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Abstract. We present a novel sub-stroke level transformer approach
to convert offline images of handwriting to online. We start by extract-
ing sub-strokes from the offline images by inferring a skeleton with a
CNN and applying a basic cutting algorithm. We introduce sub-stroke
embeddings by encoding the sub-stroke point sequence with a Sub-
stroke Encoding Transformer (SET). The embeddings are then fed to
the Sub-strokes ORdering Transformer (SORT) which predicts the dis-
crete sub-strokes ordering and the pen state. By constraining the Trans-
former input and output to the inferred sub-strokes, the recovered online
is highly precise. We evaluate our method on Latin words from the
IRONOFF dataset and on maths expressions from CROHME dataset.
We measure the performance with two criteria: fidelity with Dynamic
Time Warping (DTW) and semantic coherence using recognition rate.
Our method outperforms the state-of-the-art in both datasets, achieving
a word recognition rate of 81.06% and a 2.41 DTW on IRONOFF and an
expression recognition rate of 62.00% and a DTW of 13.93 on CROHME
2019. This work constitutes an important milestone toward full offline
document conversion to online.

Keywords: offline handwriting · transformer · online recovery

1 Introduction

In today’s highly virtual and automated world, note-taking is still a manual
procedure. It is a ground to express our volatile thoughts and ideas, allow-
ing their organization and the emergence of our creativity afterward. While
pen and paper still offer unmatched comfort and efficient input methods for
handwritten notes, it disables their exploitation to their full potential. They
are usually digitized as offline documents by capturing images with a scanner
or camera. This is an inconvenient step for most users and it also adds noise
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that affects offline processing systems. Online documents - the offline counter-
part - are recorded on touch-sensitive surface devices with an e-pen, enabling
a more powerful machine-automated organization and edition of handwritten
documents, with intuitive pen gestures. Many commercial software specializing
in note-taking exists, proposing a plethora of functionalities such as recognition,
note indexing, collaborative note-taking, etc. The online domain is ever-evolving
as the offline is already far behind. By developing an offline-to-online conversion
system we allow the users to take to their advantage the best of the two modal-
ities: ergonomic note-taking with a pen and paper and powerful editing and
processing of the digital ink. Recently, attractive hybrid devices are surfacing.
Their hardware closely mimics a pencil offering a more ergonomic input method
while still proposing online processing tools. However, in the quest for paper-like
hardware, the devices are still today limited in computational resources com-
pared to other touch devices. Research efforts [17] have been conducted in the
document analysis domain to automatically recover online from offline docu-
ments by retrieving the pen trajectory. Thus allowing for the direct exploitation
of paper and pen notes in the existing online processing systems.

However, as datasets coupling online with offline are scarce [18,20], the appli-
cations of data-driven approaches remain limited. To overcome this issue, ras-
terization or online data to offline conversion is commonly used for training
multi-modal systems. Converting online signals to realistic raster images often
involves adding noise and simulating pen tip width and movement speed [7].
Other advanced applications use generative adversarial networks [11] to gener-
ate artificial papyrus and other historic documents. Multi-modal systems utilize
both online and offline, combining temporality with spatial clues for better per-
formances. For instance, handwriting recognition is typically classified into two
types: offline and online systems. Multi-modal Handwriting recognition systems
[21,22] are shown to outperform their mono-modal counterparts. In this paper,
we focus on the reverse problem, which is offline to online conversion. Vectoriza-
tion similarly tries to model a line drawing image as a set of geometric primitives
(polygons, parametric curves, etc.) corresponding to elements found in Scalable
Vector Graphic (SVG) format. It is mainly applied to technical drawing [6] and
2D animation sketching [7]. In this particular application, retrieving temporal
ordering between the extracted vector elements is less relevant.

For handwriting applications, we are more involved in the recovery of pen
trajectory from images. The availability of temporal information in online sys-
tems often makes them better performing than their offline analog [16]. In 2019,
the Competition on Recognition of Online Handwritten Mathematical Expres-
sions (CROHME) [12] included for the first time an offline recognition task. It
has since sparked a great interest in offline to online conversion [4] in this specific
domain. Classical approaches are rule-based systems. They usually operate on a
topology to detect regions where the drawing direction is ambiguous (e.g . junc-
tions) and employ a set of handcrafted heuristics to simplify and resolve them.
However, they are very hard to maintain and do not generalize to different lan-
guages or content. Recently, many data-driven approaches have been proposed
in the literature to recover online from offline. However, CRNNs models [2,3]
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rely on fixed-size feature maps of the whole offline image, regardless of the ink
density, to predict all the underlying intricacies in the temporality of the differ-
ent strokes resulting in the partial or full omission of strokes. In this paper, we
propose the following contributions:

– We propose novel sub-stroke level Transformers (SET and SORT) to recover
the online from offline (see Fig. 1) instead of CRNNs architectures [2,3].

– We move from the image to sequence framework to operate on the sub-stroke
level to perform a local and global analysis of the different junctions as is
adopted in classical approaches [4].

– Our SET and SORT approach outperforms prior online recovery work on the
handwritten text of the IRONOFF dataset. We also extend our work to more
complex maths equations of the CROHME dataset.

(a) Input offline image.

(b) Extracted sub-strokes from the CNN in-
ferred skeleton. A sub-stroke can be drawn
in both directions.

(c) Network online prediction. start and end nodes are annotated. The zoom box shows
the predicted sub-stroke direction and ordering as illustrated by arrows. The edge color
is the destination node. For double-traced sub-strokes, edges are read in the clockwise
orientation as in [9].

Fig. 1. Given an input offline image (a), sub-strokes incident on the same junctions
are extracted (b). Our Network predicts the sub-stroke’s order and directions (c). The
trivial longest path obtained by following the outgoing edges from start node to end
node is the predicted online signal.

2 Related Works

Line Drawing Vectorization is a crucial step in the creation of 2D anima-
tions and sketches. It involves converting drawing images into vector graphics.
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Artists often begin by sketching their work on paper and then manually vec-
torizing it digitally for finalization. However, vectorizing rough and complex
real-world sketches can be challenging, as multiple overlapping lines need to be
combined into a single line and extraneous lines and background noise need to
be removed. [19] proposed a fully convolutional simplification network with a
discriminator network to clean high-resolution sketches. [7] developed a two-
step system employing two neural networks to vectorize clean line drawings.
The first multi-task CNN predicts skeleton and junction images, and the second
CNN resolves the segment connectivity around the junctions. They demonstrate
state-of-the-art results on the public Quick, Draw! [8] dataset. However, their
method is restricted to relatively small junctions of degrees 3 to 6 that fit in a
32 × 32 window.

Pen Trajectory Recovery. Throughout the years, numerous methods have
been proposed by researchers to tackle the task of pen trajectory recovery from
offline images. The steps involved in these methods typically include extrac-
tion of topology and detection of local ambiguous regions such as junctions
and double-traced strokes. These ambiguities are then resolved using hand-
designed rules. The existing methods can be broadly categorized into three
types: recognition-based, topology-based, and tracking-based. Recognition-based
[5] methods, which were first introduced for drawings composed of regular shapes
such as diagrams and engineering drawings, detect these shapes by fitting geo-
metric primitives. This approach is not ideal for handwritten text due to lim-
itations in the possible graphical representation. Topology-based methods [10]
construct a representation using topological information from the image (skele-
ton, contour, etc.) and view pen trajectory recovery as a global or local opti-
mization problem. [17] developed a weighted graph approach that finds the best
matching paths for pen trajectory recovery and demonstrated good performance
on English characters. The tracking-based approach estimates the pen’s relative
direction iteratively. [24] proposed an image-to-sequence framework to generate
pen trajectories using a CNN and fully connected layers without any RNN. This
approach showed good results on Chinese and English handwriting datasets but
the model’s complexity is directly proportional to the image resolution. More-
over, their method requires a skeleton as input and inferred skeletons can be
noisy and very different from the perfect skeletons their network was trained on,
leading to unexpected failures at test time. [14] investigated the generalization
of the previous approach to arbitrary-size images of math equations. They sug-
gest using a fully convolutional neural network trained on noisy offline images.
The network learns to predict both a skeleton and the next pen positions. How-
ever, the lack of temporal modeling causes over-segmentation of long strokes.
Other lines of research followed a sequence modeling approach with CRNNs. In
[3] a CNN-BLSTM network was proposed. They obtain good results on Tamil,
Telugu, and Devanagari characters. However, this approach is limited to single
isolated characters and requires separate models for each script. [2] extended
the same CRNNs network to the text line scale [13] by applying a variety of
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data-augmentation techniques and an adaptive ground-truth loss to counter
pathological strokes impact on the model learning. Their system is shown to
recover a great portion of the online signal but still tends to omit some small
strokes or even to over-simplify complex long strokes. Moreover, this approach
is not well suited for 2D content such as math equations. In fact, resizing larger
images of equations to a small fixed height (61 pixels) can lead to illegible
content.

Stroke Embeddings and Transformers. Most of the proposed aforemen-
tioned approaches rely on the sequence-based networks to recognize drawing [8]
or handwritten text [3]. [1] propose stroke-level Transformers to embed strokes
into fixed lengths representations that are used to generate auto-completion
of diagrams drawings. They show that Transformers outperform the sequential
RNN approach [8]. However, they conclude that cursive handwriting strokes are
challenging and longer strokes can’t be correctly encoded in a fixed-size embed-
ding. In this work, we model sub-stroke as embedding. Sub-strokes are much
simpler shapes (straight lines, short open curves, etc.) that are far easier to
model.

3 SET, SORT: Sub-stroke Level Transformers

After an overview of the proposed system, we present the sub-stroke extraction
algorithm, the Sub-stroke Encoding Transformer (SET) and the Sub-strokes
ORdering Transformer (SORT).

3.1 Overview

We propose a novel sub-stroke ordering Transformer model to reconstruct the
online signal from offline images. We start by using the FCNN from [14] to extract
a skeleton (1-pixel thick outline) from the input offline image. A sub-stroke
cutting algorithm based on junction detection is then applied to the extracted
skeleton. We use a Transformer auto-encoder to learn sub-stroke embedding
[1]. Finally, an auto-regressive Transformer decoder is used to predict the sub-
strokes ordering using their embeddings. Figure 2 shows an overview of our
pipeline. More formally, given a set of sub-strokes V = {ss1, ss2, . . . , ssN},
with a sub-stroke defined as a sequence of coordinates ssi = (xk, yk)mk=1. Each
sub-stroke from the skeleton appears twice, in both directions. The goal is to
predict the sequence indicating the writing order of the different sub-strokes
S = (o1, oi, . . . , oM ) oi ∈ {1, . . . , N} and how they should be merged to form
strokes. This is achieved by predicting a pen-up to indicate the end of the stroke.
We note that V and S can be of unequal lengths, for instance, sub-strokes can
be ignored (as noise), used several times (redrawing), and most of the time
sub-strokes are drawn in one direction only, therefore the opposite sub-stroke is
omitted.
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Fig. 2. Overview of our approach for the generation of the first three sub-strokes. After
sub-stroke extraction, the SET encoder provides embedding for each sub-stroke. The
SORT network uses the memory and the history to predict the next sub-stroke and
the pen state. The sequence begins with a bos token and will end after M tokens with
the eos token. Here we show the first three timesteps.

3.2 Sub-strokes Extraction

After extracting a skeleton using an already trained FCNN [14], we apply a
thinning algorithm [23] to remove the few small remaining ambiguities in the
skeleton, obtaining Ithin. We cut the skeleton into sub-strokes by removing the
different junctions pixels and computing the resulting connected components. A
junction pixel is defined as a skeleton pixel with 3 or more 8-connected skeleton
pixels. Each connected component will have two extremities, the skeleton pixels
with exactly one 8-connected skeleton neighbor (see Fig. 3). We compute the
path from one extremity to another to define a sub-stroke. The opposite traver-
sal path is also included as a distinct sub-stroke. Using this simple heuristic-free
algorithm allows us to generalize to any handwritten content. Our sub-stroke
cutting algorithm results in a normalization of stroke drawing. Partial incon-
spicuous stroke retracing is removed.

3.3 SET: Sub-stroke Embedding Transformer

We adapt the stroke embedding from [1] to the lower level of a sub-stroke. In
fact, learning meaningful fixed-size vector representation for a stroke of arbitrary
size and complexity can prove to be especially difficult for cursive handwriting.
Sub-strokes are usually much simpler geometric primitives that are far easier to
model. We define the sub-stroke auto-encoder as a Transformer followed by a
sub-stroke reconstruction MLP, as shown in Fig. 4. Before being embedded by
the encoder, the input sub-stroke points are shifted to start at the origin and
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Fig. 3. Illustration of the sub-strokes cutting algorithm.

normalized w.r.t. to the offline image dimensions. This ensures that embedding
only captures important local geometric features.

Encoder. Given an input sub-stroke defined as a sequence of points ssi =
((x1, y1), . . . , (xm, ym)), the points are first linearly projected to vectors of size
64 and summed with a sinusoidal positional encoding of each timestep. The
input embedding is then fed through a Transformer with a stack of 6 layers, and
4 attention heads, with a model dimension of 64 and a feed-forward size of 256.
The decoder output vector for the last timestep n of ssi is projected linearly to
a vector of size 8 corresponding to the sub-stroke embedding Ei.

Decoder. The sub-stroke reconstruction F (Ei, t) ∈ R
2, t ∈ [0, 1] is a paramet-

ric approximation of the sub-stroke curve using a two-layer MLP. It estimates
the coordinates of the sub-stroke curve at every timestamp t. It’s composed
of a hidden layer of size 512 followed by ReLU and an output layer of size 2
corresponding to the coordinates (xt, yt) of a point. The auto-encoder stroke
embedding network objective is to reconstruct accurately the input sub-stroke.

3.4 SORT: Sub-stroke Ordering Transformer

We present a novel sub-stroke ordering auto-regressive transformer based on
the sub-stroke embedding. Each sub-stroke embedding is concatenated with the
positional embedding of its starting point [f(ssi[0]);Ei] to add global information
of the sub-stroke spatial arrangement in the offline image. We use a stack of
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Fig. 4. Sub-stroke encoding transformer.

nlayers encoder-decoder Transformer with a model size of dm and nheads attention
heads. The last transformer decoder layer employs a single attention head to
compute the cross-attention between the encoder’s output keys K and values V
and the decoder self-attention output queries Q. This layer’s output attention
scores Âi over the sub-strokes set are used as predictions for the next sub-stroke
ssi+1 probability distribution. As we can see in Eq. 1, the SORT outputs two
decisions. On one hand, the attention scores over the sub-strokes set are used
as predictions for the next sub-stroke ssi+1 probability distribution Âi. On the
other hand, the values Oi are used to predict the pen up state P̂i with a small
classification MLP.

Qi,Ki,Vi = QWQ
i ,KWK

i ,VWV
i

Âi = softmax

(
QiK

�
i√

dk

)
∈ R

T×L

Oi = ÂiVi

P̂i = MLP (Oi)

with WQ
i ∈ R

dm×dk ,WK
i ∈ R

dm×dk ,WV
i ∈ R

dm×dv

(1)

To alleviate the lack of coverage we employ the Attention Refinement Module
(ARM) [25].

3.5 Training

The SET network is trained separately from the SORT. We sample five points at
random t ∈ [0, 1] from the sub-stroke latent representation Ei by using F (Ei, t).
The network is trained with an MSE loss between the reconstructed points and
the ground-truth sub-stroke points as in Eq. 2.
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LMSE =
1
5

5∑
n=1

(F (Essi , tn) − ssitn )2 (2)

We use teacher forcing to train the SORT network, it predicts the i + 1 sub-
stroke probability distribution with Âi and the associated pen state P̂i given
the i sub-stroke. The network is trained with a multi-task loss L combining a
cross-entropy classification loss for sub-stroke ordering LO and a binary cross
entropy loss for pen state classification LP .

L = λ1LO + λ2LP ,

LO(Â, A) =
1

|V |
|V |∑
y=0

−Ay log
(
Ây

)
,

LP (P̂ , P ) =
1
2

∑
y∈{ down,up }

−
(
Py log

(
P̂y

)
+ (1 − Py) log

(
1 − P̂y

))
,

(3)

where λ1, λ2 ∈ R and P,A are respectively the ground-truth pen-state and sub-
stroke successor. Sub-strokes are extracted from an accurate but still not perfect
inferred skeleton. They are ordered using the ground-truth online signal to obtain
A used to train our network. This ordering is defined as the oracle machine’s
solution to the sub-strokes ordering problem. The oracle ordering is obtained
by using the original online to map each extracted sub-stroke from the offline
image independently to a sub-section of the online. They are then ordered using
their time of apparition in the online signal. We note that this oracle answer is a
satisfying approximation of the original online. However, it can still introduce a
small disparity from the original online, particularly in cases of invisible pen-ups
or erroneous skeletons.

3.6 Inference

At inference time, we follow the same pipeline to extract sub-strokes from an
offline image as explained in Sect. 3.2. Sub-stroke embeddings are then produced
using the SET network. The SORT network then iteratively predicts the next
sub-stroke and corresponding pen state. We select the sub-stroke with the highest
predicted probability as the next one which will be fed as input for the next
timestep. Inference ends when a special eos token is predicted as the next sub-
stroke. The result is a sequence of sub-strokes that we linearly interpolate to fill
in the void left between two consecutive sub-stroke extremities (see Fig. 3), only
when the pen state is “down” (i.e. P̂i < 0.5).

4 Evaluation

The goal of our method is to reconstruct accurately the pen trajectory reflected
by a user’s offline drawing. To quantitatively evaluate the quality of the online
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reconstructions, we employ two evaluation metrics DTW and handwriting recog-
nition rate. While the DTW strictly measures geometric reconstruction fidelity,
the recognition rate is a more lenient metric that measures semantic coherence.

4.1 DTW Point-Wise and DTW Point-to-Segment-Wise

We compute a DTW distance between the inferred online signal and the ground
truth signal to measure the accuracy of the network prediction. We also employ
a modified DTW with a point-to-segment distance DTWseg by [15] which is less
sensitive to the sampling rate. We also evaluate the stroke extraction by using a
DTW on the stroke level. Similar to the offline Stroke IoU proposed by [7], we
use an online stroke DTW defined as :

SDTW =
1
n

∑
i=1,...,n

min
j=1,...,m

DTW(Si, Ŝj), (4)

where Si are ground-truth strokes and Ŝj are predicted strokes. This metric is
useful to detect under/over-segmentation issues of strokes which are otherwise
not taken into account by DTW.

4.2 Handwriting Recognition Rate

The natural variability in writing styles makes it so that different reconstruc-
tions are plausible. DTW-based metrics continuity constraint strictly matches
two online signals, which leads to high-cost alignment in some cases such as
delayed strokes, interchangeable strokes and reversed strokes. An online auto-
matic handwriting recognition system can be used to recognize the retrieved
online signal. The recognition results can be compared with a ground-truth text
label, computing a word and character recognition rate (WRR and CRR) for
handwritten text and expression recognition rate for handwritten math. This
results in higher-level evaluation which is far less sensitive to writing styles.
However, we note that powerful state-of-art recognition systems can correctly
predict the text even if some symbols are approximated roughly. In our case,
this is problematic since the predicted signal is no longer loyal to the user’s
handwriting. For this reason, it is important to supplement the recognition rate
with the DTW to also account for visual accuracy. We use the MyScript inter-
active ink recognition engine version 2.01 to evaluate the recognition.

5 Experiments

In this section, we present the training protocol and the evaluation results of our
approach using online metrics.

1 MyScript iink SDK is available at https://developer.myscript.com/docs/interactive-
ink/2.0/overview/about/.

https://developer.myscript.com/docs/interactive-ink/2.0/overview/about/
https://developer.myscript.com/docs/interactive-ink/2.0/overview/about/
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5.1 Datasets and Training

Our networks are trained and evaluated on IRONOFF [20] and CROHME [12]
datasets. We follow the same procedure as [14] to render synthetic offline images
from their online counterpart. Our rendered offline images are noisier than the
constant stroke width rendering proposed in [12], as we want to better mimic
the end goal real word noisier offline images (cf. Fig. 5). The training set of
IRONOFF and CROHME contains respectively 48K and 10K samples, roughly
equating to a total of 100K strokes each. We supplement CROHME with 15K
equations from our private proprietary dataset.

Fig. 5. Comparison between variable and constant thickness stroking.

We first train the SET network on IRONOFF and freeze it during the training
of the SORT network. The SORT network is trained on IRONOFF and fine-
tuned on CROHME and our private datasets. We use the Adam optimizer with
a learning rate of 0.001 and a batch size of 10. The training is performed on a
single NVIDIA GeForce RTX 2080 Ti GPU with 24GB of memory and takes
20 h to be completed.

5.2 Results

We evaluate and benchmark our method against state-of-art offline to online
conversion systems. Table 1 shows the results on the test set of IRONOFF con-
taining 17K test samples. Row (d) shows that the oracle approximation is very
close to the original online (e). The small difference reflects the previously men-
tioned errors and simplifications. Our method (c) outperforms other state-of-
the-art approaches (a) and (b) while using a relatively lighter model compared
to the other data-driven approach of [2]. However, as shown by (d) there is still
a margin for progression.

We also evaluate our method on the CROHME 2014 and 2019 test sets. The
evaluation results of [4] and our method are presented in Table 2 and 3.

Our approach achieves a better stroke extraction resulting in higher expres-
sion recognition rates. As reported by rows (d) of Tables 2 and 3 respectively,
better online level DTW is not always synonymous with more precise stroke
segmentation and more accurate recognition. In fact, [4] obtains a slightly bet-
ter DTW of 14.29 as reported by Table 3 however a fairly lesser stroke DTW
7.19 compared to ours of 3.85. The same applies to ExpRate as well, 57.01%
compared to 62.00% of our approach.
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Table 1. Results on IRONOFF test set.

Method Parameters DTW↓ DTWseg ↓ CRR↑ WRR↑
(a) CNN-BiLSTM [2] 7M 7.09 7.45 59.22 41.43

(b) Chungkwong et al. [4] – 5.75 5.06 73.45 60.00

(c) Sub-stroke Transformer (Ours) 2M 3.25 2.72 90.85 81.06

(d) Oracle – 0.33 0.32 92.56 83.45

(e) online GT – 93.03 83.81

Table 2. Results on CROHME 2014 test set.

Method DTW↓ DTWseg ↓ SDTW↓ ExpRate↑
(a) Chungkwong et al 16.30 16.13 6.54 52.43

(b) Sub-stroke Transformer (Ours) 24.54 24.37 12.29 29.37

(c) fine-tune (b) on CROHME 13.75 13.59 4.43 53.75

(d) fine-tune (c) on private datasets 13.93 13.80 2.93 59.31

(f) Oracle 0.24 0.22 0.50 66.63

(g) GT online — — — 69.77

Table 3. Results on CROHME 2019 test set. Row (d) reports the results of the fine-
tuned model on equations from CROHME and our private dataset.

Method DTW↓ DTWseg ↓ SDTW↓ ExpRate↑
(a) Chungkwong et al 14.29 14.14 7.19 57.01

(d) fine-tune on private dataset 14.98 14.80 3.85 62.00

(f) Oracle 0.26 0.24 0.69 70.19

(g) GT online — — — 73.13

Figure 6 shows a visual comparison between our approaches and other state-
of-the-art methods on IRONOFF. Our approach Fig. 6c is observed to cover
very closely most of the offline image compared to Fig. 6a and 6b. In fact, some
characters are missing in their online reconstructions. For example, the smaller
“e” loops (rows 3 and 4), the middle horizontal bar of “E” (row 4) and the
apostrophe (row 2) are not covered. Figure 6a and 6b tend to over-segment the
strokes, on the other hand, our approach predicts more accurate pen ups result-
ing in a far less number of strokes. Figure 6a often struggles with end-of-sequence
predictions (first three rows).

Our method is observed to better capture the greater diversity in the stroke
2D ordering in Maths equations as illustrated by Fig. 7. For instance, the recon-
struction in Fig. 7b shows greater variability compared to the strict X-Y ordering
of Fig. 7a. Here the superscripts are predicted after the exponents and the oper-
ators. This is a less common way to write but is still plausible. As highlighted
in Fig. 7b our network mistakenly re-crosses the first “+” sign (as highlighted in
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Fig. 6. Comparaison of our approach (c) to [2] (a) and [4](b) on IRONOFF samples.
Each stroke is drawn with a distinct color. Blue arrows show the direction. The first
and last stroke points are respectively yellow and red.

Fig. 7. Inference results of [4] and our approach on CROHME datasets.
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the red box), instead of drawing the “1”, but is still able to recover the remaining
strokes correctly. We hypothesize that it’s due to the two strokes being of very
similar shape and in close proximity to each other. We observe a few errors in
Fig. 7a, the “i” dot is missing in one case. The ordering of the superscripts in the
second “

∑
” is far from ideal. In Fig. 7d, the parenthesis and their content are not

always in the same order. Reflecting once again on the great diversity captured
by our network. Thanks to our pen state prediction, we can more accurately
segment the symbols Fig. 7d. In Fig. 7c the f in the term “f(a)” of the numer-
ator is incorrectly segmented resulting in a bad recognition. Figure 8 shows the
SORT prediction of the probability distribution of the next sub-stroke at every
timestep. We observe that the network is very confident in its predictions and
they are well centered around a small local region of the image. The network’s
reconstructed signal overall reflects the same temporal dynamics as the ground
truth online signal. However, as depicted in Fig. 8b, in rare instances it locally
drifts from the ground truth online.

Fig. 8. (a) Attention heatmap of the SORT decoder output layer for the Fig. 7d. The
y-axis is the memory sub-strokes sorted from left to right (with the first point) for
illustration purposes only. Network predictions (see Sect. 3.6) as well as the oracle
answers are plotted on top of the heatmap. The eos sub-stroke is here indicated by a
−1. (b) The divergence between the inferred sub-stroke order and the oracle’s order,
for timesteps from 24 to 40.
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6 Discussion

Our approach is able to generalize to different handwriting domains. By transfer-
ring the learned knowledge from Latin words to Maths equations we are able to
achieve better results compared to handcrafted rule-based systems. However, we
need this transfer, in the form of a fine-tuning step, for new application domains.
The existing online databases of handwriting in a multitude of languages and
free-form charts can be exploited to train the system in order to generalize to
all content types.

We focus our study application on offline images of at most 100 sub-strokes.
Full offline documents can attain upwards of 6000 sub-strokes. Further research
efforts are necessary to up-scale our sub-stroke ordering transformer to the doc-
ument level. In fact, it presents two difficulties, firstly longer and more com-
plex temporal dependencies to model. Secondly, the memory bottleneck of the
quadratic multi-head attention needs to be addressed.

7 Conclusion

In this paper, we presented a novel sub-stroke level transformer approach to
recover online from offline handwriting. Our approach consists of two steps:
First, we embed the sub-strokes set, extracted from the inferred skeleton, using a
sub-stroke encoding transformer (SET). The sub-strokes embeddings are ordered
using a sub-strokes ordering Transformer (SORT) which also predicts the pen
state. In contrast to other data-driven approaches, SORT is trained in a guided
attention manner and is able to accurately string together the original sub-
strokes rather than regressing a simplified approximation of the online. Our
method’s performance stands out when compared to the state-of-the-art on Latin
words and Math equations. In future work, we would like to extend our system
to full documents thus enabling a powerful combination of offline note-taking
and seamless online editing.
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