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Abstract. There are more than 80,000 character categories in Chi-
nese while most of them are rarely used. To build a high performance
handwritten Chinese character recognition (HCCR) system supporting
the full character set with a traditional approach, many training sam-
ples need be collected for each character category, which is both time-
consuming and expensive. In this paper, we propose a novel approach
to transforming Chinese character glyph images generated from font
libraries to handwritten ones with a denoising diffusion probabilistic
model (DDPM). Training from handwritten samples of a small charac-
ter set, the DDPM is capable of mapping printed strokes to handwritten
ones, which makes it possible to generate photo-realistic and diverse style
handwritten samples of unseen character categories. Combining DDPM-
synthesized samples of unseen categories with real samples of other cat-
egories, we can build an HCCR system to support the full character set.
Experimental results on CASIA-HWDB dataset with 3,755 character
categories show that the HCCR systems trained with synthetic samples
perform similarly with the one trained with real samples in terms of
recognition accuracy. The proposed method has the potential to address
HCCR with a larger vocabulary.

Keywords: Denoising Diffusion Probabilistic Model · Handwritten
Chinese Character Recognition · Zero-shot Generation

1 Introduction

In the latest National Standards of the People’s Republic of China about Chi-
nese coded character set (GB18030-2022), 87,887 Chinese character categories
are included. To create a high-performance handwritten Chinese character recog-
nition (HCCR) system that supports the full character set using traditional
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approaches, a large number of training samples with various writing styles would
be collected for each character category. However, only about 4,000 categories are
commonly used in daily life. It is therefore both time-consuming and expensive
to collect representative handwritten samples for the remaining 95% rarely-used
ones. These categories are often of complicated structures, existing in personal
names, addresses, ancient books, historic documents and scientific publications.
An HCCR system supporting the full-set of these categories with high accu-
racy will be beneficial to improve user experience, protect cultural heritages and
promote academic exchanges.

Lots of research efforts have been made to build an HCCR system with only
real training samples from commonly used characters. A Chinese character con-
sists of radicals/strokes with specific spatial relationships, which are shared across
all characters. Rather than encoding each character category as a single one-
hot vector, [4,10,44,45] encode it as a sequence of radicals/strokes and spatial
relationships to achieve zero-shot recognition goal. In [1,19,21,22], font-rendered
glyph images are leveraged to provide reference representations for unseen charac-
ter categories. There are also some efforts to synthesize handwritten samples for
unseen categories. For example, [48] synthesizes unseen character samples with
a radical composition network and combines them with real samples to train an
HCCR system. However, its recognition accuracy is relatively poor.

We propose to solve this problem by synthesizing diverse and high-quality
training samples for unseen character categories with denoising diffusion prob-
abilistic models (DDPMs) [15,38]. Diffusion models have been shown to out-
perform other generation techniques in terms of diversity and quality [9,29,40–
42], due to their powerful modeling capacity of high-dimensional distributions.
This also offers a zero-shot generation capability. For example, in diffusion-based
text-to-image generation [28,33,36], with all object types and spatial relation-
ships existed in training samples, diffusion models are capable of generating
photo-realistic images of in-existence object combinations and layouts. As men-
tioned above, Chinese characters can be treated as combinations of different
radicals/strokes with specific layouts. We can leverage DDPM to achieve the
goal of zero-shot handwritten Chinese character image generation.

In this paper, we design a glyph conditional DDPM (GC-DDPM), which
concatenates a font-rendered character glyph image with the original input of
U-Net used in [9], to guide the model in constructing mappings between font-
rendered and handwritten strokes/radicals. To the best of our knowledge, we are
the first to apply DDPMs to zero-shot handwritten Chinese character generation.
Unlike other image-to-image diffusion model frameworks (e.g., [30,35,43]), which
aim at synthesizing images in the target domain while faithfully preserving the
content representations, our goal is to learn mappings from rendered printed
radicals/strokes to the handwritten ones.

Experimental results on CASIA-HWDB [23] dataset with 3,755 character
categories show that the HCCR systems trained with DDPM-synthesized sam-
ples outperform other synthetic data based solutions and perform similarly with
the one trained with real samples in terms of recognition accuracy. We also
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visualize the generation effect of both in and out of 3,755 character categories,
which indicates that our method has the potential to be extended to a larger
vocabulary.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
review related works. In Sect. 3, we describe our GC-DDPM design along with
sampling methods. Our approach is evaluated and compared with prior arts in
Sect. 4. We discuss limitations of our approach and future work in Sect. 5, and
conclude the paper in Sect. 6.

2 Related Work

Zero-shot HCCR. Conventional HCCR systems [6,7,20,50,52,53], although
achieving superior recognition accuracy, can only recognize character categories
that are observed in the training set. Zero-shot HCCR aims to recognize handwrit-
ten characters that are never observed. Most of the previous zero-shot HCCR sys-
tems can be divided into two categories: structure-based and structure-free meth-
ods. In structure-based methods, a Chinese character is represented as a sequence
of composing radicals [4,10,44,45] or strokes [5]. Although the character is never
observed, the composing radicals, strokes and their spatial relationships have been
observed in the training set. Therefore, structure-based methods are able to pre-
dict the radical or stroke sequences of unseen Chinese characters and achieve zero-
shot recognition. However, in these methods, the radical or stroke sequence rep-
resentations of Chinese characters require lots of language-specific domain knowl-
edge. In structure-free method, [1,17,21,22] leverage information from the corre-
sponding Chinese character glyph images. Zero-shot HCCR is achieved by choos-
ing the Chinese character whose glyph features are closest to that of the hand-
written ones in terms of visual representations. In [19], the radical information is
also used to extract the visual representations of glyph images.

Zero-shot Data Synthesis for HCCR. Besides designing zero-shot recogni-
tion systems, there are some studies to directly synthesize handwritten training
samples for unseen categories. [48] investigates a radical composition network to
generate unseen Chinese characters by integrating radicals and their spatial rela-
tionships. Although the generated handwritten Chinese characters can increase
the recognition rate of unseen handwritten characters, the overall recognition
performance is relatively poor. In this work, we propose to use a more pow-
erful diffusion model to generate unseen handwritten Chinese characters given
corresponding glyph images.

Zero-shot Chinese Font Generation. Zero-shot Chinese font generation aims
to generate font glyph for unseen Chinese characters based on some seen charac-
ter/font glyph pairs. In [11,25,47,51,54], the image-to-image translation frame-
work is used to achieve this goal. Works in [18,24,31] also leverage the infor-
mation of composing components, radicals, strokes for better generalization. In
this paper, we focus on zero-shot handwritten Chinese character generation with
DDPM and we can easily adapt this method to zero-shot Chinese font genera-
tion task.
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Fig. 1. Architecture of glyph conditional U-Net, which is adapted from the model
used in [9]. We concatenate font “kai” rendered character image with original input to
provide glyph guidance during generation.

Diffusion Model. DDPM [15,38] has become extremely popular in computer
vision and achieves superior performance in image generation tasks. DDPM uses
two parameterized Markov chains and variational inference method to recon-
struct the data distribution. DDPMs have demonstrated their powerful capabil-
ities to generate high-quality and high-diversity images [9,15,42]. It is shown
in [33] that DDPM can perform a great effect on combination of concepts,
which can integrate multiple elements. Diffusion models are also applied to other
tasks [8,49], including high-resolution generation [34], image inpainting [43], nat-
ural language processing [2] and so on. Besides, [27] introduces DDPM to solve
the problem of online English handwriting generation. In this work, we pro-
pose to leverage DDPM for zero-shot handwritten Chinese character generation
and to synthesize training data for unseen Chinese characters to build HCCR
systems.

3 Our Approach

3.1 Preliminary

Fig. 2. The Markov chain of forward (reverse) diffusion process of generating a hand-
written Chinese character sample by slowly adding (removing) noise. Adapted from
[15].

Diffusion model is a new paradigm of data generation. It defines a Markov chain
of diffusion steps to slowly add random noise to data and then learn to reverse
the diffusion process to construct desired data samples from the noise [46]. As
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shown in Fig. 2, in our handwritten Chinese character generation scenario, we
first sample a character image from the real distribution x0 ∼ q(x). Then, in
forward diffusion process, small amounts of Gaussian noise are added to the
sample in steps according to Eq. (1),

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (1)

xt =
√

αtxt−1 +
√

1 − αtεt

where αt = 1−βt and εt ∼ N (0, I), producing a sequence of noisy samples. The
step sizes are controlled by a variance schedule {βt ∈ (0, 1)}T

t=1. As t becomes
larger, the image gradually loses its distinguishable features. When t → ∞ , xt

becomes a sample of an isotropic Gaussian distribution.
If we can reverse the above process and sample from q(xt−1|xt), we will be

able to recreate the true sample from a Gaussian noise xT ∼ N (0, I). If βt is
small enough, q(xt−1|xt) will also be a Gaussian. So we can approximate it with
a parameterized model, as shown in Eq. (2)

pθ (xt−1|xt) = N (xt−1;μθ (xt, t),Σθ (xt, t)) . (2)

Since q(xt−1|xt,x0) is tractable,

q(xt−1|xt,x0) = N (xt−1; μ̃(xt,x0), β̃tI) (3)

where ᾱt =
∏t

s=1 αs, and

μ̃(xt,x0) =
1√
αt

(xt − 1 − αt√
1 − ᾱt

εt) (4)

β̃t =
1 − ᾱt−1

1 − ᾱt
· βt . (5)

So we can train a neural network to approximate εt and the predicted value
is denoted as εθ (xt). It has been verified that instead of directly setting Σθ (xt, t)
as β̃t, setting it as a learnable interpolation between β̃t, βt in log domain will
yield better log-likelihood [29]:

Σθ (xt, t) = exp(νθ(xt) log βt + (1 − νθ(xt)) log β̃t) . (6)

In this paper, we will train a U-Net to predict εθ (xt) and νθ(xt) with the same
hybrid loss as in [29].

3.2 Glyph Conditional U-Net Architecture

As shown in Fig. 1, the U-Net architecture we used is borrowed from [9]. With
128 × 128 image input, there are 5 resolution stages in encoder and decoder
respectively, and each stage consists of 2 BigGAN residual blocks (ResBlock) [3].
In addition, BigGAN ResBlocks are also used for downsampling and upsampling
activations. We also follow [9] to use multi-head attention at 32 × 32, 16 × 16
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and 8 × 8 resolutions. Timestep t will first be mapped to sinusoidal embedding
and then processed by a 2-layer feed-forward network (FFN). This processed
embedding will then be fed to each convolution layer in U-Net through a feature-
wise linear modulation (FiLM) operator [32].

To control the style and content of generated character images, writer infor-
mation [12] and character category information are also fed to the model. Given
a writer w, which is actually the class index of all writer IDs, it will be mapped
to a learnable embedding, followed by L2-normalization (denoted as z), which is
injected to U-Net together with the timestep embedding [29] as shown in Fig. 1.

If we inject character category information in the same way as writer, the
model will not be able to generate samples for unseen categories because their
embeddings are not optimized at all. In this paper, we propose to leverage printed
images rendered by font “kai” to provide character category information. We
denote this glyph image as g. There are several ways to inject g to the model.
For example, it can be encoded as a feature vector by a CNN/ViT and fed to
U-Net in FiLM way, or encoded as feature sequences and fed to attention layers
of U-Net serving as external keys and values [28]. In this paper, we simply inject
g as model’s input by concatenating it with xt and leave other ways as future
work. We call our approach as Glyph Conditional DDPM (GC-DDPM).

By conditioning model output on glyph image, we expect the model can learn
the implicit mapping rules between printed stroke combinations and their hand-
written counterparts. Then we can input font-rendered glyph images of unseen
characters to the well-trained GC-DDPM and get their handwritten samples of
high quality and diversity.

3.3 Multi-conditional Classifier-free Diffusion Guidance

Classifier-free guidance [16] has been proven effective for improving generation
quality on different tasks. In this paper, we are also curious about its effects on
HCCR system trained with synthetic samples.

There are 2 conditions, glyph g and writer w, in our model. We assume that
given xt, g and w are independent. So we have

pθ (xt−1|xt,g,w) ∝ pθ (xt−1|xt)pθ (g|xt)pθ (w|xt) . (7)

Following the previous practice in [16], we assume that there is an implicit
classifier (ic),

pic(g,w|xt) ∝
[
p(xt|g)
p(xt)

]γ

·
[
p(xt|w)
p(xt)

]η

. (8)

Then we have

∇xt
log pic(g,w|xt) ∝ γε(xt,g) + ηε(xt,w) − (γ + η)ε(xt) . (9)

So we can perform sampling with the score formulation

ε̃θ (xt,g,w) = εθ (xt,g,w) + γεθ (xt,g, ∅)
+ ηεθ (xt, ∅,w) − (γ + η)εθ (xt, ∅, ∅) .

(10)
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We call γ, η as content and writer guidance scales respectively. When g =
∅, an empty glyph image will be fed to U-Net and when w = ∅, a special
embedding will be used. During training, we set g and w to ∅ with probability
10% independently to get partial/unconditional models.

3.4 Writer Interpolation

Besides generating unseen characters, our model is also able to generate unseen
styles by injecting interpolation between different writer embeddings as new
writer embedding. Given two normalized writer embeddings zi and zj, we use
spherical interpolation [33] to get a new embedding z with L2-norm being 1, as
in Eq. 11:

z = zi cos
λπ

2
+ zj sin

λπ

2
, λ ∈ [0, 1] . (11)

4 Experiments

We conduct our experiments on CASIA-HWDB [23] dataset. The detailed exper-
imental setup is comprehensively explained in Sect. 4.1. Experiments on Writer
Independent (WI) and Writer Dependent (WD) GC-DDPMs are conducted in
Sect. 4.2 and Sect. 4.3, respectively. We further use synthesized samples to aug-
ment the training set of HCCR in Sect. 4.4. Finally, we compare our approach
with prior arts in Sect. 4.5.

4.1 Experimental Setup

Dataset: The CASIA-HWDB dataset is a large-scale offline Chinese handwrit-
ten character database including HWDB1.0, 1.1 and 1.2. We use the HWDB1.0
and 1.1 in experiments, where the former contains 3,866 Chinese character cat-
egories written by 420 writers, and the latter contains 3,755 categories written
by another 300 writers. We follow the official partition of training and testing
sets as in [23], where the training set is written by 576 writers.

Vocabulary Partition: We use the 3,755 categories that cover the standard
GB2312-80 level-1 Chinese set in experiments. We denote the set of 3,755 cate-
gories as S3,755. Following the setup in [1,45], we select the first 2,000 categories
in GB2312-80 set as seen categories (denoted as S2,000), and the remaining 1,755
categories as unseen categories (denoted as S1,755). The diffusion models are
trained on training samples of S2,000 and used to generate handwritten Chinese
character samples of S1,755 to evaluate the performance of zero-shot training
data generation for HCCR.

DDPM Settings: Our DDPM implementation is based on [9]. We use the “kai”
as our font library to render printed character images. We conduct experiments
on both WI and WD GC-DDPMs. In WI GC-DDPM training, we disable writer
embeddings and randomly set content condition g as ∅ with probability 10%.
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Fig. 3. Synthetic handwritten Chinese character samples and corresponding glyphs,
with stroke numbers increasing from left to right.

And in WD GC-DDPM, writer condition w is also randomly set to ∅ with
probability 10%. Flip and mirror augmentations are used during training. We
set batch size as 256, image size as 128×128, and we use AdamW optimizer [26]
with learning rate 1.0e-4. Diffusion step number is set to 1,000 with a linear
noise schedule. GC-DDPMs are trained for about 200K steps using a machine
with 8 Nvidia V100 GPUs, which takes about 5 d. During sampling, we use the
denoising diffusion implicit model (DDIM) [39] sampling method with 50 steps.
It takes 62 h to sample 3,755 characters written by 576 writers, which are about
2.2M samples, with the same 8 Nvidia V100 GPUs.

Evaluation Metrics: We evaluate the quality of synthetic samples in three
aspects. First, Inception score (IS) [37] and Frechet Inception Distance (FID) [14]
are used to evaluate the diversity and distribution similarity of synthetic samples
compared with real ones. Second, since samples are synthesized by conditioning
on glyph image, the synthetic samples should be consistent with the category of
conditioned glyph. Therefore, we introduce a new metric called correctness score
(CS). For each synthetic sample, the category of conditioned glyph is used as
ground truth, and CS is calculated as the recognition accuracy of synthetic sam-
ples using an HCCR model trained with real data, which achieves 97.3% recogni-
tion accuracy in real data testing set. Finally, as the purpose of diffusion model
here is to generate training data for unseen categories, we also train HCCR models
with synthetic samples and evaluate recognition accuracy on the real testing set
of unseen categories. Our HCCR model adopts ResNet-18 [13] architecture and
is trained with standard SGD optimizer. No data augmentation is applied during
HCCR model training. It is noted that starting from different random noise, it
is almost impossible to generate exact same handwritten samples even for same
conditional character glyphs. So it is not appropriate to adopt pixel-level metrics
to evaluate generative effect as [11,18,24,25,31,47,51,54] do (Fig. 3).

4.2 WI GC-DDPM Results

We first conduct experiments on WI GC-DDPM. It is shown in [16] that the
classifier guidance scale is able to attain a trade-off between quality and diversity.
In order to evaluate the behavior of different content guidance scale γ’s, we
choose different γ’s and generate samples to compute FID, ID and CS. Here we
synthesize 50K samples of S2,000, and the HCCR model used to measure CS
is trained using real samples of S3,755. γ ∈ {0.0, 1.0, 2.0, 3.0 , 4.0} are used
and the comparison results are summarized in Table 1. We can find that, as γ



356 D. Gui et al.

Table 1. Comparisons of generation quality using different content guidance scale γ’s
in terms of IS, FID, and CS.

γ IS FID CS (%)

0.0 2.62 8.07 94.7

1.0 2.51 10.97 99.8

2.0 2.46 18.03 99.9

3.0 2.44 24.34 99.9

4.0 2.39 28.69 99.9

Table 2. Comparisons of generation quality using different content guidance scale γ’s
in terms of recognition accuracy on testing set of classes in S1,755 using generated
samples as training set.

γ 0.0 1.0 2.0 3.0 4.0

Acc1,755 (%) 93.0 88.6 91.7 63.7 33.2

(a) Failure samples that do not look like any Chi-
nese characters.

(b) (top) Glyph condition images; (middle) Syn-
thetic samples; (bottom) Most similar characters.

Fig. 4. Synthetic samples that are wrongly recognized by real data trained HCCR
model when γ = 0.

increases, the IS decreases, the FID increases and the CS achieves close to 100%
accuracy. This indicates that with a larger γ, the diversity of synthetic samples is
decreasing. This behavior is also observed in Fig. 5a where we visualize multiple
sampled results of the character class in S2,000 using different γ’s. The generated
samples are less diverse, less cursive and easier to recognize when conditioned
on stronger content guidance. According to FID and examples in Fig. 5, the
distribution of synthetic samples with γ = 0 is closer to that of real samples.
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(a) S2,000 example (b) S1,755 example

(c) Out of S3,755 example (d) Complicated strokes example

Fig. 5. Multiple synthetic handwritten Chinese character samples with different con-
tent guidance scale, where (a), (b) and (c) are characters from classes of S2,000, S1,755,
and out of S3,755 Chinese character sets. Samples in each line use the same random seed
and initial noise. Samples across lines use different random seeds to visualize diversity.

When γ = 0, CS achieves 94.7%. In Fig. 4, we show synthetic cases that the
trained HCCR model fails to recognize. Failure cases include (a) samples that are
unreadable, and (b) samples that are closer to another easily confused Chinese
character. They are caused by alignment failures between printed and synthetic
strokes, and can be eliminated by improving glyph conditioning method. We
leave it as future work.

Then, we evaluate the quality of WI GC-DDPM for zero-shot generation
of HCCR training data. We use the trained WI GC-DDPM to synthesize 576
samples for each category in S1,755. Then, the synthetic samples are used along
with real samples of categories in S2,000 to train an HCCR model that supports
3,755 categories. We calculate its recognition accuracy on the testing set of cate-
gory S1,755, which is denoted as Acc1,755. Different γ’s are tried, and the results
are shown in Table 2. In Fig. 5b, we visualize synthetic samples of one category
in S1,755. The best Acc1,755 is achieved when γ = 0. Although synthetic sam-
ples with higher γ are less cursive, they achieve much lower Acc1,755. This is
because the lack of diversity makes it difficult to cover the wide distribution of
handwritten Chinese character image space.
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Fig. 6. Generated handwritten Chinese character samples with different content and
writer guidance scales, where the character is from the class of S1,755. Samples are
generated with the same random seed and initial noise.

Table 3. Comparisons of generation quality between WI and WD DDPMs in terms
of IS, FID, CS (%) and the recognition accuracy (%) on the testing set of class S1,755

using generated samples as training set.

Model IS FID CS Acc1,755

WI 2.62 8.07 94.7 93.0

WD 2.49 6.34 94.8 93.7

WD w/ interpolation 2.53 6.26 95.0 94.7

Clearly, by learning the mapping of radicals and spatial relationship between
Chinese printed and handwritten strokes, the diffusion model is capable of zero-
shot generation of unseen Chinese character categories. Moreover, a high accu-
racy of 93.0% is achieved on S1,755 by only leveraging the synthetic samples. In
Figs. 5c and 5d, we further show the synthetic samples of a Chinese character
category that does not belong to S3,755. The excellent generation effect implies
that our method has the potential to be extended to a larger vocabulary.

4.3 WD GC-DDPM Results

Although WI GC-DDPM can generate desired handwritten characters, we can-
not control their writing styles. In this part, we conduct experiments on WD
GC-DDPM, which introduces writer information as an additional condition.

Figure 6 shows the visualization results of sampling with different content
guidance scale γ’s and writer guidance scale η’s. It shows that with larger γ,
the synthetic samples become less cursive and more similar to the corresponding
printed image. This behavior is consistent with that of the WI GC-DDPM in
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(a) Real text line from [23].

(b) Synthetic samples arranged as a text line.

Fig. 7. Comparisons of real text line images in HWDB2.1 and generated samples
arranged in a text line, where we replace the characters from real data with the gen-
erated characters. Samples in different lines of (a) and (b) are selected and generated
conditioning on the same writer 1001.

Fig. 8. Interpolation of handwritten Chinese character samples, where the top, middle,
bottom lines are characters from classes of S2,000, S1,755, and out of S3,755 Chinese
character sets. We choose writer 1061 (left) and writer 1057 (right) for interpolation
and interpolation factors are shown at the top of images. Standard glyph images of
font “kai” are shown on the left. Samples in each line use the same random seed and
initial noise.

Fig. 5. We also find that with large η, the generated sample becomes inconsistent
with the conditioned printed image. Since writer information is injected to GC-
DDPM in FiLM way, a large guidance scale will cause the mean and variance
shift of μ̃θ (xt,g,w) and Σ̃θ (xt,g,w) which hinders the subsequent denoising,
leading to over-saturated images with over-smoothed textures [43].

In Fig. 7b, we show several synthetic text line images conditioned on a fixed
writer embedding with our WD GC-DDPM. Writing styles of these samples are
consistent and quite similar to real samples written by the same writer as shown
in Fig. 7a. These results verify the writing style controllability of our model.

Then, we compare the quality of synthetic samples when used as training data
for HCCR. For a fair comparison, we also generate 576 samples for each cate-
gory in S1,755, one image for each writer. Recognition performances are shown
in Table 3. To improve sampling efficiency and ensure training data diversity,
the writer guidance scale of 0 is applied. Compared with using samples synthe-
sized with WI GC-DDPM as HCCR training set, the accuracy on the testing set
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Table 4. Comparisons of recognition accuracy (%) on test sets of S2,000 and S1,755

using real and/or synthetic samples as HCCR training set.

Training set Accuracy on testing set

Real Synthetic Acc2,000 Acc1,755

� / 97.3 97.2

/ WI 96.3 96.0

/ WD 96.4 96.1

/ WD w/ interpolation 96.5 96.1

� WI 97.3 97.3

� WD 97.4 97.3

� WD w/ interpolation 97.4 97.3

of S1,755 is improved from 93.0% to 93.7%. When GC-DDPM is trained with-
out conditioning on writer embedding, it may generate similar samples from
different initial noise. Whereas in WD GC-DDPM, by conditioning on different
writer embeddings, the model will generate samples with different writing styles.
Therefore, the diversity of synthetic samples will be improved. To verify this, we
compare the quality of synthetic samples in terms of IS and FID. As shown in
Table 3, the FID improves from 8.07 to 6.34. The results demonstrate the superi-
ority of WD GC-DDPM in zero-shot training data generation of unseen Chinese
character categories.

Another capability of WD GC-DDPM is that it can interpolate between dif-
ferent writer embeddings and generate samples of new styles. We choose 2 writers
and try different interpolation factor λ’s and visualize the synthetic samples in
Fig. 8. We find that as λ increases from 0 to 1, the style of synthetic samples
gradually shifts from one writing style to another. We also observe that with
the same λ, the synthetic samples of different Chinese characters share similar
writing style as expected. Finally, we use writer style interpolation to generate
the training data of S1,755 for HCCR, and again 576 samples are generated for
each category. For each image, we randomly select 2 writers for interpolation.
We simply use an interpolation factor of 0.5. Results are summarized in Table 3.
We observe a slight improvement in FID score and a 1% absolute recognition
accuracy improvement on S1,755, which further verifies the superiority of our
WD GC-DDPM.

4.4 Data-Augmented HCCR Results

We also use GC-DDPMs trained on S2,000, to synthesize samples for all cate-
gories in S3,755, and combine them with real samples to build HCCR systems.
3 settings are tried: WI, WD and WD w/ interpolation. And 576 samples for
each category are synthesized in each setting. Table 4 summarizes the results.
Best accuracies are achieved with samples synthesized by WD w/ interpolation,
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Table 5. Comparisons of unseen character categories’ recognition accuracy (%)
between our method and prior zero-shot HCCR systems. Works with ∗ also use samples
from HWDB1.2 for training, while † means online trajectory information is also used.

Method Accuracy

CM† [1] 86.7

DenseRan [45] 19.5

FewRan∗ [44] 70.6

HCCR∗ [4] 73.4

OSOCR∗ [21] 84.3

OSCCD∗ [22] 95.6

WI GC-DDPM 96.4

WD GC-DDPM 96.8

WD GC-DDPM w/interpolation 96.9

Table 6. Comparisons of unseen character categories’ recognition accuracy (%) on
CASIA1.2 testing set.

Methods Accuracy

RCN [48] 46.1

WI GC-DDPM 98.6

WD GC-DDPM 98.6

ResNet-18 trained with real data 97.9

which is consistent with Table 3. The HCCR models trained with only synthetic
samples perform slightly worse than the one trained with only real samples.
Combining synthetic and real training samples only performs 0.0%˜0.1% better
than real samples. These results demonstrate the distribution modeling capacity
of GC-DDPMs.

4.5 Comparison with Prior Arts

Finally, we compare our method with prior arts. We first compare our method
with prior zero-shot HCCR systems. To be consistent with prior works in
[4,21,22], we randomly choose 1,000 classes in S1,755 as unseen classes and use
ICDAR2013 [50] benchmark dataset for testing. Results are shown in Table 5.
Here we only list the results from prior arts using 2,000 seen character classes.
It is noted that the 2,000/1,000 seen/unseen character class split for training
and testing is not exactly the same. So the results are not directly comparable.
The results in Table 5 show that our methods achieve the same level recogni-
tion accuracy compared with previous state-of-the-art zero-shot HCCR systems.
Moreover, our approach directly uses a standard CNN to predict supported cat-
egories, which is much simpler compared with the systems in [21,22].
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(a) Japanese (b) Korean

Fig. 9. Synthetic samples of Japanese and Korean characters and standard glyph
images in font “SourceHans”.

We also compare our approach with [48], which also leverages a genera-
tion model to synthesize training samples for unseen classes. We follow the
same experimental setups in [48] and use HWDB1.0 and 1.1 as training set,
which contains 3,755 categories, to train GC-DDPMs. Unseen 3,319 categories
in HWDB1.2 testing set are used as testing set. Results are shown in Table 6.
[48] achieves a 46.1% accuracy by adding more than 9.6M generated samples.
Our approach achieves a 98.6% accuracy by only adding about 1.9M synthetic
samples (576 samples for each unseen category). We also train a classifier using
all real samples in HWDB1.2 training set (240 samples for each category). The
classifier achieves a 97.9% accuracy, which is slightly worse than ours due to less
diverse training samples.

These results verify the zero-shot generation capability of our methods again.
It is easy to extend to larger vocabularies, which makes it possible to build a
high-quality HCCR system for 87,887 categories.

5 Limitations and Future Work

Although GC-DDPM-synthesized images are quite helpful for building a high-
quality HCCR system, there are still some failure cases. The blur and dislocation
phenomena in these samples reveal that there exist better ways to inject glyph
information. It is also possible to encode radical/stroke sequences with spatial
relationships as the condition of DDPM. We will investigate these methods and
report the results elsewhere.

Another limitation of our approach is the long training time of DDPMs. We
will try to reduce the number of character categories and sample numbers per
category to find a better trade-off between synthesis quality and training cost.

Japanese and Korean characters share most strokes with Chinese, so we also
try to synthesize handwritten Japanese and Korean samples with our Chinese-
trained DDPM. As Fig. 9 shows, except for some circle and curve strokes, the
results are quite reasonable. As future work, we will combine handwritten sam-
ples of CJK languages to build a new DDPM, which is expected to synthesize
samples for each language with higher diversity and quality.

6 Conclusion

We propose WI and WD GC-DDPM solutions to achieve zero-shot training data
generation for HCCR. Experimental results have verified their effectiveness in
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terms of generation quality, diversity and HCCR accuracies of unseen categories.
WD performs slightly better than WI due to its better distribution modeling capa-
bility and writing style controllability. These solutions can be easily extended to
larger vocabularies and other languages, and provide a feasible way to build an
HCCR system supporting 87,887 categories with high recognition accuracy.
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