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Abstract. Text detection in historical documents is challenging owing
to the dense distribution of texts with diverse scales and complex layouts,
resulting in low detection accuracy under high Intersection over Union
(IoU) conditions. Historical document digitization requires highly accu-
rate detection results to preserve the contents completely. In this paper,
we present an end-to-end text detection framework, namely Dynamic
Text Detection Transformer (DTDT), for dense text detection in his-
torical documents under high accuracy requirements. We introduce a
deformable convolution-based dynamic encoder to strengthen the text
representation ability at different scales. In addition, the parallel dynamic
attention heads are designed to facilitate better interaction between the
box and mask branches to obtain accurate text detection results. Exper-
iments on the MTHv2 and ICDAR 2019 HDRC-CHINESE (short for
“IC19 HDRC”) datasets show that the proposed DTDT method achieves
state-of-the-art performance. Furthermore, our DTDT achieves competi-
tive results in layout analysis on SCUT-CAB benchmark, demonstrating
its excellent generalization capabilities.

Keywords: Text Detection · Detection Transformer · Historical
Document Understanding

1 Introduction

Historical document digitization, which facilitates the preservation and under-
standing of the knowledge and insights that are contained in ancient books, has
attracted increasing research attention [2,6,10,29,38]. The aim of text line detec-
tion, which is a critical step of historical document digitization, is to locate text
instances. Accurate text detection is beneficial for subsequent tasks such as text
recognition and ancient book restoration. Moreover, accurate text line detection
results can effectively reduce the difficulty of layout analysis, which aims to locate
and categorize document elements such as figures, tables and paragraphs.

With the rapid development of deep learning, scene text detection methods
have made significant success on various benchmarks [19,47,51,57]. However, it
is difficult for these methods to perform well on complex historical documents
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with dense text alignment. Figure 1 (a) presents the results of the scene text
detection methods DBNet++ [19], PSENet [47] and FCENet [57] for historical
documents. It can be observed that many of the detection results of these meth-
ods overlap with neighboring texts and do not closely match the texts, and also
suffer from missed and false detections. We summarize the reasons for the insuf-
ficient generalization ability of scene text detection methods for these historical
documents as follows: (1) As illustrated in Fig. 1 (b), the text distribution in
the historical documents is denser than scene text images. For example, MTHv2
[29] contains an average of 33 text instances, while there are only seven text
instances per image on SCUT-CTW1500 [52]. (2) Significant degradation of his-
torical documents, including stains, seal noise, ink seepage, and breakage, makes
it difficult for scene text detection methods [19,24,26,47,48,54,57] to obtain
accurate detection results, which are essential for the subsequent text recogni-
tion. Figure 1 (c)-(f) show examples of the degradation of ancient documents.

(a) Inaccurate detection results from scene text de-
tection methods

(b) Number of text instances
in historical document (left) vs.
scene text image (right)

(c) Stains (d) Seal noise (e) Ink seepage (f) Breakage

Fig. 1. (a) Inaccurate detection results of scene text detection methods on historical
document images, (b) comparison of the number of texts of historical document and
scene text image, and (c)–(f) degradation phenomena such as stains, seal noise, ink
seepage, and breakage.

In this paper, to alleviate the problem of insufficient detection accuracy and
difficulty in generalizing to complex layout scenarios with dense text distribu-
tion by previous methods, we propose the Dynamic Text Detection Transformer
(DTDT) to adapt to the dense and multi-scale characteristics of historical doc-
ument texts and to meet the requirements of high accuracy. Firstly, for the
dense and multi-scale text arrangement, we present a deformable convolution-
based dynamic encoder to fuse the adjacent scale features of the feature pyramid
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with dynamic attention, which leverages spatial attention, channel attention,
and multi-scale feature aggregation to pay attention to text features at different
scales. Second, to meet the high accuracy detection requirements, we introduce
a parallel dynamic attention head using a dynamic attention module to fuse
the Region of Interest (RoI) and image features, and make the box and mask
branches interact effectively. The parallel dynamic attention head facilitates the
mutual interaction of dual-path branch information and precisely detects text
regions in a continuously refined manner. Furthermore, we employ the spatial
attention transform (SAT) mask head [30] to suppress background noise in the
feature maps. Discrete cosine transform (DCT) is also used to encode the text
masks as compact vectors for the accurate representation of text in arbitrary
shapes. We conduct experiments on the historical document datasets MTHv2,
IC19 HDRC and SCUT-CAB, illustrating the strong robustness and generaliza-
tion ability of our model.

The contributions of this paper are summarized as follows:

• We propose an end-to-end text detection model named DTDT, which is based
on a dynamic Transformer for the accurate detection of dense texts in histor-
ical documents with complex layouts.

• We introduce a deformable convolution-based dynamic encoder using
dynamic attention to improve the detection performance of text at differ-
ent scales, and present parallel dynamic attention heads with shared image
features for joint detection and segmentation.

• We adopt the SAT mask head to suppress the background noise and employ
DCT to encode arbitrary-shaped text masks while maintaining a low training
complexity.

• DTDT achieves state-of-the-art results with F-measure of 97.90% and 96.62%
for MTHv2 and IC19 HDRC, respectively. Furthermore, it obtains compet-
itive results for layout analysis on SCUT-CAB, illustrating its outstanding
generalization capabilities.

2 Related Work

2.1 Regression-Based Methods

Regression-based methods directly regress the bounding boxes of the text. [17]
modified the aspect ratios of anchors based on SSD [23] to accommodate the
scale characteristics of text lines. TextBoxes++ [32] regressed the quadrilateral
vertices to detect multi-oriented text. EAST [54] generated rotated rectangles
and quadrilaterals directly at the pixel level. To avoid the learning confusion
caused by the order of points, OBD [24] decomposed the order of the quadrilat-
eral label points into key edges comprising four invariant points and included a
key edge module for learning the bounding boxes. To prevent entangled vertices
from interfering with the learning process, DCLNet [1] regressed each side that
is disentangled from the quadrilateral contour. The above methods are mainly
for horizontal and multi-oriented text, and their performance degrades when
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dealing with irregular text. To tackle the issue of irregular text detection, Tex-
tRay [46] represented arbitrary-shaped text in the polar system using a uniform
geometric encoding. FCENet [57] mapped the text border to the Fourier domain
to obtain Fourier contour embedding that fits curved text contours. Regression-
based methods enjoy simple post-processing algorithms, but a complex repre-
sentation design is required to fit arbitrary-shaped text. The one-stage methods
[17,32,54] are slightly less accurate because they only regress once, and the
two-stage methods [10,24,29] usually require the manual setting of the anchor
to accommodate the multi-scale text distribution. In contrast, our method per-
forms multiple iterations of the learnable query boxes to obtain more accurate
results and proposes a dynamic encoder to fuse multi-scale features to better
adapt to the textual characteristics of ancient documents.

2.2 Segmentation-Based Methods

In segmentation-based methods, text detection is considered as a segmentation
problem. TextSnake [26] described the text as a series of ordered overlapping
disks. PAN [48] adopted a lightweight segmentation head and a learnable post-
processing method known as pixel aggregation. DBNet [18] provided differen-
tiable binarization by adding the binarization step to the network for training.
DBNet++ [19] extended DBNet by introducing an adaptive scale fusion module
to enhance the scale robustness. To better distinguish adjacent text, PSENet
[47] generated text segmentation maps in a progressive scale expansion man-
ner. SAE [43] mapped pixels to an embedding space, drawing closer to pixels
belonging to the same text and vice versa to divide the adjacent text more effec-
tively. Although segmentation-based methods can be adapted to curved text,
they require complex post-processing and are sensitive to background noise, and
are more computationally intensive for ancient text detection owing to the dense
text. Therefore, our method uses DCT to encode individual text instances to
obtain a lightweight mask to reduce computational complexity. The SAT mask
head is used to suppress noise in historical documents with complex layouts.

2.3 Transformer-Based Methods

Transformer [44] has attracted increasing attention in scene text detection. Raisi
et al. [34] proposed a Transformer-based architecture for detecting multi-oriented
text in scene images and a loss function for the rotated text detection problem.
Tang et al. [41] adopted Transformer to model the relationship between a few
sampled features to decode control points. DPText-DETR [51] used explicit box
coordinates to generate and subsequently dynamically update position queries.
The lack of interaction between the branches of the decoding the control points
and those for detecting the bounding boxes prevents them from achieving bet-
ter performance. Our DTDT explicitly establishes the interaction of the box
and mask information for accurate text detection using the dynamic attention
module.
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3 Methodology

3.1 Overall Architecture of DTDT

As illustrated in Fig. 2, our proposed DTDT consists of three components: Back-
bone, Dynamic Encoder and Dynamic Decoder. The backbone network is com-
posed of Swin Transformer (Swin-T) [25] and feature pyramid network (FPN)
[20] to extract feature maps at different stages of the input image. The dynamic
encoder applies dynamic attention to the features at different scales and fuses
adjacent layer features to enhance multi-scale feature representation. The sum of
the image features P extracted from xDE and position embeddings E is fed into
the Transformer encoder for self-attention learning to obtain enhanced features
Z. Based on Sparse R-CNN [40], the RoI features U box

t and Umask
t together with

the enhanced image features Zt−1 are fed into the dynamic attention module [9]
of the box and mask branches, respectively, to obtain the object features Obox

t

and Omask
t for the prediction of the class, bounding box, and mask of each text

instance. Finally, the output of the previous layer will be continuously refined in
the dynamic decoder with parallel dynamic attention heads to obtain accurate
results.

Fig. 2. Framework of proposed DTDT model. Our model consists of three components:
the backbone, the dynamic encoder, and the dynamic decoder with parallel dynamic
attention heads. MHA denotes the multi-head attention and FFN denotes the feedfor-
ward network.

3.2 Dynamic Encoder

In general, large and small objects are assigned to high-level and low-level feature
maps to extract the RoI features, respectively. However, this may not be optimal
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[22] as other unused feature maps may contain information that helps to improve
the final prediction. Therefore, inspired by recent research on dynamic encoder
[7,33], we introduce a dynamic encoder to perform multi-scale feature fusion on
adjacent feature maps, which is depicted in the upper right part of Fig. 2. The
process is divided into three steps. First, given a set of features P = {P2, ..., Pk}
(k = 5) from the feature pyramid, deformable aggregation, which consists of
several deformable convolution layers [55] on each feature map and an averaging
operator, is performed to simulate the spatial attention for specific regions on
Pi.

This process can be formulated as follows:

si = Offseti(Pi) (1)
P ∗
i = {DeformConvi−1(Downsample(Pi−1), si),

DeformConvi(Pi, si), (2)
DeformConvi+1(Upsample(Pi+1), si)}

P
′
i = Avg(P ∗

i ), (3)

where the offset si that corresponds to the feature map Pi is learned using a
3 × 3 convolution Offseti for deformed sampling locations. The neighboring
feature maps Pi−1 and Pi+1 are downsampled and upsampled, respectively, to
the same size as Pi. Deformable convolution is performed on the sampled feature
maps and Pi, and each feature map focuses on the specific position si that is
learned from the middle layer to avoid conflicts during feature aggregation. P

′
i

is obtained by averaging each term of P ∗
i .

Second, P
′
i is used for channel attention learning with the squeeze and exci-

tation (SE) module [13]:
P

′′
i = SE(P

′
i ). (4)

Finally, we use the DY-ReLU [5] activation function, whose parameters are
dynamically generated from the input elements to improve the feature represen-
tation capability:

P o
i = DY -ReLU(P

′′
i ). (5)

3.3 Parallel Dynamic Attention Heads

The feature maps from the dynamic encoder are cropped and aligned using
RoIAlign [12] to obtain the RoI features U ∈ R

k×d×l×l via k learnable query
boxes bt (t = 0), where d is the channel dimension, and l denotes the output
resolution after the pooling. The feature maps of each layer are averaged and
summed to obtain the image features P ∈ R

k×d, which are summed with the
learnable position embeddings E ∈ R

k×d to be fed into the Transformer encoder
and MHA module to obtain Zt−1 ∈ R

k×d. We design parallel dynamic attention
heads with the RoI features U and enhanced image features Zt−1, as indicated
in the bottom right part of Fig. 2.

Existing methods [24,28,29] use the RoI features that are obtained from the
box branch to predict the mask directly, which ignores the interaction between



DTDT 387

the box and mask branches. As illustrated in Fig. 3 (b), we use the dynamic
attention module, namely DynConv, for more effective interaction of the box
and mask branches, thereby enabling improved results. The box branch employs
DynConvbox

t to fuse the RoI features U box
t and enhanced image features Zt−1

to extract object features Obox
t for classification and bounding box regression.

The mask branch leverages the RoI features Umask
t that are extracted from the

predicted box bt and the enhanced image features Zt−1 for further fusion in
DynConvmask

t to obtain the final detection results mt. The above process is
expressed by Eqs. 6 and 7, where Pbox and Pmask denote a pooling operator for
the extraction of RoI features U box

t and Umask
t , respectively. Bt denotes the box

head that is stacked by three linear layers. Mt indicates the SAT mask head.
xDE is the output feature map of the dynamic encoder.

U box
t = Pbox(xDE , bt−1),

Obox
t = DynConvbox

t (U box
t , Zt−1),

bt = Bt(FFN(Obox
t )),

(6)

Umask
t = Pmask(xDE , bt),

Omask
t = DynConvmask

t (Umask
t , Zt−1),

mt = Mt(Omask
t ).

(7)

The above process offers two advantages: (1) it provides the mask information
obtained from the supervision of the mask branch to the box branch, and (2) the
collaborative interaction between the box and the mask branches is improved.
Moreover, we employ the SAT [30] mask head, which has been demonstrated as
effective for dense instance segmentation and exploits spatial attention to sup-
press noise. The implementation details of the SAT mask head are illustrated
in Fig. 3 (a). Average and max pooling operations are carried out along the
channel axis of the object features Omask

t ∈ R
14×14×C that are obtained by

DynConvmask
t to generate the pooling features Pavg, Pmax ∈ R

14×14×1, which
are stacked along the channel, where C denotes the channel dimension. Sub-
sequently, a 3 × 3 convolution layer is applied and the features are normalized
with a sigmoid function. Finally, element-wise multiplication is performed on
the object feature Omask

t . A mask feature of length 40 is obtained using two
convolution and linear layers.

3.4 DCT Mask Representation

The direct prediction of the two-dimensional binary grid incurs a high com-
putational cost for large resolutions. However, fine-grained features cannot be
captured on a small scale. Therefore, we apply DCT [39] to transform the text
mask encoding into the frequency domain. As the energy is concentrated in the
low-frequency part, we keep this part to produce a compact vector as a predic-
tive object to accurately represent the text shape. The flow of the DCT encoding
and inverse DCT (IDCT) decoding is depicted in Fig. 4.
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We resize the ground truth mask Mgt ∈ R
H×W to M ∈ R

K×K during train-
ing, where H and W are the height and width of Mgt, and K denotes the mask
size. We apply two-dimensional DCT transforms M to obtain MDCT ∈ R

K×K .

MDCT (u, v) =
2
K

C(u)C(v)
K−1∑

x=0

K−1∑

y=0

M(x, y)cos
(2x + 1)uπ

2K
cos

(2y + 1)vπ

2K
, (8)

where C(w) = 1√
2

for w = 0 and C(w) = 1 otherwise.
The first N-dimensional vector V is sampled from the MDCT in a “zig-zag”

manner to obtain the one-dimensional mask representation. We extend V to
Mdct ∈ R

K×K by filling in zeros at the end during inference and apply two-
dimensional IDCT processes V to obtain MIDCT ∈ R

K×K .

MIDCT (x, y) =
2
K

C(u)C(v)
K−1∑

u=0

K−1∑

v=0

Mdct(u, v)cos
(2x + 1)uπ

2K
cos

(2y + 1)vπ

2K

(9)
Finally, MIDCT is resized to Mrec ∈ R

H×W using bilinear interpolation. It
is worth noting that the time complexity of DCT and IDCT is O(nlogn) [11].

(a) Implementation details of SAT mask head

(b) Implementation details of dynamic attention module

Fig. 3. (a) Structure of SAT mask head. (b) Dynamic attention module applied to box
and mask branches.

Fig. 4. DCT encoding and IDCT decoding.
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3.5 Loss Function

We adopt the Hungarian algorithm [15] to match the predicted and ground
truth boxes. DTDT applies a set prediction loss to the set of predictions of the
categories, box coordinates, and mask representations. The total loss function
can be formulated as follows:

L = λclsLcls + λboxLbox + λmaskLmask. (10)

Lbox is defined as:
Lbox = λL1LL1 + λgiouLgiou. (11)

Lmask is defined as:
Lmask = LL2 + Ldice. (12)

In the above equations, Lcls is the focal loss [21], and LL1 and Lgiou are the
L1 loss and the generalized IoU loss [37], respectively. LL2 is the L2 loss of the
one-dimensional mask embedding before DCT decoding and Ldice is the dice
loss [31] of the two-dimensional mask after IDCT decoding. λcls, λbox, λmask,
λL1 and λLgiou

are set to 2, 1, 5, 5 and 2, respectively.

4 Experiments

4.1 Datasets

MTHv2 [29] is a Chinese historical document dataset consisting of 2,399 train-
ing images and 800 testing images. The dataset includes character-level and
line-level quadrilateral annotations.

ICDAR 2019 HDRC-CHINESE [38] is a large historical documents dataset
of structured Chinese family records that are annotated using line-level quadri-
laterals. We randomly used 10,715 images for training and 1,000 for testing
among the 11,715 available images.

SCUT-CAB [6] is a complex layout analysis dataset of Chinese historical doc-
uments containing 3,200 training images and 800 testing images. SCUT-CAB
contains two subsets: SCUT-CAB-Logical and SCUT-CAB-Physical, which have
27 and 4 categories, respectively. All text instances are annotated using quadri-
laterals.

4.2 Implementation Details

We used Swin-T [25], pre-trained on ImageNet [8] as the backbone. The number
of learnable proposal boxes was set to 500. The number of iterations was set
to four to improve the accuracy. We selected a mask size of 80 × 80 and a
40-dimensional DCT mask vector. We trained DTDT for 90k iterations with a
batch size of eight on two NVIDIA RTX A6000 GPUs. We used AdamW [27]
as the optimizer and set an initial learning rate of 2.5e−5 and a weight decay of
1e−4. The learning rate was divided by 10 at 50% and 70% of the total number of
iterations. We applied data augmentation methods including random cropping
and multi-scale training. The maximum image scale was set to 1333 × 800.
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4.3 Comparison with Previous Methods

We compared our method with previous state-of-the-art methods on MTHv2
and IC19 HDRC. Tables 1 and 2 display the quantitative experimental results.
Figure 5 shows the qualitative results for MTHv2. Furthermore, by modifying
the number of categories in the class head, we applied DTDT to the SCUT-
CAB dataset to validate the potential of our method in the task of ancient book
layout analysis.

Text Line Detection. The results in Tables 1 and 2 demonstrate the high
accuracy and robustness of our method on these two datasets. Our method
achieved an F-measure of 97.90% on MTHv2, which was 0.18% higher than the

Table 1. Detection results on MTHv2 dataset. “P”, “R”, and “F” indicate the
precision, recall, and F-measure, respectively. Bold indicates the best performance.
Underline indicates second best.

Method IoU=0.5 IoU=0.6 IoU=0.7 IoU=0.8 Post-processing

P R F F F F

Projection analysis [29] – – 69.22 66.87 60.97 – –

EAST [54] – – 95.04 91.55 80.35 – –

Ma et al. [29] – – 97.72 97.26 96.03 – –

Mask R-CNN [12] 98.17 95.98 97.06 96.67 95.51 90.23 –

FCENet [57] 95.16 92.82 93.97 91.30 86.51 73.86 –

OBD [24] 97.83 97.43 97.63 97.32 96.31 90.78 –

Deformable DETR [56] 97.92 94.64 96.25 95.62 93.80 84.22 –

DBNet++ [19] 96.20 94.93 95.56 77.01 36.15 18.70 0.015s

PSENet [47] 93.97 87.84 90.80 88.65 83.68 70.96 0.022s

PAN [48] 97.18 93.14 95.12 92.55 84.63 62.74 0.011s

TextSnake [26] 95.07 89.00 91.94 90.92 89.36 84.58 0.497s

DTDT(Ours) 97.94 97.86 97.90 97.41 95.98 91.18 0.008s

Table 2. Detection results on IC19 HDRC dataset.

Method IoU=0.5 IoU=0.6 IoU=0.7 IoU=0.8 Post-processing

P R F F F F

Mask R-CNN [12] 96.54 96.21 96.37 94.66 88.80 70.01 –

FCENet [57] 93.63 91.50 92.55 87.74 77.25 52.12 –

OBD [24] 94.56 97.02 95.77 93.91 86.83 64.18 –

Deformable DETR [56] 94.43 95.72 94.57 92.55 86.27 71.96 –

DBNet++ [19] 96.37 95.73 96.05 90.64 75.57 48.51 0.021s

PSENet [47] 91.57 88.57 90.04 83.02 68.42 42.19 0.026s

PAN [48] 95.11 92.84 93.96 88.68 71.27 31.65 0.012s

TextSnake [26] 82.90 72.22 77.19 73.40 68.41 51.54 0.512s

DTDT(Ours) 96.89 96.35 96.62 95.15 90.10 71.42 0.016s
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second best score when the IoU threshold was 0.5. Only three methods main-
tained performance above 90% when the IoU was 0.8, and our method is the
best. Analogous results were obtained for IC19 HDRC. Our method obtained
an F-measure of 96.62%, outperforming the second best method by 0.25%. Our
method remained robust under high IoU requirements without much perfor-
mance degradation compared to other methods. Our DTDT still yielded high
accuracy when the IoU threshold was between 0.5 and 0.8. The post-processing
times for the segmentation-based methods and our DTDT are given in Tables 1
and 2, and the results illustrate the rapidity of IDCT decoding.

Layout Analysis Experiments. Table 3 presents the experimental results for
the ancient book layout analysis on SCUT-CAB dataset [6]. The results show
that our method could achieve results that are comparable to those of other
methods in the physical and logical layout analysis tasks. Our model achieved
the best AP75 and AP results on the physical layout analysis task, demonstrating
the effectiveness of DTDT. In the logical analysis task, DTDT yielded the second
best performance, which was slightly lower than that of Deformable DETR.

Table 3. AP50, AP75, and AP of each model on SCUT-CAB testing sets. AP refers
to average precision, AP50 and AP75 are the average precision at IoU = 0.5 and 0.75,
respectively.

Method Physical Logical

Objection Detection Instance Segmentation Object Detection Instance Segmentation

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Anchor-based one-stage

RetinaNet [21] 91.5 82.9 74.7 91.5 81.6 73.8 78.3 61.2 55.1 78.3 61.7 55.0

YOLOv3 [35] 87.6 82.5 75.9 87.1 79.1 73.1 71.4 59.3 52.7 71.4 59.3 52.7

GFL [16] 92.6 74.8 73.7 92.6 73.2 72.4 78.1 57.8 54.1 78.1 58.8 53.5

Anchor-free one-stage

FCOS [42] 83.2 76.0 68.9 83.1 74.7 68.1 74.1 54.4 50.2 74.0 53.4 49.1

FoveaBox [14] 91.3 82.5 74.6 91.3 80.0 73.1 80.4 60.2 54.9 80.3 60.3 54.3

Anchor-based multi-stage

Faster R-CNN [36] 91.3 86.1 77.5 91.0 83.4 75.3 77.4 61.3 54.9 77.3 60.6 54.2

Cascade R-CNN [3] 91.4 87.8 79.9 91.4 84.8 77.4 77.5 62.3 55.9 77.5 60.9 55.4

Mask R-CNN [12] 92.1 87.7 79.1 91.7 87.2 79.5 78.5 61.9 55.1 77.7 63.1 55.3

Cascade Mask R-CNN [3] 92.1 88.6 80.9 92.1 88.4 81.0 78.0 62.7 56.8 77.9 61.8 56.3

HTC [4] 92.8 89.4 81.4 92.8 88.8 81.0 80.1 65.2 58.3 80.0 63.1 58.0

SCNet [45] 94.1 89.0 81.3 94.1 89.1 82.0 83.6 67.3 60.2 83.6 68.0 60.3

Pure Instance Segmentation

SOLO [49] 90.7 81.6 75.2 91.2 84.3 76.7 73.8 57.7 51.6 73.2 57.8 51.5

SOLOv2 [50] 91.5 81.6 75.1 92.2 85.1 78.7 76.4 53.2 50.5 77.0 59.7 53.9

Query-based

Deformable DETR [56] 92.7 87.9 81.0 92.5 85.1 78.8 84.6 69.8 61.6 84.6 69.9 61.1

QueryInst [9] 91.7 87.1 79.3 91.2 86.7 79.2 80.4 65.7 58.5 80.4 65.3 58.1

Multi-modality based

VSR [53] 90.4 85.5 78.5 90.4 84.5 78.2 78.3 61.6 55.7 78.2 61.1 55.1

DTDT(Ours) 94.0 90.0 83.0 94.0 89.6 82.7 81.1 68.0 60.8 81.1 67.8 60.4
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(a) Comparison of detection results on historical documents from
MTHv2 dataset

(b) Qualitative results at each stage: masks from DTDT on MTHv2 dataset

Fig. 5. (a) Visualization results of our method and other scene text detection methods.
Our method achieved a higher detection accuracy. (b) Qualitative experimental results
for the four stages of two example images. The different colors are used to distinguish
the detection results of each text instance of the model.
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4.4 Ablation Study

We performed an ablation study on MTHv2 to verify the effectiveness of our
proposed method. The quantitative results for different settings are presented in
Table 4. The DCT resulted in a 2.78% improvement, indicating that the text
shape can be more represented accurately using DCT masks. The dynamic
encoder achieved performance improvements of 0.12% and 0.23% in the precision
and recall, respectively, on the MTHv2 dataset, indicating its ability to improve
the network’s adaptation to multi-scale text. The parallel dynamic attention
heads resulted in a 0.12% improvement in the F-measure. The design of the
parallel dynamic attention heads provides better interaction and collaboration
between the box and mask branches, facilitating the benefits of the two branches.
The SAT mask, which achieved an F-measure of 97.90%, has a certain ability to
suppress noise.

Table 4. Detection results for different settings of DCT, dynamic encoder, parallel
dynamic attention heads, and SAT mask head on MTHv2 dataset. “DE” indicates
dynamic encoder and “PDAH” indicates parallel dynamic attention heads.

DCT DE PDAH SAT P R F �F

– – – – 92.36 97.33 94.78 –

� – – – 97.83 97.28 97.56 ↑2.78

� � – – 97.95 97.51 97.73 ↑0.17

� � � – 97.89 97.80 97.85 ↑0.12

� � � � 97.94 97.86 97.90 ↑0.05

5 Conclusions

We proposed DTDT, which is a highly accurate text line detection method
for dense text distribution of historical documents. We introduced a dynamic
encoder to improve the representation ability of multi-scale text and parallel
dynamic attention heads to facilitate the mutual benefits of the box and mask
branches for generating more accurate text masks. The experiments demon-
strated that our method achieved state-of-the-art results on historical document
datasets such as MTHv2 and IC19 HDRC, and achieved comparable results on
the layout analysis dataset SCUT-CAB. The potential of DTDT for text detec-
tion in modern documents and other scenarios will be explored further in future
research.
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