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Abstract. In this paper, we propose a novel method for handwritten
text generation that uses a style encoder based on a vision transformer
network that encodes handwriting style from reference images and allows
the generator to imitate it. The encoder learns to disentangle style infor-
mation from the content by learning to recognize who wrote the text,
and the self-attention mechanism in the encoder allows us to produce
character-specific encodings by using characters in the target sequence
as queries. Our method can also generate handwritten text images in
random styles by sampling random latent vectors instead of encoding
style vectors from reference images.

We demonstrate through experiments that our proposed method out-
performs existing methods for handwritten text generation in terms of
the quality of generated images and their fidelity with respect to the
distribution of real images. Furthermore, it achieves significantly better
performance at imitating handwriting styles defined by reference images.
Our model generalizes well to unseen data and can generate handwritten
images of words and character sequences as well as imitate handwriting
styles not included in the training data.

Keywords: Handwritten text generation · Handwriting imitation ·
Handwritten text recognition

1 Introduction

Significant progress has been achieved in image generation in recent years, partic-
ularly thanks to the emergence of new approaches such as generative adversarial
networks (GANs) [12], variational auto-encoders (VAEs) [26], and more recently
also diffusion models [17]. Generative models can now produce very accurate and
detailed images that are difficult to discern from real ones [24,32,39]. The origi-
nal GAN architecture could only generate images from randomly sampled latent
vectors, which did not provide a way to control what was generated. However,
further research proposed various methods to manipulate the generation pro-
cess by conditioning on class labels [30], text embeddings [40]+, segmentation
maps [36], reference images [32], etc. This extended the possibilities of image
generation beyond a simple generation of random objects.
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One of the domains that have adopted recent methods for image generation
is handwritten text. Multiple fields and applications can benefit from the abil-
ity to generate images of handwritten text automatically. In handwritten text
recognition (HTR), being able to generate a large number of diverse handwrit-
ing samples for training can improve the accuracy and robustness of recognition
models. Handwritten text generation can also be used to create handwritten text
assets for games and virtual reality applications, and it can also help in product
design when handwritten text is required or desirable.

In recent years, several works have proposed methods for generation of hand-
written text images. Some of them can only generate handwritten text with
random styles of writing [2,9,38], while some can imitate existing styles from
reference images [4,10,22]. The earlier proposed approaches suffer from poor
visual quality due to limitations such as being able to generate only fixed-size
images [2]. However, recent methods can generate images that are difficult for
humans to distinguish from real ones [11,38]. JokerGAN [38] achieves outstand-
ing performance, but it can only generate handwritten text in random styles.
In this work, we leverage the performance of JokerGAN by using it as a base
for our model and modify it to enable style imitation by generating handwritten
text with guidance by reference images. To encode style features from reference
images, we train a style encoder together with the rest of the model by making
it learn to recognize who wrote the text, inspired by [10]. As vision transformers
(ViT) [8] have shown to excel at various vision-based tasks [7,34,39], we employ
an encoder based on a ViT network. We further significantly improve the per-
formance of our model by using the target character sequence as a query for
self-attention in the transformer, which allows us to generate specific encodings
for different characters.

As our proposed model extends the original JokerGAN to support imitation
of style from reference images, we call it JokerGAN++.

In summary, the main contributions of our work are as follows:

– We propose a new method to imitate handwriting styles by using a ViT-
based encoder that uses target character sequences as queries to produce
character-specific style encodings. The experiments show that it can imitate
handwriting styles more accurately than existing methods and also generate
more authentic images with respect to the distribution of real images.

– We conduct experiments on data augmentation for HTR with generative mod-
els and show that HTR models trained on data augmented by images gener-
ated by our model outperform models trained on data augmented by images
generated by existing methods.

– We demonstrate that our method for generation of handwritten text can also
be used to erase handwritten text from images.

2 Related Work

Generation of realistic images of handwritten text is a challenging task. Conven-
tional methods in the past required a lot of manual manipulation of the source
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images, which involved clipping of individual characters. Those were then com-
bined by various rendering techniques to produce new images of handwritten
text [15,35].

The past decade has witnessed the success of deep neural networks, leading
to their utilization in various domains and applications, including generation
of handwritten text. The first attempts at applying deep neural networks to
handwritten text generation focused on online handwritten trajectories. Recur-
rent neural networks were used to learn and generate the temporal data [13],
and further improvement was achieved by adding a discriminator network and
employing adversarial training [20]. Manipulating the style of generated images
was accomplished by disentangling the style and content of handwritten text
[1]. Deep neural networks require a lot of data for successful training, but col-
lecting a large amount of online handwritten data is a demanding task that
involves special equipment to record handwriting trajectories. However, collect-
ing offline handwritten data is much easier as it only requires obtaining images
of handwritten text. It has been demonstrated that generative adversarial net-
works (GAN) [12] and variational auto-encoders [26] are capable of generating
images of handwritten digits, and it is possible to control which digits are gen-
erated with conditional GANs [30]. Recent progress in raster image generation
showed the potential of generative models to create very realistic and detailed
images [6,23,31], and it helped drive the research on offline handwritten text
generation.

There are two approaches to offline handwritten text generation: 1) gener-
ation of handwritten text in random styles given by randomly sampled latent
vectors, and 2) generation of handwritten text in a specific style defined by a
reference image. Most existing methods support generation either only in ran-
dom styles [2,9,38] or only in specific styles given by reference images [4,21,22].
Recently, methods that support both types of generation have also emerged
[10,11].

Application of GANs to offline handwritten text generation was first proposed
by Alonso et al. [2] and their model consisted of BigGAN [6] for image generation,
an LSTM [18] to encode the target word into a fixed-length vector used as a
conditional input for the generator, and a text recognition network to ensure
that the generator produces legible images of the target word. Due to its design,
the model was restricted to generating text images of a fixed size regardless of
the length of the generated word, which causes distortions. ScrabbleGAN [9]
resolved this problem by replacing the LSTM-based encoder with a bank of
base filters for each letter in the alphabet, which allows generation of images in
variable sizes. The generator in ScrabbleGAN uses k base filters corresponding
to k letters in the target word. The size of the model grows almost linearly with
respect to the size of the character set, which makes it unfeasible for languages
with large character sets, such as Chinese or Japanese. To alleviate this issue,
JokerGAN [38] replaces the bank of base filters with a single base filter for
all characters and uses multi-class conditional batch normalization to generate
different characters depending on the conditional input, which is obtained by
embedding individual characters in the target word. JokerGAN also introduced
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a new type of conditional input that makes the generator aware of the position
of all characters in the target word with respect to the baseline and mean line,
which reduces distortions in generated images.

Kang et al. [22] proposed a method that generates handwritten words from
style features extracted from reference images in a few-shot setting and textual
features of a predefined text length. In a later work [21], they extended their
previous method to support generation of long character sequences and text
lines. The recent surge of transformers in computer vision tasks inspired [4] to
use transformers to generate styled handwritten text. A transformer is used to
model the target word and style features extracted from a reference image by
a CNN, and the output is passed to a CNN that upsamples and generates a
text image in the desired resolution. The method works in a few-shot setting
and requires multiple words as a reference to extract and reproduce the style
accurately. HiGAN [10] extended ScrabbleGAN to support generation in specific
styles by adding a CNN to encode style from reference images, and a later work
[11] improved the performance by modifying the network architecture and using
contextual loss in training.

Besides methods that generate handwritten text from latent or encoding
vectors, there are methods that synthesize handwritten text in a given style
from skeleton images of handwriting [14] and from machine-printed text [28]
using an image-to-image translation approach.

Table 1. Comparison of functionality of existing methods and our proposed method.
Latent means that the method can generate images from random latent vectors. Ref-
erence means that generation process can be guided by a reference image.

Method Latent Reference Few-shot One-shot

Alonso et al. [2] �
ScrabbleGAN [9] �
GANWriting [22] � �
HWT [4] � �
JokerGAN [38] �
HiGAN [10] � � �
HiGAN+ [11] � � �
Ours � � �

Table 1 compares the functionality of our method and existing methods for
handwritten text generation. While most methods can generate text either only
in random styles using random latent vectors or only in specific styles, guided by
reference images, our method supports both types and can generate handwritten
text in both random styles and styles defined by a reference image. Our method
also requires only a single handwritten word as a reference to imitate the style,
unlike some of the other methods that work in a few-shot setting and require
multiple words as a reference.
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3 Proposed Method

Our proposed method, JokerGAN++, is based on JokerGAN [38] model for
handwritten text generation. JokerGAN boasts a high quality of generated hand-
written text images, but it cannot imitate specific handwriting styles. Therefore,
we modify the original architecture and add a style encoder network to control
the style of generated handwriting by reference images. We also revise the dis-
criminator to exploit semantic information about text in images to learn whether
the image is real or not. In Sect. 3.1, we describe individual parts of our pro-
posed model, and in Sects. 3.2 and 3.3, we introduce our key contributions to
the architecture in detail.

3.1 Model Architecture

Generator. Our generator G is based on [38]. It supports generation of charac-
ter sequences of arbitrary length by concatenating k identical base filters that
are passed into G, corresponding to the length k of the target character sequence.
Generation of different characters is achieved by multi-class conditional batch
normalization (MCCBN) that is conditioned on the target sequence of charac-
ters. MCCBN is also used to generate handwriting in different styles by concate-
nating the character sequence embeddings with style codes. In [38], style codes
are obtained randomly by sampling from a normal distribution. In our work,
we use a style encoder to imitate existing handwriting styles given by reference
images; however, random styles can also be generated by using randomly sam-
pled style codes. We also empirically find that using identical encoding vectors
in each block of the generator yields better results in our task than using hier-
archical input [6] for conditional batch normalization, and injecting noise for
additional diversity also hurts the performance.

Discriminator. The discriminator D learns to predict whether an image is
real or generated by G. The discriminator used in [9,38] learns to solve this
binary classification problem from real and generated image samples without any
explicit information about the character sequences in the images. We add a new
component into the discriminator that implicitly learns to recognize individual
characters in the image from output feature maps of discriminator layers and
uses this semantic information to modulate the feature maps. More details follow
in Sect. 3.3.

Style Encoder. We use a style encoder network E to produce encodings of hand-
writing styles that can be used as conditional input for G. Detailed description
of E can be found in Sect. 3.2.

Text Recognizer. The objective of text recognizer R is to promote generation
of legible text that matches the target character sequence. Following [9,38], we
use a simple network that predicts local patterns without global context to focus
on legibility of individual characters. The text recognizer is trained only on real
labeled images, and text recognition loss calculated on generated images is used
to provide guidance and optimize G.
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Figure 1 shows a diagram of the whole model. To simplify the diagram and
reduce visual clutter, we do not include all loss functions.

The training process is similar to [10,38], so we simplify the explanation. We
alternate between two optimization passes. In the first pass, we optimize D by
adversarial loss, R by CTC loss for text recognition, and the writer identification
module by cross-entropy loss. In the second pass, we optimize G and the style
encoding module in E by 1) adversarial loss, 2) CTC text recognition loss on
generated samples to ensure that G generates legible images, 3) cross-entropy
loss for writer identification using the writer identification module on generated
samples, 4) L1 reconstruction loss of style codes calculated between random
latent vectors z and style encoding vectors obtained by E from images generated
by G and conditioned on z, and 5) KL-Divergence loss to regularize the style
latent space so that it matches normal distribution.

Fig. 1. Overview of the proposed model and the ViT block with character embeddings
as queries.

3.2 ViT-Based Style Encoder

To generate images of handwriting that imitate an existing style, we use an
encoder network E to extract the style information from reference images.
Inspired by [10], we use E that is jointly trained by learning to identify the
writer of a handwriting sample and learning to encode style encodings for the
generator. Instead of using a simple convolutional network as [10] does, our E
is based on ViT. There are two reasons why we employ a ViT-based network
for the style encoder. First, ViTs have shown to be exceptionally powerful at
modeling local and global information in images, which makes them a great
choice to encode handwriting style from an image because a style is defined by
both global features (e.g., slant) and local features (e.g., shape of characters,
stroke width). Second, ViT allows us to incorporate information about the tar-
get character sequence in the encoding mechanism, so we are able to produce
style encodings that are not only dependent on the handwriting style, but also
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on the individual characters appearing in the sequence. As a result, we can cre-
ate character-specific style encodings, which distinguishes our method from [10]
that extracts identical style encoding for the whole character sequence without
considering the differences needed to capture to correctly encode the style for
different characters.

The identifier module of E takes handwriting images as input and is composed
of a convolutional patch embedding layer and transformer layers from [37] and
a single fully-connected layer. It is trained to predict writers of handwriting
images, which makes it learn and model differences in handwriting styles.

The encoding module of E takes features extracted by the transformer lay-
ers of the identifier module and disentangles the handwriting styles to produce
style encoding vectors. Similarly to the identifier module, it consists of trans-
former blocks and fully-connected layers to yield fixed-sized length encoding for
each character in the target sequence. Each transformer block in the encoding
module consists of multi-head scalable self-attention and interactive windowed
self-attention introduced in [37] along with fully-connected layers. ScalableViT
[37] is a variant of ViT that shows excellent performance across many vision
tasks and we empirically found it to yield the best results among several pop-
ular state-of-the-art ViT architectures. The feature inputs from the identifier
module are averaged across the spatial dimensions before being passed to the
encoding module to reduce differences in features based on the characters in the
text from the reference image as we want to produce encodings specific to the
characters in the target sequence.

To produce character-specific style encodings, we use characters in the target
sequence as queries for self-attention in the encoding module. Therefore, unlike
regular self-attention where query Q(), key K(), and value V () all have the
same input, the Q() input here is an embedded character c in the target character
sequence while K() and V () inputs are features X from the previous transformer
block. The self-attention in our module is thus calculated as

Attn (X, c) = softmax(
Q(c)K(X)√

d
)V (X). (1)

We produce a fixed-size style encoding vector for each character in the target
sequence. Style encodings of all characters are then employed as conditional
input for MCCBN in the generator.

3.3 Character Modulation

The original discriminator in [9,38] does not use any semantic information about
characters in the image to predict whether an image is real or generated. We
strive to improve the performance of the discriminator by modeling the semantic
information. Similarly to techniques such as [19], we add a branch with softmax
activation after each block in the discriminator. The feature maps X where
X ∈ R

H×W×C are passed to a convolutional layer f with the kernel size of 1× 1
and K output channels where K corresponds to the number of characters in the



320 J. Zdenek and H. Nakayama

character set, such as alphanumeric characters. This aggregates channel-wise
features and reduces the number of channels to match the number of characters.
In order to utilize the information aggregated in the reduced feature space, we
need a gating mechanism that promotes emphasis of a single channel as we
ideally want each channel to correspond to one character. To achieve this, we
employ a softmax activation function across the channel dimension. The process
can be denoted as

X̂ = softmax (f (X,W)) , (2)

where W ∈ R
C×K . The extracted features X̂ are aggregated with the original

features X by concatenating them across the channel dimension to produce X̃ ∈
R

H×W×(C+K), and finally the concatenated features are passed to another 1 ×
1 convolutional layer to reduce the number of channel dimensions back to C.
Figure 2 illustrates the whole process.

Fig. 2. Diagram of the character modulation component used in the discriminator.

4 Experiments

4.1 Implementation Details

Our model is based on JokerGAN [38], whose core consists of BigGAN [6] layers
that are modified for generation of images with a fixed height and variable width.
Besides our stated modifications, the architecture of G, D and R is identical as
in [38]. The identification module of E consists of a patch embedding layer (filter
size 8, stride 4) and two ViT stacks, each comprised of 3 blocks of ViT layers
followed by a convolutional layer. The encoding module consists of two blocks
of ViT [37] with character embeddings as queries for self-attention, followed by
a convolutional layer for downsampling and a fully-connected layer to obtain
fixed-size style encoding vectors. The architecture of ViT layers is from [37]. We
use the Adam optimizer [25] with a learning rate of 0.0002 for training. Our
model is implemented in PyTorch.
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4.2 Datasets

We use the following two datasets in our experiments.

– IAM. The IAM dataset [29] contains approximately 80k grayscale images
of handwritten words in English, divided into training, test and validation
sets. The training set consists of about 40k and test set of about 10k images.
The words are written by 657 different people and all words written by one
person only appear in one of the sets to achieve mutual exclusivity of authors
in training, validation, and test sets. The data was created and preprocessed
for training of HTR models.

– GNHK. The GNHK dataset [27] is composed of images of unconstrained
handwritten text in the wild captured by mobile phone cameras. The train-
ing set we use in our experiments contains about 28k images of individual
handwritten words cropped from the original text images. Due to the nature
of the data, the GNHK dataset consists of images with more variety in style
and more noise, which makes it more challenging than the IAM dataset.

4.3 Handwritten Text Image Generation

We evaluate the quality of handwritten text image generation and handwriting
style imitation using several metrics to measure different performance aspects.

– Visual Quality. Our primary metrics of visual quality are Frechet Inception
Distance (FID) [16] and Kernel Inception Distance (KID) [5], which are widely
used to evaluate GANs. FID and KID compare the distributions of generated
images and real samples. We also use the structural similarity index (SSIM)
that measures structural similarity between real and generated images.

– Style Imitation. We use the writer identification error rate (WIER) [11] to
evaluate how well a model can imitate styles. A writer identification network is
trained on the test set of images and used to predict writers for images that are
generated with test set images as reference. Misclassified samples are deemed
as failures of the generative model to accurately imitate the handwriting style.
We measure WIER when generating the identical word as in the reference
image (WIER-I) as well as when generating a random word (WIER-R). SSIM
also indicates how similar the styles in generated and reference images are.

– Diversity and Fidelity. To measure how diverse and accurate the generated
images are with respect to the distribution of real images, we use GAN-
train and GAN-test evaluation [33]. Originally, GAN-train is measured by
training an image classifier on generated data and testing on real data and
approximates image generation recall, and GAN-test is measured by training
on real data and testing on generated data and approximates image generation
precision. GAN-tt is an average of GAN-train and GAN-test to consider their
trade-off and combine them into one score. In our case, we use a HTR model
in place of an image classifier and word recognition accuracy as the underlying
metric to calculate GAN-train and GAN-test scores.

– Readability. GAN-test also indicates the readability of generated samples
as it measures if a HTR model trained on real data can read them.
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Table 2. Comparison of performance of handwritten text generation methods on the
IAM dataset in terms of metrics for image generation quality based on the distance
between real and generated image distributions (FID, KID), structural similarity of
images (SSIM), style imitation accuracy measured by WIER, and diversity and quality
of image generation measured by training and testing with HTR models (GAN-test,
GAN-train, GAN-tt). Evaluation on real data is provided for reference.

Method FID↓ KID↓ SSIM↑ WIERI↓ WIERR↓ GAN-test↑ GAN-train↑ GAN-tt↑
ScrabbleGAN [9] 19.98 1.359 – – – 93.11 27.67 60.39

HWT [4] 18.76 1.214 0.182 0.829 0.855 64.06 22.15 43.11

JokerGAN [38] 4.63 0.186 – – – 80.86 54.42 67.64

HiGAN-L [10] 17.69 1.107 – – – 96.15 31.93 64.38

HiGAN-R [10] 12.43 0.669 0.196 0.628 0.674 96.61 36.03 66.62

HiGAN+ [11] 5.94 0.368 0.332 0.526 0.575 95.65 30.72 63.19

Ours (latent) 3.00 0.098 – – – 94.27 55.67 74.97

Ours (reference) 2.14 0.078 0.429 0.327 0.499 81.11 61.90 71.51

Real data 0.02 0.002 – 0.043 – 83.49 – –

As shown in Table 2, our method outperforms existing methods in virtually
all metrics. GAN-test is the only metric in which it slightly falls behind. This
can be attributed to the fact that our model generates more diverse samples that
might be harder for a HTR model to read correctly. The diversity is measured by
GAN-train in which our model surpasses other methods with a high GAN-test
score by a large margin. In addition, the GAN-test score of our method when
using reference images for generation is similar to word recognition accuracy
of a HTR model trained and tested on real data, which also suggests that the
distribution of images generated with our method is closer to the distribution
of real data. Our method also achieves the best WIER scores, indicating that
it can imitate styles from reference images better than other methods. We state
results of our method when generating both in random styles from randomly
sampled latent vectors (latent) and styles from reference images (reference).

SSIM and WIER are only applicable for methods that imitate style from
reference images; therefore, we do not use them for evaluation of methods that
generate images in random styles. We also include real data results for reference
where WIER represents the error rate of a writer identifier trained and tested
on real data, and the value in the GAN-test column represents word recognition
accuracy of a HTR model trained and tested on real data.

Table 3 shows results of experiments on GNHK. The trends are similar to
those in Table 2, further attesting our method outperforms the competition.
GNHK dataset is more complex than IAM, so the performance of all models is
worse compared to IAM. In particular, the diversity is limited and HTR models
trained only on generated images perform poorly as shown by low GAN-train.
Due to the nature of the dataset, we use top-5 error rate for WIER for GNHK.
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Table 3. Comparison of performance of handwritten text generation methods on the
GNHK dataset. The same metrics as in Table 2 are used.

Method FID↓ KID↓ SSIM↑ WIERI (top-5)↓ GAN-test↑ GAN-train↑ GAN-tt↑
ScrabbleGAN [9] 20.92 1.603 – – 92.24 8.98 50.61

JokerGAN [38] 10.35 0.515 – – 76.97 10.85 43.91

HiGAN-L [10] 14.27 0.840 – – 93.89 8.12 51.00

HiGAN-R [10] 8.12 0.366 0.327 0.695 92.09 9.58 50.84

HiGAN+ [11] 8.04 0.459 0.235 0.293 82.76 6.10 44.43

Ours (latent) 8.69 0.395 – – 89.88 12.30 51.09

Ours (reference) 5.99 0.194 0.269 0.129 82.39 12.15 47.27

Real data 0.03 0.005 – 0.081 63.32 – –

4.4 Ablation Study

We perform ablation studies to validate the effectiveness of individual proposed
components and modifications. We use the IAM dataset and evaluate the per-
formance in two settings, 1) handwritten text generation guided by a reference
image, and 2) handwritten text generation from randomly sampled latent vec-
tors. Baseline refers to [38] with the style encoder from [10].

As can be seen in Table 4 and 5, all of our new components and modifications
improve the performance of generation either from reference images or random
latent vectors. WIER improves particularly thanks to our newly proposed ViT-
based style encoder, which can encode the handwriting styles better than a
conventional CNN-based encoder. The performance further improves when we
input the target character sequence into the encoder and encode specific style
vectors for individual characters in the sequence that we want to generate. The
ViT-based style encoder also enhances the overall quality of generated images
and their fidelity to the distribution of the original real data as measured by
FID and KID, and also similarity to reference images in terms of the structure
as measured by SSIM. Since the style encoder is not used for generation with
random styles, replacing a CNN-based style encoder with our ViT-based one
does not significantly affect performance when generating from random latent
vectors instead of reference images as can be seen in Table 5. Using strict style
conditioning without introducing additional randomness by appending a random
latent vector to the style encoding and using identical style conditions for all
blocks in the generator instead of hierarchical input improves the performance of
generation from latent vectors. Finally, our newly proposed character modulation
in the discriminator improves performance of generation in both settings.



324 J. Zdenek and H. Nakayama

Table 4. Ablation study of individual changes to the baseline model evaluated on the
IAM dataset. Style of generated images is defined by reference images.

Method FID↓ KID↓ SSIM↑ WIERI↓ GAN-test↑ GAN-train↑
baseline 3.698 0.171 0.266 0.498 69.82 50.22

+ strict style conditioning 3.634 0.154 0.263 0.503 64.99 47.88

+ non-hierarchical conditioning 3.719 0.178 0.271 0.499 75.82 48.53

+ character modulation in D 3.252 0.116 0.284 0.459 85.76 51.35

+ ViT-based style encoder 2.560 0.075 0.327 0.407 88.58 55.86

+ character specific style encoding 2.136 0.078 0.429 0.327 81.11 61.90

Table 5. Ablation study of individual changes to the baseline model evaluated on the
IAM dataset. Style of generated images is random, defined by random latent vectors.

Method FID↓ KID↓ GAN-test↑ GAN-train↑
baseline 7.330 0.575 82.74 48.19

+ strict style conditioning 4.003 0.202 80.92 48.46

+ non-hierarchical conditioning 3.261 0.122 82.05 54.19

+ character modulation in D 3.047 0.104 87.83 50.74

+ ViT-based style encoder 3.042 0.076 95.08 50.57

+ character specific style encoding 3.002 0.098 94.27 55.67

4.5 Data Augmentation for HTR

Creating annotation for training of machine learning models is a demanding
and expensive process, so in real life, we may encounter situations where we
only have unlabeled or partially labeled data. In this experiment, we follow [38]
and simulate the situation that we have partially labeled data by using only 5k
images with text annotations from the IAM dataset and the rest without text
annotations. We train generative models for handwritten text on both unlabeled
and labeled data since only the text recognizer requires text annotation for
training, but the rest of the model can be optimized on unlabeled data.

For data augmentation evaluation, we use a HTR model [3] trained only on 5k
labeled images from IAM as a baseline (IAM-5k). Each of our trained generative
models is then used to augment the training dataset by generating additional
100k images for training of HTR models. Word error rate (WER) and normalized
edit distance (NED) are used as metrics for evaluation. Table 6 illustrates that
using additional training data generated by handwritten text generation models
improves the HTR performance, and in particular, our proposed model achieves
the biggest performance boost out of all tested models. We also include the
results of a HTR model trained on the complete IAM dataset of 40k labeled
images for reference.
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Table 6. Comparison of different models when used to generate additional data for
training of a handwritten text recognition model.

Data WER↓ NED↓
IAM-40k 16.52 4.95

IAM-5k 34.17 11.90

IAM-5k + ScrabbleGAN 100k [9] 30.65 10.00

IAM-5k + HWT 100k [4] 33.58 11.59

IAM-5k + JokerGAN 100k [38] 28.50 9.26

IAM-5k + HiGAN-L 100k [10] 30.42 10.01

IAM-5k + HiGAN-R 100k [10] 30.96 10.44

IAM-5k + HiGAN+ 100k [11] 27.76 8.94

IAM-5k + Ours (latent) 100k 27.17 8.73

IAM-5k + Ours (reference) 100k 25.00 8.08

4.6 Qualitative Evaluation

Figure 3 shows results of handwritten text generation and style imitation with
different methods. The models are trained on the training set of the IAM dataset
and the reference images used in Fig. 3 are from the test set of IAM. As can be
seen, our model can accurately imitate the styles in the reference images, which
shows that it generalizes well and it can imitate styles that it did not see during
training. Since JokerGAN and ScrabbleGAN cannot imitate styles, the text in
Fig. 3 is generated in random styles for these two methods.

Figure 4 shows images generated by models trained on the GNHK dataset.
Style imitation is less accurate than in the case of IAM because the GNHK
dataset contains a larger variety of images of unrestricted handwritten text in
RGB colorspace. However, images produced by our model still exhibit a signifi-
cant style similarity to reference images.

4.7 Text Erasing

We demonstrate that while our proposed method is primarily intended for hand-
written text generation, it can be also used to erase text from documents, as
shown in Fig. 5. When we include whitespace in the character set that the model
learns to generate, our model can erase text from a reference image by generat-
ing whitespace characters with style guided by the reference image. Note that it
can erase text while preserving the original background and text lines.

Whitespace characters are not included in the original training data. As a
solution, we randomly add a whitespace character to the beginning or the end
of a word by padding the image with the left or right edge pixels. The size of
the padding corresponds to the set approximate width of one character.
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Fig. 3. Results of handwriting style imitation with different methods. The reference
style images are from the test set of the IAM dataset and the models did not see those
handwriting styles during training.

Fig. 4. Results of handwriting style imitation with different methods. The reference
style images are from the test set of the GNHK dataset.



Handwritten Text Generation with Character-Specific Encoding 327

Fig. 5. Results of text erasing with our proposed method.

Table 7. Comparison of existing models and our proposed model in terms of size in
megabytes. Only the modules necessary to store to perform generation, that is generator
(Gen) and encoder (Enc), are considered.

Method Size (MB)

Gen Enc Total

ScrabbleGAN [9] 81.8 N/A 81.8

JokerGAN [38] 11.0 N/A 11.0

GANWriting [22] 95.6 76.5 172.1

HWT [4] 80.7 50.6 131.3

HiGAN [10] 38.6 20.5 59.1

HiGAN+ [11] 15.0 6.7 21.7

Ours 11.6 12.6 24.2

4.8 Model Size

Table 7 shows a comparison of the size of our model and existing models for
handwritten text generation. We only consider the size of the modules that
are needed at inference time, which is the generator and encoder. In the case
of models that only generate handwritten text in random styles, there is no
encoder. We denote the size of the models in megabytes. Our model not only
achieves better performance in terms of generation quality, but as can be seen,
it is also one of the most lightweight models.

5 Conclusion

We have proposed a new method for generation of handwritten text images. Our
method can not only generate handwriting in a random style, but it can also
imitate a specific handwriting style passed to the model as a reference in the
form of a raster image. Experiments show that our method outperforms existing
methods in terms of the quality of generation and similarity to the style of hand-
writing in reference images. The performance has particularly improved thanks
to our newly proposed ViT-based style encoder that takes the target character
sequence that we want to generate as an additional input to produce character-
specific style encodings. We also show that images generated by our model can
be used for data augmentation for training of OCR models for handwritten text.
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