,36,40]. Most of these approaches use a vari-
ant of the popular U-Net [41] architecture. These methods have the appeal of
being optimized end-to-end and work well on Western historical manuscripts.
However, the approaches require drastic downsampling of input image which
eliminates crucial inter-line information. Coupled with the boundary smoothing
that occurs when the network predictions are upsampled, this leads to imprecise
and unsatisfactory line segment boundary predictions for other types of historical
manuscripts such as ours (i.e. palm leaf).

Relatively few works have tackled line segmentation for palm leaf
manuscripts. In their survey paper, Kesiman et al. [25] consider palm-leaf
manuscripts from South-East Asia and evaluate numerous line segmentation
approaches developed for other (non-Asian) historical documents. Chamchong
and Fung propose an adaptive partial projection (APP) technique [13], an
improvement over their earlier partial projection approach [12] for line extraction
in Thai manuscripts. Valy et al. [51] propose an approach which also employs
connected components and projection profiles to determine medial positions of
text lines followed by a path finding approach to mark the text line bound-
aries in Khmer manuscripts. Kesiman et al. [22] employ a similar approach for
Balinese manuscripts. Apart from the assumption of a component-based script,
these approaches inherit the shortcomings of projection-based works mentioned
previously.

Works which employ deep neural networks for palm leaf manuscript text line
segmentation are even fewer. Jindal and Ghosh [21] use a Faster-RCNN model to

316 N. Vadlamudi et al.

obtain bounding boxes for a collection of Indic palm leaf manuscripts. However,
this approach cannot tackle the curvature of lines which is present in almost
all manuscripts. Prusty et al. [38] and Sharan et al. [44] propose approaches
which modify the Mask-RCNN [20] framework for segmenting various semantic
regions including text lines in Indic manuscripts. Despite their relatively better
performance and ability to tackle line curvature, these approaches produce overly
smoothed line boundaries and even tend to have false negatives (i.e. missed lines)
on some occasions.

Seam generation, an approach involving optimization over image-derived
energy maps [5], is a popular approach for text line segmentation. Saabni and El-
Sana introduce a seam generation algorithm based on an energy map calculated
using Signed Distance Transform (SDT) for Arabic manuscripts [42]. However,
the approach involves repeated energy map computations for each line and sig-
nificant dataset-specific post-processing to tackle overlapping components and
diacritics. Asi et al. [4] improve upon the aforementioned approach by replacing
SDT with a geodesic distance transform energy map. This method fails to tackle
elongated letters and widely separated diacritics. Nikolaos et al. [3] use a medial
line obtained using a projection profile approach to guide seam generation for
line segmentation in multiple historical datasets. However, the method requires
dataset specific parameter tuning for various pipeline stages. Alberti et al. [2]
first employ a deep network to obtain a binarized version of the image. Seam
generation is applied on the binary image to obtain coarse region boundaries,
followed by a graph-based connected component procedure to obtain the polygo-
nal line boundaries. The approach is not suitable for highly skewed and unevenly
curving text found in palm leaf manuscripts. For enhancing the seam generation
process, Nguyen et al. [32] introduce an additional global cost function for better
detection of ascenders, descenders and diacritics. The approach is not suitable
for skewed or curved text and requires heavy dataset-specific parameter tuning
for the cost functions.

In existing approaches [2–4,27,42], seam generation is generally used to sep-
arate text lines rather than segment them. As a result, extraneous isolated char-
acter fragments and noisy background elements present beyond the line’s text
content are often included as part of the line. In contrast, our approach generates
polygons which compactly enclose the text lines. As a novel element, we intro-
duce a custom energy map in our polygon generation stage which emphasizes
proper association of diacritics to the parent text line. Another marked departure
from existing methods is the absence of final post-processing. This enables our
approach to generalize across multiple palm leaf manuscript datasets containing
documents with varying scripts and text line densities.

3 Approach

Overview: Given the input palm leaf manuscript image, our objective is to
generate tight-fitting polygons enclosing each of the text lines. Our processing
pipeline has two stages – ‘scribble generation’ (Sect. 3.1) and ‘text line poly-
gon generation’ (Sect. 3.2) – see Fig. 2. In the first stage, the manuscript image

SeamFormer 317

Fig. 2. An outline of our SeamFormer pipeline for manuscript line segmentation
(Sect. 3).

Fig. 3. Stage I: Scribble Generation Module - see Sect. 3.1.

is processed by a deep network which generates coarse binary medial blobs for
each individual text line and a binarized version of the image. The medial blobs
are further processed to extract coarse spatial identifiers for each line termed as
‘scribbles’. In the second stage, scribbles from first stage and custom-designed
feature maps derived from binarized image are fed to a seam generation algo-
rithm which generates the desired tight-fitting polygons enclosing the individual
text lines.

3.1 Stage I: Scribble Generation

We set up a multi-task variant of Vision Transformer (ViT) deep network archi-
tecture [16] to obtain two outputs - the binarized version of the input manuscript
image and the medial blob masks for each text line (see Fig. 3). In a conventional
ViT architecture, position-encoded patches of input image are processed within
a Transformer [52] framework employing multi-head attention to obtain output
patches. We extend the conventional setup to have two decoder branches. These

318 N. Vadlamudi et al.

Fig. 4. Stage II: Text Line Polygon Generation Module - see Sect. 3.2 and Algorithm 1
for details.

branches output two sets of patches which are separately reassembled to obtain
the binarized version of the input image and the medial blob masks binary image.

The blob mask outputs are post-processed to extract thin medial axis-like
structures which cut across the line. We broadly classify our post-processing
into local and global stages. In local post processing, we iteratively apply mor-
phological dilation and erosion on each blob mask and perform skeletonisation.
Subsequently, we apply skeleton pruning techniques to remove spurious branches
and extract a clean medial fragment for each blob within the patch. We term
these fragments as ‘scribbles’. For the global post processing, we merge these
patches to obtain a scribble map with the input image’s dimensions. Given the
fragments of scribbles, we group them based on distance thresholding technique
as a function of its horizontal level.

The scribble, by nature of its construction, provides crucial information
regarding local curvature of the text line. As we shall see, accurate determi-
nation of local curvature plays a key role for the next stage of processing and
ultimately, for accurate text line segmentation.

3.2 Stage II: Text Line Polygon Generation

This stage involves two sub-stages – Feature Map Generation and Scribble-
conditioned Seam Generation (see Fig. 4). For each scribble, we first generate
a corresponding pair of pseudo-scribbles which are used at later stages of the
pipeline (Sect. 3.2.1). Next, the scribbles are overlaid on binarized input image
and the resulting scribble-overlaid image is used to create custom feature maps
(Sect. 3.2.2). These feature maps are used as input to a seam generation pro-
cedure to generate the desired high-precision polygons enclosing the text lines
(Sect. 3.2.3).

SeamFormer 319

Fig. 5. Diacritic Map (Sect. 3.2.2) - (a) A text line from a palm leaf manuscript, (b)
the reference text line is shown with the scribble overlaid. Pixels in green denote the
text line connected by the scribble and pixels in red inside pink bounding boxes denote
the corresponding diacritics of the parent text line (c) Diacritic Feature Map - note the
tiny strokes extending out of the scribble to connect the diacritics with the main text
line (d) final red seams enclosing the text line as a result of using the Diacritic map
during seam generation - note that the aforementioned diacritics have been brought
inside the enclosing seams.

3.2.1 Pseudo-Scribble Generation As the first step, we sort the scribbles
by the y-coordinate of the left-most point to obtain the sequence of scribbles S
in a top-to-bottom order. Let si ∈ S be a scribble. Let μsi be the average of all
y-coordinates of the scribble si’s pixels. Let μsi+1 be a similar average for the
neighboring scribble. The vertical offset between the scribble pair can be defined
as d(si, si+1) =

∣
∣μsi − μsi+1

∣
∣. Let d(S) denote the average across all such vertical

offsets within the set of scribbles. Define θ = d(S)+δ where δ is a fixed offset. For
each scribble s, the upper pseudo-scribble (u) and lower pseudo-scribble (l), are
obtained by vertically translating s by +θ and −θ pixels respectively – see the
block ‘Pseudo scribbles’ which is part of ‘Scribble-Conditioned Seam-Generation’
(shaded blue) in Fig. 4.

3.2.2 Feature Map Generation
Gradient Map (GM): This feature map is obtained as the gradient magnitude
map of the scribble-overlaid image. Using this map creates a high energy barrier
between edges of characters in the text line and the background area immediately
surrounding them. Employing this map in the subsequent seam generation stage
enables seams to align closely with text letter boundaries, resulting in tight-
fitting polygons around the text lines (ref. GM in Fig. 4).
Smoothing Map (SM): This feature map is obtained by applying a blur kernel
on the scribble-overlaid image. Using this map increases the energy at horizontal
inter-character text gaps and ensures that seams do not cut through the text
(ref. SM in Fig. 4).
Diacritic Map (DM): This novel feature map specifically tackles the problem of
diacritics not being enclosed within the polygons of corresponding parent text

320 N. Vadlamudi et al.

Fig. 6. (a) A fragment from the top portion of a manuscript (b) Seams generated with
Gradient and Smoothing Map, but without using scribble – the upper line boundary is
missing (c) Seams when scribble is also added – upper line boundary is obtained, but
diacritics are missed (d) Seams when Diacritic Map is also included – line boundaries
properly enclose text and associated diacritic components.

lines - see Fig. 5. We first isolate the region around each text line with the help
of upper and lower pseudo-scribbles as the demarcations. We overlay the cor-
responding scribble on the parent text-line and perform connected components
analysis. This operation divides the components into three major groups: com-
ponents connected to parent-line, disconnected diacritics and background noisy
elements. We discard noise based on an area threshold. For each diacritic com-
ponent, we connect its centroid and parent scribble via a perpendicular line. In
effect, this line creates an energy barrier which forces the boundary generated
during seam generation to move around the diacritic instead of separating the
diacritic and its parent text line (ref. DM in Fig. 4). The utility of Diacritic
Map is illustrated in Fig. 5. The neighborhood of a text line often contains text
fragments from adjacent lines due to the uneven handwritten line orientation
and dense handwriting. Our construction of the Diacritic Map actively prevents
the neighboring text fragments from being picked up along with the diacritics.

The weighted combination of the above feature maps forms the final global
feature map, i.e. F = α GM+β SM+γ DM. Figure 6 illustrates the importance
of using scribbles and the proposed combination of energy maps. It is important
to note that unlike some of the existing seam-based approaches [42], we generate
the feature map only once for the input image.

3.2.3 Scribble-Conditioned Seam Generation
For each scribble s, the paired end-points of the scribble and its corresponding
upper pseudo-scribble u are connected to obtain an enclosed upper region U
- see the block ‘Region Masks’ which is part of ‘Scribble-Conditioned Seam-
Generation’ (shaded blue) in Fig. 4. The region’s mask is applied to global feature
map F and cropped to obtain the upper region feature map FU for the scribble.
To constrain the seams to lie within the masked portion, feature map values
outside the mask are set to a fixed ‘high energy’ value. The upper region feature
map is used during seam generation [5].

SeamFormer 321

Algorithm 1 . Scribble-Conditioned Text Line Polygon Generation (Sect. 3.2.3)
1: � Input binaryImage B and set of scribbles S from Stage I (Sect. 3.1)
2: � Output Set of text line polygons P
3: θ ← ComputeGap(S) � Obtain interline gap using inter-scribble gap statistics
4: � Feature Map Generation
5: GM ← GenerateGradientMap(B, S)
6: SM ← GenerateSmoothingMap(B, S)
7: DM ← GenerateDiacriticMap(B, S)
8: F ← GenerateGlobalFeatureMap(GM, SM, DM)
9: � Scribble-conditioned Seam Generation

10: for s in S do � For each scribble
11: u, l ←GeneratePseudoScribbles(s, θ)
12: � Generate upper seam
13: U ← GetRegion(s, u)
14: FU ← GetCroppedFeatureMap(U, F)
15: SU ← GenerateSeams(FU)
16: � Generate lower seam
17: L ← GetRegion(s, l)
18: FL ← GetCroppedFeatureMap(L, F)
19: SL ← GenerateSeams(FL)
20: � Generate the final text line polygon
21: P ← GenerateLinePolygon(SU , SL)
22: P ← P ∪ {P}
23: end for
24: return P

For a M × N image, a horizontal seam R is a connected sequence of pixels
and can be defined as R = (xi, yi); i = 1, 2, . . . r, 1 � xi � N, 1 � yi � M
where x1 = 1, xr = N and |xi − xi−1| � 1, i = 2, 3, . . . r. The ‘energy cost’ of
the seam is defined as U(R) =

∑r
i=1 FU (xi, yi). The seam with the minimum

cost is defined as SU = arg min
R

U(R) and is found using dynamic programming.

In this context, feature map FU has been constructed such that the minimum
energy seam corresponds to tight upper boundary of the associated text line.
Additionally, to enhance the tight-fit characteristic of the seam, we induce a
bias in choosing the lowest energy path. During the seam propagation step, we
greedily pick the lowest x or y coordinate value among potential energy paths.
This choice results in energy seams circumscribing the character components
tightly. A similar procedure as above is repeated with the lower pseudo-scribble l
to obtain a tight lower boundary seam SL for the text line. These seams (SU , SL)
are connected at their paired endpoints to obtain the final high precision polygon
P enclosing the text line.

It is important to note that the scribble generated in Stage-I determines the
sub-image region in which seam generation operates. Confining seam generation
by using scribble-based masks helps produce compact enclosing boundaries (see
Fig. 6). This is unlike other seam-based methods which generate seams that go

322 N. Vadlamudi et al.

beyond actual extent of the text line. Algorithm 1 outlines the procedure for
scribble-conditioned text line polygon generation.

4 Experiments

4.1 Datasets

We have tested the models on a selection of palm leaf manuscript datasets -
Indiscapes2 [44], the datasets provided for the Challenge B (Text Line Segmen-
tation) of the ICFHR 2018 Competition On Document Image Analysis Tasks for
Southeast Asian Palm Leaf Manuscripts [24] containing manuscripts from Bali-
nese, Khmer and Sundanese languages. In addition, a new manuscript collection
called KgathaM has also been introduced.
Indiscapes2 [38]: This is the largest dataset for Indic palm leaf manuscripts
and consists of manuscripts sourced from four distinct sources. Indiscapes2 com-
prises of 1275 documents with a large diversity in scripts, language,semantic
regions, document dimensions, number of lines and text line density. It has 748
manuscript leaves for training and 258 leaves for the test split. The average
manuscript dimension is 750 × 1900.
KgathaM: We introduce this new collection of palm leaf manuscript written
in a classical component-based script of the Indic language Malayalam. The
manuscript contains verses from a poem. A unique aspect is that the poem
is written on manuscript leaves continuously and end to end, without spaces
between words. It has a total of 392 pages with 8 − 12 lines in each document.
We have considered 313 pages for train split and 79 pages in the test split. The
manuscript leaves are quite dense with an average of 9-10 text lines and contain
extremely small character components. The average size of the manuscript page
is 400 × 2800.
Balinese [23]: This consists of Balinese manuscripts. It has been extracted from
the AMADI LontarSet [23], with 393 pages of palm leaf manuscripts from 23
different collections. In general, the documents have 4 text lines, most of them
double-columned with occasional illustrations. One common characteristic of
this manuscript is the variety of diacritics. The Challenge provides a total of 96
pages with 47 pages in the train split and 49 pages in the test split. In general the
pages have 4 text lines. The average size of the manuscript page is 500 × 5000.
Khmer [50]: This set consists of Khmer (Cambodian) manuscripts. It has been
extracted from the SleukRith Set [50], with 657 pages of Khmer palm leaf
manuscript randomly selected from different sources. In general, the pages have
5 text lines. The Challenge provides a total of 250 pages with 50 pages in the
train split and 200 pages in the test split. The average size of the manuscript
page is 500 × 5500.
Sundanese [48]: This set consists of Sundanese manuscripts. It has been
extracted from the Sunda Set [48], with 66 pages of Sundanese Lontar ran-
domly selected from 27 collections. The Challenge provides a total of 61 pages
with 31 pages in the train split and 30 pages in the test split. On average, the
pages consist of 4 text lines. The mean size of the manuscript page is 350×3000.

SeamFormer 323

Table 1. Comparison of SeamFormer with existing approaches on benchmark datasets
(Sect. 5).

Indiscapes2[38] KGathaM Bali[23] Sunda[48] Khmer[50]

IoU ↑
MMRCNN [38] 0.55 0.34 0.23 0.28 0.28

Palmira [44] 0.76 0.69 0.42 0.68 0.45

Doc-UFCN [9] 0.16 0.12 0.08 0.23 0.10

dhSegment [36] 0.34 0.12 0.03 0.12 0.08

LCG [2] 0.37 0.20 0.12 0.12 0.18

DocExtractor [30] 0.10 0.17 0.01 0.02 0.04

SeamFormer 0.78 0.84 0.66 0.77 0.69

HD ↓
MMRCNN [38] 447.58 855.76 2106.30 1147.30 1760.48

Palmira [44] 73.32 57.84 1699.58 130.34 1190.95

Doc-UFCN [9] 339.30 238.87 1873.00 630.79 2552.26

dhSegment [36] 295.58 216.79 2232.90 394.16 1560.45

LCG [2] 207.76 346.93 797.51 367.60 496.31

DocExtractor [30] 806.17 1423.26 3552.19 1865.25 3987.37

SeamFormer 21.91 16.05 48.86 32.18 48.37

AvgHD ↓
MMRCNN [38] 57.13 132.50 302.59 145.07 270.47

Palmira [44] 7.29 2.74 224.79 6.50 203.59

Doc-UFCN [9] 70.04 49.16 319.06 98.55 481.19

dhSegment [36] 60.33 43.60 415.24 66.77 319.57

LCG [2] 16.82 29.72 95.18 39.65 44.50

DocExtractor [30] 149.29 219.68 778.60 331.00 898.16

SeamFormer 0.65 0.25 2.53 1.01 2.39

HD95 ↓
MMRCNN [38] 355.74 702.45 1766.12 918.85 1449.68

Palmira [44] 42.47 21.49 1393.15 49.06 1019.12

Doc-UFCN [9] 304.73 214.35 1628.43 520.38 2271.27

dhSegment [36] 262.83 192.33 1967.72 329.84 1380.09

LCG [2] 99.77 197.94 390.21 231.38 191.88

DocExtractor [30] 595.61 1084.01 3255.44 1656.47 3654.05

SeamFormer 4.59 1.96 19.49 7.77 18.83

324 N. Vadlamudi et al.

4.2 Implementation Details

Stage-I: For the ViT network, we use 256 × 256 overlapping manuscript patches
with appropriate padding. Resampling is used to overcome the imbalance
between text and empty (non-text) patches. For training the binarizer branch
for South-East Asian datasets, we use the binary dataset from Challenge A of
the ICFHR 2018 contest [24]. For other datasets, we use Sauvola-Niblack bina-
risation [33,43] as the ground truth. We initialize the binarization branch with
pre-trained weights [47]. The learning rate is initialized to 0.05 and is decayed
by Pytorch’s learning scheduler, ExponentialLR with γ = 0.8. For training both
of these branches we leverage the L2 loss. We adopt a training procedure where
every individual branch is trained separately, while the other branch’s weights
are frozen. The optimizer used is stochastic gradient descent with γ = 0.1 and
momentum of 0.9. We perform data-parallel optimization distributed across 2
GeForce RTX 2080 Ti GPUs for 40 epochs, with a fixed batch size of 4. We
use random rotation augmentation α ∈ (−30, 30) to improve performance for
non-axis oriented manuscripts. To tackle varied manuscript background textures
and noise, we apply Gaussian Noise, AdvancedBlur, RandomColor, RandomFog,
RandomBrightness and HueSaturations augmentations [11]. For post-processing,
we apply erosion filters - a horizontal rectangular kernel 1×11 thrice, followed by
a 1×1 dilation to separate any overlapping medial blobs. These blobs undergo a
skeletonization procedure followed by pruning to remove any spurious branches
with a minimum area threshold of 100 pixels. The post-processing is robust and
does not need to be changed across datasets or approaches.

Fig. 7. A challenging manuscript from Indiscapes2 [44]. The figure shows insets
of regions with ground-truth (blue) and predictions from SeamFormer (green) and
Palmira [44] (red). The document level performance scores are shown in bottom right.

Stage-II : The offset for pseudo-scribble generation δ is set to 5. In the feature
map generation pipeline, we use the standard 3 × 3 Sobel kernel for Gradient

SeamFormer 325

Map. We apply a Gaussian blur kernel of 15×11 for high spatial coverage within
the image to compute the Smoothing Map. The weights for various feature maps
are empirically set to α = 0.4 (GM), β = 0.6 (SM) and γ = 1.0 (DM). The
global feature map is normalised to [0, 1] before the seam generation process.

5 Results

For quantitative evaluation of text line segmentation, we compare SeamFormer
against various state-of-the-art approaches developed for palm-leaf and other
types of manuscripts. The approaches were fine-tuned for each dataset. As perfor-
mance measure, we use IoU. In their work, Trivedi et al. [49] show that Hausdorff
Distance (HD) and its variants - HD95 and Average HD reflect the prediction
performance for polygon boundary predictions better than area-based IoU met-
ric. Therefore, we report these measures as well. Note that smaller the HD-based
scores, better the text line polygon prediction.

Table 2. Ablation experiments using Indiscapes2. Proposed refers to design choices in
SeamFormer.

Row-id Stage I Stage II IoU ↑ HD ↓ HD95 ↓ Avg. HD ↓
1 Text Baseline Proposed 0.63 62.59 8.29 35.86

2 ARU-Net [18] Proposed 0.69 103.57 9.37 51.51

3 Proposed GM 0.76 23.83 0.78 5.15

4 Proposed GM, SM 0.77 22.40 0.71 4.71

5 Proposed Proposed 0.78 21.91 0.65 4.59

The overall quantitative results can be seen in Table 1. SeamFormer clearly
outperforms the competing strong baseline approaches across all the datasets
and across the performance measures. This shows the generalizability provided
by our approach. Our consistently small HD scores are due to the high pre-
cision polygons generated by our custom scribble-conditioned seam generation
pipeline. For some existing approaches, HD-based scores are one or two orders of
magnitude higher due to low line accuracy. Most of these approaches resize the
input image to a fixed size for optimal training of the neural network. However,
due to the extremely large aspect ratio (≈ 10 : 1) and range in sizes for palm
leaf manuscripts, the resizing causes text line polygon aliasing, causing poor per-
formance. These factors are not an issue for SeamFormer since resizing is not
a part of the pipeline. The second-best network Palmira [44] is competitive in
terms of IoU for Indiscapes2 [44]. However, the performance gap is substantial
for other datasets and other performance measures as well.

326 N. Vadlamudi et al.

5.1 Ablation Study

We perform an ablation analysis with Indiscapes2 dataset to determine the con-
tribution of various design choices within Stage-I (scribble generation) and Stage-
II (seam generation). Instead of a medial scribble through the text, we tried the
popular text underline (baseline) as an alternative. The bottom of the text line
polygon is used as the baseline. However, this led to sub par performance since
the baseline is not guaranteed to touch the text and does not prevent seams
from cutting in between text components of the lines (row 1 of Table 2). In
another experiment, we re-trained the popular ARU-Net [18] as an alternative
to our ViT architecture for obtaining scribbles. ARU-Net produces disconnected
scribbles which results in poor performance (row 2). Keeping Stage-I fixed, we
also conducted experiments to determine the impact of each feature map (rows
3-4). We observe that the full set of feature maps (last row) provides the best
performance – also see Fig. 6.

Fig. 8. SeamFormer predictions on South-East Asian Manuscripts [24] – Khmer (top),
Sundanese (middle) and Balinese (top).

Fig. 9. SeamFormer predictions on Indiscapes2 [44] manuscripts.

SeamFormer 327

Fig. 10. SeamFormer predictions on manuscripts from the newly introduced KGathaM
collection.

5.2 Qualitative Results

A visual comparison of performance between ground-truth and predictions by
SeamFormer and the second-best model Palmira [44] can be seen in Fig. 7.
The effect of resizing can be seen in Palmira’s incorrect and coarse predictions.
Despite the challenging nature of the manuscript (e.g. document tilt, dense and
unevenly spaced text lines), SeamFormer predictions are significantly more accu-
rate. This trend can also be seen in sample manuscripts from other datasets -
see Figs. 8,9,10.

6 Conclusion

We introduce SeamFormer, a novel approach for high precision text line segmen-
tation in handwritten documents. Instead of a monolithic framework, we tackle
the challenge of text line segmentation using a divide-and-conquer two stage
approach. The first stage generates medial line ‘scribbles’ which provide crucial
information about the curvature of the text line and a binarized version of the
input image. In the second stage, these scribbles and custom-designed feature
maps derived from the binarized image are fed to a seam generation algorithm
which generates the desired tight-fitting line polygons.

Our approach is a resizing-free method. As a result, text line gaps are not
distorted or aliased, leading to significantly better results. Our novel inclusion
of Diacritic Map in the second stage ensures complete and correct inclusion of
diacritics within the predicted polygon. Also, pseudo-scribbles are a key innova-
tion in our approach. The pseudo-scribbles serve as energy barriers during seam
generation and ensure the seams do not cross the text line’s spatial extents.
The pseudo-scribbles also prevent the seams from deviating too much from the
reference line unlike some existing approaches. The efficacy of our approach is
evident from its comparatively superior performance across challenging datasets
and metrics.

328 N. Vadlamudi et al.

An additional advantage of our approach is that it enables interactive human-
in-the-loop refinement. For instance, scribbles could be manually added for any
missed lines followed by second stage processing. Another advantage is that
unlike some existing approaches, no post-processing on the polygons is required.
Our results demonstrate the utility of SeamFormer for line segmentation across
multiple challenging datasets. Overall, SeamFormer is an attractive option for
generating precise text line polygons in handwritten manuscript collections. The
source code, pretrained models and associated material are available at https://
ihdia.iiit.ac.in/seamformer.

Acknowledgement. This work is supported by Ministry of Electronics and Informa-
tion Technology (MeiTY), Government of India. We also wish to thank BV Khadira-
vana for assistance related to KGathaM dataset.

References

1. Alaei, A., Pal, U., Nagabhushan, P.: A new scheme for unconstrained handwritten
text-line segmentation. Pattern Recogn. 44(4), 917–928 (2011)

2. Alberti, M., Vögtlin, L., Pondenkandath, V., Seuret, M., Ingold, R., Liwicki, M.:
Labeling, cutting, grouping: an efficient text line segmentation method for medieval
manuscripts. In: 2019 International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 1200–1206. IEEE (2019)

3. Arvanitopoulos, N., Süsstrunk, S.: Seam carving for text line extraction on color
and grayscale historical manuscripts. In: 2014 14th International Conference on
Frontiers in Handwriting Recognition, pp. 726–731. IEEE (2014)

4. Asi, A., Saabni, R., El-Sana, J.: Text line segmentation for gray scale historical
document images. In: Proceedings of the 2011 workshop on historical document
imaging and processing, pp. 120–126 (2011)

5. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: ACM
SIGGRAPH 2007 papers, pp. 10-es (2007)

6. Barakat, B., Droby, A., Kassis, M., El-Sana, J.: Text line segmentation for chal-
lenging handwritten document images using fully convolutional network. In: 2018
16th International Conference on Frontiers in Handwriting Recognition (ICFHR),
pp. 374–379. IEEE (2018)

7. Barakat, B.K., et al.: Unsupervised deep learning for text line segmentation. In:
2020 25th International Conference on Pattern Recognition (ICPR), pp. 2304–2311.
IEEE (2021)

8. Barakat, B.K., El-Sana, J., Rabaev, I.: The pinkas dataset. In: 2019 International
Conference on Document Analysis and Recognition (ICDAR), pp. 732–737. IEEE
(2019)

9. Boillet, M., Kermorvant, C., Paquet, T.: Multiple document datasets pre-training
improves text line detection with deep neural networks. In: 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 2134–2141. IEEE (2021)

10. Bruzzone, E., Coffetti, M.C.: An algorithm for extracting cursive text lines. In: Pro-
ceedings of the Fifth International Conference on Document Analysis and Recog-
nition. ICDAR 1999 (Cat. No. PR00318), pp. 749–752. IEEE (1999)

https://ihdia.iiit.ac.in/seamformer
https://ihdia.iiit.ac.in/seamformer

SeamFormer 329

11. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin,
A.A.: Albumentations: fast and flexible image augmentations. Information 11(2),
125 (2020). https://doi.org/10.3390/info11020125

12. Chamchong, R., Fung, C.C.: Character segmentation from ancient palm leaf
manuscripts in Thailand. In: Proceedings of the 2011 Workshop on Historical Doc-
ument Imaging and Processing, pp. 140–145 (2011)

13. Chamchong, R., Fung, C.C.: Text line extraction using adaptive partial projection
for palm leaf manuscripts from Thailand. In: 2012 International Conference on
Frontiers in Handwriting Recognition, pp. 588–593. IEEE (2012)

14. Clausner, C., Antonacopoulos, A., Derrick, T., Pletschacher, S.: ICDAR 2019 com-
petition on recognition of early Indian printed documents-REID2019. In: 2019
International Conference on Document Analysis and Recognition (ICDAR), pp.
1527–1532. IEEE (2019)

15. Dolfing, H.J., Bellegarda, J., Chorowski, J., Marxer, R., Laurent, A.: The “scribble-
lens” dutch historical handwriting corpus. In: 2020 17th International Conference
on Frontiers in Handwriting Recognition (ICFHR), pp. 67–72. IEEE (2020)

16. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. ICLR (2021)

17. Grüning, T., Labahn, R., Diem, M., Kleber, F., Fiel, S.: Read-bad: a new dataset
and evaluation scheme for baseline detection in archival documents. In: 2018 13th
IAPR International Workshop on Document Analysis Systems (DAS), pp. 351–356.
IEEE (2018)

18. Grüning, T., Leifert, G., Strauß, T., Michael, J., Labahn, R.: A two-stage method
for text line detection in historical documents. Int. J. Doc. Anal. Recogn. (IJDAR)
22(3), 285–302 (2019). https://doi.org/10.1007/s10032-019-00332-1

19. He, J., Downton, A.C.: User-assisted archive document image analysis for digital
library construction. In: Seventh International Conference on Document Analysis
and Recognition, 2003. Proceedings, pp. 498–502. IEEE (2003)

20. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
21. Jindal, A., Ghosh, R.: Text line segmentation in Indian ancient handwritten doc-

uments using faster R-CNN. Multimedia Tools Appl. 82, 1–20 (2022)
22. Kesiman, M.W.A., Burie, J.C., Ogier, J.M.: A new scheme for text line and char-

acter segmentation from gray scale images of palm leaf manuscript. In: 2016 15th
International Conference on Frontiers in Handwriting Recognition (ICFHR), pp.
325–330. IEEE (2016)

23. Kesiman, M.W.A., Burie, J.C., Wibawantara, G.N.M.A., Sunarya, I.M.G., Ogier,
J.M.: Amadi lontarset: the first handwritten balinese palm leaf manuscripts
dataset. In: 2016 15th International Conference on Frontiers in Handwriting Recog-
nition (ICFHR), pp. 168–173. IEEE (2016)

24. Kesiman, M.W.A., et al.: ICFHR 2018 competition on document image analysis
tasks for southeast asian palm leaf manuscripts. In: 2018 16th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR), pp. 483–488 (2018).
https://doi.org/10.1109/ICFHR-2018.2018.00090

25. Kesiman, M.W.A., et al.: Benchmarking of document image analysis tasks for palm
leaf manuscripts from Southeast Asia. J. Imaging 4(2), 43 (2018)

26. Kleber, F., Fiel, S., Diem, M., Sablatnig, R.: CVL-database: an off-line database for
writer retrieval, writer identification and word spotting. In: 2013 12th International
Conference on Document Analysis and Recognition, pp. 560–564. IEEE (2013)

27. Li, D., Wu, Y., Zhou, Y.: Linecounter: learning handwritten text line segmentation
by counting. In: 2021 IEEE International Conference on Image Processing (ICIP),
pp. 929–933. IEEE (2021)

https://doi.org/10.3390/info11020125
https://doi.org/10.1007/s10032-019-00332-1
https://doi.org/10.1109/ICFHR-2018.2018.00090

330 N. Vadlamudi et al.

28. Likforman-Sulem, L., Faure, C.: Extracting text lines in handwritten documents by
perceptual grouping. Adv. handwriting drawing multi. approach, 117–135 (1994)

29. Mechi, O., Mehri, M., Ingold, R., Amara, N.E.B.: Text line segmentation in histor-
ical document images using an adaptive U-Net architecture. In: 2019 International
Conference on Document Analysis and Recognition (ICDAR), pp. 369–374. IEEE
(2019)

30. Monnier, T., Aubry, M.: docExtractor: an off-the-shelf historical document element
extraction. In: ICFHR (2020)

31. Nagy, G., Seth, S.C., Stoddard, S.D.: Document analysis with an expert system.
In: Pattern recognition in practice II, pp. 149–155 (1985)

32. Nguyen, T.N., Burie, J.C., Le, T.L., Schweyer, A.V.: An effective method for text
line segmentation in historical document images. In: 2022 26th International Con-
ference on Pattern Recognition (ICPR), pp. 1593–1599. IEEE (2022)

33. Niblack, W.: An introduction to digital image processing. Strandberg Publishing
Company (1985)

34. Nikolaidou, K., Seuret, M., Mokayed, H., Liwicki, M.: A survey of historical docu-
ment image datasets. Int. J. Doc. Anal. Recognit. 25(4), 305–338 (2022). https://
doi.org/10.1007/s10032-022-00405-8

35. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans.
Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)

36. Oliveira, S.A., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning approach
for document segmentation. In: 2018 16th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pp. 7–12. IEEE (2018)

37. Pavildas, T.: Page segmentation by white streams. In: Proceeding of the 1st Inter-
national Conference Document Analysis and Recognition, pp. 945–953 (1991)

38. Prusty, A., Aitha, S., Trivedi, A., Sarvadevabhatla, R.K.: Indiscapes: instance seg-
mentation networks for layout parsing of historical indic manuscripts. In: ICDAR,
pp. 999–1006 (2019)

39. Pu, Y., Shi, Z.: A natural learning algorithm based on hough transform for text
lines extraction in handwritten documents. Adv. Handwriting Recogn. 34, 141–150
(1999). World Scientific

40. Renton, G., Soullard, Y., Chatelain, C., Adam, S., Kermorvant, C., Paquet, T.:
Fully convolutional network with dilated convolutions for handwritten text line
segmentation. Int. J. Doc. Anal. Recogn. (IJDAR) 21(3), 177–186 (2018). https://
doi.org/10.1007/s10032-018-0304-3

41. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: convolutional networks
for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells,
William M.., Frangi, Alejandro F.. (eds.) MICCAI 2015. LNCS, vol. 9351, pp.
234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4 28

42. Saabni, R., El-Sana, J.: Language-independent text lines extraction using seam
carving. In: 2011 International Conference on Document Analysis and Recognition,
pp. 563–568. IEEE (2011)

43. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern
Recogn. 33(2), 225–236 (2000)

44. Sharan, S.. P.., Aitha, Sowmya, Kumar, Amandeep, Trivedi, Abhishek, Augus-
tine, Aaron, Sarvadevabhatla, Ravi Kiran: Palmira: a deep deformable network
for instance segmentation of dense and uneven layouts in handwritten manuscripts.
In: Lladós, Josep, Lopresti, Daniel, Uchida, Seiichi (eds.) ICDAR 2021. LNCS, vol.
12822, pp. 477–491. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86331-9 31

https://doi.org/10.1007/s10032-022-00405-8
https://doi.org/10.1007/s10032-022-00405-8
https://doi.org/10.1007/s10032-018-0304-3
https://doi.org/10.1007/s10032-018-0304-3
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-86331-9_31
https://doi.org/10.1007/978-3-030-86331-9_31

SeamFormer 331

45. Shi, Z., Setlur, S., Govindaraju, V.: Text extraction from gray scale historical
document images using adaptive local connectivity map. In: Eighth International
Conference on Document Analysis and Recognition (ICDAR 2005), pp. 794–798.
IEEE (2005)

46. Shi, Z., Setlur, S., Govindaraju, V.: A steerable directional local profile technique
for extraction of handwritten arabic text lines. In: 2009 10th International Confer-
ence on Document Analysis and Recognition, pp. 176–180. IEEE (2009)

47. Souibgui, M.A., et al.: DocEntr: an end-to-end document image enhancement
transformer. In: 2022 26th International Conference on Pattern Recognition
(ICPR), pp. 1699–1705 (2022)

48. Suryani, M., Paulus, E., Hadi, S., Darsa, U.A., Burie, J.C.: The handwritten sun-
danese palm leaf manuscript dataset from 15th century. In: 2017 14th IAPR Inter-
national Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp.
796–800. IEEE (2017)

49. Trivedi, A., Sarvadevabhatla, R.K.: BoundaryNet: an attentive deep network with
fast marching distance maps for semi-automatic layout annotation. In: Lladós, J.,
Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 3–18. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86549-8 1

50. Valy, D., Verleysen, M., Chhun, S., Burie, J.C.: A new khmer palm leaf manuscript
dataset for document analysis and recognition: SleukRith set. In: Proceedings of
the 4th International Workshop on Historical Document Imaging and Processing,
pp. 1–6 (2017)

51. Valy, D., Verleysen, M., Sok, K.: Line segmentation for grayscale text images of
khmer palm leaf manuscripts. In: 2017 Seventh International Conference on Image
Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2017)

52. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

53. Yalniz, I.Z., Manmatha, R.: A fast alignment scheme for automatic OCR eval-
uation of books. In: 2011 International Conference on Document Analysis and
Recognition, pp. 754–758. IEEE (2011)

54. Zahour, A., Taconet, B., Mercy, P., Ramdane, S.: Arabic hand-written text-line
extraction. In: Proceedings of Sixth International Conference on Document Anal-
ysis and Recognition, pp. 281–285. IEEE (2001)

https://doi.org/10.1007/978-3-030-86549-8_1

SegCTC: Offline Handwritten Chinese
Text Recognition via Better Fusion

Between Explicit and Implicit
Segmentation

Jiarong Huang1, Dezhi Peng1, Hongliang Li1, Hao Ni3, and Lianwen Jin1,2(B)

1 South China University of Technology, Guangzhou, China
2 SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China

eelwjin@scut.edu.cn
3 University College London, London, UK

Abstract. Handwritten Chinese text recognition (HCTR) is still a chal-
lenging and unsolved problem. The existing recognition methods are
mainly categorized into two: explicit vs implicit segmentation-based
methods. Explicit segmentation recognition methods use explicit char-
acter location information to train the recognizers. However, the widely
used weakly supervised training strategy based on pseudo-label makes it
difficult to get effective supervised training for difficult character samples.
In contrast, the implicit segmentation recognition method use all tran-
script annotations for supervised training, but it is prone to misalignment
problem due to the lack of explicit supervised information of character
positions. To take advantage of the complementary nature of explicit and
implicit segmentation approaches, we propose a new method, SegCTC,
which better integrates these two approaches into a unified to be a more
powerful recognizer. Specifically, we designed a hybrid Segmentation-
based and Segmentation-free Feature Fusion Module (S2FFM) to better
fuse the features of both explicit and implicit segmentation-based recog-
nition branches. Moreover, a co-transcription strategy is also proposed
to better combine the predictions from different branches. Experiments
on four widely used benchmarks including CASIA-HWDB, ICDAR2013,
SCUT-HCCDoc and MTHv2 show that our method achieves state-of-
the-art performance for the HCTR task under different scenarios.

Keywords: Handwritten Chinese text recognition · Branch feature
fusion · Co-transcription

1 Introduction

Handwritten Chinese text recognition (HCTR) is still regarded as a challeng-
ing and unsolved problem mainly owing to numerous character categories,
diverse writing styles, and frequent character touching or overlapping prob-
lem. The current mainstream recognition methods are mainly categorized into
two: explicit segmentation-based and implicit segmentation-based recognition.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 332–349, 2023.
https://doi.org/10.1007/978-3-031-41685-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_21&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_21

SegCTC: HCTR via Better Fusion 333

Implicit segmentation-based recognition methods based on hidden Markov model
(HMM), connectionist temporal classification (CTC) [3], and attention mecha-
nisms have achieved great success in text recognition of both scene and docu-
ment scenarios. Compared with explicit segmentation-based recognition methods
using over-segmentation strategy [21–23], implicit segmentation-based methods
require only transcript annotations for training, and do not require the costly
annotations of character bounding boxes. However, Chinese characters have more
complex two-dimensional structures, and some components of Chinese characters
can be used as separate characters, in which case the implicit segmentation-based
recognition methods are prone to misalignment.

Unlike Latin script, Chinese characters are more independent from each
other, so it is more intuitive to segment a text line into separate characters
before recognizing them. The explicit segmentation methods are more in line
with this practice. In addition, to overcome the reliance on character bound-
ing box annotations of explicit segmentation-based recognition methods, weakly
supervised training strategies based on pseudo-label have been proposed in
recent years [1,14,31]. The existing weakly supervised training strategies based
on pseudo-label use synthetic data with character bounding box annotations
for pre-training. In the training phase, the real data samples without charac-
ter bounding box annotations are first inferred, and then the “reliable” results
filtered by certain rules are used as the pseudo-label to supervise the training.
For characters that are difficult to classify, the prediction results have a high
probability of being “unreliable”, and therefore no corresponding pseudo-labels
can be generated for further training. This makes it difficult to further improve
the recognition ability for difficult samples.

To verify whether the above conjectures on the advantages and disadvan-
tages of these two categories of recognition methods are correct, we trained two
recognition models based on explicit segmentation [14] and implicit segmentation
(CTC-based) respectively using the same backbone and data. The percentages
of the three types of prediction errors (insert, delete, and substitution) using
these two models inferring on ICDAR2013-Offline handwritten Chinese text line
dataset are shown in Tabel 1. For misalignment errors such as “insert” and
“delete”, implicit segmentation-based model partitioning occurs more frequently,
while explicit segmentation-based model is more prone to misclassification error
“substitution”. This validates our aforementioned assumption: for the implicit
segmentation-based model, misalignment is the bigger problem; while the explicit
segmentation-based model trained with pseudo-label is prone to misclassification
errors owing to the incomplete generation of pseudo-label.

To exploit the complementary nature of the two categories of recognition
methods, we design SegCTC, a new HCTR model integrating the advantages
and complement the disadvantages of them. We propose hybrid Segmentation-
based and Segmentation-free Feature Fusion Module (S2FFM) to fuse explicit
segmentation-based and implicit segmentation-based branch. S2FFM enables
two different types of supervision to be back-propagated to each others. In the
inference phase, both branches of explicit and implicit segmentation can benefit
from the features extracted from the other branch. Moreover, we introduced a

334 J. Huang et al.

Table 1. The percentages of three types of prediction errors tested with explicit seg-
mentation (Expl.) method and implicit segmentation (Impl.) method on ICDAR2013-
Offline. Three types of errors are insert (I), delete (D), and substitution (S).

Expl. Method Impl. Method

I D S I D S

4.04% 14.85% 81.11% 3.22% 19.42% 77.36%

co-transcription strategy (Co-T) to fully combine the prediction from the two
different branches for more accurate results. The experiments are conducted on
four widely used benchmarks including CASIA-HWDB, ICDAR 2013, SCUT-
HCCDoc, and MTHv2. Our method achieves state-of-the-art performance on
these datasets.

To summarize, the main contributions of this paper are as follows:

– We propose a new HCTR model, SegCTC, which combines the advantages
of recognition branches based on explicit segmentation and implicit segmen-
tation to be a more powerful recognizer.

– We design hybrid Segmentation-based and Segmentation-free Feature Fusion
Module (S2FFM) to fuse two different recognition branches, which is more
fully fused two different branches than directly connected two branches in
parallel behind the backbone.

– We introduce co-transcription strategy (Co-T) for a more accurate prediction
text.

– Extensive experiments show that SegCTC achieves state-of-the-art perfor-
mance on multiple offline Chinese handwritten text line benchmarks.

2 Related Works

The goal of handwritten Chinese text recognition (HCTR) is to transcribe Chi-
nese handwritten text line images into the corresponding text. The current main-
stream text recognition methods are roughly divided into two categories: explicit
segmentation methods and implicit segmentation methods.

2.1 Explicit Segmentation Methods

Most of the previous explicit segmentation methods [21–23] were based on an
over-segmentation strategy by first over-segmenting the text line images and then
searching for the best segmentation-recognition path based on information such
as classification results, language model, and geometric background. The explicit
segmentation methods based on over-segmentation strategy are easily affected
by touching or overlapping characters. In addition to the methods of using over-
segmentation strategies, Peng et al. [15] propose a three-branch architecture for
end-to-end handwritten Chinese text segmentation and recognition.

SegCTC: HCTR via Better Fusion 335

The previous methods described above usually requires character bounding
box annotation, which is more time-consuming. To solve this problem, Wang
et al. [25] proposed a over-segmentation-based model with weakly supervised
training which minimizes the marginal log-likelihood on a string-level annota-
tions. The method of Peng et al. [14] treats characters that match as “equal”
in the calculation of the edit distance between the predicted text and the anno-
tated text as “reliable” predictions for pseudo-label generation. The prerequisite
for the pseudo-label to be generated is the correct character classification. For
characters that are difficult to classify, their pseudo-labels cannot be generated,
resulting in their inability to be further trained.

2.2 Implicit Segmentation Methods

Compared with the explicit segmentation recognition methods which require
character bounding box annotations, the implicit segmentation recognition
methods only require transcript annotations. There are three main categories of
implicit segmentation recognition methods: hidden Markov model (HMM) based,
connectionist temporal classification (CTC) [3] based, and attention mechanism
based. The HMM-based methods [2,18,26,27] use a sliding-window manner for
feature extraction, and cascading HMMs for modeling. Another category of
implicit segmentation recognition is based on CTC. The methods of this cat-
egory usually first extracts text line image into frames using CNN, then models
the contextual relationship using RNN, and finally aligns using CTC. Messina
et al. [12] combined multi-dimensional LSTM (MDLSTM) and CTC to solve the
problem of HCTR. Wu et al. [28] introduced separable MDLSTM to reduce the
computation consumption of RNN structure. Liu et al. [7] built a fast HCTR
model with only convolutional layers and CTC loss, along with a Transformer-
based language model with context beam search strategy applicable to CTC
methods. The attention-based approaches [10,17,24] that are widely used for
scene text recognition can also be used for HCTR. Xiu et al. [32] use a multi-level
multi-modal fusion network to improve the attention mechanism-based decoder.

2.3 Combination of Explicit and Implicit Segmentation Methods

Since the recognition methods of explicit and implicit segmentation have differ-
ent advantages, some scholars have tried to combine them together to improve
the recognition performance. Zhu et al. [36] combine CTC-based and over-
segmentation strategy-based recognition results using convolutional combina-
tion strategy. However, this method only uses the text predicted by the recog-
nizers rather than probabilistic information, and it requires additional training
of the combination network. To solve the problem that the over-segmentation
methods is difficult to recognize overlapping and touching characters, Tanaka
et al. [19] add a CTC recognition network to assist character segmentation. But
this method does not feed back the segmentation results to the CTC recognition
network to improve its recognition performance.

336 J. Huang et al.

Fig. 1. Overall framework of SegCTC.

3 Proposed Methodology

3.1 Overall Framework

The overall structure of SegCTC is illustrated in Fig. 1. Our model consists of
three parts: a backbone of CNN for extracting features, a hybrid Segmentation-
based and Segmentation-free Feature Fusion Module (S2FFM) for integrating
different types of features, and an output layer for outputting predicting results.

Following ResNet-18 [4], our backbone is stacked with eight residual blocks,
as shown in Fig. 1. Given an input image I ∈ R

C×H×W (C, H, and W are the
number of channels, height, and width of the image, respectively), the backbone
will downsample the width and height by a factor of 16 to obtain feature maps
F ∈ R

512× H
16×W

16 .
The feature maps F ∈ R

512× H
16×W

16 extracted by the backbone will be fed into
S2FFM to integrate different types of features (Subsect. 3.2). S2FFM will output
four one-dimensional feature maps whose heights have been downsampled to 1
as

ploc ∈ R
1×L, pbbox ∈ R

4×L, pcls ∈ R
nclass×L, pctc ∈ R

(nclass+1)×L (1)

SegCTC: HCTR via Better Fusion 337

Fig. 2. The output of SegCTC’s Seg. branch and the representation of the character
bounding box.

where ploc, pbbox, and pcls denote character location, character bounding box,
and character classification outputs of explicit segmentation recognition branch
(hereinafter called Seg. branch) following [14]. A schematic of these three out-
puts is shown in Fig. 2. The pctc is the output of implicit segmentation recog-
nition branch (hereinafter called CTC branch). The L is the width of the four
1D feature maps, which can be considered to divide each feature map equally
into L frames along the width direction. The nclass denotes to the number of
character categories.

It is same as general object detection for Seg. branch to obtain character
bounding boxes. The frames with confidence less than the confidence threshold
tconf will first be discarded first. Then, non-maximum suppression (NMS) [13]
with the threshold intersection over union (IoU) tIoU will be used to remove
duplicate bounding boxes. The remaining bounding boxes are sorted from left
to right according to the corresponding px to obtain the final predicted text and
the bounding box for each character. In our method, tconf is set to 0.55, and
tIoU is set to 0.15.

3.2 Hybrid Segmentation-Based and Segmentation-Free Feature
Fusion Module (SFFM)

As discussed in Sect. 1, explicit segmentation recognition methods can use char-
acter localization information to cope with the alignment failure problem, but
suffers from the character classification error problem, while the implicit seg-
mentation recognition method solves the character classification error problem
by the full amount of transcript supervision, but suffers from the alignment
failure problem. Owing to the complementary nature of these two recognition
methods, we introduce two different branches in our model: Seg. branch and CTC
branch, and as well propose hybrid Segmentation-based and Segmentation-free

338 J. Huang et al.

Feature Fusion Module (S2FFM). This module enables the back-propagation of
supervision from CTC branch to Seg. branch as a complement to weakly super-
vision based on pseudo-label. Meanwhile, character location supervision from
Seg. branch can be back-propagation to CTC branch.

As shown in Fig. 1, the feature map extracted by the backbone F is first
divided into four heads, and then downsampled 8-fold in the height direction
using three Conv + BN + LeakyReLU (CBL) blocks, while the width direction
is not further downsampled.

A Transformer encoder [20] is introduced to fuse the two different recognition
heads of Seg. branch and CTC branch after CBLs. We concatenate the feature
maps of the recognition heads from Seg. branch and CTC branch together in
the width direction and feed into the Transformer encoder. In other words, each
frame in the width direction of the feature maps in the two heads is considered
as a separate token. After the Transformer encoder output, we combine the
tokens in the original order to revert to two recognition heads. The two revived
recognition heads continue to complete the classification prediction through a
channel number conversion block (CNC). The Transformer encoder can fully
fuse each token through self-attention mechanism, allowing each head to be
fully aware of information from tokens in the same and different heads when
outputting. Both of the different types of losses can also be backward to each
recognition head for complementary supervision.

To further the semantic capture capability of the model, we refer to the
approach in [14] and add another output path via LSTM [5] in the character
classification head of the Seg. branch. This output path with LSTM will only be
kept during training and will be discarded during inference. In the Seg. branch,
the location head will combine the features from the bounding box head and the
character classification head for better character localization.

3.3 Weakly Supervision Strategy

The pseudo-label-based weakly supervised training strategy that we use for Seg.
branch follows [14]. The whole training process is divided into two stages: pre-
training phase and training phase.

In the pre-training phase, we need synthetic data with character bounding
box annotations for training, so that the model has the basic character segmen-
tation capability. The character bounding box and classification annotations will
be directly involved in the calculation of the loss as

lloc = −0.5[
1

|Ploc|
∑

l∈Ploc

log(plloc) +
1

|Nloc|
∑

l∈Nloc

log(1 − plloc)] (2)

lbbox =
1

|Ploc|
∑

l∈Ploc

(glbbox − plbbox)2 (3)

lcls = − 1
|Ploc|

∑

l∈Ploc

log(pl,g
l
cls

cls) (4)

SegCTC: HCTR via Better Fusion 339

where Ploc indicates the frame set where the character centers is located, and Nloc

is the complement of Ploc. Symbol plloc, plbbox, plcls stand for character location,
character bounding boxes, character classification outputs in frame l, and their
corresponding ground truth are glbbox, glcls. Meanwhile, CTC loss will be used to
supervise CTC branches as

lctc = CTCLoss(pctc, gctc) (5)

where pctc and gctc stand for the output of CTC branch and the ground truth
of text content. The total loss is given by

ltotal = lloc + lbbox + lcls + lctc (6)

In the training phase, the dataset will comprise synthetic data with character
bounding box annotations and real data with only transcript annotations. For
samples with character bounding box annotation, the supervision is consistent
with the supervision in pre-training phase. When encountering a sample with
only text content annotations, we first infer on the sample to obtain the pre-
diction results of character confidence, bounding box, and classification. Then,
the edit distance between the ground truth text and the predicted text is calcu-
lated. Characters matched as “equal” are considered as “reliable” predictions,
and their predicted bounding boxes are stored in the cache as pseudo-labels.
When the pseudo-label of a character is not stored in the cache, the result of
this inference is directly copied to the cache; otherwise, the result of this inference
is weighted with the original result in the cache as

ui,j
bbox = λi,jci,jbbox + (1 − λi,j)pi,jbbox (7)

ui,j
conf = λi,jci,jconf + (1 − λi,j)pi,jconf (8)

where ui,j
bbox, ci,jbbox, and pi,jbbox indicate the bounding box to be updated to the

cache, the original in the cache, and the bounding box obtained by this inference,
respectively. ui,j

conf , ci,jconf , and pi,jconf are similar symbols for the confidence. i and
j means the j-th character in the i-th sample. The weight λi,j can be calculated
as

λi,j =
e10c

i,j
score

e10c
i,j
score + e10p

i,j
score

(9)

3.4 Co-Transcription (Co-T)

During the transcription phase, we combine the output of the Seg. branch and
the CTC branch for more accurate results. To keep the probability distributions
of the character classification output from the two branches similar, we normalize
them by

ycls =
pcls − μcls

σcls
, yctc =

pctc − μctc

σctc
(10)

340 J. Huang et al.

Fig. 3. Schematic diagram of co-transcription. The number in the brackets after a
character indicates the normalized probability of the character.

where μcls, σcls, and μctc, σctc stand for the mean and variance of the proba-
bilities of the character classification output from the two branch, which can be
calculated as

μcls =
1

|Ploc|
∑

l∈Ploc

plcls, σcls =
√

1
|Ploc|

∑

l∈Ploc

(plcls − μcls)2 (11)

μctc =
1

|Pnob|
∑

l∈Pnob

plctc, σctc =
√

1
|Pnob|

∑

l∈Pnob

(plctc − μctc)2 (12)

where Ploc indicates the frame set where the character centers is located in Seg.
branch, and Pnob indicates the frame set of non-blank in CTC branch.

The lengths of the texts predicted by the two branches may be different, so
the co-transcription algorithm is required to combine two different lengths of
predicted texts. As shown in Fig. 3, we first calculate the edit distance between
the two predicted texts, and include all the characters that match as “equal”
(“达到国家” and “级环境空气质量” in both two branches as shown in Fig. 3) in
the final predicted text. Among the characters that cannot be matched, if they
are consecutive in the original predicted text, we merge them into a “block” (“三
”, “示淮 ” in Seg. branch and “标准 ” in CTC branch). The subsequent processing
will be performed in units of text blocks. For text blocks in the two branches, we
one-to-one match them based on position (“示淮 ” in Seg. branch is matched to
“标准 ” in CTC branch). Some blocks may not match to the corresponding block
in the other branch (“三 ” in Seg. branch). We calculate the average normalized
probability for each text block (the average of the normalized probability of each
character in a text block). Among a set of one-to-one matched text blocks, we
select the text block with a higher average normalized probability and add it to
the corresponding position of the final predicted text. For the text blocks that
cannot be one-to-one matched, if their average normalized probability is greater
than μmax

cls in Seg. branch or μmax
ctc in CTC branch, they are also included in

the corresponding position of the final predicted text. μmax
cls and μmax

ctc can be
calculated as

μmax
cls = mean(ymax

cls), μmax
ctc = mean(ymax

ctc) (13)

where ymax
cls and ymax

ctc denotes the maximum value of each frame in ycls and yctc,
respectively.

SegCTC: HCTR via Better Fusion 341

4 Experiments

4.1 Datasets

– CASIA-HWDB [8] is a widely used offline handwritten Chinese text line
database written by 1,020 writers. This database includes CASIA-HWDB
1.0-1.2 containing 3,895,135 isolated characters and CASIA-HWDB 2.0-2.2
containing 52,230 text lines. Notably, the character samples of CASIA-HWDB
1.0-1.2 are not cropped from the text lines of CASIA-HWDB 2.0-2.2.

– ICDAR2013-Offline [33] is a competition dataset containing 3,432 offline
handwritten Chinese text lines written by 60 writers.

– SCUT-HCCDoc [35] contains 12,253 offline handwritten Chinese document
images captured by cameras with 116,629 text lines.

– MTHv2 [11] is a Chinese historical document database comprising Tripitaka
Koreana in Han (TKH) and the Multiple Tripitaka in Han (MTH). It contains
105,579 text lines with character bounding box annotations.

4.2 Evaluation Metrics

We adopted two commonly used evaluation metrics in HCTR called the accurate
rate (AR) and correct rate (CR), which can be calculated as

AR =
Nt − De − Se − Ie

Nt
, CR =

Nt − De − Se

Nt
(14)

where Nt represents the total number of characters in annotations, and De, Se

and Ie denote the total number of deletion, substitution and insertion errors,
respectively.

4.3 Implementation Details

The input text line images are resized to 128 in height while maintaining the
aspect ratio of the raw, and the RGB values are normalized to [0, 1]. For the
synthetic images, we add Gaussian noise with mean 0 and variance 0.01 as data
augmentation, while no data augmentation strategy is employed for the real
data.

The batch size is set to 32. In the pre-traning phase, we train 37,500 iterations
only on synthetic data. Adadelta [34] is adopted to optimize non-Transformer-
encoder part of the model, with 0.33 as the initial learning rate and dropping to
0.1 after 10,000 iterations. In the training phase, both synthetic and real data
are used. Non-Transformer-encoder part of the model is optimized by stochastic
gradient descent (SGD) for 300,000 iterations, with an initial learning rate of
0.02. The learning rate is multiplied by 0.08 at 75,000, 150,000 and 225,000
iterations. The Transformer encoder part is optimized using AdamW [9] with
the learning rate kept at 1e-5.

342 J. Huang et al.

Fig. 4. Samples of synthetic data for CASIA-HWDB, SCUT-HCCDoc, and MTHv2.

Fig. 5. SegCTC visualizations tested on ICDAR2013-Offline (without language model),
SCUT-HCCDoc, and MTHv2 datasets.

4.4 Language Model

Recently, language models have become essential for improving the performance
of HCTR recognizers. We adopt a Transformer-based language model which
follows [7] to improve the performance of SegCTC. The Transformer-based
language model was trained using a corpus from the same source as [14]. Because
the language model [7] requires an input of CTC-style predictions, we only input
the CTC branch output into the language model.

4.5 Experiments on ICDAR2013-Offline Dataset

Data Synthesis. The isolated character samples are collected from CASIA-
HWDB1.0-1.2. During synthesizing, we simply paste the isolated character sam-
ples on a white background and record the bounding boxes of the characters
(demo is shown in Fig. 4a). The content of text lines is obtained by random
character sampling from character set or corpus described in Subsect. 4.4. In the
pre-training phase, the corpus was used at a rate of 0.5, while in the training
phase the corpus was used exclusively. The data is synthesized online during the
training.

SegCTC: HCTR via Better Fusion 343

Data Preparation. In the pre-training phase, we use only synthetic data for
training. In the training phase, both CASIA-HWDB 2.0-2.2 dataset and syn-
thetic data are used for training, where the ratio of synthetic data is 0.5. The
model is evaluated using the ICDAR2013-Offline dataset. We correct the angle of
text line images of CASIA-HWDB 2.0–2.2 to make the texts horizontal referring
to [15].

Table 2. Comparison with previous methods on ICDAR2013-Offline. “LM” denotes
language model. Bold indicates state-of-the-art, while underline indicates the second
best.

Method Without LM With LM

AR CR AR CR

Messina et al. [12] 83.50 – 89.40 –

Du et al. [2] 83.89 – 93.50 –

Wang et al. [23] 88.79 90.67 94.02 95.53

Wu et al. [28] 86.64 87.43 90.38 –

Wang et al. [27] 89.66 – 96.47 –

Xiu et al. [32] 88.74 – 96.35 –

Peng et al. [15] 89.61 90.52 94.88 95.51

Xie et al. [30] 91.25 91.68 96.22 96.70

Wang et al. [25] 87.00 89.12 95.11 95.73

Zhu et al. [36] 90.86 – 94.00 –

Xie et al. [29] 91.55 92.13 96.72 96.99

Wang et al. [26] 91.58 – 96.83 –

Tanaka et al. [19] 91.00 – 94.63 –

Huang et al. [6] 91.82 92.13 – –

Liu et al. [7] 93.62 – 97.51 –

Peng et al. [14] 94.50 94.76 97.70 97.91

Ours 95.10 95.29 97.67 97.82

Results and Analysis. A comparison of SegCTC with the previous method
on ICDAR2013-Offline is shown in Tabel 2. SegCTC achieves state-of-the-art
performance without a language model, and slightly lower than Peng et al.’s [14]
method with a language model. SegCTC can also predict the bounding boxes of
characters if output with Seg. branch even without the character bounding box
annotations in the real data. The recognition and segmentation results of some
samples are shown in Fig. 5.

344 J. Huang et al.

4.6 Experiments on SCUT-HCCDoc Dataset

Data Preparation and Synthesis. We only use synthetic data in the pre-
training phase, while in the training phase, SCUT-HCCDoc data and synthetic
data is used at a ratio of 3:7 for training. The character samples for the synthetic
data were taken from 101 font files, and it is also simple to paste the character
samples on a white background to form a text line image. A sample of the
synthetic data is shown in Fig. 4b.

Results and Analysis. Since the performance of the CTC branch is much
better than the performance of the Seg. branch, the performance of the prediction
output using the Co-T strategy is not as good as the performance of the CTC
branch in this experiment. We provide the results of the output using the Co-T
strategy and the output using the CTC branch in Tabel 3 and compare them
with the previous methods. SegCTC achieves state-of-the-art performance in
both AR metrics and CR metrics. The recognition and segmentation results of
some samples are shown in Fig. 5.

Table 3. Comparison with previous methods on SCUT-HCCDoc. Bold indicates state-
of-the-art, while underline indicates the second best.

Method AR CR

CTC-based* 87.46 88.83

Attention-based* 83.30 84.81

Wang et al. [24]** 83.53 85.41

Liu et al. [7] 89.06 90.12

Peng et al. [14] 90.71 92.01

Ours (Co-T output) 91.49 92.93

Ours (CTC branch output) 92.08 93.40
∗ Re-implemented by the author of [35]
and the results were updated on their
website at https://github.com/HCIILAB/
SCUT-HCCDoc Dataset Release. ∗∗ Re-
implemented by the author of [14].

4.7 Experiments on MTHv2 Dataset

Data Preparation and Synthesis. Only synthetic data will be used in pre-
training phase. MTHv2 data and synthetic data are used in a ratio of 1:1 in
training phase. Because the MTHv2 dataset has a character bounding box anno-
tation, we use this annotation to cut out the character samples from the images.
The cut-out character samples are with background, so we use the character sam-
ples from the same image to ensure the background similarity when stitching a
text line image. A sample of the synthetic data is shown in Fig. 4c.

https://github.com/HCIILAB/SCUT-HCCDoc_Dataset_Release
https://github.com/HCIILAB/SCUT-HCCDoc_Dataset_Release

SegCTC: HCTR via Better Fusion 345

Results and Analysis. The MTHv2 data are character bounding box anno-
tated. To verify the effectiveness of weakly supervised training, we removed the
character bounding box annotations in the training phase. A comparison of
SegCTC with the previous methods on MTHv2 is shown in Tabel 4. Our method
is only slightly lower than Peng et al.’s [14] method and performs better than
other methods. Recognition and segmentation results of some samples are shown
in Fig. 5.

Table 4. Comparison with previous methods on MTHv2. Bold indicates state-of-the-
art, while underline indicates the second best.

Method AR CR

Ma et al. [11] 95.52 96.07

Shi et al. [16] 96.94 97.15

Huang et al. [6] 97.42 97.62

Peng et al. [14]* 97.89 97.94

Ours 97.78 97.85
∗ Re-implemented by us.

4.8 Ablation Studies

In this section, we verify whether the recognition method of fusing explicit seg-
mentation and implicit segmentation recognition can effectively improve the per-
formance of the recognizer, and the effect of our proposed S2FFM and Co-T on
the recognition performance enhancement through ablation experiments. The
ablation results on ICDAR2013-Offline are shown in Tabel 5. Experiments show
that the performance of the recognizer can be improved by directly connect-
ing two branches (without using Transformer encoder to fuse two recognition
branches). The addition of both S2FFM and Co-T strategy can lead to a more
significant improvement in the performance of the recognizer.

Table 5. The ablation studies on ICDAR2013-Offline.

Method CTC Branch Seg. Branch

AR CR AR CR

CTC 94.24 94.42 – –

Seg – – 94.43 94.66

Direct Connection 94.49 94.65 94.43 94.66

+ S2FFM 94.96 95.15 94.88 95.13

+ Co-T 95.10 95.29 95.10 95.29

346 J. Huang et al.

To further verify that SegCTC that fuses the Seg. branch and CTC
branch works better than using one branch alone, we further experimented on
ICDAR2013-Offline, SCUT-HCCDoc and MTHv2 datasets. We use the same
backbone and the same training strategy, the only difference is the retention
or non-retention of the two branches. The experimental results are shown in
Tabel 6. SegCTC outperformed the recognition model using only one of the
branches on ICDAR2013-Offline and SCUT-HCCDoc datasets, and the perfor-
mance is slightly lower than the recognizer with only Seg. branch in MTHv2
dataset.

Table 6. Comparison with recognizer with CTC branch only and with Seg. branch
only. Bold indicates state-of-the-art, while underline indicates the second best.

Method ICDAR2013-Offline SCUT-HCCDoc MTHv2

AR CR AR CR AR CR

CTC 94.24 94.42 89.88 91.25 97.60 97.66

Seg 94.43 94.66 90.52 91.86 97.89 97.94

Ours* 95.10 95.29 91.49 92.93 97.78 97.85

* Output with Co-T strategy.

4.9 Limitation

According to the current research, SegCTC cannot guarantee that the output of
every character comes from the Seg. branch when using the Co-T strategy, and
therefore cannot guarantee that every character has the output of the bounding
box. Additionally, if there is a large performance gap between the Seg. and CTC
branches, the Co-T strategy may not outperform either branch. Therefore, the
decision to use the Co-T strategy should be based on practical needs.

5 Conclusion

In this paper, we explore the strengths and weaknesses of explicit and implicit
segmentation recognition models for the HCTR problem. Based on the comple-
mentary nature of explicit and implicit segmentation recognition methods, we
propose a novel recognition model SegCTC to more fully fuse the two differ-
ent recognition methods. Our proposed S2FFM uses self-attention mechanism-
based Transformer encoder to fuse the recognition headers from two branches
more effectively. To more accurate predictions, a co-transcription strategy which
combines the prediction from the two different branches is proposed. Experi-
ments on ICDAR2013-Offline, SCUT-HCCDoc and MTHv2 datasets illustrate
that SegCTC can achieve state-of-the-art performance in the HCTR task.

SegCTC: HCTR via Better Fusion 347

Acknowledgement. This research is supported in part by NSFC (Grant No.: 61936
003), Zhuhai Industry Core and Key Technology Research Project (no. 2220004002350),
and Science and Technology Foundation of Guangzhou Huangpu Development District
(No. 2020GH17) and GD-NSF (No.2021A1515011870).

References

1. Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9365–9374 (2019)

2. Du, J., Wang, Z.R., Zhai, J.F., Hu, J.S.: Deep neural network based hidden Markov
model for offline handwritten Chinese text recognition. In: 2016 23rd International
Conference on Pattern Recognition (ICPR), pp. 3428–3433. IEEE (2016)

3. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning (ICML),
pp. 369–376 (2006)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Huang, Y., Jin, L., Peng, D.: Zero-shot Chinese text recognition via matching class
embedding. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol.
12823, pp. 127–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86334-0 9

7. Liu, B., Sun, W., Kang, W., Xu, X.: Searching from the prediction of visual and
language model for handwritten Chinese text recognition. In: Lladós, J., Lopresti,
D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12823, pp. 274–288. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86334-0 18

8. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: CASIA online and offline Chinese
handwriting databases. In: 2011 International Conference on Document Analysis
and Recognition (ICDAR), pp. 37–41. IEEE (2011)

9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

10. Luo, C., Jin, L., Sun, Z.: Moran: a multi-object rectified attention network for
scene text recognition. Pattern Recognit. 90, 109–118 (2019)

11. Ma, W., Zhang, H., Jin, L., Wu, S., Wang, J., Wang, Y.: Joint layout analysis,
character detection and recognition for historical document digitization. In: 2020
17th International Conference on Frontiers in Handwriting Recognition (ICFHR),
pp. 31–36. IEEE (2020)

12. Messina, R., Louradour, J.: Segmentation-free handwritten Chinese text recog-
nition with LSTM-RNN. In: 2015 13th International Conference on Document
Analysis and Recognition (ICDAR), pp. 171–175. IEEE (2015)

13. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th Inter-
national Conference on Pattern Recognition (ICPR). vol. 3, pp. 850–855. IEEE
(2006)

14. Peng, D., Jin, L., Ma, W., Xie, C., Zhang, H., Zhu, S., Li, J.: Recognition of
handwritten chinese text by segmentation: A segment-annotation-free approach.
IEEE Trans, Multimedia (2022)

https://doi.org/10.1007/978-3-030-86334-0_9
https://doi.org/10.1007/978-3-030-86334-0_9
https://doi.org/10.1007/978-3-030-86334-0_18
http://arxiv.org/abs/1711.05101

348 J. Huang et al.

15. Peng, D., Jin, L., Wu, Y., Wang, Z., Cai, M.: A fast and accurate fully convolutional
network for end-to-end handwritten Chinese text segmentation and recognition. In:
2019 International Conference on Document Analysis and Recognition (ICDAR),
pp. 25–30. IEEE (2019)

16. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

17. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional
scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach.
Intell. 41(9), 2035–2048 (2018)

18. Su, T.H., Zhang, T.W., Guan, D.J., Huang, H.J.: Off-line recognition of realistic
Chinese handwriting using segmentation-free strategy. Pattern Recognit. 42(1),
167–182 (2009)

19. Tanaka, R., Osada, K., Furuhata, A.: Text-conditioned character segmentation for
CTC-based text recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR
2021. LNCS, vol. 12823, pp. 142–156. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-86334-0 10

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NIPS). vol. 30 (2017)

21. Wang, D.H., Liu, C.L., Zhou, X.D.: An approach for real-time recognition of online
Chinese handwritten sentences. Pattern Recognit. 45(10), 3661–3675 (2012)

22. Wang, Q.F., Yin, F., Liu, C.L.: Handwritten Chinese text recognition by integrat-
ing multiple contexts. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1469–1481
(2011)

23. Wang, S., Chen, L., Xu, L., Fan, W., Sun, J., Naoi, S.: Deep knowledge training
and heterogeneous CNN for handwritten Chinese text recognition. In: 2016 15th
International Conference on Frontiers in Handwriting Recognition (ICFHR), pp.
84–89. IEEE (2016)

24. Wang, T., et al.: Decoupled attention network for text recognition. In: Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI). vol. 34, pp. 12216–12224
(2020)

25. Wang, Z.X., Wang, Q.F., Yin, F., Liu, C.L.: Weakly supervised learning for over-
segmentation based handwritten Chinese text recognition. In: 2020 17th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 157–162.
IEEE (2020)

26. Wang, Z.R., Du, J., Wang, J.M.: Writer-aware CNN for parsimonious HMM-based
offline handwritten Chinese text recognition. Pattern Recognit. 100, 107102 (2020)

27. Wang, Z.-R., Du, J., Wang, W.-C., Zhai, J.-F., Hu, J.-S.: A comprehensive study of
hybrid neural network hidden Markov model for offline handwritten Chinese text
recognition. Int. J. Doc. Anal. Recogn. (IJDAR) 21(4), 241–251 (2018). https://
doi.org/10.1007/s10032-018-0307-0

28. Wu, Y.C., Yin, F., Chen, Z., Liu, C.L.: Handwritten Chinese text recognition
using separable multi-dimensional recurrent neural network. In: 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR). vol. 1,
pp. 79–84. IEEE (2017)

29. Xie, C., Lai, S., Liao, Q., Jin, L.: High performance offline handwritten Chinese
text recognition with a new data preprocessing and augmentation pipeline. In:
Bai, X., Karatzas, D., Lopresti, D. (eds.) DAS 2020. LNCS, vol. 12116, pp. 45–59.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57058-3 4

https://doi.org/10.1007/978-3-030-86334-0_10
https://doi.org/10.1007/978-3-030-86334-0_10
https://doi.org/10.1007/s10032-018-0307-0
https://doi.org/10.1007/s10032-018-0307-0
https://doi.org/10.1007/978-3-030-57058-3_4

SegCTC: HCTR via Better Fusion 349

30. Xie, Z., Huang, Y., Zhu, Y., Jin, L., Liu, Y., Xie, L.: Aggregation cross-entropy for
sequence recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6538–6547 (2019)

31. Xing, L., Tian, Z., Huang, W., Scott, M.R.: Convolutional character networks.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 9126–9136 (2019)

32. Xiu, Y., Wang, Q., Zhan, H., Lan, M., Lu, Y.: A handwritten Chinese text recog-
nizer applying multi-level multimodal fusion network. In: 2019 International Con-
ference on Document Analysis and Recognition (ICDAR), pp. 1464–1469. IEEE
(2019)

33. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese handwrit-
ing recognition competition. In: 2013 12th International Conference on Document
Analysis and Recognition (ICDAR), pp. 1464–1470. IEEE (2013)

34. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

35. Zhang, H., Liang, L., Jin, L.: SCUT-HCCDoc: a new benchmark dataset of hand-
written Chinese text in unconstrained camera-captured documents. Pattern Recog-
nit. 108, 107559 (2020)

36. Zhu, Z.Y., Yin, F., Wang, D.H.: Attention combination of sequence models for
handwritten Chinese text recognition. In: 2020 17th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 288–294. IEEE (2020)

http://arxiv.org/abs/1212.5701

Adversarial Attacks on Convolutional
Siamese Signature Verification Networks

Maham Jahangir1(B), Muhammad Imran Malik1, and Faisal Shafait1,2(B)

1 School of Electrical Engineering and Computer Science (SEECS), National
University of Sciences & Technology (NUST), Islamabad, Pakistan

{mjahangir.phdcs17seecs,faisal.shafait}@seecs.edu.pk
2 Deep Learning Laboratory, National Center of Artificial Intelligence (NCAI),

Islamabad, Pakistan

Abstract. A handwritten signature serves as an important biometric
modality to identify individuals. The state-of-the-art methods for signa-
ture verification employ deep learning networks to perform the classifi-
cation task. However, deep neural networks can be fooled by adversarial
attacks that introduce small imperceptible perturbations to the input
images. In this paper, we explore the vulnerability of signature verifi-
cation systems against adversarial attacks. The state-of-the-art attacks
developed by the machine learning community to fool image classifiers
are unsuitable for attacking document classifiers as they are applied to
the background of signature images making them quite perceptible. To
overcome this challenge, we design an attack based on dictionary learning
with the goal to perturb the foreground (strokes) of the signature image.
The proposed method is evaluated in terms of attack success rate and
imperceptibility. The experimental results on the benchmark CEDAR
dataset using Siamese Deep Signet Model highlight the efficacy of the
proposed approach as compared to other methods by achieving 95% and
98% attack success rates with our proposed approach.

Keywords: Adversarial Attack · Sparse Encoding · Dictionary
Learning · Signature Verification

1 Introduction

Biometric Systems are widely used to recognize individuals in legal, financial,
and administrative matters [7,15]. Handwritten signatures serve as one such bio-
metric which are required especially during financial transactions to identify and
verify an individual. The Signature verification systems can be offline (static)
and online (dynamic). The offline systems identify individuals from a signature
image (spatial information) containing handwriting strokes whereas the online
system’s recognition is based on the signature generation process (considering
spatial and temporal information). Offline systems are used widely due to low
cost and convenience. Moreover, there are scenarios where offline signature ver-
ification is inevitable for example during cheque transactions. The traditional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 350–365, 2023.
https://doi.org/10.1007/978-3-031-41685-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_22&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_22

Adversarial Attacks on Signature Verification 351

systems relied on handcrafted features for signature verification but lately, most
of the research efforts on offline signature verification systems are based on deep
neural networks. These systems work under two approaches a) writer indepen-
dent and b) writer dependent. The writer-independent approach is generally
considered more practical as the systems based on writer dependent approach
need to be updated every time a new writer is registered [4]. This research arti-
cle also considers writer-independent offline signature verification scenarios to
evaluate the robustness of signature verification systems.

We have used SigNet: Convolutional Siamese Network [3] in this study. The
available data is divided into train and test sets with a couple of image pairs
such as (genuine, genuine) and (genuine, forged) labeled as, similar and dissim-
ilar classes. Siamese networks can efficiently model such problems. Siamese net-
works are based on twin convolutional networks which accept two images that
can either be similar or dissimilar. Since Deep Neural Networks (DNNs) are
employed here for signature verification, unfortunately, DNNs are vulnerable to
adversarial examples [19]. These examples are generated by imposing carefully
crafted perturbations to clean input images. This research area gained quick pop-
ularity since its advent [19] and a lot of attacks have been proposed to exploit
the vulnerabilities of deep neural network-based systems. However, attacking
signature images is a relatively different and challenging task when compared to
other fields. The vulnerability of signature verification systems against adversar-
ial attacks has not been explored thoroughly and only a handful of research is
available on the topic. In this article, we present the first attempt to particularly
attack Siamese network-based signature verification system.

It should be noted that attacking verification systems is very different from
attacking classification systems and presents challenges not present in classifi-
cation systems. First, when a new user gets registered a new unseen class and
unseen examples are introduced to the system. Second, for signature verification
systems the background and foreground are clearly separated and a verification
system clearly uses the foreground information (strokes) to extract features and
then classify the image as genuine or forged. The state-of-the-art attacks impose
perturbations on the background making them perceptible and since background
information is not used by the system, therefore, the attack success rate is greatly
reduced. Further, in the model used in this article, the images are inverted dur-
ing pre-processing making it even harder to attack. The third problem is that
most of the state-of-the-art methods specifically gradient-based methods applied
to signature verification systems are white box in nature (they require full infor-
mation on the training set, the model used, and parameters learned in order to
attack a system). These systems are well protected by organizations and such
information is unknown to attackers. So traditional white-box attack methods
are not practical.

In view of the above-mentioned problems, this research article proposes a
black-box attack method to attack signature verification systems using ideas
from sparse representation. Our recent work explored the idea of dictionary
learning to craft sparse adversarial attacks for image classification [8]. Formally,

352 M. Jahangir et al.

we used the idea of sparse representation to craft adversarial images using fea-
ture maps of an image. In this research, we have extended the idea and developed
a novel approach to learn a dictionary on feature descriptor (foreground extrac-
tion) and improved sparse representation to create adversarial attacks with the
goal to perturb the foreground (strokes) of the signature image. The sparse rep-
resentation includes dictionary learning and sparse coding stages to generate
perturbations that can be induced in the original images making them adversar-
ial. Dictionary learning is a transformation process that transforms an image to
its linear combination of basic elements called atoms. Sparse Coding is a method
for learning a sparse representation of the input using dictionary learning [13].
In this paper, a novel feature descriptor approach is used to learn the dictionary
and improve sparse representation quality. In this regard, we used the Grab cut
algorithm [18] to extract the foreground of the signature images and then learn
the dictionary. This is an attempt to learn only important and relevant informa-
tion. The proposed technique is evaluated on the benchmark publicly available
CEDAR Signature Dataset and is also compared with the state-of-the-art meth-
ods.

The main contributions and findings include:

1. The proposed model generates adversarial perturbations to fool signature
verification systems with minimum �2-norm and maximum attack success
rates of 95% and 98% respectively.

2. We introduce improved sparse representation quality by learning a dictionary
on a feature descriptor (foreground extraction) rather than original unpro-
cessed images.

3. We attacked a convolution-based Siamese network for a handwriting signature
verification system not attacked before.

4. Our experiments show that attacking strokes of signature is important as
attacks on the background won’t produce desirable results.

The structure of the paper is as follows. Section 2 describes the related works.
Section 3 details the problem, threat model, and methodology of the proposed
approach. Section 4 defines the experimental protocol. Section 5 presents exper-
imental results and analysis. Section 6 concludes the paper.

2 Related Work

Adversarial examples are manipulated input images with perturbations that fool
the classifiers. The concept of adversarial attacks was introduced by Szegedy et
al. [19] in 2013. Since then a lot of attacks have been proposed by the machine
learning community to evaluate the robustness of deep networks. Among the
pioneers is Fast Gradient Sign Method (FGSM) [5]. This is a gradient-based
method that maximizes the loss of the classifier to craft adversarial examples.
Later iterative methods like Deep Fool [17], Basic Iterative method (BIM) [9],
and Carlini and Wagner (C&W) [2] were also introduced. Universal adversarial

Adversarial Attacks on Signature Verification 353

attacks create a single adversarial perturbation that fools the classifier with high
probability and generalizes well across different neural networks [16].

Projected Gradient Descent [12] is a well-optimization method essentially
similar in behavior to iterative FGSM with the difference that it initializes the
input sample to a random point in the ball of interest. On the other hand,
Boundary Attack [1] is one of the decision-based attacks which follows the deci-
sion boundary between adversarial and non-adversarial examples using a simple
rejection sampling algorithm.

In the context of adversarial attacks against signature verification systems
Hafemann [6] explored the vulnerability of these systems against adversarial
attacks. They attacked the system using existing adversarial attacks, like FGSM
and C&W and presented two types of threats to these systems hence two types
of attacks. Type: I, where an adversary manipulates a genuine signature to be
misclassified by the system (False Rejection). Type: II where a forged signature
is manipulated to be classified as genuine by the systems (False Acceptance).
The authors point out that Type: I attacks are easy to generate as compared to
Type: II. These perturbations were introduced on the background of the images
making them quite perceptible and requiring perfect knowledge of the system
under attack which is not practical. In another research, Li et al. [10] proposed a
gradient-free black-box attack against signature verification systems by restrict-
ing the area of perturbations to the region of strokes. Their attack method is not
applicable to binary images as the perturbation intensity of each pixel is not con-
tinuously adjustable. Therefore, selecting optimal pixels for perturbations will
not be possible.

To the best of the authors’ knowledge, these two research articles explored
the vulnerability of signature verification systems against adversarial attacks.
This area still needs a lot of exploration and presents great room for improve-
ment. None of the above-mentioned researchers tested their proposed methods on
Siamese Networks. Attacking Siamese networks is much more challenging than
other classification systems. It is evident from the results section that state-of-
the-art attack methods couldn’t attack these networks efficiently. The attack
success rates of the state-of-the-art are quite low when compared with litera-
ture where they showed good performance while they attacked other signature
verification systems. Siamese Networks are widely used and acquired state-of-
the-art performance on signature verification systems. That is why they have
gained fast-growing popularity in signature verification systems. These systems
serve the rightful purpose of comparing the images and then identifying them
as genuine or forged based on their similarity or dissimilarity. Therefore, in this
research, we explored the vulnerability of the Convolutional Siamese Networks
against adversarial attacks. We designed a black-box attack (information on
the training set, the model used by a verifier, and parameters learned are not
required) based on the sparse representation of foreground features of images.
The experimental results prove the efficacy of the proposed method.

354 M. Jahangir et al.

Fig. 1. General Framework of the Proposed Attack Model

3 Methodology

This section explains our methodology in detail as illustrated in Fig. 1. The
first step in the proposed approach is to extract the foreground from the signa-
ture images. These images are fed to a dictionary learning algorithm to learn
sparse representation. The sparse representation is then used as a perturbation
to manipulate the original input image to fool the classifier. Below we discuss the
Siamese Network under attack, followed by the problem statement, foreground
extraction, sparse representation, and adversarial image generation.

3.1 Siamese Network

In this research, we evaluated the robustness of the Siamese network named:
Signet [3] against adversarial attacks. The Siamese networks are very popular
among signature verification systems and to the best of our knowledge are not
yet studied for robustness against adversarial attacks. One of the reasons behind
their popularity is their ability to learn from minimum data. They need only
a few images to make better predictions and data is not abundant in various
problems including signature verification [14]. The Siamese networks are based
on twin CNN architectures with shared weights joined at the output by a loss
function. The goal is to find similarities between the two images. They learn a
feature space when similar observations are placed in proximity and are used
to evaluate whether a given signature is genuine or forged. This is achieved
by exposing the network to both similar and dissimilar pairs and the network
maximizes the Euclidean distance between dissimilar pairs whereas minimizes

Adversarial Attacks on Signature Verification 355

the distance between similar pairs. The popular loss function used by Siamese
networks is contrastive loss and is defined as follows:

L(a, b, y) = α(1 − y)D2
w + βy max(0,m − Dw)2 where a, b ∈ X (1)

a and b are input samples that belong to the set X. They can be genuine
signatures or forged entries in the system. y is a binary indicator that indi-
cates whether the given two signatures belong to the same class or not. α
and β are two constants whereas, m indicates the margin i.e. 1 in this case.
Dw =‖ f(a;w1) − f(b;w2) ‖2. It is the Euclidean distance computed in fea-
ture space, f is a function that maps a signature image to its real vector space
through CNN whereas, w1 and w2 are learned weights of that particular layer of
the network. The training of Siamese networks involves pairwise learning so the
classifier won’t output probabilities of the prediction but the distance from each
class. We have reported this distance in our experiments of the proposed app-
roach as well as for the state-of-the-art methods. The threshold of 0.5 is selected
to determine if the output of the Siamese network is the same or not.

3.2 Problem

A typical Siamese-based offline signature verification model under attack is
depicted in Fig. 2. The model takes signature images as input. These signature
images can be genuine – by authentic users or can be forgeries – entered into the
system by a skilled forger. The forgers generate signature images that resem-
ble original images from the same user in an attempt to fool the system. Since
the system is trained on skilled forgeries as well, Signature verification systems
successfully recognize the forgeries. However, these systems are still vulnerable
to two main threats. First, an original authentic signature image can be mod-
ified in a way that system rejects the original image that is Type: I, False
Rejection (FR). The second form of attack is the one in which the forged sig-
nature images are modified in a way that gets accepted by the system termed as
Type: II, False Acceptance (FA). Some previous researchers consider that
the second type of adversarial attack is harder to generate [6,10] as compared to
the first one. However, in the case of Siamese networks, our experiments show
that Type: I attacks are harder to generate. In this paper, we considered both
of these adversarial attacks for evaluation purposes. Adversarial examples are
images similar to the true data distribution but fool the system. These images
are generated by adding small perturbations to the original data. If we denote
X as input space and a function F (X) maps these input to a label Y then the
adversarial examples Xadv that are visually similar to clean samples Xorg but
fools the classifier that is F (Xadv �= Y). In the case of the Siamese network

L(a, badv) �= y (2)

where,
badv = b + εp and d(badv, b) < ε (3)

356 M. Jahangir et al.

where, ε is the magnitude of perturbation p added in the image. The distance d
between original signature image b and adversarial image badv should be mini-
mum.

Fig. 2. Siamese Network-based Signature Verification System and Threat Model

3.3 Foreground Extraction

The first step in our proposed approach is to extract the foreground of the
signature image. The foreground contains the signature strokes. Our goal is to
learn a dictionary on these strokes as they are the only important and relevant
information that we need from the signature image. Background doesn’t hold
any detail in signature verification systems. In order to learn specific features
we intend to learn the dictionary on the foreground of the image rather than
the full image. The background pixels are changed to 0-pixel value whereas, the
foreground to 1. Let pixels covering the foreground be denoted as Fd and that
of the background as Bd.

X
′
= Fd + Bd where, Fd = 1 and Bd = 0 (4)

For the above-mentioned purpose, we used the GrabCut algorithm [18] to extract
the foreground of the image which can be used to learn the dictionary and its
corresponding sparse representation. It is a graph cuts-based image segmentation
method. It uses a Gaussian mixture model to separate the background and the
target object.

3.4 Sparse Representation (Dictionary Learning and Sparse
Coding)

The next step is to learn the sparse representation of the processed images
from the last section. The foreground extraction serves as an important fea-
ture descriptor to improve the quality of learned representations. The goal is

Adversarial Attacks on Signature Verification 357

to improve the feature descriptor of the signature images by keeping specific
and minimal information. Sparse coding is an encoding process where a sparse
representation of input images is learned using a linear combination of basic ele-
ments. These elements are called atoms and they combine to form a dictionary.
Let X

′
denote the foreground extracted images from the previous step. A trans-

formation operator to learn sparse representation is applied to it and denoted as
T (X

′
). The optimization function to learn dictionary and sparse representation

proposed by Mairal et al. [13] and is given as

T (X
′
) = Dα (5)

min
D,α

1
2

‖ x
′ − Dα ‖22 +λ ‖ α ‖1 s.t. ‖ Dk ‖2= 1 ∀ k ∈ [0, n] (6)

where, x
′
is the pre-processed signature image and λ is a regularization param-

eter, α is the sparse representation, D is the dictionary learned, and n is the
number of dictionary atoms. The algorithm explaining the steps of this section
is listed in Algorithm: 1.

Algorithm 1: Adversarial Dictionary Learning

Input: X
′ → Set of pre-processed original signature images;

Result: D → Learned Dictionary , T (X
′
) → Sparse representation

D → Initial Dictionary ;
OMP → Orthogonal Matching Pursuit() ;
k → Sparsity ;
n → no. of atoms ;
for t = 1 to iterations do

T (X
′
) ← OMP (D, X

′
);

Dictionary Update Stage;

D = minD,α
1
2

‖ x
′ − Dα ‖2

2 +λ ‖ α ‖1 s.t. ‖ Dk ‖2= 1 ∀ k ∈ [0, n] ;

Return D Return T (X
′
)

3.5 Tuned Adversarial Signature Image Generation

This is the final stage where an adversarial image is generated. A dictionary of
perturbations is learned and saved by the dictionary learning algorithm as dis-
cussed above. These perturbations have a different effect on the attack success
rate. So in this step, the adversarial signature image is tuned for all the avail-
able perturbations. The perturbations that maximize the loss of the classifier
and achieve the highest attack success rate are selected. The complete process of
adversarial image generation involving all sections is defined step by step in Algo-
rithm 2. The first step is to extract the foreground of signature images. For Type:
I attack the forged samples of images are used to learn the dictionary whereas,

358 M. Jahangir et al.

genuine samples in the case of Type: II attacks. Next, we learn the dictionary
and compute sparse representation. This sparse representation is basically our
noise/perturbation to be used to manipulate the original image. As we discussed
earlier, contrary to some findings in literature the Type: I attack was much more
challenging than anticipated in the case of Siamese networks. With reference to
Siamese networks, the additive noise model couldn’t attack the genuine image
to be declared as forged by the classifier. Therefore, inspired by recent work on
multiplicative noises [11] we multiplied the noise perturbation with the original
image to craft our adversarial example. The experimental results prove the effec-
tiveness of multiplicative noise over additive. Detailed analysis of multiplicative
and additive noises for the Type: I attack is discussed in Sect. 5.

Algorithm 2: Tuned Adversarial Signature Image Generation
Result: Xadv → Tuned Adversarial Image
Input: Xorg → legitimate source input image;
Xforg → skilled forged signature input image;
ε → magnitude of noise ;
L → classifier’s loss;
if attack = type : I then

X
′
= Grabcut(Xforg);

else

X
′
= Grabcut(Xorg);

T (X
′
) = DictLearningAlgo(X

′
);

P = T (X
′
);

for i < size(Xorg) do
if attack = type : I then

maxL(Xorg,Xadv,Y) Xadv i = Xorg i ∗ εPi;

else
minL(Xorg,Xadv,Y) Xadv i = Xorg i + εPi;

Return Xadv

4 Experimental Protocol

The experimental design and detail to evaluate the proposed methodology are
discussed in this section.

4.1 Dataset

We conducted the experiments on the widely used benchmark signatures dataset,
CEDAR signature Database1. We have used this dataset as it is quite well-
known and used by almost all the articles we reviewed during this research.
1 http://www.cedar.buffalo.edu/NIJ/data/signatures.rar.

http://www.cedar.buffalo.edu/NIJ/data/signatures.rar

Adversarial Attacks on Signature Verification 359

Table 1. Attributes of CEDAR dataset used in the experiments to define training and
test splits. Note that the splits were carefully done in a way that the users in dictionary
learning, training Siamese network, and testing were mutually exclusive.

Attributes Count

Number of users 55

Users in the training set 28

Users in the test set 12

Users to train the dictionary 15

Genuine signatures per user 24

Forgeries per user 24

Moreover, it contains signatures of 55 users from different ethnic and professional
backgrounds. Each user signed 24 genuine signatures with a difference of 24
minutes in between. Forgers copied the signatures of 3 genuine users, 8 times
each. Hence, each user has 24 genuine and 24 forged signatures. A total of 55 ×
24 = 1320 genuine and 1320 forged signatures are available in this dataset. The
total number is 1320×(2) = 2640. These images are available in grayscale mode.

We divided the dataset into training and test sets as shown in Table: 1. The
system is trained and tested using signatures from 40 users with a train test
split of 70% : 30%. We also reserved some signature images which were not part
of the training or testing of the model. This allows us to define a black-box
attack scenario to evaluate our approach where the attacker has no access to the
training or test data or the model used by the signature verification system. The
remaining signatures from 15 users are used to simulate the environment where
an attacker has a dataset of his own with some genuine signatures by users and
the respective forgeries. These images are used to train the dictionary and learn
sparse representations. These sparse representations are added as perturbations
to the test set of the dataset to create adversarial examples.

4.2 Pre-processing and Performance of Signet-Siamese Network

The model is trained and tested as per the guidelines outlined in the paper [3].
The same pre-processing steps are employed. The publicly available implemen-
tation of the model architecture is used to carry out the training2. The images
are resized to a fixed size (155 × 220) and then inverted to get a black back-
ground with pixel values: 0. Finally, all the images are normalized. The detail
on the Siamese network has been provided in Sect. 3.1. We trained the network
for 80 epochs. The training loss equal to 0.3 and accuracy of 85% are calculated
respectively. The test loss and accuracy were 0.015 and 97% respectively.

2 https://github.com/AtharvaKalsekar/SigNet/.

https://github.com/AtharvaKalsekar/SigNet/

360 M. Jahangir et al.

4.3 Metrics

The contrastive loss of the classifier, attack success rate, and mean and median
�2-norm are calculated during experimentation. The attack success rate defines
the number of genuine signatures that failed to pass through the system and the
number of forged signatures that successfully passed through the system. The
�2-norm is a standard method to compute the length of a vector in Euclidean
space. We use it to find the similarity between two images. Here it is the squared
distance between the adversarial and original clean image. A lower distance
means that the two images appear the same and the noise in adversarial images
is imperceptible. We have calculated the mean and median values of �2-norm.

4.4 State-of-the-art Adversarial Attacks

We compared our approach with state-of-the-art methods. The adversarial
robustness toolbox3 was used to conduct experiments for the state-of-the-art. We
evaluated the proposed systems against Fast Gradient Sign Method (FGSM) [5],
Basic Iterative Method (BIM [9], Projected Gradient Descent (PGD) [12],
and Boundary Attack Method [1]. These are all baseline attack methods that
achieved state-of-the-art attack success rates in traditional image classification
systems. These systems are gradient-based evasion attacks that are white-box in
nature (where the attacker has access to the training or test data or the model
used by a signature verification system). Epsilon ε refers to the magnitude of
noise introduced to the original clean image to create an adversarial image. Our
proposed method relies on a very small magnitude of noise in order to attack
the system. The other state-of-the-art methods don’t attack the system at all if
the ε is kept very low. Therefore, we cannot test the system for the same values
of ε. We have used ε = 0.3 for the state-of-the-art to conduct the experiments.

5 Results and Discussion

This section explains the results reported when the proposed approach is applied
to the CEDAR signature dataset and compared with the state-of-the-art meth-
ods. Moreover, the effect of perturbations on strokes of signatures images is
discussed with reference figures and examples.

5.1 Type: I Attack (False Rejection)

In this attack, perturbation is applied to genuine signatures images such that
the system fails to verify the image as genuine. Contrary to the popular opinion
in the literature where attacking genuine signatures(Type: I) is argued to be an
easy task, we found the Type: I attack to be equally challenging as that of Type:
II specifically in the case of Siamese networks. Since the model pre-processes the
image where the background is black and the signature strokes are white. This
3 https://adversarial-robustness-toolbox.readthedocs.io/en/latest/.

https://adversarial-robustness-toolbox.readthedocs.io/en/latest/

Adversarial Attacks on Signature Verification 361

makes it hard to add noise to the strokes. The background noise fails to attack
the system. This is evident from results tabulated in Table 2. Only the proposed
method is able to attack successfully with a success rate of 95% and with the
lowest �2-norm value of 0.09. The first row of Fig. 3 illustrates the example images
generated through our proposed approach as well as the state-of-the-art. It can
be clearly seen that almost all baseline methods attack the background of the
image, therefore, their attack success rates are very low, and �2-norm is quite
high.

Table 2. The magnitude of noise ε, Loss of Classifier (higher the value more successful
the attack is), Attack Success Rate, Mean and median �2-norm (lower the value more
imperceptible the attack is) values reported for Type: I attack for our proposed method
and state-of-the-art.

Method Epsilon(ε) Loss Attack Succ. (%) Mean �2-norm Median �2-norm

FGSM [5] 0.3 0.19 29 0.37 0.37

BIM [9] 0.3 0.05 8 0.13 0.12

PGD [12] 0.3 0.04 7 0.13 0.12

Boundary Attack [1] – 0.01 2 0.42 0.43

Proposed 0.002 1.50 95 0.09 0.09

Fig. 3. Clean and Adversarial Image examples from the results of experiments reported
in Table:2 and Table:3 for Type-I and Type-II attacks

5.2 Type: II Attack (False Acceptance)

In this attack, the perturbation is applied to forged signature images such that
the system accepts them during the verification and classifies them as genuine

362 M. Jahangir et al.

which was previously declared forged by the system. The results for this type are
tabulated in Table 3. The proposed approach successfully attacks the system with
an attack success rate of 98% using a very low magnitude of noise ε = 0.0004. The
�2-norm is also the lowest among all baseline methods which is 0.07. The second
row of Fig. 3 illustrates the example images of the proposed method and all
other methods. Again the other methods fail to attack the system significantly
as they attack the background of the image except for the Boundary Attack.
Nevertheless, its attack success rate is still very low (attack success rate of 40%,
and the �2-norm of 0.17) compared to the proposed method (attack success rate
of 98%, and the �2-norm of 0.07).

Table 3. The magnitude of noise ε, Loss of Classifier (lower the value more successful
the attack is), Attack Success Rate, Mean and median �2-norm (lower the value more
imperceptible the attack is) values reported for Type: II attack for our proposed method
and state-of-the-art.

Method Epsilon(ε) Loss Attack Succ. (%) Mean �2-norm Median �2-norm

FGSM 0.3 0.88 15 0.36 0.36

BIM 0.3 1.27 10 0.12 0.12

PGD 0.3 1.27 10 0.12 0.12

Boundary Attack – 0.92 40 0.17 0.17

Proposed Method 0.0004 0.01 98 0.07 0.07

Fig. 4. Effect of magnitude of noise on the prediction of the model in case of Type: I
attack

5.3 Effect of Magnitude of Noise on the Prediction of the Model
on Genuine Signatures Images

As discussed above, Type: I attack, which were generally considered as an easy
target [6,10], have been proven challenging while attacking the Siamese network.
Figure 4 illustrates the effect of the increasing magnitude of noise on the genuine
signatures. It can be seen that even increasing the magnitude of noise causes no
effect on the prediction of the model. It still declares the image as genuine. This
is because the strokes of the images remain intact and the model only used the
information of strokes to learn features and classify them.

Adversarial Attacks on Signature Verification 363

Fig. 5. Additive and Multiplicative Noise Adversarial Example Images with same val-
ues of epsilon and their effect on strokes of the signature image

5.4 Effect of Multiplicative and Additive Noise on Genuine
Signatures

We have used multiplicative noise in the case of the Type: I attack for the
proposed method. Figure 5 illustrates how multiplicative noise attacks the strokes
of the signature image while additive noise just disrupts the background. We have
shown a zoomed version of the portion of the stroke to illustrate our point. This
is why we chose multiplicative noise rather than popular additive noise to craft
our adversarial examples.

364 M. Jahangir et al.

6 Conclusion

In this research, we attacked a convolutional Siamese signature verification net-
work using sparse representation and dictionary learning. A novel algorithm
to learn a dictionary from an important feature descriptor that extracts fore-
ground is proposed. The attack proposed is black-box in nature that doesn’t
require information about the signature verification model used, its weights, or
training or test data. The experimental results show that our proposed method
outperforms all the baseline methods and achieves attack success rates of 95%
and 98% for Type: I and Type: II adversarial attacks, respectively.

In the future, we will test our proposed method with more datasets and
evaluate its performance for transferability across other deep networks. We shall
also evaluate our proposed approach against defense methods. The improvement
of sparse representation quality in terms of improved feature descriptors should
be studied too.

References

1. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks:
reliable attacks against black-box machine learning models. arXiv preprint
arXiv:1712.04248 (2017)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy, pp. 39–57. IEEE (2017)

3. Dey, S., Dutta, A., Toledo, J.I., Ghosh, S.K., Lladós, J., Pal, U.: SigNet: convolu-
tional Siamese network for writer independent offline signature verification. CoRR
abs/1707.02131 (2017). http://arxiv.org/abs/1707.02131

4. Diaz, M., Ferrer, M.A., Impedovo, D., Malik, M.I., Pirlo, G., Plamondon, R.: A
perspective analysis of handwritten signature technology. ACM Comput. Surv.
51(6), 1–39 (2019)

5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

6. Hafemann, L.G., Sabourin, R., Oliveira, L.S.: Characterizing and evaluating adver-
sarial examples for offline handwritten signature verification. IEEE Trans. Inf.
Forensics Secur. 14(8), 2153–2166 (2019)

7. Hameed, M.M., Ahmad, R., Kiah, M.L.M., Murtaza, G.: Machine learning-based
offline signature verification systems: a systematic review. Signal Process. Image
Commun. 93, 116139 (2021)

8. Jahangir, M., Shafait, F.: Adversarial attack using sparse representation of feature
maps. IEEE Access 10, 120724–120734 (2022)

9. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and
Hall/CRC (2018)

10. Li, H., Li, H., Zhang, H., Yuan, W.: Black-box attack against handwritten signature
verification with region-restricted adversarial perturbations. Pattern Recogn. 111,
107689 (2021)

11. Lo, S.Y., Patel, V.M.: MultAV: multiplicative adversarial videos. In: 2021 17th
IEEE International Conference on Advanced Video and Signal Based Surveillance,
pp. 1–6. IEEE (2021)

http://arxiv.org/abs/1712.04248
http://arxiv.org/abs/1707.02131
http://arxiv.org/abs/1412.6572

Adversarial Attacks on Signature Verification 365

12. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

13. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 689–696 (2009)

14. Malik, J., Elhayek, A., Ahmed, S., Shafait, F., Malik, M.I., Stricker, D.: 3DAirSig: a
framework for enabling in-air signatures using a multi-modal depth sensor. Sensors
18(11), 3872 (2018)

15. Malik, M.I., Liwicki, M., Dengel, A.: Part-based automatic system in comparison
to human experts for forensic signature verification. In: 2013 12th International
Conference on Document Analysis and Recognition, pp. 872–876. IEEE (2013)

16. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1765–1773 (2017)

17. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

18. Rother, C., Kolmogorov, V., Blake, A.: GrabCut interactive foreground extraction
using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

19. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1312.6199

A System for Processing and Recognition
of Greek Byzantine and Post-Byzantine

Documents

Panagiotis Kaddas1,2(B), Konstantinos Palaiologos1,3, Basilis Gatos1,
Vassilis Katsouros4, and Katerina Christopoulou1,5

1 Computational Intelligence Laboratory, Institute of Informatics and Telecommunications,
NCSR “Demokritos”, 15310 Athens, Greece

{pkaddas,k.palaiologos,bgat,achristopoulou}@iit.demokritos.gr
2 Department of Informatics and Telecommunications, University of Athens, 15784 Athens,

Greece
3 Hellenic Institute, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX,

Surrey, UK
4 Institute for Language and Speech Processing, Athena Research Center, Athens, Greece

vsk@athenarc.gr
5 School of Environment, Geography and Applied Economics, Department of Economics &

Sustainable Development, Harokopio University, 17676 Athens, Greece

Abstract. Processing and recognition of Greek Byzantine and Post-Byzantine
(old Greek) Documents has been proven to be a tedious task in the domain of His-
torical Document Image Processing. Several unique characteristics of these docu-
ments (existence of character ligatures, abbreviations, lack of clear word division,
existence of symbols or punctuations in an arbitrary position) impose significant
difficulties for current processing and recognition tools. In this work, we introduce
a system for processing and recognition of old Greek documents and give details
about all the components that comprise it. These include an image pre-processing,
a text line segmentation and a recognitionmodule. In order to test the proposed sys-
tem, we introduce and provide publicly a new dataset of old GreekDocuments that
includes text line images and the corresponding transcription. Using this dataset,
we evaluate the embedded recognition engine of the proposed system which is the
open-source Calamari-OCR engine employing a variety of configurations. The
best result corresponded to a character error rate less than 1.5% which is accept-
able and promising. Finally, we also achieved promising results when comparing
the embedded OCR engine with other recognition methods already proposed for
the recognition of old Greek Documents.

Keywords: Document Analysis System · Deep Neural Networks ·
Calamari-OCR · Greek Byzantine and Post-Byzantine Documents · Text Line
Recognition

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 366–376, 2023.
https://doi.org/10.1007/978-3-031-41685-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_23

A System for Processing and Recognition of Greek Byzantine 367

1 Introduction

Old Greek Documents are an important source of historical information for scholars
related to our cultural heritage conservation. In this paper, we focus on processing and
recognition of Greek Byzantine and Post-Byzantine (old Greek) documents dated from
the 12th to the 16th century. As it can be observed in the sample of Fig. 1, old Greek
documents of this period have some unique characteristics such as the existence of
character ligatures (neighboring character maybe joined together), abbreviations, lack
of clear word division, existence of symbols or punctuations in an arbitrary position,
which impose significant difficulties for current optical character recognition tools.

Fig. 1. A sample of Greek early printing document (grecs du roi typeface, Greek New Testament,
published by Robert Estienne in 1550).

In this work, we introduce a system for processing and recognition of old Greek
documents.Wegive details about all the components that comprise it focusing both on the
automatic procedures for image pre-processing, text line segmentation and recognition,
as well as on the semi-automatic procedures for correcting the text line segmentation
and recognition result. The embedded recognition engine of the proposed system is
the open-source, TensorFlow-based Calamari-OCR engine [1] that uses an advanced
deep neural network. In order to test the recognition engine, we introduce and provide
publicly a new dataset of old Greek Documents [2] that includes text line images and the
corresponding transcription. By employing a variety of configurations on the recognition
engine, we demonstrate that we can achieve very promising results using a small number
of images for training. The best result obtained corresponds to a character error rate less
than 1.5%. Finally, we also achieved promising results when comparing the embedded
OCR engine with other recognition methods already proposed for the recognition of old
Greek Documents.

The rest of the paper is organized as follows. In Sect. 2, the related work is presented,
Sect. 3 introduces the proposed system, Sect. 4 demonstrates our experimental results
and Sect. 5 presents the conclusion of this work.

368 P. Kaddas et al.

2 Related Work

Processing and recognition of old Greek Documents has not attracted lot of attention in
the literature. There are some approaches that follow more traditional image process-
ing techniques based on feature extraction and some more recent techniques based on
Convolutional Neural Networks (CNN).

In approaches [3, 4], the document image is first binarized, enhanced and skele-
tonized. Next, the open and closed cavities of the skeletonized characters are detected
and a feature extraction step is applied in order to provide the input for the recognition
process. Finally, the individual cavities are recognized on the basis of their features. At
the feature extraction step, all segments that belong to a protrusion of an isolated charac-
ter’s cavity are calculated. For the classification step, decision trees, the K-NN classifier
and support vector machines (SVMs) are employed. The corpus used for the experiments
originates from the Sinaitic Codex Number Three, the Book of Job collection written
by three different writers.

CNNs are used in approaches [5, 6]. In [5], a convolutional recurrent neural network
architecture is proposed that comprises octave convolution and recurrent units which
use effective gated mechanisms. The proposed architecture has been evaluated on three
newly created collections from Greek historical handwritten documents as well as on
standard datasets like IAM and RIMES. In [6], the focus is on the effort to automate
transcription of Greek paleographic manuscripts dating from the 10th to the 16th century.
To this end, two datasets with a parallel corpus of transcriptions were introduced and the
experiments were done using an AI powered handwritten text recognition tool based on
the Transkribus tool [7].

3 Proposed System

In this Section, we give details about all the components that comprise the proposed
system for processing and recognition of old Greek documents. This includes the image
pre-processing component that performs image binarization, as well as the text line
detection and the text line recognition components applied both in an automatic and a
semi-automatic way.

3.1 Image Pre-processing

Image pre-processing includes image binarization that refers to the conversion of the
grayscale or color image to a binary image.Having the binary version of the imagemainly
helps our system to re-define the text line polygons that are automatically extracted (see
Sect. 3.2) in order to exclude non-text areas or to fully include text areas that lie in the
polygon limits.

The binarization method used in the proposed system is fully described in [8] and
consists of five distinct steps: a preprocessing procedure using a low-pass Wiener fil-
ter, a rough estimation of foreground regions using Niblack’s approach, a background
surface calculation by interpolating neighboring background intensities, a thresholding
by combining the calculated background surface with the original image and, finally,

A System for Processing and Recognition of Greek Byzantine 369

a postprocessing step that improves the quality of text regions and preserves stroke
connectivity. An example of the binarization pre-processing step is demonstrated in
Fig. 2.

3.2 Text Line Segmentation

Image pre-processing is followed by the step of text line segmentation, which is a nec-
essary procedure in order to obtain precise and accurate recognition results. Automatic
text line segmentation was carried out by the use of a variation of the well-known
YOLOv5 [9] Deep Neural Network model (YOLOv5-OBB1). In order to automatically
edit detection results acquired from YOLOv5-OBB and to efficiently apply OCR, the

Fig. 2. Example of the binarization pre-processingmethod. (a) original image (b) resulting binary
image.

1 https://github.com/hukaixuan19970627/yolov5_obb

https://github.com/hukaixuan19970627/yolov5_obb

370 P. Kaddas et al.

detected polygons are sorted using Density-based spatial clustering (DBSCAN) in order
to preserve the correct reading order of the text lines.

At a first step, the automatic text line detection procedure results to a set of polygons
that surround each text line of the document, as shown in Fig. 3. Then, the user can correct
the segmentation results. The system provides the user with the following functions:

• To correct a polygon by moving the desired points in the right position.
• To add a new polygon before or after a polygon.
• To delete a polygon.
• To connect a polygon with another polygon.

Fig. 3. The result of the text line segmentation shown in the proposed system.

In Fig. 4(a) one can see the result of the text line segmentation of the system, while
in Fig. 4(b) the corrected polygon by the user. In Fig. 5 we present another example of
the functionality of the system where the user can connect two parts of the same text
line and create a polygon for the whole line.

When the procedure of text line detection and correction is completed, the system
creates text line images with the image parts inside each polygon. These images will be
then used as input for the text line recognition module.

A System for Processing and Recognition of Greek Byzantine 371

Fig. 4. An example of the text line detection (a) and the correction of the line polygon by the user
(b).

Fig. 5. An example of two polygons (a) that should be connected in order to form one text line
(b).

3.3 Text Line Recognition

Having completed the text line segmentation, the user can move to the next step which is
the text line recognition. This is first done automatically by the open-source, TensorFlow-
based Calamari-OCR engine [1] that uses advanced deep neural network. As it is
explained in Sect. 4, the best configuration for the recognition engine is selected after
experimentation with a new database for old Greek documents.

At a next step, the user can correct the predicted OCR lines (see Fig. 6). A part of the
image is presented with the text line of the prediction enclosed in a red box, thus placing
the text line into context in relation to the surrounding text. What follows is a detailed
image of the text line, which helps the user to focus on the correction. The predicted
text appears in a box while a virtual keyboard appears below in order to help the user
to make corrections. The user is able to navigate to the next or previous lines using the
arrows.

The user checks the text thoroughly for errors and can perform corrections with the
following ways. Using the cursor, he/she can select the erroneous character and either
type the correct one, or he/she can choose to use the virtual keyboard below, containing
a comprehensive list of Greek polytonic characters (see Fig. 7).

At a next phase, the corrected text together with the corresponding corrected text
line polygon are used for network re-training.

372 P. Kaddas et al.

Fig. 6. The user interface provided for text line recognition correction.

Fig. 7. Correction of recognition results: (a) the user spots the error, (b) the user corrects the error
by selecting the correct character using the virtual keyboard.

4 Experimental Results

In order to test the proposed system, we introduce and provide publicly a new dataset
of old Greek Documents [2] (see Fig. 1). This dataset consists of 57 pages containing
the complete Gospel of Matthew, from the third edition of the Greek New Testament
published in 1550 byRobert Estienne (1503–1559). Estienne, also known in his activities
with the name Stephanus, was appointed “Royal Typographer” during the rule of King

A System for Processing and Recognition of Greek Byzantine 373

of France François I (1494–1547). As a typographer and scholar, he published a number
of classical texts including Greek and Latin translations of the Bible. His first edition of
the Greek New Testament was in 1546 and the text was based on that printed by Erasmus
in Basel in 1516. For his most significant edition, known as Editio Regia or the “Royal
Edition” printed in 1550, Estienne used fifteen additional Byzantine manuscripts and
presented for the first time a textual apparatus listing the variant readings of the different
manuscripts he examined. The edition printed in large folio size using the grecs du roi
typeface. This typeface, which attempts to imitate the Greek handwriting of this period,
includes a large number of ligatures and abbreviations. Produced by Claude Garamont
on the basis of the Greek minuscule style of the calligrapher Angelos Vergikios (1505–
1569) from Crete, who was active copying Greek manuscripts in Venice and France, it
became the most widely used Greek typeset for European printers. The dataset consists
of 2045 text lines, 1431 used for training, 204 for validation and 410 for test. The text
lines were produced automatically by our system based on [9] and then corrected by a
user as it is described in Sect. 3.2. Also, the corresponding transcription was corrected
following the procedure described in Sect. 3.3.

In order to test the recognition accuracy of the proposed system, we evaluated the
embedded recognition engine which is the open-source Calamari-OCR engine [1] using
a wide variety of configurations. In Table 1, we present selected results that show high
performance and are associated with the predefined network architecture and the appli-
cation or not of data augmentation during training. The evaluation presented in Table 1
uses asmetrics the Character Error Rate (CER) andWord Error Rate (WER). Concerning
the network architecture, we present results for:

def: The default Calamari with one BiLSTM layer and.
htr +: An adaptation of the standard network structure of the Transkribus platform

[7].
def is the default Calamari network follows a CONV1- > MAXPOOL- > CONV2 >

MAXPOOL- > BiLSTM scheme, where: CONV1 is Convolutional Layer with 40 filters,
stride 1 and 3x3 receptive field, followed by ReLU activation. CONV2 is similar to
CONV1 but with 60 filters. MAXPOOL is a 2x22 max pooling layer and BiLSTM is a
Bidirectional Long Short-termMemory layer with 200 hidden nodes. After the BiLSTM
layer, Dropout is applied with a skip ratio of 0.5.

The htr + Calamari network follows a CONV1- > CONV2- > MAXPOOL1- >

CONV3>MAXPOOL2->BiLSTM1-> BiLSTM2-> BiLSTM3 scheme, whereCONV1
is a Convolutional Layer with 8 filters, stride 2x4 and 2x4 receptive field, followed by
leaky ReLU activation. CONV2 is a Convolutional Layer with 32 filters, stride 2x4
and 1x1 receptive field, followed by leaky ReLU activation. MAXPOOL1 is a 2x4 max
pooling layer with stride 2x4. CONV3 is a Convolutional Layer with 64 filters, stride
1x1 and 3x3 receptive field, followed by leaky ReLU activation. MAXPOOL2 is a 2x1
max pooling layer with stride 2x1. BiLSTM1, BiLSTM2 and BiLSTM3 are Bidirectional
Long ShorttermMemory layers with 256 hidden nodes respectively. After each BiLSTM
layer, Dropout is applied with a skip ratio of 0.5. For both architectures, CTC Loss is
calculated as a scoring function.

2 When notation AxB is used, A is for the horizontal axis of a layer (x-width) and B for the
vertical axis (y-height)

374 P. Kaddas et al.

Calamari also includes network architecture deep3 which is not included in our
results because of lower performance. Data augmentation includes padding, distortions,
blobs, and multiscale noise.

Table 1. Experimental results (CER% /WER%) on the new dataset of old Greek Documents [2].

Network architecture: htr + def

Augmentation:

NO 5.12 / 23.61 2.08 / 11.82

YES 3.66 / 18.06 1.45 / 8.53

As it can be observed in Table 1, the def architecture outperforms the htr+ architec-
ture while data augmentation improves the results significantly. The best results corre-
spond to CER of 1.45% andWER of 8.53% which are acceptable and promising having
in mind the small number of images included in the training set.

In order to compare the embedded OCR engine using best configuration (def archi-
tecture+ augmentation in training) with other recognitionmethods applied on old Greek
Documents, we also trained and tested on the datasets presented in [4]. Table 2 presents
the results for these 4 datasets compared to the approach of [4] using best settings
(Deslanting) as well as to the approaches of de Sousa Neto et al. [10] and Puigcerver
[11]. As is can be observed in Table 2, the embedded OCR engine of the proposed
system is comparable or outperforms existing approaches taking into account the CER
performance.

Table 2. Comparative experimental results (CER% / WER%) on the datasets presented in [4].

Dataset Tsochatzidis et al.
[4]

de Sousa Neto et al.
[10]

Puigcerver [11] OCR Engine
embedded in the
proposed system

χϕ53 6.77 / 30.09 7.85 / 34.63 10.45 / 30.20 8.04 / 35.64

χϕ79 6.51 / 28.51 7.75 / 33.13 10.33 / 28.55 5.14 / 28.25

χϕ114 7.71 / 34.30 8.03 / 36.72 10.19 / 34.58 7.01 / 41.79

Eparchos 4.53 / 20.03 4.95 / 21.91 5.18 / 22.21 32.48

5 Conclusions

In this work, we present a system for processing and recognition of Greek Byzantine
and Post-Byzantine Documents. This includes modules for (i) image pre-processing for
binarization, (ii) text line segmentation that is first done automatically by employing a

A System for Processing and Recognition of Greek Byzantine 375

variation of the well-known YOLOv5 [9] Deep Neural Network model (YOLOv5OBB)
and then corrected manually using a user-friendly interface and (iii) text line recognition
that is provided by an advanced deep neural network using the open-source Calamari
engine [1]. The correction of the OCR is done in an efficient way and by using a virtual
keyboard. Moreover, we introduce and provide publicly a new dataset of old Greek
Documents [2] that includes text line images and the corresponding transcription. This
dataset helps us (i) to find the best configuration of the recognition network and (ii) to
assess the accuracy the embedded OCR engine. Therefore, it proved to be acceptable
and promising for the case of old Greek Documents since it resulted to a character error
rate less than 1.5% by using a relatively small set of images for training. Promising
results were also achieved when comparing the embedded recognition engine with other
recognition methods already proposed for the recognition of old Greek Documents. In
all cases, the proposed system is comparable or outperforms existing approaches taking
into account the CER performance. Future work includes testing of other deep neural
network architectures for the task of text line segmentation and recognition and also the
creation of a larger dataset that can be used for training.

Acknowledgments. This research has been partially co-financed by the European Union and
Greek national funds through the Operational Program Competitiveness, Entrepreneurship
and Innovation, under the call "RESEARCH-CREATE-INNOVATE", project Culdile (Cultural
Dimensions of Deep Learning, project code: T1E�K-03785) and the Operational Program
Attica 2014–2020, under the call "RESEARCH AND INNOVATION PARTNERSHIPS IN THE
REGION OF ATTICA", project reBook (Digital platform for re-publishing Historical Greek
Books, project code: ATTP4–0331172).

References

1. Wick, C., Reul, C., Puppe, F.: Calamari - A High-Performance Tensorflow-based Deep
Learning Package for Optical Character Recognition. Digit. Humanit. Q. 14(1) (2020)

2. https://zenodo.org/record/7876098#.ZEvjNtJBxNh
3. Ntzios, K., Gatos, B., Pratikakis, I., Konidaris, T., Perantonis, S.J.: An old Greek handwritten

OCR system based on an efficient segmentation-free approach. Int. J. Doc. Anal. Recogn.
(IJDAR) 9(2–4), 179–192 (2007). special issue on historical documents

4. Gatos, B., Ntzios, K., Pratikakis, I., Petridis, S., Konidaris, T., Perantonis, S.J.: An efficient
segmentation-free approach to assist old Greek handwritten manuscript OCR. Pattern Anal.
Appl. (PAA) 8(4), 305–320 (2006)

5. Tsochatzidis, L., Symeonidis, S., Papazoglou, A., Pratikakis, I.: HTR for Greek historical
handwritten documents. J Imaging 7, 260 (2021)

6. Platanou, P., Pavlopoulos, J., Papaioannou, G.:. Handwritten paleographic greek text recog-
nition: a century-based approach. In: Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pp. 6585–6589. European Language Resources Association,
Marseille (2022)

7. https://readcoop.eu/transkribus/
8. Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization.

Pattern Recogn. 39, 317–327 (2006)
9. https://github.com/ultralytics/yolov5

https://zenodo.org/record/7876098#.ZEvjNtJBxNh
https://readcoop.eu/transkribus/
https://github.com/ultralytics/yolov5

376 P. Kaddas et al.

10. de Sousa Neto, A.F., Bezerra, B.L.D., Toselli, A.H., Lima, E.B.: HTR-Flor: a deep learn-
ing system for offline handwritten text recognition. In: Proceedings of the 33rd SIBGRAPI
Conference on Graphics, Patterns and Images, pp. 54–61. Recife/Porto de Galinhas (2020)

11. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text
recognition? In: Proceedings of the 14th IAPR International Conference on Document
Analysis and Recognition, pp. 67–72. Kyoto (2017)

Towards Writing Style Adaptation
in Handwriting Recognition

Jan Kohút(B) , Michal Hradǐs , and Martin Kǐsš

Faculty of Information Technology, Brno University of Technology,
Brno, Czech Republic

{ikohut,ihradis,ikiss}@fit.vutbr.cz

Abstract. One of the challenges of handwriting recognition is to tran-
scribe a large number of vastly different writing styles. State-of-the-art
approaches do not explicitly use information about the writer’s style,
which may be limiting overall accuracy due to various ambiguities. We
explore models with writer-dependent parameters which take the writer’s
identity as an additional input. The proposed models can be trained on
datasets with partitions likely written by a single author (e.g. single
letter, diary, or chronicle). We propose a Writer Style Block (WSB),
an adaptive instance normalization layer conditioned on learned embed-
dings of the partitions. We experimented with various placements and
settings of WSB and contrastively pre-trained embeddings. We show
that our approach outperforms a baseline with no WSB in a writer-
dependent scenario and that it is possible to estimate embeddings for
new writers. However, domain adaptation using simple fine-tuning in a
writer-independent setting provides superior accuracy at a similar com-
putational cost. The proposed approach should be further investigated
in terms of training stability and embedding regularization to overcome
such a baseline.

Keywords: Handwritten text recognition · OCR · Domain
adaptation · Domain dependent parameters · Finetuning · CTC

Fig. 1. Our proposed Writer Style Block (WSB) learns to utilize various writer styles
based on writer-style identifiers (WSI).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 377–394, 2023.
https://doi.org/10.1007/978-3-031-41685-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_24&domain=pdf
http://orcid.org/0000-0003-0774-8903
http://orcid.org/0000-0002-6364-129X
http://orcid.org/0000-0001-6853-0508
https://doi.org/10.1007/978-3-031-41685-9_24

378 J. Kohút et al.

1 Introduction

Handwritten text of multiple writers can vastly differ in style, for example, the
degree of slant, the way letters are joined (cursive or block letters), spacing
between letters and words, similarity to printed text, the width of the stroke,
etc. In fact, some characters may not be recognizable without the knowledge of
the writer’s identity. To achieve sufficient text recognition accuracy, the state-
of-the-art neural networks [3,8,14,23,27,32,37] must adapt to a large number
of writer styles. While transcribing, these architectures have to rely only on the
image of a text line, which may not provide sufficient context. The improper
adaptation may lead to wrong interpretations of ambiguities, which naturally
arise among multiple writers.

Figure 1 illustrates WS-Net, which is a standard CTC-based [3,8,27,32]
architecture enhanced by our proposed Writer Style Block (WSB). Apart from
the text line image, WS-Net takes an additional input in the form of a Writer
Style Identifier (WSI). WSI serves as an index into a WSB writer-style embed-
ding table, where each writer is represented by a single embedding. WSB is
an adaptive instance normalization [13] conditioned on writer-style embeddings.
The adaptive instance normalization can modulate how the network processes
information and which features become important and as such it provides WS-
Net the ability to adapt to a vast amount of different writers.

The specific contributions of this paper are as follows: (1) Writer Style Block
(WSB), an adaptive instance normalization conditioned by writer-style embed-
dings, which can enhance any standard text handwritten recognition network
with the ability to explicitly utilize writing styles in the training dataset; (2)
extensive evaluation of WSB for various embedding dimensions 16–256, both in
standard and pre-trained mode; (3) evaluation of WSB in writer-dependent and
writer-independent scenarios.

2 Related Work

In the state-of-the-art approaches to handwritten text recognition, the writer’s
identity information is usually not utilized. However, providing the recognition
model with such information might be useful as the model can then better han-
dle different writing styles, writer-specific patterns, etc. Closely related methods
to the model adaptation, such as transfer learning, fine-tuning, and other similar
techniques, are studied in several works [19,28,29,33,33,40], but the main disad-
vantage of these approaches is that they produce a unique model when adapted
to a specific domain. Our proposed Writer Style Block (WSB) enhances a text
recognition network to explicitly use writer-style information, so it can handle
multiple writers simultaneously.

An approach similar to ours was proposed by Wang et al. [36]. It consists
of two neural networks – writer-style extractor network and text recognition
network, where the first network is trained to classify the writers’ identities and
the second one is trained to recognize the text content, each network accept

Towards Writing Style Adaptation in Handwriting Recognition 379

text line image as input. Local writer-style representations, obtained as output
features of the last recurrent layer of the writer-style extractor network, are
aggregated by a mean pooling layer into a global writer-style representation. The
writer’s identity is utilized by aggregating the global writer-style representation
and the local style representations by linear layers and connection operation
into a single vector which is then aggregated into features of the text recognition
network. When compared to our method, we do not extract the writer-style
representation in a feed-forward manner, but instead, we learn a fixed number of
representative embeddings on the training dataset, which allows the network to
utilize all available writer-style information, not only the writer-style information
of currently processed text line image.

Bhunia et al. [2] proposed writer-style adaptation as a meta-learning task.
The goal is to train a general model which can be effectively adapted to a new
writer, the adaptation should be fast and only a few labeled samples from the
target domain should be needed. They used a Seq2Seq model expanded of spe-
cial meta parameters in the form of a gamma layer and dedicated learning rates
for each layer. During the adaptation process, the gamma layer should allow
the model to focus more on problematic/unknown characters and ignore the
already well-learned ones, while the dedicated learning rates should provide the
model with the ability to prefer/ignore the adaptation of certain layers. The
meta parameters together with the general model parameters are optimized
with a meta-learning process consisting of two phases, inner and outer. The
inner phase fine-tunes dedicated writer models (always initialized from the gen-
eral one) on writer-specific data. The outer phase evaluates the dedicated writer
models on respective writer-held-out support sets and updates the meta param-
eters together with the general model’s parameters with all the dedicated writer
models gradients. The inner and outer phases are repeated. Instead of training a
general model which can be effectively adapted to new writers, resulting in a ded-
icated model for each, our goal is to train a single model with writer-dedicated
parameters, where the adaptation to a new writer is done by optimizing a new
set of writer-dedicated parameters.

More extensive model adaptation research can be found in the speech recogni-
tion area (ASR) [1]. Structure transform approaches represent the most relevant
domain adaptation methods to our work, the general idea is to build an archi-
tecture with a small set of speaker-dependent (SD) parameters for each speaker
while keeping most of the parameters shared – the speaker-independent (SI)
parameters. While training, both the SD and the SI parameters are updated,
but during the adaptation to a new writer, only the SD parameters are opti-
mized. In previous works, the SD parameters include the input layer (linear
input network, LIN [26]), the hidden layer (linear hidden network, LHN [10]),
and the output layer (linear output network, LON [20]). Such adaptation has
several drawbacks, mainly the large number of adapted parameters which results
in a slow adaptation process and model overfitting if strong regularization is not
used. Also, as the speaker information is typically discarded in the latter layers of
the network [24], in more recent approaches the SD parameters are located more

380 J. Kohút et al.

toward the beginning of the network. Many approaches aim to speed up the slow
adaptation and suppress the overfitting problems mentioned above by reducing
the number of adapted SD parameters. Parametrization of activation functions
with SD parameters was proposed by Zhang et al. [39]. In other works, the SD
parameters are represented by scales and/or offsets in various layers. Namely,
in Learning Hidden Unit Contributions (LHUC) [34], every kernel is followed
by an SD scale parameter. Another option is to use the scales and offsets in
batch normalization layers as the SD parameters [22,35]. Approaches by Zhao
et al. [42,43] and Samarakoon et al. [30] propose to factorize weight matrices of
SD linear layers as most of the information is stored in diagonals. Utilization of
such decomposed matrices results in fewer SD parameters.

Approaches proposed by Cui et al. [5] and Delcroix et al. [6] use an auxiliary
SI network that generates SD parameters based on a small SD input (e.g. i-
vector, learned speaker embedding, or similar features). In the first approach,
the auxiliary network generates SD scales and offsets for hidden activations. The
latter approach proposes to train a recognition network with several branches
under the assumption that the different branches learn to specialize in different
types of speakers. The auxiliary network is then used to generate weights for
aggregation of the outputs produced by the individual branches. Similarly to
Wang et al. [36], some of the existing methods [16,31,38] do not explicitly utilize
the speaker’s identity, instead, they extract global style features from the entire
utterance, that is being currently recognized, and incorporate these features into
the recognition process of its parts.

Our WS-Net architecture utilizes embeddings as writer-dependent (WD)
parameters, while the rest of the parameters are shared among all writers (WI).
The writer-dependent embeddings are part of the Writer Style Block (WSB),
which is an adaptive instance normalization connected to the writer-independent
part of the WS-Net. Because the adaptive instance normalization is conditioned
on the writer-dependent embeddings, the information about a writer is utilized
by the writer-independent part of the network. WS-Net is inspired by style trans-
fer approaches and style-dependent Generative Adversarial Networks, which use
an adaptive instance normalization (AdaIN) to broadcast information about
the desired output style across a whole image [7,11,13,15]. Instead of using the
AdaIN layers to broadcast the information about the style, Murase et al. [25] used
it to broadcast the information about the content while optimizing an autoen-
coder for writer verification. In this way, the autoencoder can focus to extract
only the writer-style information which is important for successful writer verifi-
cation. In our previous work [18] we introduced TS-Net, where the only difference
to WS-Net is the location of the AdaIN layer.

3 Writer Style Block

We propose Writer Style Block (WSB), which allows WS-Net, described in
detail in Sect. 5, to learn dedicated writer parameters in the form of writer-style

Towards Writing Style Adaptation in Handwriting Recognition 381

Fig. 2. Our proposed neural network (WS-Net) consists of a convolutional part (CNN),
a recurrent part (LSTM), and Writer Style Block (WSB).

embeddings. Figure 2 shows WSB as part of the WS-Net. The WSB is an adap-
tive instance normalization layer AdaIN [13]:

AdaIN(Xc, γc, βc) = γc

(
Xc − μ(Xc)
σ(Xc) + ε

)
+ βc, (1)

where X, γ, β, μ, σ, ε stand for input, scales, offsets, mean, standard deviation
and a small positive constant, c specifies the channel dimension. The adaptive
scales γ and offsets β are given by two affine projections P γ and P β :

γ = P γ(e) = Wγe + bγ , β = P β(e) = Wβe + bβ , (2)

where Wγ , Wβ , bγ , bβ are projection matrices and biases and e is a writer-
style embedding specified by the corresponding Writer Style Identifier (WSI).
Therefore, in our architecture, each writer has dedicated parameters in the form
of a writer-style embedding e, while all the other parameters are shared. While
training, a writer-style embedding e is updated only on the respective writer
training data, all the other parameters of WS-Net are updated on all writers.

Initialization. We initialize WSB similarly to the standard instance normal-
ization. Each writer-style embedding e is initialized from the standard normal
distribution N (0, 1). The projection matrices Wγ , Wβ are initialized from an
uniform distribution U(−√

ED × τ,
√

ED × τ), where ED stands for embedding
dimension and τ is a small positive constant. Conditioning the initialization on
the square root of the ED results in the same standard deviation of the scales
γ and the offsets β across all ED. The magnitude of this standard deviation
can be manipulated with τ . In conducted auxiliary experiments we found that
a reasonable value of the standard deviation is 0.1 and it is achieved by setting
τ to 0.174. The bγ and bβ are set to ones and zeros, respectively. For all ED,
this way of initialization ensures, that both the scales γ and the offsets β have

382 J. Kohút et al.

Fig. 3. Left, samples from the CzechHWR dataset. Right, representative words of 19
writers from Handwriting Adaptation Dataset.

the same small standard deviation, while the scales are centered around 1 and
the offsets around 0. Instead of initializing the embeddings from the standard
normal distribution, pre-trained embeddings can be used (see Sect. 6).

4 CzechHWR Dataset

Our dataset CzechHWR consists of triplets: a text line image, WSI, and the
ground-truth transcription of the text line image. It was created from three
main sources: our text recognition web application PERO OCR1, a collection
of Czech letters [12], and Czech chronicles. So far, users of the web application
have uploaded and annotated documents containing about 295k handwritten
text lines. Most of the documents were written in Czech modern cursive script,
although, a marginal amount of documents in different scripts such as Gothic or
German Kurrent is also present. They are mainly composed of military diaries,
chronicles, letters, and notes. Based on document or page level manual inspection
of the annotated documents, we assigned approximately 2.6k WSI. Czech letters
is a collection of 2k letters, where the number of text lines is 87k. Most of them
were written in Czech modern cursive, while a minimum amount was typeset. As
it can be reasonably assumed that a handwritten letter has only one author, we
assigned a distinct WSI to each letter. We manually annotated approximately
2 pages of 277 distinct Czech chronicles, resulting in 553 annotated pages with
24k text lines. As each page was chosen from a visually different place in the
chronicle, we assigned a different WSI to each page.

The final CzechHWR dataset contains 406k annotated text line images with
5.1k WSI. The level of penmanship/readability differs, ranging from scribbles to
calligraphy, although due to the origin of the data, the tendency is towards fairly
readable texts (see the left side of Fig. 3). There are two issues resulting from the
WSI assigning process. First, there is no assurance that multiple WSI does not
identify the same writer because it is not possible for the annotator to keep track
1 https://pero-ocr.fit.vutbr.cz.

https://pero-ocr.fit.vutbr.cz

Towards Writing Style Adaptation in Handwriting Recognition 383

Table 1. The number of lines and writers (WSI) for each cluster in the CzechHWR
dataset. For a detailed description, see the text.

1 20 50 100 200 500 1000 ALL

TRN 13k 79k 82k 43k 24k 16k 122k 379k

TST 169 1k 1.1k 566 287 198 1.7k 5k

TSTW 0 4.5k 6.2k 3.2k 2k 1.1k 5.4k 22.4k

WSI 1.1k 2.3k 1.2k 322 79 21 54 5.1k

of thousands of writing styles. Second, as we assigned the WSI on the document
or page level, there is a possibility, that some text lines of the document/page
belonged to distinct writers. The first issue should not present a problem for our
system, as it will try to learn the same writer-style embedding e multiple times.
The second issue should present only a slight regularization to the optimization
process, as the vast majority of text lines were assigned correctly. The exact
number of distinct writers is unknown, but a reasonable lower estimate is 4.5k.
To avoid overcomplicated statements we often use “writer lines” to refer to data
samples (triplets) that share the same WSI.

We divided the CzechHWR dataset for training and testing in the following
way. We randomly draw 5k lines for testing (TST). The remaining lines were
divided into seven clusters: 1, 22, 55, 110, 225, 550, and 1100, according to their
writers (WSI). The cluster numbers specify the minimum number of lines for
each writer to belong to that cluster. A writer belongs only to the cluster with
the highest possible number, the resulting clusters are disjoint. Out of clusters
22, 55, 110, 225, 550, and 1100, for each writer (WSI), we respectively took 2, 5,
10, 25, 50, and 100 lines for testing clusters TSTC. The remaining lines formed
the training clusters TRNC. Out of convenience, we refer to both testing and
training clusters with the minimum number of lines belonging to each writer in
the training clusters: 1, 20, 50, 100, 200, 500, and 1000, e.g. TST20 or TRN500.
For example, a CER measured on TST50 set shows an error for writers that have
at least 50 lines in the training dataset. The number of lines and WSI for each
cluster is shown in Table 1, ALL stands for all clusters.

For training, we merged all training clusters into a single training dataset
(TRN). TST allows us to inspect the average CER because the distribution of
WSI is the same as in TRN. TSTC and TRNC clusters allow us to measure how
the number of data samples per WSI affects the WSB performance.

For experiments with writer-independent scenario we used our Handwriting
Adaptation Dataset2 (HAD) [19] which consists of 19 writers, right side of Fig. 3
shows sample words for each writer. In comparison with CzechHWR dataset,
HAD contains both similar and vastly different scripts.

2 https://pero.fit.vutbr.cz/handwriting adaptation dataset.

https://pero.fit.vutbr.cz/handwriting_adaptation_dataset

384 J. Kohút et al.

5 Writer Style Network

In this section, we describe the proposed WS-Net and its training procedure. We
first introduce the baseline network architecture and later we specify the changes
that lead to the proposed WS-Net.

The baseline architecture is similar to text recognition state-of-the-art archi-
tectures trained with CTC loss function [3,8,27,32]. It consists of a convolu-
tional part (CNN) and a recurrent part (RNN). The CNN part is a sequence
of 4 convolutional blocks, where each has 2 convolutional layers with numbers
of output channels set to 64, 128, 256, and 512, respectively. All convolutional
blocks except the last one are followed by a max pooling layer, while the input
width subsampling factor of the CNN is 4. The RNN part processes three scaled
versions of the WSB output with three branches, the scaling factors are 1, 0.5,
and 0.25 and each branch has two LSTM layers. The outputs are upsampled
back to the original resolution, summed, and processed with a final LSTM layer.
Each LSTM layer is bidirectional and has a hidden feature size of 256 for each
dimension. The output of the RNN block is processed by a final 1D convolutional
layer. The baseline architecture has 5 instance normalization layers, the first four
are in the convolutional part after each convolutional block (CNN), and the last
is after the recurrent block (RNN). A more detailed description together with a
detailed diagram can be found in our previous work [18].

WS-Net (see Fig. 2) is the baseline architecture enhanced with WSB, which
replaces one or multiple standard instance normalization layers with adaptive
instance normalization layers (AdaIN) conditioned on writer embeddings. Each
AdaIN has its own projection matrices Wγ , Wβ , and biases bγ , bβ , but the
writer-style embeddings e are shared. We experimented with two variants of
WS-Net: Single AdaIN and All AdaIN. Single AdaIN is WS-Net, where the
adaptive normalization layer (AdaIN) is placed after the convolutional block
(CNN), and all the rest are standard instance normalization layers. All AdaIN
is WS-Net, where every normalization layer is AdaIN.

Motivation behind AdaIN placements. The motivation behind the AdaIN
layer placement in Single AdaIN architecture is based on auxiliary experiments
with All AdaIN architecture trained in multiple embedding dimension (ED) set-
tings. By fixing scales and offsets for various AdaIN layers of a trained All AdaIN
system, we simulated all possible settings of AdaIN layers. We fixed the respec-
tive AdaIN by conditioning the scales and offsets on the mean writer embedding.
Out of all placements, we noticed a significantly poorer performance for every
setting where the AdaIN layer after the CNN block was fixed, which suggests
that the All AdaIN system benefited most from this adaptive normalization
layer. Furthermore, in speech recognition, A Mohamed et al. [24] found that
information about speakers generally vanishes toward the end of the network,
which suggests that placing the AdaIN layer near the end of the network might
have no effect. On the other hand, placing the AdaIN near the begging of the
network might have no effect too as the activation in the first layers usually

Towards Writing Style Adaptation in Handwriting Recognition 385

bears only low-level information. Finding the best possible setting for AdaIN
layers would mean training 31 different settings from scratch, for each embed-
ding size ED. Additionally, we experimented with a setup where the AdaIN layer
was behind the CNN and the RNN block, which turned up to be unstable and
therefore we do not discuss the respective results in more detail.

Training. WS-Net is trained jointly with Adam optimizer [17], and the CTC
loss function. The training data consists of triplets: a text line image, WSI, and
the ground-truth transcription. Because the training samples are drawn ran-
domly, embeddings that have more data samples assigned to them are updated
more frequently. We mitigate this by normalizing embedding batch gradients
by the frequency of their WSI in the batch. We trained Single AdaIN and All
AdaIN, with the embeddings initialized from the standard normal distribution
(normal embeddings), for 500k iterations up until convergence. We used poly-
nomial warmup of a third order to gradually increase the learning rate from 0
to 3 ×10−4 in the first 10k iterations. At iterations 200k and 400k, we used the
warmup again, but the learning rate maximums were 7 ×10−5 and 1.75 ×10−5.
The batch size was set to 32. The baseline was trained with the same strategy.

Additionally, we trained Single AdaIN and All AdaIN, with the pre-trained
embeddings (described in Sect. 6), for 675k iterations in three consecutive steps.
For each step, we trained the model up until convergence. First, we optimized all
the parameters except the embeddings for 400k iterations. We used the warmup
strategy in iterations 0, 200k, and 300k with the learning rate maximums being
3 ×10−4, 1.5 ×10−4, and 7 ×10−5. Second, for the next 100k iterations, we
optimized just the embeddings. We used the warmup strategy in iterations 400k
and 450k and kept the learning rate the same. Third, for the final 175k iterations,
we finetuned all the parameters. We used the warmup strategy at iterations 500k,
550k, 600k, and 650k with the learning rate maximums being 7 ×10−5, 3 ×10−5,
and 1.5 ×10−5. The model was significantly more accurate after each step.

We used data augmentation including color changes, noise, blur, and vari-
ous geometric transformations to simulate different backgrounds, slants, spacing
between characters, etc. Additionally, we mask the text line images with a ran-
dom number of noise patches. The height of a noise patch is the same as the
height of the text line image, the width is chosen randomly up to the height of
the text line image forming at most a square patch. In this setting, the noise
patch usually masks a maximum of two letters. The intuition behind masking is
to strengthen the language modeling capability of the system. A more detailed
description of the used augmentation together with examples can be found in
our work [19], where the respective augmentation is B1C1G1M1.

6 Pre-training Writer-Style Embeddings

Instead of using embeddings initialized from the standard normal distribution,
we also use pre-trained ones. We implemented a contrastive learning approach,

386 J. Kohút et al.

where the encoder is a stack of four convolutional layers with output chan-
nel dimensions 32, 64, 128, and 512 respectively, followed by three multi-head
attention blocks with 4 heads and 512 channels, average pooling over the width
dimension, and L2 normalization. The encoder generates an embedding q for
each text line image input. We used the normalized temperature-scaled cross
entropy (NT-Xent) loss function [4]:

Lqp = −log
exp(q · p/τ)∑N

j=0 exp(q · nj/τ) + exp(q · p/τ)
, (3)

where q forms a positive pair with the embedding p, and negative pairs with
embeddings nj . Embeddings of a positive pair are generated from image text
lines belonging to the same writer, while embeddings of a negative pair are
generated from image text lines belonging to distinct writers. The final NT-
Xent loss is given by L = μ(Lqp), (q,p) ∈ P, where P is a set of all positive
pairs. As the final layer of the encoder is L2 normalization, the dot product will
produce cosine similarity. The temperature parameter τ affects the strictness of
the NT-Xent loss function. Values closer to 0 make it more strict, whereas higher
values make it looser. Higher strictness force the encoder to produce closer cosine
similarities, which means closer embeddings. We set τ to 0.15.

As the encoder can only provide an embedding q for a text line image, we
extract the final writer-style embedding e by aggregating output embeddings for
32 distinct and random text line images belonging to the respective writer. The
aggregation is done by choosing the embedding qi which has the largest sum
of above-average cosine similarities. The cosine similarity of two embeddings qi

and qj is above average if it is larger than the average cosine similarity between
all 32 embeddings. No data augmentation is used during the extracting process.

Training Writer-Style Encoder. The encoder was trained with AdamW [21]
optimizer for 20k iterations, with a batch size of 180, and learning rate 2 ×10−4.
We use the same dataset as for the standard training, the augmentations are
similar, but stronger, without any geometry transformation and patch noise
masking. The NT-Xent loss is evaluated for all positive pairs in the batch. We
checked the convergence by visual inspection of text line images that belonged
to the k-nearest neighbors embeddings according to cosine similarity.

7 Writer-Dependent Scenario

In this section, we describe the experiments conducted with the WS-Net on
the CzechHWR dataset. Specifically, we compare Single AdaIN and All AdaIN
variants of WS-Net to the baseline network. We trained architectures in both
normal and pre-trained embedding setups for embedding dimensions (ED): 16,
32, 64, 128, 256, and 512, and a separate writer-style encoder was trained for
each ED. Figure 4 shows test character error (CER) for Single AdaIN, All AdaIN,
and the baseline on the testing set TST. The left graph shows architectures ini-
tialized with normal embeddings. The Single AdaIN performed better for ED

Towards Writing Style Adaptation in Handwriting Recognition 387

Fig. 4. Character error rate (CER) for Single AdaIN, All AdaIN, and the baseline on
the test set. The graphs show CER for different embedding dimensions (ED) and for
different initialization: randomly initialized (left) and pre-trained (right).

16, 32, 64, and 512, and brought the best result for ED 32, All AdaIN was
inconsistent across ED. All settings, except Single AdaIN with ED 32, brought
worse performance than the baseline. The right graph shows architectures ini-
tialized with pre-trained embeddings. All settings consistently outperformed the
baseline, with the exception of ED 16, which brought similar CER. Both AdaIN
settings brought similar results, except for the ED 256, where All AdaIN had the
lowest CER of all settings and decreased the test CER of the baseline by 9.22%
relatively. All AdaIN is more stable across different ED, while initialized with
pre-trained embeddings. When initialized with pre-trained embeddings, Single
AdaIN brought progressively better performance with increasing ED, whereas
initialization with normal embeddings had the opposite tendency since the ED
32. In further experiments, we do not show results for All AdaIN, as it did not
bring any significant improvement over Single AdaIN.

Figure 5 shows Single AdaIN CER measured on various testing and training
clusters (see Table 1 and Sect. 4) for ED 16, 32, and 256. The top graphs show the
CER for Single AdaIN initialized with normal embeddings. We do not show the
results for ED 64, 128, and 512, as the CER for ED 64 had the same tendency
as ED 32, whereas ED 128 and 512 had the same tendency as ED 256. For
larger clusters 100, 200, 500, and 1000, the test CER was smaller or similar to
the baseline, while for smaller clusters 20 and 50, it was worse or similar. Only
ED 32 and 64, outperformed the baseline for the larger clusters and evened out
the baseline for smaller ones. As there was no noticeable relative decrease in
train CER for smaller clusters (20, 50), the respective writer-style embeddings
probably overfitted in the wrong way and therefore brought poor generalization.
Although we trained ED 256 up until convergence, the train CER suggests that
it was not trained properly, as it should have overfit more than the smaller ED
and the baseline (the same applied for ED 128 and 512).

The bottom graphs in Fig. 5 show the results for Single AdaIN initialized
with pre-trained embeddings. For all clusters, all ED except 16 had consistently

388 J. Kohút et al.

Fig. 5. Character error rate (CER) measured on various testing and training clusters
for Single AdaIN with randomly initialized embeddings (top) and pre-trained embed-
dings (bottom).

smaller test CER than the baseline. The general tendency among all clusters,
both for the testing and the training clusters, is that a higher ED has always
lower CER than a smaller ED. Surprisingly, ED 16 brought significantly better
performance for writers in cluster 500, this is probably due to the fact that
the writer-style encoder was able to find the unique properties of their writing
styles and encode them even to smaller embeddings. Although all ED were fairly
overfitted, they were able to generalize well among all the clusters.

The pre-trained embedding initialization variants generally outperformed the
normal ones, while the largest differences were on smaller clusters. If we compare
the best ED out of each variant, ED 32 for normal embeddings to ED 256 for
pre-trained embeddings, we can see that the latter was better only on the smaller
clusters. Single AdaIN trained from scratch (initialized with normal embeddings)
does not guarantee in any way that the learned embeddings would represent the
respective writer styles and therefore it is prone to overfit on writer irrelevant
details, especially for smaller amount of writer lines. On the other hand, Single
AdaIN initialized with the pre-trained embeddings is forced to learn the proper
utilization of writer styles in relation to the handwritten text recognition task,
as the pre-trained embeddings are fixed for the first 400k training iterations.
As the writer-style encoder was directly trained to encode the writing style, it
learned to extract robust and representative embeddings even for writers from
smaller clusters.

Towards Writing Style Adaptation in Handwriting Recognition 389

For pre-trained embeddings and normal embeddings with ED 128 and 256,
the t-SNE projections showed semantically meaningful clusters, where writers of
similar scripts were grouped together. For normal embeddings with ED 16, 32,
and 64, the projections did not show visible clusters.

8 Writer-Independet Scenario

For new writers, our architecture cannot be used in a simple feed-forward man-
ner. However, as all parameters except the writer-style embeddings are shared
among the writers, we should be able to adapt to a new writer by finding a
new representative embedding. We experimented with two approaches. The first
selected the new embedding out of the existing ones according to CER on adap-
tation lines As there are more than 5k existing embeddings, we clustered the
existing embedding space with the k-mean algorithm into 50 clusters and eval-
uated only one random embedding from each cluster. The second optimized a
new embedding with 150 LBFGS iterations, the adaptation text line images were
augmented in the same way as the training ones. To inspect the quality of selec-
tion and optimization for different numbers of adaptation lines, we define writer
adaptation runs. A writer adaptation run consists of adapting the respective
writer on 5 line clusters: 16, 32, 64, 128, and 256, where the numbers refer to the
number of lines in them, a smaller cluster is always a subset of a larger one, and
the lines of the largest cluster are drawn randomly from all available lines. We
run 23 adaptation runs for 19 new writers of HAD dataset and 3 fully-trained
Single AdaIN architecture setups: normal embeddings with ED 32, pre-trained
embeddings with ED 32, and pre-trained embeddings with ED 256, resulting in
final 23×19×3 runs for both the selection and optimization approach. We always
chose the best-performing embedding on the adaptation lines and inspected CER
on test lines, there are 256 randomly drawn testing lines for each adaptation run.

The selection approach performed worse than the baseline even for higher
amounts of adaptation lines. Generally, for all Single AdaIN setups, the selection
was more accurate for higher numbers of adaptation lines. Surprisingly, the best-
performing setup of Single AdaIN was normal embeddings ED 32, while for some
writers and selections based on 256 adaptation lines, it performed similarly to
the baseline. We do not show detailed results, as the selection approach did not
outperform the baseline and we did not notice any interesting properties apart
from the already described. For the optimization approach, we tried to optimize
from the selected embeddings, but the mean of the existing ones turned out to
be a better starting point.

Figure 6 shows the performance of our optimization approach expressed as
relative test CER reductions of the baseline. A boxplot represents the distri-
bution of the 19 writers’ CER reductions, and a writer’s CER reduction is the
mean of the writer’s CER reductions measured on 23 runs. More precisely, the
CER reduction is given by:

A − B

B
, (4)

390 J. Kohút et al.

Fig. 6. The performance of our optimization approach expressed as relative test CER
reductions of the baseline compared to baseline finetuning.

where A is the test CER of the adapted Single AdaIN, and B is the test CER of
the baseline. Generally, for all Single AdaIN setups, the optimization was more
accurate for higher numbers of adaptation lines. By further inspecting the results
in relation to Fig. 3, we noticed that the performance varied across writers in
relation to their scripts. CER reductions were largest for scripts that were not
sufficiently represented in the CzechHWR dataset, such as German Kurrent or
Ghotic, while the performance worsen for the CzechHWR-like scripts. On aver-
age, the pre-trained embeddings ED 256 setup provided the best performance,
although it performed worse than the respective ED 32 setup for some writers.
The normal embeddings ED 32 setup brought the lowest CER reductions, while
it vastly worsen the performance for some writers.

Based on these results, WS-Net is able to learn writer-style space that can
significantly boost the transcription accuracy of new writers, however, finding
representative embeddings is not straightforward. We argue that this is to some
extent caused by the sensitivity of WS-Net to precise writer-style embeddings.
We evaluated the sensitivity of WS-Net by randomly shuffling WSI in testing
datasets, the test CER increased 2 times for the normal setting and 4 times
for the pre-trained setting. Therefore, simply selecting an existing embedding
brought worse performance for all new writers, as WS-Net was too overfitted
to existing writers and none of them had an extremely similar style to the new
ones. Optimization was difficult and unstable, as both the mean and the selected
embeddings did not provide a good starting point.

Note that for Single AdaIN pre-trained ED 256 setup we evaluated WS-
Net with embeddings provided by the writer-style encoder in an unsupervised
manner, both without and with further optimization, but the results were com-
parable to supervised selection and optimization from the mean. Furthermore,

Towards Writing Style Adaptation in Handwriting Recognition 391

as the embeddings might have slightly changed in the last phase of the training,
we tried to boost the performance of this approach by finetuning the writer-style
encoder on the WS-Net writer-style embeddings using the L2 loss, but even this
setup failed.

So far, the only reasonable solution for new writers is to find representative
embeddings with optimization on larger numbers of adaptation lines, however
for such scenarios, a simple finetuning of the baseline brought significantly better
test CER reductions. Note that we estimated the optimal number of finetuning
iterations with 4-fold cross-validation. An extensive analysis of the finetuning
approach can be found in our work [19], where we showed that significant CER
reductions can be obtained even with less than 16 adaptation lines. So far, WS-
Net is only suitable for the writer-dependent scenario where it consistently out-
performed the baseline, whereas it is not a suitable choice for writer-independent
scenarios, especially if enough annotated data for new writers are available.

In our future work, we plan to redesign the WSB block, so it can be used in
writer-independent scenarios without any adaptation lines. The idea is based on
an attention mechanism, which would take the hidden features of the processed
text line image as queries, and embeddings of the writer-style space as keys and
values. In speech recognition, similar ideas were proposed by Zhao et al. [41] and
Fan et al [9].

9 Conclusion

We showed that a standard CTC-based neural network enhanced by proposed
Writer Style Block (WSB) can utilize a vast number of writing styles. While
initializing WSB with embeddings pre-trained in an unsupervised contrastive
manner, the enhanced architecture was able to consistently outperform the base-
line version even for writers that were poorly represented in the training set. On
the other hand, training the WSB writer-style embeddings from scratch, led to
worse performance on average. Although we were unable to find an appropriate
way to estimate representative embeddings for new writers, we confirmed their
existence in the WSB writer-style embedding space by optimization on 256 adap-
tation lines. This suggests that the WSB provides superior performance even for
new writers. In future work, we plan to learn the appropriate estimation in a
supervised manner by extending the WSB with an attention mechanism, which
would take the hidden features of a processed text line image as queries and the
writer-style embeddings as keys and values.

Acknowledgment. This work has been supported by the Ministry of Culture Czech
Republic in NAKI III project Machine learning for printed heritage digitisation
(DH23P03OVV066).

392 J. Kohút et al.

References

1. Bell, P., Fainberg, J., Klejch, O., Li, J., Renals, S., Swietojanski, P.: Adaptation
algorithms for speech recognition: an overview (2020)

2. Bhunia, A.K., Ghose, S., Kumar, A., Chowdhury, P.N., Sain, A., Song, Y.Z.:
Metahtr: towards writer-adaptive handwritten text recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15830–15839 (2021)

3. Bluche, T., Messina, R.: Gated convolutional recurrent neural networks for mul-
tilingual handwriting recognition. In: 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol. 01, pp. 646–651 (2017).
https://doi.org/10.1109/ICDAR.2017.111

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

5. Cui, X., Goel, V., Saon, G.: Embedding-based speaker adaptive training of deep
neural networks. CoRR abs/1710.06937 (2017)

6. Delcroix, M., Kinoshita, K., Ogawa, A., Huemmer, C., Nakatani, T.: Context adap-
tive neural network based acoustic models for rapid adaptation. IEEE/ACM Trans.
Audio Speech Lang. Process. 26(5), 895–908 (2018)

7. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style.
CoRR abs/1610.07629 (2016)

8. Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.V.: Improving CNN-RNN hybrid
networks for handwriting recognition. In: 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 80–85 (2018). https://doi.org/
10.1109/ICFHR-2018.2018.00023

9. Fan, Z., Li, J., Zhou, S., Xu, B.: Speaker-aware speech-transformer. In: 2019 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 222–
229. IEEE (2019)

10. Gemello, R., Mana, F., Scanzio, S., Laface, P., De Mori, R.: Linear hidden transfor-
mations for adaptation of hybrid ANN/HMM models. Speech Commun. 49(10–11),
827–835 (2007)

11. Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure
of a real-time, arbitrary neural artistic stylization network. CoRR abs/1705.06830
(2017)

12. Hladká, Z.: 111 let českého dopisu v korpusovém zpracováńı (2013)
13. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive

instance normalization. CoRR abs/1703.06868 (2017)
14. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what

you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129,
108766 (2022)

15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. CoRR abs/1812.04948 (2018)

16. Kim, T., Song, I., Bengio, Y.: Dynamic layer normalization for adaptive neural
acoustic modeling in speech recognition. CoRR abs/1707.06065 (2017)

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference
Track Proceedings (2015)

18. Kohút, J., Hradǐs, M.: Ts-net: Ocr trained to switch between text transcription
styles. In: International Conference on Document Analysis and Recognition, pp.
478–493. Springer (2021)

https://doi.org/10.1109/ICDAR.2017.111
https://doi.org/10.1109/ICFHR-2018.2018.00023
https://doi.org/10.1109/ICFHR-2018.2018.00023

Towards Writing Style Adaptation in Handwriting Recognition 393

19. Kohút, J., Hradǐs, M.: Finetuning is a surprisingly effective domain adaptation
baseline in handwriting recognition (2023)

20. Li, B., Sim, K.C.: Comparison of discriminative input and output transformations
for speaker adaptation in the hybrid NN/HMM systems. In: Eleventh Annual Con-
ference of the International Speech Communication Association (2010)

21. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR
abs/1711.05101 (2017). http://arxiv.org/abs/1711.05101

22. Mana, F., Weninger, F., Gemello, R., Zhan, P.: Online batch normalization adap-
tation for automatic speech recognition. In: IEEE ASRU 2019, pp. 875–880. IEEE
(2019)

23. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. In: 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR), pp. 1286–1293. IEEE (2019)

24. Mohamed, A.R., Hinton, G., Penn, G.: Understanding how deep belief networks
perform acoustic modelling. In: IEEE ICASSP 2012, pp. 4273–4276. IEEE (2012)

25. Murase, K., Nakatsuka, S., Hosoe, M., Kato, K.: Handwriting feature extraction
method for writer verification independent of character type by using adabn and
adain. In: International Workshop on Advanced Imaging Technology (IWAIT)
2020, vol. 11515, pp. 11–14. Spie (2020)

26. Neto, J., Almeida, L., Hochberg, M., Martins, C., Nunes, L., Renals, S., Robin-
son, T.: Speaker-adaptation for hybrid HMM-ANN continuous speech recognition
system (1995)

27. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), vol. 01, pp. 67–72 (2017). https://doi.org/10.
1109/ICDAR.2017.20

28. Reul, C., Tomasek, S., Langhanki, F., Springmann, U.: Open source handwrit-
ten text recognition on medieval manuscripts using mixed models and document-
specific finetuning. In: DAS 2022, pp. 414–428. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06555-2 28

29. Reul, C., Wick, C., Nöth, M., Büttner, A., Wehner, M., Springmann, U.: Mixed
model OCR training on historical Latin script for out-of-the-box recognition and
finetuning. In: The 6th International Workshop on Historical Document Imaging
and Processing, pp. 7–12 (2021)

30. Samarakoon, L., Sim, K.C.: Factorized hidden layer adaptation for deep neural
network based acoustic modeling. IEEE/ACM Trans. Audio Speech Lang. Process.
24(12), 2241–2250 (2016)

31. Sarı, L., Thomas, S., Hasegawa-Johnson, M., Picheny, M.: Speaker adaptation of
neural networks with learning speaker aware offsets. Interspeech (2019)

32. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. CoRR
abs/1507.05717 (2015). http://arxiv.org/abs/1507.05717

33. Soullard, Y., Swaileh, W., Tranouez, P., Paquet, T., Chatelain, C.: Improving text
recognition using optical and language model writer adaptation. In: : 2019 Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pp. 1175–1180
(2019)

34. Swietojanski, P., Li, J., Renals, S.: Learning hidden unit contributions for unsu-
pervised acoustic model adaptation. CoRR abs/1601.02828 (2016)

35. Wang, Z.Q., Wang, D.: Unsupervised speaker adaptation of batch normalized
acoustic models for robust ASR. In: IEEE ICASSP 2017, pp. 4890–4894. IEEE
(2017)

http://arxiv.org/abs/1711.05101
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1007/978-3-031-06555-2_28
https://doi.org/10.1007/978-3-031-06555-2_28
http://arxiv.org/abs/1507.05717

394 J. Kohút et al.

36. Wang, Z.R., Du, J.: Fast writer adaptation with style extractor network for hand-
written text recognition. Neural Networks 147, 42–52 (2022). https://doi.org/
10.1016/j.neunet.2021.12.002. https://www.sciencedirect.com/science/article/pii/
S0893608021004755

37. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: Lladós, J., Lopresti, D., Uchida, S. (eds.)
ICDAR 2021. LNCS, vol. 12823, pp. 112–126. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86334-0 8

38. Xie, X., Liu, X., Lee, T., Wang, L.: Fast DNN acoustic model speaker adaptation
by learning hidden unit contribution features. In: INTERSPEECH, pp. 759–763
(2019)

39. Zhang, C., Woodland, P.C.: Parameterised sigmoid and relu hidden activation
functions for DNN acoustic modelling. In: Sixteenth Annual Conference of the
International Speech Communication Association (2015)

40. Zhang, Y., Nie, S., Liu, W., Xu, X., Zhang, D., Shen, H.T.: Sequence-to-sequence
domain adaptation network for robust text image recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2740–2749 (2019)

41. Zhao, Y., Ni, C., Leung, C.C., Joty, S.R., Chng, E.S., Ma, B.: Speech transformer
with speaker aware persistent memory. In: INTERSPEECH, pp. 1261–1265 (2020)

42. Zhao, Y., Li, J., Gong, Y.: Low-rank plus diagonal adaptation for deep neural
networks. In: IEEE ICASSP 2016, pp. 5005–5009. IEEE (2016)

43. Zhao, Y., Li, J., Kumar, K., Gong, Y.: Extended low-rank plus diagonal adaptation
for deep and recurrent neural networks. In: IEEE ICASSP 2017, pp. 5040–5044.
IEEE (2017)

https://doi.org/10.1016/j.neunet.2021.12.002
https://doi.org/10.1016/j.neunet.2021.12.002
https://www.sciencedirect.com/science/article/pii/S0893608021004755
https://www.sciencedirect.com/science/article/pii/S0893608021004755
https://doi.org/10.1007/978-3-030-86334-0_8
https://doi.org/10.1007/978-3-030-86334-0_8

Historical Document Image Segmentation
Combining Deep Learning and Gabor

Features

Maroua Mehri1,2(B) , Akrem Sellami3 , and Salvatore Tabbone2,4

1 Université de Sousse, Ecole Nationale d’Ingénieurs de Sousse, LATIS-Laboratory of
Advanced Technology and Intelligent Systems, 4023 Sousse, Tunisie

2 Université de Lorraine, IDMC-Institut des sciences du Digital, Management &
Cognition, Pôle Herbert Simon, 13 Rue Michel Ney, 54000 Nancy, France
maroua.mehri@eniso.u-sousse.tn, salvatore.tabbone@univ-lorraine.fr

3 Université de Lille, CNRS, UMR 9189 CRIStAL, Campus scientifique, Bâtiment
ESPRIT, Avenue Henri Poincaré, 59655 Villeneuve d’Ascq, France

akrem.sellami@univ-lille.fr
4 Université de Lorraine, CNRS, LORIA, UMR 7503, Campus Scientifique, 615 Rue

du Jardin-Botanique, 54506 Vandœuvre-lès-Nancy, France

Abstract. Due to the idiosyncrasies of historical document images
(HDI), growing attention over the last decades is being paid for proposing
robust HDI analysis solutions. Many research studies have shown that
Gabor filters are among the low-level descriptors that best characterize
texture information in HDI. On the other side, deep neural networks
(DNN) have been successfully used for HDI segmentation. As a con-
sequence, we propose in this paper a HDI segmentation method that is
based on combining Gabor features and DNN. The segmentation method
focuses on classifying each document image pixel to either graphic, text
or background. The novelty of the proposed method lies mainly in feed-
ing a DNN with a Gabor filtered image (obtained by applying specific
multichannel Gabor filters) instead of an original image as input. The
proposed method is decomposed into three steps: a) filtered image gener-
ation using Gabor filters, b) feature learning with stacked autoencoder,
and c) image segmentation with 2D U-Net. In order to evaluate its per-
formance, experiments are conducted using two different datasets. The
results are reported and compared with those of a recent state-of-the-art
method.

Keywords: Historical document image segmentation · Gabor filters ·
Deep neural networks · Stacked autoencoder · 2D U-Net architecture

1 Introduction

Over the past three decades, many open questions related to analyzing images
of historical printed and handwritten manuscripts have been pointed out by
archivists, historians, human and social science researchers. These questions are
related to the non-availability of high-performance computer-aided systems that

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 395–410, 2023.
https://doi.org/10.1007/978-3-031-41685-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_25&domain=pdf
http://orcid.org/0000-0002-4763-8584
http://orcid.org/0000-0003-1534-1687
http://orcid.org/0000-0002-0024-1280
https://doi.org/10.1007/978-3-031-41685-9_25

396 M. Mehri et al.

ease the tasks of text transcription, indexation and keyword searching in his-
torical documents. The existing systems are hindered by many issues related to
the unsatisfactory performances of the optical character recognition tools. These
performances are mainly due to the particularities of the digitized documents,
such as the different levels and types of degradation present in these documents,
the scanning defects (e.g. curvature) or the superimposition of information layers
(e.g. noise, back-to-front interference, handwritten notes at the margins, stamps).
Besides, the large variability and complex page layouts (e.g. several columns with
irregular sizes, irregular spacings) of these documents makes necessary to tackle
the layout analysis issue (i.e. physical structure identification). The layout analy-
sis task is usually posed as an image segmentation issue that focuses on splitting
a document image into homogeneous regions, such as paragraph, text line, back-
ground, table, figure caption and decoration. Image segmentation has long been
considered as an important prerequisite task for further document image analy-
sis (DIA) steps, such as text recognition, script/font analysis, image recognition,
document indexing and retrieval. Furthermore, to achieve high accuracy rate of
text recognition, it is important to ensure that the analyzed document image
has been correctly segmented by identifying the textual and graphical contents
[44]. Nevertheless, historical document image segmentation (HDIS) also remains
a challenging preliminary step in DIA systems due the aforementioned particu-
larities [11]. As a consequence, to address the above questions researchers keep
proposing more efficient HDIS solutions able to extract the textual content from
these document images [41].

There are two main categories of approaches that are both the most effi-
cient and the most widely used to address the HDIS issue. The first category is
based on extracting and analyzing low-level features, and particularly the texture
descriptors. The second category represents the deep neural networks (DNN)
based approaches. The recent trend in solving the HDIS problem is to use a
DNN that learns the representation directly from the image pixels rather than
using low-level extracted features. It has been shown that DNN have increased
the HDIS performances by their ability to learn comprehensive visual features
[41]. To the best of our knowledge, using both texture features and DNN in the
same architecture to solve the HDIS issue has not been yet tackled. Therefore,
in this paper we propose a HDIS method using Gabor filter (GF) based DNN.
The novelty of this work lies in using the images filtered by GF as input of a
DNN instead of feeding it with original images (ad-hoc approach) to solve the
HDIS issue. Thanks to the high feature representation capacity of the Gabor
filtered images that is obtained by applying specific multi-channel GF, we have
shown that the proposed method outperforms the ad-hoc one for the task of
segmenting HDI at pixel level. The segmentation method focuses on classifying
each document image pixel to either graphic, text or background. The proposed
method is conceptualized by the three following processes: a) filtered image gen-
eration using GF, b) feature learning with stacked autoencoder (SAE), and c)
image segmentation with 2D U-Net. We applied GF on HDI in order to capture
texture features to be learned by a stacked autoencoder and subsequently used

HDI Segmentation Combining Deep Learning and Gabor 397

for pixel-level segmentation by a 2D U-Net architecture (with a reduced num-
ber of parameters). The proposed method has been evaluated on two different
datasets: a large-scale synthetic dataset having 12k pixel-wise annotated histor-
ical document images (HDI) [37] and 64 book images of the HBA dataset [18].
The conducted experiments demonstrate that the proposed method provides
interesting segmentation results and outperforms a recent state-of-art method.

The remainder of this paper is structured as follows. Section 2 reviews the
main methods proposed in the literature for HDIS. Section 3 details the proposed
method. Section 4 provides the conducted experiments and the achieved results.
Finally, the conclusions and further work are given in Sect. 5.

2 Related Work

In this section, we firstly report a review of the main recent state-of-the-art
methods that are based on the multi-channel GF and DNN, with a particular
focus on those related to different document image analysis sub-fields and tasks.

The state-of-the-art methods addressing the HDIS methods can be catego-
rized into three classes: classical, texture, and DNN based approaches.

First, the classical approaches can be also classified into three categories:
projection based (e.g. XY-CUT), smearing-based (e.g. RLSA), connected com-
ponent based (e.g. Delaunay triangulation), and hybrid methods. The classical
approaches usually deal with printed documents that have predominantly tex-
tual content and simple layout, and consequently they are not well-suited to HDI
[19].

Second, since the early 2000’s the texture based approaches have been exten-
sively used to tackle different sub-fields and tasks related DIA, such as script
identification [7], font recognition [10], text line, word and character segmenta-
tion [5] or HDIS [9]. For the HDIS task, the texture features have been extracted
and analyzed in order to generate a partition of the analyzed document image
into homogeneous or similar regions. The texture based methods have been con-
sidered as a consistent choice for meeting the need to segment a document image
having various degradation levels and different noise types [30]. Besides, they
are known to be more robust to different document layouts [1]. There are five
main categories of texture based approaches that are defined according to the
properties or characteristics of the extracted texture features: statistical (e.g.
auto-correlation [13], Tamura [3]), geometric (e.g. difference-of-Gaussian filter
[2]), model (e.g. LBP [6]), spectral (e.g. GF [24]), extensively used in a wide
array of applications related to the DIA fields, such as document binarization
[32], ground truth generation [21], detection of main text area from side-notes [8],
text line segmentation [9], etc. There are many state-of-the-art methods based on
extracting and analyzing Gabor features that were proposed for the HDIS task.
For instance, Asi et al. [8] proposed a learning-free approach to detect the main
text area from side-notes in ancient manuscripts based on coarse-to-fine scheme.
First, a coarse segmentation of the main text area was processed by using GF.
Then, the segmentation outputs were refined by using the energy minimization
and graph cut techniques.

398 M. Mehri et al.

Finally, the last category of the existing HDIS methods are based on DNN.
Since the last two decades, many solutions proposed for different tasks related to
DIA center almost around DNN [35,38,41,43]. For instance, Oliveira et al. [27]
presented a generic framework, called dhSegment, that addresses multiple tasks
simultaneously, such as page extraction, baseline extraction, layout analysis or
multiple typologies of illustrations and photograph extraction. The convolutional
neural network (CNN) was firstly used in the dhSegment framework due to the
heavy lifting of predicting pixel-wise characteristics. Then, simple image pro-
cessing techniques were carried out to extract the components of interest (e.g.
boxes, polygons, lines, masks). The dhSegment model is composed of an encoder
(called the contracting path) that follows the deep residual network ResNet-50
architecture [14], and a decoder (called the expansive path) that maps the low
resolution encoder feature maps to full input resolution feature maps. Liebl and
Burghardt [36] compared the pixel-wise segmentation performances of 11 differ-
ent DNN backbone architectures (including dhSegment) and 9 different tiling
and scaling configurations for separating text, tables or table column lines in
historical newspapers. Chen et al. [17] proposed a pixel labeling method for
handwritten HDIS based on using CNN. In another work, Droby et al. [34]
set a siamese neural network for segmenting handwritten document images into
regions. For the task of layout analysis at pixel level, Alberti et al. [16] showed
the effectiveness of using the linear discriminant analysis (LDA) for initializing
the weights of a CNN layer wise. CNN based method has also been used for
the automatic processing of music score documents[29]. Furthermore, Wei et
al. [22] proposed a layout analysis method of HDI using the sequential forward
selection algorithm and the autoencoder technique as a DNN for feature selec-
tion and learning. For page segmentation into text zones a deep convolutional
encoder-decoder network was proposed by Kaddas and Gatos [23] and a fully
convolutional neural network (FCN) for segmenting HDI by Wick and Puppe
[28]. In the same vein, Mechi et al. [42] proposed an adaptive 2D U-Net archi-
tecture for segmenting text lines in HDI. In addition, Deep convolutional and
recurrent neural networks were used by Weinman et al. [33] for text detection
and recognition in historical maps. Recently, Monnier and Aubry [37] proposed
an encoder-decoder architecture (called ResUNet) that combines the descriptive
power of ResNet [14] with the localization recovery capacity of U-Net [12] for
extracting different historical document contents (e.g., text line, caption, title,
image drawing, glyph, table, background).

It is worth noting that researchers working on HDIS stress mostly on using
deep feature representation in DNN as a set of low-level feature extractor. On
the other side, there are recently developed methods for tackling large variety of
pattern recognition fields and computer vision tasks using both DNN and low-
level features [45], and particularly those extracted from GF. These methods
have been shown to yield state-of-the-art performance [25]. However, to the best
of our knowledge, using both texture features and DNN in the same architecture
to solve the HDIS issue has not been yet tackled. Luan et al. [26] showed that
by incorporating GF into the convolution filter of CNN, a reduced complexity, a

HDI Segmentation Combining Deep Learning and Gabor 399

high feature representation capacity and an enhanced CNN robustness (invari-
ant to image transformations, such as scale changes and rotations) were achieved
for object recognition task. In addition, Gabor based DNN were proposed for
automatic detection of mine-like objects in sonar imagery [39]. These networks
have the particularities to embed steerable Gabor filtering modules within the
cascaded layers to enhance the scale and orientation decomposition of images.
For identifying fingerprint images, Alam et al. [40] proposed a trainable DNN
using the fusion of both CNN and Gabor features, and showed that better accu-
racy was achieved through extracting and fusing features from two different fea-
ture extractors. For face recognition, Dumitrescu and Dumitrache [31] extracted
first multi-level feature vectors using GF, and then trained the SAE using the
extracted feature vectors. Yao et al. [15] proposed Gabor feature based CNN for
object recognition in natural scene. First, they generated three gray-level Gabor
feature maps from each input images at three directions (0, π/4 and π/2). Sec-
ond, they combined these Gabor feature maps into a 3-channel image. Finally,
the obtained 3-channel images were used to pretrain CNN.

3 Proposed Method

In this section, we present the proposed method which aims to segment HDI at
pixel level. The proposed method is based on feeding a Gabor filtered image that
is obtained by applying specific multi-channel GF, instead of an original image as
input to DNN. The proposed method relies on three modules: a) filtered image
generation with GF, b) feature learning with SAE, and c) image segmentation
with 2D U-Net. Figure 1 reports the three modules of the proposed method.

Fig. 1. Scheme of the proposed method used for HDIS.

400 M. Mehri et al.

3.1 Filtered Image Generation Using GF

Mehri et al. [19] showed that GF are the highest performing among nine texture
based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, GF, and
three wavelet based approaches) for segmenting different content types, with-
out formulating a hypothesis concerning neither the document layout nor its
content. Besides, the GF are characterized by their high discriminant capability
for recognition based applications, as well as its translation, scale and rotation
invariance properties. Thus, we use the multi-channel GF in this paper.

The Gabor filtered images are proceeded by tuning the analyzed image to
many combinations of a specific frequency and a defined orientation in a narrow
range which are referred to channels and interpreted as band-pass filters. A GF
is considered as a linear selective band-pass filter that characterizes a specified
channel formed by two parameters: spatial frequency fg and orientation θg. The
spatial frequency f determines the distance from the Gaussian centers to the
origin, while the orientation θg specifies the angle from the horizontal axis (i.e.
α-axis to the Gaussian centers). In this work, the space of GF is firstly set to
σg = σx = σy = 1. Then, the magnitude responses of the Gabor functions are
computed. If the specified GF matches a particular texture, the output magni-
tude will have a significant value. Otherwise, low response to the specified GF
is explained by a mismatch of the dominant texture properties of the analyzed
image to the set of the spatial frequency components of the fixed GF.

In our work, 24 GF are
applied (4 different orientations θg={0, π/4, π/2, 3π/4} and 6 different spatial
frequencies fg={2

√
2, 4

√
2, 8

√
2, 16

√
2, 32

√
2, 64

√
2}). By convolving an image

with 24 Gabor channels, 24 Gabor filtered images are generated (cf. Figs. 2(b)
and 2(c)).

Fig. 2. Samples of the generated filtered images obtained by applying GF.

3.2 Feature Learning Using SAE

The 24 Gabor filtered images which are obtained from the first module by apply-
ing the 24 specified GF, are fed as input of the SAE model. The aim of using the
SAE model in our work consists in encoding the Gabor filtered images with a rel-
evant latent representation from which an accurate segmentation model could be

HDI Segmentation Combining Deep Learning and Gabor 401

guaranteed. The obtained latent representation has the advantage to have more
selective and pertinent high-level features for the HDIS task. It has been widely
argued that using the SAE as a learning representation model is a consistent
choice for preserving the pertinent features in the intermediate layer through its
encoding and decoding layers by minimizing the reconstruction error between
the input (filtered images) and the output (reconstructed images). However,
by using the other conventional representation learning techniques, such as the
principal component analysis (PCA) and the independent component analysis
(ICA), the obtained latent representations are not sufficiently accurate for seg-
mentation, and the initial information could not be preserved. Hence, the SAE
model is more suitable to determine a relevant latent representation from the
input data by learning non-linear transformations with a non-linear activation
function and multiple layers.

The SAE model is a multi-layer neural network that projects non-linearly the
input data (i.e. Gabor filtered images) into a novel formed representation space.
It contains two main functions: the encoder (gθ) and decoder (fθ′) functions.
From an input x, the encoder function (gθ(x)) is equal to Φg(Wx + b), where Φg

is the activation function, W is the weight, and b is the bias. Usually, the encoder
layer learns a latent representation (i.e. the bottleneck layer z = gθ(x) from x).
The decoder function (fθ′) aims at reconstructing the latent representation into
the reconstructed input x′ = fθ′(z), where fθ′(z) = Φf (W ′

z + b′). Φg and Φf are
the activation functions of the encoder and decoder layers, respectively. In our
work, the SAE model includes one encoder noted Encr for the Gabor filtered
image inputs. Besides, zg denotes the corresponding representation output by
Encr, where zg = Encr(xg).

A latent representation (z) is computed from the encodings of the Gabor
filtered images. Then, this latent representation is fed as input to a decoder
(Decg) that aims at reconstructing the Gabor filtered images (x̂g = Decr(g)).
The decoder is also a non-linear neural network, including one to three hidden
layers. The learning criterion of the SAE model is the reconstruction error which
is computed using the mean squared error (MSE). MSE is defined according
to the following equation:

LSAE(θ, θ′) =
1
2n

n∑

i

‖x(i) − fθ′(gθ(x(i)))‖2 (1)

where n denotes the number of samples (i.e. pixels) [20].

3.3 Image Segmentation Using 2D U-Net

The latent space z obtained from the second module is fed as input of the last
module of the proposed method. The last module is based on using the 2D U-Net
architecture for pixel-wise image segmentation.

The 2D U-Net architecture is a variant of FCN that was previously proposed
for medical image segmentation [12]. It learns segmentation in an end-to-end
setting by assembling a set of convolutional and max-pooling layers in order

402 M. Mehri et al.

to provide a feature map of an image and to decrease its dimensionality, and
subsequently the network complexity (i.e. the number of its learned parameters).
One of the main advantages of choosing the 2D U-Net architecture in our work
for the segmentation stage is its computational efficiency.

In the used 2D U-Net architecture, the input layer contains 256 × 256 pix-
els with 6 channels (extracted features). The convolution is applied by means
of the “Conv2D” operation using a 3 × 3 filter to the input. We also use the
padding operation to fill the perimeter of the input with zero, and subsequently
to compensate the size of the feature maps performed by the convolution. The
“MaxPooling2D” operation is applied by selecting the maximum value from each
region of the feature map in order to reduce the complexity and the dimension
of the feature maps. We use the “Conv2DTranspose” operation to reconstruct
the input, which is the opposite of that used for “Conv2D”, whereby the feature
map dimensionality is increased using a 3 × 3 filter. The “batch-normalization”
is applied in the hidden layers of the network in order to normalize all pixels and
weights. The dropout layer is used in the 2D U-Net network to solve the over-
fitting issues by randomly deactivating some neurons of each layer. The random
deactivation is achieved in 50% of the units. Finally, the concatenation layer is
used to connect the input feature maps.

4 Experiments and Results

In this section, we focus on evaluating the proposed method by presenting the
experimental corpus, the implementation details, the hyperparameter settings,
the computed performance evaluation metrics and the obtained results.

4.1 Experimental Corpus

In our experiments, two different datasets are used: SynDoc12k and HBA. HDI
examples of the SynDoc12k and HBA datasets with their corresponding ground
truths are illustrated in Figs. 3(a) and 3(b), respectively. The proposed method
has been trained on the SynDoc12k dataset, and tested on both the SynDoc12k
and HBA datasets.

The SynDoc12k dataset is collected using docExtractor1 which is a fast and
scalable synthetic document generation engine [37]. The docExtractor engine
provides accurate pixel-wise annotations of the generated synthetic document
images. The choice of the SynDoc12k dataset is firstly justified by the context of
our work. Since the proposed method is based on building deep models, it is hence
necessary to bring together large masses of precise ground truthed data for the
training phase. To the best of our knowledge, the SynDoc12k dataset is among
the more recent datasets that is a large-scale (composed of 12k annotated HDI)
and has accurate pixel-wise annotations. Furthermore, the SynDoc12k dataset
is characterized by strong heterogeneity (one-page and double pages), with dif-
ferences in layout, typography, illustration style, complex layouts (e.g. irregular
1 https://github.com/monniert/docExtractor.

https://github.com/monniert/docExtractor

HDI Segmentation Combining Deep Learning and Gabor 403

Fig. 3. Document image examples with ground truth (graphic and text).

spacing, varying text column widths, marginal notes). The resolutions of the
SynDoc12k images range from 1192 × 1192 to 2384 × 2175 pixels.

The training and validation sets of the SynDoc12k dataset contain 10, 000
and 1, 000 images, respectively. The remaining 1, 000 images are used for the
test phase. The ground truth annotation of the SynDoc12k dataset2 contains
more than 31 billion annotated pixels. Table 1 details the distribution of the
annotation classes (background, graphic, and text) of the SynDoc12k dataset
in terms of the number of annotated pixels. 78.33% of the total number of the
annotated pixels represents the background, while 14.34% and 7.33% represent
the graphic and textual contents, respectively. 83.39%, 8.15%, and 8.47% of the
total number of the annotated pixels represent those of the train, validation and
test subsets, respectively.

Table 1. Ground truth statistics of the SynDoc12k dataset in terms of the number of
annotated pixels.

Train Validation Test Total

Background 20 387 408 136 1 993 995 994 2 060 892 339 24 442 296 469
(78.33%)

Graphic 3 726 528 197 357 559 908 391 627 876 4 475 715 981
(14.34%)

Text 1 906 266 235 190 676 138 189 930 417 2 286 872 790
(7.33%)

Total 26 020 202 568
(83.39%)

2 542 232 040
(8.15%)

2 642 450 632
(8.47%)

31 204 885 240

2 The annotations of the SynDoc12k dataset are available at this url.

https://bul.univ-lorraine.fr/index.php/s/7b4mJeFMTFxKeJs

404 M. Mehri et al.

The second dataset used in our experiments is composed of 64 pixel-wise
annotated real HDI collected from the HBA dataset. The HBA dataset was
released at the ICDAR2017 competition on historical book analysis3. The HDI
of the HBA dataset were collected from the French digital library4. The total
numbers of the annotated pixels representing the graphical, textual and back-
ground contents are 4 789 604, 19 805 571, and 322 815 560, respectively. The
images of the HBA dataset are only used in the test phase. We have tested the
proposed method on unseen HDI in the training phase in order to show the
robustness of the proposed method.

4.2 Implementation Details

The two used deep architectures in the proposed method, 2D U-Net and SAE,
are implemented using the Darknet and Keras frameworks, respectively. They
are trained and tested on Tesla K80 GPU with 12GB memory. We have trained
for 80 epochs using the Adam optimizer with an initial learning rate of 10−3,
and a batch size of 64 training samples. Moreover, the SAE model is built using
3 hidden layers [24, 12, 6, 12, 24] in which 6 dimensions of the latent space (enc)
have been used for the segmentation phase. In order to ease the training task of
the deep models, we have extracted a set of patches with size of 256 × 256 for
each image. Hence, 335 129 images are used in our experiments.

4.3 Hyperparameter Settings

In this section, we have conducted a thorough experimental study on the per-
formances of the used representation learning model (SAE) in order to select its
best hyperparameter configuration for the training phase.

First, the SAE model has been trained using different pairs of activation func-
tions for the hidden layers and output layer: (relu, linear), (relu, relu), (linear,
linear), (tanh, linear), and (tanh, relu).

Second, we have compared the performances of the different defined configu-
rations of the used SAE model with the PCA and ICA methods. Figure 4 reports
the MSE values versus the encoding dimensions learned on the training data.
We deduce that the SAE model having the (relu, relu) configuration can easily
reconstruct initial data with few features (enc = 6), where the MSE is equal to
0.07.

Third, we have tested different architectures of the used SAE model in order
to select its best configuration (i.e. hyperparameter settings) for the training
phase according to the reconstruction error (i.e. the most minimal value of MSE).
In fact, we have set the number of extracted features (enc), and we have varied
the number of hidden layers from 1 to 3 hidden dense layers using different pairs
of activation functions. In Fig. 5, we report the average MSE after 5 cross-fold
validation with an encoding dimension equals to 15. According to the obtained

3 http://icdar2017hba.litislab.eu/.
4 https://gallica.bnf.fr/ark:/12148/bpt6k840383d/f1.planchecontact.r.

http://icdar2017hba.litislab.eu/
https://gallica.bnf.fr/ark:/12148/bpt6k840383d/f1.planchecontact.r

HDI Segmentation Combining Deep Learning and Gabor 405

Fig. 4. MSE of reconstruction using different representation learning methods (PCA,
ICA, and SAE with different pairs of activation functions).

Fig. 5. MSE of reconstruction after 5 cross-fold validation using different numbers of
layers.

406 M. Mehri et al.

results, we observe that the best MSE is achieved with the SAE model having
the (relu, relu) configuration and using 3 hidden layers (Z(1) = 20, Z(2) = 18,
and Z(3) = 15) which is equal to 0.054(±0.004).

4.4 Evaluation Metrics

In this paper, we are interested in the task of semantic segmentation in HDI
images which consists in predicting the class (background, graphic or text) of
each pixel in an image. To evaluate the performance of the proposed method,
several performance evaluation metrics are computed in this work respectively,
the mean intersection over union (mIoU), the weighted mean intersection over
union (wmIoU), and the mean accuracy (mA). These scores are the main com-
mon evaluation metrics used for assessing the pixel-wise semantic segmentation
methods. The intersection over union (IoU) metric measures the number of pix-
els common between the target and prediction masks divided by the total number
of pixels present across both masks. The mIoU metric is obtained by averaging
the IoU values of all classes. The mwIoU metric is computed to deal with imbal-
anced headcounts between classes. The mA metric denotes the average across
all classes of the rate of pixels in the image which are correctly classified [37].

4.5 Results

Table 2 reports a comparison of the achieved performances with those obtained
using a recent state-of-the-art method which is based on a classical deep approach
(based on applying DNN on original images), and was introduced by Monnier
and Aubry [37].

Table 2. Performance evaluation of the proposed and baseline methods.

Baseline method Proposed method

SynDoc12k HBA SynDoc12k HBA

IoU
(background)

98.20 88.07 98.47 (±0.001) 90.12 (±0.042)

IoU
(graphic)

96.92 44.58 97.36 (±0.012) 51.22 (±0.031)

IoU
(text)

86.95 30.99 89.19 (±0.001) 43.02 (±0.026)

mIoU 94.03 54.55 96.51 (±0.001) 62.19 (±0.003)

wmIoU 97.21 84.22 98.40 (±0.013) 89.71 (±0.002)

mA 96.38 81.00 97.52 (±0.001) 86.08 (±0.002)

First, we observe that the proposed method outperforms Monnier and
Aubry [37]’ solution with weighted mean intersection over union (wmIoU) and

HDI Segmentation Combining Deep Learning and Gabor 407

mean accuracy (mA) equal to 98.40% and 97.52% for the SynDoc12k dataset,
respectively. Hence, we note overall performance gains of 1.19%(wmIoU) and
1.14%(mA) for the SynDoc12k dataset. Similarly, better performances are
obtained when using the proposed method on the HBA dataset compared to
Monnier and Aubry [37]’ solution (89.71% and 86.08% are noted for the wmIoU
and mA metrics respectively). Overall performance gains of 5.49%(wmIoU) and
5.08%(mA) are obtained for the HBA dataset. Furthermore, we note that the
proposed method (86.08%) also outperforms the approach proposed in [18] where
a mA of 71.86% on the HBA dataset is reported. Therefore, we show that feeding
DNN with Gabor filtered image instead of an original image as input strengthens
the learning of representative information. Nevertheless, we observe significant
drops in the IoU values of the graphic and text classes, when applying both
the proposed and baseline methods on the HBA dataset compared to the Syn-
Doc12k dataset. This can be justified by the particularities of the ground truth
annotations of the HBA datasets (cf. Fig. 6).

Fig. 6. Segmentation outputs of the proposed and baseline methods applied on a patch
image of the HBA dataset.

The HBA ground truth is obtained by annotating each foreground pixel
retrieved using a standard parameter-free binarization method, while the Syn-
Doc12k ground truth has been outlined by using rectangular regions drawn
around content regions. Besides, the two evaluated methods have been trained
using the SynDoc12k ground truth annotations (bounding boxes), and have been
tested on the HBA dataset that has pixel level annotations.

5 Conclusions and Further Work

In this paper, we propose a HDIS method using both GF and DNN. The proposed
method starts by generating filtered images obtained by applying specific multi-
channel GF. Then, a feature learning step using the SAE model is performed.
Finally, an image segmentation task is applied using the 2D U-Net architecture to
classify document image pixels. The obtained results on two benchmark datasets
demonstrate that the proposed method outperforms a recent method based on
applying DNN on original images. Besides, the experimental results demonstrate

408 M. Mehri et al.

the robustness of the proposed method by proposing generic DNN trained on a
wide variety of HDI and tested on unseen pages of the HBA dataset.

As future work, there are essentially four main streams. First, we will inte-
grate an ablation study with a particular focus on the numerical complexity to
show the effectiveness of each stage of the proposed method. This study is an
ongoing work that will better clarify the strengths and weaknesses of the pro-
posed method. Second, we will evaluate the proposed method on other public
pixel-wise annotated datasets. Third, we will extend the segmentation classes
to more specified ones (table, title, header, paragraph, separator, etc.). Finally,
we will explore the multi-view representation learning techniques in order to
propose multi-modal DNN that focus on combining different input modalities
(low-level features, original, and filtered images).

Acknowledgments. This work has been funded under the “19PEJC-08-02” grant
agreement number by the Tunisian Ministry of Higher Education and Scientific
Research that is gratefully acknowledged.

The authors would like also to thank IDMC-Institut des sciences du Digital, Man-
agement & Cognition for supporting this research work.

References

1. Okun, O., Pietikäinen, M.: A survey of texture-based methods for document lay-
out analysis. In: Series in Machine Perception and Artificial Intelligence: Texture
Analysis in Machine Vision, pp. 165–177 (2000)

2. Nicolas, S., Kessentini, Y., Paquet, T., Heutte, L.: Handwritten document seg-
mentation using hidden Markov random fields. In: International Conference on
Document Analysis and Recognition, pp. 212–216 (2005)

3. Keysers, D., Shafait, F., Breuel, T.: Document image zone classification - a sim-
ple high-performance approach. In: International Conference on Computer Vision
Theory and Applications, pp. 44–51 (2007)

4. Journet, N., Ramel, J., Mullot, R., Eglin, V.: Document image characterization
using a multiresolution analysis of the texture: application to old documents. Int.
J. Doc. Anal. Recogn. 11(1), 9–18 (2008)

5. Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., Papamarkos, N.: Seg-
mentation of historical machine-printed documents using adaptive run-length
smoothing and skeleton segmentation paths. Image Vis. Comput. 28(4), 590–604
(2010)

6. Bhowmik, T., Kar, M.: Text localization in historical document images with local
binary patterns and variance models. In: International Conference on Pattern
Recognition and Machine Intelligence, pp. 501–508 (2013)

7. Ferrer, M., Morales, A., Pal, U.: LBP based line-wise script identification. In: Inter-
national Conference on Document Analysis and Recognition, pp. 369–373 (2013)

8. Asi, A., Cohen, R., Kedem, K., El-Sana, J., Dinstein, I.: A coarse-to-fine approach
for layout analysis of ancient manuscripts. In: International Conference on Frontiers
in Handwriting Recognition, pp. 140–145 (2014)

9. Chen, K., Wei, H., Liwicki, M., Hennebert, J., Ingold, R.: Robust text line segmen-
tation for historical manuscript images using color and texture. In: International
Conference on Pattern Recognition, pp. 2978–2983 (2014)

HDI Segmentation Combining Deep Learning and Gabor 409

10. Nicolaou, A., Slimane, F., Märgner, V., Liwicki, M.: Local binary patterns for
Arabic optical font recognition. In: International Workshop on Document Analysis
Systems, pp. 76–80 (2014)

11. Saabni, R., Asi, A., El-Sana, J.: Text line extraction for historical document images.
Pattern Recogn. Lett. 35, 23–33 (2014)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 234–241 (2015)

13. Grana, C., Serra, G., Manfredi, M., Coppi, D., Cucchiara, R.: Layout analysis and
content enrichment of digitized books. Multimedia Tools Appl. 75(7), 3879–3900
(2016)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

15. Yao, H., Chuyi, L., Dan, H., Weiyu, Y.: Gabor feature based convolutional neural
network for object recognition in natural scene. In: International Conference on
Information Science and Control Engineering, pp. 386–390 (2016)

16. Alberti, M., Seuret, M., Pondenkandath, V., Ingold, R., Liwicki, M.: Historical doc-
ument image segmentation with LDA-initialized deep neural networks. In: Inter-
national Workshop on Historical Document Imaging and Processing, pp. 95–100
(2017)

17. Chen, K., Seuret, M., Hennebert, J., Ingold, R.: Convolutional neural networks for
page segmentation of historical document images. In: International Conference on
Document Analysis and Recognition, pp. 965–970 (2017)

18. Mehri, M., Héroux, P., Mullot, R., Moreux, J., Coüasnon, B., Barrett, B.: HBA
1.0: a pixel-based annotated dataset for historical book analysis. In: International
Workshop on Historical Document Imaging and Processing, pp. 107–112 (2017)

19. Mehri, M., Héroux, P., Gomez-Krämer, P., Mullot, R.: Texture feature bench-
marking and evaluation for historical document image analysis. Int. J. Doc. Anal.
Recogn. 20(1), 1–35 (2017)

20. Tang, X., Hao, K., Wei, H., Ding, Y.: Using line segments to train multi-stream
stacked autoencoders for image classification. Pattern Recogn. Lett. 94, 55–61
(2017)

21. Wei, H., Seuret, M., Liwicki, M., Ingold, R.: The use of Gabor features for semi-
automatically generated polyon-based ground truth of historical document images.
Digit. Scholarsh. Human. 32, i134–i149 (2017)

22. Wei, H., Seuret, M., Liwicki, M., Ingold, R., Fu, P.: Selecting fine-tuned features for
layout analysis of historical documents. In: International Conference on Document
Analysis and Recognition, pp. 281–286 (2017)

23. Kaddas, P., Gatos, B.: A deep convolutional encoder-decoder network for page
segmentation of historical handwritten documents into text zones. In: International
Conference on Frontiers in Handwriting Recognition, pp. 259–264 (2018)

24. Kim, N., So, H.: Directional statistical Gabor features for texture classification.
Pattern Recogn. Lett. 112, 18–26 (2018)

25. Liu, C., Ding, W., Wang, X., Zhang, B.: Hybrid Gabor convolutional networks.
Pattern Recogn. Lett. 116, 164–169 (2018)

26. Luan, S., Chen, C., Zhang, B., Han, J., Liu, J.: Gabor convolutional networks.
IEEE Trans. Image Process. 27(9), 4357–4366 (2018)

27. Oliveira, S.A., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning app-
roach for document segmentation. In: International Conference on Frontiers in
Handwriting Recognition, pp. 7–12 (2018)

410 M. Mehri et al.

28. Wick, C., Puppe, F.: Fully convolutional neural networks for page segmentation
of historical document images. In: International Workshop on Document Analysis
Systems, pp. 287–292 (2018)

29. Zaragoza, J., Castellanos, F., Vigliensoni, G., Fujinaga, I.: Deep neural networks
for document processing of music score images. Appl. Sci. 8(5), 654 (2018)

30. Do, T., Terrades, O., Tabbone, S.: DSD: document sparse-based denoising algo-
rithm. Pattern Anal. Appl. 22(1), 177–186 (2019)

31. Dumitrescu, C., Dumitrache, I.: Combining deep learning technologies with multi-
level Gabor features for facial recognition in biometric automated systems. Stud.
Inform. Control 28(2), 221–230 (2019)

32. Sehad, A., Chibani, Y., Hedjam, R., Cheriet, M.: Gabor filter-based texture for
ancient degraded document image binarization. Pattern Anal. Appl. 22(1), 1–22
(2019)

33. Weinman, J.J., Chen, Z., Gafford, B., Gifford, N., Lamsal, A., Staab, L.: Deep neu-
ral networks for text detection and recognition in historical maps. In: International
Conference on Document Analysis and Recognition, pp. 902–909 (2019)

34. Droby, A., Barakat, B., Madi, B., Alaasam, R., El-Sana, J.: Unsupervised deep
learning for handwritten page segmentation. In: International Conference on Fron-
tiers in Handwriting Recognition, pp. 240–245 (2020)

35. Lombardi, F., Marinai, S.: Deep learning for historical document analysis and
recognition - a survey. J. Imaging 6(10), 110 (2020)

36. Liebl, B., Burghardt, M.: An evaluation of DNN architectures for page segmenta-
tion of historical newspapers. In: International Conference on Pattern Recognition,
pp. 5153–5160 (2020)

37. Monnier, T., Aubry, M.: docExtractor: an off-the-shelf historical document element
extraction. In: International Conference on Frontiers in Handwriting Recognition,
pp. 91–96 (2020)

38. Saire, D., Tabbone, S.: Documents counterfeit detection through a deep learn-
ing approach. In: International Conference on Pattern Recognition, pp. 3915–3922
(2020)

39. Thanh Le, H., Phung, S.L., Chapple, P.B., Bouzerdoum, A., Ritz, C.H., Tran, L.C.:
Deep Gabor neural network for automatic detection of mine-like objects in sonar
imagery. IEEE Access 8, 94126–94139 (2020)

40. Alam, N., Ahsan, M.M., Based, M.A., Haider, J., Kowalski, M.: An intelligent
system for automatic fingerprint identification using feature fusion by Gabor filter
and deep learning. Comput. Electr. Eng. 95, 107387 (2021)

41. Aubry, M.: Deep learning for historical data analysis. In: Workshop on Structuring
and Understanding of Multimedia heritAge Contents (2021)

42. Mechi, O., Mehri, M., Ingold, R., Amara, N.: A two-step framework for text line
segmentation in historical Arabic and Latin document images. Int. J. Doc. Anal.
Recogn. 24(3), 197–218 (2021)

43. Sellami, A., Tabbone, S.: EDNets: deep feature learning for document image clas-
sification based on multi-view encoder-decoder neural networks. In: International
Conference on Document Analysis and Recognition, pp. 318–332 (2021)

44. Markewich, L., et al.: Segmentation for document layout analysis: not dead yet.
Int. J. Doc. Anal. Recogn. 25(2), 67–77 (2022)

45. Sellami, A., Tabbone, S.: Deep neural networks-based relevant latent representation
learning for hyperspectral image classification. Pattern Recogn. 121, 108224 (2022)

Group, Contrast and Recognize: A
Self-supervised Method for Chinese

Character Recognition

Xinzhe Jiang1 , Jun Du1(B) , Pengfei Hu1 , Mobai Xue1 , Jiefeng Ma1 ,
Jiajia Wu2 , and Jianshu Zhang2

1 University of Science and Technology of China, Hefei, China
{xzjiang,hudeyouxiang,xmb15,jfma}@mail.ustc.edu.cn, jundu@ustc.edu.cn

2 iFLYTEK Research, Hefei, China
{jjwu,jszhang6}@iflytek.com

Abstract. Chinese character recognition has been a challenging prob-
lem in the field of computer vision, attracting significant research atten-
tion due to its widespread applications and technical complexity. How-
ever, previous methods rely heavily on manual annotations to guide
model learning, without considering self-supervised representation learn-
ing. Motivated by the educational approach of teaching pupils to recog-
nize Chinese characters through grouping and differentiation, we intro-
duce a novel self-supervised method that employs clustering and con-
trastive learning to group similar characters and separate them. Our pro-
posed objective consists of two components: intra-group and inter-group
contrastive objectives. The intra-group objective distinguishes the target
character from similar characters within the group, while the inter-group
objective encourages the model to encode the discriminative semantic
structure of each group. The experimental results demonstrate the advan-
tages of our self-supervised representation over previous methods, as well
as its superior performance on benchmark comparisons.

Keywords: Chinese character recognition · Self-supervised learning ·
Contrastive learning · Clustering

1 Introduction

Chinese characters play an irreplaceable role in the transmission of Chinese
culture and in the interaction of the Chinese people. Over the years, great efforts
have been made to study the problem of Chinese character recognition, and the
ability to recognize Chinese characters has become the cornerstone of many
commercial applications [20,23].

In the era of deep learning, there are three main categories of Chinese Charac-
ter Recognition (CCR) methods: character-based ones [27,29,35], radical-based

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 411–427, 2023.
https://doi.org/10.1007/978-3-031-41685-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_26&domain=pdf
http://orcid.org/0009-0007-1684-3968
http://orcid.org/0000-0002-2387-0389
http://orcid.org/0009-0005-3345-605X
http://orcid.org/0000-0002-8315-9492
http://orcid.org/0000-0003-2416-3720
http://orcid.org/0000-0002-0951-4281
http://orcid.org/0000-0002-2713-2535
https://doi.org/10.1007/978-3-031-41685-9_26

412 X. Jiang et al.

ones [2,24,26], and stroke-based ones [4,37]. These methods vary in terms of
their modeling granularity, with character-based methods being the coarsest and
stroke-based methods being the finest. Character-based methods treat CCR as
a typical classification task, with the goal of finding the category to which each
Chinese character image belongs. Radical-based methods, on the other hand,
analyze characters by their internal components and present them as a sequence
of radicals. Stroke-based methods decompose characters at the stroke level and
determine the recognition result through a combination of similarity and edit dis-
tance matching. These methods require character, radical, and stroke level anno-
tations as supervision, which require a large amount of labeled data for training.
However, labeling these types of data is expensive and time-consuming, making
it more cost-effective to find alternatives through self-supervised representation
learning without human annotation.

For self-supervised Chinese character recognition, SAE [7] decomposes a
character into individual stroke images generated from a predetermined writing
sequence. However, this approach only takes printed character images as input
and mainly focuses on reconstructing the stroke sequence, ignoring the writing
style variations in the real world. In this paper, we present Group, Contrast and
Recognize (GCR), a novel self-supervised method for Chinese character recogni-
tion that incorporates semantic knowledge from real-world unlabeled character
images. The method combines clustering and contrastive learning, drawing inspi-
ration from educational practices where presenting characters in radical-based
groups can help beginning learners distinguish and memorize Chinese characters
[31].

Typical contrastive learning uses an instance discrimination pre-text task
to obtain useful representations by maximizing the agreement between positive
pairs and disagreement between negative pairs. However, this approach has two
drawbacks: (1) training with easily-distinguishable negative samples can lead
to a shortcut solution [30], and (2) the semantic structure of negative samples
is neglected [14]. To address these challenges, this paper introduces the hard
negative sampling strategy and semantic structure through dynamic clustering
during contrastive learning.

First, the method employs the k-means clustering to divide all negative sam-
ples in the dictionary queue into different clusters. Second, the proposed model
considers both the intra-group comparison and the inter-group comparison as
the optimization objective. The intra-group objective requires the model to dis-
tinguish the input from hard similar samples within close neighbor clusters,
using two augmented views of the input as the positive pair and the input and
samples within close neighbor clusters as the negative pairs. The inter-group
objective incorporates the semantic structure of negative samples into represen-
tation learning by using the input and its closest centroid as the positive pair
and the input and other centroids as the negative pairs.

The main contributions of our work are summarized as:

– We introduce a self-supervised method named Group, Contrast and Recognize
(GCR) for Chinese character recognition, which leverages both clustering and
discrimination to derive meaningful representation from unlabeled data.

GCR: A Self-supervised Method for Chinese Character Recognition 413

– We propose two contrastive objectives, including the intra-group and inter-
group objectives, which enhance the model’s ability to learn more discrimi-
native representations and better semantic structure.

– Extensive experiments on public benchmarks validate the advantages of GCR,
which result in substantial improvements in accuracy compared to supervised
baselines.

2 Related Works

2.1 Chinese Character Recognition

The Chinese character recognition problem has been researched for decades.
Before the popularity of deep learning, early approaches [3,12,21] used
morphology-based observations to obtain hand-crafted features for the CCR
task. After that, the deep learning based methods can be categorized into
three types: character-based, radical-based, and stroke-based ones. Character-
based ones recognize the input image via classification. ATR-CNN [27] proposes
relaxation convolution and alternate training to solve the slow convergence and
over-fitting problems. DirectMap [35] combines the traditional normalization-
cooperated direction-decomposed feature map with the deep convolutional neu-
ral network. [29] proposes the template-instance loss functions to alleviate the
imbalance problem between easy and difficult character instances. Radical-based
ones describe a Chinese character by its internal radicals and structures under
the artificial rules. DenseRAN [26] designs an attention-based encoder-decoder
model to recognize the radicals and structures of character. FewShotRAN [24]
proposes the radical aggregation module to learn robust radical feature and the
character analysis decoder to avoid the inflexible match decoding. HDE [2] inte-
grates the tree-based decomposition of Chinese characters into model and learns
the compatibility between the input image and the knowledge-based representa-
tion. Stroke-based ones adopt the smaller modeling unit and regard the charac-
ter as a stroke sequence following the writing order. [4] proposes a stroke-based
method which decomposes a character into a sequence of five stroke categories,
which solves the character zero-shot and radical zero-shot problems. Besides
that, it uses a matching-based strategy to acquire the final result in the test
stage to overcome the one-to-many problem.

2.2 Self-supervised Contrastive Learning

Recently, self-supervised contrastive learning has achieved success on various
vision tasks such as image classification and object detection. It intends to learn
an embedding space with alignment and uniformity [25], where two augmentation
views of the same instance attract each other while the sample embeddings from
different instances are repelled. Specifically, the positive and negative pairs are
indispensable for building the contrastive InfoNCE objective [19]. There exists
a lot of methods varied with the augmentation and negative sampling strate-
gies. SimCLR [5] generates the instance features within the mini-batch samples,

414 X. Jiang et al.

exempt from the requirements of specialized architectures and memory bank.
MoCo [8] adopts a momentum-updated encoder as one branch and maintains
a dictionary queue of the past instance features. With the projection head and
strong augmentation of SimCLR integrated into the vanilla MoCo, MoCo v2 [6]
leads to better performance. [28] proposes a ring discrimination method to con-
struct a conditional distribution for hard negative examples, proving the tradeoff
between bias and variance. PCL [14] introduces prototypes as latent variables
into contrastive learning by the ProtoNCE loss, which can capture high-level
semantics. Nevertheless, self-supervised contrastive learning for CCR has rarely
been researched.

2.3 Self-supervised Learning for Text Recognition

In order to leverage the potential of unlabeled data, many researchers have
turned to self-supervised learning techniques for text recognition. One such
method is SeqCLR [1], which is the first self-supervised representation learn-
ing approach for text recognition. By dividing the feature map into different
instances and conducting sequence-to-sequence contrastive learning, SeqCLR
can learn effective self-supervised representations. Another promising approach
is PerSec [16], which utilizes dual context perceivers to contrast and learn latent
representations from both low-level stroke and high-level semantic contextual
spaces simultaneously through hierarchical contrastive learning. Inspired by the
reading and writing behaviors of humans, [32] proposes DiG to enhance the
performance of text recognition and other text-related tasks. By integrating
contrastive learning and masked image modeling, DiG can effectively learn dis-
crimination and generation, ultimately leading to the acquisition of useful repre-
sentations. These methods are primarily focused on text line recognition rather
than isolated Chinese character recognition.

3 Methodology

Our approach adheres to the standard two-stage workflow for self-supervised rep-
resentation learning, consisting of pre-training and fine-tuning. The fine-tuning
stage starts with initializing the encoder with pre-trained backbone weights. In
Sect. 3.1, we present our observations and motivation. In Sect. 3.2, we introduce
the architecture of the proposed Group, Contrast and Recognize (GCR) method.
The intra- and inter-group contrastive objectives are explained in Sect. 3.3 and
Sect. 3.4 respectively. Finally, the algorithmic implementation is outlined in
Sect. 3.5.

GCR: A Self-supervised Method for Chinese Character Recognition 415

3.1 Observation and Motivation

In exploring the potential of pre-training for CCR, we first aim to examine the
distribution of pre-trained features in the latent space. For this purpose, we
input a set of labeled character images into the MoCo pre-trained DenseNet
encoder, extract their features without fine-tuning, and use k-means clustering
to assign the sample features into different clusters based on Euclidean distance.
The labels are used for demonstration purposes only and not for training super-
vision. As shown in Fig. 1, we randomly select some clusters and display their
corresponding labels. Our observations are as follows: (1) similar characters with
identical components tend to be clustered together, and (2) the major shared
component of each cluster is different.

The first observation reveals the fact that it is difficult to distinguish the char-
acters with similar appearances, and the second observation shows the inherent
semantics of Chinese characters. As explored in [31], presenting characters with
shared radicals in groups can enhance a learner’s semantic understanding of Chi-
nese characters. With this in mind, we hypothesize that discrimination among
similar characters within a group and among different semantic groups can help
the model learn more discriminative features. To achieve this, we leverage the
combination of clustering and contrastive learning to mimic the grouping and
distinguishing processes.

Fig. 1. The sample labels of some clusters.

3.2 Architecture

The architecture of our proposed GCR is depicted in Fig. 2. The input image
x is augmented to create two views, xa and xb, which are then processed by
the query encoder and the momentum key encoder, with the query instance q
and key instance k obtained. The query encoder fq consists of the backbone
F (·) and the projection head P (·), and the momentum key encoder fk consists
of the Fm(·) and Pm(·). θq and θk are the parameters of the query encoder fq
and momentum key encoder fk, respectively. Additionally, a dictionary queue
Q is maintained, where the encoded momentum representations of the current

416 X. Jiang et al.

batch are stored, and the oldest are removed. Finally, the acquired clusters and
instance features in the dictionary queue are utilized to achieve both intra-group
and inter-group contrastive learning.

Fig. 2. Architecture of Group, Contrast, and Recognize (GCR). The green lines and
red lines indicate the source of positive and negative samples in contrastive learning,
respectively. CL is the abbreviation for contrastive learning. The triangles with various
colors represent the cluster centroids. (Color figure online)

3.3 Intra-group Contrastive Learning

A long-standing issue in CCR is the tendency of similar characters to be easily
confused. This is due to their encoded features often being close in the embed-
ding space, making it difficult for predictors to correctly recognize them. This
mirrors the common experience of beginning learners who frequently struggle to
distinguish among similar characters. To address this, we sample hard negatives
for contrastive learning in order to magnify the differences among similar char-
acters. The key point is how to effectively sample the required hard negatives.

Based on the first observation in Sect. 3.1, we introduce the concept of intra-
group contrastive learning, as depicted in Fig. 2. During model pre-training, we
dynamically cluster the momentum representations of instances in the dictionary
queue into M clusters. With these clusters, we divide the negatives into M
subsets C = {C1,C2, . . . ,CM}. The proposed intra-group contrastive loss is
given by:

Lintra = − log
exp (q · k/τ)

exp (q · k/τ) +
∑

Ci⊂Gq

∑
kj∈Ci

exp (q · kj/τ)
(1)

where τ is the temperature, and Gq is the sampled group that includes the hard
negatives. We choose the union of the top-D closest clusters as the hard negatives
group Gq. Notably, Gq excludes the closest cluster, since the closest cluster
probably contains the identical instances of q, which are the false negatives and
cause the model to discard semantic information [11].

In this section, we distinguish the query instance from the similar instances
in the hard negatives group to ensure local uniformity in the embedding space.
By sampling hard negatives, the model receives more discriminative information,
leading to improved representation.

GCR: A Self-supervised Method for Chinese Character Recognition 417

3.4 Inter-group Contrastive Learning

In this section, we aim to ensure the distinction among different semantic groups
by enlarging the separation among all cluster centroids. To achieve this, we intro-
duce an inter-group contrastive loss. This loss minimizes the distance between
the query instance and its corresponding centroid in the embedding space, while
pushing other centroids away.

In detail, we assign one centroid to each query instance and calculate the
inter-group contrastive loss as follows:

Linter = − log
exp

(
q · csq/τ

)

∑
csj∈Cs exp

(
q · csj/τ

) (2)

where csq is the closest centroid to the query q, csj is the cluster centroid of Cj

and Cs is the union set of csj . Note that the centroid embedding is calculated as
the average of the instance embeddings within the cluster. With this objective,
we aim to encourage global uniformity in the embedding space by treating each
cluster as a single group.

3.5 Network Training

The procedure for self-supervised pre-training of the GCR framework is outlined
in Algorithm 1. Unlike DnC [22], our clustering process is integrated seamlessly
into the contrastive learning process, instead of being separated into several
steps. In addition to the intra- and inter-group objectives, we also incorporate
the vanilla InfoNCE loss as formulated in Eq. 3, to ensure local smoothness and
support the clustering bootstrapping, following the strategy of PCL [14].

Linfonce = − log
exp (q · k/τ)

exp (q · k/τ) +
∑

kj∈Q exp (q · kj/τ)
(3)

The final loss function is a combination of all these objectives, formulated as
follows:

Ltotal = λ1Linfonce + λ2Lintra + λ3Linter (4)

where λ1, λ2, λ3 are coefficients that control the contribution of each part to the
total loss.

4 Experiments

In this section, we outline the experimental setup, including details on the
datasets, baseline models, and implementation specifications. Subsequently, we
perform extensive experiments on benchmark datasets to evaluate the GCR from
both qualitative and quantitative perspectives.

418 X. Jiang et al.

Algorithm 1 Main algorithm of GCR
1: Input unlabeled image x, temperature τ , mini-batch size N , query encoder fq,

key encoder fk, momentum coefficient m, number of desired clusters M , clustering
interval r, total training steps s, loss coefficients λ1, λ2 and λ3

2: Randomly initialize parameters θq and θk, θq = θk

3: Randomly initialize the queue Q of negative instances kj

4: for step ∈ s do
5: if step%r == 0 then
6: Cs, C ← K-means Clustering on Q for M clusters
7: end if
8: for x ∈ mini-batch do
9: xa = Aug1 (x)

10: q = fq (xa)
11: xb = Aug2 (x)
12: k = fk (xb)

13: Lintra = − log exp(q·k/τ)

exp(q·k/τ)+
∑

Ci⊂Gq

∑
kj∈Ci

exp(q·kj/τ)

14: Linter = − log
exp(q·csq/τ)

∑
cs
j

∈Cs exp(q·csj/τ)

15: Linfonce = − log exp(q·k/τ)

exp(q·k/τ)+
∑

kj∈Q exp(q·kj/τ)
16: Ltotal = λ1Linfonce + λ2Lintra + λ3Linter

17: end for
18: update fq by back-propagation
19: update fk with momentum from fq: θk ← mθk + (1 − m)θq

20: enqueue the keys k to Q
21: dequeue the oldest keys
22: end for

4.1 Datasets

We utilize a collection of 3 million scanned and camera images of handwritten
Chinese characters for pre-training, which we name the SC3M dataset. For fine-
tuning, we use the HWDB1.0-1.1 dataset [15], consisting of 2.73 million offline
handwritten Chinese character images from 720 writers. To evaluate the per-
formance of the GCR framework, we conduct experiments on the ICDAR2013
benchmark [33], which includes 224,419 offline handwritten Chinese characters
from 60 writers with 3755 classes. We also evaluate the model’s ability to rec-
ognize printed artistic characters using the Printed Artistic dataset [4], which

Fig. 3. Some examples in the datasets.

GCR: A Self-supervised Method for Chinese Character Recognition 419

contains 3755 characters in 105 printed artistic fonts. An illustration of some
examples from these datasets can be seen in Fig. 3.

4.2 Baselines

In this work, we have constructed three baseline models for CCR, including
character-level, radical-level, and stroke-level models. Our first model, called
DenseClassifier, is a character-level model that combines a CNN encoder with a
linear classifier. The second model, RAN, is a radical-level method that utilizes
an encoder-decoder architecture with a coverage attention mechanism. Finally,
our stroke-level model, SLD, is comprised of an image-to-feature encoder and
a feature-to-stroke decoder that employs a matching-based strategy. Both the
DenseClassifier and RAN models use a modified DenseNet [10] as their backbone
for feature extraction, while SLD uses a modified ResNet [9]. The character
accuracy is employed as the evaluation metric for the downstream CCR task.

4.3 Implementation Details

In the pre-training stage, we follow the configuration of the vanilla MoCo v2 [6]
and apply random crop, random color jittering, random grayscale conversion,
and random Gaussian blur. The optimization algorithm used is SGD with a
momentum of 0.9, a weight decay of 0.0001, and a batch size of 3200. The
temperature τ is set to 0.2, the queue size K to 65536, the number of clusters M
to 1500, the number of hard negative clusters D to 5, the momentum coefficient
m to 0.999, and the clustering interval steps r to 30. The coefficients for each
loss λ1, λ2, λ3 are set to 1, 0.5, and 0.5, respectively. The dynamic k-means
clustering is implemented using the efficient faiss tool [13]. The initial learning
rate is set to 0.03 and adjusted using a cosine scheduler. The experiments are
run on 16 NVIDIA Tesla V100 (24GB RAM) GPUs.

In the fine-tuning stage, we use the plateau scheduler and Adadelta optimizer
with an initial learning rate of 0.0001, a weight decay of 0.0001, and a batch
size of 96 for the DenseClassifier and RAN. For the SLD model, the Adadelta
optimizer is used with an initial learning rate of 1.0 and a weight decay of 0.0001.
The input images for DenseClassifier and RAN are resized to 64 × 64, while the
input for SLD is resized to 32 × 32. The experiments are conducted on 4 NVIDIA
Tesla V100 (12GB RAM) GPUs.

4.4 Representation Quality of Self-supervised Pre-training

In order to assess the impact of self-supervised learning on representation quality
in CCR, we use DenseClassifier as our baseline model and carry out experiments
with different pre-text tasks for pre-training. The representation quality is eval-
uated by freezing the weights of the pre-trained encoder and training a randomly
initialized linear layer on the entire HWDB1.0-1.1 dataset, followed by testing on
ICDAR2013. The results, as shown in Table 1, demonstrate that incorporating

420 X. Jiang et al.

prior knowledge from the pre-text tasks can improve the representation quality
and overall performance of the model. Among the various approaches, our pro-
posed GCR, which combines contrastive learning and clustering, achieves the
best result and outperforms the MoCo method by 5.19%.

Table 1. Performance comparison in the frozen setting of different pre-training meth-
ods. ‘None’ means the encoder is randomly initialized and frozen, with the single linear
classifier trained.

Pre-train Method None Jigsaw [18] MoCo [8] GCR

Accuracy 0.05% 74.91% 78.90% 84.09%

To evaluate the performance of self-supervised pre-training in low-resource
scenarios, we conduct N-shot experiments where the training set includes N
images per character. The pre-trained encoder is utilized for initialization and
then fine-tuned. As shown in Table 2, the results indicate that self-supervised
methods are capable of improving model performance when training data is
limited. Our GCR method consistently enhances the supervised baseline per-
formance, outperforming the Jigsaw and MoCo methods when N is set to 1, 3,
5, and 10. As N increases to 10, the performance gain of pre-training methods
reaches a limit.

Table 2. Performance comparison in N-shot setting of different pre-training methods.
‘None’ means the encoder is randomly initialized and trained, i.e., supervised baseline.

Pre-train Method 1-shot 3-shot 5-shot 10-shot

None 0.10% 17.32% 67.54% 91.38%

Jigsaw [18] 7.81% 69.84% 88.03% 93.10%

MoCo [8] 8.52% 73.49% 89.11% 93.16%

GCR 17.18% 79.61% 90.10% 93.38%

To further demonstrate the discrimination power of GCR, we conduct an
experiment using two sets of similar characters with 60 images per charac-
ter, which are selected from ICDAR2013. We utilize the pre-trained encoder to
extract the self-supervised features and average-pool them into vectors. These
vectors are then embedded into a 2-D space using t-SNE visualization [17]. As
shown in Fig. 4, each color represents a different character, with the shared com-
ponent of the top and bottom rows being ‘kou’ and ‘zou’ respectively. Our results
indicate that compared to MoCo and Jigsaw, GCR provides more discriminative
features for similar characters, resulting in better cluster separation.

GCR: A Self-supervised Method for Chinese Character Recognition 421

Fig. 4. T-SNE visualization of the self-supervised learned representation of two sets of
similar characters. Left: Jigsaw; Middle: MoCo; Right: GCR (ours). Colors represent
character classes.

4.5 Handwritten Benchmark Comparison in Zero-Shot Setting

Performance Comparison: We conduct experiments on handwritten charac-
ters in the zero-shot setting. We fine-tune the RAN and SLD baseline models. For
the training set, we select the first m classes of 3755 characters from HWDB1.0-
1.1, where m ranges in {500, 1000, 1500, 2000, 2755}. The test set consists of
samples with labels from the last 1000 classes of the ICDAR2013 dataset. Note

Table 3. Performance comparison in the character zero-shot setting on the handwritten
benchmark.

Handwritten Pre-train Character Zero-Shot Setting

500 1000 1500 2000 2755

DenseRAN [26] None 1.70% 8.44% 14.71% 19.51% 30.68%

HDE [2] None 4.90% 12.77% 19.25% 25.13% 33.49%

ACPM [37] None 9.72% 18.50% 27.74% 34.00% 42.43%

RAN [34] None 2.65% 10.10% 16.92% 21.56% 31.78%

MoCo [8] 2.96% 10.14% 17.78% 21.86% 32.59%

GCR 3.99% 10.17% 18.67% 23.59% 33.29%

SLD [4] None 5.60% 13.85% 22.88% 25.73% 37.91%

SAE [7] 5.91% 14.35% 24.32% 30.17% 40.22%

MoCo [8] 5.70% 16.60% 24.62% 29.47% 38.90%

GCR 6.45% 21.03% 28.11% 33.00% 42.01%

422 X. Jiang et al.

that our partition method is the same as that used in the SLD for a fair com-
parison.

The results of our experiments are summarized in Table 3. In the case of
RAN, both MoCo and GCR are able to improve the baseline performance. For
SLD, GCR makes a substantial improvement to the baseline accuracy across all
partition settings, outperforming MoCo and SAE. The success of GCR can be
attributed to its ability to capture more discriminative details and distinguish
similar characters, which helps SLD perform better. Overall, GCR achieves the
best results compared to both supervised baselines and other self-supervised
methods, demonstrating its superiority.

Table 4. Ablation study on each part of pre-training objectives.

InfoNCE loss Inter-group loss Intra-group loss Accuracy

37.91%

� 38.90%

� � 40.60%

� � 41.17%

� � � 42.01%

Ablation Study: Since the total loss consists of three parts, it is necessary
to investigate whether the proposed intra-group and inter-group contrastive loss
can improve the capability of feature representation. To this end, we conduct
experiments on the SLD baseline model under the zero-shot partition 2755.

The results, presented in Table 4, show that incorporating the vanilla
InfoNCE loss into the SLD model leads to an improvement of 0.99%. By remov-
ing the inter-group loss, the fine-tuning accuracy decreases by 0.84% (from
42.01% to 41.17%). The removal of the intra-group loss results in a decrease of
1.41% in fine-tuning accuracy (from 42.01% to 40.60%). Our experiments reveal
that the intra-group loss has a more significant impact than the inter-group loss,
as the former is designed to distinguish similar characters, which is more cru-
cial for unseen character recognition. Finally, when both the intra-group and
inter-group losses are employed, the accuracy improves by 3.11% (from 38.90%
to 42.01%), further confirming their advantages.

GCR: A Self-supervised Method for Chinese Character Recognition 423

Fig. 5. Case Study. The bar charts depict the probabilities of predictions for each
category of strokes, excluding the categories ‘sos’ and ‘eos’. A single category comprises
multiple instances of strokes. The utilized SLD model decomposes a character into a
series of stroke categories. The red bold number signifies an incorrect recognition result,
which is represented by the red area in the image. (Color figure online)

Qualitative Analysis: As seen in Fig. 5, we can qualitatively observe how
the proposed GCR captures the detail information and correctly recognize the
unseen characters, compared with the baseline SLD model and MoCo. The cases
are from the zero-shot partition 2755 experiment. Taking the left ‘wang’ as an
example, the confusing region is wrongly recognized as category 3 by the baseline
and MoCo at the first decoding step, and the final result is ‘ren’ which is similar
to the character ‘wang’ and has appeared in the training set. However, our GCR
can correctly recognize it with high confidence, which suggests the capability of
GCR to distinguish similar characters.

4.6 Printed Artistic Benchmark Comparison in Zero-Shot Setting

Besides the handwritten characters, we also conduct experiments with printed
artistic characters in the zero-shot setting. The dataset is Printed Artistic and

Table 5. Performance comparison in the character zero-shot setting on the Printed
Artistic benchmark.

Printed Artistic Pre-train Character Zero-Shot Setting

500 1000 1500 2000 2755

DenseRAN [26] None 0.20% 2.26% 7.89% 10.86% 24.80%

HDE [2] None 7.48% 21.13% 31.75% 40.43% 51.41%

RAN [34] None 0.83% 19.13% 28.49% 43.57% 56.85%

MoCo [8] 4.55% 22.19% 30.20% 45.80% 57.10%

GCR 7.12% 24.11% 31.24% 48.25% 59.35%

SLD [4] None 7.03% 26.22% 48.42% 54.86% 65.44%

SAE [7] 8.25% 32.24% 50.72% 57.13% 68.88%

MoCo [8] 10.81% 36.50% 53.85% 60.56% 69.22%

GCR 11.85% 41.14% 55.46% 63.04% 70.69%

424 X. Jiang et al.

the partition manner is the same as that of SLD. The SLD fine-tuned from GCR
outperforms not only the supervised baselines and self-supervised methods, but
also other previous methods, as shown in Table 5. Compared with handwritten
characters, printed artistic characters have more clear strokes and fixed writing
styles relatively, which are easier to be correctly recognized.

Table 6. The results in seen character setting on ICDAR2013.

Method Decomposition Accuracy

HCCR-GoogLeNet [36] Character 96.35%

DirectMap+ConvNet+Adaptation [35] Character 97.37%

DenseRAN [26] Radical 96.66%

FewShotRAN [24] Radical 96.97%

HDE [2] Radical 97.14%

template+instance [29] Character 97.45%

SLD [4] Stroke 96.74%

ACPM [37] All 97.80%

RAN [34] Radical 96.61%

RAN+MoCo Radical 96.67%

RAN+GCR Radical 96.79%

DenseClassifier Character 97.23%

DenseClassifier+MoCo Character 97.34%

DenseClassifier+GCR Character 97.51%

4.7 Handwritten Benchmark Comparison in Seen Setting

The results of our experiments under the seen character setting are presented
in Table 6. In line with previous studies, we use the ICDAR2013 dataset as
the test set, where all labels have appeared in the training set HWDB1.0-1.1,
without any zero-shot challenge. Our results indicate that the RAN model ben-
efits from both MoCo and GCR, with accuracy improvements of 0.06% and
0.18% respectively over the baseline. Similarly, the DenseClassifier model shows
improvements with MoCo and GCR, yielding accuracy improvements of 0.11%
and 0.28% respectively. Notably, the DenseClassifier fine-tuned from GCR is
only second to the state-of-the-art model ACPM which incorporates multi-level
decomposition information.

5 Conclusion and Future Work

In this paper, we propose GCR, a novel self-supervised method for CCR. By com-
bining clustering and contrastive learning, and optimizing the proposed inter-
group and intra-group contrastive objectives, GCR significantly enhances the

GCR: A Self-supervised Method for Chinese Character Recognition 425

representation ability compared to the baseline model and other self-supervised
methods. Consequently, our GCR achieves obvious performance improvements
on the benchmark datasets ICDAR2013 and Printed Artistic. The key takeaway
is that the hard similar negatives and semantic structure of the unlabeled data
can be utilized to obtain useful self-supervised representations for the down-
stream CCR task. In the future, we will further evaluate the generalization
capability of GCR for other languages, such as Korean.

References

1. Aberdam, A., et al.: Sequence-to-sequence contrastive learning for text recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15297–15307 (2021)

2. Cao, Z., Lu, J., Cui, S., Zhang, C.: Zero-shot handwritten Chinese character recog-
nition with hierarchical decomposition embedding. Pattern Recogn. 107, 107488
(2020)

3. Chang, F.: Techniques for solving the large-scale classification problem in chinese
handwriting recognition. In: Proceedings of the 2006 Conference on Arabic and
Chinese Handwriting Recognition, pp. 161–169 (2006)

4. Chen, J., Li, B., Xue, X.: Zero-shot Chinese character recognition with stroke-level
decomposition. In: Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pp. 615–621. International Joint Conferences on
Artificial Intelligence Organization (2021)

5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020)

7. Chen, Z., Yang, W., Li, X.: Stroke-based autoencoders: self-supervised learners for
efficient zero-shot Chinese character recognition. Appl. Sci. 13(3), 1750 (2023)

8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9726–9735 (2020)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2261–2269 (2017)

11. Huynh, T., Kornblith, S., Walter, M.R., Maire, M., Khademi, M.: Boosting con-
trastive self-supervised learning with false negative cancellation. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
986–996 (2022)

12. Jin, L.W., Yin, J.X., Gao, X., Huang, J.C.: Study of several directional feature
extraction methods with local elastic meshing technology for HCCR. In: Proceed-
ings of the Sixth International Conference for Young Computer Scientist, pp. 232–
236 (2001)

13. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2021)

http://arxiv.org/abs/2003.04297

426 X. Jiang et al.

14. Li, J., Zhou, P., Xiong, C., Hoi, S.: Prototypical contrastive learning of unsuper-
vised representations. In: International Conference on Learning Representations
(2021)

15. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: Online and offline handwritten Chinese
character recognition: benchmarking on new databases. Pattern Recogn. 46(1),
155–162 (2013)

16. Liu, H., et al.: Perceiving stroke-semantic context: hierarchical contrastive learning
for robust scene text recognition. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, pp. 1702–1710 (2022)

17. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

18. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46466-4 5

19. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

20. Qian, R., Zhang, B., Yue, Y., Wang, Z., Coenen, F.: Robust Chinese traffic sign
detection and recognition with deep convolutional neural network. In: 11th Inter-
national Conference on Natural Computation (ICNC), pp. 791–796. IEEE (2015)

21. Su, Y.M., Wang, J.F.: A novel stroke extraction method for Chinese characters
using gabor filters. Pattern Recogn. 36(3), 635–647 (2003)

22. Tian, Y., Hénaff, O.J., Oord, A.v.d.: Divide and contrast: self-supervised learning
from uncurated data. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 10043–10054 (2021)

23. Wang, J., et al.: Towards robust visual information extraction in real world: new
dataset and novel solution. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 2738–2745 (2021)

24. Wang, T., Xie, Z., Li, Z., Jin, L., Chen, X.: Radical aggregation network for few-
shot offline handwritten Chinese character recognition. Pattern Recogn. Lett. 125,
821–827 (2019)

25. Wang, T., Isola, P.: Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In: International Conference on
Machine Learning, pp. 9929–9939. PMLR (2020)

26. Wang, W., Zhang, J., Du, J., Wang, Z.R., Zhu, Y.: DenseRAN for offline handwrit-
ten Chinese character recognition. In: 16th International Conference on Frontiers
in Handwriting Recognition (ICFHR), pp. 104–109. IEEE (2018)

27. Wu, C., Fan, W., He, Y., Sun, J., Naoi, S.: Handwritten character recognition by
alternately trained relaxation convolutional neural network. In: 14th International
Conference on Frontiers in Handwriting Recognition, pp. 291–296. IEEE (2014)

28. Wu, M., Mosse, M., Zhuang, C., Yamins, D., Goodman, N.: Conditional nega-
tive sampling for contrastive learning of visual representations. In: International
Conference on Learning Representations (2021)

29. Xiao, Y., Meng, D., Lu, C., Tang, C.K.: Template-instance loss for offline hand-
written chinese character recognition. In: International Conference on Document
Analysis and Recognition (ICDAR), pp. 315–322. IEEE (2019)

30. Xie, J., Zhan, X., Liu, Z., Ong, Y.S., Loy, C.C.: Delving into inter-image invariance
for unsupervised visual representations. Int. J. Comput. Vision 130(12), 2994–3013
(2022)

https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1007/978-3-319-46466-4_5
http://arxiv.org/abs/1807.03748

GCR: A Self-supervised Method for Chinese Character Recognition 427

31. Xu, Y., Chang, L.Y., Perfetti, C.A.: The effect of radical-based grouping in char-
acter learning in Chinese as a foreign language. Mod. Lang. J. 98(3), 773–793
(2014)

32. Yang, M., et al.: Reading and writing: discriminative and generative modeling for
self-supervised text recognition. In: Proceedings of the 30th ACM International
Conference on Multimedia, pp. 4214–4223 (2022)

33. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese handwriting
recognition competition. In: 12th International Conference on Document Analysis
and Recognition, pp. 1464–1470. IEEE (2013)

34. Zhang, J., Du, J., Dai, L.: Radical analysis network for learning hierarchies of
Chinese characters. Pattern Recogn. 103, 107305 (2020)

35. Zhang, X.Y., Bengio, Y., Liu, C.L.: Online and offline handwritten Chinese charac-
ter recognition: a comprehensive study and new benchmark. Pattern Recogn. 61,
348–360 (2017)

36. Zhong, Z., Jin, L., Xie, Z.: High performance offline handwritten Chinese character
recognition using GoogLeNet and directional feature maps. In: 13th International
Conference on Document Analysis and Recognition (ICDAR), pp. 846–850. IEEE
(2015)

37. Zu, X., Yu, H., Li, B., Xue, X.: Chinese character recognition with augmented char-
acter profile matching. In: Proceedings of the 30th ACM International Conference
on Multimedia, pp. 6094–6102 (2022)

Content-Aware Urdu Handwriting
Generation

Zeeshan Memon1(B), Adnan Ul-Hasan2, and Faisal Shafait1,2(B)

1 School of Electrical Engineering and Computer Science (SEECS), National
University of Sciences and Technology (NUST), Islamabad, Pakistan

zeeshan.bese20seecs@seecs.edu.pk
2 Deep Learning Laboratory, National Center of Artificial Intelligence (NCAI),

Islamabad, Pakistan
{adnan.ulhassan,faisal.shafait}@seecs.edu.pk

Abstract. The performance of handwriting recognition systems has
undergone significant improvement in recent years. However, the accuracy
of these systems for multiple cursive scripts, including Arabic and Urdu,
is still limited due to the lack of labeled training data. Handwriting gener-
ators are a potential solution to this problem. Previous research on Urdu
handwriting generation has primarily focused on generating realistic liga-
tures using Generative Adversarial Networks (GANs) with common adver-
sarial loss but has not addressed the issue of maintaining content and gen-
erated image entanglement. This paper aims to address this gap by propos-
ing a content-controlled training approach for Urdu Handwriting Genera-
tion with pre-trained recognizer loss. Our generation model is trained on
a diverse set of printed ligatures and then fine-tuned with transfer learn-
ing on handwritten images. In this paper, a new metric for evaluating the
performance of handwriting generation systems is also suggested, which
is specifically tailored to the context of handwriting generation tasks. To
our knowledge, this is the first Urdu handwriting generation system that
is capable of generating content-controlled images.

Keywords: Handwriting Generation · Recognition Loss · Generated
Adversarial Network

1 Introduction

Handwriting is a fundamental aspect of human communication and has played
an important role in the documentation of human history. From ancient civi-
lizations to the present day, handwriting has been used to record personal and
public events, preserving them for future generations. The use of digital devices
has made it easier and more efficient to produce and share written materials.
Moreover, more people now rely on typing rather than handwriting to create
written documents [10]. Handwriting is still used today for record-keeping in
certain fields such as medicine and therapy [12], where it is important to have
legible, accurate records of patient information. Additionally, handwriting is also
significantly used in education as teachers and students often take notes by hand
and it is seen as a personal expression.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 428–444, 2023.
https://doi.org/10.1007/978-3-031-41685-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_27&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_27

Content-Aware Urdu Handwriting Generation 429

Fig. 1. The figure illustrates the contextual variations of the Urdu character ‘bay′ based
on its position (initial, medial, or final) and its combination with other characters [2].

Optical Character Recognition systems (OCRs) have achieved great perfor-
mance against printed text but still lacks behind in handwritten text due to
limited data and diverse writing styles, specifically for Arabic scripts including
Urdu.

Urdu, Farsi, Sindhi, Pashto, and Punjabi are all written in scripts that are
derived from the Arabic script, which has unique characteristics due to its cur-
sive nature [1]. The shape of characters within the script is dependent on their
position within a given word as shown in Fig. 1. Additionally, the use of diacrit-
ics and dots serves to indicate grammar and pronunciation [1]. There also exists
diverse variations when it comes to inter-word and intra-word spacing within
the script with overlapping characters, which adds more to its complexity as
highlighted in Fig. 2.

Furthermore, Arabic script is cursive in nature, where a single word consists
of one or more ligatures. A ligature is a combination of two or more charac-
ters that are merged into a single more complex shape [11]. These factors, in
conjunction with individual variations in handwriting style, contribute to the
complexity of processing and analyzing text written in the Arabic script.

Given the challenges posed by complex and limited data, it has become
increasingly evident that the current recognition systems are not meeting the
desired standards of performance. Recently, there has been a growing interest in
the field of handwriting generation as a potential solution for the data limita-
tion challenge. Variational Autoencoders (VAEs) [19] and Generative Adversarial
Networks (GANs) have emerged as popular research areas in this field. However,
a major challenge in these studies, particularly for Arabic scripts, is the absence
of controlled text generation [5]. Controlled text generation is a critical aspect
of handwriting generation for OCR systems, as it is necessary for training OCR
models and obtaining annotated data that accurately reflects the needs of the
OCR systems [18].

From the current literature, two significant research gaps have been identi-
fied. Firstly, the lack of content-controlled generation for complex script hand-
writing is a major challenge [10]. This means that there is difficulty in gener-
ating images that accurately represent the intended content when dealing with
scripts that have a high level of complexity. Secondly, even when content con-
trol is attempted, the concurrent training of the recognition system with the
GANs presents another challenge. This is because the recognition system can
validate substandard generated images as readable, which does not ensure that

430 Z. Memon et al.

Fig. 2. Illustrating the Complexity of Urdu Handwriting: A Sample of Overlapping
Characters in Urdu Script. The image shows the cursive and overlapping nature of the
Urdu script.

the generator will converge towards producing realistic and readable handwriting
images [20]. This can result in the generation of images that do not accurately
represent the intended content.

In this paper, an alternative approach is proposed that presents a novel solu-
tion to the challenges of content-controlled and readable generation of hand-
writing images. By incorporating a pre-trained recognizer network into a gener-
ative end-to-end architecture, the generational power of GANs is leveraged while
addressing the issue of model failure in producing readable text images. For any
previously unseen unicode Urdu string given as input, our approach generates
an image of the corresponding Urdu text in a handwriting style.

This paper is further divided into different sections. Section 2 summarizes the
relevant work done previously. Section 3 provides a detailed methodology of the
proposed approach. Section 4 presents experimental configurations and Sect. 5
discusses the results and compares them with other similar works. Section 6
finally concludes the paper with a summary and future directions.

2 Previous Work

Handwritten text generation techniques utilizing deep learning can be broadly
classified into two categories: online and offline generation techniques. Online
techniques typically utilize temporal data obtained from the sequential recording
of real handwriting samples (in vector form) via the use of a digital stylus [4].
Alternatively, recent generative offline handwritten text generation techniques [5]
focus on the direct generation of text through training on offline handwriting
images.

Graves et al. [3] present the very first approach utilizing a Recurrent Neu-
ral Network (RNN) with Long-Short-Term Memory (LSTM) cells for predicting
future stroke points based on previous pen positions and input text. Further, Ji
et al. [6] extended the method presented in [3] by incorporating a GAN frame-
work with a discriminator. The introduction of a disentanglement mechanism in
DeepWriting [4] allows for greater control over the generation of style without
affecting the content. Haines et al. [7] proposed a method for author-specific
handwriting generation, which requires a significant amount of character-level
annotation for each new sample.

Recent advancements in handwriting generation have aimed to improve con-
trol over both content and style. One such approach is presented by Alonso et

Content-Aware Urdu Handwriting Generation 431

al. [5], which utilizes a GAN architecture composed of a discriminator and gener-
ator, as well as two additional networks: a bidirectional LSTM and a CNN with
LSTM layers at the end. This approach specifically focuses on the generation
of fixed-length and width handwritten strings in French and Arabic. The gen-
erated images were incorporated into an existing dataset, resulting in improved
accuracy of recognition systems.

In another study, Fogel et al. [8] presents a novel method for generating
images from text, referred as ScrabbleGAN, which incorporates a correlation
between the width of the generated image and the length of the input text. The
results of ScrabbleGAN demonstrate its proficiency in generating high-quality
images that are semantically consistent with the input text. Farooqui et al. [9]
presents an approach for improving handwriting recognition of the Urdu lan-
guage by generating additional data samples using different GAN variants. Seven
different GAN architectures were implemented for the generation of handwritten
Urdu ligatures, with each GAN trained to produce a specific class of ligatures
or at most 10 classes for class-conditioned variants. The goal is to increase the
amount of training data to improve the accuracy of word-spotting tasks. Sharif et
al. [10] present a GAN-based approach for Urdu Handwriting Generation, which
produces realistic Urdu ligatures. Three different GANs variants were evaluated,
with WGANs showcasing the best performance. It basically utilizes the recep-
tive power of a deep convolutional generator to generate complex overlapping
ligatures, but it does not ensure content-controlled generation.

Similar to ScrabbleGAN [5], we also investigate the problem of content-
controlled generation and propose an approach, utilizing a pre-trained recog-
nizer network with frozen weights during training instead of training along with
GANs, to ensure a stable mapping between input character embeddings and
generated images. This approach is intended to overcome the limitations present
in current handwriting generation techniques.

3 Proposed Methodology

In this study, we propose to use a GAN-based approach as shown in Fig. 3,
where in addition to the discriminator, the generated image is also evaluated
by a recognizer network. The purpose of the discriminator is to promote the
realistic appearance of handwriting styles, while the recognizer network serves
to ensure the generated image is readable and accurately represents the input
text. Each component is discussed in the following subsections.

3.1 Fully Convolutional Generator

The fundamental principle guiding our proposed model is the realization that
handwriting is a localized process, meaning that each letter is influenced only
by the letters preceding and succeeding it. This is also supported by Graves et
al. [3], who employed recurrent neural networks for the task at hand.

432 Z. Memon et al.

Fig. 3. Proposed approach for Ligature Image Generation. Embeddings for each char-
acter in a given ligature are combined with noise before being fed into the network.
The image is generated through upsampling and convolutional layers and then passed
through a convolutional network and recognizer network, resulting in discriminator loss
and recognition loss, which guide the learning of the overall architecture (as shown by
the dashed blue line). (Color figure online)

By analyzing Urdu ligature formation, we posit that the shape of characters
in Urdu is heavily influenced by the surrounding characters within the ligature.
This suggests that this characteristic can be effectively learned through the use of
convolutional neural networks. The proposed generator utilizes character embed-
dings and maps them onto the generated image through a series of convolutional
layers.

The generator can be conceptualized as one that generates individual
character-wise patches, rather than generating complete words in their entirety.
A combination of convolutional layers and upsampling layers in each layer of the
generator is employed which increases the overlap between neighboring charac-
ters, thereby expanding the receptive field. This facilitates interactions among
neighboring characters, resulting in a smoother transition within ligatures. For
every character in a given ligature, a character embedding is combined with
a noise vector in order to account for natural variations in handwriting. The
resulting embeddings are then passed through a fully convolutional generator,
where the region generated by each character filter is of the same dimension and
the receptive fields of adjacent filters overlap to generate the ligature image.

3.2 Fully Convolutional Discriminator

In the traditional GAN architecture, the role of the discriminator is to accurately
distinguish between original data samples and those generated by the generator.
In the proposed model, a discriminator is also utilized to score images as either
real or fake. The discriminator is a fully convolutional neural network, similar to

Content-Aware Urdu Handwriting Generation 433

the generator, but with an architecture opposite of the generator. Both actual
handwritten samples and generated samples are provided as input to the dis-
criminator, which then evaluates these images and produces an output. This
output is subsequently used in the loss function to update the weights of both
the generator and discriminator.

3.3 Recognizer Network

The recognizer network evaluates generated images on the basis of readability by
comparing the recognized text from the recognizer network with the input label
provided to the generator. For the recognizer network, we have used the state-
of-the-art recognition system for Urdu Handwriting proposed by Riaz et al. [12],
which combines the capabilities of a convolutional neural network (CNN) and a
transformer (Conv-Transformer). The CNN component extracts visual features
from the input image, which are then passed to a full transformer consisting of
three encoder-decoder layers. The model employs a cross-entropy loss function
to measure the difference between the predicted text and the text labels.

For our task, we trained the Conv-Transformer architecture as suggested by
Riaz et al. [12] on NUST-UHWR Dataset [18] with the objective of achieving
generalizability of recognizer network.

3.4 Optimization Functions

Three distinct learning objectives are discussed in this work. Specifically, dis-
criminator loss, generator loss, and recognition loss are utilized. The utilization
of these three objectives aims to enforce the content-controlled generation of
images, thus enhancing their overall quality.

Discriminator Loss. We employ a discriminator model to estimate the prob-
ability of whether a given sample is from the training data (X) or from the
artificially generated distribution. The optimization problem is formulated as a
min-max problem, where the generative network (G) and the discriminator (D)
are trained in competition with each other. Formally, it can be defined as

min
LD

LD = D((G(Z,L)), 0) −D(X, 0)) (1)

where Z and L represent noise vector and text label. The G represents the
generator network, which generates text images given Z and L.

Generator Loss. It is typically a function that measures how realistic generated
images are. It can be formally defined as

min
LG

LG = −D((G(Z,L)), 0) (2)

Recognition Loss. A pre-trained state-of-the-art Urdu recognition is utilized as
a handwritten text recognizer network (R) that guides the generation of synthetic

434 Z. Memon et al.

Fig. 4. Text, its rendered and augmented Versions, where (a) displays the input text,
(b) presents the rendered version using Pango with the ‘Pak Nastaleeq’font and (c)
showcases additional augmentations that mimic real handwriting variations.

word images with specific textual content. As the recognizer network is frozen
during training, this loss optimizes the weights of the generator network only.
This is a fundamental minimization problem, which can be defined as

min
LR

LR = R((G(Z,L)), L) (3)

The overall architecture is trained using a combination of three proposed loss
functions keeping the weights of the recognizer network freeze. The three losses
represented by Eqs. (1), (2), and (3) are combined arithmetically to yield the
overall loss.

min
L

L = LD + LG + LR (4)

The weights of the generator and discriminator are updated in an alternating
fashion to ensure the stability of the overall learning process.

4 Experiment Configuration

Several experiments were conducted to evaluate the effectiveness of the pro-
posed model for generating Urdu ligatures and to compare its results with those
of existing baselines and state-of-the-art approaches. The specifications of the
datasets used implementation details, and hyperparameter settings are thor-
oughly discussed below.

4.1 Datasets Used

In order to assess the performance of the proposed model, both rendered and real
handwriting datasets were utilized. A brief overview of the database is provided
below:

Content-Aware Urdu Handwriting Generation 435

UCOM Database: In order to evaluate the proposed network, the UCOM
database [13] is utilized. The dataset consists of 48 distinct lines of Urdu text,
authored by 100 different individuals. The Urdu language comprises 36 unique
alphabets, with standalone Urdu alphabets also being considered as ligatures of
a single character. Following the methodology outlined in [9], the 317 unique
ligatures are extracted from images of Urdu sentences through binarization, seg-
mentation, and resizing to obtain ligatures of a fixed dimension. By utilizing
data augmentation 32,000 samples were obtained.

Center of Language Engineering (CLE) Database: The CLE database
[23], developed by the Center for Research in Urdu Language Processing
(CRULP) [24], primarily consists of 18,000 frequent Urdu ligatures in Unicode
format. These ligatures are organized based on the number of characters, rang-
ing from 2 to 8 characters. We used ligatures consisting of up to 4 characters,
yielding a total of 10,012 unique ligatures. These ligatures are rendered using
Pango [14] as shown in Fig. 4.

4.2 Pre-processing of Dataset

We argue that better formation of ligatures can be learned through a large cor-
pus of ligatures, and this knowledge can be transferred and refined to a specific
handwriting dataset. In order to achieve this, augmentations that aim to make
the rendered images as similar as possible to real handwriting are utilized. These
augmentations include erosion, dilation, rotation, and shear transformation as
shown in Fig. 4. A dataset of 30,036 images is generated by using these augmen-
tations on 10,012 unique ligatures from the CLE database.

4.3 Implementation Details and Hyper Parameters

The architecture of the network is configured to generate fixed-size images
of 64 × 64 pixels. The input ligature is padded up to a sequence length of
eight characters and then passed through the embedding layer of Generator (G)
to generate embeddings of shape 8×8192 for each sample. As illustrated in Fig. 3,
for the generation of an n-character ligature, ‘n’number of character embeddings
are generated according to the characters. These embeddings are reshaped into
512×4×32 and subsequently passed through convolutional layers, followed by an
upsampling layer. Leaky ReLU (LReLU) and batch normalization [15] is applied
between these layers, and a sigmoid activation function is utilized to produce
the final output of size 64 × 64. Table 1 shows the detailed architecture of the
generator with corresponding output shapes.

The Discriminator (D) network is essentially the inverse of the generator
network, with the exception of the absence of the spatial embeddings layer. An
image of 64 × 64 pixels is provided as input to the discriminator, which is then
processed through a series of layers, including the convolutional layer, Leaky
ReLU (LReLU) layer, batch normalization, and max pool layer. The final layer

436 Z. Memon et al.

is a linear layer that outputs a single value, representing the score or probability
of the image being real or fake. The detailed architecture of the discriminator,
encompassing dimensions and activation functions at each layer, is presented in
Table 1. A batch size of 32 was employed, where the input labels’ sequence length
was padded up to the maximum sequence length of 8. The Adam optimizer with
a learning rate of 2e−4 was utilized for the training of our architecture. For every
generator update, the discriminator is updated 7 times, and recognition loss is
optimized on every 5th training step of the epoch.

Hyperparameter Tuning. The stability of GAN training is a well-known
challenge in the field of generative modeling. The stability of GANs is influenced
by several factors, including the learning rate and the number of times the dis-
criminator is trained compared to the generator, as stated in the seminal work
by [16]. In practice, there is no standard set of hyperparameters that works for
all models and datasets.

In our study, we conducted an extensive exploration of the hyperparameters
to stabilize the training of GANs. The learning rate was varied from 1e−4 to
1e−5 with intervals, while the number of times the discriminator was trained
relative to the generator, represented by the parameter ‘k’, was varied from 2 to
10. Our results showed that a learning rate of 2e−5 and a value of k=7 were the
optimal hyperparameters for our proposed approach.

4.4 Experiments Performed

We have executed three distinct variations of experiments, considering the
dataset or approach employed. Our results have been benchmarked against the
state-of-the-art in Urdu Handwriting Generation [10] and are thoroughly dis-
cussed in subsequent sections.

Performance on CLE Database. The proposed model was trained on the
CLE database from scratch, utilizing 300 epochs with hyperparameters in accor-
dance with the specifications described in Sect. 4.3. However, the discriminator
was trained seven times that of the generator, as advised in [16]. Out of 30,036
samples, 28,512 were designated for training and the rest for testing. The effec-
tiveness of the proposed model was evaluated using the Fréchet Inception Dis-
tance (FID), Geometric Score (GS), and Recognition Accuracy, as outlined in
Table 2. The Recognition Accuracy was determined through the Character Accu-
racy Rate, which reflects the number of characters that can be recognized from
the generated images through the use of a state-of-the-art Urdu handwriting
recognition system.

Performance on UCOM Database. In a similar fashion to the training on
the CLE database, the proposed model underwent 300 epochs of training with
hyperparameters consistent with those specified for the CLE database, except for

Content-Aware Urdu Handwriting Generation 437

Table 1. Configurations of custom Generator and Discriminator blocks. Each convo-
lution layer has ReLU activation except the last one which has Sigmoid Activation.

Generator layer Output
shape

Discriminator layer Output
shape

Embedding Layer + Noise 8 × 8192 Input Image Vector 1 × 64 × 64

Embedding Layer + Noise 512 × 4 × 32 Convolution 32 × 64 × 64

(Reshaped) Convolution 32 × 64 × 64

Convolution 256 × 8 × 32 Convolution 32 × 64 × 64

Batch Normalization 256 × 8 × 32 Convolution 64 × 32 × 32

Convolution 128×16×32 Convolution 128×16×16

Batch Normalization 128×16×32 Convolution 128×16×16

Convolution 128×32×32 Convolution 256 × 16 × 8

Batch Normalization 128×32×32 Batch Normalization 256 × 16 × 8

Convolution 64 × 64 × 64 Convolution 256 × 16 × 4

Convolution 64 × 64 × 64 Batch Normalization 256 × 16 × 4

Convolution 32 × 64 × 64 Convolution 256 × 16 × 4

Convolution 32 × 64 × 64 Batch Normalization 256 × 16 × 4

Convolution 16 × 64 × 64 Convolution 256 × 16 × 2

Convolution 1 × 64 × 64 Linear Layer 1 × 1

the discriminator which was trained five times than that of the generator. The
performance of the model was assessed using the FID score, Geometric Score,
and Recognition Accuracy, as shown in Table 3.

Performance of Model Trained on CLE and UCOM Database. The
processed UCOM database consists of only 317 unique ligature formations as
highlighted in Sect. 4.1, which makes it insufficient as an Urdu Handwriting
Generator due to its limited data. To improve the dataset, 10,000 ligatures from
the CLE database have been rendered and augmented to incorporate real hand-
writing variations. The model was trained on the CLE data and then transferred
and fine-tuned on the UCOM database for an additional 50 epochs with a learn-
ing rate of 2e−6, drawing inspiration from the transfer learning approach used
in GANs [17]. The performance was evaluated using the FID score, Geometric
Score, and Recognition Accuracy, and the results are presented in Table 2.

Impact of Generated Data on Urdu OCR Performance. The objective
of handwriting generation is to increase annotated data to improve handwrit-
ing recognition accuracy. To evaluate the improvement, an experiment was per-
formed in which the OCR model was trained with both the generated data and
the UCOM database. The performance of the proposed model was compared to

438 Z. Memon et al.

Sharif et al. [10] using the Character Error Rate (CER) as the evaluation metric,
shown in Table 4.

5 Results and Discussion

The performance of our proposed method was evaluated using three quantitative
metrics: Fréchet Inception Distance (FID) [22], Geometric Score (GS) [21], and
Recognition Accuracy. FID was utilized to measure the similarity between the
feature representations of the generated and real images. This was achieved by
fitting two Gaussians on the feature representations obtained from an Inception
Network and calculating the Fréchet distance between them. GS, on the other
hand, compares the geometrical properties of the fundamental real and fake data
manifolds and provides a means to quantify mode collapse.

In this study, a new evaluation metric, Recognition Accuracy, has been dis-
cussed as a more effective means of evaluating text image generation tasks.
Unlike FID and Geometric Score, which evaluate the generated text images
based on latent features, Recognition Accuracy evaluates the readability of the
images through state-of-the-art generalized OCR systems. Although there may
be limitations to this approach due to the limitations of OCR itself, it provides
a standardized means of determining the quality of text images. Additionally,
the FID score has its own limitations, as the Inception network it relies on is
primarily trained on facial data, which may not accurately represent the target
distribution for another target. For this reason, the use of Recognition Accuracy
along with the FID score may provide a more comprehensive evaluation of the
quality of content-controlled handwriting generation tasks.

In every experiment performed, the FID score was calculated for the entire
dataset, comparing it with an equivalent number of generated samples, approx-
imately 30,000 in total. The Geometric Score was determined through the anal-
ysis of 5,000 real and 5,000 generated samples using default parameter settings.
Furthermore, the Recognition Accuracy was calculated for the complete dataset
using a pre-trained recognizer network.

5.1 Results on CLE Database

The results of our study on the CLE database show an FID score of 69.01 and
a Geometric Score of 7e−4, with a recognition accuracy of 77% as highlighted in
Table 2. The recognition accuracy of 77% indicates that 77% of characters are
readable in our generated images with the help of generalized OCR. Given that
the CLE database is comprised of 10,000 unique ligatures and trained for 300
epochs, the results demonstrate the good performance of the proposed model.

Content-Aware Urdu Handwriting Generation 439

Fig. 5. Label, it’s ground truth (printed text with Pango) from CLE database and
generated sample through the proposed model, where (a) displays the input text,
(b) presents ground truth and (c) showcases generated samples through the proposed
model.

Table 2. Comparison of FID score, Geometric Score and Recognition Accuracy for
proposed approach on CLE database and fine-tuned on UCOM database.

Training Data FID Score Geometric Score Recognition
Accuracy(%)

CLE Database 69.01 7.87e−4 77

CLE Database +

Fine-tuned on UCOM database 38.03 8.81e−4 72.6

Furthermore, a qualitative assessment as shown in Fig. 5 confirms the validity
of the results. The utilization of an augmented training dataset ensures that the
generated images accurately depict natural handwriting, and the formation of
ligatures in comparison with ground truth confirms the correctness of the model.

5.2 Results on UCOM Database

Results of the proposed approach on the UCOM database as explained in 4.4
demonstrate an FID score of 23.24 and a Geometric Score of 5.95e−4, with a
recognition accuracy of 69.7% as illustrated in Table 3. The quality and accu-
racy of the images produced can also be confirmed by the visual representation
in Fig. 6. As demonstrated, the majority of the generated samples contain rec-
ognizable characters, with the exception of one most right sample which is a
five-letter ligature, and one out of five characters not being recognizable based
on human evaluation. These results align with the quantitative recognition accu-
racy mentioned in Table 3, which is a mislabeling rate of 4-5% in the dataset
and a limitation of the recognition model’s accuracy.

Along with the quantitative comparison presented in Table 3, a qualitative
analysis was also conducted, as shown in Fig. 7. The results demonstrate that the

440 Z. Memon et al.

Fig. 6. Label, its ground truth from UCOM database and generated sample through
proposed model, where (a) displays the input text, (b) presents ground truth and (c)
showcases generated samples through proposed model.

Fig. 7. Qualitative comparison of Proposed Model and different GAN variants from
Sharif et al. [10] on UCOM database. (a) shows ground truth, (b) - (d) represents
generated samples from Deep Convolutional GANs(DCGANs), Wasserstein GANs
(WGANs), and Wasserstein GANs with gradient penalty (WGANs-GP), (e) showcase
generated samples through the proposed model.

proposed model generates samples that are comparable in quality to those gen-
erated by other GAN variants from Sharif et al. [10]. It is worth noting that the
proposed model generates content-controlled samples, while the samples from
the previous works were the best-generated samples of the same class/label sep-
arated manually as they are not content-controlled generation. This superiority
of the proposed model can be verified by examining Table 3, which shows no
significant difference in FID and geometric score but a marked improvement

Content-Aware Urdu Handwriting Generation 441

Fig. 8. Qualitative comparison of generated samples and ground truth when transfer
learning is employed from CLE database to UCOM database, where (a) displays
the input text, (b) presents ground truth and (c) showcases generated samples through
the proposed model.

Table 3. Comparison of FID score, GS, and Recognition Accuracy for different GAN
variants from previous works and Proposed Approach.

Model FID Score Geometric Score Recognition Accuracy(%)

DCGANs 21.45 7.82e−4 35.1

WGANs 17.97 7.46e−4 37.6

WGANs-GP 15.74 7.14e−4 39.2

Proposed Model 23.24 5.95e−4 69.7

in recognition accuracy, reflecting the difference between controlled and uncon-
trolled generation. The results highlight the ability of the proposed model to
generate annotated samples of equivalent quality to those generated by uncon-
trolled methods while still maintaining a close relationship to the input.

5.3 Result of Transfer Learning on UCOM Database

As detailed in Sect. 4.4, an attempt was made to apply transfer learning from
large rendered and highly augmented data (CLE database) to real handwriting
data, with the aim of improving ligature formation and increasing the general-
ization of the generator. The results are presented in Fig. 8, which shows that
while the difference between generated samples and ground truth can still be
distinguished, the generator is making progress toward replicating the smoothed
strokes of real handwriting images. Table 2 reports the evaluation metrics, includ-
ing the FID score of 38.03, the Geometric Score of 8.81e−4, and recognition accu-
racy of 72.6%, demonstrating the efficacy of this approach. These results are also
in line with those obtained from training a model from scratch using only the
UCOM database, as shown in Table 3. This highlights the potential of transfer
learning in handwriting generation tasks when the training data is limited.

442 Z. Memon et al.

Table 4. Comparison of OCR performance in terms of CER(Character Error Rate),
when trained with Synthetic data generated with WGANs-GP [10] and proposed model.

Training Data Model CER(%)

UCOM - 7.12

UCOM + Generated Data(10k Samples) Sharif et al. [10] 6.77

UCOM + Generated Data(10k Samples) Proposed Model 6.15

5.4 Improvement in OCR Performance with Generated Data

Our proposed approach was comprehensively compared to the recent state-
of-the-art in Urdu handwriting generation proposed by Sharif et al. [10]. The
results, presented in Table 4, indicate that training with the generated samples
from our proposed approach resulted in a reduction of the Character Error Rate
(CER) from 7.12 to 6.15, compared to the CER of 6.77 from the previous app-
roach. This improvement can be attributed to the better and content-controlled
generation of ligatures through our proposed approach, as opposed to the uncon-
trolled generation in the previous approaches, which required manual labeling
or separation of ligatures. The presence of annotated samples allows for more
effective and faster training and improvement of our OCR.

6 Conclusion

In this study, a GAN-based model was proposed to generate handwriting samples
with improved quality. The model uses a pre-trained recognition network and
was trained on two datasets. The model was found to produce content-controlled
samples with quality comparable to recent approaches.

The proposed model also demonstrated the potential for transfer learning
in handwriting generation by utilizing rendered data. While the model showed
slightly higher FID scores and limited variation in ligature formation, it indicates
that incorporating a larger dataset of real handwriting data with the rendered
data could lead to improved results. This study lays the foundation for further
research in the direction that it can be extended to generate words and sentences
dynamically. Supplementing GANs with language models instead of the simple
embedding layer can enhance text image generation by leveraging the combined
capabilities of language understanding and receptive power to improve ligature
formation.

References

1. Naeem, M.F., Awan, A.A., Shafait, F., ul-Hasan, A.: Impact of ligature coverage on
training practical urdu OCR systems. In: 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol. 1, pp. 131–136, IEEE (2017)

Content-Aware Urdu Handwriting Generation 443

2. Wali, A., Hussain, S.: Context-sensitive Shape-substitution in Nastaliq writing sys-
tem: analysis and formulation. In: Sobh, T. (ed.) Innovations and Advanced Tech-
niques in Computer and Information Sciences and Engineering. Springer, Dor-
drecht (2007). https://doi.org/10.1007/978-1-4020-6268-1 10

3. Graves, A.: Generating sequences with recurrent neural networks. In: arXiv,
preprint arXiv:1308.0850 (2013)

4. Aksan, E., Pece, F., Hilliges, O.: DeepWriting: making digital ink editable via
deep generative modeling. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pp. 1–14 (2018)

5. Alonso, E., Moysset, B., Messina, R.: Adversarial generation of handwritten text
images conditioned on sequences. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 481–486, Sydney, Australia, IEEE (2019)

6. Ji, B., Chen, T.: Generative adversarial network for handwritten text. In: arXiv,
preprint arXiv:1907.11845 (2019)

7. Haines, T.S., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM
Trans. Graph. (TOG) 35(3), 1–18 (2016)

8. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S., Litman, R.: ScrabbleGAN:
semi-supervised varying length handwritten text generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4324–
4333 (2020)

9. Farooqui, F.F., Hassan, M., Younis, M.S., Siddhu, M.K.: Offline handwritten Urdu
word spotting using random data generation. IEEE Access 8, 131119–131136
(2020)

10. Sharif, M., Ul-Hasan, A., Shafait, F.: Urdu handwritten ligature generation using
generative adversarial networks (GANs). In: Frontiers in Handwriting Recogni-
tion: 18th International Conference, ICFHR 2022, Hyderabad, India, 4–7 December
2022, Proceedings, pp. 421–435, (2022)

11. El-Korashy, A., Shafait, F.: Search space reduction for holistic ligature recognition
in Urdu Nastalique script. In: 12th IAPR International Conference on Document
Analysis and Recognition (ICDAR), Washington, DC, USA, pp. 1125–1129 (2013)

12. Riaz, N., Arbab, H., Maqsood, A., Nasir, K.B., Ul-Hasan, A., Shafait, F.: Conv-
transformer architecture for unconstrained off-lineUrdu handwriting recognition.
Int. J. Document Anal. Recogn. (IJDAR) 25, 373–384 (2022)

13. Bin Ahmed, S., Naz, S., Swati, S., Razzak, I., Umar, A.I., Ali Khan, A.: UCOM
Offline Dataset-an Urdu handwritten dataset generation. Int. Arab J. Inf. Technol.
(IAJIT) 14, 239–245 (2017)

14. Taylor, O.: PANGO: an open-source unicode text layout engine. In: 25th Interna-
tionalization and Unicode Conference, Unicode Consortium, Washington DC, USA
(2004)

15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456, Lille, France (2015)

16. Goodfellow, I., et al.: Generative Adversarial Networks. Commun. ACM 63(11),
139–144 (2020)

17. Fregier, Y., Gouray, J.-B.: Mind2Mind: transfer learning for GANs. In: Nielsen, F.,
Barbaresco, F. (eds.) GSI 2021. LNCS, vol. 12829, pp. 851–859. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-80209-7 91

18. Zia, N.S., Naeem, M.F., Raza, S.M.K., Khan, M.M., Ul-Hasan, A., Shafait, F.:
A convolutional recursive deep architecture for unconstrained Urdu handwriting
recognition. In: Neural Computing and Applications, pp. 1635–1648 (2022)

https://doi.org/10.1007/978-1-4020-6268-1_10
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1907.11845
https://doi.org/10.1007/978-3-030-80209-7_91

444 Z. Memon et al.

19. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: arXiv, preprint
arXiv:1312.6114 (2013)

20. Davis, B., Tensmeyer, C., Price, B., Wigington, C., Morse, B., Jain, R.: Text
and style conditioned GAN for generation of offline handwriting lines. In: arXiv,
preprint arXiv:2009.00678 (2020)

21. Khrulkov, V., Oseledets, I.: Geometry score: a method for comparing generative
adversarial networks. In: International Conference on Machine Learning, pp. 2621–
2629. Stockholm, Sweden (2018)

22. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In:
Advances in Neural Information Processing Systems, 30, California, USA (2017)

23. Khattak, I.U., Siddiqi, I., Khalid, S., Djeddi, C.: Recognition of Urdu ligatures -
a holistic approach. In: 2015 13th International Conference on Document Analysis
and Recognition (ICDAR), pp. 71–75, Washington, DC, USA. IEEE (2015)

24. Image and Text Corpora. https://www.cle.org.pk/clestore/index.htm

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2009.00678
https://www.cle.org.pk/clestore/index.htm

Weakly Supervised Information
Extraction from Inscrutable Handwritten

Document Images

Sujoy Paul(B), Gagan Madan, Akankshya Mishra, Narayan Hegde,
Pradeep Kumar, and Gaurav Aggarwal

Google Research, Mountain View, USA

spaul003@ucr.edu

Abstract. State-of-the-art information extraction methods are limited
by OCR errors. They work well for printed text in form-like docu-
ments, but unstructured, handwritten documents still remain a chal-
lenge. Adapting existing models to domain-specific training data is quite
expensive, because of two factors, 1) limited availability of the domain-
specific documents (such as handwritten prescriptions, lab notes, etc.),
and 2) annotations become even more challenging as one needs domain-
specific knowledge to decode inscrutable handwritten document images.
In this work, we focus on the complex problem of extracting medicine
names from handwritten prescriptions using only weakly labeled data.
The data consists of images along with the list of medicine names in it,
but not their location in the image. We solve the problem by first iden-
tifying the regions of interest, i.e., medicine lines from just weak labels
and then injecting a domain-specific medicine language model learned
using only synthetically generated data. Compared to off-the-shelf state-
of-the-art methods, our approach performs > 2.5× better in medicine
names extraction from prescriptions.

Keywords: handwriting · language model · prescription ·
weakly-supervised

1 Introduction

Optical character recognition (OCR) enables the translation of any image con-
taining text into analyzable, editable and searchable format. Over the last
decade, many large scale models [10,18,26] and sophisticated techniques [4,5,29]
have been developed with neural network based architectures for OCR. These
systems are not only limited to printed text but also work quite well on hand-
written text, as they are trained on large amount of labeled as well as synthetic
handwritten data. In the past, there have also been works around developing
domain specific OCR models [6,21,41]. Most of these works develop these models
for generic text lines [20,31], and require meticulously labeled data for learning.
In this work, we primarily focus on how we can improve the quality of existing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 445–463, 2023.
https://doi.org/10.1007/978-3-031-41685-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41685-9_28&domain=pdf
https://doi.org/10.1007/978-3-031-41685-9_28

446 S. Paul et al.

OCR models on very hard to read, unstructured documents for specific entities
of interest, with an application in handwritten medical prescriptions.

Fig. 1. Samples representative images from the prescription dataset used in this work.
As we can see the handwriting is often inscrutable and does not follow any specific
structure or format. The task we focus in this paper is to extract medicine names from
such images.

In many countries, prescriptions are primarily delivered to patients in hand-
written formats by doctors. A few billion prescriptions are generated every
year world-wide [19]. Digitizing them would unlock numerous applications for
many stakeholders and use cases in the healthcare ecosystem like e-pharmacies,
insurance companies, creating electronic health records necessary for preventive
healthcare, better diagnosis, analysis at a local and global level for policy making
and so on. However, most of such documents, as shown in Fig. 1 are often hard
to read for non-pharmacists [33]. Even pharmacists go through months/years of
training to decipher such prescriptions. Existing state-of-the-art OCR models
though trained on large amount of data, do not perform well on such inscrutable
documents. Procuring large domain-specific datasets is not a cost-effective or
scalable solution, as it involves annotation that too from domain experts which
can become quite expensive. Although there have been some works [1,15,34]
in extracting information from handwritten prescriptions, the algorithms are
not generalizable, heavily hand-tuned and lack rigorous evaluations. With these
problems in mind, we propose an approach that can significantly enhance the per-
formance of existing state-of-the-art OCR systems by selectively infusing domain
knowledge using only weak supervision.

Medical prescriptions consist of various information like data from lab
reports, ordered tests, health vitals, observations along with medicine names.
Our work focuses on the medicine section which is considered the most impor-
tant from a consumer standpoint, but the techniques can be similarly applied to
other sections or other types of documents beyond prescriptions, such as printed
forms filled with handwriting. The medicine section of a prescription has a rough
semantics consisting of medicine name, category, frequency of intakes and quan-

Weakly Supervised Information Extraction from Inscrutable Handwritten 447

tity (see Fig. 1). As these are non-form type of documents and quite unstruc-
tured, it is a challenge to extract medicine name entities from such documents.

Most OCR approaches [18,26] take a two step approach - first localize the text
regions by detecting bounding boxes around them, and then recognizing the text
using line recognition models. The recognition model often consists of an optical
recognizer and a language model (LM) to correct the optical model errors. The
LM gives us the flexibility to infuse domain-specific knowledge. But, injecting
such knowledge to all lines in the document may not be optimal, as different
parts of the document can correspond to different entities, or even domains. For
example, the pattern in which a medicine name is written is very different from
the pattern in which normal text such as observations are written in the same
prescription. Thus, in order to enhance the recognition of medicine names and
extract them from the prescription, we first detect lines where medicine names
are written. Then in the recognition model, we inject a LM which is specific to
medicine names. For the rest of the image, we inject the vanilla LM.

Note that to learn the model which detects medicine lines, we do not use
strong bounding polygon labels, but rather only weak labels, i.e., the medicine
names present in the image. Such weak labels are much easier to obtain, as the
annotators do not need to draw a bounding polygon and often labeling comes
for free, for example, when a medicine bill is paired with a prescription. Apart
from that, to learn the medicine LM, we do not use any annotated text lines, but
rather generate synthetic text lines using a probabilistic programming approach.
Our weakly supervised medicine line detector obtains 78% pixel mIoU with just
weak labels, and helps to selectively infuse medicine LM, which in turn improves
the overall performance from 19% to 48% jaccard index. The main contributions
of this work are:

– Develop a weakly supervised segmentation method to detect specific text
entities, such as medicine names in handwritten prescriptions.

– Learning a domain-specific medicine LM using synthetic medicine name lines
generated by probabilistic programs and using it to enhance the performance
of state-of-the-art OCR models.

– A model dependent unique way of enhancing the performance of matching
with words from the vocabulary.

2 Related Works

Optical Character Recognition. OCR literature has seen tremendous
improvements in the past decade. The successes [10,18,26] can be attributed
to sophisticated models, synthetic data generation, various augmentation tech-
niques, among others. An OCR system is made of multiple models, starting from
text detection [29,30,43], script identification [12,17], and finally line recogni-
tion [3,10,26,27]. Even with all these advancements, recognition of handwritten
lines still remains a challenging task as writing style can be a unique signature
of the person, allowing room for huge variations. In our experiments, we found
that off-the-shelf line recognition models, even though perform quite well for a

448 S. Paul et al.

lot of printed and handwritten datasets, they fail to perform equally well on
handwritten images. In this work, we show how we can improve their accuracy
by more than 2 times the baseline by first detecting specific entities of interest
(rather than detecting all text) and then improving the line recognition model
by injecting domain-specific LMs. We next discuss the existing literature around
these topics.

Weakly-Supervised Detection. Detecting specific entities of interest in an
image can be posed as detection or segmentation task. However, to learn these
tasks, traditional methods would need strong labels, i.e., either pixel-wise [9,30]
or bounding box labels [30,37,38]. In the recent past, there has been a lot of work
in developing methods which can learn from only weak labels, such as weakly-
supervised object detection [25,47], segmentation [22,44], action detection [32,
46], etc. These methods do not need access to strong labels such as bounding
boxes, but can learn from just weak labels, i.e., image-level labels of the object
categories present in the individual training images. Such a formulation reduces
the manual labor needed to acquire strong labels, thus making it scalable to
large datasets.

Motivated by these, we aim to learn a segmentation model to detect entities
of interest in an image, such as medicine names from just weak labels, i.e., list
of medicine names given an image. In this use case, the individual entities do
not correspond to any underlying category unlike segmentation or detection of
objects in natural scenes. Recently, it has been shown [23] that using weakly
labeled data along with strong labels improves the performance of scene text
recognition. In our task, we only have weakly labeled data without any strong
labels (synthetic or real) and the text is primarily handwritten which is often
inscrutable even if text detection is perfectly done. Moreover in our use case, we
need to detect specific entities among other cluttered text, and not any generic
text. There are also works on defining rules to derive weak labels from the data
[36]. While that is quite challenging and not generalizable in our use case, we use
the intuition to convert the weak labels to strong labels via labeling functions.

Domain-Specific Language Models. There has been a lot of work [24,35,45]
which shows that injecting domain-specific knowledge in LMs helps to perform
much better on those domains than models developed on generic text. Specifi-
cally for OCR, there have been some works [11,14] showing that having access to
domain related text data helps to adapt existing LMs and thus improving final
OCR performance. However, in our use case of decoding medicine names, it is
non-trivial to acquire lines of medicine names written by doctors, as they are
hardly available in normal text corpus. To solve that, we use domain knowledge
to define a probabilistic program which can take in the medicine name and gen-
erates patterns of medicine lines as would be written by doctors in prescriptions.
We show that using such a LM in the OCR decoder improves the performance
significantly.

Weakly Supervised Information Extraction from Inscrutable Handwritten 449

3 Methodology

3.1 Problem Statement

In this work, we focus on the problem statement of extracting textual entities
from non-form type handwritten document images, which are often hard to read.
We specifically focus on the challenging problem of extracting medicine names
from handwritten prescriptions as shown in Fig. 1. Formally, given an image x,
the output of the framework should be the medicine names {mj}n

j=1 that appear
in the image, where mj ∈ V, the vocabulary of medicines. n denotes the number
of medicines in the prescription that varies from prescription to prescription. The
training data that we use to solve this problem is only weakly labeled, i.e. for
every image, we have a list of medicine names that appear in the image, and not
their bounding box locations. Thus, our training data contains tuples of image
and unordered set of medicine names as follows, D = {(xi,Gi = {mj}ni

j=1)}N
i=1,

where ni denotes the number of medicines in that image, N denotes the number
of images in the training data and Gi is the ground truth list of medicines.

Fig. 2. Training and inference pipelines for medicine name extraction from prescrip-
tions. The top-left block shows the weakly supervised medicine line segmentation
pipeline. The top-right block shows the process of generating synthetic medicine lines
using probabilistic programs and then using it to train a medicine LM. The bottom row
shows the inference pipeline, that first localizes the medicine names using the segmen-
tation network, and then injects the medicine LM while decoding the OCR outputs.

3.2 OCR Line Recognition Model

Most line recognition models have two parts - the encoder, often called the optical
part of the model, which encodes the visual information, and the decoder, which

450 S. Paul et al.

is either trained end-to-end with the encoder, or CTC type decoder [13] where
the encoder outputs are combined with LM scores to obtain the final text. We
use the second option and train our network with CTC loss [13]. This allows us
to decouple the optical and the LM, and replace it with domain specific LMs.

Encoder: The encoder or the optical part of the line recognizer consists of first
7 layers of inverted bottleneck conv layers [39] with 64 filters and stride of 1,
followed by 12 layers of transformer encoder [42] with hidden size of 256 and 4
attention heads, and finally a fully connected symbol classification head. We use
this backbone from [10], as it achieves state-of-the-art performance on various
datasets. Our pre-trained model is also the same as [10]. It is interesting to note
that our method is agnostic to the encoder used as it can be used to boost the
performance of any OCR backbone.

Decoder: We use a CTC decoder [13] following [10], which combines scores from
the encoder logits and a character n-gram LM. We set n = 9 unless otherwise
mentioned. We will discuss how we train and use a medicine LM subsequently.

3.3 Weakly Supervised Line Segmentation

We next discuss our algorithm to detect medicine lines by just using weak labels
while training, i.e., only the medicine names for every image, and not their
bounding polygons. Note that while we use this method for medicine line detec-
tion, it can be also used for detecting other entities in other document types.

Labeling Functions. At the core of our algorithm is the idea of using labeling
functions to automatically convert a weakly labeled dataset to strongly labeled.
There have been some works [36] in literature where rules are defined as label-
ing functions. The labeling functions may not be as perfect as a human oracle
and the strong labels they generate may have errors in them. There are often
thresholds or rules used to reduce errors. Thus, while defining a labeling function
we need to optimize coverage, which is the number of data points that can be
labeled using such labeling functions and their error rate. Although there can be
some noise in such labeling, this significantly reduces the annotation cost. We
sequentially apply two labeling functions, as discussed next to convert a list of
medicine names to bounding boxes. In our use case of assigning a bounding box
to each medicine name, we can consider it as an assignment problem between
the detected bounding boxes (p) by a generic text detector and the number of
medicines in it n. Considering p = 50 and n = 5, the number of possible assign-
ments turns out to be pCn

pPp ≈ 2.5e8. We solve this problem via two techniques
- using the content of the boxes (via OCR Labeling Function), and using the
visual features (via Segmentation Labeling Function).

Weakly Supervised Information Extraction from Inscrutable Handwritten 451

OCR Labeling Function: As for every image, we have the list of medicines
that appear on it, for each detected word in the image, we can naively find the
closest medicine name (by edit distance) from the ground truth list, albeit apply-
ing a threshold. However, directly using the edit distance may not respect the
model’s predictions. For example, according to the OCR line recognition model,
modifying an i to l may have lower cost than i to z, but it would be the same
edit distance for both the cases. Thus, in order to utilize the model’s predic-
tions, we decode up to the top-k predictions, and stop when we find an exact
match with a medicine name from the list of ground truth medicines, i.e., the
weak labels. The bounding box associated with these matched words then can be
used as the ground-truth bounding boxes of medicine names. We can define the
labeling function as F(x) = {(tj , lj , hj , wj , rj)}q

j=1, where the bounding boxes of
m medicines are in the rotated box format and tj , lj , hj , wj , rj representing top,
left, height, width, and rotation angle of each matched bounding box. Then, we
can construct a training dataset as follows: Dtr = {(xi,F(xi))}N

i=1.
The number of matching bounding boxes qi ≤ ni, as in most cases the hand-

writing is so illegible that to decipher that even a higher number of top-k lines
may not allow a match with the ground truth medicine names. This can happen
for a sizable number of images, which in turn can introduce a significant noise
in the data, leading to problems in learning the segmentation network. Thus, we
only use those images to train our network where we find that at least 90% of
the ground truth medicines have been matched. The reason behind setting such
a high threshold is this set becomes the guiding signal for the rest of the algo-
rithm. Thus our modified strongly-labeled training dataset can be represented
as: Dtr = {(

xi,F(xi)
)∣∣
∣ |F(xi)|

|Gi| ≥ 0.9}N
i=1. While increasing the number of top-k

paths helps more images to pass this threshold, we find that it saturates after
a point, specially for documents which are hard to read, such as prescriptions
used in this work. While the 0.9 threshold allows us to reduce missing bounding
boxes in the training set, it also reduces the number of images in the training
set, as |Dtr| ≤ |D|. We next discuss a second labeling function to alleviate this
problem.

Segmentation Labeling Function. It may happen that even after decoding
a high number of paths (k), we still are not able to match all the ground truth
medicine names. This can happen when the handwriting is quite challenging
for the model to predict accurately. In such a scenario, we leverage the visual
appearance features via the segmentation model itself, rather than just labeling
via OCR. Motivated by the success of self-training in domain adaptation [2,28]
and semi-supervised [7,40], we use the segmentation model to pseudo-label the
images in the rest of the dataset, i.e., D - Dtr.

First, we train a segmentation network M using the relatively small training
data Dtr obtained from the OCR Labeling Function outlined above. Then, we
use it to predict the medicine lines on the images in D - Dtr. We can consider the
output of the model to be M(x) = {(tj , lj , hj , wj , rj)}l

j=1. Following our previous
threshold, we add those images to the training dataset, where the union of the

452 S. Paul et al.

number of predicted medicine lines by the segmentation network and the OCR
labeling function above, is at least 90% of total number of medicines in that
image. We can represent the new training set as follows: Dtr = {(

xi,F(xi) ∪
M(xi)

)∣∣
∣ |F(xi)∪M(xi)|

|Gi| ≥ 0.9}N
i=1.

Ideally, we can repeat this process, i.e. repeat pseudo-labeling the training
images using a trained segmentation model and training a new model with the
pseudo-labeled training set. The training set would grow over iterations. The two
labeling functions can be generalized as: DT

tr = {(
xi,∪T

t=1Mt(xi)
)∣∣
∣∪T

t=1Mt(xi)
|Gi| ≥

0.9}N
i=1, where Mt = F for t = 1, and the tth medicine line segmentation model

for t ≥ 1, and T represents the total number of iterations.

Fig. 3. Evolution of labels from the labeling functions. Iter 1 represent the OCR Label-
ing Function and the subsequent ones represent the Segmentation Labeling Function
for different iterations. The green highlighted regions denote the detected medicine
names. (Color figure online)

Figure 3 shows how segmentation improves over iterations. Using only the
OCR Labeling Function misses out some of the medicine names, as it is depen-
dent on the ability of the underlying OCR model we use to decipher the medicine
names. However, applying the Segmentation Labeling Function on top of it helps
to predict the medicine patches which were missed, as it does not depend on OCR
or the content, but rather on the visual features, such as strokes, indentation,
etc. which we will discuss later in Sect. 4.

Segmentation Model. Given the bounding boxes obtained using the labeling
functions, we can train a medicine line segmentation model. Our segmentation
model is DeepLab [9] with a ResNet50 backbone [16]. Although we use this
architecture, it can be replaced by any other state-of-the-art segmentation model.
We convert the bounding boxes to label masks, and use them as supervision to
train the segmentation network. The label mask has either 0 or 1 at each pixel
location, denoting whether a pixel belongs to a medicine line. The segmentation
model is trained with the above data using a semantic head with two output
channels. The predicted medicine label masks obtained from this model may not

Weakly Supervised Information Extraction from Inscrutable Handwritten 453

always respect text boundaries, and hence we use a generic text detector in the
OCR pipeline to detect text and refine the boundaries. Then, we crop out the
detected bounding box from the original image x and send only those lines to
the line recognizer. As these lines correspond to a special domain of medicine
names, we can inject that knowledge to the OCR using a LM.

3.4 Domain-Specific Language Model

In OCR decoder, we can incorporate a LM to correct some of the OCR errors.
Specifically, the decoded string Y ∗ can be obtained as follows:

Y ∗ = arg max
Y

P (Y |X)P (Y)α (1)

where P (Y) is obtained from the LM denoting the probability of occurrence
of a certain string Y in the dataset, α is the weight applied on the LM, and
X is the input. In a generic OCR model, P (Y) is trained on a large corpus
of text such that it represents a diverse set of documents. Particular to our
use case, once we have detected the medicine lines as discussed in the previous
section, we need only medicine line specific knowledge while decoding the OCR
output. However, medicine line patterns occurring in handwritten prescriptions
often do not appear in normal text. It is also difficult and expensive to acquire
and annotate such large corpora of handwritten prescriptions from which we
can learn medicine line specific LMs. We inject domain knowledge to solve this
problem.

In order to gather medicine line specific text data, we defined a probabilis-
tic program from which we can sample data and learn a character based LM.
Medicine lines written by doctors often have a few elements - a enumeration
token (-, ., numbers, etc.), followed by the type of medicines (injection, tablet,
etc.), the root name of the medicine, and then the suffix. These altogether com-
prise a single medicine name line. Note that some of these entities other than
the root word may not appear in all prescriptions. With this domain knowledge,
we can define a probabilistic program as shown in top-right portion of Fig. 2.
The program starts from the START node and ends at the END node, and con-
catenates the output of each node with spaces in between. To sample a medicine
name line, the program takes as input the medicine name and the type of the
medicine, both of which appears in the vocabulary of medicines. We can create
an exhaustive set of all possible medicine name lines, and then train a char-
acter based n-gram LM on that text corpus. Note that as we do not have the
exact probabilities of the different transitions, we use equi-probable transitions
between nodes, as well as for any choices in the nodes.

In OCR, as decoding is done at a character level, we need character LMs,
unlike recent advanced large LMs which operate on word or sub-word tokens.
There are also character LM using transformers, but those are generally useful for
longer context. But, in our case, medicine names on average are only 7 characters
long. Moreover, using such a large model takes a lot more inference time. Hence
we stick to an n-gram model.

454 S. Paul et al.

3.5 In-Vocabulary Prediction

In many entity extraction tasks, such as medicine name prediction studied in this
paper, the entities often belong to either from a fixed vocabulary, or are defined
by a regular expression. However, the OCR predictions will not be constrained
to our medicine vocabulary. To constrain that, we can make a nearest neighbor
edit distance search for each medicine line text and the medicine vocabulary.
However, as we discussed before, it would not respect the model’s confidence.
Thus, we use the top-k path decoding as a robust method. Specifically, for each
line, we decode the top-k predictions, and then find all the text which have an
exact match with one of the medicine names from the vocabulary. Then, we take
a majority voting of all these matched names, and that becomes the prediction
for every line. It is possible that for some of the detected medicine lines, we
do not find any match for any of the top-k prediction. These detected medicine
lines would not have any output prediction. We find this method to be more
effective compared to edit distance based matching with the top-1 prediction, or
predicting only the first match from the top-k predictions, as shown in Sect. 4.

Table 1. (a) Statistics of the prescription dataset. (b) Coverage of different sections
in prescriptions.

(a)

Images 9645

Doctors 117

Avg. medicines / image 4.5

Avg. images / doctor 82.4

(b)

Lab/Scan 70.4%

Medicine 100%

Observation 99.9%

Vital 40.5%

4 Experiments

We first introduce the dataset and implementation details, before sharing the
experimental results and rigorous ablations to understand the efficacy of the
framework.

Prescription Image Dataset: We use a dataset of handwritten prescriptions
to validate the methodology outlined and evaluate the performance of the mod-
els. A few example images from the dataset are shown in Fig. 1. The dataset con-
tains 9645 images written by 117 doctors. Table 1a outlines some of the details of
the dataset, and Fig. 4a shows the distribution of prescription images per doctor.
We use 80% of the dataset to train our models, and 20% for evaluation. There
is no overlap between the doctors between the training and the test set at each
iteration, ensuring that our results capture understanding across different hand-
writing styles. Each image in the dataset has a list of medicine names appearing

Weakly Supervised Information Extraction from Inscrutable Handwritten 455

in them, which we call weak labels, without any positional information. However,
just for evaluation, we strongly annotate 500 images from the evaluation set to
evaluate the segmentation performance. Prescriptions generally have multiple
other sections as well (although unstructured in free-form), and Table 1b shows
the percentage of images which have other sections such as lab/scans reported,
observations and vitals. Also, note that any and all personally identifiable infor-
mation was removed from the data prior to it being provided to the authors for
this study.

Fig. 4. (a) This plot shows the number of prescriptions per doctor in the dataset, (b)
This plot shows the number of doctors per specialty.

Medicine Vocabulary: We also use a medicine name vocabulary consisting of
more than 90,000 medicine names. We use this to generate synthetic medicine
name lines and train the character based medicine LM. This vocabulary is also
used to make the in-vocabulary predictions.

Evaluation Protocol: We evaluate all models on test set of the dataset men-
tioned above. To evaluate the performance of the segmentation model, we use
mean intersection over union (mIoU) as used in the segmentation literature [8].
To evaluate the performance of the end-to-end medicine name prediction model,
we use the mean jaccard index, over all the images. We also use two other met-
rics namely mean precision and mean recall, and the mean jaccard index can be
considered as a combination of both these metrics. These are defined as follows
-

Mean Jaccard Index (mJI) =
1
M

M∑

i=1

|Pi ∩ Gi|
|Pi ∪ Gi| (2)

Mean Precision (mP) =
1
M

M∑

i=1

|Pi ∩ Gi|
|Pi| , (3)

Mean Recall (mR) =
1
M

M∑

i=1

|Pi ∩ Gi|
|Gi| (4)

456 S. Paul et al.

where Pi, Gi are the predicted and ground truth list of medicines for the ith

image. M is the number of evaluation images. The comparison between the
prediction and ground-truths are not case-sensitive, as they are medicine names.

4.1 Results and Ablation Studies

Iterative Training Performance: As discussed in Sect. 3, our algorithm for
converting weak labels (only medicine names) to strong labels (bounding box
annotations for each medicine name) involves two labeling functions - OCR and
Segmentation Labeling Function, where the latter can be applied iteratively.
The number of images auto-labeled by the labeling functions increases with iter-
ations, and hence the performance of both the medicine line segmentation model
as well as the medicine name prediction model increases with subsequent iter-
ations. We highlight this in Table 2. Iteration 1 shows the performance on only
OCR Labeling Function, and Iteration ≥ 2 shows the performance on multiple
iterations of Segmentation Labeling Function. For a significant number of pre-
scriptions, it is difficult to decipher some of the medicine names, even when we
use a high value of top-k (k=20,000 in our experiments) decoded outputs per
line. For Iteration 1, the number of auto-labeled prescriptions is < 25% of the
training set. This shows the difficulty level of the problem at hand. Note that
the train sets are used to train only the medicine line segmentation model and
not the lines recognizer of the OCR, thus it can be with any off-the-shelf OCR
model.

The segmentation performance as well as the medicine name performance
improve over iterations but saturates from Iteration 3. Note that mIoU com-
putes the performance for every pixel, but normally a small change in the final
bounding box do not have a lot of impact on the medicine name prediction, as
long as they encapsulate the text within it. We also show the upper bound per-
formance of medicine line recognition by using ground-truth medicine bounding
boxes only while evaluating. As we can see, our algorithm with just using weak
labels can reach within a few points of the strongest upper-bound with strong
labels.

Table 2. Performance over iterations of the proposed framework. Iter 1 represents
learning from only the OCR Labeling Function and iter ≥ 2 shows the performance
after iteratively including the Segmentation Labeling Function. The medicine name per-
formances are only for topk=1. GT bbox shows the performance when the groundtruth
bounding boxes are provided for medicine names only during evaluation.

Iteration 1 2 3 GT bbox

Train data (%) 24.4 66.3 90.2 -

Segmentation (mIoU) 72.6 77.9 77.2 100%

Medicine Name (mJI) 44.8 45.9 45.9 49.8%

Weakly Supervised Information Extraction from Inscrutable Handwritten 457

Cues for Medicine Name Segmentation: Unlike a generic text detector,
specifically detecting medicine lines can be challenging, as handwritten prescrip-
tions do not have any specific structure or location in the page. However, the
segmentation model is still able to predict the location of the medicine lines
with high performance as shown in Table 2. In order to understand the cues the
segmentation model uses to segment the medicine names, we do the following
experiment. Given a test image x, using a sliding window, we remove square
patches from the image to remove potential cues, one at a time. Consider xi,j as
the image when patch at location (i, j) is removed. We can run the segmentation
model on this image, M(xi,j) and obtain the mIoU. For every location (i, j), on
the image, we can obtain the model’s performance drop when a patch around
that is removed, and then display that as a heatmap. A drop in performance in
certain regions of this image depicts the regions necessary for the segmentation
model to segment the medicine names correctly. As we can see in Fig. 5, the
model is clearly utilizing cues from visual features surrounding medicine lines
such as starting of a line like Tab, Cap, hyphens, etc. These observations are
aligned with what a pharmacist or even non-domain experts look to determine
medicine lines, as in most cases the handwriting is illegible. These key demar-
cations serve as strong signals to recognize medicine lines, after which we can
condition our knowledge to medicine names to enhance line recognition.

Fig. 5. Cues needed by the segmentation network. Deeper color denotes lower perfor-
mance when a patch around that is removed. A few parts of the image other than the
medicine names, such as hyphens, Tab, Cap, etc., also appear to be darker, which are
some of the cues that the model looks at to determine whether it is a medicine line.

Contribution of Medicine LM and Segmentation Model: Here we show
how selectively injecting medicine LMs can offer a significant improvement in
performance. The vanilla LM is trained on a generic corpus of text from the
Latin script. However, the medicine name LM is trained as discussed in Sect. 3.4.
The performance improves with path length for both the models but for the
medicine LM, the top-1 path itself performs much better than top-1000 path

458 S. Paul et al.

for the vanilla LM (Fig. 6). This also reduces the compute time in decoding the
top-k paths from the logits, which is linear in the number of paths.

Moreover, segmenting and selectively injecting the LM plays a critical role on
the performance, and MedLM + Segmented Lines perform the best. Applying
the MedLM on the full image actually reduces the precision significantly, but
improves the recall slightly as expected, but reducing the overall metric, i.e.,
jaccard index. This shows that selectively injecting the LM is important, other-
wise it can mess up the rest of the prescription, and hallucinate medicine names
from them.

Fig. 6. Jaccard index, precision and recall comparison using different language models
and inputs (medicine line segmented and full page). The medicine LM on segmented
medicine lines works the best, the top-1 of which is better than the top-1000 of the
vanilla LM. Applying the medicine LM on the entire image decreases the precision of
the predictions, as it hallucinates medicine names in the rest of the prescription.

Fig. 7. (a) Ablation of performance with weight on the language model α. α = 0 denote
the performance of only the optical model. (b) Ablation of fraction of medicine names
used to train the medicine language model. We present the performance when top-1
and top-10k paths are used to predict after vocabulary matching.

Weakly Supervised Information Extraction from Inscrutable Handwritten 459

Performance with Varying Weight on LM: The weight α in Eq. 1 on the
LM scores can have an impact on the final performance. A low weight may lead
to no improvement beyond the optical model’s prediction, and a high weight
may not ground the output to the actual text on the image. Figure 7a shows
an ablation of the medicine name prediction performance on the LM weight.
Note that the changes in performance is much lower for top-10k paths than for
top-1 path, as only the first path in the top-10k path is affected by the LM
because for paths > 1, the predictions come from the top-k decoded paths which
is based on only the logits without any LM scoring. Nonetheless, we see that the
performance of both the models are very close after a certain value of α.

Varying the Vocabulary of the LM: The medicine names used in generating
the synthetic lines can have an impact on the quality of the medicine name LM.
Here we also show how the performance varies as we increase the number of
medicine names used to train the medicine LM. Figure 7b presents the results for
top-1 and top-10k with different size of medicine name dataset. The performance
improves as we add more medicines, but starts saturating after a certain point.

Performance with Different N-Gram Models: The n-gram LM involves
a parameter n, which is the number of history characters the model looks to
obtain the score of the next character. We created multiple n-gram models on the
synthetically generated medicine line text data, and show the results in Table 3.
More context definitely helps in performance, but it saturates after n = 7. This
is also intuitive as the length of the medicine names is around 7.9 on average.

Table 3. Ablation of different n-gram models trained on medicine line data.

n=3 n=5 n=7 n=9

Top-1 (mJI) (%) 27.2 41.5 45.9 45.9

Top-10k (mJI) (%) 47.4 48.1 48.7 48.7

Table 4. Ablation of different algorithms to predict medicine names. We use k = 1e4.

top-1 top-1-edit top-k top-k+majority

Jaccard Index 45.9 45.8 46.9 48.7

Precision 76.9 68.6 64.8 66.8

Recall 51.0 54.4 58.5 59.5

460 S. Paul et al.

Predicting In-Vocabulary Words: In the final step of our algorithm to pre-
dict medicine names, we only predict those words where we find a direct match
with one of the elements of the medicine vocabulary. As discussed before, find-
ing a match for only the top-1 prediction may not be the best. Thus, we decode
until top-k and find matches for all the text. As the top-k decoding is directly
dependent on the output of the model, such a matching respects the model’s
predictions. We then take a majority voting of all the matches and that becomes
the final predicted medicine for a line. Note that some lines may not have any
prediction at all. In this section, we compare multiple strategies of predicting
in-vocabulary words in Table 4. Top-1 represents an exact match with the first
path, top-1 edit distance finds the nearest prediction from the vocabulary by
edit distance, top-k denotes we decode the top-k outputs but stop when we find
the first exact match, and finally top-k+majority is the algorithm we use, where
we decode all the top-k lines and take a majority voting of all the exact matches.

Note that top-1-edit has the same jaccard index as top1, but the former has
lower precision with higher recall than top-1, as expected, because it predicts
beyond exact matches. We tried with multiple thresholds for edit distance, and
found that 85% normalized distance performs the best. Increasing the threshold,
i.e., allowing more matches significantly reduces the precision, at the gain of the
recall, but hurting the overall performance. This is because of the intuition we
discussed earlier that topk decodings respect the model’s confidence, but edit
distance treats every replacement with the same cost.

4.2 Error-Mode Analysis

The two types of errors possible are - medicine names predicted but not in the
ground-truth (type I) and medicine names in the ground-truth but not predicted
(type II). In our framework, there are two reasons behind the errors - segmenta-
tion network and OCR. If a medicine name is not segmented, then it leads to a
type-II error. OCR errors contributes to the rest (type I and type II), a majority
of which is contributed by misinterpreting very similar looking medicines such
as emtel vs entel, eenosol vs eenasof, folvite vs folite, paro vs baro, zincovit vs
zincort, aloliv vs alcoliv. Also we observe that the doctor can commit spelling
mistakes, or vaguely write a medicine name, where only the first few characters
are recognizable. To correct such errors, pharmacists generally use other con-
texts such as observation. Learning such contexts would need a lot more data,
and injecting higher-level domain knowledge.

5 Conclusion

In this paper, we looked into the problem of extracting medicine names from
inscrutable handwritten prescriptions. Our algorithm can selectively infuse
domain knowledge to specific portions of a document to significantly improve
the performance. We developed a framework that can learn to detect regions
of interest from just weak labels, and also learn a medicine language model

Weakly Supervised Information Extraction from Inscrutable Handwritten 461

using synthetically generated text lines using probabilistic programs. The idea
is generic enough to be applied to a variety of other types of documents, such
as handwritten forms.

Acknowledgement. We thank Srujana Merugu, Ansh Khurana, Manish Gupta,
Harsh Dhand and Shruti Garg for all the support and discussions during the course of
this project. Without their effort, this project would not have been possible.

References

1. Achkar, R., Ghayad, K., Haidar, R., Saleh, S., Al Hajj, R.: Medical handwritten
prescription recognition using CRNN. In: CITS. IEEE (2019)

2. Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting
semantic segmentation. In: CVPR (2021)

3. Bhunia, A.K., Sain, A., Chowdhury, P.N., Song, Y.Z.: Text is text, no matter what:
unifying text recognition using knowledge distillation. In: ICCV (2021)

4. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: PhotoOCR: reading text in
uncontrolled conditions. In: ICCV, pp. 785–792 (2013)

5. Breuel, T.M., Ul-Hasan, A., Al-Azawi, M.A., Shafait, F.: High-performance OCR
for printed English and Fraktur using LSTM networks. In: ICDAR. IEEE (2013)

6. Bukhari, S.S., Kadi, A., Jouneh, M.A., Mir, F.M., Dengel, A.: anyOCR: an open-
source OCR system for historical archives. In: ICDAR (2017)

7. Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V.: Curriculum labeling: revisiting
pseudo-labeling for semi-supervised learning. In: AAAI (2021)

8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848
(2017)

9. Cheng, B., et al.: Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-
up panoptic segmentation. In: CVPR, pp. 12475–12485 (2020)

10. Diaz, D.H., Qin, S., Ingle, R., Fujii, Y., Bissacco, A.: Rethinking text line recogni-
tion models. arXiv preprint arXiv:2104.07787 (2021)

11. D’hondt, E., Grouin, C., Grau, B.: Generating a training corpus for OCR post-
correction using encoder-decoder model. In: IJCNLP (2017)

12. Fujii, Y., Driesen, K., Baccash, J., Hurst, A., Popat, A.C.: Sequence-to-label script
identification for multilingual OCR. In: ICDAR. IEEE (2017)

13. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376 (2006)

14. Gupta, H., Del Corro, L., Broscheit, S., Hoffart, J., Brenner, E.: Unsupervised
multi-view post-OCR error correction with language models. In: EMNLP, pp.
8647–8652 (2021)

15. Gupta, M., Soeny, K.: Algorithms for rapid digitalization of prescriptions. Visual
Inform. 5, 54–69 (2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPr, pp. 770–778 (2016)

17. Huang, J., et al.: A multiplexed network for end-to-end, multilingual OCR. In:
CVPR (2021)

http://arxiv.org/abs/2104.07787

462 S. Paul et al.

18. Ingle, R.R., Fujii, Y., Deselaers, T., Baccash, J., Popat, A.C.: A scalable handwrit-
ten text recognition system. In: ICDAR (2019)

19. Jayakumar, P.: Online doctor consultation market to grow (2021). https://www.
businesstoday.in/lifestyle/health/story/online-doctor-consultation-market-to-
grow-72-to-836-million-by-march-2024-study-304689-2021-08-19

20. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: ICDAR. IEEE
(2015)

21. Karthikeyan, S., de Herrera, A.G.S., Doctor, F., Mirza, A.: An OCR post-
correction approach using deep learning for processing medical reports. IEEE
Trans. Circuits Syst. Video Technol. 32, 2574–2581 (2021)

22. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly
supervised instance and semantic segmentation. In: CVPR (2017)

23. Kittenplon, Y., Lavi, I., Fogel, S., Bar, Y., Manmatha, R., Perona, P.: Towards
weakly-supervised text spotting using a multi-task transformer. In: CVPR (2022)

24. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 36, 1234–1240 (2019)

25. Li, D., Huang, J.B., Li, Y., Wang, S., Yang, M.H.: Weakly supervised object local-
ization with progressive domain adaptation. In: CVPR (2016)

26. Li, M., et al.: TrOCR: transformer-based optical character recognition with pre-
trained models. arXiv preprint arXiv:2109.10282 (2021)

27. Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., Manmatha, R.: Scatter:
selective context attentional scene text recognizer. In: CVPR (2020)

28. Liu, H., Wang, J., Long, M.: Cycle self-training for domain adaptation. Adv. Neural
Inf. Process. Syst. 34, 22968–22981 (2021)

29. Long, S., He, X., Yao, C.: Scene text detection and recognition: the deep learning
era. Int. J. Comput. Vision 129, 161–184 (2021)

30. Long, S., Qin, S., Panteleev, D., Bissacco, A., Fujii, Y., Raptis, M.: Towards end-
to-end unified scene text detection and layout analysis. In: CVPR (2022)

31. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. Int. J. Doc. Anal. Recogn. 5, 39–46 (2002)

32. Paul, Sujoy, Roy, Sourya, Roy-Chowdhury, Amit K..: W-TALC: weakly-supervised
temporal activity localization and classification. In: Ferrari, Vittorio, Hebert, Mar-
tial, Sminchisescu, Cristian, Weiss, Yair (eds.) ECCV 2018. LNCS, vol. 11208, pp.
588–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0 35

33. Pragnadyuti, M., Rabindranath, D., Suhrita, P., Kumar, S.A., Kumar, J.S.: Leg-
ibility assessment of handwritten OPD prescriptions of a tertiary care medical
college and hospital in Eastern India. SJMPS (2017)

34. Rani, S., Rehman, A.U., Yousaf, B., Rauf, H.T., Nasr, E.A., Kadry, S.: Recogni-
tion of handwritten medical prescription using signature verification techniques.
Comput Math Methods Med. (2022)

35. Rasmy, L., Xiang, Y., Xie, Z., Tao, C., Zhi, D.: Med-BERT: pretrained contextu-
alized embeddings on large-scale structured electronic health records for disease
prediction. Nature 4, 86 (2021)

36. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid
training data creation with weak supervision. In: VLDB. NIH Public Access (2017)

37. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: CVPR (2016)

38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

39. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: CVPR (2018)

https://www.businesstoday.in/lifestyle/health/story/online-doctor-consultation-market-to-grow-72-to-836-million-by-march-2024-study-304689-2021-08-19
https://www.businesstoday.in/lifestyle/health/story/online-doctor-consultation-market-to-grow-72-to-836-million-by-march-2024-study-304689-2021-08-19
https://www.businesstoday.in/lifestyle/health/story/online-doctor-consultation-market-to-grow-72-to-836-million-by-march-2024-study-304689-2021-08-19
http://arxiv.org/abs/2109.10282
https://doi.org/10.1007/978-3-030-01225-0_35

Weakly Supervised Information Extraction from Inscrutable Handwritten 463

40. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency
and confidence. Adv. Neural Inf. Process. Syst. 33, 596–608 (2020)

41. Thompson, P., McNaught, J., Ananiadou, S.: Customised OCR correction for his-
torical medical text. In: 2015 digital heritage. IEEE (2015)

42. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

43. Wang, P., Li, H., Shen, C.: Towards end-to-end text spotting in natural scenes.
IEEE Trans. Pattern Anal. Mach. Intell. 44, 7266–7281 (2021)

44. Wei, Y., et al.: STC: a simple to complex framework for weakly-supervised semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2314–2320 (2016)

45. Yang, X., et al.: GatorTron: a large clinical language model to unlock
patient information from unstructured electronic health records. arXiv preprint
arXiv:2203.03540 (2022)

46. Zhang, C., Cao, M., Yang, D., Chen, J., Zou, Y.: CoLa: weakly-supervised temporal
action localization with snippet contrastive learning. In: CVPR (2021)

47. Zhang, D., Han, J., Cheng, G., Yang, M.H.: Weakly supervised object localization
and detection: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5866–5885
(2021)

http://arxiv.org/abs/2203.03540

Author Index

A
Afonin, Andrei 131, 217
Aggarwal, Gaurav 445
Anquetil, Éric 236

C
Chatelain, Clément 182
Chen, Kai 20
Chen, Yi 38
Christopoulou, Katerina 366
Coquenet, Denis 182
Corbillé, Simon 236

D
Dershowitz, Nachum 147
Dimitrakopoulos, Panagiotis 200
Ding, Haisong 20
Ding, Lei 165
Dong, Bin 165
Du, Jun 411

F
Fadeeva, Anastasiia 217
Fink, Gernot A. 85
Fromont, Élisa 236
Fujii, Yasuhisa 101

G
Garst, Peter 101
Gatos, Basilis 200, 366
Gui, Dongnan 20

H
Hegde, Narayan 445
Honda, Masayuki 287
Hradiš, Michal 269, 377
Hu, Pengfei 411
Huang, Jiarong 332
Huang, Kaizhu 165
Huo, Qiang 20

I
Ingle, Reeve 101
Iwana, Brian Kenji 54

J
Jahangir, Maham 350
Jiang, Xinzhe 411
Jin, Lianwen 332

K
Kaddas, Panagiotis 366
Kanemaru, Takashi 287
Katsouros, Vassilis 366
Kišš, Martin 377
Kohút, Jan 269, 377
Krishna, Rahul 313
Kuflik, Tsvi 147
Kumar, Pradeep 445
Kusuda, Akihiro 54

L
Lavee, Moshe 147
Li, Hongliang 332
Li, Jing 165
Li, Zhigang 70
Liu, Cheng-Lin 38
Liu, Li 70
Londner, Samuel 147
Lu, Yue 70
Luan, Bozhi 20

M
Ma, Jiefeng 411
Madan, Gagan 445
Maksai, Andrii 131, 217
Malik, Muhammad Imran 350
Maqsood, Arooba 116
Mehri, Maroua 395
Memon, Zeeshan 428
Miller, Hadar 147

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14190, pp. 465–466, 2023.
https://doi.org/10.1007/978-3-031-41685-9

https://doi.org/10.1007/978-3-031-41685-9

466 Author Index

Mishra, Akankshya 445
Musat, Claudiu 131, 217

N
Nakagawa, Masaki 287
Nguyen, Cong Kha 287
Nguyen, Cuong Tuan 287
Nguyen, Hung Tuan 287
Ni, Hao 332
Nikou, Christophoros 200

O
Odate, Ryosuke 287

P
Palaiologos, Konstantinos 366
Paquet, Thierry 182
Paredes, Roberto 253
Parres, Daniel 253
Paul, Sujoy 445
Peng, Dezhi 332
Phillips, Yoav 147

Q
Qiu, Taorong 70

R
Retsinas, George 200
Riaz, Nauman 116

S
Sarvadevabhatla, Ravi Kiran 313
Sellami, Akrem 395
Sfikas, Giorgos 200

Shafait, Faisal 116, 350, 428
Suen, Ching Y. 70

T
Tabbone, Salvatore 395
Timofeev, Aleksandr 131, 217
Tüselmann, Oliver 85

U
Ul-Hasan, Adnan 116, 428

V
Vadlamudi, Niharika 313

W
Wang, Da-Han 3
Wang, Heng 302
Wang, Qiu-Feng 165
Wang, Yan-Rong 3
Wang, Yiming 302
Wei, Hongxi 302
Wu, Jiajia 411

X
Xue, Mobai 411

Y
Yin, Fei 3
Yun, Xiao-Long 3

Z
Zhang, Heng 38
Zhang, Jianshu 411
Zhang, Rui 165
Zhang, Yan-Ming 3
Zhu, Shunzhi 3

	 Foreword
	 Preface
	 Organization
	 Contents – Part IV
	Posters: Handwriting
	A Shallow Graph Neural Network with Innovative Node Updating for Online Handwritten Stroke Classification
	1 Introduction
	2 Related Work
	2.1 Stroke Classification
	2.2 Graph Natural Networks

	3 Proposed Method
	3.1 Problem Formulation
	3.2 Framework
	3.3 Network Training

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Comparison with Previous Methods
	4.4 Ablation Study
	4.5 Error Analysis

	5 Conclusion
	References

	Improving Handwritten OCR with Training Samples Generated by Glyph Conditional Denoising Diffusion Probabilistic Model
	1 Introduction
	2 Related Works
	2.1 GAN-Based Handwritten Image Generation Approaches
	2.2 Diffusion Model

	3 Our Approach
	3.1 GC-DDPM for Handwritten Image Generation
	3.2 Progressive Data Filtering Strategy

	4 Experiments
	4.1 Experimental Setup
	4.2 Effect of Classifier-Free Guidance Scales in GC-DDPM
	4.3 Augment Training Set with Synthetic Images for OCR
	4.4 Effect of Progressive Data Filtering Strategy
	4.5 Comparison with Previous Methods
	4.6 Experiments on IAM Text Line Dataset

	5 Conclusion
	References

	Improved Learning for Online Handwritten Chinese Text Recognition with Convolutional Prototype Network
	1 Introduction
	2 Related Work
	2.1 Online Chinese Handwriting Recognition
	2.2 Prototype-Based Handwriting Recognition

	3 Methodology
	3.1 Overview
	3.2 Character Normalization
	3.3 Character Classification Model
	3.4 Character Model Training

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Ablation Experiment
	4.4 Comparison with the State-of-the-Art Methods
	4.5 Further Visualization and Analysis

	5 Conclusions
	References

	Vision Conformer: Incorporating Convolutions into Vision Transformer Layers
	1 Introduction
	2 Related Work
	3 Vision Transformers (ViT)
	3.1 Image Tokenization
	3.2 Classification Tokenization
	3.3 Multi-Head Self-Attention
	3.4 Multi-Layer Perceptron (MLP)

	4 Vision Conformer (ViC)
	4.1 Image Reconstruction
	4.2 Reverse Embedding
	4.3 Reconstruction
	4.4 Convolutional Neural Network (CNN)
	4.5 Patch Embedding

	5 Experimental Results
	5.1 Architecture Settings
	5.2 Comparative Evaluations
	5.3 Results on MNIST
	5.4 Results on EMNIST
	5.5 Results on KMNIST

	6 Ablation Study
	7 Application to General Object Recognition
	7.1 Datasets
	7.2 Results

	8 Conclusion
	References

	Modeling Cross-layer Interaction for Chinese Calligraphy Style Classification
	1 Introduction
	2 Related Works
	2.1 Chinese Calligraphy Style Classification
	2.2 Fine-Grained Image Classification

	3 Proposed Method
	3.1 Profile Image Generation
	3.2 Multi-scale Attention
	3.3 Cross-layer Interaction

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Ablation Study
	4.4 Effect of the Proposed Multi-scale Attention Model
	4.5 Comparison with State-of-the-art Methods
	4.6 Error Analysis

	5 Conclusions
	References

	Exploring Semantic Word Representations for Recognition-Free NLP on Handwritten Document Images*-1pc
	1 Introduction
	2 Related Work
	2.1 Word Embeddings
	2.2 Word Image Mapping
	2.3 Named Entity Recognition

	3 Method
	3.1 Semantic Word Embeddings
	3.2 Word Image Representation
	3.3 Named Entity Recognition

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Evaluation Protocol
	4.4 Intrinsic Evaluation
	4.5 Extrinsic Evaluation
	4.6 Discussion

	5 Conclusions
	References

	OCR Language Models with Custom Vocabularies
	1 Introduction
	2 Custom Vocabulary Models
	2.1 Baseline System
	2.2 Custom Vocabularies
	2.3 Designing Appropriate Vocabularies
	2.4 Language Model State
	2.5 Scoring the Language Model
	2.6 Dual Criterion Beam Search
	2.7 Performance Considerations

	3 Experimental Results
	3.1 PubMed Research Papers
	3.2 Handwritten Prescriptions
	3.3 Retail Price Tags

	4 Conclusions
	References

	A Unified Architecture for Urdu Printed and Handwritten Text Recognition
	1 Introduction
	2 Related Work
	2.1 Printed Text Recognition
	2.2 Handwritten Text Recognition

	3 Methodology
	3.1 Convolutional Encoder
	3.2 Transformer Encoder-Decoder
	3.3 Data Augmentations

	4 Experimental Setup
	4.1 Datasets Used
	4.2 Implementation Details and Hyperparameters

	5 Results and Analysis
	6 Conclusion
	References

	Sampling and Ranking for Digital Ink Generation on a Tight Computational Budget
	1 Introduction
	2 Related Work
	3 Method
	3.1 Evaluation
	3.2 Data Representation and Sampling
	3.3 Ranking Models

	4 Results
	4.1 Setup
	4.2 Implementation Details
	4.3 Baselines
	4.4 Quantitative Analysis
	4.5 Qualitative Analysis

	5 Conclusion
	References

	Linguistic Knowledge Within Handwritten Text Recognition Models: A Real-World Case Study
	1 Introduction
	2 Related Work
	2.1 Handwritten Text Recognition
	2.2 Implicit Linguistic Knowledge in OCR Models
	2.3 Transfer Learning

	3 Linguistic Background
	4 Data
	5 Methodology
	5.1 Training
	5.2 Inference
	5.3 Evaluation

	6 Results and Analysis
	6.1 Error Rates
	6.2 Graphical Errors
	6.3 Evidence for Linguistically Triggered Errors

	7 Conclusion
	References

	Decoupled Learning for Long-Tailed Oracle Character Recognition
	1 Introduction
	2 Related Work
	2.1 Oracle Character Recognition
	2.2 Long-Tailed Visual Recognition
	2.3 Knowledge Distillation

	3 Main Methodology
	3.1 Backbone Architecture
	3.2 Mixup Augmentation
	3.3 Decoupled Learning
	3.4 Logit-Based Knowledge Distillation
	3.5 Overall Training

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Evaluation Metrics
	4.4 Ablation Study
	4.5 Comparison to Previous Methods
	4.6 Error Analyses

	5 Conclusion
	References

	Faster DAN: Multi-target Queries with Document Positional Encoding for End-to-End Handwritten Document Recognition
	1 Introduction
	2 Related Works
	3 DAN Background
	4 Faster DAN
	5 Experimental Study
	5.1 Datasets
	5.2 Metrics
	5.3 Training Details
	5.4 Comparison with the State of the Art
	5.5 Evaluation on Heterogeneous Documents
	5.6 Ablation Study

	6 Conclusion
	References

	Shared-Operation Hypercomplex Networks for Handwritten Text Recognition
	1 Introduction and Related Work
	2 Hypercomplex Numbers and Hypercomplex Layers
	2.1 Quaternions
	2.2 Quaternion and Parameterized Hypercomplex Layers

	3 Proposed Model for Handwritten Text Recognition
	3.1 Shared-Operation Parameterized Hypercomplex Layer
	3.2 Model Architecture

	4 Experiments
	4.1 Datasets
	4.2 Varying the Hypercomplex Dimension and PHM vs SOHN
	4.3 PHM Model vs Real-Valued Model on a Resource Budget

	5 Conclusion and Future Work
	References

	DSS: Synthesizing Long Digital Ink Using Data Augmentation, Style Encoding and Split Generation*-6pt
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Augmentation
	3.2 Generation with Style Conditioning
	3.3 Split Generation
	3.4 Combining Proposed Methods

	4 Experiments
	4.1 Setup
	4.2 Quantitative Results
	4.3 Ablation Study
	4.4 Qualitative Evaluation

	5 Conclusion
	6 Appendix
	References

	Precise Segmentation for Children Handwriting Analysis by Combining Multiple Deep Models with Online Knowledge*-1pc
	1 Introduction
	2 Related Work
	2.1 Handwriting Recognition
	2.2 Handwriting Segmentation
	2.3 Object Detection

	3 Methods
	3.1 Level A: Filtering Bounding Boxes Predictions with an Accurate Recognition Model
	3.2 Level B: Use of a Segmentation Lattice Based on Online Handwriting

	4 Experiments
	4.1 Dataset
	4.2 Implementation and Evaluation Metrics
	4.3 Quantitative Results
	4.4 Qualitative Results

	5 Conclusion
	References

	Fine-Tuning Vision Encoder–Decoder Transformers for Handwriting Text Recognition on Historical Documents
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Encoder. Vision Transformer
	3.2 Decoder. NLP Transformer
	3.3 Vision Encoder–Decoder

	4 Experiments and Results
	4.1 Datasets
	4.2 Model Initialization Analysis
	4.3 Benchmarking with the State of the Art
	4.4 TrOCR Fine-Tuning Analysis

	5 Conclusion
	References

	Fine-Tuning is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition
	1 Introduction
	2 Related Work
	3 CzechHWR Dataset
	4 Data Augmentations
	5 Writer-Independent Scenario
	5.1 Writer-Dependent Scenario

	6 Conclusion
	References

	Incremental Teacher Model with Mixed Augmentations and Scheduled Pseudo-label Loss for Handwritten Text Recognition
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Incremental Teacher Model
	3.2 Mixed Augmentations
	3.3 Scheduled Pseudo-Label Loss

	4 Experiments
	4.1 IAM Handwriting Database and Scenarios for SSL
	4.2 Handwritten Text Recognition Architectures
	4.3 Results of Different Recognition Architectures
	4.4 Results of Different Augmentation Configurations
	4.5 Discussions

	5 Conclusions
	References

	AFFGANwriting: A Handwriting Image Generation Method Based on Multi-feature Fusion
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Style Encoder
	3.2 Content Encoder
	3.3 Generator
	3.4 Feature Fusion
	3.5 Training and Loss Objectives

	4 Experimental Results
	4.1 Dataset and Experimental Settings
	4.2 Baselines

	5 Conclusion
	References

	SeamFormer: High Precision Text Line Segmentation for Handwritten Documents
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Stage I: Scribble Generation
	3.2 Stage II: Text Line Polygon Generation

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details

	5 Results
	5.1 Ablation Study
	5.2 Qualitative Results

	6 Conclusion
	References

	SegCTC: Offline Handwritten Chinese Text Recognition via Better Fusion Between Explicit and Implicit Segmentation
	1 Introduction
	2 Related Works
	2.1 Explicit Segmentation Methods
	2.2 Implicit Segmentation Methods
	2.3 Combination of Explicit and Implicit Segmentation Methods

	3 Proposed Methodology
	3.1 Overall Framework
	3.2 Hybrid Segmentation-Based and Segmentation-Free Feature Fusion Module (SFFM)
	3.3 Weakly Supervision Strategy
	3.4 Co-Transcription (Co-T)

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Implementation Details
	4.4 Language Model
	4.5 Experiments on ICDAR2013-Offline Dataset
	4.6 Experiments on SCUT-HCCDoc Dataset
	4.7 Experiments on MTHv2 Dataset
	4.8 Ablation Studies
	4.9 Limitation

	5 Conclusion
	References

	Adversarial Attacks on Convolutional Siamese Signature Verification Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Siamese Network
	3.2 Problem
	3.3 Foreground Extraction
	3.4 Sparse Representation (Dictionary Learning and Sparse Coding)
	3.5 Tuned Adversarial Signature Image Generation

	4 Experimental Protocol
	4.1 Dataset
	4.2 Pre-processing and Performance of Signet-Siamese Network
	4.3 Metrics
	4.4 State-of-the-art Adversarial Attacks

	5 Results and Discussion
	5.1 Type: I Attack (False Rejection)
	5.2 Type: II Attack (False Acceptance)
	5.3 Effect of Magnitude of Noise on the Prediction of the Model on Genuine Signatures Images
	5.4 Effect of Multiplicative and Additive Noise on Genuine Signatures

	6 Conclusion
	References

	A System for Processing and Recognition of Greek Byzantine and Post-Byzantine Documents
	1 Introduction
	2 Related Work
	3 Proposed System
	3.1 Image Pre-processing
	3.2 Text Line Segmentation
	3.3 Text Line Recognition

	4 Experimental Results
	5 Conclusions
	References

	Towards Writing Style Adaptation in Handwriting Recognition
	1 Introduction
	2 Related Work
	3 Writer Style Block
	4 CzechHWR Dataset
	5 Writer Style Network
	6 Pre-training Writer-Style Embeddings
	7 Writer-Dependent Scenario
	8 Writer-Independet Scenario
	9 Conclusion
	References

	Historical Document Image Segmentation Combining Deep Learning and Gabor Features*-1pc
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Filtered Image Generation Using GF
	3.2 Feature Learning Using SAE
	3.3 Image Segmentation Using 2D U-Net

	4 Experiments and Results
	4.1 Experimental Corpus
	4.2 Implementation Details
	4.3 Hyperparameter Settings
	4.4 Evaluation Metrics
	4.5 Results

	5 Conclusions and Further Work
	References

	Group, Contrast and Recognize: A Self-supervised Method for Chinese Character Recognition
	1 Introduction
	2 Related Works
	2.1 Chinese Character Recognition
	2.2 Self-supervised Contrastive Learning
	2.3 Self-supervised Learning for Text Recognition

	3 Methodology
	3.1 Observation and Motivation
	3.2 Architecture
	3.3 Intra-group Contrastive Learning
	3.4 Inter-group Contrastive Learning
	3.5 Network Training

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Implementation Details
	4.4 Representation Quality of Self-supervised Pre-training
	4.5 Handwritten Benchmark Comparison in Zero-Shot Setting
	4.6 Printed Artistic Benchmark Comparison in Zero-Shot Setting
	4.7 Handwritten Benchmark Comparison in Seen Setting

	5 Conclusion and Future Work
	References

	Content-Aware Urdu Handwriting Generation*-1pc
	1 Introduction
	2 Previous Work
	3 Proposed Methodology
	3.1 Fully Convolutional Generator
	3.2 Fully Convolutional Discriminator
	3.3 Recognizer Network
	3.4 Optimization Functions

	4 Experiment Configuration
	4.1 Datasets Used
	4.2 Pre-processing of Dataset
	4.3 Implementation Details and Hyper Parameters
	4.4 Experiments Performed

	5 Results and Discussion
	5.1 Results on CLE Database
	5.2 Results on UCOM Database
	5.3 Result of Transfer Learning on UCOM Database
	5.4 Improvement in OCR Performance with Generated Data

	6 Conclusion
	References

	Weakly Supervised Information Extraction from Inscrutable Handwritten Document Images
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Problem Statement
	3.2 OCR Line Recognition Model
	3.3 Weakly Supervised Line Segmentation
	3.4 Domain-Specific Language Model
	3.5 In-Vocabulary Prediction

	4 Experiments
	4.1 Results and Ablation Studies
	4.2 Error-Mode Analysis

	5 Conclusion
	References

	Author Index

