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Abstract. Extracting figures and similar visual elements from PDFs
of scientific publications is important but non-trivial, and progress is
impeded by a lack of datasets for evaluation and machine learning. In
this work, we describe and publish the SCI-3000 dataset , containing 3 000
PDFs of scientific publications (34 791 pages) with annotations of figures,
tables, and corresponding captions, from the fields of computer science,
biomedicine, chemistry, physics, and technology. We demonstrate the use
of the dataset to benchmark two figure, table, and caption extraction
approaches from recent literature: one rule-based and one deep learning-
based.
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1 Introduction

Scientific papers are generally published electronically in PDF format. Extract-
ing information from PDFs and making it machine-actionable has proven to be
a challenge, sought to be addressed by research in the field of Page Object Detec-
tion (POD), also referred to as Semantic Document Segmentation. The reason
behind this challenge is that vector graphics, various symbols, tables, and other
miscellaneous elements like page decorations get represented by rudimentary vec-
tor drawing commands in a PDF. This makes it difficult to extract individual
blocks of text, figures, tables, etc.

Use cases for extracting these elements are numerous, especially in academia.
In fields like biomedicine and computer science, interest in mining figures from
previous publications is notably high [19,30]. Examples range from various figure
search engines [16,18], to extracting semantic information from graphs [29],
to using curated databases for training machine learning models [1,2]. Going
beyond the benefits to the respective research communities, having textual
descriptions of figures in the form of captions provides input data for train-
ing cross-media machine learning systems, which use different forms of the same
data to extract deeper semantic meaning, for example, neural networks which
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learn to describe images with natural language [23]. Furthermore, Clark and
Divvala [5] show that the number of figures per paper page and the average cap-
tion length have been rising steadily over the past few decades, suggesting that
the amount of information presented visually has been on the increase relative
to plain text.

Although there exist several tools that can take apart a PDF file with vary-
ing degrees of success [24], the task of figure, table, and caption extraction is
an area with much potential for improvement. For the sake of brevity, we refer
to this task simply as figure extraction unless explicitly noted otherwise, as in
[5,30]. The previously-mentioned internal structure of the PDF poses a chal-
lenge for most tools available today, as they are usually not able to discern an
entire graphical element, but instead output its individual pieces, like the back-
ground, text and so on. Extracted separately, these elements are far less valuable
than the entire semantic unit they belong to. Including the corresponding cap-
tion further increases the difficulty of this task. While captions contain essential
information for understanding figures and tables they describe, the number of
document layouts and designs possible makes their extraction difficult. The few
tools that extract both captions and graphical elements from scientific publi-
cations are, in most cases, usable only on works from specific research fields
[19]. This has created the need for more advanced approaches, motivating the
recent increase of research in the field of POD [20]. Nonetheless, researchers have
been vocal regarding the lack of standardized metrics and datasets for evalua-
tion and machine learning. Most extraction tools from the literature have either
been tested on unpublished validation sets, or datasets that are not specifically
tailored for the discipline, for example, by including non-scientific publications.
Other validation datasets currently available have different issues, e.g., only con-
taining images of pages instead of full PDFs, requiring the user to piece together
the dataset from multiple sources, or focusing on only one scientific field or ele-
ment type. Therefore, addressing the lack of standardized metrics and datasets
is a critical research topic.

With that in mind, this paper has three main contributions:

1. A novel dataset, SCI-3000, built by annotating figures, tables, and cap-
tions in 3000 documents (34,791 pages) from the fields of computer science,
biomedicine, chemistry, physics, and technology.

2. A suite of tools for evaluating figure, table, and caption detection, as well as
annotation of such elements.

3. A SCI-3000-based evaluation of two figure-extraction methods from recent
literature; a rule-based approach (PDFFigures2 [5]), and a deep learning-
based approach (DeepFigures [30]).

While previous research efforts have predominantly focused on computer sci-
ence and biomedicine, they have produced methods that do not perform well
on other fields [25]. By including five research disciplines, we make our dataset
more general. SCI-3000 also includes the original PDFs of publications. This is
in contrast to many other datasets [30] [5] that require the user to manually
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acquire them because the underlying licenses prevent redistribution. We publish
SCI-30001 under CC-BY 4.0.

Finally, our evaluation of existing figure-extraction approaches demonstrates
their acceptable effectiveness for tasks where perfect recall or precision is not
required. Still, it shows that there is room for improvement, especially regarding
caption extraction.

2 Available Annotated Datasets

One characteristic of previous work on figure extraction and on POD in gen-
eral, is the focus on single scientific disciplines. Arguably, the most focused-on
domains are computer science (CS) and biomedicine.

The former was the most represented discipline in our literature research,
with 12 papers either using a predominantly CS-based dataset in their evalua-
tion phase, or focusing on building one. The two most prominent open datasets
in this field are the CS-150 [6], containing 150 papers sampled from three CS
conferences, and CS-Large [5], with 350 CS papers published after 1999. The
ICDAR2013 [8] dataset facilitated multiple challenges regarding table detection
and interpretation in PDFs. It was later extended with data on graphs in [14]. A
well-used pair of datasets from this group are the ICDAR2016 and ICDAR2017
[7] challenge validation sets, sampled from the CS-focused repository CiteSeer.
These datasets were used by Saha et al. [27] and Li et al. [20], before Younas et al.
[36] pointed out a lack of quality in the annotations and posted an amended ver-
sion. These datasets have the disadvantage of only containing rasterized versions
(i.e., each page is available as an image) of papers, which means that approaches
taking advantage of PDF structure cannot use them. Younas et al. [36] also noted
that a dataset with more types of page objects, e.g., captions, is needed to push
the field forward. CiteSeer appears to be a popular choice for source material,
as many other publications sourced their datasets from it [4,29,35], even though
these were never made public. Three papers from Kuzi et al. [16–18] sourced
their dataset from the ACL Anthology, which is a repository consisting of work
from the areas of Natural Language Processing and Computational Linguistics.
Finally, Chiu et al. [3] sampled 30 papers from two CS conferences: ACM UIST
and IEEE ICME. Their test dataset was also not made public.

The second research field in terms of representation was biomedicine. PubMed
and repositories like Biomedcentral are the main sources for building PDF
extraction datasets [22,28,32,34]. One popular dataset that came up during our
literature review was the ImageCLEF 2016 Medical dataset [11], used by Tsut-
sui and Crandall [33] and Yu et al. [37]; however, this is a collection of already
extracted images from medical publications. The most recent, and largest dataset
in this category is PubLayNet [38] [13], which includes figures and tables along
with other typical document elements. It does not, however, include relationships
between those elements.

1 DOI: 10.5281/zenodo.6564971
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We found two papers focusing on both computer science and biomedicine.
One is [19], using the previously mentioned CS-150 dataset, and the other is [30].
For the latter dataset, several aspects are missing in terms of usability. While
around 5 million annotations were released publicly on Github2, the licenses
of the underlying publications hosted on arXiv do not allow for redistribution
without explicit permission from each individual author. PubMed, which they
used to source PDFs from the biomedical domain, does have an open publishing
arrangement with the authors3, but the scope of this repository is focused only
on biomedicine and other sub-fields of life science. This limitation means that
the dataset must be pieced together from three sources. While there is no doubt
that these challenges can be overcome, they definitely present hurdles for re-use
in future efforts.

3 Evaluation Methodology

Correctly assessing if and how two sets of annotations differ is an essential part
of our work. When evaluating existing figure extraction approaches, we need to
analyze if their output matches the ground truth. In the crowd-sourced annota-
tion stage (Sect. 4), we need to know if two people agree in their annotation of the
same page. Both of these use cases can be served by a single automated annota-
tion assessment system. Furthermore, we argue that using the same methodology
in both stages is a requirement for the consistency of our work.

To make sure we implement the correct evaluation strategy, we exam-
ined related research on figure extraction from scientific publications. Most
researchers described the performance of their extraction approaches through
metrics like accuracy, recall, F1 measure, and precision. To apply these metrics
to bounding boxes, an adaptation of the Jaccard index to 2D space was often
used, called Intersection Over Union (IOU) [30]. The IOU is computed by divid-
ing the intersection surface of two bounding boxes by the surface area of their
union. Authors of [5,6,20,30] used an IOU of 0.8 as the minimum threshold
when deciding if a predicted bounding box matched the ground truth.

Going beyond these similarities however, the information is so scarce, that
recreating evaluation setups from most papers becomes impossible. This lack of
clarity and standardized evaluation sets was also observed by Choudhury et al.
[4]. Even the most influential papers in the broader field of object detection like
[26] vaguely reference other work instead of giving a detailed description of their
evaluation setup. This makes it hard to know how exactly that referenced work
was applied when benchmarking new systems. Essentially, we had to resolve
three main ambiguities during the implementation of our automated annotation
evaluation system:

1. Mapping of bounding boxes between annotation sets.
2. Handling of misclassifications between Figures, Tables and Captions.

2 https://github.com/allenai/deepfigures-open, accessed on 15.09.2021
3 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist, accessed on 15.09.2021

https://github.com/allenai/deepfigures-open
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
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3. Evaluation of relations between captions and elements they describe (refer
to).

The first ambiguity was addressed by Liu and Haralick [21] by modeling the
task as an optimal assignment problem. This formulation entails two distinct
finite sets, K and L. These represent the two sets of bounding boxes we are
comparing. Let there also be a cost function for associating a k ∈ K with an l ∈ L
denoted with q(k, l) (Euclidean distance between the centers of two bounding
boxes in our case). The goal is to find an optimal assignment a : K → L, such
that the sum of costs for all one-to-one mappings is the smallest possible. If the
cost is a rational valued function, like in our case, the optimal solution(s) can
be found in O(N3) by applying the Hungarian algorithm [15]. The only change
that has to be made to the original problem formulation is to allow K and L to
have different sizes, since the prediction and ground truth sets do not necessarily
have the same cardinality.

Where our approach differs from [21], and by extension from [12], is the way
we handle classes and misclassification errors. In these two papers, detection
(localization) and classification errors are handled separately. For example, if
a predicted bounding box matches the ground truth in the IOU metric, but
its class is wrong, some points are still given. In our case, however, we run the
Hungarian algorithm for each class separately, meaning that a correctly detected
but misclassified element would incur both a false positive for the predicted class
and a false negative for the ground truth class. While our approach makes the
evaluation more strict, it simplifies the result, as each prediction can either be
entirely correct or incorrect.

In contrast, a more lenient approach is taken when assessing the correctness
of relation assignments between captions and tables or figures. More specifically,
we run the Hungarian algorithm for all classes together and match each bounding
box in one annotation set to its closest corresponding annotation in the other set
(if one exists). For every caption-figure/table pair, we then check if the reference
relation exists between their respective closest elements in the other annotation
set. A true positive is recorded if the corresponding pair of elements is linked in
the same manner. When assigning the closest corresponding element, misclassi-
fication or IOU do not play a role. Only the proximity between the center points
of bounding boxes is considered (Fig. 1). This design decision was made in order
to make evaluating the assignment of relations between elements less dependent
on the precision of drawn bounding boxes and their predicted classes.

We have made our implementation of the entire evaluation pipeline available
as a python package4 We encourage other researchers to contribute parsers and
exporters for a variety of tool outputs to it.

4 https://pypi.org/project/sci-annot-eval

https://pypi.org/project/sci-annot-eval
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Fig. 1. Example of a matching reference relation across annotation sets. Even though
the shape and class of the referenced element is not the same on both sides, we match
both bounding boxes by proximity and conclude that the reference relation has been
assigned in the same manner.

4 Building the SCI-3000 Dataset

Before starting with the acquisition of PDFs and the crowd-sourced annotation,
we set four properties that the dataset must fulfill:

1. The included scientific works must be published with a license that allows
redistribution.

2. The dataset should be relevant and useful as a training and benchmarking
aid to other researchers in the area of figure extraction.

3. The dataset should facilitate focus on scientific fields that have previously
been under-represented as targets of figure extraction research but have a
need for such systems.

4. Each scientific field considered in the dataset should have sufficient documents
to act as an individual validation dataset, able to produce performance met-
rics comparable based on statistical significance.

4.1 Data Source and Sampling

To obtain PDFs eligible for redistribution, we turned to the DOAJ5, a meta-
repository hosting millions of open-access publications under the CC BY-SA 4.0
license. DOAJ gives access to the metadata of all indexed work, including journal
language, year of publication, and field of research according to the Library of

5 https://doaj.org/

https://doaj.org/


240 F. Darmanović et al.

Congress Classification Scheme (LCC)6. The following decisions were made when
downloading the papers: (i) to ensure that all papers are in English, we omitted
papers from journals that are indicated as publishing papers in languages other
than English; (ii) for papers that list multiple fields of research, we took the first
field listed as the main one; and (iii) we used the fields at the second level of
the LCC hierarchy and mapped all classifications to this level (except for papers
that only provided classifications at the top level).

We included the research fields of computer science and biomedicine due to
the existing extensive related work on POD in these areas.

For the further fields, the results of a meta-study [31] on the number and
sizes of figures and captions in scientific publications across different research
areas helped us identify research fields with an above-average number of per-
page figures and caption lengths. We also identified fields in which at least some
initial work on POD has been done.

Praczyk et al. [25] focused on the automatic extraction of figures from
the field of high-energy physics. When referencing physics in the previously-
mentioned meta-study [31], the authors found that the field has an above-average
number of figures (0.8 compared to 0.7), charts (5.7 versus 3.6), as well as cap-
tion length (468 characters versus 411), which further reinforces the field as a
relevant target of figure-caption extraction approaches.

Choudhury et al. [4] describe an end-to-end figure-caption extraction and
search engine system for chemistry. In the meta-study [31], the authors found
a slightly above-average number of graphs per paper (3.7 compared to 3.6), as
well as caption length (416 versus 411 characters), though the number of images
is significantly lower than the mean (0.3 compared to 0.7).

Kuzi et al. [18] explored the use of their system FigExplorer in support-
ing mechanical failure diagnosis. Referencing the meta-study [31], the field of
mechanical engineering has more than double the average number of charts per
paper and almost five times more images than the mean; however, the average
caption length lies significantly under the mean (119.8 characters compared to
411). Looking at other similar fields, we noticed the same trend, even more pro-
nounced. Therefore, we decided to generalize by including the entire first-level
classification of technology (T) from the LCC in our dataset.

To summarize, we have identified five research fields for which figure extrac-
tion is critical: computer science, medicine, physics, chemistry, and technology.
We equally split the entire corpus into these five research fields and sample
3000 documents, containing 34,791 pages in total. Rasterized versions of these
pages were created using version 22.02.0 of Poppler7, using the default media
box cropping. We limited the maximum number of pages per paper to 20 to
prevent a sampling bias towards longer publications, which would reduce the
variety of visual styles in the dataset. Note that some of the sampled papers
are cross-discipline, belonging to more than just one of the five selected research
fields.

6 https://www.loc.gov/catdir/cpso/lcco/
7 https://poppler.freedesktop.org/, accessed on 24.04.2023

https://www.loc.gov/catdir/cpso/lcco/
https://poppler.freedesktop.org/
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4.2 Data Annotation

We go into detail on how we used Amazon Mechanical Turk (AMT) to crowd-
source the annotations of the 34,791 pages. The annotation tool used in this
process is available on GitHub8

Task Specification. Our task is defined as follows: Bounding boxes have to
be drawn around figures, tables and their corresponding captions in rasterized
document pages. In addition to determining their location and size, the element
to which each caption refers needs to be established. A reference relation has
the cardinality of 1:1, meaning that captions refer to a single element and vice-
versa, although ones without a reference relation are also allowed. While this
should not come up in the context of an entire document, focusing on one page
at a time makes elements without a reference possible if they refer to each other
across pages [19], like a figure whose caption is on the following page. Another
case where this might happen is if a table or figure is broken into multiple parts
to fit on one page. Although the problem could be solved by assigning multiple
bounding boxes to one element, it makes the system needlessly complicated, so
in our formulation of the task, the caption always references its closest part of
figure or table it describes, while all others are considered separate elements
without a reference.

Submission Review Policy. To ensure that submissions are accepted and
rejected consistently and to asses the quality of our dataset, we designed a clear
and transparent submission review process. We describe this process and explain
how it was used to build a pool of workers for our task.

Our previous experience with AMT has shown that picking a few top workers
to annotate the entire corpus is more efficient than opening the task for everyone
and manually reviewing erroneous submissions. To rank workers, we built a
scoring system by giving a worker one point each time a submission was manually
verified as correct by us and subtracting five if it was rejected. This grading
disparity is motivated by the fact that around half of the pages have no elements
to annotate. Making the reward and penalty equal would make the score a
less meaningful indicator of the quality of work. In terms of review criteria, we
aim to be fair and only reject submissions that are intentionally wrong. For
example, assigning random bounding boxes, skipping clearly visible elements,
and submissions that violate our instructions. In cases where less severe mistakes
are made, like imprecise bounding boxes, we simply correct the submission.
In such cases, the worker is still compensated after 72 h without rewarding or
discounting points.

8 DOI: 10.5281/zenodo.7878627
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To build a pool of qualified workers, we submit pages to AMT in batches
of 100 and wait until they are all worked through. At this stage, each page is
annotated by only one person and subsequently reviewed by us. The batching
is done to avoid a small number of workers speeding through all of the possible
assignments hoping they would get the payment without review. Since it would
be infeasible for us to manually review all thirty-four thousand pages, once the
qualified worker pool reaches around 15 members, we start the main annotation
phase by posting more tasks and letting two annotators label each page. We set
a threshold using AMT’s Qualification feature so that only workers with over a
certain number of points could see and work on them.

Manual disagreement resolution would only be needed when two submissions
for the same page have not passed the automated evaluation procedure. It works
by first cropping the whitespace in every bounding box and then applying the
evaluation framework described in Sect. 3, with an IOU threshold set to 95%.
We have released our system for administrating annotation by AMT on GitHub9

Task Pricing. To help us determine a fair compensation amount, we turned to
observational studies of the crowdsourcing marketplace. Two in-depth studies
by Hara et al. [9,10] used an opt-in browser plugin to collect metadata for
3.8 million task instances from AMT, including the compensation. They found
that, once unpaid work like searching for tasks was accounted for, the mean
and median hourly wages were $3.31/h and $1.77/h, respectively. With this way
of calculating wages, only 4% of workers earned more than the U.S. federal
minimum wage of $7.25/h. Ignoring the unpaid work, the median and mean
wages rise to $3.18/h and $6.19/h, respectively. Splitting the earnings by task
type, the authors found that the task of image transcription, which is closely
related to our work, is by far the lowest-paid task type on the platform, with
a median wage of $1.13/h, while at the same time having the most instances
compared to other types.

With the above-mentioned findings in mind, we settle on a price around the
U.S. federal minimum wage of $7.25/h, which we believe is fair considering that
the task does not require any special qualifications. The workers are paid per
annotated page.

After settling on an hourly wage, we measure the median time needed to
annotate a single page and use the result to infer the final compensation amount
per page. We enlisted three volunteers that have never done this task or used our
tool to annotate 40 pages each. The average annotation time measured in this
experiment was between 20 and 35 s. Therefore, we set the payment per page to
$0.04.

Annotation Results. The crowd-sourced annotation process was started by
building a pool of qualified workers. The threshold for the worker score was
set to 25 and stayed in that range during the entire run. This distilled about

9 DOI: 10.5281/zenodo.7878638
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Table 1. Annotation statistics by research field.

Research Field Page Count Figures Tables Captions Empty Pages

Chemistry 7,664 3,880 1,226 5,092 3,981

Computer Science 7,796 4,277 1,784 5,999 4,244

Medicine 6,144 1,752 1,431 3,147 3,872

Physics 5,520 4,025 683 4,703 2,576

Technology 7,667 4,448 1,613 6,027 3,793

Total 34,791 18,382 6,737 24,968 18,466

15 workers out of the 164 from the phase where each submission was manually
reviewed from our side. As the second stage, where each page was annotated by
two workers, took us three weeks, a few more runs of single-worker annotations
were performed to increase the size of the worker pool. At the end of the process,
we had 241 workers and 62,100 submissions but only 20 workers were responsible
for more than 90% of them.

77.8% of all annotations in our dataset were the case where a page was anno-
tated by two workers and their submissions passed our automatic evaluation
procedure (IOU between the annotations greater than 95%). Since those sub-
missions were nearly identical, a random one was picked as the final annotation
in our dataset. The second group of annotations, at 16.4%, resulted from either
in-house annotation or corrections to submissions from the initial annotation
phase (one worker per page). The final 5.7% are disagreements between workers
that we manually resolved by either picking the correct submission or amend-
ing annotation mistakes. When taking into consideration only pages that were
annotated by at least two workers, we derive an inter-annotator agreement of
93.1%.

Throughout the experiment, workers would send requests to overturn our
rejections of their submissions. We handled each of these on a case-by-case basis
and always made sure to explain what was wrong with the submission and why
we rejected it. In total, our rejection rate was less than 1%, most of which were
submissions from the initial pool-building stage.

When analyzing the working time, our initial estimates were correct, as the
average time per task was just over 22 s.

A per-field breakdown of the annotated objects is shown in Table 1. The entire
annotated dataset contains 18,382 figures, 6,737 tables, and 24,968 captions.
Roughly every second page has contains one annotation.

All annotations in the published dataset have had white space surroundings
cropped to make them as precise as possible. Full details on all aspects of the
dataset are available in the thesis10 on which this paper is based.

10 https://doi.org/10.34726/hss.2022.94800

https://doi.org/10.34726/hss.2022.94800
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5 Evaluation

We test the performance of two existing approaches for figure, table, and caption
extraction from scientific publications on the SCI-3000 dataset.

5.1 Evaluated Approaches

Approaches in this research field of POD can be classified on a spectrum between
rule-based systems on one end and machine-learning-based ones on the other.
Between them are systems using both approaches in various proportions. The
best representative of the rule-based group in terms of impact is PDFFigures
2.0 [5]. This system by Clark and Divvala (including the first version [6]) was
referenced by a significant number of papers in the field [4,16,18,19,29–31,33,
36].

As a representative approach for figure extraction using machine learning,
we selected DeepFigures [30]. This system was trained on the largest dataset for
our task currently available, containing over a million papers and over 5.5 mil-
lion labels. Additionally, the dataset contains works from several fields, includ-
ing biomedicine, computer science, biology, and physics. This should make the
model more robust than PDFFigures 2.0, which was fine-tuned only on computer
science papers. A possible drawback of DeepFigures in the context of our com-
parison is that it uses PDFFigures 2.0 for detecting and assigning captions to
graphical elements, meaning that both systems share the same approach for this
sub-task. The authors justify this decision by the way of reduced performance
when the model is trained to also identify captions, although they describe a
different design that could produce a neural network capable of performing both
sub-tasks equally well.

5.2 Experiment Setup

To compute predictions from the selected systems, their respective source codes
were downloaded from GitHub1112.

During the benchmarks, both systems had difficulties with some documents
because of special PDF features or encodings. We skipped thirteen PDFs for
Deepfigures and four for PDFFigures 2.0. A lack of output was considered as
an empty prediction, meaning that a false negative prediction is counted for
each ground truth annotation in skipped documents. We ran both systems on a
machine with 8 AMD EPYC 7542 cores, 8 GB of memory, and around 300 GB of
storage. PDFFigures 2.0 took three hours to complete, and Deepfigures needed
more than 72. However, our aim is not to compare runtimes, and therefore, we
have not used any optimizations that could improve these results.

For the actual evaluation process, we use the strategy described in Sect. 3 to
get True Positive (TP), False Negative (FN), and False Positive (FP) per-page

11 https://github.com/allenai/pdffigures2, accessed on 15.05.2022
12 https://github.com/allenai/deepfigures-open, accessed on 15.05.2022

https://github.com/allenai/pdffigures2
https://github.com/allenai/deepfigures-open
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Fig. 2. F1 Score comparison between PDFigures 2.0 and DeepFigures for the task of
figure detection. The bars represent average F1 scores grouped by research fields, while
the dotted lines represent overall averages.

counts for four element types: figures, tables, captions and references between
captions and their corresponding elements at an IOU of 0.8. From these counts,
we derive the key evaluation metrics: Precision, Recall, and the F1 score.

The metrics are calculated per element type and research field. We use the
macro-averaging strategy for any averages displayed in the next section by first
computing the mean inside each element group and then using the results to
derive the overall average. Because there is a caption for almost every graphical
element and a reference relation between each caption and a figure/table, com-
puting averages over all element types in one step (micro-averaging) would skew
the performance metrics towards these two larger groups. The same reasoning
is applied to research fields, as the amount of graphical elements varies between
them.

5.3 Results

An in-depth breakdown of performance metrics is provided in Table 2. We guide
the reader through these results in a visual manner, starting with figure-specific
performances.

As shown in Fig. 2, there is a substantial performance difference between
PDFFigures 2.0 and DeepFigures regarding figure detection. The former reaches
an F1 score of 0.68, while the latter does better, with a score of 0.79. The
hand-tuned nature of PDFFigures 2.0 can also be seen in the difference in its
performance across different research fields. The system seems to struggle with
publications in the fields of chemistry and technology, while physics publications
seem to be a better extraction target than computer science: the field for which
the system was optimized. On the other hand, DeepFigures shows a similar F1
score across all research fields.

Moving to table detection (Fig. 3), a similar discrepancy can be seen between
the two systems, as both reach almost the same scores for extracting figures,
demonstrating the similarities between those two tasks. This time, however,
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Table 2. Evaluation results for PDFFigures2 and DeepFigures

PDFFigures2 DeepFigures

Research Field El. Type F1 Prec Rec F1 Prec Rec

Average Average 0.68 0.75 0.62 0.79 0.84 0.76

Caption 0.52 0.51 0.53 0.52 0.56 0.48

Figure 0.70 0.83 0.60 0.88 0.95 0.81

References 0.81 0.88 0.75 0.95 0.95 0.95

Table 0.69 0.79 0.61 0.83 0.89 0.77

Chemistry Average 0.60 0.68 0.55 0.80 0.85 0.76

Caption 0.50 0.46 0.54 0.51 0.57 0.47

Figure 0.55 0.74 0.44 0.85 0.97 0.76

References 0.69 0.75 0.64 0.94 0.92 0.96

Table 0.67 0.77 0.60 0.88 0.93 0.84

Computer Science Average 0.71 0.79 0.65 0.75 0.82 0.70

Caption 0.54 0.55 0.53 0.52 0.58 0.47

Figure 0.75 0.87 0.66 0.84 0.93 0.76

References 0.87 0.94 0.81 0.94 0.95 0.92

Table 0.70 0.81 0.61 0.72 0.81 0.65

Medicine Average 0.67 0.77 0.61 0.82 0.86 0.78

Caption 0.53 0.53 0.53 0.54 0.58 0.51

Figure 0.68 0.83 0.57 0.90 0.95 0.85

References 0.81 0.90 0.73 0.97 0.98 0.97

Table 0.68 0.81 0.59 0.85 0.93 0.79

Physics Average 0.76 0.81 0.72 0.84 0.87 0.81

Caption 0.60 0.59 0.60 0.60 0.63 0.58

Figure 0.86 0.93 0.80 0.93 0.97 0.90

References 0.92 0.96 0.88 0.98 0.98 0.97

Table 0.67 0.77 0.59 0.85 0.91 0.80

Technology Average 0.64 0.71 0.59 0.76 0.80 0.73

Caption 0.43 0.40 0.46 0.42 0.46 0.39

Figure 0.65 0.80 0.55 0.86 0.95 0.79

References 0.77 0.84 0.72 0.94 0.93 0.94

Table 0.71 0.79 0.64 0.83 0.87 0.79

PDFFigures 2.0 reaches consistent results across research fields. On the other
hand, DeepFigures underperforms on publications from computer science.

For the task of detecting correct references between captions and
tables/figures, both systems performed better than in the previous two (Fig. 4).
DeepFigures achieves a precision and recall of 0.95, indicating that even when
the underlying bounding boxes do not perfectly overlap with the ground truth,
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Fig. 3. F1 Score comparison between PDFigures 2.0 and DeepFigures in the task of
table detection. The bars represent average F1 scores grouped by research fields, while
the dotted lines represent overall averages.

Fig. 4. F1 Score comparison between PDFigures 2.0 and DeepFigures for the task of
reference assignment between captions and tables or figures. The bars represent average
F1 scores grouped by research fields, while the dotted lines represent overall averages.

the system has a good idea of which elements reference each other. PDFFigures
2.0 achieves an average precision of 0.87 and an average recall of 0.75. The sys-
tem shows similar performance across research fields for the figure extraction
task, suggesting that its reduced performance in reference matching arises from
its inability to consistently detect figures.

For caption detection, PDFFigures 2.0 and DeepFigures reach an F1 score of
around 0.5. We skip a direct comparison between the systems for this sub-task, as
DeepFigures relies on the output of PDFFigures 2.0, making their performance
nearly identical. The reason for this performance drop compared to other sub-
tasks is that PDFFigures 2.0 often produces caption bounding boxes that do not
enclose the entire caption (see example in Fig. 5). This difference is small when
considering the absolute area of the boxes; however, the small size of captions
makes the relative difference significant enough, that the prediction does not pass
an IOU threshold of 0.8. This problem was cited by the authors of DeepFigures
[30] as one of the main hurdles in the neural network training process and was
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Fig. 5. Example of an imprecise caption bounding box produced by PDFFigures 2.0,
compared with our annotation.

the reason why they decided to use PDFFigures 2.0 as the underlying caption
extraction mechanism. The authors of PDFFigures 2.0 even reported this as
an issue in the evaluation phase and used OCR-ed text as a fallback matching
technique [5]. The problem could be fixed by snapping the bounding boxes to a
grid in order to make them less sensitive to changes, but that introduces another
variable to the evaluation process. In our case, the F1 metric for the reference
detection task shows that PDFFigures 2.0 is effective at detecting captions but
ineffective at precisely defining their bounding boxes.

6 Conclusion

We addressed one of the most prevalent problems currently plaguing research
on figure, table, and caption extraction from scientific PDFs: the lack of a large,
cross-discipline, and easily-accessible dataset. We published SCI-3000: a novel
dataset of annotated scientific publications from five research areas: computer
science, biomedicine, chemistry, physics, and technology. Two state-of-the-art
figure, table, and caption extraction methods were evaluated on our dataset,
using an evaluation protocol we made publicly available as a python library.

The SCI-3000 dataset not only surpasses most of its predecessors in size and
scope by incorporating new scientific fields, but also provides source publica-
tions in PDF format, made possible by the permissive licensing of the sourced
PDF articles. This characteristic makes the dataset viable for extension and re-
publication, for example, by adding new annotations for elements like equations
and paragraphs. An alternative future research path would be to make the avail-
able annotations more specific, for example, by classifying figures into different
types such as graphs, light-photography, or biomedical images.

Our evaluation of state-of-the-art methods showed that there is still room for
improvement, especially for the task of caption detection. Therefore, developing
more effective extraction and caption detection methodologies is another viable
path for future research.
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