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Foreword

We are delighted to welcome you to the proceedings of ICDAR 2023, the 17th IAPR
International Conference on Document Analysis and Recognition, which was held in
San Jose, in the heart of Silicon Valley in the United States. With the worst of the
pandemic behind us, we hoped that ICDAR 2023 would be a fully in-person event.
However, challenges such as difficulties in obtaining visas also necessitated the partial
use of hybrid technologies for ICDAR 2023. The oral papers being presented remotely
were synchronous to ensure that conference attendees interacted live with the presen-
ters and the limited hybridization still resulted in an enjoyable conference with fruitful
interactions.

ICDAR 2023 was the 17th edition of a longstanding conference series sponsored by
the International Association of Pattern Recognition (IAPR). It is the premier interna-
tional event for scientists and practitioners in document analysis and recognition. This
field continues to play an important role in transitioning to digital documents. The IAPR-
TC10/11 technical committees endorse the conference. The very first ICDARwas held in
St Malo, France in 1991, followed by Tsukuba, Japan (1993), Montreal, Canada (1995),
Ulm, Germany (1997), Bangalore, India (1999), Seattle, USA (2001), Edinburgh, UK
(2003), Seoul, South Korea (2005), Curitiba, Brazil (2007), Barcelona, Spain (2009),
Beijing, China (2011), Washington, DC, USA (2013), Nancy, France (2015), Kyoto,
Japan (2017), Sydney, Australia (2019) and Lausanne, Switzerland (2021).

Keeping with its tradition from past years, ICDAR 2023 featured a three-day main
conference, including several competitions to challenge the field and a post-conference
slate of workshops, tutorials, and a doctoral consortium. The conference was held at the
San Jose Marriott on August 21–23, 2023, and the post-conference tracks at the Adobe
World Headquarters in San Jose on August 24–26, 2023.

We thank our executive co-chairs, Venu Govindaraju and Tong Sun, for their support
and valuable advice in organizing the conference.We are particularly grateful to Tong for
her efforts in facilitating the organization of the post-conference in Adobe Headquarters
and for Adobe’s generous sponsorship.

The highlights of the conference include keynote talks by the recipient of the
IAPR/ICDAR Outstanding Achievements Award, and distinguished speakers Marti
Hearst, UCBerkeley School of Information; VladMorariu, Adobe Research; and Seiichi
Uchida, Kyushu University, Japan.

A total of 316 papers were submitted to the main conference (plus 33 papers to
the ICDAR-IJDAR journal track), with 53 papers accepted for oral presentation (plus
13 IJDAR track papers) and 101 for poster presentation. We would like to express
our deepest gratitude to our Program Committee Chairs, featuring three distinguished
researchers from academia, Gernot A. Fink, Koichi Kise, and Richard Zanibbi, and one
from industry, Rajiv Jain, who did a phenomenal job in overseeing a comprehensive
reviewing process and who worked tirelessly to put together a very thoughtful and
interesting technical program for the main conference. We are also very grateful to the
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members of the Program Committee for their high-quality peer reviews. Thank you to
our competition chairs, Kenny Davila, Chris Tensmeyer, and Dimosthenis Karatzas, for
overseeing the competitions.

The post-conference featured 8 excellent workshops, four value-filled tutorials, and
the doctoral consortium. We would like to thank Mickael Coustaty and Alicia Fornes,
the workshop chairs, Elisa Barney-Smith and Laurence Likforman-Sulem, the tutorial
chairs, and Jean-Christophe Burie and Andreas Fischer, the doctoral consortium chairs,
for their efforts in putting together a wonderful post-conference program.

We would like to thank and acknowledge the hard work put in by our Publication
Chairs, Anurag Bhardwaj and Utkarsh Porwal, who worked diligently to compile the
camera-ready versions of all the papers and organize the conference proceedings with
Springer. Many thanks are also due to our sponsorship, awards, industry, and publicity
chairs for their support of the conference.

The organization of this conference was only possible with the tireless behind-the-
scenes contributions of our webmaster and tech wizard, Edward Sobczak, and our secre-
tariat, ably managed by Carol Doermann. We convey our heartfelt appreciation for their
efforts.

Finally, we would like to thank for their support our many financial sponsors and
the conference attendees and authors, for helping make this conference a success. We
sincerely hope those who attended had an enjoyable conference, a wonderful stay in San
Jose, and fruitful academic exchanges with colleagues.

August 2023 David Doermann
Srirangaraj (Ranga) Setlur



Preface

Welcome to the proceedings of the 17th International Conference onDocument Analysis
and Recognition (ICDAR) 2023. ICDAR is the premier international event for scientists
and practitioners involved in document analysis and recognition.

This year, we received 316 conference paper submissions with authors from 42
different countries. In order to create a high-quality scientific program for the conference,
we recruited 211 regular and 38 senior program committee (PC) members. Regular PC
members provided a total of 913 reviews for the submitted papers (an average of 2.89 per
paper). Senior PC members who oversaw the review phase for typically 8 submissions
took care of consolidating reviews and suggested paper decisions in their meta-reviews.
Based on the information provided in both the reviews and the preparedmeta-reviewswe
PCChairs then selected154 submissions (48.7%) for inclusion into the scientificprogram
of ICDAR 2023. From the accepted papers, 53 were selected for oral presentation, and
101 for poster presentation.

In addition to the papers submitted directly to ICDAR 2023, we continued the tradi-
tion of teaming up with the International Journal of Document Analysis and Recognition
(IJDAR) and organized a special journal track. The journal track submissions underwent
the same rigorous review process as regular IJDAR submissions. The ICDAR PC Chairs
served as Guest Editors and oversaw the review process. From the 33 manuscripts sub-
mitted to the journal track, 13 were accepted and were published in a Special Issue of
IJDAR entitled “Advanced Topics of Document Analysis and Recognition.” In addi-
tion, all papers accepted in the journal track were included as oral presentations in the
conference program.

A very prominent topic represented in both the submissions from the journal track as
well as in the direct submissions to ICDAR2023was handwriting recognition. Therefore,
we organized a Special Track on Frontiers in Handwriting Recognition. This also served
to keep alive the tradition of the International Conference on Frontiers in Handwriting
Recognition (ICFHR) that the TC-11 community decided to no longer organize as an
independent conference during ICFHR 2022 held in Hyderabad, India. The handwriting
track included oral sessions covering handwriting recognition for historical documents,
synthesis of handwritten documents, as well as a subsection of one of the poster sessions.
Additional presentation tracks at ICDAR 2023 featured Graphics Recognition, Natural
Language Processing for Documents (D-NLP), Applications (including for medical,
legal, and business documents), additional Document Analysis and Recognition topics
(DAR), and a session highlighting featured competitions that were run for ICDAR 2023
(Competitions). Two poster presentation sessions were held at ICDAR 2023.

As ICDAR 2023 was held with in-person attendance, all papers were presented by
their authors during the conference. Exceptions were only made for authors who could
not attend the conference for unavoidable reasons. Such oral presentations were then
provided by synchronous video presentations. Posters of authors that could not attend
were presented by recorded teaser videos, in addition to the physical posters.
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Three keynote talkswere given byMartiHearst (UCBerkeley),VladMorariu (Adobe
Research), and Seichi Uchida (Kyushu University). We thank them for the valuable
insights and inspiration that their talks provided for participants.

Finally, we would like to thank everyone who contributed to the preparation of the
scientific program of ICDAR 2023, namely the authors of the scientific papers submitted
to the journal track and directly to the conference, reviewers for journal-track papers,
and both our regular and senior PCmembers.We also thank Ed Sobczak for helping with
the conference web pages, and the ICDAR 2023 Publications Chairs Anurag Bharadwaj
and Utkarsh Porwal, who oversaw the creation of this proceedings.

August 2023 Gernot A. Fink
Rajiv Jain

Koichi Kise
Richard Zanibbi
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Abstract. The Rey-Osterrieth Complex Figure Test (ROCFT) is a
widely used neuropsychological tool for assessing the presence and sever-
ity of different diseases. It involves presenting a complex illustration to
the patient who is asked to copy it, followed by recall from memory
after 3 and 30min. In clinical practice, a human rater evaluates each
component of the reproduction, with the overall score indicating illness
severity. However, this method is both time-consuming and error-prone.
Efforts have been made to automate the process, but current algorithms
require large-scale private datasets of up to 20,000 illustrations. With
limited data, training a deep learning model is challenging. This study
addresses this challenge by developing a fine-tuning strategy with mul-
tiple stages. We show that pre-training on a large-scale sketch dataset
with initialized weights from ImageNet significantly reduces the mean
absolute error (MAE) compared to just training with initialized weights
from ImageNet, e.g., ReXNet-200 from 3.1 to 2.2 MAE. Additionally,
techniques such as stochastic weight averaging (SWA) and ensembling of
different architectures can further reduce the error to an MAE of 1.97.

Keywords: Rey-Osterrieth Complex Figure · Regression · Sketch
pre-training · Ensembling

1 Introduction

The Rey-Osterrieth Complex Figure Test (ROCFT) was designed to examine
the visuospatial ability and memory in patients who suffer from traumatic brain
injury [1]. Additionally, the test is utilized to test for dementia and to evaluate
children’s cognitive development [1]. The test procedure starts with presenting
the figure depicted in Fig. 1 to the patient, who is subsequently asked to copy it
by drawing it, typically with a pen on paper. After 3min, the patient is asked
to reproduce the figure from memory. This procedure is repeated after 30min.
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1 Cross
2 Large rectangle
3 Diagonal cross
4 Horizontal line
5 Vertical line
6 Small rectangle
7 Small segment
8 Parallel lines
9 Triangle

10 Line
11 Circle with 3 dots
12 Parallel lines
13 Triangle
14 Diamond
15 Line
16 Line
17 Cross
18 Square

Fig. 1. Rey-Osterrieth Complex Figure with annotated section numbers [23].

Those three steps are called copy, immediate recall, and delayed recall. While copy
is always part of the procedure, sometimes only one of the steps immediate recall
or delayed recall are carried out [1]. The figure can be subdivided into 18 separate
sections, as annotated in Fig. 1. According to the Osterrieth scoring system, for
each section, a score ranging from 0 to 2 is determined in the following way: If
the unit is drawn and placed correctly, 2 points are assigned. In case it is placed
poorly, this corresponds to only 1 point. In the case of a distorted section, which
might be incomplete but still recognizable, 1 or 0.5 points are given depending
on the placement quality. 0 points are assigned when the section is absent or
unrecognizable. Once all sections are scored, the sum of them represents the
score of the entire drawing and can range from 0 to 36.

The ROCFT has become one of the most widely applied neuropsychological
tests for constructional and non-verbal memory [1] and can evaluate the patient’s
neuropsychological dysfunction [18]. There are several abilities necessary for good
test performance, such as working memory, visuospatial abilities, planning [1],
problem-solving, and visuomotor coordination [4]. Consequently, the test pro-
vides valuable data for evaluating the progress of patients through treatment
and represents a tool for research into the organization of brain activity and its
connection to behavior, brain disorders, and behavioral disabilities [2].

Manual scoring of the ROCFT represents a monotone and repetitive task.
Moreover, the resulting score depends to some extent on the subjective judg-
ments of the rater, thereby causing inter-rater variability. Hence, an automated
scoring system could set a new standard to combat inter-rater variability. Given
the popularity and wide acceptance of this test, automation holds great poten-
tial to reduce time and effort and ultimately save costs. In recent years, several
machine learning methods have been developed to build automatic scoring sys-
tems for the ROCFT [5,10,13,19]. In most works that made use of deep learning,
large training datasets with 2,000 to 20,000 images are used. However, such large
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datasets are typically not available for the average hospital. Moreover, to the best
of our knowledge, there is no public dataset of ROCFT-drawings with annotated
scores available.

In this work, we suggest the use of a multi-stage fine-tuning procedure for
automatic ROCFT scoring given a small dataset of only about 400 ROCFT
samples. In particular, we evaluate the effects of (1) sketch-based fine-tuning,
i. e., pre-training on a large-scale sketch-dataset and then fine-tuning using
the ROCFT dataset, (2) StochasticWeight Averaging (SWA) fine-tuning, and
(3) ensembling.

The paper is organized as follows. Section 2 presents the related work in the
field of recognizing ROCFT scores. We obtained a small ROCFT dataset, which
we pre-processed, cf. Sect. 3. In Sect. 4, we present the deep learning architectures
and the techniques for improving the automatic scoring. Our experiments and
their evaluations are presented in Sect. 5. The paper is concluded in Sect. 6.

2 Related Work

An effort to automatically detect and score sections of the ROCFT with the use
of traditional machine learning was made by several works [2,3,22].

Canham et al. [2,3] propose a method for localizing individual sections of
the Rey-Osterrieth Complex Figure. They construct a relational graph from the
vectorized binary image of the drawn figure and use it to identify the individual
sections and to calculate geometric features like section orientation and size. The
final score is calculated by combining the features using a weighted Yager inter-
section function. Li [22] presents a tablet-based testing procedure to support an
automatic evaluation not only on the final image but already during the drawing
process. For that purpose, strokes are first split up into line segments based on
corner detection. Then, in a semi-automatic grading procedure, a clinician has
to select a bounding box for each section of the figure. The program identifies
the section based on the line segment information and calculates a grade. In con-
trast, Webb et al. [21] propose an tablet-based automatic scoring system for the
conceptually similar OCS-Plus figure copy task. It identifies sections and calcu-
lates features by applying several pre-processing steps, e. g., circle identification,
line segmentation/extraction, and star and cross identification.

The papers [5,10,13,19] approached the automatic assessment of the ROCFT
with deep learning. Simfukwe et al. [19] propose a diagnosis system able to
classify a drawing according to three clinical categories: normal, Mild Cognitive
Impairment (MCI), or mild dementia. They built two datasets containing images
from 2,232 patients, one for learning to distinguish normal from abnormal and
one for learning to distinguish between all three categories. On the first dataset,
an accuracy of 96% was achieved and on the second, 88%. In [5], the authors
combined computer vision and deep learning to assign scores for each section in
a drawing and used the results as features in a classification task for diagnosis
of healthy, MCI, or dementia. The scoring system was changed to include four
classes (omitted, distorted, misplaced, and correct) instead of a grade ranging
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from 0 to 2. Simple sections are assigned one of these classes using on computer
vision techniques, while complex pattern sections are classified via deep learning.
The average class accuracy is 70.7% and 67.5% for simple and complex pattern
sections, respectively. Using the 18 features for diagnosis resulted in healthy vs.
MCI (85%), healthy vs. dementia (91%), MCI vs. dementia (83%), and 3-class
(73%).

Park et al. [15] evaluated a pre-trained DenseNet [10] for automatic scoring
of the ROCFT using a single scalar output. From 6,680 subjects, three draw-
ings each (copy, immediate recall, delayed recall) with corresponding scores are
scanned, resulting in 20,040 images with a drawing. The authors evaluate model
performance on this data using a cross-validation setup and report a Mean Abso-
lute Error (MAE) of 0.95 and R2 of 0.986. Similarly, Lander et al. [13] developed
a Deep Learning model to automatically score the ROCFT using a dataset with
20,225 drawings. The authors empirically show that defining the evaluation task
as a regression problem is preferable because it takes into account the distance
between evaluations, a property not inherent to conventional classification. If
the application scenario allows it, using a combination of both classification and
regression tasks can further improve the scoring precision.

The last two presented papers are conceptually most related to our work
and report convincing classification accuracy. However, both works had access
to comparatively large datasets. In comparison, we explicitly tackle automatic
scoring of ROCFT in scenarios where only little clinical data is available. For that
purpose, we develop multiple stages of fine-tuning to improve a Deep Learning
based scoring system able to compete with ones in large data regimes.

3 ROCFT Dataset

3.1 Data

The University Hospital Cologne provided data from 208 test sheets, with each
sample consisting of three pages. Two pages contain a single drawing each, while
the third page presents scores for both drawings in two columns. The scores
include 18 rows for each section and an additional row for the overall sum. The
individual scores are referred to as single scores and the total score, being the
sum of all single scores for a drawing, is known as the total-score. An image of
a sample is depicted in Fig. 2. The first page contains the copy drawing. The
second page contains the delayed recall drawing. The tests carried out by the
University Hospital Cologne do not include the immediate recall drawings.

For training a neural network to score automatically the ROCFT, we pro-
duced a dataset containing pairs of drawings and their corresponding scores.
These scores are obtained by a semi-automatic method (image registration, num-
ber extraction, and recognition) where individual scores are detected and com-
pared with the final sum. We only consider integer values, i. e., we truncate
possible decimal places ‘.5’.
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Fig. 2. Data sample consisting of 3 pages. Left: copy drawing of the patient, Middle:
delayed recall drawing of the patient, Right: Scores for both copy and delayed recall.

Fig. 3. (a) Example of weak lines, (b) same lines after strengthening using mathe-
matical morphological operators (dilation + closing), (c) bounding box around dilated
drawing, (d) bounding box transferred to the original drawing.

3.2 Pre-processing

Because a drawing does not cover the whole page, its area is identified and
cropped to extract it. This process can be subdivided into the following steps:
(1) Binarization and inversion, (2) strengthening lines, (3) retrieving the draw-
ing’s bounding box, (4) and cropping and resizing the drawing. For binarization,
we use local Gaussian thresholding. The provided test sheets contain drawings
with well-defined lines, as well as drawings with weaker lines, which only include
dots that are not connected (see Fig. 3a). The reason is that some figures were
drawn with a pen, others with a pencil. Not well-defined lines in the drawing
can disrupt the drawing identification and, therefore, possibly prevent a success-
ful extraction. Hence, we strengthen lines by applying different mathematical
morphological operators. In particular, we use dilation followed by closing, both
with a kernel size of (4, 4), cf. Fig. 3b. Next, the bounding box of the drawing
is retrieved. Although the lines get strengthened, drawings are not always fully
connected, i. e., cluttered into multiple pieces. Thus, simply taking the bounding
box of the biggest component would not always yield satisfactory results because
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Fig. 4. Samples of the dataset with scores: 34, 0, 31, and 9.

parts of the drawings at the edge which are important for the score evaluation,
might be missing. For instance, in Fig. 3d, the cross at the bottom of the drawing
is not directly connected to the rest of the drawing. Therefore, heavy dilation
(two times, with kernel size 12× 12) is performed on a copy of the image, cf.
Fig. 3c. Afterward, the drawing is usually fully connected such that the bound-
ing box of the biggest component includes also parts of the drawings which are
not directly connected to other parts of the drawing in the original image. To be
independent from potentially varying image sizes, we use 2.5% of the original
image width for padding on all edges. The resulting bounding box gets cropped
out of the original image (with only light dilatation) and is resized to the size of
354× 500. The proportions are chosen experimentally by decreasing the sizes as
much as possible without losing information that is relevant for scoring.

Subsequent to extracting both total scores and drawings, we combine cor-
responding pairs into a dataset which is further used for training and in the
following referred to as ROCFT dataset. This dataset includes 416 samples, four
of which are shown in Fig. 4. We only use total scores and not the vector of
single scores, because given the small amount of data, we are concerned about
the ability of the models to learn a proper mapping for the single scores.

4 Methodology

We suggest a multi-stage fine-tuning where we first fine-tune a model pre-trained
on sketches and afterwards fine-tune once more using SWA. To further boost the
performance, we combine different models in an ensemble.

4.1 Pre-training Using Sketch Dataset

Many models, which are already pre-trained for classification on ImageNet, are
available. Yet, the ROCFT is a sketch. Sketches differ significantly in compari-
son to pictures of real-life objects, e. g., concerning color, precision, and shape.
Therefore, we decided to pre-train the models on a dataset containing sketches
with the aim of learning features that are specific to sketches. Another reason is
to compensate for the small number of samples available in the ROCFT dataset.
We chose the TU Berlin sketch dataset [6] for pre-training. It contains 20,000
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Fig. 5. Sketch Examples of the TU Berlin sketch dataset [6].

sketches made by humans evenly distributed over 250 object categories, i. e.,
there are 80 samples for each class, where every image is of size 1111 × 1111 pix-
els. Examples are shown in Fig. 5. A human classifies a given sample correctly
in 73% of the cases [6]. For pre-training, each image is inverted and downsam-
pled to 500 × 500 pixels to match the ROCFT dataset. Several augmentations
are performed: random horizontal flip, random rotation up to 10◦C, and ran-
domly downsizing the image by up to 30% to simulate different pen thicknesses.
Every model gets initialized with downloaded weights that were acquired during
pre-training on ImageNet. In initial experiments, we recognized that it helps to
substantially speed up the model convergence. Since the problem on the TU
Berlin sketch dataset is a classification problem, the last layer is configured to
have 250 outputs. Predictions are derived from the argmax of these outputs.
Cross-Entropy (CE)-loss is chosen as the loss function and accuracy as the met-
ric. Afterward, the models are fine-tuned on the ROCFT dataset. To match the
same dimensions, the ROCFT dataset images are zero-padded to the same image
input size of the TU Berlin sketch dataset, i. e.,354 × 500 to 500× 500.

Label predictions that are farther away from the correct label are more severe
than those that are still wrong but closer. Therefore, we interpret the underlying
task as a regression problem. We configured the last layer of each architecture to
have one output, on which the logistic function is applied. To make a prediction,
the output o ∈ [0, 1] is mapped to the (integer) range 0 to 36.

4.2 Stochastic Weight Averaging

Stochastic Weight Averaging (SWA) computes the average of weights traversed
by the optimizer [11]. It was demonstrated that SWA enhances generalization [11]
and tends to find solutions in the center of wide flat loss regions making it less
susceptible to the shift between train and test error surfaces [16]. We use SWA
due to its potential of enhancing generalization at very low costs [11]. Especially
important is that SWA is not used during the entire period of the training but
only in the end, as an already trained model can be reloaded and trained for
several more epochs with SWA in order to benefit from this technique [16].
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4.3 Ensemble

Ensembling is implemented by computing a weighted average of the outputs
(that range from 0 to 1) of the contributing members and then mapping the value
to the desired range. The weights depend on the performance of the contributing
models on the validation set. Given an ensemble with n members where each
member achieves a validation MAE of {maej |j ∈ {1, . . . , n}}, the weights wj for
each member are then calculated as follows:

wj =

(
1

maej
∑n

i=0
1

maei

− 1
n

)
+ 1 . (1)

This formula ensures that
∑n

i=0 wi = n. To make a prediction, the ensemble’s
output oEnsemble ∈ [0, 1] is calculated from the outputs of the contributing mem-
bers oj and their weights wj :

oEnsemble =
1
n

n∑
i=0

wj · oi . (2)

This output is mapped to the (integer) range 0 to 36.

5 Evaluation

5.1 Metrics

Mean Absolute Error (MAE) is the main metric used for evaluation. Addition-
ally, accuracy and Mean Squared Error (MSE) are employed, where accuracy
refers to the average class accuracy. Moreover, we introduce Max Error, refer-
ring to the maximum absolute error made during the prediction of labels of an
entire set.

5.2 Evaluation Protocol

Dataset split. We divided the ROCFT dataset into three disjoint sets for training,
validation, and testing. Note that we ignore any patient information. Instead, we
aimed to balance the labels. Therefore, the test set is assembled by randomly
picking one to four samples from each label, with the constraint that the set
has in total 74 samples, so on average, two per label. For the validation set, two
samples are taken from each label. Since only one sample remains for labels 4
and 27, the validation set consists of 72 samples. All remaining samples are put
into the training set, which subsequently has a size of 270.

Oversampling and Augmentation. The ROCFT dataset is quite imbalanced. The
distributions for the training set is shown in Fig. 6. In order to counteract this
imbalance, oversampling is performed.
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Fig. 6. ROCFT score distribution.

Fig. 7. Most left: Original, others: heavily augmented images of the original

Additionally, we apply augmentation for which we evaluate three different
levels: light, medium, and heavy. The transformations applied for each level are
given in the appendix (Table 4). Transformations are applied sequentially. While
the augmentations Opening, Closing, Erosion, and Dilation are implemented by
us, all other augmentations are used from the imgaug-library [12]. Results of
heavy augmentations are shown in Fig. 7. The picture on the very left is the
original image, while all others are augmented versions of the original.

Architectures. In this work, we tested several architectures: VGG [20],
ReXNet [7], ResNet [9], TinyNet [8], and ConvNeXt [14]. In particular, we
used the following models: vgg16, rexnet_200, resnet50, tinynet_a, and con-
vnext_small of the timm-libary [17].

During training, MSE-loss serves as the loss function. Early stopping is used
based on the MSE of the validation set. All intermediate results are obtained
using the validation set while the test set is only used at the very end to evaluate
the model based on the best method obtained on the validation set.

5.3 Results

Augmentation Effect Using No Pre-training. For each of the architectures,
four training runs are executed, one for every augmentation level and one without
any augmentations. The validation MSE achieved by these experiments is shown
in Fig. 8.
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Fig. 8. Validation MMAE without pretraining using different augmentation levels

Table 1. Test accuracies on the TU Berlin sketch dataset.

Architecture Accuracy↑ [%]

VGG16 69.5
TinyNet 74.8
ResNet50 76.0
ReXNet200 79.4
ConvNeXt 80.5

In all cases, the run without any augmentations performs worst. Using
medium augmentations never performs the best. Heavy augmentations perform
the best for ConvNeXt, ReXNet, ResNet and VGG, while light augmentations
induced the best result for TinyNet. In subsequent fine-tuning experiments, we
use the best augmentation level for each architecture.

TU Berlin Sketch Dataset Pre-training. Before continuing with the fine-
tuning results, where we apply transfer learning from the TU Berlin sketch
dataset to the ROCFT dataset, we give the pre-training results. The dataset
of 20,000 images with 80 sketches for each of the 250 classes is divided into
training, validation, and test sets by a stratified split with the ratio 70/15/15%.
Hence, all three sets are balanced, and while the validation and test set each
contains 3, 000 samples, the training set consists of 14, 000 samples. To speed up
convergence, the models use weights pre-trained on ImageNet. During network
training, the accuracy gets tracked on the validation and training set. The model
that performed best on the validation set is taken, and the accuracy on the test
set is evaluated. The achieved test accuracies are presented in Table 1. The best-
performing model is ConvNeXt with about 81%, while VGG brings up the rear
with 70%. All models, except for VGG beat the human accuracy, which is at
73% [6].

Training on this dataset is used as pre-training to learn sketch-related fea-
tures. Outstanding performance is not of utmost importance, and thus satisfac-
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Fig. 9. Validation MAE after each fine-tuning step.

tory performance is achieved on all tested model architectures. It can be assumed
that relevant features for hand-drawn sketches are learned by the models, and
transfer learning to a similar domain can be applied successfully.

Effect of Multi-Stage Fine-Tuning. We start our multi-stage fine-tuning
with the TU Berlin sketch dataset pre-trained weights. Then, we fine-tune with
the ROCFT dataset in multiple steps. Therefore, we replace the last layer with a
single output, which is initialized with random weights. Fine-tuning is performed
in three subsequent training runs: (1) Last layer finetuning, (2) whole network
finetuning, and (3) SWA finetuning.

First, the whole network is frozen except for the last layer and trained until
convergence. In this way, the last layer learns how to use the pre-trained features
to make predictions on the ROCFT dataset. The second step pursues the objec-
tive of slightly adjusting the pre-trained features and also the last layer. During
the second step, the whole network is configured to be updated during training.
The network is trained with early stopping and maximum epochs of 500. In the
third step, we train for 30 epochs with SWA enabled as described in [16]. We
compare these techniques with fine-tuning the five architectures just by using
ImageNet pre-trained weights, i. e., omitting the TU Berlin sketch dataset and
SWA fine-tuning steps. For each architecture, the best-performing augmentation
level according to Fig. 8 is used. Figure 9 shows the resulting validation MAE for
each step and architecture. We notice that just fine-tuning the head alone typi-
cally results in higher MAE. However, when fine-tuning then the whole network,
all models (except VGG) improve upon the ImageNet baseline. The reason is
almost certainly the similarity of sketches in the TU Berlin sketch dataset to
sketches in the ROCFT dataset. Fine-tuning once more with SWA reduced the
error further. Architecture-wise, ReXNet and ConvNext perform best while VGG
performs worst.
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Table 2. Overview of the best and average MAE for the different ensemble sizes. The
performance of each combination can be found in Table 5.

Best Avg.

w. o. SWA↓ w. SWA↓ w. o. SWA↓ w. SWA↓
Single 2.18 2.04 2.51 2.34
Double 2.14 1.99 2.37 2.22
Triple 2.18 1.97 2.30 2.15
Quadrupel 2.18 2.06 2.28 2.13
All 2.19 2.11 — —

Ensembling. In pursuit of further improvement, several ensembles with differ-
ent architectures were formed. For each architecture combination (a detailed
overview can be seen in Table 5), two ensembles are built and evaluated:
(1) One where each architecture was fine-tuned with all three proposed steps,
i. e., last layer fine-tuning, whole network fine-tuning and SWA fine-tuning and
(2) one where only the first two fine-tuning steps were applied, i. e., without
SWA. Most ensembles produced a MAE that was not better than the multi-
step fine-tuned ReXNet model (2.042). Nevertheless, three ensembles exceeded
this performance. The best performing ensemble was comprised of a ConvNeXt,
ResNet, and ReXNet. Its MAE of 1.972 is 0.07 points better than ReXNet on
its own. It can also be noted, that ensembles where the contributing members
were not fine-tuned with SWA generally perform worse than those where the
contributing members were also fine-tuned with SWA (with the exception of the
combination of TinyNet + ReXNet). Additionally, Table 2 shows that on average
a larger ensemble leads to improved results. However, when evaluating the best
combination for each ensemble size, the best result without SWA was achieved
by an ensemble of two models: ReXNet and ResNet. Whereas, with SWA the
best result was accomplished by an ensemble of 3 models: ConvNeXt, ReXNet
and ResNet.

Test Results. Since the previously mentioned ensemble achieves the smallest
MAE on the validation set for our entire work, we additionally evaluate this
model on our independent test set. Table 3 details all performance metrics on
both datasets. Additionally, we give the error distribution on the test set in
Fig. 10. It shows that the errors ranging from 0 to 3 are dominating. Over 70%
of predictions have an error smaller or equal to 3.

Table 3. All validation and test metrics of the ensemble (ConvNeXt, ResNet, ReXNet)
with smallest MAE

MAE↓ MSE↓ Max error↓ Accuracy↑
Validation 1.97 7.86 12 25.00
Test 3.10 17.04 13 14.19
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Fig. 10. Error distribution on the test set

6 Conclusion

In this work, we developed and validated an approach for the multi-stage
fine-tuning of Deep Learning models for an automatic assessment of the Rey-
Osterrieth Complex Figure Test. Specifically, we studied and combined (1) com-
prehensive data augmentation strategies, (2) pre-training on visually related
sketch images, (3) SWA for improved model generalization to unseen image
characteristics, and (4) ensembling with different model and augmentation com-
binations.

We could experimentally verify that using an application-driven fine-tuning
strategy on visually similar but semantically contrasting sketch images can sub-
stantially improve the error rate. This improvement is not only shown in direct
comparison with a fine-tuning strategy on ImageNet, but also holds for almost
all network architectures studied. This means that additional data collection and
curation can be avoided with relatively little effort.

Intriguingly, applying SWA shows a small but recognizable improvement.
Since this technique is applied in a separate, very much shortened fine-tuning
step, it imposes a negligible additional computational burden. In stark contrast,
ensembling multiple network models represents a larger cut in the system’s effi-
ciency. Although we observe slight reductions in the error rate when using the
best model combinations, we argue that this should be considered an optional
component of the developed automatic ROCFT scoring system.

Overall, the low absolute errors show that an automatic assessment of the
ROCFT is possible even if only a limited amount of data is available. The error
difference of the test and validation set might indicate that there is an issue with
overfitting, which needs to be investigated further. Future work should analyze
if an augmentation technique that is more tailored to the ROCFT could further
aid the scoring performance. For example, detecting one or more distinct sec-
tions in a sketch and then removing them and decreasing the score accordingly
would substantially increase the number of possible structural compositions. Fur-
thermore, given access to more data, integrating the prediction of section-wise
single scores could prove to be a powerful auxiliary task that could not only
increase the accuracy of the method but also provide additional information to
the practitioner.
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A Augmentation Details

Table 4. Different augmentation levels (parameter ranges are uniformly distributed).

Augmentation Probability Parameters

Horizontal Flip 0.5 -
Vertical Flip 0.5 -
Rotation 1 [−4, 4] (in degrees)
Closing 0.5 [1, 3] (kernel size)
Jpeg Compression 0.4 [40, 60] (compression level)

(a) Light augmentations

Augmentation Probability Parameters

Horizontal Flip AND Vertical Flip 0.2 -
Rotation 1 [−6, 6] (in degrees)
Closing OR Opening 0.2 [1, 4], [1, 2] (kernel size)
Max Pooling 0.2 [1, 3] (kernel size)
Jpeg Compression 0.2 [40, 70] (compression level)

(b) Medium augmentations

Augmentation Probability Parameters

Horizontal Flip AND Vertical Flip 0.2 -
Rotation 1 [−10, 10] (in degrees)

Either 0 OR 1 of...
1noitaliD [1, 5] (kernel size)
1noisorE [1, 2] (kernel size)
1gninepO [1, 2] (kernel size)
1gnisolC [1, 7] (kernel size)

Shrink and Pad to original size 0.4 [0.6, 0.9] (shrinking factor)
Perspective Transform 0.3 [0.01, 0.1] (scale)

Minimum of 1 and up to 3 of...
Max Pooling 1 [1, 3] (kernel size)
Jpeg Compression 0.7 [60, 95] (compression level)
Elastic Transformation 0.7 [1.0, 2.2] (alpha), 0.01 (sigma)

(c) Heavy augmentations
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B Ensembling Combinations

Table 5. All different model combinations.

ConvNeXt ReXNet ResNet TinyNet VGG w. o. SWA↓ w. SWA↓
Single � 2.444 2.111

� 2.181 2.042
� 2.486 2.444

� 2.569 2.444
� 2.875 2.639

Double � � 2.208 1.986
� � 2.375 2.069
� � 2.361 2.264
� � 2.444 2.236

� � 2.139 2.083
� � 2.167 2.194
� � 2.361 2.167

� � 2.444 2.347
� � 2.556 2.472

� � 2.611 2.403
Triple � � � 2.194 1.972

� � � 2.194 2.028
� � � 2.375 2.181
� � � 2.292 2.028
� � � 2.389 2.181
� � � 2.403 2.250

� � � 2.181 2.111
� � � 2.319 2.222
� � � 2.319 2.292

� � � 2.389 2.264
Quadrupel � � � � 2.181 2.056

� � � � 2.264 2.083
� � � � 2.278 2.181
� � � � 2.389 2.153

� � � � 2.278 2.194
All � � � � � 2.194 2.111
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Abstract. Accurately extracting structured data from structure dia-
grams in financial announcements is of great practical importance for
building financial knowledge graphs and further improving the efficiency
of various financial applications. First, we proposed a new method for
recognizing structure diagrams in financial announcements, which can
better detect and extract different types of connecting lines, including
straight lines, curves, and polylines of different orientations and angles.
Second, we developed a semi-automated, two-stage method to efficiently
generate the industry’s first benchmark of structure diagrams from Chi-
nese financial announcements, where a large number of diagrams were
synthesized and annotated using an automated tool to train a prelimi-
nary recognition model with fairly good performance, and then a high-
quality benchmark can be obtained by automatically annotating the real-
world structure diagrams using the preliminary model and then making
few manual corrections. Finally, we experimentally verified the significant
performance advantage of our structure diagram recognition method over
previous methods.

Keywords: Structure Diagram Recognition · Document AI ·
Financial Announcements

1 Introduction

As typical rich-format business documents, financial announcements contain
not only textual content, but also tables and graphics of various types and
formats, which also contain a lot of valuable financial information and data.
Document AI, which aims to automatically read, understand, and analyze rich-
format business documents, has recently become an important area of research
at the intersection of computer vision and natural language processing [3]. For
example, layout analysis [3], which detects and identifies basic units in docu-
ments (such as headings, paragraphs, tables, and graphics), and table struc-
ture recognition [3], which extracts the semantic structure of tables, have been
widely used in the extraction of structured data from various rich-format docu-
ments, including financial announcements, and a number of benchmark datasets
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 20–44, 2023.
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have been established [11,32–34]. Nevertheless, research on the recognition and
understanding of graphics in rich-format documents remains in the early stages.
Although some studies have focused on recognizing flowcharts [7,18–20], sta-
tistical charts [8,9,14,23,30] and geometry problem [2,13,21], to the best of
our knowledge, there is no existing work explicitly dedicated to recognizing and
understanding various types of structure diagrams in financial announcements.

Fig. 1. Typical examples of Structure Diagrams in Chinese Financial Announcements

Figure 1 (a), (b), and (c) are typical ownership structure diagrams extracted
from Chinese financial announcements, where the nodes represent institutional
or individual entities, and the connecting lines represent the ownership relation-
ship and proportion between a pair of entities. Although the ownership structure
information can also be obtained from a business registration database, gener-
ally there is a timeliness gap, and it often takes some time for the latest owner-
ship changes disclosed in financial announcements to be updated and reflected
in the business registration database. Figure 1 (d) shows a typical organization
structure diagram in a Chinese financial announcement, where the nodes repre-
sent the departments or occupations in an institution, and the connecting lines
between the nodes represent the superior-subordinate relationships. Recognizing
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organization structure diagrams can help understand the decision-making struc-
ture of an institution and analyze its business planning for future development.
Currently, many practitioners in the financial industry still rely on manual data
extraction from structure diagrams in Chinese financial announcements, which is
time-consuming and error-prone. Therefore, it is of great practical significance to
improve the efficiency of various related financial applications by automatically
extracting structured data from structure diagrams in financial announcements
and constructing corresponding financial knowledge graphs in a timely and accu-
rate manner.

Although the recent deep learning-based object detection methods [7,18–
20,24] have improved diagram recognition compared to traditional image
processing-based methods [15,17,25], they mainly focus on flowchart recogni-
tion and are not very effective at structure diagram recognition, especially not
good at detecting various connecting lines in structure diagrams.

First, to address the above problem, we proposed a new method called SDR
by extending the Oriented R-CNN [26] with key point detection [6], which is
particularly good at detecting various connecting lines with different orientations
and angles, including straight lines, curves, and polylines.

Second, to overcome the lack of training data and the high cost of annota-
tion, a two-stage method was developed to efficiently build a benchmark with
high-quality annotations. (1) An automated tool has been built to efficiently syn-
thesize and annotate a large number of structure diagrams of different styles and
formats, which can be used to train a preliminary structure diagram recognition
model. (2) The preliminary model can automatically annotate real-world struc-
ture diagrams with very reasonable quality, so that only a very limited number
of manual corrections are required.

Third, to evaluate the effectiveness of our methods in real scenarios, we used
the above two-stage method to build the industry’s first benchmark containing
2216 real ownership structure diagrams and 1750 real organization structure
diagrams extracted from Chinese financial announcements, and experimentally
verified the significant performance advantage of our SDR method over previous
methods.

2 Related Works

The work on flowchart recognition is the closest to the structure diagram recog-
nition studied in this paper. Early work mainly used traditional image process-
ing methods based on Connected Components Analysis and various heuristic
rules [15,17,25], which usually had poor performance in detecting dashed and
discontinuous lines and were easily disturbed by noise on poor quality scanned
images.

Recently, some deep learning-based methods have been applied to flowchart
recognition, and have made some progress compared to traditional image pro-
cessing methods [7,18–20,24]. Julca-Aguilar et al. [7] first used Faster R-
CNN [16] to detect symbols and connecting lines in handwritten flowcharts.
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Subsequently, Schäfer et al. proposed a series of models [18–20], such as Arrow
R-CNN [19], to extend the Faster R-CNN based on the characteristics of hand-
written flowcharts. The Arrow R-CNN, like the Faster R-CNN, is constrained to
generating horizontal rectangular bounding boxes. Furthermore, Arrow R-CNN
was initially developed to detect simple and direct connecting lines between
nodes, and it treats the entire path between each pair of linked nodes as a
single connecting line object. These two factors make it difficult to correctly
detect certain connecting lines in the structure diagrams. As shown in Fig. 3 (a),
the horizontal bounding boxes of the two middle inclined lines are almost com-
pletely covered by the horizontal bounding boxes of the two outer inclined lines,
resulting in one of the middle inclined lines not being correctly detected. When
nodes on different layers are connected via buses, as shown in Fig. 5 (a), Arrow
R-CNN can only annotate the entire multi-segment polyline connecting each
pair of nodes as a single object, and causes the bounding boxes of the middle
polylines to completely overlap with the bounding boxes of the outer polylines.
And we can see that most of the connecting polylines containing the vertical
short line segments in Fig. 5(a) are not detected. Sun et al. [24] created a new
dataset containing more than 1000 machine-generated flowcharts, and proposed
an end-to-end multi-task model called FR-DETR by merging DETR [1] for sym-
bol detection and LETR [28] for line segment detection. FR-DETR assumed that
the connection path between each pair of connected symbols in flowcharts was
all composed of straight line segments, and defined only straight line segments
as the object of connecting line detection. FR-DETR detects straight line seg-
ments by directly regressing the coordinates of the start and end points for each
line segment, and thus can handle inclined line segments naturally. Although
FR-DETR may be able to fit certain curves with straight lines, it cannot cor-
rectly detect connecting lines with high curvature. As shown in Fig. 4 (a), all
four curves are not detected by FR-DETR. Also, in some ownership structure
diagrams, connecting lines between nodes are overlapped with corresponding
text, and this often causes FR-DETR to fail to detect these connecting lines
with text. As shown in Fig. 6 (a), almost all of the short vertical lines over-
laid with numbers are not detected. FR-DETR’s Transformer-based model also
results in a much slower recognition speed. Our SDR method can not only better
detect various connecting lines in structure diagrams, but also further parse the
corresponding semantic structure and extract the structured data based on the
obtained connecting relationships.

3 System Framework

3.1 Structure Diagram Detection

An ownership or organization structure diagram usually appears in a specific
section of a financial announcement, so the text in the announcement, including
the section titles, can be analyzed to determine the page range of the section
where the structure diagram is located, and then the layout of the candidate page
can be further analyzed to locate the bounding boxes of the required structure
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diagram. We used VSR [31] to implement layout analysis because it adds textual
semantic features to better distinguish different types of diagrams with similar
visual appearance (e.g., ownership and organizational structure diagrams) com-
pared to models that use only visual features, such as Mask R-CNN [6], and
has a much lower training cost compared to the pre-trained language models,
such as LayoutLM [10,27,29]. The cyan area in Fig. 2 (a) and the pink area in
Fig. 2 (b) are two examples of the ownership structure diagram and organization
structure diagram, respectively, detected using layout analysis.

Fig. 2. Examples of structure diagram detection using layout analysis.

3.2 Detection of Connecting Lines and Nodes

This paper proposed a new method called SDR for structure diagram recog-
nition, which can better handle various connection structures between nodes in
particular. Figure 7 is an illustration of the network structure of our SDR model.
First, our SDR model extended the Oriented R-CNN model [26] to support the
detection of oriented objects, and this allows the output bounding boxes to be
rotated by a certain angle to achieve better detection of inclined or curved lines,
as shown in Fig. 3 (b) and Fig. 4 (b). In the first stage of SDR, we extend the
regular RPN in Faster R-CNN to produce oriented proposals, each correspond-
ing to a regression output (x, y, w, h,Δα,Δβ) [26]. (x, y) is the center coordinate
of the predicted proposal, and w and h are the width and height of the external
rectangle box of the predicted oriented proposal. Δα and Δβ are the offsets rel-
ative to the midpoints of the top and right sides of the external rectangle. Each
oriented proposal generated by the oriented RPN is usually a parallelogram,
which can be transformed by a simple operation into an oriented rectangular
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Fig. 3. Recognition of Ownership Diagram with inclined lines

Fig. 4. Recognition of Ownership Diagram with curved lines

Fig. 5. Recognition of Ownership Diagram with bus structure
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Fig. 6. Recognition of Ownership Diagram with lines overlapped by text

Fig. 7. Structure Diagram Recognition (SDR) Model

Fig. 8. Some annotation examples for structure diagrams
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proposal represented by (x, y, w, h, θ). The oriented rectangular proposal is pro-
jected onto the feature map for extraction of a fixed size feature vector using
rotated RoIAlign [26]. In the second stage of SDR, each feature vector is fed
into a series of fully-connected layers with two branches: one for classifying each
proposal, and another one for regressing the offsets to the oriented rectangle
corresponding to each proposal. In addition, unlike the regression method used
in Arrow R-CNN, we integrate the keypoint detection method based on image
segmentation used in Mask R-CNN [6] to detect the start and end points of the
connecting lines with arrowheads, which facilitates the aggregation of the lines
in post-processing.

To better handle the common bus structures in structure diagrams and the
corresponding multi-segment polylines between the nodes connected through
buses, as shown in Fig. 1 (b) and (d), SDR has defined the buses as a special
type of detection object in addition to the regular connecting lines as a type
of detection object. In the post-processing, the regular connecting lines and
buses can be aggregated into the multi-segment polylines, which establish the
corresponding connection relationship between the nodes. Figure 5 (b) showed
that the SDR can accurately detect all the bus (colored in red) and the attached
regular connecting lines (colored in blue). They can be easily aggregated into
corresponding multi-segment polylines in post-processing, and the problem of
Arrow R-CNN shown in Fig. 5 (a) can be avoided. Compared with the regression
method of FR-DETR, our SDR is also very reliable at detecting line segments
overlapped by text, as shown in Fig. 6 (b), and all the line segments that were
not detected in Fig. 6 (a) were correctly detected by SDR. The shapes of the
nodes are relatively limited compared to the connecting lines, so the accuracy
of node detection is high for all the above methods, and the bounding boxes of
the nodes are shown in green in all the figures.

3.3 Post-processing

The text blocks within a structural diagram are initially detected by an OCR sys-
tem that utilizes DBNet [12] and CRNN [22] and is implemented in PaddleOCR1.
This OCR system was trained on a dataset of Chinese financial announcements.
After detection, the text blocks are merged into previously identified nodes or
connected lines based on their respective coordinates. For example, if the bound-
ing box of the current text block is located inside the bounding box of a node,
the text recognized by OCR is used as the corresponding entity name of that
node. Another example is that in an ownership structure diagram if the nearest
object to the current text block is a line and the text is a number, that text is
extracted as the ownership percentage corresponding to the line. For organiza-
tion diagrams, text blocks are located only inside nodes and are recognized as
names of the departments or occupations.

For each line other than the bus type, its start and end points must be
connected to nodes or other lines, so that each line can always find the two

1 https://github.com/PaddlePaddle/PaddleOCR/.

https://github.com/PaddlePaddle/PaddleOCR/
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bounding boxes closest to its start and end points, respectively. For the two
bounding boxes that are closest to the start and end of the current line, if
both are the node type, the ownership relationship between these two nodes is
created based on the ownership percentage corresponding to the current line if
they are in an ownership structure diagram, or the subordination relationship
between these two nodes is determined based on the current line if they are in an
organization structure diagram. If one of the two bounding boxes closest to the
start and end of the current line corresponds to a bus or a line, it is necessary to
extend the current line by merging it with the current line until both bounding
boxes connected to the current line are of node type. Not all lines have arrows.
For lines with no clear direction, the default direction is top to bottom or left to
right.

3.4 Structured Data Extraction from Diagrams

Although the ultimate goal of conducting diagram recognition is to construct
financial knowledge graphs, this paper focuses mainly extracting structured data
from diagrams, leaving aside tasks such as entity alignment and disambiguation
for the time being. Each node pair detected and extracted from ownership struc-
ture diagrams, along with the corresponding ownership relationship, is output
as a relation tuple of (Owner, Percentage, Owned). Similarly, each node
pair detected and extracted from organization structure diagrams, and the corre-
sponding hierarchical relationship, is output as a relation tuple of (Supervisor,
Subordinate).

4 Semi-automated Two-Stage Method for Structure
Diagram Annotation

Some structure diagrams often have a large number of nodes and dense connect-
ing lines, as shown in Fig. 8 (a), and annotating all these relatively small object
areas also requires more delicate operations, which can be time-consuming and
labor-intensive if we rely solely on manual work. To address this problem, we
developed a semi-automated, two-stage method to generate high-quality anno-
tations for real-world structure diagrams.

In the first stage, we created an automated tool exploiting the structural
properties of structure diagrams to generate structure diagrams for different sce-
narios and corresponding annotations for training structure diagram recognition
models. In our previous work on extracting information from the textual content
of financial announcements, we have built and accumulated a knowledge base of
relevant entities of individuals, departments and institutions. A random integer
n can be generated as the number of nodes from a given range, and then n enti-
ties can be randomly selected as nodes from the knowledge base according to the
type of diagram being synthesized. The number of levels m is randomly chosen
from a certain range according to the constraint on the number of nodes n, and
then the nodes between two adjacent levels are connected in different patterns of
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one-to-one, one-to-many and many-to-one with certain probabilities, and a small
number of shortcut connections between nodes that are not located in adjacent
levels can be further randomly generated. Each of these connections corresponds
to a specific relationship in a specific type of structure diagram, reflecting the
topology in the structure diagram to be synthesized. A topology generated above
is then imported into the visualization tool Graphviz [5] to automatically draw
a corresponding structure diagram according to the settings. In the settings, we
can choose the shape and color of the nodes and lines, as well as the orienta-
tion and angle of the lines, the font and the position of the text attached to
the lines, and whether to use a bus structure to show one-to-many or many-to-
one connections. Flexible settings allow the automated tool to synthesize a wide
variety of structure diagrams covering a wide range of real-world scenarios (See
Appendix 7.1 for more examples of synthesized structure diagrams). Graphviz
is able to export the synthesized structure diagrams into SVG format, so we can
easily obtain the coordinates of each object in the diagrams for corresponding
annotations, and finally convert them into DOTA format [4] as training data.
Then a preliminary model can be trained based on the automatically synthesized
training data.

In the second stage, the preliminary model can be used to automatically
annotate the real-world structure diagrams extracted from financial announce-
ments. Our experiments in Sect. 5.2 show that the preliminary model usually
has a reasonably good performance. A typical example in Fig. 8 (b) shows the
results of the automatic annotation of a diagram using the preliminary model,
where only a very small number of short vertical line segments are not cor-
rectly detected, and generally, we only need to make a few corrections to the
automatic annotation results (See Appendix 7.2 for more examples of struc-
ture diagrams automatically annotated by the preliminary model). The manual
correction tool first converts the auto-annotated DOTA data into the COCO
format, then imports it into the COCO Annotator for correction, and finally
converts it back to the DOTA format.

5 Experiments

5.1 Evaluation Metrics

Average Precision (AP) and mean Average Precision (mAP) are the most com-
mon metrics used to evaluate object detection [16]. Arrow key points do not par-
ticipate in the mAP calculation because they are predicted by a separate head
that is different from nodes, buses, and lines. We also use Precision/Recall/F1
as metrics for object detection, which are commonly used in flowchart recogni-
tion [19,24]. The IoU threshold for the above metrics is 50%.

However, in the task of structure diagram recognition, object detection is
only one part of the process, and the ultimate goal is to obtain the topology of
the structure diagram and extract the tuples of structured data for import into
the knowledge base. Therefore, a method cannot only be measured in terms of
object detection, but must also be evaluated on the structured data extracted
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through aggregation and post-processing. For an ownership relationship tuple
(Owner, Percentage, Owned) or a subordinate relationship tuple (Super-
visor, Subordinate), a tuple is correct only if all elements contained in that
tuple are correctly extracted. By checking the extracted tuples in each structure
diagram, the Precision/Recall/F1 of the extracted tuples can be counted as
metrics for evaluating structured data extraction.

5.2 Datasets

Synthesized Dataset. Based on the observation of the real data distribution,
we automatically synthesized and annotated 8050 ownership structure diagrams
and 4450 organization structure diagrams using the automated tool introduced
in Sect. 4. Based on this synthesized dataset, we can train a preliminary SDR
model for structure diagram recognition.

Real-World Benchmark Dataset. Following the method presented in
Sect. 3.1, we first used layout analysis to automatically detect and extract some
structure diagrams from publicly disclosed Chinese financial announcements
such as prospectuses, and then invited several financial professionals to man-
ually review and finally select 2216 ownership structure diagrams and 1750
organization diagrams. The principle is to cover as wide a range of different
layout structures and styles as possible, including nodes of different shapes, col-
ors, and styles, as well as connecting lines of different patterns, directions, and
angles, in an attempt to maintain the diversity and complexity of the structure
diagrams in a real-world scenario. Then, using the two-stage method presented
in Sect. 4, we applied the preliminary SDR model trained on the synthesized
dataset to automatically annotate all diagrams in the above real-world dataset,
and then manually corrected the automatic annotations to create the industry’s
first structure diagram benchmark.

Comparing the results of automatic annotation with the results after manual
corrections, the preliminary SDR model showed a fairly good performance, as
shown in Table 1, and only a small number of corrections are needed. So actual
experiments verify that the two-stage method can significantly improve efficiency
and reduce costs.

As introduced in Sect. 3.2, Arrow RCNN, FR-DETR, and our SDR have
different definitions of connecting lines, so the corresponding annotations are
different as well. However, we can easily convert the annotation data used in our
SDR to the annotation data used in Arrow R-CNN and FR-DETR automati-
cally. A preliminary Arrow R-CNN model and a preliminary FR-DETR model
were also trained on the synthesized dataset, respectively, and used to automat-
ically annotate all the above real dataset. Table 1 shows that the preliminary
Arrow R-CNN model is poor. However, the preliminary FR-DETR model is also
reasonably good.
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Table 1. Evaluation of the different preliminary models on the entire benchmark
dataset

Datasets Ownership Organization

Category Metrics(%)
Arrow
R-CNN

FR-DETR
Our SDR

(R50)
Our SDR
(Swin-S)

Arrow
R-CNN

FR-DETR
Our SDR

(R50)
Our SDR
(Swin-S)

Node Precision 97.5 96.1 92.7 92.5 97.2 95.6 98.9 99.4

Recall 98.6 98.9 99.3 99.2 98.1 99.7 99.9 99.8

F1 98.0 97.5 95.9 95.7 97.6 97.6 99.4 99.6

AP 96.8 95.3 98.8 98.7 96.2 98.7 98.9 99.9

Line Precision 49.0 71.9 79.0 83.8 52.7 82.0 85.7 88.6

Recall 53.8 76.5 83.0 88.8 54.8 86.7 81.8 82.2

F1 51.3 74.1 81.0 86.2 53.7 84.3 83.7 85.3

AP 47.4 67.0 77.9 85.3 48.3 81.3 79.3 81.0

Bus Precision N/A N/A 66.9 75.5 N/A N/A 54.6 70.2

Recall N/A N/A 80.6 89.4 N/A N/A 94.4 98.2

F1 N/A N/A 73.1 81.9 N/A N/A 69.2 81.9

AP N/A N/A 72.9 84.5 N/A N/A 91.4 97.0

mAP 72.1 81.2 83.2 89.5 72.3 90.0 89.9 92.3

Arrow keypoints Precision 49.5 N/A 86.8 91.6 41.3 N/A 74.9 75.3

Recall 52.4 N/A 95.5 96.8 44.8 N/A 96.1 95.6

F1 50.9 N/A 90.9 94.1 43.0 N/A 84.2 84.2

AP 46.9 N/A 83.0 88.7 39.6 N/A 71.6 72.2

5.3 Implementation of Baselines and Our SDR

As discussed in the previous sections, Arrow R-CNN and FR-DETR are the
methods closest to our work, so they are selected as the baselines. Arrow R-CNN
mainly extended Faster R-CNN for better handwritten flowchart recognition. It
is not yet open source, so we modify the Faster R-CNN model obtained from
Detectron22 to reproduce Arrow R-CNN according to the description in the
original paper [19]. FR-DETR simply merged DETR and LETR into a multi-
task model, and the experiments [24] showed that the multi-task FR-DETR
performed slightly worse than the single-task of DETR in symbol detection and
slightly worse than the single-task LETR in line segment detection, respectively.
So even though FR-DETR is not open source, we can use separate DETR to
get FR-DETR’s upper bounds on node detection performance, and separate
LETR to get FR-DETR’s upper bounds on line segment detection performance.
Our DETR codes are from the official implementation in Detectron2, and our
LETR codes are from the official implementation of the paper [28]. Our SDR
model mainly extended Oriented R-CNN implementation in MMRotate [35]. We
tried two different backbones based on ResNet50 and Swin-Transformer-Small,
referred to in all the tables as R50 and Swin-S, respectively. See Appendix 7.3
for more implementation details.

5.4 Evaluation on Real-World Benchmark

After shuffling the real-world benchmark, we selected 1772 diagrams as the train-
ing set and 444 diagrams as the test set for the ownership structure diagrams,
and 1400 diagrams as the training set and 350 diagrams as the test set for the
organization structure diagrams.

2 https://github.com/facebookresearch/detectron2.

https://github.com/facebookresearch/detectron2
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Table 2. Evaluation on the recognition of ownership structure diagrams (Pre: Prelim-
inary models, FT: Fine-tuned models)

Category Metrics(%) Arrow R-CNN FR-DETR Our SDR(R50) Our SDR(Swin-S)

Pre FT Pre FT Pre FT Pre FT

Node Precision 97.6 98.7 96.9 99.5 93.3 99.0 92.9 99.1

Recall 98.8 99.0 98.8 99.8 99.7 99.8 99.5 99.8

F1 98.2 98.8 97.8 99.6 96.4 99.4 96.1 99.4

AP 96.7 98.9 96.3 98.8 98.8 98.9 98.7 98.9

Line Precision 50.9 67.6 73.2 88.5 79.4 92.8 84.5 93.7

Recall 53.6 70.7 76.7 90.3 83.8 98.3 90.5 98.8

F1 52.2 69.1 74.9 89.4 81.5 95.5 87.4 96.2

AP 48.1 65.5 70.9 87.8 78.3 97.3 86.5 98.2

Bus Precision N/A N/A N/A N/A 66.7 79.8 74.3 85.3

Recall N/A N/A N/A N/A 81.6 97.7 90.1 98.4

F1 N/A N/A N/A N/A 73.4 87.8 81.4 91.4

AP N/A N/A N/A N/A 73.2 96.5 85.0 97.6

mAP 72.4 82.2 83.6 93.3 83.4 97.6 90.1 98.2

Arrow keypoints Precision 50.4 54.8 N/A N/A 86.7 96.9 91.3 97.0

Recall 49.1 57.6 N/A N/A 96.0 98.7 97.0 98.5

F1 47.2 56.2 N/A N/A 91.1 97.8 94.1 97.7

AP 44.0 52.7 N/A N/A 83.7 95.1 88.9 95.0

Table 3. Evaluation on the recognition of organization structure diagrams (Pre: Pre-
liminary models, FT: Fine-tuned models)

Category Metrics(%) Arrow R-CNN FR-DETR Our SDR(R50) Our SDR(Swin-S)

Pre FT Pre FT Pre FT Pre FT

Node Precision 96.7 98.9 98.0 99.6 99.4 99.8 99.6 99.7

Recall 98.9 99.3 98.8 99.9 99.9 99.9 99.8 99.9

F1 97.8 99.7 98.4 99.7 99.6 99.8 99.7 99.8

AP 96.5 98.7 97.9 99.0 98.8 99.0 98.9 99.0

Line Precision 51.5 77.4 89.0 95.5 87.3 95.9 88.0 98.4

Recall 53.2 73.5 86.4 96.8 79.2 95.4 79.9 95.3

F1 52.3 75.4 87.7 96.1 83.1 95.6 83.8 96.8

AP 49.0 68.3 81.6 94.0 77.4 95.0 78.0 95.0

Bus Precision N/A N/A N/A N/A 53.8 90.0 69.9 95.3

Recall N/A N/A N/A N/A 93.9 98.3 97.9 98.5

F1 N/A N/A N/A N/A 68.4 94.0 81.6 96.9

AP N/A N/A N/A N/A 91.1 98.0 96.4 97.9

mAP 72.8 83.5 89.8 96.5 89.1 97.3 91.1 97.3

Arrow keypoints Precision 42.0 51.0 N/A N/A 70.3 97.7 72.5 96.3

Recall 44.3 54.2 N/A N/A 95.9 99.6 94.3 99.6

F1 43.1 52.6 N/A N/A 81.1 98.6 82.0 97.9

AP 40.2 48.1 N/A N/A 67.7 96.7 68.6 95.7
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Table 4. Evaluation of extracting structured data from the ownership structure dia-
grams (Pre: Preliminary models, FT: Fine-tuned models)

Metrics(%) Arrow R-CNN FR-DETR Our SDR(R50) Our SDR(Swin-S)

Pre FT Pre FT Pre FT Pre FT

Precision 45.6 61.2 78.7 85.6 80.2 91.5 85.2 91.4

Recall 47.9 64.8 72.2 82.8 75.6 87.0 81.3 87.6

F1 46.7 62.9 75.3 84.2 77.8 89.2 83.2 89.5

Table 5. Evaluation of extracting structured data from the organization structure
diagrams (Pre: Preliminary models, FT: Fine-tuned models)

Metrics(%) Arrow R-CNN FR-DETR Our SDR(R50) Our SDR(Swin-S)

Pre FT Pre FT Pre FT Pre FT

Precision 46.5 66.1 81.4 90.9 81.8 91.9 82.3 91.8

Recall 50.6 69.0 78.5 86.6 76.4 87.4 77.9 87.5

F1 48.5 67.5 79.9 88.7 79.0 89.6 80.0 89.6

Table 6. Parameter number and inference time of different models.

Network params seconds per image

Arrow R-CNN 59.0M 0.18

FR-DETR 59.5M 1.22

Our SDR(R50) 59.1M 0.16

Our SDR(Swin-S) 83.8M 0.21

For the input size of diagram images, the longer side of the image is scaled
to 1024 and the shorter side is subsequently scaled according to the aspect ratio
of the original image before being input to the model. For all models in the
experiments, we followed the above configuration.

Table 2 and Table 3 showed the evaluations performed on the test set for the
ownership structure diagrams and the test set for the organization structure
diagrams, respectively. As discussed in Sect. 3.2, the shapes of the nodes are
relatively limited compared to the connecting lines, so the performance of node
detection is good for all the above methods, and we focus on the detection of
connecting lines in this section. Although the synthesized data tried to capture
the real data distribution as much as possible, there are always some complex
and special cases in the real data that differ from the regular scenarios, which
inevitably lead to some differences between the two. Therefore, fine-tuning on
real training set can allow the model to better adapt to the real data distribution
and thus further improve the performance of the model, and the experimental
results in Table 2 and Table 3 showed the effectiveness of fine-tuning.
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Schäfer et al. [19] also observed that when some connecting lines are very
close together in handwritten flowcharts, their horizontal bounding boxes over-
lap each other to a large extent, so they tried to increase the IoU threshold of
NMS from 0.5 used in Faster R-CNN to 0.8 to improve the detection of lines
with overlapping bounding boxes in Arrow R-CNN. After increasing the thresh-
old, the detection performance of the connection lines did improve significantly,
with F1 increasing from 51.8% to 69.1% on the ownership test set and from
57.7% to 73.5% on the organization test set, but Arrow R-CNN is still difficult
to correctly detect many common connecting lines whose horizontal rectangu-
lar bounding boxes completely overlap each other, as shown in Fig. 3 (a) and
Fig. 5 (a). Therefore, the performance of the Arrow R-CNN in the detection of
connecting lines is still not so good.

FR-DETR does not do a good job of detecting curves, but curves occur in a
relatively small percentage of the current dataset of structure diagrams, so this
has less impact on its overall performance. FR-DETR only detects each individ-
ual straight line segment as an object, instead of detecting each complex ployline
containing multiple line segments as an object like Arrow R-CNN. Therefore, its
task is simpler than Arrow R-CNN, and the corresponding performance is much
better. As shown in Fig. 6 (a), there are often text overlays on connecting lines in
ownership structure diagrams, and LETR in FR-DETR is not very robust and
can cause many connecting lines to be missed. Therefore, as shown in Table 2,
FR-DETR’s performance is not as good as SDRs. However, for organization
structure diagrams, the connecting lines are generally not covered by text, so
FR-DETR’s detection of connecting lines by FR-DETR is not affected, and its
performance is very close to that of SDRs, as shown in Table 3.

Consistent with Table 1, Table 2 and Table 3 show that the SDR (Swin-S) has
a significant advantage over the SDR (R50) on the preliminary models before
fine tuning on real data. This may be due to the fact that Swin-Transformer
has better feature extraction and representation capabilities, and thus better
generalization capabilities. The advantage of the SDR (Swin-S) over the SDR
(R50) is relatively small after fine-tuning on real data.

We also examined the SDR failure cases, which are typically due to very short
lines connected to the bus, complex structures containing intersecting lines, and
interference from dashed line boxes. See Appendix 7.4 for some examples.

To facilitate the extraction of topology and structured data, our SDR defines
buses as a special type of object that allows for easier and more reliable aggrega-
tion in post-processing. The relationship tuples obtained from structured data
extraction were evaluated on the test sets of the ownership structure diagrams
and the organization structure diagrams, respectively, according to the method
introduced in Sect. 3.4. Table 4 and Table 5 show that SDR is also better than
FR-DETR, and Arrow R-CNN is still the worst, and the fine-tuning also has
significant effects.
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Table 6 compares the number of parameters and inference speed of the above
models. SDR (R50) has the fastest speed and its number of parameters is com-
parable to Arrow R-CNN, but its recognition performance is much better than
Arrow R-CNN. The number of parameters of FR-DETR is comparable to that of
SDR (R50), and FR-DETR’s overall recognition performance is also not far from
that of SDR (R50), but SDR (R50)’s inference speed is more than 7 times FR-
DETR’s. FR-DETR’s speed bottleneck is mainly the LETR part. SDR (Swin-S)
has the largest number of parameters and the best recognition performance, and
its inference speed is 30% slower than SDR(R50), and but still more than 4 times
faster than FR-DETR.

All the above experimental results show that the SDR method proposed
in this paper has significantly improved compared to the previous methods,
especially the detection of various connecting lines, which in turn leads to an
improvement in the structured data extraction corresponding to the connection
relationships.

6 Conclusion

In this paper, we proposed a new method for structure diagram recognition that
can better detect various complex connecting lines. We also developed a two-
stage method to efficiently generate high-quality annotations for real-world dia-
grams, and constructed the industry’s first structure diagram benchmark from
real financial announcements. Empirical experiments validated the significant
performance advantage of our proposed methods over existing methods. In the
future, we plan to extend the methods in this paper and apply it to the recog-
nition of more types of diagrams, such as process diagrams.

7 Appendix

7.1 Examples of Synthesized Structure Diagrams

Figure 9 and Fig. 10 show some examples of synthesized ownership structure
diagrams and organization structure diagrams, respectively.
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Fig. 9. Some examples of Synthesized Ownership Structure Diagrams
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Fig. 10. Some examples of Synthesized Organization Structure Diagrams

7.2 Examples of Structure Diagrams Automatically Annotated
by the Preliminary SDR Models

Figure 11 and Fig. 12 show some examples of ownership structure diagrams and
organization structure diagrams, respectively, automatically annotated by the
preliminary SDR models.
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7.3 Implementation details for Arrow R-CNN, FR-DETR and SDR

Arrow R-CNN. The backbone is ResNet50 with FPN, and is initialized with
the ImageNet-based pre-training model3. The model was trained using Momen-
tum SGD as the optimizer, with a batch size of 2, a maximum number of iter-
ations of 38000, an initial learning rate of 0.0025, and dividing by 10 at the
32000th and 36000th iteration. Horizontal and vertical flips and rotations were
used for data augmentation during training.

FR-DETR. For DETR, the backbone is ResNet50 with pretrained weights4.
The model was trained with a batch size of 2 and a total of 300 epochs, and the
learning rate was divided by 10 at the 200th epochs. The model was optimized
using AdamW with the learning rate of 1e−04, and the weight decay of 1e−04.
Only horizontal flips were used for data augmentation during training.

For LETR, The backbone is ResNet505. The model was trained with a batch
size of 1, and 25 epochs for focal-loss fine-tuning on the pre-training model. The
model was optimized using AdamW with the learning rate of 1e−05, and the
weight decay of 1e−4. Horizontal and vertical flips were used for data augmen-
tation during training.

SDR. The codes are modified and extended from MMRotate6. The model was
trained with a batch size of 1 and a total of 12 epochs, and the learning rate
was divided by 10 at the 8th and 11th epochs. Horizontal and vertical flips and
rotations were used for data augmentation.

One option for the backbone is ResNet50, and the network was optimized
using the SGD algorithm with a momentum of 0.9, a weight decay of 0.0001,
and an initial learning rate set to 1.25e−03.

Another backbone option is Swin-Transformer-small, and the network was
optimized using AdamW with the learning rate of 2.5e−05, and the weight decay
of 0.05.

Our SDR provided seven customized anchor box aspect ratios (0.02, 0.1, 0.5,
1.0, 2.0, 4.0, 10.0) to accommodate different types of objects with different sizes
and shapes in structure diagrams.

3 https://github.com/facebookresearch/detectron2.
4 https://github.com/facebookresearch/detr.
5 https://github.com/mlpc-ucsd/LETR.
6 https://github.com/open-mmlab/mmrotate.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detr
https://github.com/mlpc-ucsd/LETR
https://github.com/open-mmlab/mmrotate
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Fig. 11. Some examples of Ownership Structure Diagrams Automatically Annotated
by the Preliminary SDR Model
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Fig. 12. Some examples of Organization Structure Diagrams Automatically Annotated
by the Preliminary SDR Model

7.4 Examples of SDR Failure Cases

Figure 13 shows some examples of SDR failure cases of detecting connecting
lines.
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Fig. 13. Some examples of SDR failure cases of detecting connecting lines
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18. Schäfer, B., van der Aa, H., Leopold, H., Stuckenschmidt, H.: Sketch2BPMN:
automatic recognition of hand-drawn BPMN models. In: La Rosa, M., Sadiq, S.,
Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 344–360. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79382-1 21
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Abstract. State-of-the-art offline Optical Character Recognition
(OCR) frameworks perform poorly on semi-structured handwritten
domain-specific documents due to their inability to localize and label
form fields with domain-specific semantics. Existing techniques for semi-
structured document analysis have primarily used datasets compris-
ing invoices, purchase orders, receipts, and identity-card documents for
benchmarking. In this work, we build the first semi-structured docu-
ment analysis dataset in the legal domain by collecting a large number
of First Information Report (FIR) documents from several police stations
in India. This dataset, which we call the FIR dataset, is more challenging
than most existing document analysis datasets, since it combines a wide
variety of handwritten text with printed text. We also propose an end-to-
end framework for offline processing of handwritten semi-structured doc-
uments, and benchmark it on our novel FIR dataset. Our framework used
Encoder-Decoder architecture for localizing and labelling the form fields
and for recognizing the handwritten content. The encoder consists of
Faster-RCNN and Vision Transformers. Further the Transformer-based
decoder architecture is trained with a domain-specific tokenizer. We also
propose a post-correction method to handle recognition errors pertaining
to the domain-specific terms. Our proposed framework achieves state-of-
the-art results on the FIR dataset outperforming several existing models.

Keywords: Semi-structured document · Offline handwriting
recognition · Legal document analysis · Vision Transformer · FIR
dataset

1 Introduction

Semi-Structured documents are widely used in many different industries. Recent
advancement in digitization has increased the demand for analysis of scanned or
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Fig. 1. Examples of First Information Report (FIR) documents from different police
stations in India. The FIR dataset developed in this paper consists of a wide variety of
such semi-structured FIR documents containing both printed and handwritten text.

mobile-captured semi-structured documents. Many recent works have used differ-
ent deep learning techniques to solve some of the critical problems in processing
and layout analysis of semi-structured documents [16,23,34]. Semi-structured
documents consist of printed, handwritten, or hybrid (both printed and hand-
written) text forms. In particular, hybrid documents (see Fig. 1) are more com-
plex to analyze since they require segregation of printed and handwritten text
and subsequent recognition. With recent advancements, the OCR accuracy has
improved for printed text; however, recognition of handwritten characters is still
a challenge due to variations in writing style and layout.

Earlier works have focused on techniques for layout analysis, named-entity
recognition, offline handwriting recognition, etc., but sufficient work has not
been done on developing an end-to-end framework for processing semi-structured
documents. A general end-to-end framework can be easily fine-tuned for domain-
specific requirements. In this paper we present the first framework for semi-
structured document analysis applied to legal documents.

There have been many works on legal documents, such as on case document
summarization [6], relevant statute identification from legal facts [31], pretrain-
ing language models on legal text [32] and so on. But almost all prior research in
the legal domain has focused on textual data, and not on document images. In
particular, the challenges involved in document processing and layout analysis of
legal documents is unattended, even though these tasks have become important
due to the increasing availability of scanned/photographed legal documents.

In this work, we build the first dataset for semi-structured document analysis
in the legal domain. To this end, we focus on First Information Report (FIR)
documents from India. An FIR is usually prepared by police stations in some
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South Asian countries when they first get a complaint by the victim of a crime (or
someone on behalf of the victim).1 An FIR usually contains a lot of details such
as the date, time, place, and details of the incident, the names of the person(s)
involved, a list of the statutes (written laws, e.g., those set by the Constitution
of a country) that might have been violated by the incident, and so on. The FIRs
are usually written on a printed form, where the fields are filled in by hand by
police officials (see examples in Fig. 1). It is estimated that more than 6 million
FIRs are filed every year across thousands of police stations in various states in
India. Such high volumes lead to inconsistent practices in-terms of handwriting,
layout structure, scanning procedure, scan quality, etc., and introduce huge noise
in the digital copies of these documents.

Our target fields of interest while processing FIR documents are the hand-
written entries (e.g., name of the complainant, the statutes violated) which
are challenging to identify due to the wide variation in handwriting. To
form the dataset, which we call the FIR dataset, we created the meta-
data for the target fields by collecting the actual text values from the police
databases, and also annotated the documents with layout positions of the tar-
get fields. The FIR dataset is made publicly available at https://github.com/
LegalDocumentProcessing/FIR Dataset ICDAR2023.

The FIR dataset is particularly challenging since its documents are of mixed
type, with both printed and handwritten text. Traditional OCR identifies blocks
of text strings in documents and recognizes the text from images by parsing from
left to right [19]. NLP techniques like named-entity recognition (NER), which
uses raw text to find the target fields, cannot be applied easily, since traditional
OCRs do not work well in recognition of mixed documents with handwritten and
printed characters occurring together. Another drawback of traditional OCRs in
this context is their inability to recognise domain-specific words due to their
general language-based vocabulary. In this work, we propose a novel framework
for analysing such domain-specific semi-structured documents. The contributions
of the proposed framework as follows:

1. We use a FastRCNN + Vision Transformer-based encoder trained for tar-
get field localization and classification. We also deploy a BERT-based text
decoder that is fine-tuned to incorporate legal domain-specific vocabulary.

2. We use a domain-specific pretrained language model [32] to improve the recog-
nition of domain-specific text (legal statutes, Indian names, etc.). This idea of
using a domain-specific language model along with OCR is novel, and has a
wider applicability over other domains (e.g., finance, healthcare, etc.) where
this technique can be used to achieve improved recognition from domain-
specific documents.

3. We improve the character error rate (CER) by reducing the ambiguities in
OCR through a novel domain-specific post-correction step. Using domain
knowledge, we created a database for each target field (such as Indian names,
Indian statutes, etc.) to replace the ambiguous words from OCR having low

1 https://en.wikipedia.org/wiki/First information report.

https://github.com/LegalDocumentProcessing/FIR_Dataset_ICDAR2023
https://github.com/LegalDocumentProcessing/FIR_Dataset_ICDAR2023
https://en.wikipedia.org/wiki/First_information_report
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confidence using a combination of TF-IDF vectorizer and K-Nearest Neigh-
bour classifier. This novel post-correction method to handle recognition errors
pertaining to proper nouns, enables our proposed framework to outperform
state-of-the-art OCR models by large margins.

To summarize, in this work we build the first legal domain-specific dataset for
semi-structured document analysis. We also develop a framework to localise
the handwritten target fields, and fine-tune a transformer-based OCR (TrOCR)
to extract handwritten text. We further develop post-correction techniques to
improve the character error rate. To our knowledge, the combination of Faster-
RCNN and TrOCR with other components, such as Vision Transformer and legal
domain-specific tokenizers, to create an end-to-end framework for processing
offline handwritten semi-structured documents is novel, and can be useful for
analysis of similar documents in other domains as well.

2 Related Work

We briefly survey four types of prior works related to our work – (i) related
datasets, (ii) works addressing target field localization and classification,
(iii) handwritten character recognition, and (iv) works on post-OCR correction
methods.

Related Datasets: There exist several popular datasets for semi-structured
document analysis. FUNSD [22] is a very popular dataset for information extrac-
tion and layout analysis. FUNSD dataset is a subset of RVL-CDIP dataset [17],
and contains 199 annotated financial forms. The SROIE dataset [21] contains
1,000 annotated receipts having 4 different entities, and is used for receipt recog-
nition and information extraction tasks. The CloudSCan Invoice dataset [29] is
a custom dataset for invoice information extraction. The dataset contained 8
entities in printed text.

Note that no such dataset exists in the legal domain, and our FIR dataset
is the first of its kind. Also, the existing datasets contain only printed text,
while the dataset we build contains a mixture of printed and hand-written text
(see Table 2 for a detailed comparison of the various datasets).

Localization and Labelling of Field Components: Rule-based information
extraction methods (such as the method developed by Kempf et al. [10] and
many other methods) could be useful when documents are of high quality and
do not contain handwritten characters. But when document layouts involve huge
variations, noise and handwritten characters, keyword-based approaches fail to
provide good results. Template-based approaches also fail due to scanning errors
and layout variability [1,2,36].
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Srivastava et al. [12] developed a graph-based deep network for predicting
the associations between field labels and field values in handwritten form images.
They considered forms in which the field label comprises printed text and field
value can be handwritten text; this is similar to what we have in the FIR dataset
developed in this work. To perform association between the target field labels
and values, they formed a graphical representation of the textual scripts using
their associated layout position.

In this work, we tried to remove the dependency on OCR of previous
works [12] by using layout information of images to learn the positions of tar-
get fields and extract the image patches using state-of-the-art object detection
models such as [33,35,37].

Zhu et al. [37] proposed attention modules that only attend to a small set
of key sampling points around a reference, which can achieve better perfor-
mance than baseline model [8] with 10× less training epochs. Tan et al. [35]
used weighted bi-directional feature pyramid network (BiFPN), which allows
easy and fast multi-scale feature fusion. Ren et al [33] proposed an improved
version of their earlier work [14] provides comparative performances with [35,37]
with lower latency and computational resources on FIR dataset. Hence, we use
Faster RCNN model in this framework for localization and classification of the
field component.

Handwritten Character Recognition: Offline handwriting recognition has
been a long standing research interest. The works [3–5] presented novel features
based on structural features of the strokes and their spatial relations with a
character, as visible from different viewing directions on a 2D plane. Diesendruck
et al. [11] used Word Spotting to directly recognise handwritten text from images.
The conventional text recognition task is usually framed as an encoder-decoder
problem where the traditional methods [19] leveraged CNN-based [24] encoder
for image understanding and LSTM-based [20] decoder for text recognition.

Chowdhury et al. [9] combined a deep convolutional network with a recur-
rent Encoder-Decoder network to map an image to a sequence of characters
corresponding to the text present in the image. Michael, Johannes et al. [28]
proposed a sequence-to-sequence model combining a convolutional neural net-
work (as a generic feature extractor) with a recurrent neural network to encode
both the visual information, as well as the temporal context between characters
in the input image. Further, Li et al. [25] used for the first time an end-to-end
Transformer-based encoder-decoder OCR model for handwritten text recogni-
tion and achieved SOTA results. The model [25] is convolution-free unlike previ-
ous methods, and does not rely on any complex pre/post-processing steps. The
present work leverages this work and extends its application in legal domain.

Post-OCR Correction: Rectification of errors in the recognised text from
the OCR would require extensive training which is computation heavy. Further,
post-OCR error correction requires a large amount of annotated data which
may not always be available. After the introduction of the Attention mechanism
and BERT model, many works have been done to improve the results of the
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OCR using language model based post-correction techniques. However, Neural
Machine Translation based approaches as used by Duong et al. [13] are not useful
in the case of form text due to the lack of adequate context and neighbouring
words. We extend the idea used in the work of Trstenjak et al. [7] where they used
edit distance and cosine similarity to find the matching words. In this paper we
used K-nearest neighbour with edit distance to find best matches for the words
predicted with low confidence score by the OCR.

3 The FIR Dataset

First Information Report (FIR) documents contain details about incidents of
cognisable offence, that are written at police stations based on a complaint.
FIRs are usually filed by a police official filling up a printed form; hence the
documents contain both printed and handwritten text. In this work, we focus
on FIR documents written at police stations in India. Though the FIR forms
used across different Indian states mostly have a common set of fields, there
are some differences in their layout (see examples in Fig. 1). To diversify the
dataset, we included FIR documents from the databases of various police stations
across several Indian states – West Bengal2, Rajasthan3, Sikkim4, Tripura5 and
Nagaland6.

As stated earlier, an FIR contains many fields including the name of the com-
plainant, names of suspected/alleged persons, statutes that may have been vio-
lated, date and location of the incident, and so on. In this work, we selected four
target fields from FIR documents for the data annotation and recognition task –
(1) Year (the year in which the complaint is being recorded), (2) Complainant’s
name (name of the person who lodged the complaint), (3) Police Station (name
of the police station that is responsible for investigating the particular incident),
and (4) Statutes (Indian laws that have potentially been violated in the reported
incident; these laws give a good indication of the type of the crime). We selected
these four target fields because we were able to collect the gold standard for
these four fields from some of the police databases. Also, digitizing these four
fields would enable various societal analysis, such as analysis of the nature of
crimes in different police stations, temporal variations in crimes, and so on.

Annotations: We manually analysed more than 1,300 FIR documents belonging
to different states, regions, police stations, etc. We found that FIR documents
from the same region / police station tend to have the similar layout and form
structure. Hence we selected a subset of 375 FIR documents with reasonably
varying layouts / form structure, so that this subset covers most of the different
variations. These 375 documents were manually annotated. Annotations were

2 http://bidhannagarcitypolice.gov.in/fir record.php.
3 https://home.rajasthan.gov.in/content/homeportal/en.html.
4 https://police.sikkim.gov.in/visitor/fir.
5 https://tripurapolice.gov.in/west/fir-copies.
6 https://police.nagaland.gov.in/fir-2/.

http://bidhannagarcitypolice.gov.in/fir_record.php
https://home.rajasthan.gov.in/content/homeportal/en.html
https://police.sikkim.gov.in/visitor/fir
https://tripurapolice.gov.in/west/fir-copies
https://police.nagaland.gov.in/fir-2/
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Fig. 2. Sample of various entities present in First Information Reports with different
writing styles, distortions and scales.

Table 1. FIR Dataset statistics

Split Images Layout Words Labels

Training 300 61 1,830 1,230

Testing 75 18 457 307

done on these documents using LabelMe annotation tool7 to mark the bounding
boxes of the target fields.

Figure 2 shows some samples of various entities present in our dataset, and
Fig. 3 shows examples of ground truth annotations for two of the entities in Fig. 2.
In the ground truth, each bounding box has four co-ordinates (X left, X width,
Y right, Y height) which describe the position of the rectangle containing the
field value for each target field.

Train-test Split: During the annotation of our dataset, we identified 79 different
types of large scale variations, layout distortions/deformations, which we split into
training and testing sets. We divided our dataset (of 375 document images) such
that 300 images are included in the training set and the other 75 images are used
as the test set. During training, we used 30% of training dataset as a validation
set. Table 1 shows the bifurcation statistics for training and test sets.

Preprocessing the Images: For Faster-RCNN we resized the document images
to a size of 1180 × 740, and used the bounding boxes and label names to train
the model to predict and classify the bounding boxes. We convert the dataset
into IAM Dataset format [27] to fine-tune the transformer OCR.

7 https://github.com/wkentaro/labelme.

https://github.com/wkentaro/labelme
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Fig. 3. Examples of ground truth annotations for two of the entities shown in Fig. 2

Table 2. Comparison of the FIR dataset with other similar datasets

Dataset Category #Images Text Type #Entites

Printed Handwritten

FUNSD [22] Form 199 � x 4

SROIE [21] Receipt 1000 � x 4

Cloud Invoice [29] Invoice 326571 � x 8

FIR (Ours) Form 375 � � 4

Novelty of the FIR Dataset: We compare our FIR dataset8 with other
datasets for semi-structure document analysis in Table 2. The FIR dataset con-
tains both printed and handwritten information which makes it unique and
complex compared to several other datasets. Additionally, the FIR dataset is
the first dataset for semi-structured document analysis in the legal domain.

4 The TransDocAnalyser Framework

We now present TransDocAnalyser, a framework for offline processing of hand-
written semi-structured documents, by adopting Faster-RCNN and Transformer-
based encoder-decoder architecture, with post-correction to improve performance.

4.1 The Faster-RCNN Architecture

Faster-RCNN [33] is a popular object detection algorithm that has been adopted
in many real-world applications. It builds upon the earlier R-CNN [15] and
8 https://github.com/LegalDocumentProcessing/FIR Dataset ICDAR2023.

https://github.com/LegalDocumentProcessing/FIR_Dataset_ICDAR2023
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Fig. 4. Modified Faster-RCNN based architecture for target field localization and
labelling

Fast R-CNN [33] architectures. We pass the input images through the Faster-
RCNN network to get the domain-specific field associations and extract the
image patches from the documents.

Our modified Faster-RCNN architecture consists of three main components
(as schematically shown in Fig. 4)– (1) Backbone Network , (2) Region Proposal
Network (RPN), and (3) ROI Heads as detailed below.
(1) Backbone Network: ResNet-based backbone network is used to extract
multi-scaled feature maps from the input – that are named as P2, P3, P4 , P8
and so on – which are scaled as 1/4th, 1/8th, 1/16th and so on. This backbone
network is FPN-based (Feature Pyramid network) [26] which is multi-scale object
detector invariant to the object size.
(2) Region Proposal Network (RPN): Detects ROI (regions of interest)
along with a confidence score, from the multi-scale feature maps generated by
the backbone network. A fixed-size kernel is used for region pooling. The regions
detected by the RPN are called proposal boxes.
(3) ROI Heads: The input to the box head comprises (i) the feature maps
generated by a Fully Connected Network (FCN), (ii) the proposed boxes which
come from the RPN. These are 1,000 boxes with their predicted labels. Box
head uses the bounding boxes proposed by the RPN to crop and prepare the
feature maps. (iii) ground truth bounding boxes from the annotated training
datasets. The ROI pooling uses the proposed boxes detected by RPN, crops the
rectangular areas of the feature maps, and feeds them into the head networks.
Using Box head and mask head together in Faster-RCNN network, inspired by
He et al. [18] improves the overall performance.

During training, the box head makes use of the ground truth boxes to accel-
erate the training. The mask head provides the final predicted bounding boxes
and confidence scores during the training. At the time of inference the head
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Fig. 5. TrOCR architecture with custom enhancements. The Text decoder uses
a domain-specific InLegalBert [32] based tokenizer. OCR predictions go for post-
correction if the confidence score is less than the threshold. We convert the OCR
prediction into a TF-IDF vector and search in the domain-specific field database to
find the Nearest Match.

network uses non-maximum suppression (NMS) algorithm to remove the over-
lapping boxes and selects the top-k results as the predicted output based on
thresholds on their confidence score and intersection over union (IOU).

4.2 The TrOCR Architecture

Once the localized images are generated for a target field (e.g., complainant
name) by Faster-RCNN, the image patches are then flattened and sent to the
Vision Transformer (ViT) based encoder model. We use TrOCR [25] as the
backbone model for our finetuning (see Fig. 5). TrOCR [25] is a Transformer-
based OCR model which consists of a pretrained vision Transformer encoder and
a pretrained text decoder. The ViT encoder is trained on the IAM handwritten
dataset, which we fine-tune on our FIR dataset. We use the output patches
from the Faster-RCNN network as input to the ViT encoder, and fine-tune it
to generate features. As we are providing the raw image patches received from
Faster-RCNN into the ViT encoder, we did not apply any pre-processing or
layout enhancement technique to improve the quality of the localised images.
On the contrary, we put the noisy localised images cropped from the form fields
directly, which learns to suppress noise features by training.

We also replace the default text decoder (RoBERTa) with the Indian legal-
domain specific BERT based text decoder InLegalBERT [32] as shown in Fig. 5.
InLegalBert [32] is pre-trained with a huge corpus of about 5.4 million Indian
Legal documents, including court judgements of the Indian Supreme Court and
other higher courts of India, and various Central Government Acts.

To recognize characters in the cropped image patches, the images are first
resized into square boxes of size 384 × 384 pixels and then flattened into a
sequence of patches, which are then encoded by ViT into high-level representa-
tions and decoded by InLegalBERT into corresponding characters step-by-step.
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Table 3. Excerpts from field-specific databases used to prepare TF-IDF vectorized
records for KNN search. All databases contain India-specific entries.

Names Surnames Police Stations Statutes / Acts

Anamul Haque Baguiati IPC (Indian Penal Code)

Shyam Das Airport D.M. Act (Disaster Management Act)

Barnali Pramanik Newtown D.C. Act (Drug and Cosmetics Act)

Rasida Begam Saltlake NDPS Act

Fig. 6. Term Frequency and Inverse Document frequency (TF-IDF) Vectorizer based
K-Nearest Neighbour model for post-correction on OCR output

We evaluate and penalise the model based on the Character Error Rate
(CER). CER calculation is based on the concept of Levenshtein distance, where
we count the minimum number of character-level operations required to trans-
form the ground truth text into the predicted OCR output. CER is computed as
CER = (S+D+ I)/N where S is the number of substitutions, D is the number
of deletions, I is the number of Insertions, and N is the number of characters in
the reference text.

4.3 KNN-Based OCR Correction

For each predicted word from OCR, if the confidence score is less than a threshold
0.7, we consider the OCR output to be ambiguous for that particular word. In
such cases, the predicted word goes through a post-correction step which we
describe now (see Fig. 6).

For each target field, we create a database of relevant values and terms (which
could be written in the field) from various sources available on the Web. Table 3
shows a very small subset of some of the field-specific databases such as Indian
names, Indian surnames, Indian statutes (Acts and Sections), etc. We converted
each database into a set of TF-IDF vectors (see Fig. 6). Here TF-IDF stands
for Term Frequency times Inverse Document Frequency. The TF-IDF scores
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Table 4. Faster-RCNN model training parameters

Base Model Base Weights Learning Rate Epoch # # of Class IMS/batch Image Size

ResNet 50 Mask RCNN 0.00025 2500 4 4 1180 × 740

Table 5. Transformer OCR (TrOCR) parameters used for model fine-tuning

Feature Extractor Tokenizer Max Len N-gram Penalty # of Beam Optimizer

google-vit-patch16-384 InLegalBERT 32 3 2.0 4 AdamW

are computed using n-grams of groups of letters. In our work we used n = 3
(trigrams) for generating the TF-IDF vectors for OCR predicted words as well
as for the entities in the databases.

For a given OCR output, based on the associated field name which is already
available from the field classification by Faster-RCNN, we used the K-Nearest
Neighbour (KNN) classifier to select the appropriate vectorized database. KNN
returns best matches with a confidence score based on the distance between
the search vector (OCR output) and the vectors in the chosen database. If the
confidence score returned by KNN is greater than 0.9, then the OCR predicted
word gets replaced with the word predicted by the K-Nearest Neighbour search.

5 Experimental Settings

We ran all experiments on a Tesla T4 GPU with CUDA version 11.2. We used
CUDA enabled Torch framework 1.8.0.

In the first stage of the TransDocAnalyser framework, we trained the Faster
RCNN from scratch using the annotated dataset (the training set). Table 4 shows
the settings used for training the Faster-RCNN model. Prior to the training,
input images are resized in 1180 × 740. For memory optimization, we run the
model in two steps, first for 1500 iteration and then for 1000 iteration on the
stored model. We tried batch sizes (BS) of 16, 32 and 64, and finalized BS as
64 because of the improvement in performance and training time. We used the
trained model Faster-RCNN model to detect and crop out the bounding boxes
of each label from the original document (as shown in Fig. 2) and created our
dataset to fine-tune the ViT encoder.

We also created a metadata file mapping each cropped image (as shown in
Fig. 2) with its corresponding text as described in [27] to fine-tune the decoder.

Table 5 shows the parameter settings used for fine-tuning the TrOCR model.
Image patches are resized to 384 × 384 dimension to fine-tune ViT encoder. In
the TrOCR model configuration, we replaced the tokenizer and decoder settings
based on InLegalBert. We tried with batch size (BS) of 2, 4, 8, 16, 32, 64, and
BS = 8 provided the best result on the validation set. We fine-tuned the Encoder
and Decoder of the OCR for 40 epochs and obtained the final results.
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Table 6. Performance of field labelling on the FIR dataset (validation set and test
set). Re: Recall, Pr: Precision, F1: F1-score, mAP: mean average precision.

Results on dataset Target field Faster R-CNN

Re ↑ Pr ↑ F1 ↑ mAP ↑
Validation Year 0.98 0.96 0.97 0.97

Statute 0.85 0.82 0.83 0.84

Police Station 0.96 0.90 0.93 0.93

Complainant Name 0.84 0.76 0.80 0.77

Test Year 0.97 0.96 0.97 0.96

Statute 0.84 0.87 0.86 0.80

Police Station 0.93 0.88 0.91 0.91

Complainant Name 0.80 0.81 0.81 0.74

Fig. 7. Examples of localization and labelling of target fields by Faster-RCNN. The
predicted bounding boxes are highlighted in green on the images. The associated class
labels are highlighted in red. (Color figure online)

The KNN-based OCR correction module used n-grams with n = 1, 2, 3, 4
to generate the TF-IDF vectors of the field-specific databases. Using n = 3
(trigrams) and KNN with K = 1 provided the best results.

6 Results

In this section, we present the results of the proposed framework TransDocAnal-
yser in three stages – (i) The performance of Faster-RCNN on localization and
labelling of the target fields (Table 6); (ii) Sample of OCR results with Confi-
dence Scores (Table 7); and (iii) Comparison of the performance of the proposed
framework with existing OCR methods (Table 8).

Table 6 shows the results of field label detection using Faster-RCNN on both
test and validation sets of the FIR dataset. The performance is reported in terms
of Recall (Re), Precision (Pr), F1 (harmonic mean of Recall and Precision) and
mean Average Precision (mAP). For the localization and labelling, a prediction



58 S. Chakraborty et al.

Table 7. Finetuned (TrOCR) predictions on the generated image patches shown below

Image Patches OCR Results Confidence Score

2019 0.89

Lian Min Thang 0.77

Nscbi Airport 0.79

Amar Prakesh 0.63

379 0.96

is considered correct if both the IOU (with the ground truth) and the confidence
threshold are higher than 0.5. The results show that our model is performing
well, with the best and worst results for the fields ‘Year’ (F1 = 0.97) and ‘Name’
(F1 = 0.8) respectively. This variation in the results is intuitive, since names
have a lot more variation than the year.

Figure 7 shows examples of outputs of Faster-RCNN on some documents from
the test set of the FIR dataset. The predicted bounding boxes are highlighted
in green rectangles, and the predicted class names are marked in red on top of
each bounding box.

The output of Faster-RCNN provides bounding boxes and field names for
each image, using which image patches are generated and sent to the Encoder-
Decoder architecture. Table 7 shows some examples of image patches and the
finetuned TrOCR predictions for those image patches. It is seen that the name
“Amar Prakash” is predicted as ‘Amar Prakesh” with confidence score below a
threshold of 0.7 (which was decided empirically). As the prediction confidence
is below the threshold, this output goes to the post-correction method proposed
in this work.

Table 8 compares the final performance of our proposed framework TransDoc-
Analyser, and compares our model with Google-Tesseract and Microsoft-TrOCR
for handwritten recognition on proposed FIR dataset.9 The performances are
reported in terms of Character Error Rate (CER), Word Error Rate (WER),
and BLEU scores [30]. Lower values of CER and WER indicate better perfor-
mance, while higher BLEU scores are better.

We achieve state-of-the-art results using the proposed TransDocAnalyser
framework which outperforms the other models with quite a good margin
(see Table 8). While the TrOCR + InLegalBert model also performed well, our
proposed framework TransDocAnalyser (consisting of vision transformer-based
encoder, InLegalBert tokenizer and KNN-based post-correction) achieved the
best results across all the four target fields of the FIR dataset.

9 We initially compared Tesseract with TrOCR-Base, and found TrOCR to perform
much better. Hence subsequent experiments were done with TrOCR only.
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Table 8. Benchmarking state-of-the-art TrOCR and our proposed framework Trans-
DocAnalyser on the FIR dataset (best values in boldface)

OCR models Target Field Evaluation Metrics

CER ↓ WER ↓ BLEU ↑
Tesseract-OCR Year 0.78 0.75 0.14

Statute 0.89 0.83 0.12

Police Station 0.91 0.89 0.10

Complainant Name 0.96 0.87 0.9

TrOCR-Base Year 0.38 0.32 0.72

Statute 0.42 0.38 0.68

Police Station 0.50 0.44 0.62

Complainant Name 0.62 0.56 0.56

TrOCR-Large Year 0.33 0.32 0.75

Statute 0.34 0.33 0.73

Police Station 0.36 0.38 0.65

Complainant Name 0.51 0.50 0.57

TrOCR-InLegalBert Year 0.17 0.17 0.84

Statute 0.19 0.21 0.92

Police Station 0.31 0.26 0.78

Complainant Name 0.45 0.39 0.72

TransDocAnalyser (proposed) Year 0.09 0.02 0.96

Statute 0.11 0.10 0.93

Police Station 0.18 0.20 0.83

Complainant Name 0.24 0.21 0.78

7 Conclusion

In this work, we (i) developed the first dataset for semi-structured handwrit-
ten document analysis in the legal domain, and (ii) proposed a novel frame-
work for offline analysis of semi-structured handwritten documents in a par-
ticular domain. Our proposed TransDocAnalyser framework including Faster-
RCNN, TrOCR, a domain-specific language model/tokenizer, and KNN-based
post-correction outperformed existing OCRs.

We hope that the FIR dataset developed in this work will enable further
research on legal document analysis which is gaining importance world-wide and
specially in developing countries. We also believe that the TransDocAnalyser
framework can be easily extended to semi-structured handwritten document
analysis in other domains as well, with a little fine-tuning.
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13. Duong, Q., Hämäläinen, M., Hengchen, S.: An unsupervised method for OCR
post-correction and spelling normalisation for Finnish. In: Proceedings of the 23rd
Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 240–248 (2021)

14. Girshick, R.: Fast R-CNN. In: Proceedings of IEEE International Conference on
Computer Vision (ICCV), pp. 1440–1448 (2015)

15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

16. Ha, H.T., Medved’, M., Nevěřilová, Z., Horák, A.: Recognition of OCR invoice
metadata block types. In: Proceedings of Text, Speech, and Dialogue, pp. 304–312
(2018)

17. Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for
document image classification and retrieval. In: 2015 13th International Conference
on Document Analysis and Recognition (ICDAR), pp. 991–995 (2015)

https://doi.org/10.1007/3-540-45869-7_32
https://doi.org/10.1007/s10032-005-0008-3
https://doi.org/10.1007/978-3-030-58452-8_13


TransDocAnalyser: A Framework for Semi-structured Legal Document 61

18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of
IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

19. Hegghammer, T.: OCR with tesseract, Amazon textract, and google document AI:
a benchmarking experiment. J. Comput. Soc. Sci. 5(1), 861–882 (2022)

20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

21. Huang, Z., et al.: Competition on scanned receipt OCR and information extraction.
In: Proceedings of International Conference on Document Analysis and Recognition
(ICDAR), pp. 1516–1520 (2019)

22. Jaume, G., Kemal Ekenel, H., Thiran, J.P.: FUNSD: a dataset for form understand-
ing in noisy scanned documents. In: 2019 International Conference on Document
Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 1–6 (2019)

23. Kim, G., et al.: OCR-free document understanding transformer. In: Avidan, S.,
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Abstract. Document binarization plays a key role in information
extraction pipelines from document images. In this paper, we propose
a robust binarization algorithm that aims at obtaining highly accurate
binary maps with reduced computational burden. The proposed tech-
nique exploits the effectiveness of the classic Sauvola thresholding set
within a DNN environment. Our model learns to combine multi-scale
Sauvola thresholds using a featurewise attention module that exploits
the visual context of each pixel. The resulting binarization map is further
enhanced by a spatial error concealment procedure to recover missing or
severely degraded visual information. Moreover, we propose to employ
an automatic color removal module that is responsible for suppressing
any binarization irrelevant information from the image. This is especially
important for structured documents, such as payment forms, where col-
ored structures are used for better user experience and readability. The
resulting model is compact, explainable and end-to-end trainable. The
proposed technique outperforms the state-of-the-art algorithms in terms
of binarization accuracy and successfully extracted information rates.

Keywords: Binarization · Information extraction · Structured
documents

1 Introduction

Document binarization refers to the process of assigning a binary value to every
pixel. The objective is to distinguish the foreground pixels from the background.
In other words, the binarization aims at identifying pixels of interest, typically
pixels comprising relevant characters and symbols, and suppressing the rest. The
goal is to enhance the overall document readability. Note that in many practical
applications the purpose of binarization is not just to obtain the binary mask but
rather to aid the subsequent processing, e.g., text detection, optical character
recognition (OCR) or named entity recognition (NER). This aspect, however, is
generally not evaluated in the literature and only the accuracies of the obtained
binary masks are directly measured [1,14,16,29]. Therefore, in this paper, we will
not only evaluate the binarization performance in terms of correctly classified
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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pixels but we will also evaluate the influence of the binarization quality on the
information extraction results, concretely on NER tasks. An example of a typical
information extraction pipeline is shown in Fig. 1. Throughout the paper, we
will use the Gini document processing pipeline [34] as reference for information
extraction. The binarization task is involved in processing of millions of payment
forms and other financial documents that are run through the pipeline on weekly
basis [35].

Additionally, the widely used binarization datasets typically refer to
manuscript-like documents, either machine typed [2,4,6,9] or handwritten
[5,7,8,10]. Such datasets, however, are not suitable for evaluation of modern
structured documents, such as payment forms or invoices. The current growth
of various document based information extraction services [34] requires the use of
more complex document layouts and visual characteristics. In fact, modern struc-
tured documents contain visual features to better guide the user and improve
the user experience. These complex visual contexts include colored regions that
tend to confuse the binarization process. As a consequence, different background
structures, logos and other irrelevant objects are highlighted during the binariza-
tion. This binarization noise, in turn, will confuse the subsequent processing and
it can mask relevant information. Figure 3 shows an example of a typical German
payment form. It is clear that pure gray scale processing has a tendency to mask
important characters or produce excessive binarization masks that will have neg-
ative effect on subsequent processing (e.g. information extraction). In addition,
such masks would also add to the overall processing time of a document.

In this paper, we introduce a robust and light-weight binarization convolu-
tional neural network (CNN). The objective is to achieve a high binarization per-
formance on manuscript-like documents as well as modern structured financial
documents with non-negligible color content. The proposed approach exploits
the advantages of the classic Sauvola thresholding algorithm [17] and the recent
SauvolaNet architecture [1]. Unlike many binarization approaches [1,14,29], we
will not only rely on gray scale inputs but also leverage the color information.
We will show the importance of document color processing and its effect on
the binarization results. The resulting architecture includes a restoration subnet
to reconstruct objects and characters affected by noise or missing ink. Further-
more, the training process and the information propagation is aided by means of
a featurewise attention module that leverages the visual context of every pixel.
Finally, the proposed architecture is end-to-end trainable and does not require
any pre-processing or post-processing steps.

The paper is structured as follows. In Sect. 2 the relevant document binariza-
tion techniques are reviewed. In Sect. 3, the proposed context aware document
binarization method is presented. Experimental results are discussed in Sect. 4.
The last section is devoted to conclusions.

2 Related Work

Document binarization converts the input image into a binary map. The objec-
tive is to detect the characters, or any other relevant objects, and suppress the
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Fig. 1. Document information extraction pipeline.

irrelevant background. Let I be a document image with size M × N pixels.
The resulting binarized image B̂ is then obtained by means of the binarization
function β as

B̂ = β (I) . (1)

Typically, the binarization function β is not constructed directly but via pixel
thresholding. The thresholding function f binarizes the input image using the
threshold T as

B̂ = β (I) = f (I,T ) (2)

with the thresholding function being computed as

B̂(i, j) = f (I(i, j),T (i, j)) =
{
+1, if I(i, j) ≥ T (i, j)
−1, otherwise , (3)

where i ∈ [0,M − 1] and j ∈ [0, N − 1] denote pixel spatial indices.
The main binarization goal is to estimate a suitable threshold T , local or

global, that is used to cluster the pixels into foreground and background. In
fact, any binarization algorithm can be considered as a thresholding approach.
The main differences lie in the estimation of T . Let τ denote a function that
estimates T . Typically, this estimation is done by optimizing a model consisting
of a set of parameters Θ that actuates on the input image I, i.e.,

B̂ = f (I,T ) = f (I, τ (I|Θ)) . (4)

The most straightforward approaches employ simple global thresholding,
where all pixels below a certain scalar threshold are highlighted as foreground.
In controlled environments, the threshold can be set manually, however, adap-
tive global thresholding yields, in general, more stable results. For instance, the
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Otsu algorithm [22] uses a simple optimization model that computes a global
threshold that minimizes the intra-class variance for foreground and background
clusters. Nevertheless, given the complexity and variance of documents and the
differences in imaging conditions, global thresholding approaches usually lead to
poor performance and more thresholding flexibility is necessary.

Therefore, methods that adaptively estimate local thresholds are introduced.
The most popular ones are Niblack [15] and Sauvola [17]. The Sauvola method
computes the pixelwise thresholds, TS , by inspecting local statistics around each
pixel, i.e.,

TS(i, j|Θ) = μ(i, j)
(
1 + k

(
σ(i, j)

r
− 1

))
(5)

where Θ = {w, k, r}. The parameters r and k control the influence of local
luminance and contrast, respectively. The first and second order local statistics,
the mean μ and the standard deviation σ, are computed in the w × w vicinity
around every image pixel. This method, although computationally efficient, is
based on parameter heuristics and tends to fail if the heuristics do not hold.
Therefore, further improvements on adaptively selecting the hyperparameters
Θ have been introduced [18,27,30]. The binarization robustness can be further
enhanced by employing input prefiltering [23] and output postprocessing [24].

The state-of-the-art binarization approaches rely on deep neural networks
(DNN) to estimate the threshold matrix T . Many of the DNN-based approaches
consider the binarization problem as a semantic segmentation task [23,25,26].
This allows to threshold the document image based on the higher level fea-
tures extracted from the visual information. In [14], a selectional convolutional
autoencoder is used to compute local activations and binarize them by means
of global thresholding. On the other hand, the approach in [16] focuses on itera-
tively enhancing the input image, by means of a DNN sequence, and binarize the
result using the traditional Otsu algorithm. The SauvolaNet approach [1] imple-
ments a multi-scale Suauvola thresholding within a DNN framework. It further
introduces a pixelwise attention module that helps to remove the hard depen-
dency on hyperparameters that the original Sauvola algorithm suffers from.

Finally, generative adversarial networks (GAN) allow to formulate the bina-
rization problem as image-to-image generation task. The methods in [19,20]
jointly process global and local pixel information to improve the model robust-
ness against various visual degradations. The performance can be further
enhanced by incorporating text recognition into the generative pipeline [21].

3 Proposed Algorithm

Similar to SauvolaNet [1], our proposal exploits the modeling abilities of the adap-
tive Sauvola thresholding in a multi-scale setting. In [1], a set of Sauvola threshold
matrices is computed using different window sizes w (see Eq. (5)). These multi-
scale thresholds are then combined via a DNN-based pixelwise attention mech-
anism which yields the final threshold value for each input pixel. The main goal
of [1] is to learn and adapt the hyperparameters {w, k, r} (see Eq. (5)) to every
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image by learning the relevant image features. This leads to a very compact and
explainable model architecture. This architecture is well adapted to historical
and rather monochrome document images. However, as will be shown in Sects. 3
and 4, it exhibits significant drawbacks when applied to more complex modern
structured documents. Therefore, and in order to overcome those drawbacks, our
proposal introduces three novel components, namely adaptive color removal, fea-
turewise attention window and spatial error concealment. In addition, we lever-
age the SauvolaNet multi-scale pipeline which makes the proposed method com-
pact, explainable and end-to-end trainable. The proposed context aware document
binarization (CADB) algorithm is depicted in Fig. 2. The aforementioned three
components as well as the overall proposed architecture are presented in detail in
the following subsections.

Fig. 2. Overview of the proposed CADB architecture.

3.1 Adaptive Color Removal

Many binarization benchmarking datasets comprise images of documents typed
with a certain ink on a relatively homogeneous paper [2–10]. The visual proper-
ties are further affected by various imaging conditions and physical degradations
of the documents. Therefore, many binarization approaches convert the input
image to grayscale before starting the binarization pipeline [1,14,22]. On the
other hand, the methods that do consider the color information assume that
the color is an overall property of the whole document [37]. However, in many
modern documents, color is used for layout highlighting, to improve the user
experience or for aesthetic reasons (see Fig. 3). This implies that the color influ-
ence is oftentimes local and cannot be expanded to the document as a whole.

This color dependency can be controlled by employing scanners with a spe-
cific light composition. Such a controlled imaging process allows for applying
blind color removal algorithms [36]. In fact, blind color removal is an impor-
tant step in the automatic processing of financial documents such as payment
forms [36]. However, such an imaging pipeline requires controlled environment
and specific hardware. Hence, it is unviable for large scale deployment.
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Our objective is to keep the color removal process hardware independent and
robust against different lighting conditions. This will allow the use of relatively
cheap smartphone camera sensors instead of dedicated scanners. Therefore, we
propose to employ an adaptive color removal (ACR) module as a first step before
the actual luminance inspection is launched (see Fig. 2). In order to keep the color
removal process simple and efficient, the ACR is proposed to employ a stack of
shallow convolutional layers to process the input image. The architecture of ACR
is summarized in Fig. 4. The output of ACR is a monochromatic image where
the irrelevant (even though colorful) regions are suppressed in order to aid the
subsequent threshold estimation. The ACR is trained jointly with the rest of the
network and does not require any special considerations.

Fig. 3. Examples of adaptive color removal. Original images (left), the corresponding
gray scale images (middle) and the ACR results (right). Sensitive personal information
is covered by white boxes. (Color figure online)

Figure 3 shows examples of commonly used German and Austrian payment
forms using different color palettes. These documents, in addition, are captured
under various lighting conditions. The comparison between the classic grayscale
image and the ACR result is also shown in Fig. 3. It is observed that the ACR
module helps to suppress the irrelevant pixels much more efficiently than a simple
grayscale conversion. The ACR does not only suppress the colored regions related
to the document visual layout (otherwise irrelevant for the binarization purposes)
but also reduces the effect of strong shadows. As it will be shown in Sect. 4, the
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ACR module plays a key role in processing and extracting information from
documents with significant color content. Also note that the ACR does not
require any specific training pipeline nor data annotation. It is trained implicitly
as part of the CADB end-to-end training (see Sect. 4).

Fig. 4. Architecture of the automatic color removal (ACR) module. Each Conv2D
layer is denoted as filters@ksize×ksize. The last Conv2D layer uses the sigmoid
activation. The structure of context expansion flow (CEF) module, described in Sect.
3.2, is identical.

3.2 Featurewise Attention Window

As shown in Eq. (5), the Sauvola threshold is computed using the local mean and
standard deviation of intensity values around each pixel, respectively. The prob-
lem of such an approach is that the local statistics may also capture irrelevant
structures that can heavily influence the computed threshold. The SauvolaNet
tries to overcome this issue by computing a set of auxiliary thresholds Taux using
the multi-window Sauvola module (MWS) [1]. These thresholds correspond to
different processing scales and are computed by varying the local window size w
(see Eq. (5)). The resulting SauvolaNet threshold matrix T̂ is finally computed
by linear combination of the auxiliary thresholds. This combination is controlled
by the pixelwise attention (PWA) mechanism that effectively selects the optimal
scale for each pixel [1]. Let A denote the attention tensor estimated by PWA and
let W be the number of different window sizes w used in MWS. The threshold
matrix T̂ is then computed as

T̂ (i, j) =
W−1∑
k=0

A(i, j, k)Taux(i, j, k). (6)

The concrete signal flow is also depicted in Fig. 2. The estimation of T̂ alleviates
the rigidity of the original Sauvola thresholding but the auxiliary thresholds are
still ignorant of the local structure of the document.

In fact, the auxiliary threshold estimation for each scale, performed by MWS,
is purely pixelwise and the threshold for a given pixel does not influence, nor
is influenced by, the estimated thresholds of its neighboring pixels. This lack of
context information hinders an efficient training since the PWA not only has
to learn the adequate pixelwise attention for auxiliary threshold weighting but
also to compensate for any irregularities in the input image. This approach also
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ignores the a priori information that natural images, including documents, are
mainly low-pass signals where the spatial correlation among pixels is high [32].

We propose to overcome this issue by encapsulating the PWA into a generic
featurewise attention window (FWA) module. The FWA preserves the pixel-
wise attention and allows for information flow among neighboring pixels and the
corresponding auxiliary thresholds. This is achieved by refining the computed
threshold matrix T̂ by a sequence of shallow convolutional layers, similar to
ACR. We denote this module as context expansion flow (CEF) and its struc-
ture is depicted in Fig. 4. The FWA additionally includes a residual connection
that bypasses the PWA. The objective of this bypass is twofold. First, it helps
to avoid vanishing gradients and, in fact, the experiments have shown a faster
learning curve. Second, it avoids losing higher order statistics through MWA,
since it establishes an additional direct connection between ACR and the pixel-
wise attentions and auxiliary thresholds. The structure of the FWA module is
illustrated in Fig. 2.

At this point, the CADB architecture can already be trained using a modified
hinge loss [1], which is computed as

L(i, j) = max (1 − α (I(i, j) − T (i, j))B(i, j), 0) (7)

where the parameter α controls the margin of the decision boundary. This implies
that only pixels close to the boundary will be used in gradient back-propagation.
As in [1], α is set to 16.

3.3 Spatial Error Concealment

Document images are also affected by physical degradations of the documents
themselves. Oftentimes, documents contain printing errors, noise or missing ink.
Therefore, incomplete or otherwise degraded characters are not fully detected
by the binarizer. This, on one hand, may be considered as a desirable behavior
since, in fact, there is physically no information to be binarized. However, such
incomplete results will negatively affect the subsequent higher level processing. In
order to overcome this issue, we propose to include a restoration subnet to recover
the errors. Spatial error concealment (SEC) techniques are especially designed
to leverage the spatial information of the neighboring pixels and reconstruct the
missing information [31]. The concealment strategy can be moved from the pixel
domain to feature domain where the calculated thresholds are adjusted based
on the higher level information that is not considered during the estimation of
the auxiliary thresholds.

We propose to perform the SEC by means of a downsampled U-Net archi-
tecture [28] where the number of filters of each layer is reduced by 16 at each
stage. This light-weight restoration subnet is refining the thresholds estimated
by FWA and delivers the final binarization results, recovering the missing infor-
mation (if any). To train the restoration subnet, the eroded binary cross-entropy
loss is proposed. Since the class distribution in document binarization tends to be
highly imbalanced, we compensate for this issue by eroding the over-represented
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background pixels. This is achieved by dilating the binarization mask with a
7×7 kernel and all pixels not included in the dilation are excluded from the
loss computation. The proposed eroded binary cross-entropy (ECE) loss is then
computed as

ECE =
1

MN

M−1∑
i=0

N−1∑
j=0

(yij log (pij) + (1 − yij) log (1 − pij)) eij (8)

where y corresponds to the binarization ground truth and p is the corresponding
SEC prediction. The background erosion mask e is computed as the foreground
dilation with a 7×7 morphological kernel k, i.e.,

eij = yij ⊕ k (9)

where ⊕ denotes the dilation operation.
The ECE, however, completely disregards larger background areas which can

have significantly negative effect on the final binarization results. Therefore, dur-
ing the training, we will alternate between the ECE loss and the conventional
cross-entropy with a certain probability distribution. In our experiments, the
ECE is employed with the probability of 0.9. Note that the mask erosion can be
considered as a special case of data augmentation and can be efficiently imple-
mented by introducing an additional don’t care class, similar to [33]. Simulations
have revealed that the proposed loss yields higher binarization accuracies and
better extraction rates than a simple class weighting used to compensate for the
class imbalance between foreground and background pixels.

Finally, the complete CADB network architecture is shown in Fig. 2. Note
that, unlike some others segmentation-based approaches [14], the proposed
restoration subnet is fully convolutional and, therefore, does not require to split
the input image into regions with predefined shapes and reconstruct the output
afterwards.

4 Experimental Results

In order to thoroughly evaluate the performance of the proposed algorithm, we
have conducted series of tests on complex modern structured documents. In
addition, in order to demonstrate the generalization abilities and robustness of
the proposed technique, we first conduct evaluations on standard handwritten
and machine typed benchmarking datasets. Detailed dataset descriptions and
the obtained results are presented in Sects. 4.1 and 4.2, respectively.

The proposed technique is compared to other state-of-the-art binarization
algorithms, namely SauvolaNet [1], ISauvola [18], Wan [29], Sauvola thresholding
[17] and Otsu binarization [22]. The proposed algorithm will be evaluated in
three different configurations. The goal is to assess the individual effect of the
three proposed components to the overall binarization performance. First, the
full CADB architecture, as described in Fig. 2, is evaluated. Second, we switch
off the SEC module to better assess the importance of spatial information flow
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in the feature domain. This configuration will be referred to as CADBACR/FWA.
Finally, we switch both SEC and FWA off. This configuration will be denoted
as CADBACR and will allow to evaluate the influence of adaptive color removal
on the binarization results.

We implement the CADB pipeline in the PyTorch framework. Throughout
the experiments, image patches of size 256 × 256 pixels are used for training.
The training batch size is set to 32 and the Adam optimizer with the initial
learning rate of 10−4 is employed.

4.1 Standard Benchmarking

For these experiments, and in order to achieve a fair comparison, the same setup
as described in [1] is employed. There are 13 document binarization datasets,
namely (H-)DIBCO 2009 [2], 2010 [3], 2011 [4], 2012 [5], 2013 [6], 2014 [7], 2016
[8], 2017 [9], 2018 [10]; PHIDB [11], Bickely-diary dataset [12], Synchromedia
Multispectral dataset [13], and Monk Cuper Set [16]. The data splits are the
same as in [1]. All approaches in this section have been studied using the same
evaluation protocol.

Table 1. Average binarization metrics obtained by the tested algorithms. The best
performances are in bold face.

PSNR [dB] ACC [%] FM [%] DRD

Otsu 17.13 96.93 85.99 7.11
Sauvola 16.32 96.82 83.30 10.17
Wan 13.73 93.07 75.09 29.01
ISauvola 17.32 97.40 86.23 6.55
SauvolaNet 18.23 98.03 88.50 5.34
CADBACR 19.58 98.43 90.98 4.53
CADBACR/FWA 19.17 98.38 89.96 4.38
CADB 19.53 98.53 91.35 3.61

For evaluation, the standard binarization metrics [1,4–6] are adopted, i.e.,
peak signal-to-noise ratio (PSNR), accuracy (ACC), F-measure (FM) and dis-
tance reciprocal distortion metric (DRD). The binarization results are shown in
Table 1. It follows that the proposed algorithm considerably outperforms other
state-of-the-art techniques. In fact, the different CADB configurations achieve
PSNR gains of more than 1 dB with respect to the SauvolaNet. Subjective com-
parisons are provided in Fig. 5. It is observed that, unlike the tested state-of-the-
art techniques, our proposal can successfully binarize strongly faded characters.

4.2 Experiments with Structured Documents

In this section, experiments with modern structured documents are conducted.
In particular, images of filled in German and Austrian payment forms are used.
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Fig. 5. Example of binarization performance on a handwritten document [8].

Examples of such documents can be found in Fig. 3. During the training, various
payment form templates are filled with random data and the corresponding
binarization mask are generated. The results are further augmented to achieve
photorealistic visual properties. This data generation allows for building large
amounts of training data without the need of laborious annotations. Examples
of automatically generated training data are shown in Fig. 6. These data have
been used to train all the methods evaluated in this section.

Fig. 6. Examples of payment form cuts (top) and the corresponding binarization masks
(bottom).

The performance is first assessed using the metrics from the previous section.
The evaluation dataset consists of 1000 document cuts with size 256 × 256 pixels
and their corresponding binarization masks. The evaluation set is available in
[38]. The evaluation results are shown in Table 2. It is observed that our proposal
considerably outperforms the evaluated methods in all considered metrics. The
PSNR improvements with respect to SauvolaNet are more than 9 dB and the
DRD metric is orders of magnitude lower. It is also shown that, for structured
documents, a significant part of the improvement is due to ACR. The full scale
CADB then improves the results even further.

In addition, the binarization performance is also evaluated on real produc-
tion data from the Gini information extraction pipeline [34]. For such a purpose,
1000 payment form documents, taken by non-expert users, are employed. In this
case, we will evaluate the performance of the different binarization approaches



74 J. Koloda and J. Wang

Table 2. Average binarization metrics obtained by the tested algorithms. The best
performances are in bold face.

PSNR [dB] ACC [%] FM [%] DRD

Otsu 4.96 62.26 16.27 978.44
Sauvola 12.22 89.86 27.38 155.01
Wan 8.28 72.27 21.76 448.52
ISauvola 12.49 90.44 28.34 147.42
SauvolaNet 14.61 95.96 45.99 112.18
CADBACR 22.93 99.03 79.34 5.76
CADBACR/FWA 23.63 99.20 83.70 5.72
CADB 23.70 99.27 84.54 6.88

indirectly by measuring the information extraction rates from the documents.
Classification accuracies and reconstruction error measures, such as PSNR, do
not always reflect the perceptual quality of the final results [31]. In the case of
processing of structured financial document, our ultimate goal is the accurate
information extraction from the images. Therefore, we run the evaluation set
through the whole information extraction pipeline [34] and evaluate the extrac-
tion rates for the different binarization approaches. The rest of the pipeline is
kept intact and is not adapted to any binarization in particular. The best per-
forming binarization approaches from Sect. 4.1 are considered here. The extrac-
tion rates are measured on 4 named entities, namely the international bank
account number (IBAN), bank identifier code (BIC), the amount to be paid
and the recipient name. The extraction rates are computed as the ratio of suc-
cessfully delivered labels with respect to the total amount of documents. The
results are shown in Table 3. It follows that the CADB variants outperform the
SauvolaNet by up to 15 percentual points. In addition, the SEC restoration adds
further enhancements of up to 4 percentual points and, on average, improves the
extraction rates for most of the fields.

Table 3. Extraction rates (in %) for the fields of IBAN, BIC, amount and recipient.
The best performances are in bold face.

IBAN BIC Amount Recipient

SauvolaNet 79.00 86.10 57.70 92.30
CADBACR 88.80 92.90 67.40 93.10
CADBACR/FWA 88.59 93.69 73.27 94.89
CADB 92.40 95.60 72.90 95.70

Subjective comparisons are shown in Fig. 7. It is observed that the proposed
method renders robust results and does not suffer from binarization artifacts
that make the resulting binarized text partially, or even fully, illegible. This is
also corroborated by the examples in Fig. 8. It is shown that the proposed CADB
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method is robust against adversarial imaging conditions and is able to handle
different color pallettes and camera devices.

Fig. 7. Example of binarization performance on a payment form. The results for (a)
Otsu, (b) Sauvola, (c) SauvolaNet, (d) CADBACR, (e) CADBACR/FWA, and (f) CADB
are shown.

Additionally, due to the shallow convolutions in ACR and FWA, the compu-
tational overhead with respect to SauvolaNet is relatively small. In fact, ACR
and FWA (including the residual bypass), increment both the network size and
the inference time by around 7%. The inference time is measured on Nvidia
RTX 2070 with 6GB of RAM. The information extraction gains of SEC come
at a price of increased model size. In fact, the full CADB architecture, includ-
ing SEC, comprises 1.34 millions parameters. The processing time is increased
by 54.5% and is about 20 ms for a high-definition document image. Neverthe-
less, CADB in full configuration is still more compact than other state-of-the-art
architectures [9,20] and order of magnitude smaller than [14,16]. Depending on
the use case, the high modularity of CADB offers the user the possibility to
select the best fitting configuration.

Fig. 8. Comparison of binarization results. Original images (left), SauvolaNet (middle)
and the proposed CADB (right).
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5 Conclusions

In this paper, we have proposed a new binarization model based on Sauvola
thresholding principles. We have leveraged the SauvolaNet approach, a DNN-
based Sauvola approximation, and discussed the drawbacks when applied to
modern structured documents. In order to overcome those drawbacks, we have
proposed three compact and explainable modules. The objective is not only to
improve the accuracy of the computed binary maps but also to enhance the
information extraction quality from the documents. The proposed CADB archi-
tecture is an end-to-end trainable architecture that is able to remove from the
document visually prominent but otherwise irrelevant structures. Furthermore,
we have designed a featurewise attention mechanism that allows the informa-
tion flow both in the pixel and in the feature domain. Finally, we have taken
advantage of the spatial error concealment methods to restore the missing or
damaged information. Simulations reveal that our proposal significantly outper-
forms the state-of-the-art techniques both in terms of binarization accuracy and
information extraction rates from the binarized documents.
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Abstract. We present a novel sub-stroke level transformer approach
to convert offline images of handwriting to online. We start by extract-
ing sub-strokes from the offline images by inferring a skeleton with a
CNN and applying a basic cutting algorithm. We introduce sub-stroke
embeddings by encoding the sub-stroke point sequence with a Sub-
stroke Encoding Transformer (SET). The embeddings are then fed to
the Sub-strokes ORdering Transformer (SORT) which predicts the dis-
crete sub-strokes ordering and the pen state. By constraining the Trans-
former input and output to the inferred sub-strokes, the recovered online
is highly precise. We evaluate our method on Latin words from the
IRONOFF dataset and on maths expressions from CROHME dataset.
We measure the performance with two criteria: fidelity with Dynamic
Time Warping (DTW) and semantic coherence using recognition rate.
Our method outperforms the state-of-the-art in both datasets, achieving
a word recognition rate of 81.06% and a 2.41 DTW on IRONOFF and an
expression recognition rate of 62.00% and a DTW of 13.93 on CROHME
2019. This work constitutes an important milestone toward full offline
document conversion to online.

Keywords: offline handwriting · transformer · online recovery

1 Introduction

In today’s highly virtual and automated world, note-taking is still a manual
procedure. It is a ground to express our volatile thoughts and ideas, allow-
ing their organization and the emergence of our creativity afterward. While
pen and paper still offer unmatched comfort and efficient input methods for
handwritten notes, it disables their exploitation to their full potential. They
are usually digitized as offline documents by capturing images with a scanner
or camera. This is an inconvenient step for most users and it also adds noise
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that affects offline processing systems. Online documents - the offline counter-
part - are recorded on touch-sensitive surface devices with an e-pen, enabling
a more powerful machine-automated organization and edition of handwritten
documents, with intuitive pen gestures. Many commercial software specializing
in note-taking exists, proposing a plethora of functionalities such as recognition,
note indexing, collaborative note-taking, etc. The online domain is ever-evolving
as the offline is already far behind. By developing an offline-to-online conversion
system we allow the users to take to their advantage the best of the two modal-
ities: ergonomic note-taking with a pen and paper and powerful editing and
processing of the digital ink. Recently, attractive hybrid devices are surfacing.
Their hardware closely mimics a pencil offering a more ergonomic input method
while still proposing online processing tools. However, in the quest for paper-like
hardware, the devices are still today limited in computational resources com-
pared to other touch devices. Research efforts [17] have been conducted in the
document analysis domain to automatically recover online from offline docu-
ments by retrieving the pen trajectory. Thus allowing for the direct exploitation
of paper and pen notes in the existing online processing systems.

However, as datasets coupling online with offline are scarce [18,20], the appli-
cations of data-driven approaches remain limited. To overcome this issue, ras-
terization or online data to offline conversion is commonly used for training
multi-modal systems. Converting online signals to realistic raster images often
involves adding noise and simulating pen tip width and movement speed [7].
Other advanced applications use generative adversarial networks [11] to gener-
ate artificial papyrus and other historic documents. Multi-modal systems utilize
both online and offline, combining temporality with spatial clues for better per-
formances. For instance, handwriting recognition is typically classified into two
types: offline and online systems. Multi-modal Handwriting recognition systems
[21,22] are shown to outperform their mono-modal counterparts. In this paper,
we focus on the reverse problem, which is offline to online conversion. Vectoriza-
tion similarly tries to model a line drawing image as a set of geometric primitives
(polygons, parametric curves, etc.) corresponding to elements found in Scalable
Vector Graphic (SVG) format. It is mainly applied to technical drawing [6] and
2D animation sketching [7]. In this particular application, retrieving temporal
ordering between the extracted vector elements is less relevant.

For handwriting applications, we are more involved in the recovery of pen
trajectory from images. The availability of temporal information in online sys-
tems often makes them better performing than their offline analog [16]. In 2019,
the Competition on Recognition of Online Handwritten Mathematical Expres-
sions (CROHME) [12] included for the first time an offline recognition task. It
has since sparked a great interest in offline to online conversion [4] in this specific
domain. Classical approaches are rule-based systems. They usually operate on a
topology to detect regions where the drawing direction is ambiguous (e.g . junc-
tions) and employ a set of handcrafted heuristics to simplify and resolve them.
However, they are very hard to maintain and do not generalize to different lan-
guages or content. Recently, many data-driven approaches have been proposed
in the literature to recover online from offline. However, CRNNs models [2,3]
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rely on fixed-size feature maps of the whole offline image, regardless of the ink
density, to predict all the underlying intricacies in the temporality of the differ-
ent strokes resulting in the partial or full omission of strokes. In this paper, we
propose the following contributions:

– We propose novel sub-stroke level Transformers (SET and SORT) to recover
the online from offline (see Fig. 1) instead of CRNNs architectures [2,3].

– We move from the image to sequence framework to operate on the sub-stroke
level to perform a local and global analysis of the different junctions as is
adopted in classical approaches [4].

– Our SET and SORT approach outperforms prior online recovery work on the
handwritten text of the IRONOFF dataset. We also extend our work to more
complex maths equations of the CROHME dataset.

(a) Input offline image.

(b) Extracted sub-strokes from the CNN in-
ferred skeleton. A sub-stroke can be drawn
in both directions.

(c) Network online prediction. start and end nodes are annotated. The zoom box shows
the predicted sub-stroke direction and ordering as illustrated by arrows. The edge color
is the destination node. For double-traced sub-strokes, edges are read in the clockwise
orientation as in [9].

Fig. 1. Given an input offline image (a), sub-strokes incident on the same junctions
are extracted (b). Our Network predicts the sub-stroke’s order and directions (c). The
trivial longest path obtained by following the outgoing edges from start node to end
node is the predicted online signal.

2 Related Works

Line Drawing Vectorization is a crucial step in the creation of 2D anima-
tions and sketches. It involves converting drawing images into vector graphics.
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Artists often begin by sketching their work on paper and then manually vec-
torizing it digitally for finalization. However, vectorizing rough and complex
real-world sketches can be challenging, as multiple overlapping lines need to be
combined into a single line and extraneous lines and background noise need to
be removed. [19] proposed a fully convolutional simplification network with a
discriminator network to clean high-resolution sketches. [7] developed a two-
step system employing two neural networks to vectorize clean line drawings.
The first multi-task CNN predicts skeleton and junction images, and the second
CNN resolves the segment connectivity around the junctions. They demonstrate
state-of-the-art results on the public Quick, Draw! [8] dataset. However, their
method is restricted to relatively small junctions of degrees 3 to 6 that fit in a
32 × 32 window.

Pen Trajectory Recovery. Throughout the years, numerous methods have
been proposed by researchers to tackle the task of pen trajectory recovery from
offline images. The steps involved in these methods typically include extrac-
tion of topology and detection of local ambiguous regions such as junctions
and double-traced strokes. These ambiguities are then resolved using hand-
designed rules. The existing methods can be broadly categorized into three
types: recognition-based, topology-based, and tracking-based. Recognition-based
[5] methods, which were first introduced for drawings composed of regular shapes
such as diagrams and engineering drawings, detect these shapes by fitting geo-
metric primitives. This approach is not ideal for handwritten text due to lim-
itations in the possible graphical representation. Topology-based methods [10]
construct a representation using topological information from the image (skele-
ton, contour, etc.) and view pen trajectory recovery as a global or local opti-
mization problem. [17] developed a weighted graph approach that finds the best
matching paths for pen trajectory recovery and demonstrated good performance
on English characters. The tracking-based approach estimates the pen’s relative
direction iteratively. [24] proposed an image-to-sequence framework to generate
pen trajectories using a CNN and fully connected layers without any RNN. This
approach showed good results on Chinese and English handwriting datasets but
the model’s complexity is directly proportional to the image resolution. More-
over, their method requires a skeleton as input and inferred skeletons can be
noisy and very different from the perfect skeletons their network was trained on,
leading to unexpected failures at test time. [14] investigated the generalization
of the previous approach to arbitrary-size images of math equations. They sug-
gest using a fully convolutional neural network trained on noisy offline images.
The network learns to predict both a skeleton and the next pen positions. How-
ever, the lack of temporal modeling causes over-segmentation of long strokes.
Other lines of research followed a sequence modeling approach with CRNNs. In
[3] a CNN-BLSTM network was proposed. They obtain good results on Tamil,
Telugu, and Devanagari characters. However, this approach is limited to single
isolated characters and requires separate models for each script. [2] extended
the same CRNNs network to the text line scale [13] by applying a variety of
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data-augmentation techniques and an adaptive ground-truth loss to counter
pathological strokes impact on the model learning. Their system is shown to
recover a great portion of the online signal but still tends to omit some small
strokes or even to over-simplify complex long strokes. Moreover, this approach
is not well suited for 2D content such as math equations. In fact, resizing larger
images of equations to a small fixed height (61 pixels) can lead to illegible
content.

Stroke Embeddings and Transformers. Most of the proposed aforemen-
tioned approaches rely on the sequence-based networks to recognize drawing [8]
or handwritten text [3]. [1] propose stroke-level Transformers to embed strokes
into fixed lengths representations that are used to generate auto-completion
of diagrams drawings. They show that Transformers outperform the sequential
RNN approach [8]. However, they conclude that cursive handwriting strokes are
challenging and longer strokes can’t be correctly encoded in a fixed-size embed-
ding. In this work, we model sub-stroke as embedding. Sub-strokes are much
simpler shapes (straight lines, short open curves, etc.) that are far easier to
model.

3 SET, SORT: Sub-stroke Level Transformers

After an overview of the proposed system, we present the sub-stroke extraction
algorithm, the Sub-stroke Encoding Transformer (SET) and the Sub-strokes
ORdering Transformer (SORT).

3.1 Overview

We propose a novel sub-stroke ordering Transformer model to reconstruct the
online signal from offline images. We start by using the FCNN from [14] to extract
a skeleton (1-pixel thick outline) from the input offline image. A sub-stroke
cutting algorithm based on junction detection is then applied to the extracted
skeleton. We use a Transformer auto-encoder to learn sub-stroke embedding
[1]. Finally, an auto-regressive Transformer decoder is used to predict the sub-
strokes ordering using their embeddings. Figure 2 shows an overview of our
pipeline. More formally, given a set of sub-strokes V = {ss1, ss2, . . . , ssN},
with a sub-stroke defined as a sequence of coordinates ssi = (xk, yk)mk=1. Each
sub-stroke from the skeleton appears twice, in both directions. The goal is to
predict the sequence indicating the writing order of the different sub-strokes
S = (o1, oi, . . . , oM ) oi ∈ {1, . . . , N} and how they should be merged to form
strokes. This is achieved by predicting a pen-up to indicate the end of the stroke.
We note that V and S can be of unequal lengths, for instance, sub-strokes can
be ignored (as noise), used several times (redrawing), and most of the time
sub-strokes are drawn in one direction only, therefore the opposite sub-stroke is
omitted.
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Fig. 2. Overview of our approach for the generation of the first three sub-strokes. After
sub-stroke extraction, the SET encoder provides embedding for each sub-stroke. The
SORT network uses the memory and the history to predict the next sub-stroke and
the pen state. The sequence begins with a bos token and will end after M tokens with
the eos token. Here we show the first three timesteps.

3.2 Sub-strokes Extraction

After extracting a skeleton using an already trained FCNN [14], we apply a
thinning algorithm [23] to remove the few small remaining ambiguities in the
skeleton, obtaining Ithin. We cut the skeleton into sub-strokes by removing the
different junctions pixels and computing the resulting connected components. A
junction pixel is defined as a skeleton pixel with 3 or more 8-connected skeleton
pixels. Each connected component will have two extremities, the skeleton pixels
with exactly one 8-connected skeleton neighbor (see Fig. 3). We compute the
path from one extremity to another to define a sub-stroke. The opposite traver-
sal path is also included as a distinct sub-stroke. Using this simple heuristic-free
algorithm allows us to generalize to any handwritten content. Our sub-stroke
cutting algorithm results in a normalization of stroke drawing. Partial incon-
spicuous stroke retracing is removed.

3.3 SET: Sub-stroke Embedding Transformer

We adapt the stroke embedding from [1] to the lower level of a sub-stroke. In
fact, learning meaningful fixed-size vector representation for a stroke of arbitrary
size and complexity can prove to be especially difficult for cursive handwriting.
Sub-strokes are usually much simpler geometric primitives that are far easier to
model. We define the sub-stroke auto-encoder as a Transformer followed by a
sub-stroke reconstruction MLP, as shown in Fig. 4. Before being embedded by
the encoder, the input sub-stroke points are shifted to start at the origin and
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Fig. 3. Illustration of the sub-strokes cutting algorithm.

normalized w.r.t. to the offline image dimensions. This ensures that embedding
only captures important local geometric features.

Encoder. Given an input sub-stroke defined as a sequence of points ssi =
((x1, y1), . . . , (xm, ym)), the points are first linearly projected to vectors of size
64 and summed with a sinusoidal positional encoding of each timestep. The
input embedding is then fed through a Transformer with a stack of 6 layers, and
4 attention heads, with a model dimension of 64 and a feed-forward size of 256.
The decoder output vector for the last timestep n of ssi is projected linearly to
a vector of size 8 corresponding to the sub-stroke embedding Ei.

Decoder. The sub-stroke reconstruction F (Ei, t) ∈ R
2, t ∈ [0, 1] is a paramet-

ric approximation of the sub-stroke curve using a two-layer MLP. It estimates
the coordinates of the sub-stroke curve at every timestamp t. It’s composed
of a hidden layer of size 512 followed by ReLU and an output layer of size 2
corresponding to the coordinates (xt, yt) of a point. The auto-encoder stroke
embedding network objective is to reconstruct accurately the input sub-stroke.

3.4 SORT: Sub-stroke Ordering Transformer

We present a novel sub-stroke ordering auto-regressive transformer based on
the sub-stroke embedding. Each sub-stroke embedding is concatenated with the
positional embedding of its starting point [f(ssi[0]);Ei] to add global information
of the sub-stroke spatial arrangement in the offline image. We use a stack of
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Fig. 4. Sub-stroke encoding transformer.

nlayers encoder-decoder Transformer with a model size of dm and nheads attention
heads. The last transformer decoder layer employs a single attention head to
compute the cross-attention between the encoder’s output keys K and values V
and the decoder self-attention output queries Q. This layer’s output attention
scores Âi over the sub-strokes set are used as predictions for the next sub-stroke
ssi+1 probability distribution. As we can see in Eq. 1, the SORT outputs two
decisions. On one hand, the attention scores over the sub-strokes set are used
as predictions for the next sub-stroke ssi+1 probability distribution Âi. On the
other hand, the values Oi are used to predict the pen up state P̂i with a small
classification MLP.

Qi,Ki,Vi = QWQ
i ,KWK

i ,VWV
i

Âi = softmax

(
QiK

�
i√

dk

)
∈ R

T×L

Oi = ÂiVi

P̂i = MLP (Oi)

with WQ
i ∈ R

dm×dk ,WK
i ∈ R

dm×dk ,WV
i ∈ R

dm×dv

(1)

To alleviate the lack of coverage we employ the Attention Refinement Module
(ARM) [25].

3.5 Training

The SET network is trained separately from the SORT. We sample five points at
random t ∈ [0, 1] from the sub-stroke latent representation Ei by using F (Ei, t).
The network is trained with an MSE loss between the reconstructed points and
the ground-truth sub-stroke points as in Eq. 2.
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LMSE =
1
5

5∑
n=1

(F (Essi , tn) − ssitn )2 (2)

We use teacher forcing to train the SORT network, it predicts the i + 1 sub-
stroke probability distribution with Âi and the associated pen state P̂i given
the i sub-stroke. The network is trained with a multi-task loss L combining a
cross-entropy classification loss for sub-stroke ordering LO and a binary cross
entropy loss for pen state classification LP .

L = λ1LO + λ2LP ,

LO(Â, A) =
1

|V |
|V |∑
y=0

−Ay log
(
Ây

)
,

LP (P̂ , P ) =
1
2

∑
y∈{ down,up }

−
(
Py log

(
P̂y

)
+ (1 − Py) log

(
1 − P̂y

))
,

(3)

where λ1, λ2 ∈ R and P,A are respectively the ground-truth pen-state and sub-
stroke successor. Sub-strokes are extracted from an accurate but still not perfect
inferred skeleton. They are ordered using the ground-truth online signal to obtain
A used to train our network. This ordering is defined as the oracle machine’s
solution to the sub-strokes ordering problem. The oracle ordering is obtained
by using the original online to map each extracted sub-stroke from the offline
image independently to a sub-section of the online. They are then ordered using
their time of apparition in the online signal. We note that this oracle answer is a
satisfying approximation of the original online. However, it can still introduce a
small disparity from the original online, particularly in cases of invisible pen-ups
or erroneous skeletons.

3.6 Inference

At inference time, we follow the same pipeline to extract sub-strokes from an
offline image as explained in Sect. 3.2. Sub-stroke embeddings are then produced
using the SET network. The SORT network then iteratively predicts the next
sub-stroke and corresponding pen state. We select the sub-stroke with the highest
predicted probability as the next one which will be fed as input for the next
timestep. Inference ends when a special eos token is predicted as the next sub-
stroke. The result is a sequence of sub-strokes that we linearly interpolate to fill
in the void left between two consecutive sub-stroke extremities (see Fig. 3), only
when the pen state is “down” (i.e. P̂i < 0.5).

4 Evaluation

The goal of our method is to reconstruct accurately the pen trajectory reflected
by a user’s offline drawing. To quantitatively evaluate the quality of the online



90 E. Mohamed Moussa et al.

reconstructions, we employ two evaluation metrics DTW and handwriting recog-
nition rate. While the DTW strictly measures geometric reconstruction fidelity,
the recognition rate is a more lenient metric that measures semantic coherence.

4.1 DTW Point-Wise and DTW Point-to-Segment-Wise

We compute a DTW distance between the inferred online signal and the ground
truth signal to measure the accuracy of the network prediction. We also employ
a modified DTW with a point-to-segment distance DTWseg by [15] which is less
sensitive to the sampling rate. We also evaluate the stroke extraction by using a
DTW on the stroke level. Similar to the offline Stroke IoU proposed by [7], we
use an online stroke DTW defined as :

SDTW =
1
n

∑
i=1,...,n

min
j=1,...,m

DTW(Si, Ŝj), (4)

where Si are ground-truth strokes and Ŝj are predicted strokes. This metric is
useful to detect under/over-segmentation issues of strokes which are otherwise
not taken into account by DTW.

4.2 Handwriting Recognition Rate

The natural variability in writing styles makes it so that different reconstruc-
tions are plausible. DTW-based metrics continuity constraint strictly matches
two online signals, which leads to high-cost alignment in some cases such as
delayed strokes, interchangeable strokes and reversed strokes. An online auto-
matic handwriting recognition system can be used to recognize the retrieved
online signal. The recognition results can be compared with a ground-truth text
label, computing a word and character recognition rate (WRR and CRR) for
handwritten text and expression recognition rate for handwritten math. This
results in higher-level evaluation which is far less sensitive to writing styles.
However, we note that powerful state-of-art recognition systems can correctly
predict the text even if some symbols are approximated roughly. In our case,
this is problematic since the predicted signal is no longer loyal to the user’s
handwriting. For this reason, it is important to supplement the recognition rate
with the DTW to also account for visual accuracy. We use the MyScript inter-
active ink recognition engine version 2.01 to evaluate the recognition.

5 Experiments

In this section, we present the training protocol and the evaluation results of our
approach using online metrics.

1 MyScript iink SDK is available at https://developer.myscript.com/docs/interactive-
ink/2.0/overview/about/.

https://developer.myscript.com/docs/interactive-ink/2.0/overview/about/
https://developer.myscript.com/docs/interactive-ink/2.0/overview/about/
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5.1 Datasets and Training

Our networks are trained and evaluated on IRONOFF [20] and CROHME [12]
datasets. We follow the same procedure as [14] to render synthetic offline images
from their online counterpart. Our rendered offline images are noisier than the
constant stroke width rendering proposed in [12], as we want to better mimic
the end goal real word noisier offline images (cf. Fig. 5). The training set of
IRONOFF and CROHME contains respectively 48K and 10K samples, roughly
equating to a total of 100K strokes each. We supplement CROHME with 15K
equations from our private proprietary dataset.

Fig. 5. Comparison between variable and constant thickness stroking.

We first train the SET network on IRONOFF and freeze it during the training
of the SORT network. The SORT network is trained on IRONOFF and fine-
tuned on CROHME and our private datasets. We use the Adam optimizer with
a learning rate of 0.001 and a batch size of 10. The training is performed on a
single NVIDIA GeForce RTX 2080 Ti GPU with 24GB of memory and takes
20 h to be completed.

5.2 Results

We evaluate and benchmark our method against state-of-art offline to online
conversion systems. Table 1 shows the results on the test set of IRONOFF con-
taining 17K test samples. Row (d) shows that the oracle approximation is very
close to the original online (e). The small difference reflects the previously men-
tioned errors and simplifications. Our method (c) outperforms other state-of-
the-art approaches (a) and (b) while using a relatively lighter model compared
to the other data-driven approach of [2]. However, as shown by (d) there is still
a margin for progression.

We also evaluate our method on the CROHME 2014 and 2019 test sets. The
evaluation results of [4] and our method are presented in Table 2 and 3.

Our approach achieves a better stroke extraction resulting in higher expres-
sion recognition rates. As reported by rows (d) of Tables 2 and 3 respectively,
better online level DTW is not always synonymous with more precise stroke
segmentation and more accurate recognition. In fact, [4] obtains a slightly bet-
ter DTW of 14.29 as reported by Table 3 however a fairly lesser stroke DTW
7.19 compared to ours of 3.85. The same applies to ExpRate as well, 57.01%
compared to 62.00% of our approach.
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Table 1. Results on IRONOFF test set.

Method Parameters DTW↓ DTWseg ↓ CRR↑ WRR↑
(a) CNN-BiLSTM [2] 7M 7.09 7.45 59.22 41.43

(b) Chungkwong et al. [4] – 5.75 5.06 73.45 60.00

(c) Sub-stroke Transformer (Ours) 2M 3.25 2.72 90.85 81.06

(d) Oracle – 0.33 0.32 92.56 83.45

(e) online GT – 93.03 83.81

Table 2. Results on CROHME 2014 test set.

Method DTW↓ DTWseg ↓ SDTW↓ ExpRate↑
(a) Chungkwong et al 16.30 16.13 6.54 52.43

(b) Sub-stroke Transformer (Ours) 24.54 24.37 12.29 29.37

(c) fine-tune (b) on CROHME 13.75 13.59 4.43 53.75

(d) fine-tune (c) on private datasets 13.93 13.80 2.93 59.31

(f) Oracle 0.24 0.22 0.50 66.63

(g) GT online — — — 69.77

Table 3. Results on CROHME 2019 test set. Row (d) reports the results of the fine-
tuned model on equations from CROHME and our private dataset.

Method DTW↓ DTWseg ↓ SDTW↓ ExpRate↑
(a) Chungkwong et al 14.29 14.14 7.19 57.01

(d) fine-tune on private dataset 14.98 14.80 3.85 62.00

(f) Oracle 0.26 0.24 0.69 70.19

(g) GT online — — — 73.13

Figure 6 shows a visual comparison between our approaches and other state-
of-the-art methods on IRONOFF. Our approach Fig. 6c is observed to cover
very closely most of the offline image compared to Fig. 6a and 6b. In fact, some
characters are missing in their online reconstructions. For example, the smaller
“e” loops (rows 3 and 4), the middle horizontal bar of “E” (row 4) and the
apostrophe (row 2) are not covered. Figure 6a and 6b tend to over-segment the
strokes, on the other hand, our approach predicts more accurate pen ups result-
ing in a far less number of strokes. Figure 6a often struggles with end-of-sequence
predictions (first three rows).

Our method is observed to better capture the greater diversity in the stroke
2D ordering in Maths equations as illustrated by Fig. 7. For instance, the recon-
struction in Fig. 7b shows greater variability compared to the strict X-Y ordering
of Fig. 7a. Here the superscripts are predicted after the exponents and the oper-
ators. This is a less common way to write but is still plausible. As highlighted
in Fig. 7b our network mistakenly re-crosses the first “+” sign (as highlighted in
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Fig. 6. Comparaison of our approach (c) to [2] (a) and [4](b) on IRONOFF samples.
Each stroke is drawn with a distinct color. Blue arrows show the direction. The first
and last stroke points are respectively yellow and red.

Fig. 7. Inference results of [4] and our approach on CROHME datasets.
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the red box), instead of drawing the “1”, but is still able to recover the remaining
strokes correctly. We hypothesize that it’s due to the two strokes being of very
similar shape and in close proximity to each other. We observe a few errors in
Fig. 7a, the “i” dot is missing in one case. The ordering of the superscripts in the
second “

∑
” is far from ideal. In Fig. 7d, the parenthesis and their content are not

always in the same order. Reflecting once again on the great diversity captured
by our network. Thanks to our pen state prediction, we can more accurately
segment the symbols Fig. 7d. In Fig. 7c the f in the term “f(a)” of the numer-
ator is incorrectly segmented resulting in a bad recognition. Figure 8 shows the
SORT prediction of the probability distribution of the next sub-stroke at every
timestep. We observe that the network is very confident in its predictions and
they are well centered around a small local region of the image. The network’s
reconstructed signal overall reflects the same temporal dynamics as the ground
truth online signal. However, as depicted in Fig. 8b, in rare instances it locally
drifts from the ground truth online.

Fig. 8. (a) Attention heatmap of the SORT decoder output layer for the Fig. 7d. The
y-axis is the memory sub-strokes sorted from left to right (with the first point) for
illustration purposes only. Network predictions (see Sect. 3.6) as well as the oracle
answers are plotted on top of the heatmap. The eos sub-stroke is here indicated by a
−1. (b) The divergence between the inferred sub-stroke order and the oracle’s order,
for timesteps from 24 to 40.
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6 Discussion

Our approach is able to generalize to different handwriting domains. By transfer-
ring the learned knowledge from Latin words to Maths equations we are able to
achieve better results compared to handcrafted rule-based systems. However, we
need this transfer, in the form of a fine-tuning step, for new application domains.
The existing online databases of handwriting in a multitude of languages and
free-form charts can be exploited to train the system in order to generalize to
all content types.

We focus our study application on offline images of at most 100 sub-strokes.
Full offline documents can attain upwards of 6000 sub-strokes. Further research
efforts are necessary to up-scale our sub-stroke ordering transformer to the doc-
ument level. In fact, it presents two difficulties, firstly longer and more com-
plex temporal dependencies to model. Secondly, the memory bottleneck of the
quadratic multi-head attention needs to be addressed.

7 Conclusion

In this paper, we presented a novel sub-stroke level transformer approach to
recover online from offline handwriting. Our approach consists of two steps:
First, we embed the sub-strokes set, extracted from the inferred skeleton, using a
sub-stroke encoding transformer (SET). The sub-strokes embeddings are ordered
using a sub-strokes ordering Transformer (SORT) which also predicts the pen
state. In contrast to other data-driven approaches, SORT is trained in a guided
attention manner and is able to accurately string together the original sub-
strokes rather than regressing a simplified approximation of the online. Our
method’s performance stands out when compared to the state-of-the-art on Latin
words and Math equations. In future work, we would like to extend our system
to full documents thus enabling a powerful combination of offline note-taking
and seamless online editing.
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Abstract. On-line handwritten character segmentation is often associ-
ated with handwriting recognition and even though recognition models
include mechanisms to locate relevant positions during the recognition
process, it is typically insufficient to produce a precise segmentation.
Decoupling the segmentation from the recognition unlocks the potential
to further utilize the result of the recognition. We specifically focus on the
scenario where the transcription is known beforehand, in which case the
character segmentation becomes an assignment problem between sam-
pling points of the stylus trajectory and characters in the text. Inspired
by the k-means clustering algorithm, we view it from the perspective of
cluster assignment and present a Transformer-based architecture where
each cluster is formed based on a learned character query in the Trans-
former decoder block. In order to assess the quality of our approach,
we create character segmentation ground truths for two popular on-line
handwriting datasets, IAM-OnDB and HANDS-VNOnDB, and evaluate
multiple methods on them, demonstrating that our approach achieves
the overall best results.

Keywords: On-Line Handwriting · Digital Ink · Character
Segmentation · Transformer

1 Introduction

Relevance. A significant advantage of using a stylus over a keyboard is its
flexibility. As with pen and paper, users can draw, write, link objects and make
gestures like circling or underlining with ease – all with a handful of strokes. For
digital ink to have a compelling value proposition however, many features asso-
ciated with all the use cases, that users have become accustomed to in an online
environment, become relevant. They go beyond the initial act of writing
and cover layout and ink generative models like autocompletion and spelling
correction.
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Usefulness. On-line handwriting character segmentation has as a goal the
understanding of which parts of the handwriting belong to which character. It
complements handwriting recognition and enables functionalities like generative
modeling, particularly spellchecking and correction [1], as well as ink-to-text
conversion and layout handling [2,3]. What all these seemingly different tasks
have in common is a need for character-level information.

Character-level knowledge opens up the possibility for layout-preserving pro-
cessing. For instance, when converting the handwritten text into printed text,
knowing the positions of the individual characters allow to generate printed text
that is precisely superimposed on top of the printed text, retaining the feeling
of agency over the document (e.g. in devices like Jamboard [2] and note-taking
apps like FreeForm [3]). Moreover, for education and entertainment applications,
knowing the positions of characters can unlock the capabilities such as animating
individual characters (e.g. in the Living Jiagu project the symbols of the Oracle
Bone Script were animated as the animals they represent [4]).

Individual character information is also important in handwriting genera-
tion models [1,5,6]. Examples include spellchecking and spelling correction. For
spellchecking, knowledge of word-level segmentation helps to inform the user
about the word that was misspelled, e.g. marking the word with a red under-
line, and the word-level segmentation is a natural byproduct of character-level
segmentation. For spelling correction, users could strike out a particular char-
acter or add a new one, and the remaining characters could be edited such that
the change is incorporated seamlessly, for example via handwriting generation
models [1].

Difficulty. While the problem of character segmentation is fairly simple in case
of printed text OCR, it is far from being solved for handwriting – both on-line
and off-line. The problem is more difficult in settings like highly cursive scripts
(e.g. Indic) or simply cursive writing in scripts like Latin. Difficult cases further
include characters in Arabic script with ligatures, which vary in appearance
depending on the surrounding of the character and position in which they appear,
and characters differing only by diacritics [7].

In the academic on-line handwriting community, the progress on character
segmentation is limited by the absence of the datasets with character
segmentation. Two notable exceptions are Deepwriting [5] and BRUSH [8]. The
authors of Deepwriting used a private tool to obtain a monotonic segmentation
for the dataset. This is limited, as it cannot accommodate cursive writing. In the
BRUSH dataset an image segmentation model was used to obtain the character
segmentation.

For this reason, most of the works in the on-line handwriting community
rely on synthetic datasets. These are created with either (1) segment-and-
decode HMM-based approaches where character segmentation is a byproduct of
recognition [9], or (2) hand-engineered script-specific features used in deep learn-
ing solutions, e.g. for Indic and Arabic script [10,11], as well as mathematical
expressions [12].
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For off-line handwriting, character segmentation is usually based on the
position of skip-token class spikes in the Connectionist Temporal Classification
(CTC) [13] logits – which works well for images as the segmentation is typically
monotonic and separation of image by the spikes results in a reasonable segmen-
tation (unlike on-line handwriting, where due to cursive writing the segmentation
is not monotonic).

Another difficulty that is associated with character segmentation is the anno-
tation. Individually annotating characters is hard and also time consuming. The
most widely used handwriting datasets do not contain ground truth information
on individual characters. We can, however, infer a high quality synthetic ground
truth using a time consuming method that iteratively singles out the first char-
acter from the ink, based on temporal, spatial and stroke boundary information.

Methods. We compare multiple methods for character boundary prediction,
with both a Long Short-Term Memory (LSTM) [14] and Transformer [15] back-
bone and further comparing them with a simple k-means baseline. A first classi-
fier architecture, that accepts both an LSTM and a Transformer encoder, com-
bines the individual point offsets with the CTC spikes to determine which points
represent character boundaries. This initial approach has a clear limitation in
that it is monotonic and cannot handle delayed strokes. We thus extend the
Transformer classifier by including the character information, where each char-
acter in the text becomes a query in the Transformer decoder block. To show
its efficacy we focus on the following approaches in an experimental evaluation
on the publicly available IAM-OnDB and HANDS-VNOnDB datasets: k-means,
LSTM, Transformer for character boundary prediction and Transformer with
character queries.

The main contributions of this work can be summarized as follows:

– We obtain character segmentation ground truths for the publicly available
datasets IAM-OnDB and HANDS-VNOnDB from a high-quality approxima-
tion.

– We present a Transformer-based approach to the on-line handwritten char-
acter segmentation, where each expected output character is represented as
a learned query in the Transformer decoder block, which is responsible for
forming a cluster of points that belong to said character.

– We compare our approach to other methods on the IAM-OnDB and HANDS-
VNOnDB datasets thanks to the newly obtained ground truth and demon-
strate that it achieves the overall best results.

The newly created ground truths and the source code of our methods are publicly
available at https://github.com/jungomi/character-queries.

2 Datasets

2.1 IAM On-line Handwriting Database

IAM-OnDB [16] is a database of on-line handwritten English text, which has
been acquired on a whiteboard. It contains unconstrained handwriting, meaning

https://github.com/jungomi/character-queries
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that it includes examples written in block letters as well as cursive writing, and
any mixture of the two, because it is not uncommon that they are combined in
a way that is most natural to the writer. With 221 different writers having con-
tributed samples of their handwriting, the dataset contains a variety of different
writing styles.

2.2 HANDS-VNOnDB

The HANDS-VNOnDB [17], or VNOnDB in short, is a database of Vietnamese
handwritten words. A characteristic of Vietnamese writing, that is not found
in English, is the use of diacritical marks, which can be placed above or below
various characters and even stacked. This poses an additional challenge, as the
diacritics are often written with delayed strokes, i.e. written after one or more
characters have been written before finishing the initial character containing the
diacritics. Most notably in cursive and hasty writing, it is very common that the
diacritics are spatially displaced, for example hanging over the next character,
which makes them disconnected in time as well as space and therefore much
more difficult to assign to the correct character.

2.3 Ground Truth

Since both of the publicly available datasets we are using do not have the ground
truth character segmentation, we resorted to obtaining a high-quality approxi-
mation of it (similar approach was applied, for example, by [18] where an image-
based approach was used for obtaining the ground truth approximation). To
obtain it, we repeatedly separated the first character from the rest of the ink,
by performing an exhaustive search for the character boundary with potential
cuts based on temporal information, spatial information, and stroke boundaries,
and with the best candidate selected based on the likelihood that the first char-
acter indeed represents the first character of the label, and the rest matches the
rest of the label, with likelihood provided by a state-of-the-art recognizer model
[anonymized for review]. Such an approach is clearly not feasible in a practical
setting due to the high computational cost, but allowed us to produce a high
quality ground truth approximation, from which any of the models described
below could be trained. Figure 1 illustrates some ground truth examples from the
IAM-OnDB and the HANDS-VNOnDB. Despite the high quality of the ground
truth it remains an approximation and therefore some small imperfections are
present, as evidenced by some of the examples.

3 Methods

3.1 K-Means

For the initial baseline system, we chose to use a k-means [19] based approach.
To segment the handwriting, the points are clustered into k different clusters,
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Fig. 1. Examples of the ground truth character segmentations that were obtained by
iteratively separating the first character through an exhaustive search in regards to the
character boundary. Each color represents a different character. Some imperfections
are to be expected as it remains an approximation.

where k is equal to the number of characters present in the already known text.
Two methods have been implemented for the initialization of the centroids, the
standard random implementation, and a second implementation which uses the
points where the CTC spikes occurred as the initial centroids. Clustering is
mainly based on the geometric locations of the points but the stroke information
was also included, as it still adds value for points that are not clearly separable
purely based on their position. Since the horizontal position is much more indica-
tive of the character it might belong to, the x coordinate was weighted much
stronger than the y coordinate. This heavily relies on the horizontal alignment
of the writing and causes an inherent limitation for cases where the alignment
deviates from the ideal representation, e.g. for strongly slanted handwriting.
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3.2 Character Boundary Prediction with LSTM / Transformer

The input of the model for the character boundary prediction is a sequence
of sampling points and the output is a classification of whether a point is a
character boundary or not. Intuitively, an LSTM [14] can be employed for this,
as it is particularly well suited to work with a sequence based representation.
Given that the output remains a sequence but is not required to recognize which
character it is, it is sufficient to have the tokens <start>, <char> and <none>,
which signify the start of the character (boundary), being part of the current
character and not belonging to a character at all, respectively. An important
note about the <none> token is, that there is no point in the available ground
truth that does not belong to any character, simply because of the exhaustive
nature of the ground truth creation, as a consequence it is repurposed to indicate
that the point does not belong to the current character, which primarily refers
to delayed strokes. Due to the lack of back references in this approach, it will
just be considered as not part of any character.

Fig. 2. Architecture of the boundary prediction model. A feature vector is
created from the x, y-coordinates (Δx, Δy for the LSTM and absolute coordinates
for the Transformer) and the stroke information, where the pair of indexstroke and
indexpoint indicate which stroke the point belongs to and which point it is within
the stroke, as well as the global position with indexglobal. For points where a CTC
spike occurred, an embedding vector of the identified character is added to the existing
feature vector. The resulting feature vector is processed either by bidirectional LSTMs
or a Transformer and followed by a linear classifier to produce the boundary prediction.

Figure 2 outlines the architecture of the boundary prediction model. A
sequence of points is given as the input, where each point contains the x and
y coordinates, as well as information at which part of the sequence it occurred.
Handwriting is almost always performed in multiple strokes, which can be a help-
ful indicator of where a character might begin, therefore it is conveyed to the
model with the pair of indexstroke and indexpoint to identify the stroke it belongs
to and which point it is within the stroke, while indexglobal is also provided in
order facilitate locating the point globally. All this information is transformed by
a linear layer to create a higher dimensionality feature vector that is more appro-
priate for the LSTM. Additionally, for each point where a CTC spike occurs, an
embedding vector is created from the character it corresponds to, and added to
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the existing feature vector. Afterwards, the feature vector is processed by multi-
ple bidirectional LSTMs followed by a linear classifier to produce the boundary
predictions.

Transformers [15] are also widely used in sequence based task and are gen-
erally highly successful in many situations where LSTMs perform well, hence
the same architecture can be used with a Transformer instead of an LSTM.
Some minor changes to the input are required compared to the LSTM. The x, y-
coordinates were given as deltas (Δx,Δy) in regards to the previous point due
to the recurrent nature of the LSTM, which turned out to work slightly better
than the absolute coordinates. Since Transformers do not have any recurrence,
there is no reference point for the deltas, therefore the absolute coordinates are
the only viable option. Even though indexglobal might be considered to be more
important for Transformers, it is not used because the same effect is achieved
by the positional encoding that is added to the Transformer to explicitly handle
the positional information.

Post-processing. In order to assign the points to the respective characters, the
sequence of tokens needs to be processed such that the point with the <start>
token and all points marked as <char> up to the next <start> token are assigned
to the expected output characters from left to right. Technically, the model is
not limited to produce exactly number of expected characters, but is supposed
to learn it. Unfortunately, it does occur that too many characters are predicted,
hence we additionally restrict the output to the desired number of characters by
removing the segments with the smallest number of points, as we are specifically
interested in assigning the points to the expected characters. This is a limitation
of this particular design for the character boundary.

3.3 Transformer with Character Queries

Given that the design of the character boundary prediction in Sect. 3.2 revolves
around sequences of points, it is impossible to handle delayed strokes appropri-
ately. Furthermore, the expected output characters are not integrated into the
model, even though they are at least represented in the input features by the
CTC spikes. This not only necessitates some post-processing, due to possible
oversegmentation, but also eliminates any potential for the model to adapt to a
specific character. To address these shortcomings, we design a Transformer-based
architecture that integrates the expected output characters into the Transformer
decoder block by using them as queries.

Related Work. In recent years, Transformers have been applied to many differ-
ent tasks in various domains. With the necessity to adapt to domains not initially
suited for Transformers, due to the inherently different structures compared to
the familiar sequence based tasks, new Transformer-based approaches have been
developed. In particular, in the domain of Computer Vision (CV), a lot of cre-
ative designs have emerged [20,21]. One of these novel approaches was pioneered
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by the DEtection TRansformer (DETR) [22], called object queries, where each
learned query of the Transformer decoder block represents one object that has
to be detected. Later on the query based approach has found its way to image
segmentation tasks [23–25].

Only recently, the k-means Mask Transformer [26] introduced a Transformer-
based approach that was inspired by the k-means clustering algorithm, where
the authors discovered that updating the object queries in the cross-attention of
the Transformer decoder block was strikingly similar to the k-means clustering
procedure. While their approach was made for image based segmentation, it
can easily be adapted to our task of on-line handwritten segmentation, which
happens to remove a lot of the complexity that is only needed for images, mostly
due to downsampling of the image and upsampling of the segmentation masks.
Inspired by their findings and the fact that our baseline algorithm has been k-
means, we design a Transformer-based architecture where the queries represent
the characters that should be segmented.

Overview. For each character that needs to be segmented, a query in the
Transformer decoder block is initialized with the embedding of that particular
character and a positional encoding, which is necessary to distinguish two or
more instances of the same character. In that regard, the character embedding
provides the information to the model as to which particular patterns to pay
attention to, while the positional encoding is primarily used to ensure that the
order of the characters is respected. Having the available characters tightly inte-
grated into the model, eliminates the post-processing completely, which is due
to the fact that the characters were created from a sequence in the boundary
prediction models, whereas now the points are simply assigned to the respective
characters, reminiscent of clustering algorithms such as k-means. Additionally,
it opens up the possibility to handle delayed strokes correctly without any mod-
ification as long as they are represented adequately in the training data.

Architecture. This model will subsequently be referred to as the Character
Query Transformer and its architecture is outlined in Fig. 3. The input features
remain the same as for the boundary prediction model, where the feature vector
is created from the x, y-coordinates, the stroke information through the pair of
indexstroke and indexpoint, and the CTC spikes with an embedding of the iden-
tified character. A Transformer encoder is applied to the feature vector to create
a new encoded vector, E ∈ R

p×dh , that captures more pertinent information by
virtue of the self-attention which incorporates the relation between the points.
Afterwards, a Transformer decoder block takes the encoded vector in combi-
nation with the character queries, which are created from the expected output
characters by applying a learned character embedding and positional embedding
based on their position within the text.

The output of the decoder, D ∈ R
c×dh , cannot be used directly to create a

classification for each point, as it is merely a latent representation of the clusters,
hence it has the dimensions c × dh, where c is the number of characters and dh
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Fig. 3. Architecture of the Character Query Transformer. Like the boundary
prediction models, the feature vector is created from the x, y-coordinates, the stroke
information and the CTC spikes. A Transformer encoder takes the feature vector and
creates an encoded vector, which is given to the Transformer decoder block in combi-
nation with an embedding of the desired characters to be segmented (including their
position within the text). The classification is achieved by a matrix multiplication
between the output of the encoder and the decoder, after a linear transformation of
each of the respective outputs, in order to assign each point to one character.

the size of the hidden dimension. While the points have been assimilated into D
through the cross-attention in the decoder, the exact association between points
and characters must be done with an additional step. This can be achieved with
EDT ∈ R

p×c, a matrix multiplication between E and D, the outputs of the
encoder and decoder respectively. Normally, a classifier would be applied after-
wards, but because the dimensions of p × c are dynamic, since both p (number
of points) and c (number of characters) vary depending on the input, that is not
possible. As an alternative, a linear transformation is applied separately to E
and D before the matrix multiplication.

Positional Encoding of the Character Queries. Transformers do not inher-
ently have any sense of position of the inputs, as they do not contain any
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recurrence or convolutions, which implicitly take the order into account. To alle-
viate this issue, a separate positional encoding is added to the input to explicitly
encode the positional information into the input. It is most commonly achieved
with a sinusoidal positional encoding, where the sine and cosine functions are
used with different frequencies:

PE(pos,2i) = sin(
pos

100002i/d
)

PE(pos,2i+1) = cos(
pos

100002i/d
)

(1)

Due to the characteristics of the sinusoidal functions the transition between
the positions remains predictable and smooth, therefore the input features are
not disrupted but rather slightly enhanced. Generally, this is a desirable property,
but in the case of the character queries, a more recognizable distinction between
the position is needed, because multiple instances of the same character need
to be treated as completely separate. For this purpose, a learned positional
encoding is used instead. Figure 4 depicts the normalized mean values of the
vector at each position in the positional encoding for the sinusoidal (blue) and
learned encodings (red) respectively. In the learned encoding it is clearly visible
that there are a lot more large differences between two positions, indicating
that a clear distinction between them does benefit the model and its capabilities
to distinguish between multiple instances of the same character. On the other
hand, the sinusoidal encoding keeps a smooth transition between the positions
and therefore lacks the clear distinguishing aspect, and in our experience it was
simply not enough to separate multiple instances of the same character.

4 Experiments

In this section we evaluate the four methods, namely the k-means, LSTM, Trans-
former (character boundary prediction) and Character Query Transformer on the
IAM-OnDB and the HANDS-VNOnDB, as well as combining the two dataset
to see whether more data with slightly different characteristics are beneficial to
the overall results. And finally, an ablation study on the usefulness of the CTC
spikes is conducted. All results are evaluated based on the mean Intersection
over Union (mIoU) between the points in the segmented characters.

4.1 Setup

The experiments for the k-means are performed with Scikit-Learn [27] whereas
all other methods are implemented in PyTorch [28]. For the k-means the weights
of the input features are set to 1 for the x-coordinate, 0.04 for the y-coordinate
and 224 for the stroke information. All PyTorch models use a dimension of 256
for all layers, i.e. embedding dimension, hidden dimension of LSTM/Transformer
and the final hidden dimension, as well as a dropout probability of 0.2. The
LSTM consist of 3 bidirectional layers with the Rectified Linear Unit (ReLU) [29]
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Fig. 4. Positional Encoding for Character Queries. For each position the normal-
ized mean values of the vector in the positional encoding are displayed. The sinusoidal
encoding (blue) follows a smooth trend with small variations between the positions,
whereas the learned encoding (red) exhibits much larger differences between positions,
which makes the distinction between multiple instances of the same character much
more apparent to the model. (Color figure online)

as an activation function, whereas the Transformer uses 3 layers per encoder and
decoder with 8 attention heads and Gaussian Error Linear Unit (GELU) [30]
instead of ReLU. Label smoothing with ε = 0.1 [31] is employed in the cross-
entropy loss function. AdamW [32] is used as an optimizer with a weight decay
of 10−4, β1 = 0.9 and β2 = 0.98. The learning rate is warmed up over 4 000
steps by increasing it linearly to reach a peak learning rate of 3 · 10−3 for the
LSTM and 10−3 for the Transformer. Thereafter, it is decayed by the inverse
square root of the number of steps, following the learning rate schedule proposed
in [15]. Additionally, Exponential Moving Average (EMA) [33] is applied during
the training to obtain the final weights of the model.

4.2 Results

IAM-OnDB. On the IAM-OnDB the k-means baseline already achieves very
respectable results of up to 91.05% mIoU (Table 1). Considering that it is the
simplest of the methods and does not need any training beforehand. The high
mIoUs can be attributed to the fact that in the English language most characters
do not have the potential of creating much overlap with the next one, unless the
cursive writing is slanted excessively. As k-means relies heavily on the spatial
position, it is capable of separating a majority of the cases, particularly on block
letters. The LSTM is the strongest on this dataset with an mIoU of 93.72% on
the Test Set F, suggesting that the model is expressive enough to handle more
difficult cases. A known limitation is that it cannot handle the delayed strokes
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but as only a small number of points are actually part of the delayed strokes, in
addition to delayed strokes being fairly rare in the first place, the overall impact
on the mean Intersection over Union (mIoU) is rather small. On the other hand,
the Transformer does not reach the same level of accuracy, and is even slightly
below the k-means. This is presumably due to limited amount of data, which
does not satisfy the need of the generally data intensive Transformer models.
Similarly, the Transformer with the character queries cannot establish the quality
of results that is demonstrated in other experiments. Having an mIoU that is
roughly 3% lower than the Transformer for the character boundary detection, is
most likely because of the character queries being learned, and the same data
limitation applies to it, hence it cannot reach its full potential.

Table 1. IAM-OnDB results. All models were trained using only the IAM-OnDB
training set and the best model was determined by the mIoU on the validation set.

Model Test Set T Test Set F

K-Means 88.94 91.05

LSTM 89.55 93.72

Transformer 86.18 90.34

Character Query Transformer 83.53 87.48

mean Intersection over Union (mIoU)

HANDS-VNOnDB. The results for the HANDS-VNOnDB in Table 2 paint a
very different picture from the IAM-OnDB results. The k-means does not reach
quite the same level of accuracy on the Vietnamese characters as on English
characters, which is mainly related to the additional complexity of Vietnamese
characters, such as the use of diacritics, which can very easily shift in such a
way that it might be considered as part of another character when focusing
only on the spatial as well as temporal location of the points. This is a prime
example, where additional language information is needed to accurately segment
such characters. A much bigger difference to the previous results is observed in
the LSTM, which is significantly worse than any other method with an mIoU
of just under 50%. One expected reason for the degradation is the much more
prominent use of delayed strokes. In this situation, the LSTM exhibits significant
problems to accurately predict the character boundaries. The Transformer model
performs better but only achieves a similar performance as the k-means baseline.
By far the best results are achieved by the Character Query Transformer with
a staggering 92.53% mIoU on the Test Set, which is over 13% better than the
next best method. This demonstrates that the approach is in fact working as
the delayed strokes are no longer an inherent limitation.



110 M. Jungo et al.

Table 2. HANDS-VNOnDB results. All models were trained using only the
HANDS-VNOnDB training set and the best model was determined by the mIoU on
the validation set.

Model Test Set

K-Means 79.78

LSTM 49.45

Transformer 78.22

Character Query Transformer 92.53

mean Intersection over Union (mIoU)

Combined. Finally, the models have been trained using the combined training
sets, in order to see whether they are capable of scaling to multiple languages
and improve the overall results by attaining additional information that can be
found in the other dataset. It has to be noted that because these models use
embeddings of the characters, the mutually exclusive characters are not directly
benefiting from the combination of the dataset, in the sense of having more
data points of the same character, but can still improve as the model’s gen-
eral segmentation capability improves. Even though k-means is not affected by
changing the training data, it is still listed in Table 3 alongside the others for
reference. The deterioration of the LSTM on the IAM-OnDB was foreseeable as
it was not able to properly learn from the HANDS-VNOnDB. The drop of 6.48%
(from 93.72% to 87.24%) on the Test Set F is significant but not to the point
where the model fails completely. At the same time, its results on the HANDS-
VNOnDB improved a little, from 49.45% to 53.66% on the Test Set, but less than
the IAM-OnDB degraded. When it comes to the Transformer with the charac-
ter boundary prediction, it is almost identical on the HANDS-VNOnDB as it
was without using both datasets to train, but similarly to the LSTM the result
on the IAM-OnDB Test Set F deteriorated from 90.34% to 86.18% (-4.16%),
indicating that combining the two datasets has a negative effect on the models
predicting character boundaries. The Character Query Transformer is the only
model that benefited from training on both datasets. Even though the results
on the HANDS-VNOnDB barely changed (-0.47%), the IAM-OnDb improved
by almost 8% (from 87.48% to 95.11%). This demonstrates that the character
queries are robust and that it is capable of scaling to multiple languages, espe-
cially as the additional data contributed to the large data requirements of the
Transformer, even though it was not data from the same language.

4.3 Ablation Study: CTC Spikes

CTC spikes can be used as additional information whenever a CTC-based recog-
nizer has been run beforehand, as it already broadly located the characters and
therefore can serve as an initial guidance. There are other cases, where either
the text was already known without having to run a recognizer, or when the
recognizer does not utilize CTC. In this ablation study we remove the CTC
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Table 3. Combined datasets results. All models were trained using the combined
training sets of IAM-OnDB and HANDS-VNOnDB and the best model was determined
by the mIoU across the validation sets.

IAM-OnDB HANDS-VNOnDB

Model Test Set T Test Set F Test Set

K-Means 88.94 91.05 79.78

LSTM 82.70 87.24 53.66

Transformer 80.93 86.18 78.25

Character Query Transformer 92.28 95.11 92.06

mean Intersection over Union (mIoU)

Table 4. CTC spikes ablation study. Comparison of results when using CTC spikes
as a feature and without it. Including the CTC spikes improves the results significantly
across all models.

IAM-OnDB HANDS-VNOnDB

Model CTC Spikes Test Set T Test Set F Test Set

K-Means 80.12 83.83 76.82

K-Means � 88.94 91.05 79.78

LSTM 74.60 80.59 42.24

LSTM � 82.70 87.24 53.66

Transformer 70.21 74.30 76.36

Transformer � 80.93 86.18 78.25

Character Query Transformer 86.03 90.78 87.58

Character Query Transformer � 92.28 95.11 92.06

mean Intersection over Union (mIoU)

spikes to see whether they are a meaningful addition to the models. In the case
of k-means, the points where the CTC spikes occurred were used as the initial
centroids, without the CTC spikes they are randomly initialized instead, as is
common practice. All other models simply do not have the CTC spike informa-
tion in the points. The ablation was conducted on the combined datasets.

Including the CTC spikes is a significant improvement across the board.
The difference between using the CTC spikes and not, varies depending on the
model, ranging from 1.89% for the Transformer on the HANDS-VNOnDB Test
Set up to 11.88% for the character boundary predicting Transformer on the
IAM-OnDB Test Set F. Generally, the CTC spikes are less impactful on the
HANDS-VNOnDB, with the exception for the LSTM. The Character Query
Transformer is the most consistent and hovers around a difference of 4.5% on all
datasets, suggesting that it is very stable and is not tied to the CTC spikes but
simply uses them to improve the results in a meaningful way. Even though the
results without the CTC spikes are not quite as good, they can still be used in
cases where no CTC spikes are available.
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5 Conclusion

In this paper, we have introduced a novel Transformer-based approach to on-
line handwritten character segmentation, which uses learned character queries
in the Transformer decoder block to assign sampling points of stylus trajectories
to the characters of a known transcription. In an experimental evaluation on
two challenging datasets, IAM-OnDB and HANDS-VNOnDB, we compare the
proposed method with k-means, LSTM, and a standard Transformer architec-
ture. In comparing the four methods, we observe that approaches which rely
on spatial information (k-means) perform reasonably well on non-monotonic
handwriting but lack learned features to extract the exact character bound-
aries. The approaches that rely on temporal information (LSTM and standard
Transformer) perform well on mostly-monotonic handwriting, but fail in highly
non-monotonic cases. Using the Transformer decoder block in combination with
character queries allows us to outperform all other approaches because it uses
the strengths of the learned solutions, but does not have a strong inductive bias
towards monotonic handwriting (Table 4).

We provide a character segmentation ground truth for the IAM-OnDB and
HANDS-VNOnDB using a high-quality approximation. Producing a perfect
ground truth for on-line handwritten character segmentation is impossible for
cursive script, since even humans will not always agree on the exact start and
end positions of the characters. Therefore, in future work, we aim to encode this
uncertainty into the ground truth and into the evaluation measures. Another line
of future research is to use the segmented characters for creating additional syn-
thetic training material, which is expected to further improve the performance
of the Character Query Transformer.
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Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022.
Lecture Notes in Computer Science, vol 13689. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-19818-2 17

27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

28. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Curran Associates Inc. (2019)

29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. ICML 2010, pp. 807–814. Omnipress, Haifa
(2010)

30. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs).
arXiv: 1606.08415 (2016)

31. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

32. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization.
arXiv: 1711.05101 (2017)

33. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by aver-
aging. SIAM J. Control Optim. 30(4), 838–855 (1992). https://doi.org/10.1137/
0330046

https://doi.org/10.1007/978-3-031-19818-2_17
https://doi.org/10.1007/978-3-031-19818-2_17
http://arxiv.org/abs/1606.08415
https://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1711.05101
https://doi.org/10.1137/0330046
https://doi.org/10.1137/0330046


Graphics Recognition 3: Math
Recognition



Relative Position Embedding Asymmetric
Siamese Network for Offline Handwritten

Mathematical Expression recognition

Chunyi Wang1 , Hurunqi Luo3 , Xiaqing Rao1 , Wei Hu1 , Ning Bi1,2 ,
and Jun Tan1,2(B)

1 School of Mathematics, Sun Yat-Sen University, Guangzhou 510275,
People’s Republic of China

{wangchy53,raoxq5,huwei55}@mail2.sysu.edu.cn
2 Guangdong Province Key Laboratory of Computational Science,

Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
{mcsbn,mcstj}@mail.sysu.edu.cn

3 Meituan, Shanghai, China
luohurunqi@meituan.com

Abstract. Currently, Recurrent Neural Network(RNN)-based encoder-
decoder models are widely used in handwritten mathematical expres-
sion recognition (HMER). Due to its recursive pattern, the problem
of gradient disappearance or gradient explosion also exists for RNN,
which makes them inefficient in processing long HME sequences. In
order to solve above problems, this paper proposes a Transformer-based
encoder-decoder model consisting of an asymmetric siamese network, rel-
ative position embedding Transformer (ASNRT). With the assistance of
printed images, the asymmetric siamese network further narrows the dif-
ference betweeen feature maps of similar formula images and increases
the encoding gap between dissimilar formula images. We insert coordi-
nate attention into the encoder, additionally we replace RNN with Trans-
former as the decoder. Moreover, rotary position embedding is used,
incorporating relative position information through absolute embedding
ways. Given the symmetry of MEs, we adopt the bidirectional decod-
ing strategy. Extensive experiments show that our model improves the
ExpRate of state-of-the-art methods on CROHME 2014, CROHME
2016, and CROHME 2019 by 0.94%, 2.18% and 2.12%, respectively.

Keywords: Handwritten · Contrastive Learning · Encoder-Decoder

1 Introduction

The process of recognizing corresponding LaTeX sequences from pictures of
handwritten mathematical expressions (MEs) is called Handwritten Mathemati-
cal Expression Recognition (HMER). With the rapid technological advancements
in contemporary society, the accurate recognition of handwritten mathematical
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expressions (MEs) has emerged as a significant research challenge. Due to stylis-
tic variability, writing irregularities, unique two-dimensional presentation struc-
ture, and logical structure [31], handwritten MEs are significantly different from
traditional natural language, thus it’s difficult to directly migrate traditional
OCR techniques to the field of HMER.

The main methods of HMER for decades can be divided into two cate-
gories: traditional methods and deep learning-based methods. Traditional meth-
ods include sequential solving and global solving. The sequential solution consists
of symbol segmentation, symbol recognition, and structure analysis, while the
global solution attempts to place all three in a single pipeline. Some statistical
learning methods such as Support Vector Machines (SVM) [12,19,20], Multi-
layer Perceptron (MLP) [2,6], and Hidden Markov Model (HMM) [33,34] have
achieved high recognition accuracy in symbol recognition. The structural analysis
focuses on determining the logical relationships between mathematical symbols
by judging their positional relationships, which is essential for the correct recog-
nition of mathematical expressions. Structural analysis models commonly use
statistical methods, including SVM [26] and other machine learning classifiers.
However, a sequential solution may lead to layer-by-layer transmission of errors,
which can be minimized with the global solution method by [1,23] integrating
and jointly optimizing symbol segmentation, symbol recognition, and structure
analysis. In traditional HMER methods, there is an interaction between con-
formal recognition and structural analysis. Therefore, accurate recognition of
mathematical expressions requires the correct execution of both symbol recogni-
tion and structural analysis, thereby imposing a higher demand on the methods
employed.

The universal encoder-decoder [3] structure unifies symbol segmentation,
symbol recognition, and structure analysis in a data-driven framework, which
directly outputs sequences of characters in LaTeX format. Zhang et al. pro-
posed a novel encoder-decoder method based on RNN, Watch, Attend, and Parse
(WAP) [41], which has gained significant attention in the offline HMER field due
to its excellent performance, thus resulting in numerous efforts to improve it by
researchers [11,28,29].

Despite the fact that different writing habbits and writing patterns may lead
to the diversity of handwritten MEs, printed mathematical symbols is undisput-
edly standard truth. Therefore, we believe that printed MEs will bring better
results in handwritten recognition. Previously, some people used the idea of GAN
[36,37] or established a new loss function [13] to use printed MEs in HMER,
but still underutilized printing MEs. Combining the idea of contrastive learn-
ing, we design an asymmetric siamese network to assist image feature extrac-
tion. The proposed method incorporates two branches of image transformation,
using character warping transformation and generation of printed mathematical
expressions, and integrates projective MLP and predictive MLP. The multi-layer
perception is used to generate the feature vector, the negative cosine similarity
function is used as the loss function, and the stop gradient operation is used to
make the model converge. The asymmetric siamese network improves encoding
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accuracy by encoding similar data similarly and encoding different classes of
data as different as possible.

In the feature extraction module, we use DenseNet as the feature extractor.
Some scholars [16] added attention to Densenet in the DWAP model [39]. Due
to its ability to not only capture channel correlations but also take into account
the position and orientation information of the image, Transformer exhibits
improved performance in feature extraction on the MEs picture. The decoding
part uses a Transformer structure. The rotary position embedding is computed
as simply as the absolute position encoding but also contains relative position
information. The model also adopts a bidirectional decoding strategy, which can
better decode the symmetric information of the MEs. Our contributions are
summarized as follows:

(1) We design an asymmetric siamese network for HMER to improve feature
extraction.

(2) We incorporate coordinate attention into the DenseNet encoder.
(3) Introduce the rotary position embedding in the decoder, and the model

adopts a bidirectional decoding strategy, which can better decode the sym-
metrical information of the MEs.

(4) Comprehensive experiments show that our proposed model outperforms
state-of-the-art methods by a large margin on CROHME 2014, 2016, and
2019.

2 Related Work

2.1 Deep Learning Methods of HMER

Sequence learning applications are acquiring more popularity these days,
encoder-decoder frameworks have been widely used to solve image-to-sequence
tasks. In 2017, Deng et al. [7] introduced such a framework into HEMR for the
first time. Since then there has been continuous improvements in the encoder-
decoder model. For example, fully convolutional networks [32,41], DenseNet
[14,28,39] and ResNet [15,38] are used as encoder, Transformer [42] and tree
struct [40] are used as decoder. Overlay mechanisms [15,28,39,41] are also fre-
quently used in decoders, which preserve history by tracking translation align-
ments information and guide the decoder to pay more attention to the part of
the image that has not been translated, thus solving the problem of over-parsing
and under-parsing to a certain extent. What’s more, data augmentation [14,15]
as well as printed expressions [13,36,37] are used to fully train the model because
of the relatively small training dataset.

2.2 Contrastive Learning

Self-supervised learning is an approach of unsupervised learning that directly
uses information from the data itself to supervise the learning of a model with-
out artificial labels. In the representation learning of features, self-supervised
learning has three main advantages.
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Fig. 1. The overall architecture of the model.

(1) It does not require a large amount of labeled data, which can reduce the
high cost.

(2) It focuses more on the data itself, which contains more information than a
single label.

(3) It can learn more general feature representations, and the learned features
can be transferred and applied to other supervised learning tasks, such as
image classification, image segmentation, etc.

Contrastive learning belongs to the category of self-supervised learning. It learns
representations of features from labeled data, which are then used as input for
supervised tasks. The idea of contrastive learning is simple: the model needs to
identify which samples are similar and which are dissimilar. Similar or identical
samples need to be as close as possible in the high-dimensional feature space,
and dissimilar samples need to be as far apart as possible. The design idea
of contrastive learning is to construct sample pairs and make them converge
by maximizing the similarity of the two images enhanced by the same image
data, avoiding the learning of collapsing solutions, which means that the learned
feature is a constant and is not helpful for subsequent downstream tasks. The
gradient stop operation proposed in the siamese network [5] has a good effect on
avoiding learning collapsing solutions.

3 Method

In this paper, we use the encoder-decoder framework to improve the model,
where the encoder is based on DenseNet and includes a coordinate attention
module [9]. To enhance the encoder’s feature extraction capabilities, inspired
by siamese network [5], we design an asymmetric siamese network. Moreover,
we replace RNN with Transformer as the decoder, incorporating rotary position
embedding [27] and a bidirectional decoding strategy. The final prediction of
LaTeX results is outputted using the beam search approach.

The overall structure of the model is shown in Fig. 1, where Y hat
1 and Y hat

2

represent predicted sequences, and Y1 and Y2 represent real sequences. The whole
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model consists of two parts, one part is supervised learning based on encoder-
decoder, where the loss function is a cross-entropy function; the other part is self-
supervised learning based on asymmetric siamese network, and the loss function
is a negative cosine similarity function.

3.1 Coordinate Attention Module DenseNet Encode

The specific architecture of DenseNet in this paper is shown in Fig. 2. The model
consists of four main modules, the first of which is used for initialization. The
overall architecture of the second to fourth modules is the same, consisting of the
dense block, transition layer, and coordinate attention module, except that the
fourth module has fewer transition layers. Attention mechanisms can increase the
amount of information obtained from neural networks, and most attention mod-
ule designs focus on lightweight and portability, such as Squeeze-and-Excitation
(SENet) [10], and Convolutional Block Attention Module (CBAM) [35]. How-
ever, SENet doesn’t consider spatial information while CBAM only focuses on
local information. This paper refers to the latest Coordinate Attention (CA) [9],
which simultaneously models channel correlation and long-range dependence,
taking account of both channel information and spatial information from local
and long distances rather than SENet and CBAM. A comparison of SENet,
CBAM, and CA is shown in Fig. 3.

Fig. 2. The schematic diagram of the DenseNet architecture incorporating the coordi-
nate attention module.
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Fig. 3. Comparison of three attention modules (a)SENET (b)CBAM (c)CA

As you can see, CA takes two steps: the first is information embedding, and
the second is attention generation.

Overall, it has two advantages:

(1) It can encode information between multiple channels and take into account
the direction and location of the pixels.

(2) The module is flexible and lightweight, making it easy to plug into classical
networks such as ResNet, DenseNet, and the inverted residual blocks in
MobileNet v2 [24].

Therefore, adding CA to DenseNet is more conducive to extracting features.

3.2 Asymmetric Siamese Network

Fig. 4. The structure diagram of asymmetric siamese network.

As illustrated in Fig. 4, the process starts with data transformations performed
twice on the original image, resulting in x1 and x2. The features are then
extracted using the encoder f , with the two encoders sharing parameters. The
output are feature vectors h1 and h2, which are further processed through a pro-
jected multilayer perceptron, represented by gθ, to produce feature vectors z1
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and z2. These projected multilayer perceptrons also share parameters. Finally,
a predictive multilayer perception qθ only works on z1, leading v1 to predict
the feature vector z2 of the other branch. The existence of the “Stop-Gradient”
operation prevents the gradient update of the parameters of the lower half of the
branch, which means that the feature vector z2 of the lower half of the branch
is regarded as a constant. The “Stop-Gradient” operation prevents the model
from learning a “collapsing solution”.

The above processes of feature extraction are summarized by following for-
mulas:

v1 = qθ(gθ (fθ (x1))), z2 = gθ(fθ (x2)) (1)

Then calculate negative cosine similarity for two features above:

D (v1, z2) = − v1
||v1|| 2

∗ z2
||z2|| 2

(2)

|| ||2 represents the �2 norm. Drawing on the practice of Bootstrap Your Own
Latent (BYOL) [8], the authors of SimSiam designed a loss function with a
symmetric structure:

L =
1
2

∗ D (v1, z2) +
1
2

∗ D (v2, z1) (3)

Experiments show that the symmetry of the function has no effect on the con-
vergence of the model, and the performance is slightly improved.

3.3 Relative Position Embedding

The addition of position embedding can provide more valid information to the
model. Generally speaking, there are two types of position embedding: absolute
position embedding and relative position embedding.

In the decoder model of this paper, a new embedding method called rotary
position embedding (RoPE) [27] is adopted, which implements relative position
embedding in an absolute position way, ensuring computational speed while also
having the advantages of relative position embedding.

Suppose that the set of word vectors corresponding to each symbol is repre-
sented as EN = {xi}N

i=1 where xi ∈ Rd is the word vector of the symbol wi and
does not contain position information. To achieve the above goal, it is assumed
that absolute position information is added to xm and xn by the following oper-
ations:

q̃m = f (xm,m) , k̃n = f (xn, n) (4)

That is to say, we design operations f(,m) and f(, n) for xm and xn respectively,
so that q̃m and k̃n have absolute position information of positions m and n after
such operations. Moreover, in order for the result of the inner product to contain
relative position information, we might as well assume an identity relationship:

〈f (xm,m) , f (xn, n)〉 = g (xm,xn,m − n) (5)
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Where g(·) is an unknown function, also the initialization conditions is assumed
f(q, 0) = q and f(k, 0) = k. This gives the RoPE in complex numbers in two
dimensions:

f (xm,m) = Rf (xm,m) eiΘf (xm,m) = xmeimθ (6)

Here Rf represents the real part of the complex number, and θ ∈ R is a non-zero
constant. It can be seen from the geometric meaning of the complex vector that
the transformation is a rotation operation on the vector, so it’s called “rotary
position embedding”. Different from the position embedding in the original paper
[30], the position embedding in HMER is slightly different as it takes a picture
as input and output a sequence. For the position encoding of the picture, we
only need to calculate the rotary position embedding px,d/2 and py,d/2 along the
x-axis and y-axis of the two-dimensional points (x,y) on the image, and then
stitch them together. Assuming that a two-dimensional image pixel point (x,y)
is given, the same dimension d is encoded as the position of the sequence, then
p(x,y),d can be expressed as:

x̄ =
x

H
, ȳ =

y

W
, p(x,y),d =

[
px̄, d2

,pȳ, d2

]
(7)

3.4 Bidirectional Decoding

Most mathematical expression recognition models only consider left-to-right
information during the decoding process, which tends not to take full advantage
of long-distance dependent information. In this case, the model in this paper
adopts a bidirectional decoding strategy [42] with the addition of a right-to-left
decoding direction. For the process of bidirectional decoding training, this paper
uses 〈sos〉 and 〈eos〉 as the start and end symbols of LaTeX. For the target LaTeX
sequence y = {y1, . . . , yT }, this paper expresses the decoding direction from
left to right as: y = {〈sos〉 ,y1, . . . , yT , 〈eos〉}, the decoding direction from right
to left is expressed as: y = {〈eos〉 , yT , . . . , y1, 〈sos〉}.

For a given input image x and model parameters, we use the autoregressive
model to calculate the predicted probability value at each step:

p
(→
yj

∣∣∣ →
y<j , x, θ

)
(8)

p
(←
yj

∣∣∣ ←
y<j , x, θ

)
(9)

where j is the index of the target sequence, represents the probability of the
prediction at the j-th step when decoding from left to right, conditioned on the
predicted value before the j-th step, the picture x and the model parameters θ.
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3.5 Beam Search

Beam search is a heuristic graph search algorithm, usually used in cases where the
solution space is relatively large. During the process of depth expansion, lower
quality nodes are discarded, while higher quality nodes are retained, leading to
a reduction in search space and time consumption. The cluster search is mainly
used in the prediction phase and lets the value of beam width h be the parameter
m, then in the first step m optimal starting characters are retained, and in the
second step, the optimal m is searched for each character obtained in the first
step. The second step searches for the optimal m characters for each of the
characters obtained in the first step, and then selects the optimal m combination
from the m×m character combinations to keep for the next step.

Greedy search occurs when m = 1. If the previous character is incorrectly
predicted, then the whole sequence will also be incorrectly predicted, with no
possibility of correction. Cluster search can overcome the disadvantages of greedy
search, but it also has the problem of being computationally intensive.

3.6 Overall Loss Function

Given training samples {x(z), y(z)} the overall loss function of the model is as
follows: −→L (z)

j (θ) = − log p
(−→yj

(z) | −→y<j
(z), x(z), θ

)
(10)

←−L (z)
j (θ) = − log p

(←−yj
(z) | ←−y<j

(z), x(z), θ
)

(11)

D (v1, z2) = − v1
‖v1‖2

· z2
‖z2‖2

(12)

LCL =
1

2Z
D (v1, z2) +

1
2Z

D (v2, z1) (13)

L(θ) =
1

2ZL

Z∑
z=1

L∑
j=1

(−→L (z)
j (θ) +

←−L (z)
j (θ)

)
(14)

L = L(θ) + λLCL (15)

where Z is the number of training samples and L is the decoding step size.(−→y j
(z) | −→y (z)

<j , x
(z), θ

)
represents decoding from left to right, under the condition

of the predicted value before the j-th step, the picture x, the model parameters
θ, and the probability of the prediction at the j-th step. Similarly, the meaning
of

(←−y j
(z) | ←−y (z)

<j , x
(z), θ

)
can be inferred. v1 and z2 in Eq. 1 are the eigenvectors

of the upper and lower branches of the asymmetric siamese network. In addition,
λ is a hyperparameter that measures the weight between the cross-entropy loss
function and the negative cosine similarity function.
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4 Experiments

4.1 Preprocess

Character Warp Transformation. Common image geometric transforma-
tions include rotation, scaling, and perspective transformations, which treat the
image as a whole and enhance it globally, but these methods have certain dis-
advantages for handwritten character recognition. For example, if the image is
rotated too much or scaled too much, characters can be lost. At the same time,
the gain of these changes to the sample style diversity is limited.

This paper refers to the image transformation method proposed by Luo [17].
We divide the image into two parts by sampling three points along the upper
and lower edges of the image. Based on these points, we scale and transform the
image conforms to a specific distribution within a certain radius R. The principle
of image transformation is based on moving least squares [25] for similarity
deformation. Given a point u in the graph, the transformation of that point
conforms to the following formula:

F (u) = (u − p∗) M + q∗ (16)

where M ∈ R2×2 is an affine transformation matrix that satisfies MT M = λI,
and λ is the scaling coefficient. p∗ is the weighted sum of the initialized datum
points(pi), q∗ is the weighted sum of the datum points after the change(qi),
respectively satisfying:

p∗ =
∑2(N+1)

i=1 wipi∑2(N+1)
i=1 wi

, q∗ =
∑2(N+1)

i=1 wiqi∑2(N+1)
i=1 wi

(17)

where the weight wi is calculated by the following formula:

wi =
1

|pi − u|2α , u 	= pi (18)

It is easy to notice that the change of u is determined by the movement of the
nearest reference point. Assuming that wi is bounded, if u = pi , then F (u) = u .
Here the value of α is set to 1. The unique optimal solution F (u) can be obtained
by minimizing the following formula:

F (u) =
2(N+1)∑

i=1

wi |Fu (pi) − qi|2 (19)

Through the above character distortion operation, we can increase the style
variability of the characters in the formula image, which helps the asymmetric
siamese network to learn more effective features.
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Datasets and Metrics. CROHME [21] is an international handwritten mathe-
matical expression recognition competition. Its corresponding CROHME dataset
is the largest open dataset in the field of handwritten mathematical expression
recognition. Our model uses the CROHME 2014 dataset containing 8,836 offline
images as the training set. CROHME 2014 test set is used as the validation set,
CROHME 2016 [22] test set, and CROHME 2019 [18] test set are used as the
test sets. They contain 986, 1147, and 1199 images respectively.

The CROHME Handwritten Expression Recognition Competition uses two
evaluation criteria, ExpRate and WER, to measure the effectiveness of the
model. ExpRate is the strictest metric to measure the model at the expres-
sion level, requiring an edit distance of 0. In this paper, an edit distance of 1
is denoted as a ≤ 1 error, which allows for an editing error between the pre-
dicted value and the true label, and the ≤ 2 error is the same. This paper also
uses the WER evaluation metric to measure the performance of the proposed
model at the word level. WER is the edit distance divided by the total number
of characters.

Implementation Details Setup. Our proposed method is optimized with
Adadelta optimizer and adopts ReduceLROnPlateau as the learning rate
adjuster. ReduceLROnPlateau is based on the error of the validation set
(ExpRate) to reduce the learning rate. When it is detected that ExpRate no
longer increases within a certain step size, the learning rate will be reduced
according to a certain proportion. The reduction ratio set by the model is 0.1
and the tolerance is 10. All the models are trained/tested on four GeForce GTX
1080Ti 12.5G GPU.

4.2 Sensitivity Analysis

This paper evaluates the effect of the proposed model on the CROHME 2014,
CROHME 2016, and CROHME 2019 test sets, and determines the optimal
hyperparameters λ through multiple sets of experiments. It represents the weight
ratio between the decoding loss function and the contrastive learning loss func-
tion in Eq. 15. The author did a series of experiments from λ = 0.05 to 1,
according change in ExpRate about λ is shown in Fig. 5. When λ increases
from 0, the ExpRate value gradually increases until the maximum value at λ =
0.09, and then begins to decrease with the increase of λ. Therefore, the model
takes λ = 0.09 in the subsequent experiments.

4.3 Ablation Experiment

We evaluate our model on CROHME 2014 test dataset, CROHME 2016 test
dataset, and CROHME 2019 test dataset. “Attention module” represents Coor-
dinate Attention is added; “Positional Encoding” represents rotary Positional
Encoding is used; “Bidirectional Decoding” represents the decoding strategy is
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Fig. 5. Sensitivity analysis of λ.

Table 1. Ablation study.

Attention Positional Bidirectional Siamese Integrated 2014 2016 2019

module Encoding Decoding Network model ExpRate(%) ExpRate(%) ExpRate(%)

� � � � � 47.49 45.90 44.62

� � � � � 47.55 45.98 44.65

� � � � � 50.01 48.37 49.24

� � � � � 54.25 52.14 52.93

� � � � � 57.79 55.10 56.08

� � � � � 60.12 58.03 59.75

used; “Siamese Network” represents the asymmetric siamese network is used;
“Integrated model” means integrating the results of different models.

To prove the effectiveness of each module in the model, a series of ablation
experiments are designed in this paper. Table 1 shows that the above five mod-
ules improve the model during the encoding and decoding process, and finally
improve the ExpRate.

4.4 Case Study

We use the transformer decoder containing single headed attention to draw the
attention distribution diagram for the specific example in Fig. 6.
As shown in the schematic diagram, our proposed model focuses accurately on
relevant regions during each decoding step, resulting in improvement on recog-
nition accuracy.
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Fig. 6. attention distribution diagram for pet

1−(1−p)et

4.5 Comparison with the State-of-the-art Methods

We compare our model(ASNRT without “Integrated model”) with the latest
model of offline HMER. These models include PAL [36], PAL-v2 [37], WAP [41],
DWAP [39] (WAP encoded by densenet), DWAP-TD [40] (DWAP encoded by
tree decoder), DLA [13], WSWAP [28], BTTR [42], ABM [4]. As indicated in
Tables 2, 3, and 4, the ExpRate results of our proposed model surpass those
of the classic DWAP model by 6.79%, 7.67% and 8.38% on the three test sets
respectively, and outperform the current optimal model ABM by 0.94%, 2.18%
and 2.12%. This clearly demonstrates the superiority of the model proposed in
this paper.

Table 2. Comparison with prior works on CROHME 2014 test dataset.

Methods Exp- ≤ 1 ≤ 2 WER

Rate(%) error(%) error (%) (%)

PAL [36] 39.66 56.80 65.11 -

WAP [41] 46.55 61.16 65.21 17.73

PAL-v2 [37] 48.88 64.50 69.78 -

DWAP-TD [40] 49.10 64.20 67.80 -

DLA [13] 49.85 - - 16.63

DWAP [39] 52.80 68.10 72.00 12.9

WSWAP [28] 53.65 - - 11.48

BTTR [42] 53.96 66.02 70.28 -

ABM [4] 56.85 73.73 81.24 10.01

ASNRT 57.79 75.01 79.39 9.65
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Table 3. Comparison with prior works on CROHME 2016 test dataset.

Methods Exp- ≤ 1 ≤ 2 WER

Rate(%) error(%) error (%) (%)

WAP [41] 44.55 57.01 61.55 -

PAL-v2 [37] 49.61 64.08 70.27 -

DWAP-TD [40] 48.50 62.30 65.30 -

DLA [13] 47.34 - - 15.82

DWAP [39] 50.10 63.80 67.40 13.7

WSWAP [28] 51.96 64.34 70.10 13.59

BTTR [42] 52.31 63.90 68.61 -

ABM [4] 52.92 69.66 78.73 -

ASNRT 55.10 70.62 78.12 10.98

Table 4. Comparison with prior works on CROHME 2019 test dataset.

Methods Exp- ≤ 1 ≤ 2 WER

Rate(%) error(%) error (%) (%)

DWAP-TD [40] 51.40 66.10 69.10 -

BTTR [42] 52.96 65.97 69.14 -

ABM [4] 53.96 71.06 78.65 -

ASNRT 56.08 71.48 79.07 10.37

5 Conclusion

In this paper, based on the idea of contrastive learning, character warping trans-
formation and printed ME transformation in the asymmetric siamese network
are proposed for better image feature extraction. In addition, we not only embed
a coordinate attention module into the DenseNet encoder, but also use the strat-
egy of rotary position embedding and bidirectional decoding while adopting
Transformer structure in the decoder part to improve the performance. Through
detailed experimental analysis and comparison with state-of-the-art methods,
we demonstrate that our proposed model has good generalization and superior
performance for HMER.
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Abstract. Printed mathematical expression recognition (PMER) aims
to transcribe a printed mathematical expression image into a structural
expression. The task is useful in a wide spectrum of applications, includ-
ing personalized question recommendation and automatic problem solv-
ing. In this paper, we propose a new method named EDSL, shorted for an
Encoder-Decoder architecture with Symbol-Level features, to recognize
printed mathematical expressions from input images. Its encoder consists
of a segmentation module to identify all symbols and their spatial infor-
mation from the image in an unsupervised manner, and a reconstruction
module to recover symbol dependencies after symbol segmentation. Fur-
thermore, we employ a position correction attention mechanism to cap-
ture the spatial relationship between symbols, and apply a transformer
model to alleviate the negative impact from long output. We conduct
extensive experiments on two real datasets to verify the effectiveness and
rationality of our proposed EDSL model. The experimental results illus-
trated that EDSL outperformed state-of-the-art methods by an accuracy
margin of 3.47% and 4.04% in the two datasets, respectively.

Keywords: printed mathematical expression recognition ·
encoder-decoder network · segmentation · position correction attention

1 Introduction

Mathematical expression understanding is a fundamental task that has been
widely used in many intelligent education applications, including student per-
formance evaluation [27], personalized exercise recommendation [11], and arith-
metic problem solving [30,31]. As printed math expressions often exist in the
form of images, it is crucial to convert images of printed math expressions into
structural expressions, such as LaTeX or symbol layout trees [16]. The process
is called printed mathematical expression recognition, or PMER for short. Com-
pared to traditional Optical Character Recognition (OCR) problems, PMER
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is more challenging because it not only needs to identify all symbols from the
images, but also captures their spatial relationships [36].

Traditional approaches decompose PMER into two tasks: symbol recogni-
tion and structural analysis, which require a lot of hand-crafted rules and may
propagate recognition errors between tasks. Since PMER can be viewed as
an image-to-text translation task, recent advances in PMER have focused on
employing an encoder-decoder neural network to address the image caption-
ing problem [13,21,22]. In particular, the encoder extracts semantic embeddings
from an entire math expression image based on a convolutional neural network
(CNN), and the decoder predicts LaTeX tokens using a recurrent neural network
(RNN) [7,35]. Despite the performance improvements with traditional PMER
approaches, we argue that these methods are suboptimal due to the following
factors:

– Output sequences of PMER are longer. Math expressions in LaTeX
format are normally much longer than image captions. For instance, in the MS
COCO dataset, the average length of captions is only 10.47 [10]. In contrast,
the average length of math expressions in academic papers is 62.78 [7]. Cho et
al. demonstrate that the performance of the encoder-decoder network for text
generation deteriorates rapidly with the increase of sentence length [6]. Thus,
we argue that image captioning models cannot solve the PMER problem due
to the design limitations of short outputs.

– Spatial semantics of an expression can be complex and diverse. In a
math expression, a symbol could have different mathematical semantics with
different position. As illustrated in Fig. 1, although there are six identical
symbols(number ’2’), they are in different positions with different semantics,
such as subscripts, superscripts, above, and below, etc. In contrast, the image
captioning may be independent on the position of an object. As demonstrated
in Fig. 1(a), no matter where the tennis ball is, the semantics of this image
will be the same. Image captioning models may degrade the performance
when addressing the PMER problem since they only capture simple spatial
information about objects.

– PMER needs to provide a fine-grained description of a math expres-
sion. Image captioning aims to provide a summarization, rather than a
comprehensive, fine-grained description of the content in an image. As demon-
strated in Fig. 1(b), although there are many objects in the image, the caption
still only summaries the main content in the short sentence “A group of people
are shopping at the market.” However, PMER not only identifies all Roman
letters, Greek letters, and operator symbols, but also requires layout analysis
of all symbols. If there is a token error or a lack of detail in the output sequence
of PMER, the whole recognition process will fail. We point out that unlike
image captioning, PMER requires fine-grained features to capture details of
an image.

Recently, Deng et al. improved the image captioning model to solve the
PMER problem and proposed the IM2Markup model [7]. IM2markup employs
a small receptive field CNN encoder with a coarse-to-fine attention mechanism.
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Fig. 1. Comparison between image captioning and PMER. (a) image captioning only
captures simple spatial information about objects. (b) summarizes an image, rather
than a detailed description. (c) illustrates that the same symbol with different positions
has different mathematical semantics.

A row encoder is also used to localize input symbols line by line from the feature
map. We argue that this approach cannot capture fine-grained features and fails
to extract cross-line spatial dependencies of symbols.

In this paper, we propose EDSL (shorted for an Encoder-Decoder architecture
with Symbol-Level features), which addresses the above limitations of existing
PMER methods. EDSL adopts a symbol-level image encoder that consists of a
segmentation module and a reconstruction module. The segmentation module
identifies both symbol features and their spatial information in a fine-grained
manner. In the reconstruction module, we employ a position correction attention
(PC-attention) to recover spatial dependencies of symbols in the encoder. To
alleviate the negative impact from long output concerns, we apply a transformer
model [29] to transcribe the encoded image into a sequential and structural
output. The key contributions of this paper are summarized as follows:

(1) (1) We propose an encode-decoder framework with symbol-level features to
address the PMER problem.

(2) Our encoder consists of a segmentation module to identify all symbols
and their spatial information from images in an unsupervised manner,
and a reconstruction module to recover symbol dependencies after symbol
segmentation.

(3) We employ PC-attention to capture the spatial relationship between sym-
bols, and apply a transformer model to alleviate the negative impact from
long output.

(4) We conducted extensive experiments on two real datasets. The experimental
results verify the superiority of our EDSL over state-of-the-art methods.
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2 Related Work

Existing PMER methods can be categorized into two groups: traditional multi-
stage methods, and end-to-end approaches.

2.1 Multi-stage Methods

A multi-stage PMER method can be simplified into two sub-tasks: symbol recog-
nition [17] and layout analysis [3].

The main difficulty in symbol recognition is the problem caused by touching
and over-segmented characters. Okamoto et al. [17] used a template matching
method to recognize characters. Alternatively, the characters can be recognized
using a supervised model. Malon et al. [15] and LaViola et al. [8] proposed
an SVM and an ensemble boosting classifier to improve character recognition,
respectively. In our proposed EDSL, we only employ an unsupervised method to
segment symbols from images. Since EDSL only extracts symbol-level features
from the segmented symbols and does not recognize the characters, the touching
and over-segmented symbols do not affect the recognition accuracy.

The most common method used in symbol layout analysis is recursive decom-
position [36]. Specifically, operator-driven decomposition recursively decomposes
a math expression by using operator dominance to recursively identify opera-
tors [4]. Projection profile cutting recursively decomposes a typeset math expres-
sion using a method similar to X-Y cutting [20,24]. Baseline extraction decom-
poses a math expression by recursively identifying adjacent symbols from left
to right on the main baseline of an expression [37,38]. In this paper, we pro-
pose an encoder-decoder framework with a PC-attention mechanism to preserve
the spatial relationships, which has achieved the best performance compared to
competitive baselines.

2.2 End-to-End Methods

Different from the multi-stage methods, PMER can also be addressed by an
encoder-decoder network with an attention mechanism, where the encoder
aims to understand mathematical expression images, and the decoder generates
LaTeX text.

Zhang et al. [40] used a VGG network as the encoder to recognize hand-
written formulas. To improve the accuracy of handwritten formula recognition,
Zhang and Du proposed a multi-scale attention mechanism based on a DenseNet
network [39]. Deng et al. [7] proposed the IM2Markup model based on the coarse-
to-fine attention mechanism, which achieves state-of-the-art performance. Yin et
al. [35] proposed a spotlight mechanism to recognize structural images, such as
math formulas and music scores. Wang et al. leverage reinforcement learning
to translate images of math formulas into LaTex markup sequences [32]. Yan
et al. proposed ConvMath to solve the PMER problem, which is entirely based
on convolution networks [34]. We argue that a CNN network is hard to directly
apply for encoding math expression image features since the large receptive field
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cannot extract the fine-grained symbol features and the small receptive field is
inevitable to increase the computational cost.

In addition, image captioning methods can also be applied to address the
PMER problem [1,5,14]. However, we argue that image captioning methods are
suboptimal due to improper design for text summarization.

3 Problem Formulation and Model Overview

3.1 Problem Formulation

For a printed mathematical expression x, which is a grayscale and structural
image. Let y =< y1, y2, · · · , yt > be a sequence of LaTeX text, where yi is the
i-th token in LaTeX sequence y, t is the sequence length. The PMER task aims
to transcribe a printed math expression into LaTeX text. Formally, the PMER
problem can be defined as:

Definition 1 (PMER problem). Given a printed math expression image x,
the goal of PMER is to learn a mapping function f , which can convert image x
into a sequence of LaTeX text y =< y1, y2, · · · , yt >, such that rendering y with
a LaTeX compiler is the math expression in image x.

In the definition, PMER can be treated as a structural image transcription prob-
lem, where the structural content in an image is transcribed into a sequence of
LaTeX text.

3.2 Model Overview

Figure 2 demonstrates the overall architecture of our proposed EDSL model,
which consists of two main components: (1) symbol-level image encoder; (2)
transcribing decoder. The encoder consists of a segmentation module and a
reconstruction module, and is designed to capture fine-grained symbol features
and their spatial information. The segmentation module divides an entire math
expression image into symbol blocks in an unsupervised manner, such that each
symbol block contains part of a symbol in the printed math expression. The
reconstruction module is designed for recovering spatial relationships between
symbols via employing PC-attention. To recover the expression, the transcribing
decoder is designed to transcribe the encoded math expression image into a
LaTeX sequence.

4 Details on EDSL Implementation

4.1 Segmentation Module

To get the symbol-level features of a math expression, we segment an input image
into symbol blocks. EDSL applies a connected-component labeling algorithm to
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Fig. 2. The architecture of EDSL. EDSL consists of two main part: 1) a symbol-level
image encoder with segmentation module and reconstruction module; 2) a transcribing
decoder with transformer. FC is the fully-connected network.

find symbol blocks in a math expression image without any supervised infor-
mation [23]. We then resize each symbol block to b × b pixels to extract visual
features. Given an image x with height H and width W , let S = {s1, s2, · · · , sn}
be a set of symbol blocks, where n is the total number of symbol blocks, and
si ∈ R

b×b.
It should be noted that, unlike the character segmentation used for addressing

the traditional OCR problem, EDSL does not need to correctly and completely
segment all symbols in the image. Each symbol block can be a complete symbol
or part of a symbol, which is only utilized to extract features, rather than recog-
nize symbols. As such, error propagation, which commonly arises in traditional
OCR tasks, will not take place in our proposed EDSL. By calculating position
vectors of all symbol blocks, the spatial information of each symbol block can
be preserved.

As demonstrated in Fig. 3(a), we segment the two numbers into two compo-
nents with a pre-defined threshold as shown in Fig. 3(b). Subsequently, we resize
each component to b × b pixels as illustrated in Fig. 3 (c), where each b × b pixel
is a symbol block.

Correspondingly, we calculate a set of position vectors P = {p1,p2, · · · ,pn}
associated with S, where pi ∈ R

5 is the position vector of si. The calculation of
pi is as follows:

pi = (
ti
H

,
di
H

,
li
W

,
ri
W

,
H

W
) (1)

As illustrated in Fig. 3(d), ti, di, li, and ri are the distances from each edge (top,
bottom, left, right) of the i−th symbol block to the upper and left of input image
x. For ease of training, we standardize each entry of the position vector into 0
to 1 with height H and width W of the input image. The last entry H

W is the
width/height ratio of input image x, and will help us to reconstruct a symbol
position when it is distorted after standardizing the first 4 entries.

For preserving symbol features and spatial information, we employ image and
position encoders to map each symbol block and corresponding position vector
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Fig. 3. A running example of segmentation. (a) is a grayscale image. A connected-
component labeling algorithm is used to segment (a) into two components shown in
(b). (c) is the symbol block by resizing the component of (b). (d) is a diagram of
position vector features of a symbol block. ti, di, li, and ri are the distances from each
edge (top, bottom, left, right) of the block to the upper and left of an entire image.

into low-dimensional spaces as demonstrated in Fig. 2. Specifically, we employ
a six-layer CNN model with a fully connected layer [26] to encode all sym-
bol blocks of S into an m-dimensional space, denoted by S′ = {s′

1, s
′
2, · · · , s′

n}.
Similarly, we employ a three-layer fully connected network(FC) to encode all
position vectors, and also embed them into an m-dimensional space, denoted by
P ′ = {p′

1,p
′
2, · · · ,p′

n}.

s′
i = CNN(si) p′

i = FC(pi) (2)

where s′
i ∈ R

m, p′
i ∈ R

m

Finally, we can get the symbol block embedding set

E = {e1, e2, · · · , en} (3)

where
ei = s′

i + p′
i, for i ∈ 1, · · · , n; ei ∈ R

m (4)

4.2 Reconstruction Module

Since the embedding vectors of all symbols are independent, it is necessary to
reconstruct the spatial relationships between symbols. Although RNN is a com-
monly used approach to infer the dependencies between entries in a sequence,
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symbol blocks are in a two-dimensional space and cannot be modeled as a
sequence. To reconstruct the spatial relationships between symbols, we employ
a transformer model with a novel attention mechanism. In the architecture of a
transformer, self-attention is a key concept. It refers to calculating the attention
score for each pair of elements within a sequence, which can learn the depen-
dencies between tokens. For each symbol block vector in E, we need to calculate
the attention scores with all other symbols. As such, we can capture the internal
spatial relationships between symbol blocks. The attention score between each
pair of symbol block vectors is calculated by scaled dot-product attention [29]:

αij =
(eiWQ)(ejWK)T√

m

attnij =
exp (αij)∑n
k=1 exp (αik)

(5)

where m is the dimension of ei, WQ ∈ R
m×m and WK ∈ R

m×m.

PC-Attention. Since self-attention is a global attention mechanism, it may be
suboptimal to capture the spatial relationships in a long math expression since
a symbol is not necessary to interact with the other symbols far away from
it. For example, in the expression of Fig. 2, the first symbol ‘2’ in the image
only needs to calculate the dependencies with surrounding symbols. It does not
need to interact with ‘x’ and ‘y’ because they are far away from it. Thus, we
introduce the position correction attention (PC-attention), which utilizes the
position vectors p′

i to calculate attention scores for a target symbol.
For each pair of symbol block vectors, PC-attention first calculates the atten-

tion score αpos of their symbol block vectors followed by [14]. Then, we add it
with α to obtain the new attention weight α′. Finally PC-attention score attn′

can be calculated by normalized α′ with softmax function. The PC-attention
score is calculated as follows:

αpos
ij = vT

a tanh(Wa[p′
i;p

′
j ])

α′
ij = αij + αpos

ij

attn′
ij =

exp (α′
ij)∑n

k=1 exp (α
′
ik)

(6)

where ‘;’ is the concatenation operator, Wa ∈ R
2m×m, va ∈ R

m. In practice, we
utilize the multi-head variant to calculate attn′ [29].

The comparison of self-attention and PC-attention is illustrated in Fig. 4.
Although PC-attention appears to be more complex, we share Wa in multi-
ple transformer layers. As such, PC-attention is as efficient as self-attention
since αpos only need to be calculated once. PC-attention calculates the atten-
tion score via combining both symbol features and their spatial information.
To avoid unnecessary long-distance dependencies, PC-attention focuses on the
nearest symbols via adjusting self-attention with position information to better
reconstruct the spatial relationships between symbols.

After Reconstruction Module, the symbol block embedding set E is encoded
to embedding set R = {r1, r2, ..., rn}.
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Fig. 4. Comparison of self-attention and PC-attention.

4.3 Transcribing Decoder

As with the general encoder-decoder architecture, given the symbol block embed-
dings set R, the transcribing decoder of EDSL generates one token of the
sequence o = (o1, ...,ot) at each time. When generating the next token, the
previously generated tokens are used as additional input. We employ the trans-
former decoder proposed in [29] to transcribe the math expression since it is more
conducive to generate a long LaTeX sequence compared with others. Finally, we
used a softmax layer to predict the probability of the output token at time step t:

p(yt|y1, ..., yt−1, r1, ..., rn) = softmax(Woutot−1) (7)

where yt is t−th token in the output LaTeX sequence, ot−1 is the output of
transformer decoder in the (t−1)th step, Wout ∈ R

m×|v|, and |v| is the vocabu-
lary size. The overall loss L is defined as the negative log-likelihood of the LaTeX
token sequence:

L =
T∑

t=1

− logP (yt|y1, ..., yt−1) (8)

Since all calculations are deterministic and differentiable, the model can be
optimized by standard back-propagation.

5 Experiment

To evaluate the performance of EDSL, we conduct extensive experiments on two
real datasets.

Through empirical studies, we aim to answer the following research questions:
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RQ1: How is the performance of EDSL when compared with state-of-the-art
methods for PMER?

RQ2: How does the length of math expression affect the performance of EDSL?
RQ3: Is symbol-level image encoder helpful to improve the performance of

EDSL?

In addition, we conduct a case study, which visualizes the role of different atten-
tion mechanisms.

5.1 Experimental Setup

Dataset. We evaluate the performance of EDSL on two public datasets, For-
mula [35] and IM2LATEX [7]. Before reporting the performance, we pre-process
the two datasets as follows:

ME-20K: Dataset Formula collects printed math expression images and corre-
sponding LaTeX representations from high school math exercises in Zhixue.com,
which is an online education system. Due to many duplicates that existed in the
dataset, we remove the duplicates and rename the new dataset as ME-20K.

ME-98K: Dataset IM2LATEX collects the printed formula and correspond-
ing LaTeX representations from 60,000 research papers. As there are 4881
instances in the IM2LATEX dataset, which are tables or graphs, rather than
math expressions, We remove these LaTeX strings and corresponding images
from IM2LATEX, and get the dataset named ME-98K.

Baselines. We compare EDSL with two types of baselines:

PMER Method. Due to poor performance reported in [7], we do not report
the performance of INFTY [28] and CTC [25]. We compare two methods with
our proposed EDSL.
– STNR [35]: This method proposes a hierarchical spot-light transcribing net-

work that consists of two stages. It designs a reinforcement learning method
to refine the model.

– IM2Markup [7]: This method employs an encoder-decoder model with coarse-
to-fine attention for recognizing math expressions.

Image Captioning Methods. We also compare our EDSL with several com-
petitive image captioning methods, which are SAT [33], DA [14], TopDown [1],
ARNet [5], LBPF [19] and CIC [2].

Evaluation Metrics. Our main evaluation method is to check the matching
accuracy of the rendered prediction image compared to the ground-truth image.
Followed by [7], we also employ Match-ws to check the exact match accuracy after
eliminating white space columns. Besides, we also use standard text generation
metrics, BLEU-1(abbr. as B@1), BLEU-4(abbr. as B@4) [18], ROUGE-1(abbr.
as R@1) and ROUGE-4(abbr. as R@4) [9], to measure the precision and recall
of the tokens in output sequences. All experiments are conducted three times
and the average performance is reported.
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Table 1. Performance comparison on ME-20K and ME-98K.

Dataset Type Method Math-ws Match B@1 B@4 R@1 R@4

ME-20K I.C. CIC 70.91 70.56 84.15 79.27 90.25 83.37
DA 77.31 76.92 94.01 87.27 96.45 89.08
LBPF 80.88 80.46 94.98 88.82 97.32 90.57
SAT 82.65 82.09 95.52 89.77 97.40 91.15
TopDown 84.22 83.85 95.71 90.55 95.52 91.94
ARNet 85.84 85.40 96.10 91.18 97.83 92.50

PMER STNR 78.13 77.62 94.67 89.31 95.81 90.39
IM2Markup 89.63 89.23 97.26 92.83 98.27 93.74
EDSL 93.45 92.70 97.68 94.23 98.94 95.10

ME-98K I.C. CIC 33.71 33.62 60.88 55.47 74.80 65.52
DA 55.15 55.15 86.45 79.71 89.61 82.40
LBPF 66.87 66.83 90.61 84.64 93.16 86.57
SAT 71.04 70.85 92.34 84.64 93.16 86.57
TopDown 72.85 72.65 93.27 87.56 95.45 89.32
ARNet 68.98 68.55 92.05 86.04 94.66 88.27

PMER STNR 76.01 75.32 95.43 88.78 97.56 90.52
IM2Markup 85.16 84.96 96.34 91.47 97.61 92.45
EDSL 89.34 89.00 97.39 92.93 97.93 93.30

Implementation Details. As mentioned in [7], we group the images into sim-
ilar sizes to facilitate batching for baselines. In EDSL, we employ two 8-layer
transformer models with eight heads as reconstruction module and transcribing
decoder. The embedding size m of EDSL is 256. The width b of symbol blocks is
30. We also use 160, 180, 200 as the segmentation thresholds on the training set
and keep different symbol blocks of the same image as different training samples.
In this way, the training samples roughly tripled. The default threshold is 160 for
both validation set and test set. We make this approach as data augmentation
for training the EDSL model. The effect of different thresholds for segmentation
is further discussed in Sect. 5.5.

We train our models on the GTX 1080Ti GPU. The batch size of ME-20K
and ME-98K are 32 and 16, respectively. We use Adam optimizer with an initial
learning rate of 0.0003. Once the validation loss does not decrease in three epochs,
we halve the learning rate. We stop training if it does not decrease in ten epochs.

5.2 Performance Comparison(RQ1)

Table 1 illustrates the performance of baselines and our proposed EDSL method,
where we have the following key observations:
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Fig. 5. Performance with different math expression lengths on ME-20K and ME-98K.

– PMER methods outperform the image captioning baselines. This is due to
the factors that: (1) image captioning methods aim to summary an input
image, rather than design for mining the fine-grained spatial relationships
between symbols; (2) PMER methods, including STNR, IM2Markup, and
EDSL are designed to reconstruct the spatial relationships between symbols
in a fine-grained manner, which are more advantageous.

– EDSL is significantly better than STNR and IM2Markup. This improvement
illustrates the effectiveness of EDSL, which employs the symbol-level image
encoder to capture both symbol features and their spatial information, and
preserves more details compared with STNR and IM2Markup.

5.3 Effect of Sequence Lengths (RQ2)

To demonstrate the effect of formula lengths, we vary the match expression
lengths to evaluate the performances of baselines and our proposed EDSL
method. As illustrated in Fig. 5, we have the following observations:

– The length of math expression affects the performances of all methods sig-
nificantly. This is due to the factor that the neural encoder-decoder models
will significantly decrease as the sequence length increases [6]. It indicates a
negative impact on long math expressions.

– EDSL has achieved better performances when the math expression lengths
vary. This sheds light on the benefit of preserving the fine-grained symbol-
level features and their spatial information in the symbol-level image encoder.
Although the performance of EDSL also decreases as the length of math
expression increases, the performance declines are much smaller than the
others. This indicates that EDSL is qualified to recognize the long math
expressions.
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Table 2. Comparison of the performances of EDSL, and its variant methods ED, ED
+ Seg and EDSL-S.

Dataset Method Match-ws Match B@1 B@4 R@1 R@4

ME-20K ED 79.75 79.31 92.45 89.24 94.25 90.69
ED+Seg 88.70 88.26 95.29 92.76 97.26 93.65
EDSL-S 92.39 91.55 96.30 93.91 98.68 94.77
EDSL 93.45∗∗ 92.70∗∗ 97.68 94.23 98.94 95.10

ME-98K ED 68.71 68.54 90.13 86.15 91.38 87.31
ED+Seg 81.15 80.57 95.29 91.58 96.21 91.97
EDSL-S 88.02 87.50 97.24 92.65 97.46 93.08
EDSL 89.34∗∗ 89.00∗∗ 97.39 92.93 97.93 93.30

Table 3. EDSL performance of varying segmentation thresholds on both dataset, where
TH is the threshold used in the segmentation algorithm.

Dataset TH Match-ws Match B@1 B@4 R@1 R@4

ME-20K 160 92.56 91.82 97.24 93.97 98.13 94.85
180 92.76 92.00 96.48 93.26 98.25 95.06
200 91.82 91.77 97.02 93.66 98.80 94.52
DA 93.45 92.70 97.68 94.23 98.94 95.10

ME-98K 160 87.35 87.06 97.18 92.75 97.36 93.11
180 85.53 85.16 96.74 92.39 97.17 92.75
200 85.72 85.38 97.13 92.35 97.37 92.72
DA 89.34 89.00 97.39 92.93 97.93 93.30

5.4 Utility of Symbol-Level Image Encoder (RQ3)

To demonstrate the effectiveness of the symbol-level image encoder, we compare
EDSL with their variants method ED, ED + Seg, and EDSL-S. ED only employs
the CNN model as the encoder and a transformer model as the decoder, and takes
the entire image of mathematical expression as input. ED + Seg removes the
reconstruction module from the symbol-level image encoder of EDSL. EDSL-
S employs the self-attention mechanism to capture the spatial relationships
between symbols. From Table 2, we have the following key observations:

– Comparing ED with ED + Seg, the values of Match are improved by 8.95%
and 12.03% on two datasets, respectively. This is due to the factor that ED +
Seg encodes the fine-grained symbol features. These improvements prove the
effectiveness of the fine-grained symbols features captured by the segmenta-
tion module.

– Comparing ED with ED + Seg on two datasets, the performance improve-
ment on ME-98K is much higher. It reveals that our designed symbol-level
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image encoder has a more obvious advantage in transcribing the longer math
expression.

– EDSL outperforms the others significantly. This is due to the factor that PC-
attention is designed for recovering the spatial relationships of symbols. This
again points to the positive effect of employing PC-attention mechanism to
reconstruct the spatial relationships between symbols in the reconstruction
module of encoder.

5.5 Hyper-Parameter Studies

Different segmentation thresholds will produce different symbol blocks, which
fundamentally affect the encoder to extract the symbol features and their spatial
information. We therefore investigate the impact of threshold used for segmen-
tation. As demonstrated in Table 3, we vary the threshold from 160 to 200, and
observe that the different segmentation thresholds indeed influence the perfor-
mance of EDSL. This is due to the factor that different segmentation thresholds
will produce different symbol blocks, which affects the results of image feature
extraction.

Inspired by the data augmentation, we retain segmented symbols given by
different segmentation thresholds to increase the diversity of data for training
EDSL, denoted as DA. We can observe that our EDSL method can be further
improved after data augmentation. It indicates that we can use the diversity
of segmentation results to improve the performance and avoid the difficulty of
threshold selection.

5.6 Case Study

To better understand our proposed EDSL model, we visualize the attention
scores for the tokens in the output LaTex text. We fetch the attention scores
in the last layer of the transcribing decoder. Figure 6 demonstrates the predict
tokens and the attention map. We can observe that: (1) For an output token,
EDSL only focuses on the whole corresponding symbols, rather than a region
given by image captioning methods [12,33]; (2) even if there are many identical
symbols in a math expression image, EDSL can focus on the correct position.
These shed light on the benefit of symbol-level image encoder, which is helpful
to recognize all symbols and their spatial information.

As demonstrated in Fig. 7, we further visualized the differences between
attention mechanisms used in the reconstruction module of the encoder, where
the target symbol is in a red box. For each target symbol, we compare two atten-
tion mechanisms to address how they capture the spatial relationships between
symbols in the symbol-level image encoder. From the visualization, we observe
that PC-attention focuses on the nearest neighbors of the target symbol. For
every target symbol, the found dependent symbols are reasonable in Fig. 7(b).
However, it is hard to explain the self-attention mechanism, e.g., Columns 2–3
at Line 1, Columns 2, 4 at Line 2, and Columns 1, 3 at Line 3 in Fig. 7(a). Thus,
we can conclude that PC-attention is more reasonable to recover the spatial
relationships between symbols in the encoder.
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Fig. 6. Visualization of predicted tokens and attention maps.

Fig. 7. Visualizing different attention mechanisms in reconstruction module.

6 Conclusion

In this paper, we propose an encoder-decoder framework with symbol-level
features to address the PMER problem. Compared with the existing PMER
method, the designed symbol-level image encoder aims to preserve the fine-
grained symbol features and their spatial information. For recovering the spa-
tial relationships between symbols, we propose the PC-attention mechanism to
restore them in the reconstruction module of encoder. We have conducted exten-
sive experiments on two real datasets to illustrate the effectiveness and rational-
ity of our proposed EDSL method. In our future work, we plan to extend our
proposed EDSL method to address more diversified applications of structural
content recognition, including the recognition of handwritten math expression,
music sheet chemical equations, and chemical molecular formulas.
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Abstract. Handwritten mathematical expression recognition (HMER)
has attracted extensive attention recently. However, current methods
cannot explicitly study the interactions between different symbols, which
may fail when faced similar symbols. To alleviate this issue, we propose
a simple but efficient method to enhance semantic interaction learning
(SIL). Specifically, we firstly construct a semantic graph based on the sta-
tistical symbol co-occurrence probabilities. Then we design a semantic
aware module (SAM), which projects the visual and classification feature
into semantic space. The cosine distance between different projected vec-
tors indicates the correlation between symbols. And jointly optimizing
HMER and SIL can explicitly enhances the model’s understanding of
symbol relationships. In addition, SAM can be easily plugged into exist-
ing attention-based models for HMER and consistently bring improve-
ment. Extensive experiments on public benchmark datasets demonstrate
that our proposed module can effectively enhance the recognition perfor-
mance. Our method achieves better recognition performance than prior
arts on both CROHME and HME100K datasets.

Keywords: Handwritten Mathematical Expression Recognition ·
Semantic Graph · Co-occurrence Probabilities

1 Introduction

Handwritten Mathematical Expression Recognition (HMER) is an important
OCR task, which can be widely applied in question parsing and answer sheet
correction. In recent years, with the rapid development of deep learning technol-
ogy, scene text recognition approaches have achieved great progress [8,22,23,35].
However, due to the ambiguities brought by crabbed handwriting and the com-
plicated structures of handwritten mathematical expressions, HMER is still a
challenging task.
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Fig. 1. Illustration of our method. The different colored graph nodes and arrows indi-
cate different symbols.

Built upon the recent progress in sequence-to-sequence learning and neural
networks [6,10,24], some studies have addressed HMER with end-to-end trained
encoder-decoder models and showed significant improvement in performance.
Nevertheless, the encoder-decoder framework do not fully explore the correla-
tion between different symbols in the mathematical expression, which may be
struggling when facing similar handwritten symbols or crabbed handwritings.

To address above issues, we argue that an effective HMER model should be
improved from the following two aspects: (1) capturing semantic dependencies
among different symbols in the mathematical expression; (2) integrating more
semantic information to locate the regions of interest.

In this paper, we propose an simple but efficient method to improve the
robustness of the model, which incorporate the learning of semantic relations
among different symbols into the end-to-end training (Fig. 1). Firstly, we built a
semantic graph rely on statistical co-occurrence probabilities, which can explic-
itly exhibit the dependencies among different symbols. Secondly, we propose
a semantic aware module, which takes the visual and classification features as
input and maps them into the semantic space. The cosine distance between
different projected vectors suggests the correlation of symbols. Optimizing the
distance to close to the corresponding graph value make the network capture
the relationships between different symbols. Therefore, the search for regions of
interest and the learning of symbols semantic dependencies are enhanced, which
further improved the performance of the model.



154 Z. Liu et al.

The major contributions of this paper are briefly summarized as follows:

– To the best of our knowledge, we are the first to use co-occurrence to represent
the relationship between symbols in mathematical expression and verify the
effectiveness of enhancing semantic representation learning.

– We propose a semantic aware method that jointly optimizes the symbol rela-
tions learning and HMER, which can consistently improve the performance
of the model for HMER.

– Our proposed semantic aware module can be easily plugged into attention
based models for HMER and no extra computation during the inference stage.

To be specific about the performance, we adopt DWAP [40] as the baseline
network. With the help of SAM, SAM-DWAP outperforms DWAP by 2.2%,
2.8% and 4.2% on CROHME 2014, 2016 and 2019, respectively. Moreover, with
adopting the latest SOTA method CAN [16] as the baseline network, our method
achieves new SOTA results (58.0% on CROHME 2014, 56.7% on CROHME 2016,
58.0% on CROHME 2019). This indicates that our method can be generalized to
various existing encoder-decoder models for HMER and boost their performance.

2 Related Work

HMER is a fundamental OCR task, which has attracted research interests in the
past several decades. In this section, we briefly introduce previous related works
on HMER.

Traditional methods on HMER could be mainly separated into two steps: a
symbol segmentation/recognition step and a grammar guided structure analysis
step. In the first step, several classic classification techniques were studied, such
as HMM [1,9,12,28], Elastic Matching [4,26], Support Vector Machines [11], etc.
In the second step, formal grammars were designed to model the 2D and syntactic
structures of expression. Lavirotte et al. [13] proposed to use graph grammar
to recognize mathematical expression. Chan et al. [5] incorporated correction
mechanism into parser based on definite clause grammar (DCG). Yamamoto et
al. [32] modeled handwritten mathematical expressions with a stochastic context-
free grammar and solved the recognition problem by using the CYK algorithm.
In contrast to those traditional methods, our model incorporates grammatical
structure and automatically learned encoder-decoder, therefore preventing from
designing cumbersome rules.

Recently, deep learning techniques rapidly boosted the performance of
HEMR. The mainstream framework was encoder-decoder networks [7,14,15,
20,25,27,29,37,38,40,42]. Deng et al. [7] firstly proposed an encoder-decoder
framework to convert image to LATEX markup. A coarse-to-fine attention layer
was used to reduce the attention complexity in their work. Zhang et al. [40]
presented an encoder-decoder model, named WAP (Watch, Attend and Parse).
In their model, the encoder is a FCN and a coverage vector is appended to the
attention model. Wu et al. [30,31] focused on the pair-wise adversarial learning
strategy to improve the recognition accuracy. To alleviate the challenge of lack of
data, Le et al. [15] and Li et al. [17] employed distortion, decomposition and scale
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augmentation techniques, which achieved significant performance promotion. Le
[14] proposed a dual loss attention model, which contains a new context match
loss. Context matching loss is adapted to constrain the intra-class distance and
enhance the discriminative power of model. Lately, Zhang et al. [39] devised
a tree-based decoder to parse mathematical expression. At each step, a parent
and child node pair was generated and the relation between parent node and
child node reflects the structure type. Yuan et al. [34] firstly incorporate syntax
information into the encoder-decoder, which achieved higer recognition accuracy
while taking into account speed. Li et al. [16] design a weakly-supervised count-
ing module and jointly optimizes HMER task and symbol counting task. With
the help of integrated global information, it puts in a impressive performance.

3 Methodology

The overall framework of our approach is shown in Fig. 2. The pipeline includes
several parts: densely connected convolutional network (DenseNet) [10] is applied
as encoder to extract the features. The DenseNet takes a grayscale image X of
size H ×W ×1, where H and W are image height and image width, respectively,
and returns a 2D feature map F ∈ R

H
′ ×W

′×684, where H/H
′

= W/W
′

= 16.
The decoder uses the feature map and gradually predicts the LATEX markup. The
Semantic Aware Module (SAM) comprises two branches with similar structure
(visual branch and classification branch), which employ the visual and classifi-
cation features, respectively. Visual and classification features are projected to
semantic space to obtain projected visual and classification vectors, respectively.
The cosine distance between projected vectors from different time steps indicates
how related they are.

3.1 Semantic Graph

Capturing global context information has been proven to be an effective way to
improve the robustness of recognition [21,33]. However, compared with words,
the use of symbols in the mathematical expressions is relatively more casual.
How to express the relationships among different symbols in the mathematical
expressions is an open issue to be solved. Our intuition is that the magnitude
of values in the co-occurrence graph reflects the relationship between different
symbols, much like how different characters in text have different collocations.
Making the distances close to the probabilities is aimed at enhancing the model’s
learning of the linguistic information in formulas.

Semantic graph is defined as G = (S,E), where S = {s1, s2, ..., sN} repre-
sents the set of symbol nodes and E represents the edges, which suggest the
dependence between any two symbols. The correlation matrix R = {ri,j}N

i,j=1

of graph G contains non-negative weights associated with each edge. The corre-
lation matrix is a conditional probability matrix and the rij is set as P (si/sj),
where P is calculated through training set. However, R is an asymmetric matrix,
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Fig. 2. The architecture of the proposed SAM-DWAP, which consists of a CNN, a
decoder and a semantic aware module.

namely rij �= rji. In order to facilitate the calculation, we turn the asymmetric
matrix into a symmetric matrix following:

R
′
=

1
2
(R + RT ). (1)

3.2 Semantic Aware Module

In this section, we present the detail of the proposed semantic aware module
(SAM). As shown in Fig. 3 (a), SAM contains two branches, namely visual fea-
ture branch and classification feature branch. Each branch comprises two “LBR”
block followed by a linear layer. A “LBR” block is built by stacking Linear layer,
Batch Normalization and ReLU activation. We apply SAM to project the visual
vectors (vvis) and classification vector (vcls) to semantic space to get projected
visual vectors (v

′
vis) and projected classification vectors (v

′
cls):

v
′
vis = W vis

3 (σ(ε(W vis
2 (σ(ε(W vis

1 vvis + bvis
1 ))) + bvis

2 ))) + bvis
3 (2)

v
′
cls = W cls

3 (σ(ε(W cls
2 (σ(ε(W cls

1 vcls + bcls
1 ))) + bcls

2 ))) + bcls
3 (3)

where σ is the ReLU activation and ε refers to Batch Normalization. W vis
3 , W vis

2 ,
W vis

1 , W cls
3 , W cls

2 and W cls
1 are learnable parameters.
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Fig. 3. The architecture of (a) semantic aware module (SAM) and (b) decoder.

Our goal is to optimize the projected visual vectors (v
′
vis) and projected

classification vectors (v
′
cls). Such that cos(v

′
i, v

′
j) is close to Rij for all i, j, where

cos(v
′
i, v

′
j) denotes the cosine similarity between v

′
i and v

′
j :

cos(v
′
i, v

′
j) =

v
′T
i vj

||v′T
i || ||v′T

j || (4)

3.3 Decoder

Figure 3 (b) shows the structure of decoder. The decoder mainly contains two
Gated Recurrent Units (GRU) cells and an attention module. The first GRU
takes the symbol embedding (E(yt−1)) and historical state (ht−1) predicted in
the last step as input and output a new hidden state vector h

′
t:

h
′
t = GRU(E(yt−1), ht−1) (5)

Then the attention module calculates the attentional weights αt through its
attention mechanism:

et = Wω(tanh(W
′
hh

′
t + WfF + Wαattt)) (6)

αt = exp(et)/
∑

exp(et) (7)
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where Wω, W
′
h, Wf and Wα are trainable parameters. F represents the feature

map and attt refers to coverage attention [40], which equals the sum of all past
attention probabilities:

attt =
∑

i

αi, i ∈ [0, t − 1] (8)

The αt and F are multiplied to obtain visual features vectors vvis:

vvis = αt ⊗ F (9)

The second GRU takes the vvis and h
′
t as input and returns the hidden state ht:

ht = GRU(vvis, h
′
t) (10)

Then we aggregate E(yt−1), vvis and ht to obtain the classification feature vec-
tors and symbol probabilities:

vcls = WeE(yt−1) + Whht + Wvvvis (11)

psymbol = softmax(Wsvcls) (12)

where We, Wh, Wv and Ws are trainable parameters.

3.4 Loss Function

The overall function consists of three parts and is defined as follows:

L = Lsymbol + Lvis + Lcls (13)

where Lsymbol is cross entropy classification loss of the predicted probability
psymbol with respect to its ground-truth. Lvis and Lcls are L2 regression loss
defined as follows:

Lvis =
n∑

i

n∑

j

(cos(vvis,i, vvis,j),−Ri,j)2 (14)

Lcls =
n∑

i

n∑

j

(cos(vcls,i, vcls,j),−Ri,j)2 (15)

4 Experiments

We conduct experiments on three CROHME and HME100K benchmark datasets
and compare the performance with previous state-of-the-art methods. In this
section, we firstly specify the datasets, implementation details and evaluation
protocol in Sect. 4.1, 4.2 and 4.3, respectively. Then, in Sect. 4.4 we evaluate our
method on public datasets and compare it with other state-of-the-art methods.
In Sect. 4.5, we exhibit the ablation studies and finally, in Sect. 4.6 we show few
cases and discuss the effectiveness of our method.
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Fig. 4. Sample images from (a) CROHME dataset and (b-f) HME100K dataset.

4.1 Datasets

CROHME Dataset. CROHME dataset is from the competition on recogni-
tion of online handwritten mathematical expression, which is the most widely
used public dataset. Images in CROHME dataset are synthesized from the hand-
written stroke trajectory information in the InkML files. Therefore, the image
background from CROHME dataset is clean (Fig. 4 (a)). The CROHME train-
ing set number is 8,836, while the test set contains 986, 1147 and 1199 images
respectively due to different release years.

HME100K Dataset. HME100K dataset is a real scene dataset and conse-
quently, HME100K dataset are varied in color, blur, complicated background,
twist (Fig. 4 (b-f)). HME100K dataset contains 74,502 images for training and
24,607 images for testing. The data size of HME100K dataset is ten times larger
than CROHME dataset. The number of math symbols included in the HME100K
dataset is 245, which is two times larger than that of CROHME dataset.

4.2 Implementation Details

The proposed methods is implemented in PyTorch. A single Nvidia Tesla V100
with 32GB RAM is used to conduct experiment. The batch size is set at 8. Both
the hidden state sizes of the two GRUs and dimension of word embedding are
set at 256. The Adadelta optimizer [36] is used during the training process, in
which ρ is set at 0.95 and ε is set at 10−6. The learning rate starts from 0 and
monotonously increases to 1 at the end of the first epoch. After that the learning
rate decays to 0 following the cosine schedules [41]. For CROHME dataset, the
total training epoch is set to 240 and for HME100K dataset, the training epoch
is set to 40.

4.3 Evaluation Protocol

Recognition Protocol. We employ expression recognition rate (ExpRate) to
evaluate the performance of different approaches. The definition of ExpRate is
the percentage of predicted mathematical expressions that exactly match the
ground truth.
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Table 1. Expression Recognition Rate (ExpRate) performance of SAM-DWAP and
SAM-CAN and other state-of-the-art methods on CROHME 2014, CROHME 2016
and CROHME 2019 test set. SAM-DWAP and SAM-CAN indicate adopting DWAP
and CAN as the backbone, respectively. All results are reported as a percentage (%).

Method CROHME2014 CROHME2016 CROHME2019 HME100K

UPV [18] 37.22 – – –

TOKYO [19] – 43.94 – –

PAL [30] 39.66 – – –

WAP [40] 46.55 44.55 – –

PAL-v2 [31] 48.88 49.61 – –

TAP [38] 48.47 44.81 – –

DLA [14] 49.85 47.34 – –

DWAP [37] 50.10 47.50 – 61.85

DWAP-TD [38] 49.10 48.50 51.40 62.60

DWAP-MSA [37] 52.80 50.10 47.70 –

WS-WAP [26] 53.65 51.96 – –

MAN [27] 54.05 50.56 – –

BTTR [42] 53.96 52.31 52.96 64.10

SAN [2] 56.20 53.60 53.50 67.10

ABM [3] 56.85 52.92 53.96 65.93

CAN [16] 57.00 56.06 54.88 67.31

SAM-DWAP (ours) 56.80 55.62 56.21 68.08

SAM-CAN (ours) 58.01 56.67 57.96 68.81

4.4 Comparison with State-of-the-Art

Results on the CROHME Datasets. Table 1 summaries the performance of
our method and previous methods on the CROHME dataset. Since most of the
previous work does not use data augmentation, we mainly discuss the results
without data augmentation.

As shown in Table 1, using DWAP [37] as the backbone, SAM-DWAP
achieves competitive results to the last SOTA method CAN [16] on CROHME
2014 and CROHME 2016. On CROHME 2019 dataset, our method ourperforms
CAN by 1.33 %.

To further verify our proposed SAM is compatible with other models and
can consistently bring performance improvements. We integrate SAM into CAN
to construct SAM-CAN. As shown in Table 1, SAM-CAN achieves the best
performance on all CROHME test set and outperforms CAN by 1.21 %, 0.61
% and 3.08 %, respectively. This result clearly demonstrates the effectiveness of
our proposed module.

Results on the HME100K Dataset. As shown in Table 1 and 2, we compare
our prosposed method with DWAP [37], DWAP-TD [39], BTTR [42], ABM [3],
SAN [34] and CAN [16] on HME100K dataset. It is clear to notice that SAM-
DWAP and SAM-CAN achieves the best performance. Specifically, as shown in
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Table 2. Performance of SAM-DWAP and SAM-CAN versus DWAP, DWAP-TD,
BTTR, ABM, SAN and CAN on the HME100K dataset on Easy (E.), Moderate (M.)
and Hard (H.) HME100K test subsets. Our models achieve the best performance on
the HME100K dataset.

HME100K Easy Moderate Hard Total

Image size 7721 10450 6436 24607

DWAP [37] 75.1 62.2 45.4 61.9

DWAP-TD [39] 76.2 63.2 45.4 62.6

BTTR [42] 77.6 65.3 46.0 64.1

ABM [3] – – – 65.3

SAN [34] 79.2 67.6 51.5 67.1

CAN [16] – – – 67.3

SAM-DWAP(ours) 79.3 68.4 54.0 68.1

SAM-CAN(ours) 79.8 69.8 54.0 68.8

Table 3. Ablation Studies on CROHME dataset. DWAP† and CAN† are our repro-
duced results. The effect of recognition performance with regard to the two components:
visual feature branch and classification feature branch.

Method CROHME

2014 2016 2019

DWAP† 54.6 52.8 52.0

Vis-DWAP 55.8 54.8 54.1

Cls-DWAP 55.6 55.2 54.7

SAM-DWAP 56.8 55.6 56.2

CAN† 57.1 55.3 54.9

Vis-CAN 57.5 56.3 56.6

Cls-CAN 57.4 56.5 55.8

SAM-CAN 58.0 56.6 57.9

Table 2, SAM-DWAP and SAM-CAN outperform SAN by 0.1 % and 0.6 % on
easy subset, respectively. However, as the difficulty of the test subset increases,
the leading margin of our method increases to 2.5 % and 2.5 % on the hard
subset. This further proves the effectiveness of the proposed SAM.

4.5 Ablation Study

In this subsection, we evaluate the effectiveness of visual feature branch and clas-
sification feature branch. SAM-DWAP and SAM-CAN are the default models.
Vis-DWAP and Vis-CAN have a visual feature branch but not a classification
feature branch. Cls-DWAP and Cls-CAN have a classification feature branch but
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not a visual feature branch. DWAP† and CAN † are our reproduced results. The
results are summarized in Table 3.

Impact of Visual Feature Branch. Table 4.5 shows adopting visual feature
branch to DWAP improves the recognition performance ExpRate by 1.2 % on
CROHME 2014, 2.0 % on CROHME 2016 and 2.1 % on CROHME 2019. Insert-
ing visual feature branch into CAN also can enhance the performance by 0.4
% on CROHME 2014, 1.0 % on CROHME 2016 and 1.7 % on CROHME 2019.
Hence integrating visual feature branch can effectively improve the performance.

Impact of Classification Feature Branch. Table 4.5 shows adopting classifi-
cation feature branch to DWAP improves the recognition performance ExpRate

Fig. 5. Examples of (a) CAN and (b) SAM-CAN. Symbol in red color are mispredic-
tions (Color figure online)
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by 1.0 % on CROHME 2014, 2.4 % on CROHME 2016 and 2.7 % on CROHME
2019. Inserting visual feature branch into CAN also can enhance the performance
by 0.3 % on CROHME 2014, 1.2 % on CROHME 2016 and 0.9 % on CROHME
2019. Hence integrating classification feature branch can effectively improve the
performance.

4.6 Case Study

In this section, we show two examples to illustrate the effect of using SAM. As
shown in Fig. 5 (a), although CAN correctly focuses on the region of interest,
it misidentifies the symbol “B” as symbol “β” and misidentifies the symbol
“b” as symbol “6”. In contrast, the regions of interest of the SAM-CAN are
similar to those of CAN, but SAM-CAN correctly predicts symbol “B” and
“b”. The confidences of symbol “B” and “b” also increase from 10.1 % to 52.9
% and increase from 10.2% to 81.0%, respectively. This phenomenon indicates
that adopting SAM can improve the robustness of recognition especially the
recognition performance of similar symbols.

5 Conclusion

This paper has presented a simple and efficient method for handwritten math-
ematical expression recognition by incorporate semantic graph representation
learning into end-to-end training. To our best knowledge, the proposed method
is the first to learn the correlation between different symbols through symbol co-
occurrence probabilities. Experiments on the CROHME dataset and HME100K
dataset have validated the effectiveness and efficiency of our method.
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China, under Grant No. 2020AAA0104500 and National Science Fund for Distinguished
Young Scholars of China (Grant No.62225603).
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Abstract. Printed mathematical expression recognition is to transform
printed mathematical formula image into LaTeX sequence. Recently,
many methods based on deep learning have been proposed to solve this
task. However, the positional relationship between mathematical sym-
bols is often ignored or represented insufficient, leading to the loss of
structural features of mathematical formulas. To overcome this challenge,
we propose a position-aware encoder-decoder model for printed mathe-
matical expression recognition. We design a two-dimensional position
encoding algorithm based on sin/cos function to capture positional rela-
tionship between mathematical symbols. Meanwhile, we adopt a more
advanced image feature extraction network. In decoder component, we
use Bi-GRU as the translator, and add attention mechanism to make
decoder focus on the important local information. We conduct experi-
ments on the public dataset IM2LaTeX-100K, and the results show that
our proposed approach is more excellent than the majority of advanced
methods.

Keywords: Deep learning · Mathematical expression recognition ·
Encoder-Decoder · Position encoding · Attention mechanism

1 Introduction

Mathematical formulas are widely used in online education system [9,14], scien-
tific research literature, knowledge questions and answers [13] and other fields.
Printed mathematical expression recognition(PMER) is to recognize printed
mathematical expression image to the corresponding LaTeX sequences. So as
to can provide more convenient services for above applications.

PMER is different from character recognition. The general steps of charac-
ter recognition method first cuts a string into several independent characters,
then extracts features of each character, and finally analyzes and classifies the
extracted features to achieve character recognition. PMER is different, since

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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mathematical formulas not only involve segmentation and recognition of math-
ematical characters, but also need to extract and analyze of two-dimensional
structural features of mathematical formulas, it’s crucial for the understand
of formula semantic information. However, the complexity and diversity of the
two-dimensional structure features contained in mathematical formulas are the
biggest challenges for PMER.

The earliest solution for mathematical expression recognition can be traced
back to 1967. Anderson et al. [1] proposed a formula structure analysis method
based on syntax rules. With the development of this field, some other researchers
propose to divide mathematical expression recognition into several sequential
execution stages, among which the most famous multi-stage formula recognition
system based on sequential execution is INFTY [20]. Recently, some researchers
propose some deep learning methods to solve it. Deng et al. [4] of Harvard
University proposed an end-to-end PEMR model called WYGIWYS, which is
the beginning of implementing PEMR based on deep learning, afterwards some
researchers put forward improved models based on WYGIWYS. However, most
of these methods ignore positional relationship between mathematical symbols.
For example, although these three mathematical formula xy, xy and xy are all
composed of character x and y, the semantic information expressed by them
is completely different due to the differently relative positions between x and
y. Based on end-to-end neural network model structure, we propose a two-
dimensional position-aware method for PMER task. The main contributions of
this paper are as follows:

• We use a more advanced image feature extraction network, it can capture
more abundant image feature information.

• We design a two-dimensional positional information awareness module based
on sin/cos function for representing the positional relationship between math-
ematical symbols.

• We conducted comparison experiment, ablation experiment and hyper-
parameter experiment on public dataset Im2LaTex-100K [4]. The experimen-
tal results show that our method is more excellent than most advanced mod-
els.

2 Related Work

In recent years, some researchers propose using deep learning algorithms to solve
PMER, and it be regarded as an image to markup generation task [10,15].
Most of them use deep learning model which based on encoder-decoder struc-
ture. Starting with WYGIWYS [4] method, encoder component uses CNN as
image feature extractor, and performs secondary processing on the extracted
features, decoder component uses RNN to translate image features into LaTeX
sequences. Wang et al. [23] proposed using DenseNet [8] as image feature extrac-
tor to improve the perception of formula image features. Yan et al. [27] proposed
replacing RNN with CNN as decoder, and verified that this approach has a
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slight improvement. Peng et al. [18] proposed regarding mathematical formula
as a graph structure, each mathematical symbol be regarded as a node in graph,
and defined the corresponding rules for constructing edges between nodes. Some
advanced neural network model has been proposed to solve handwritten mathe-
matical expression recognition(HMER) [2,11,12,24,25,28]. These methods also
bring some new solution ideas for PMER.

The positional relationships between symbols in formulas have a great sig-
nificance for understanding the structural features of formulas. Most methods
[4,5,29] choose to add a row encoder after image feature extractor based on RNN.
Since RNN can extract order relationship between sequences, row encoder essen-
tially incorporates the position information of symbols implicitly. Some methods
[17,18] use sin/cos encoding function to encode position information of symbols,
which is more accurate than RNN, so these methods can greatly improve the per-
ception of positional information between symbols. But mathematical formula
is a two-dimensional structure layout, it have horizontal and vertical positional
relationships between mathematical symbols. However, few methods take into
account this point.

Fig. 1. The structure diagram of our PMER model with an encoder-decoder structure.

3 Proposed Method

We regard PMER task as an image to caption generation process, and we design
the encoder-decoder structure as the overall PMER architecture. The input of
our model is a gray image containing a mathematical formula, and the output
is a LaTeX sequence corresponding to the formula. Figure 1 is the structure
diagram of our PMER model.

3.1 Image Feature Extraction Network: ResNeXt

We use the recently proposed convolution neural network ResNeXt [26] based on
ResNet [7] as our image feature extractor. Specially, this CNN structure retains
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residual block structure of ResNet, and introduces the idea of group convolution
of Inception [21]. Compared the traditional CNN such as Vgg [19], ResNeXt
can alleviate the problem of network degradation and gradient disappearance
with the increase of network depth. Meanwhile, it also possess the ability of
split-transform-merge to enhance the representation of image features. Figure 2
shows structural design of ResNeXt block.

Fig. 2. The structure diagram of ResNeXt-block

We design a network structure based on ResNeXt with a depth of 26. The
specific structure design and parameters are shown in Table 1.

Table 1. The structure of ResNeXt-26 with 32 groups for each ResNeXt block

layer-name Input Conv class Conv kernel output
conv-1 H ∗ W ∗ 1 Conv k:7*7,s:2 H

2 ∗ W
2 ∗ 64

maxPool H
2 ∗ W

2 ∗ 64 maxpool k:3*3,s:2 H
4 ∗ W

4 ∗ 64
conv2-x H

4 ∗ W
4 ∗ 64 Res-Block*2 k:3*3,s:2 H

8 ∗ W
8 ∗ 128

conv3-x H
8 ∗ W

8 ∗ 128 Res-Block*2 k:3*3,s:2 H
16 ∗ W

16 ∗ 256
conv4-x H

16 ∗ W
16 ∗ 256 Res-Block*2 k:3*3,s:2 H

32 ∗ W
32 ∗ 512

conv5-x H
32 ∗ W

32 ∗ 512 Res-Block*2 k:3*3,s:1 H
32 ∗ W

32 ∗ 512
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3.2 Position-Aware Module

The position information of formula symbols is one of a key point to understand
formula structure. So, we design a position-aware module to capture the position
information of each symbol in the mathematical formula. We use position encod-
ing algorithm in Transformer [22] to represent the order and relative distance
between words in a text sequence. Since text sequence is one-dimensional, it only
contains positional relationship from left to right. But mathematical formula is
two-dimensional, and the positional information of each mathematical symbol is
composed of horizontal position and vertical position, as shown in Fig. 3. There-
fore, we modify the position encoding algorithm in Transformer, and propose a
two-dimensional position encoding algorithm.

Fig. 3. Horizontal position and vertical position in mathematical formula.

The encoding object of position encoding algorithm is image feature matrix
V1(the size of V1 is H ′ ∗ W ′ ∗ C). For each vector vi in V1, four kinds of values
are calculated in the following order: the distance from left d1, right d2, top d3,
down d4. And then a set of sin/cos coded values are generated for each above
four values. If the subscript of current component in the vector is even, sin
encoding function is used. Otherwise, cos encoding function is used. The specific
calculation formula of PE(vi) is as follows: (D = C, k ∈ [0,D/4].)

PE(dj , 2k) = sin
dj

10000
4k
D

(1)

PE(dj , 2k + 1) = cos
dj

10000
4k
D

(2)

PE(vi) = Concat(PE(d1), PE(d2), PE(d3), PE(d4)) (3)

We concatenate all the calculated position vectors to obtain a PE matrix
VPE with dimension H ′ ∗ W ′ ∗ C.

VPE = Concat(PE(v1), PE(v2), ..., PE(vH′∗W ′)) (4)
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Finally, we add V1 with position matrix VPE , and obtain a new feature map V2

with mathematical symbol position information.

V2 = V1 + VPE (5)

Figure 4 is the algorithm process. In order to verify the gain effect of position-
aware module to our model, we conduct some ablation experiments on it. See
Sect. 4 for specific experimental results.

Fig. 4. The process of position encoding algorithm.

3.3 Decoder: Bi-GRU with Attention Mechanism

The decoder component mainly undertakes the translator task, which is used
to translate context vector C generated by encoder into LaTeX sequences. Fol-
lowing the design idea of Deng [4], we use RNN as the core module of decoder
component, to generate a LaTeX token at each stage. Then the LaTeX sequence
generated after all prediction stages over is the translation result of decoder.
Specially, we select bidirectional gate recurrent unit (Bi-GRU) as the encoder
implementation instead of the standard RNN, since GRU can effectively com-
pensate for the long term memory shortcomings of RNN model. Furthermore,
Bi-GRU can work in a two-way parallel way that from front to back and from
back to front at same time, it can better make full use of the context semantic
information. Figure 5 is the structure diagram of our decoder.

In order to enhance translation performance, we learn from previous
researchers [3,16] and introduce attention mechanism into decoder. Attention
mechanism is inspired by human attention phenomenon. When analyzing and
understanding information sources, human beings can always quickly focus on
the important part of information, while ignoring or reducing the attention to
unimportant information. Attention mechanism is widely used in the field of
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Fig. 5. The structure diagram of the decoder, It is composed of Bi-GRU, attention
layer and token embedding layer.

visual processing. Therefore, we use attention mechanism to enhance the trans-
lation ability of our model. In each translation stage of decoder, the decoder
only focus on the image features that are most closely related to the current
stage when translating the context vector C. That is, the decoder can filter out
a lot of useless redundant information without extracting every part of the image
features in vector C, so the translation performance of the decoder is improved.
Figure 6 shows the schematic diagram of attention phenomenon in PMER task.

Fig. 6. Schematic Diagram of Attention Mechanism in PMER Task.
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At each translation stage of decoder, it is necessary to pass in the context
vector Ct containing image features provided by encoder. Before attention mech-
anism is introduced, Ct is a invariant matrix, while the situation changed after
attention mechanism introduced. Decoder component dynamically calculates the
context vector Ct for each stage, and in each translation stage, attention layer
will calculate a corresponding weight value for each vector in V2. The weight
value represents attention value of decoder for the information represented by
this vector. Dynamic weighting process is the embodiment of the attention mech-
anism implemented in our decoder. The calculation process of weight value et,i
is as follows:

hz = concat(
−→
h t−1,

←−
h t−1) (6)

et,i = SoftMax(βTtanh(Wxhz + Wyvi)) (7)

After obtaining weight value et,i, the context vector Ct at stage t can be
summed by multiplying eti with the corresponding vector vi in V2.

Ct =
H′∗W ′∑

i=1

etivi (8)

Then a new vector Kt is gained by merging Ct with hidden layer vector ht.

ht = BiGRU(ht−1, [wt−1,Kt−1]) (9)

Kt = tanh(Wc[ht, Ct]) (10)

Finally, the decoder output the probability distribution of LaTeX token yt
by:

yt = SoftMax(W kKt) (11)

3.4 Loss Function

We use cross entropy as our loss function, and yi represents the ground truth
of the i-th sample and ŷi is the prediction result of i-th sample. M is the total
number of samples in the dataset. The formula of Loss function as in Eq. (12):

Loss = − 1
M

(
M∑

i=1

p(yi) · log(p(ŷi))) (12)

4 Experiments

4.1 Datasets

We conduct our experiments on the standard dataset IM2LaTeX-100K [4], which
is widely used in printed mathematical expression recognition field. This dataset



An Position-Awareness Method for PMER 175

consists of about 100K Image-LaTeX matching pairs. The input of each sample is
a gray-scale image containing a printed mathematical formula, and the output is
a LaTeX string corresponding to the mathematical formula. We randomly divide
the dataset into training set, test set and verification set according to the ratio
of 8:1:1.

4.2 Parameter Setting and Experimental Environment

We use small batch random gradient descent algorithm to train our model. In
the translation stage, in order to achieve global optimization of LaTex sequence
generation, we adopted beam search strategy [6]. We also conduct many itera-
tive experiments and based on the feedback of experimental results, constantly
optimize the hyper-parameters values involved in the model, so as to achieve
best recognition effect. See Table 2 for details of super parameter settings:

Table 2. Details of hyper-parameter setting in the experiment

Parameter name description Value
CNNlayer Layer number of ResNeXt 26
ResNeXtgroup Group number of ResNeXt-block 32
vd Dimension of image feature matrix 512
hd Hidden layer dimension of Bi-GRU 512
LBi−GRU Layer number of Bi-GRU 3
Wd Dimension of LaTeX token embedding 100
Bnum Beam search scope 4
Batchsize Batch size 6
Inum Number of iterations of the experiment 40

At the same time, all of our experiments were conducted under the
ubuntu-20.04 operating system, using Python as programming language and
TensorFlow-1.12 as machine learning implementation framework. GPU used in
the experiment is RTX-2080 12GB.

4.3 Baseline

(1) Infty, WYGIWYS, Coarse-to-fine have been introduced in Sect. 2.
(2) DenseNet [23]: This method uses DenseNet which with dense connec-
tion design as the image feature extractor (3) ConvMath [27]: In the
design of this model, the author uses CNN to replace RNN as the trans-
lator of decoder components. (4) Dual attention [29]: An encoder-decoder
neural network model with dual attention mechanism. (5) Transformer [17]:
Based on the decoder-encoder network structure, this method introduces
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Transformer to process the feature information extracted by the encoder. (6)
Im2Latex-GNN [18]: This is a novel method, which proposes to convert math-
ematical formulas into graph structure. Each mathematical formula symbol is
regarded as a vertex node of the graph, and the mathematical formula features are
extracted based on graph structures. Then, the feature is fused with image feature
extracted by the traditional encoder and transmitted to decoder for translation.

4.4 Experimental Results

We introduc four evaluation metrics during the experiment including BLEU-1,
BLEU-4, edit distance, exact match. The first three metrics are often used in
NLP tasks to judge the closeness of two sentences. We use them to compare
the similarity between model translation results and ground truth. Exact match
is used to compare the similarity of two images. It can be used to judge the
matching degree between the formula image generated by the LaTeX sequence
which output from the model with the formula image given by the dataset. The
four evaluation metrics adopt a percentage system. The higher score represent
the better result of the model.

We also reproduced other eight baseline methods. The specific effect is shown
in Table 3. Among the nine methods, our method gains 94.39 in BLEU-1 and
92.31 in BLEU-4, and performs the best in these two metrics. Our method also
gains 91.39 in edit dist and 82.07 in exact match, and performs the first best
and second best respectively.

Table 3. Experimental results of different methods on Im2LaTeX-100K

Method BLEU-1 BLEU-4 Edit dist Exact Match
Infty 72.39 66.65 53.82 -
WYGIWYS 89.75 87.73 87.60 79.88
Coarse-to-Fine 90.33 87.07 87.32 78.10
DenseNet 91.75 88.25 91.57 79.10
ConvMath 91.94 88.33 90.80 83.41
Dual attention 92.15 88.42 88.57 79.81
Transformer 93.23 89.72 90.07 82.13
Im2Latex-GNN 93.88 90.19 - 81.82
Our Method 94.39 92.31 91.39 82.07
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4.5 Ablation Study

In order to intuitively verify the effective of modules in our model, we conduct a
series of ablation study. Our ablation experiments mainly consist of the following
groups, and we consider each group as variant:

• EDPA-pos: This variant removes the position-aware module and
directly transmits image feature matrix to decoder.

• EDPAnorm-pos: This variant uses a degenerate position encoding
algorithm, with other parts of algorithm same as the original ones.
The only difference is that it does not use sin/cos coding function,
but directly uses the position value of each vector to fill each
component in the vector.

• EDPA-att: This variant removes the attention module, and only
use Bi-GRU for translation.

• EDPAResNet: This variant use ResNet as image feature extractor
to replace ResNeXt.

• EDPAVgg: This variant uses Vgg network as image feature extrac-
tor to replace ResNeXt.

• EDPARNN: This variant uses standard RNN instead of Bi-GRU
as the translator.

• EDPAGRU: This variant uses standard GRU instead of Bi-GRU
as the translator.

From the results in Table 4, we can learn that each module we designed has
a certain impact on our model, of which attention mechanism module has the
largest impact, followed by position-aware modules. These two modules improve
performance of our model by about 3-4%. Compared with ResNet and Vgg,
ResNeXt can improve the performance of our model by about 1%. Lastly, Bi-
GRU is also better than standard GRU and standard RNN, and it raises the
performance of our model about 1%.

4.6 Hyper-parameter Experiment

In order to make our model achieve the best recognition results, we conducted
hyper-parameter experiments on the most important parameters in our model,
and constantly adjust and optimiz the parameter values according to the feed-
back of the experimental results. We mainly carry out hyper-parameter experi-
ments on the depth of ResNeXt and the layer number of Bi-GRU.

As for the depth of ResNeXt, we increased network depth with 9 as interval,
and finally end with 98 layers. The experimental results are shown in Table 5. In
the experiment, we find that the model performs the best when ResNeXt depth
set to 26 and the performance decreases slightly as the depth exceed 44.
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Table 4. Ablation study results of our model on IM2LaTex-100K

Method BLEU-1 BLEU-4 Edit dist Exact Match
EDPA 94.39 92.31 91.39 82.07
EDPA-pos 91.16 89.51 88.36 80.15
EDPAnorm-pos 91.44 89.72 88.43 80.13
EDPA-att 90.87 88.92 87.75 78.89
EDPA ResNet 94.22 91.69 91.23 81.96
EDPA Vgg 93.67 91.56 90.89 81.77
EDPA RNN 93.51 91.34 90.33 80.54
EDPA GRU 93.94 91.42 90.55 80.96

Table 5. Experimental results of different depth of ResNeXt

depth BLEU-1 BLEU-4 Edit dist Exact Match
17-layer 93.79 91.32 90.43 81.56
26-layer 94.39 92.31 91.39 82.07
35-layer 93.33 90.52 89.89 80.91
44-layer 92.74 90.15 89.51 80.43

The layer number of Bi-GRU has a significant to the translation results of
decoder. Thus, we design different Bi-GRU that stacked with 1, 2, 3 and 4 layers
for comparative experiments. The experimental results are shown in Table 6. We
find that the score of our model reaches the best when the layer of Bi-GRU is
set to 3.

Table 6. Experimental results of different layers in Bi-GRU

Depth BLEU-1 BLEU-4 Edit dist Exact Match
1-layer 94.29 91.72 90.73 82.53
2-layer 93.88 91.51 90.89 81.78
3-layer 94.39 92.31 91.39 82.07
4-layer 93.74 91.43 90.81 81.63

5 Case Study

We show several test cases in the production environment to analyze the specific
recognition effect of our model, as shown in Fig. 7. There are five cases in total,
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including two good cases and three bad cases. The error areas are marked in
orange. We make a theoretical conjecture on the cause of these errors. It is
found that our method mainly occurs recognition errors in the following two
cases:

• The recognition errors caused by the confusion of Greek letters and English
letters, such as “μ” and “u”, “α” and “a”.

• When containing multiple sets of brackets or complex structures, it may omit
mathematical symbols or the right bracket early.

We analyze and concluded reasons for above problems may be caused by the
following factors:

• The mathematical symbol features extracted by the image feature extractor
are still not accurate, or the multiple iterations in the translation process lead
to the loss of mathematical symbols features.

• Attention mechanism and position coding algorithm are not oriented at the
level of mathematical symbols, and they cannot accurately divide which vec-
tors correspond to which mathematical symbols, which may lead to confusion
in the translation process.

Fig. 7. The case study results. We cover the area where recognition errors occur in
orange, error correction in blue, and the added correction in dark gold. (Color figure
online)
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6 Conclusion

In this paper, we propose an improved end-to-end method for printed math-
ematical formulas image recognition. We use a more advanced image feature
extractor to enrich the extracted image features. In order to better realize the
representation of the positional relationship between mathematical symbols, we
recast the position encoding algorithm proposed in Transformer and design a
two-dimensional position coding algorithm. In the decoder part, we use Bi-GRU
as core translation module, and we introduce attention mechanism to make trans-
lation to focus on the important local information of the feature map generated
by encoder. We carry out experiments on the public dataset Im2LaTeX-100K,
the experimental results show that our method is superior to most of the current
advanced methods.
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Abstract. In this paper, we present the Aligned Music Notation and
Lyrics Transcription (AMNLT) challenge, whose goal is to retrieve
the content from document images of vocal music. This new research
area arises from the need to automatically transcribe notes and lyrics
from music scores and align both sources of information conveniently.
Although existing methods are able to deal with music notation and text,
they work without providing their proper alignment, which is crucial to
actually retrieve the content of the piece of vocal music. To overcome this
challenge, we consider holistic neural approaches that transcribe music
and text in one step, along with an encoding that implicitly aligns the
sources of information. The methodology is evaluated on a benchmark
specifically designed for AMNLT. The results report that existing meth-
ods can obtain high-quality text and music transcriptions, but posterior
alignment errors are inevitably found. However, our formulation achieves
relative improvements of over 80% in the metric that considers both tran-
scription and alignment. We hope that this work will establish itself as
a future reference for further research on AMNLT.

Keywords: Aligned Music Notation and Lyrics Transcription ·
Optical Music Recognition · Music Notation Recognition · Lyrics
Recognition

1 Introduction

Music is an important vehicle for cultural transmission, which is a key element
as regards understanding the social, cultural, and artistic trends of each period
of history. For centuries, music has been shared and preserved by two traditions:
aural transmission and written documents, usually referred to as music scores.
Many of these works exist in the form of unpublished manuscripts and, therefore,
are in danger of being lost through time.

A significant effort has been made in recent decades to digitize these docu-
ments by means of scanners for their storage and distribution [19]. In order to
make the content depicted in the documents truly accessible, it is necessary for
the images to be transcribed to a structured digital format that makes it possible
to encode the information (notes, marks, tonality, etc.) of the score [12,15].

There exist several ways to encode music content such as the MusicXML or
Music Encoding Initiative (MEI) formats [9,13]. Encoding music information in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 185–201, 2023.
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such structured formats not only allows the initial objective of preserving this
heritage to be attained, but also makes it possible to perform other interesting
tasks, such as large-scale computational music analysis, exact search, retrieval by
content, or conversion between different music notations. However, the manual
encoding of music is extremely time-consuming. The research field known as
Optical Music Recognition (OMR), which involves automatically detecting and
storing the content of a score from a scanned image [3], is postulated as an
important resource to mitigate the disadvantages of manual transcription of
music scores.

In addition to the classical multi-stage pipeline in OMR, extensively reviewed
in the work of Rebelo et al. [18], modern advances in Deep Learning have diver-
sified how OMR is approached. The holistic paradigm—also referred to as end-
to-end formulation—consists of addressing the recognition problem in a single
step, which helps to learn contextual relationships that eventually improve the
quality of the result. This paradigm has been dominating the current state of the
art in other applications such as text, speech, or mathematical formula recog-
nition [6,7,28]. It has been also applied in the case of OMR, for which recent
literature shows many efforts for music-notation recognition in an end-to-end
way [1,2,5,22,24].

Thanks to the aforementioned advances, OMR is shifting towards new
projects that were recently considered out of reach. Specifically, in this work, we
pay special attention to documents of vocal music. These are of special interest
since vocal music is the one with the longest tradition. In these documents, both
the music and the text that accompanies it—commonly referred to as lyrics—are
equally relevant. These sources of information can be considered as different and
complementary modalities of the same piece of information. Nevertheless, OMR
systems have traditionally ignored the recognition of the lyrics that may appear
in the score, since this is a task that is commonly addressed by Optical Character
Recognition (OCR) or Handwritten Text Recognition (HTR) systems.

Developing an automatic transcription system for vocal music documents
opens up new scientific challenges. A vocal music score could be fully recognized
using independent OMR algorithms for the music notation and OCR/HTR for
the lyrics of the piece. However, this does not solve the underlying challenge:
the alignment between the text, typically at the syllable level, and the music,
typically at the note level. That is, retrieving the sequence of notes and the
sequence of syllables independently does not solve the problem of retrieving
which note or notes indicate how to sing each syllable. The proper alignment
between the notes and the syllables is the key to further musicological analysis
and search in vocal music heritage.

Here, we deal with the task of Aligned Music Notation and Lyrics Tran-
scription (AMNLT) employing a holistic approach that retrieves both sources of
information in a coordinated manner, forcing the alignment to be retrieved while
notes and syllables are transcribed. We believe that addressing this challenge in
a holistic way provides additional benefits such as learning the underlying model
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that relates notes and syllables which, despite being difficult to model entirely,
must be able to guide the coordinated recognition process.

As a summary, we list the scientific contributions of this work in the following
points:

– To formulate for the first time the task of automatic recognition of pieces of
vocal music from written sources, which include both musical notes and text.
As previously stated, the key is to produce not only the correct transcription
of the musical notes and lyrics syllables but also to estimate their correct
alignment (AMNLT), as this is essential for the correct preservation of the
original source.

– To propose a first deep learning approach that directly transcribes and aligns
the musical notes of a staff and the lyrics that accompany it. To do this, we
resort to a reinterpretation of holistic formulations widely used in staff-level
OMR and line-level HTR, and their recent adaptation to multi-line HTR.
We also compare different alternatives (fully-convolutional, recurrent, and
attention-based architectures) to implement the considered approach.

– To synthesize and release a dataset for the AMNLT task, in order to provide
a benchmark for further research in vocal music transcription with enough
data to train modern deep learning approaches.

Our experiments will empirically demonstrate that although AMNLT is
related to widely studied graphic recognition endeavors (i.e., OCR and OMR),
the real challenge is the precise alignment between the two information modal-
ities. In this sense, our holistic approach stands out specifically in the metrics
related to the alignment, in spite of losing some accuracy with respect to the
case of the two modalities addressed independently.

The rest of the paper is structured as it follows: in Sect. 2 we first describe
what a vocal music document looks like, how it can be modeled to be processed
by deep learning algorithms, and the automatic generation mechanism that will
be used as a benchmark in this work; in Sect. 3, we formulate the AMNLT
problem and develop the solution proposed in this work based on an end-to-
end approach with neural networks; the experiments conducted are presented in
Sect. 4, along with the results and analysis that can be drawn from them; finally,
we conclude the paper in Sect. 5, while pointing out some interesting avenues for
future work.

2 Data

The main challenge in AMNLT, as introduced in Sect. 1, relies on retrieving
multiple sequences, i.e. music and text, with their alignment information. To
our best knowledge, neither OMR nor OCR/HTR fields have addressed similar
problems. We, therefore, provide some fundamentals of the computational repre-
sentations that are considered for the AMNLT task and describe the generated
data to be used in the present work.
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2.1 Score Representation

The key aspect of this work is to address the issue of aligning music and lyrics
sequences while performing the transcription process. Figure 1 depicts some of
the challenges that can be found in such a case. At first glance, we observe that
lyrics are located before and after their associated note. For example, syllable
“Le-” lasts more pixel frames than its related note D\. Due to the spacing and
size of some elements, it can also happen that characters from several syllables
are also present in other music symbol areas, as it happens with syllable “ter”
aligned with the note A but appearing in frames of prior note—i.e. C\. These
features make the transcription plus alignment process challenging even for a
human expert.

Fig. 1. Example of the alignment challenge between a music-symbol sequence and a
text sequence in a chanted melody fragment. Red boxes refer in a pixel-wise viewpoint
to the size inside the image of a music symbol, whereas blue boxes are the same for
the syllables. (Color figure online)

For the sake of the success AMNLT task, we need an encoding format capa-
ble of staging the alignment aspects of the scores. In this work, we resort to
the Humdrum kern music encoding format [14]. This music notation format is
one of the most frequently used representations in computational music anal-
ysis. Its features include a simple vocabulary and easy-to-parse file structure,
which is very convenient for end-to-end OMR applications. Moreover, kern files
are compatible with dedicated music software [17,21] and can be automatically
converted to other music encodings.

A kern file is basically a sequence of lines. Each line is, in turn, another
sequence of columns or spines that are separated by a tab character. Each col-
umn contains an instruction.1 When interpreting a kern file, all spines are
simultaneously read, which is an advantageous feature for the goal of this work.

In our case, the kern standard specifies a spine for each type of annotation.
In our case, the **kern and the **text spines are referred to music and lyrics,
respectively. Figure 2 depicts an example of how this information is encoded.

1 The kern standard defines an instruction as anything that belongs to the music
score, such as the creation or ending of spines, or the encoding of musical symbols
such as clefs, key signatures, meter, bar lines, notes, or lyrics, to name a few.
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Fig. 2. Monophonic chanted melody fragment with its alignment information in Hum-
drum kern format.

2.2 Score Generator

Finding fully annotated-musical excerpts to assess the performance of holistic
AMNLT models remains a difficult task, as there are no well-known datasets.
On the one hand, fully-annotated datasets, such as DeepScores [25] and the
MUSCIMA dataset [11] are not conceived for end-to-end OMR, and do not
provide ground-truth in a digital music standard format. On the other hand,
well-known datasets conceived for end-to-end OMR [4,5,16,20] do not provide
lyrics or alignment information.

The current situation—along with the requirement of large datasets to train,
validate and test deep learning-based models—demanded the design of a fully-
annotated vocal music generator.2

2 The implementation of this generator is provided in the repository given in Sect. 4.



190 J. C. Martinez-Sevilla et al.

A score generator can be simplified as a concatenation of rhythms that fulfill
a specific space or measure—constant along the piece—having all of them a pitch
associated. The presented strategy divides the generator into four tasks, all of
them crucial to come about with a realistic sample:

– Measure, key, and tesiture selection.3 from dictionaries designed by a
musical expert—given the musical significance between key and tesiture—it
selects a triplet with a measure (e.g., 4/4, 3/2, 7/8), a key (e.g., C Major,
F Major, EZ Major) and a tesiture (from A– to ccc and others, in kern
format).

– Rhythm cells generation: a dictionary of rhythmic cells associated with
the measure chosen and its space, in conjunction with random patterns, brings
about a concatenation of rhythms. This step is key in rule-based algorithms
given that previous ones failed in generating “good” or “credible” rhythmic
patterns bringing unreliable music as result.

– Pitches generation: having a key (e.g. C Major), the generator randomly
assigns pitches, from an associated key note list, to the already existing
rhythms. To deliver a genuine melody we narrow the possible pitches from
the last one created, avoiding excessive jumps in tesiture.

– Lyrics generation: using a sentence generator and a hyphenation tool, sylla-
bles are aligned with some musical notes. With this approach, we ensure real-
istic syllables and an actual text sequence. To improve performance in future
scenarios, multiple languages have been added to the tool, having in mind
the existing undocumented repertoire (e.g., Latin, Italian, German, Spanish,
and English). Most of them share their character list considering numbers,
punctuation marks, and accents.

In addition to this generator pipeline, several filters are applied (e.g., rota-
tions, chops. swirls, noise, or waving) to create a version of the corpus that
resembles a real optical capturing process. An example is depicted in Fig. 3.

(a) Ideal score (b) Camera-based score

Fig. 3. Example of a generated input for AMNLT. The first example depicts ideal
conditions, while the second one resembles the conditions of an imperfect capture
process.

3 Understanding tesiture as the range of notes in a score. In instruments, from the
lowest to the highest note possible to play.
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3 Holistic Aligned Music and Lyrics Transcription

In this section, we describe how state-of-the-art OMR methods deal with tran-
scription. Then, we analyze why this formulation cannot be directly applied
to AMNLT and propose an adaptation to this challenge while preserving the
holistic nature of these methods.

3.1 Single-Task End-to-end Transcription

State-of-the-art OMR seeks the most probable symbolic representation ŝ for each
staff-section image x:

ŝ = arg max
s∈Σa

P (s | x). (1)

Neural networks approximate this probability by training with the Connec-
tionist Temporal Classification (CTC) loss [10]. This alignment-free expectation-
maximization method forces the network to maximize the sum of the probability
of all the possible alignments between a ground-truth sequence s and the input
source x. Since our input is an image, we treat x as a sequence of frame columns.

The output of the network consists of a posteriorgram, which contains the
probabilities of all the tokens within the vocabulary Σa, along with an additional
“blank” label (ε) that indicates time-step separations. The output vocabulary
of the network becomes Σ′

a = Σa ∪ {ε}. At prediction, a greedy decoding is
usually considered, for which the most probable token per frame is chosen. Then,
consecutive frames with the same token are merged and, finally, the “blank” label
is removed.

The presented formulation assumes the transcription task as a sequence
retrieval problem, and the output of the network is, therefore, always a token
(i.e., character or music-notation symbol) sequence. A sequence of this nature
is obtained from an image by converting the image domain Rh×w×c—which is
defined by its width w, height h, and the number of channels c—into a sequence
domain Rl,

∑′
a , where l stands for the output sequence length and

∑′

a is the
aforementioned music notation vocabulary. CTC-based methods typically define
a reshape function h : Rh×w×c → Rl,

∑′
a that vertically collapses the feature

map.4 Thus, symbols can be read from left to right, and frame columns always
contain information about a single symbol, the one that is currently being read.

3.2 The Challenge of AMNLT

The presented methodology in Sect. 3.1 works for single-staff transcription (or
analogously, single-line OCR/HTR), as the premise of having a single symbol
information per frame holds. However, when dealing with transcription tasks
that require multiple pieces of information to be given at once, this formulation
becomes inadequate.

4 The specific implementation depends on the method itself.
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In the case of AMNLT, the issue is observed through the example given in
Fig. 1: multiple notes and lyrics are found in the same columns, unsatisfying
the mentioned premise. This becomes challenging for state-of-the-art technolo-
gies, as the number of available frames to predict each piece of information
becomes tight. In fact, this issue becomes relevant when approaches aim to
perform aligned transcription, as both elements—music and lyrics—have to be
predicted in very close timesteps. This fact hinders the performance of current
systems in the form that the correlation between the representation of the image
and the ground-truth information becomes challenging.

To handle this issue, a divide and conquer approach may be taken, where sep-
arate OMR and OCR/HTR systems handle their respective content, and align-
ment is retrieved through postprocessing operations. Although this approach is
feasible—since state-of-the-art staff-level and line-level OMR and OCR/HTR
report good accuracy—the alignment of sequences is non-trivial, as will be
demonstrated in our experiments. In contrast to adopting a heuristic method
to combine the results of note and text transcription, in this work we resort to
a method that deals with AMNLT in one single step.

Upon closely studying the kern format, it can be noted that each text line
represents a specific timestep in the music score. That is, all the information
present in a kern line happens at the same time, as they belong to different
spines. The reading order—from a graphical perspective—of these documents is
from top to bottom and left to right, which matches the left-to-right reading of
the music score. It is, therefore, possible to obtain a graphic alignment between
them by rotating the source image 90◦ clockwise and flipping it horizontally.
When applying this transformation—as illustrated in Fig. 2—it is observed that
the same reading order is performed for both sources.

By following this reinterpretation, we obtain both a document and a ground-
truth text representation that are read like a text paragraph. This consequently
makes it possible to propose solutions based on segmentation-free multi-line
transcription approaches.

3.3 Simultaneous Transcription via Score Unfolding

Segmentation-free multi-line document transcription is a text methodology
whose objective is to transcribe document images that contain more than one
line without the need to perform any previous line detection processes. We have
taken inspiration from the document unfolding methods of this field, where the
model learns to unfold text lines in order for them to be read sequentially [8,27].

A graphic visualization of our methodology is depicted in Fig. 4. Here, rather
than concatenating frame-wise elements along the height axis (h) during the
vertical collapse, we reshape the feature map by concatenating all of its rows
(w)—in the same way as [8]—to subsequently obtain a (c, h × w) sequence, in
which c is the number of filters used by the convolutional layers of the model.
The input image of the system—which is a music staff (with lyrics) rotated 90◦

and flipped horizontally—is therefore reshaped as a sequence where music notes
can be read. As AMNLT can be seen as a multi-task challenge, the network
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output vocabulary is a combination of both the kern music notation Σk, the
union of all the languages covered by our generator character sets Σt and the
blank CTC token ε, forming Σ

′
= Σk ∪ Σt ∪ {ε}.

Fig. 4. Graphical scheme of the considered neural method to address AMNLT.

3.4 Considered Implementations

In this paper, we are adapting state-of-the-art OMR models to perform AMNLT.
All the implemented solutions contain a fully convolutional block, which acts as
an encoder of the input image features. This network is composed of stacked con-
volutional layers, which end up producing a feature map of size (h/32, w/4, c, b),
h and w being the height and the width of the input image, c the filters in
the last convolutional layer, and b the batch size. Then, the following decoding
architectures are proposed:

Recurrent Neural Network. We follow the implementation of the original
CRNN-CTC staff transcription model from [5], where the reshaped feature map
is fed into a Bidirectional LSTM (BLSTM) and linearly projected onto the nota-
tion dictionary. Specifically, we implemented a BLSTM with 512 units.

The Transformer. As observed in the reshaping step, the model has to process
long sequences in one step, which can have a negative impact on the performance
of RNNs. For this reason, we consider an alternative encoder based on the Trans-
former [26] (referred to as CNNT). In particular, we implemented one encoder
layer with an embedding size of 512, a feed-forward dimension of 1 024, and
8 attention heads. We implemented two versions of this model, one with the
standard one-dimensional Positional Encoding and another with 2D Positional
Encoding, which has proven to retrieve good results in multi-line transcription
tasks [23].
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Sequence-Processing-Free Module. As mentioned previously, the proposed
methodology with which to transcribe music and lyrics is based on analogous
works for multi-line transcription in the HTR field [8,27]. These works are based
on convolutional-only architectures—in which no sequence processing decoders
are implemented, as the solution lies in preserving the prediction space in two
dimensions, and applying backpropagation directly to the feature map retrieved
before being reshaped. In order to carry out our study on the architecture, we
implemented an encoder-only network. As it is based only on fully convolutional
layers, it will be referred to as FCN in the results section.

Baseline Implementations. Since there is no AMNLT state-of-the-art ref-
erence method to compare our results, we resorted to implementing a baseline
approach based on the divide and conquer strategy mentioned in Sect. 3.2. Specif-
ically, we implemented two CRNN models, one for OMR and the other for OCR,
to deal with the music-notation and text modalities separately. We consider two
experiments for this baseline:

– Plain : in this case, both OMR and OCR methods are provided with cropped
samples of the music staff and lyrics line, respectively. Then, the model
must predict the raw music and text sequences, which are eventually merged.
Since there is no alignment information in this scenario, the elements of both
hypotheses are paired one to one according to the order in which they were
predicted. To balance the size of the two sequences, we use the null kern
token “.” to pad the shortest sequence.

– With alignment information : in an alignment information-based scenario,
both models are fed with the complete staff image—including both music and
lyrics—and predict the sequences with alignment information, i.e. the null
kern token “.”. As in the previous scenario, both retrieved music and text
sequences are merged to create the output kern file.

4 Experiments

In this section, we present the experimental setup, by including the considered
metrics and a description of the experiments involved in this work.5

4.1 Metrics

A sequence-based metric—henceforth Music Error Rate (MER)—is typically
considered for assessing the performance of the OMR transcription. This metric,
as well as its analog versions in text recognition such as Character Error Rate

5 The data and source code required to replicate the experiments can be found in
https://github.com/antoniorv6/icdar-2023-amnlt.

https://github.com/antoniorv6/icdar-2023-amnlt
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(CER) and Word Error Rate (WER), is based on the normalized mean edit
distance between a hypothesis sequence ŝ and a reference one s in the form of:

E(Ŝ, S) =
∑n

i=0 d(si, ŝi)∑n
i=0|si| (2)

where Ŝ is the hypotheses set, S stands for the ground-truth set, d(·, ·) represents
the edit distance between the tokens of each paired hypothesis and ground-truth
sequences (si, ŝi) and |si| is the number of tokens of the reference sequence.

Since MER is widely used for music-transcription evaluations, we considered
this metric to determine the quality of the retrieved music notation. In text
recognition, CER and WER represent the standard evaluation metrics; however,
it should be noted that lyrics do not follow the word structure that can be found
in common lines and paragraphs. Lyrics are typically divided into syllables and
aligned with the music notes with which they have to be sung. Therefore, we
consider the Syllable Error Rate (SER), which performs the evaluation at the
syllable level, instead of using WER.

Another consideration is that our proposal provides kern-format informa-
tion with data of different natures: music and text. Moreover, these sequences are
aligned with each other, in the way that each music symbol is paired to a syllable,
even if it were empty—represented in kern as “.”. In other words, we need to
consider a metric to assess the alignment capability of the considered approach.
To evaluate this, we make use of the Kern Line Error Rate (KLER), which mea-
sures the error at the combined note-syllable level (which is encoded in a single
line in the kern format). As shown in the example of Fig. 2, kern files contain
the music and text information organized in columns built by means of indents,
whose lines represent sequential time steps. Given the lines from a two-column
kern file with music and text information in the form <music><tab><text>,
KLER computes the number of structural errors of the hypothesis with respect
to the expected lines by means of E(Ŝ, S). In short, the idea behind this metric
is to check whether the predicted kern data follows the expected structure and
whether the note-syllable pairing is accurate.

4.2 Data Partitions

Data generated for the proposal is separated into two different scenarios: “Ideal”
images and “Camera-based” images. The former refers to synthetically rendered
scores without any distortion, while the latter refers to its distorted version, as
aforementioned in Sect. 2.2. Each of these scenarios contains three partitions at
a file level with sizes of 10 000, 1 000, and 5 000 samples for the train, validation,
and test sets, respectively.

4.3 Results

Table 1 presents the results over the test partition obtained with the proposed
experimental scheme, in terms of MER, CER, SER, and KLER.
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Attending to the baseline reported values, similar recognition rates are
observed in the considered scenarios. More precisely, the MER column reports
0.4% and 1.9% in the scenarios with ideal images and camera-based ones, respec-
tively. Concerning the lyrics, CER and SER report the same results for both
scenarios (1.2% and 5.2% for each metric, respectively). This fact demonstrates
the adequacy of using a single-task end-to-end transcription method for the inde-
pendent modalities. However, according to the KLER metric, this formulation
is not proper for alignment purposes, since they yield values of 42.0% for ideal
images and 42.9% for the camera-based scenario.

Focusing on our holistic single-step procedures, MER, CER and SER metrics
degrade compared with the baseline methods, having the best results in ideal
images with the CNNT PE 2D and the CRNN architectures in the camera
scenario. However, KLER values are drastically improved when they are set side
by side with the baseline ones, decreasing from 42% to 6.7% in the non-distorted
images and from 42.9% to 8.6% in Camera. Such a fact proves the goodness of
the considered holistic approaches in order to deal with AMNLT. Despite losing
precision in the independent sequence transcriptions (i.e. MER, CER and SER
metrics), the alignment process is more correctly performed. Specifically, the best
holistic approach reports a 84% of relative KLER improvement with respect to
the best baseline case in the ideal scenario, while increasing up to 80% for the
camera one.

In addition to the previous analysis, while all the presented approaches prove
to be successful—except for the CNN—for the posed task, it is observed that
CNNT with 2D positional encoding, due to Transformer characteristics, yields
more competitive results when graphic consistency is present, with a KLER
result of 6.7%. The results also suggest that CNNT PE 1D works better than
the 2D version for distorted or inconsistent inputs according to the KLER metric,
but the MER, CER and SER are detrimental. In the camera scenario, the CRNN
yields the best KLER result, with a value of 8.6%.

4.4 Discussion

From the experiments reported above, we observed certain phenomena that
deserve further discussion. Some of these are depicted in Fig. 5, where represen-
tations of ground-truth and prediction kern files with their rendered content
are provided. Annotations representing different types of errors (i.e., the most
common ones) can be found: red circles (key and accidentals), pink boxes (align-
ment), and blue boxes (text transcription). Figures refer to samples 4909.krn—
MER 5.9%, CER 4.6%, SER 20%, KLER 11.3%—and 748.krn—MER 11.1%,
CER 13.9%, SER 45.5%, KLER 17.8%—from the test partition.

In Fig. 5a, a two-measure fragment inS—equivalent to 4/4—is displayed. As
described, the blue box present represents a text issue when trying to predict
word “beat”, obtaining “beal”. Similar errors appear in Fig. 5b, where regard-
less of the perfect alignment with the music, some characters are transcribed
incorrectly.
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Table 1. Results for two scenarios: Ideal images stands for the case with perfect
image conditions; Camera-based images represents the case in which the images
have been distorted to simulate a camera-capturing process. The figures have been
measured in terms of MER (%) for music, CER (%) and SER (%) for text, and KLER
(%) for assessing the accuracy of the alignment. Bold figures represent the best values
for each metric per scenario, while underlined figures point out the best results among
our proposals.

Scenario Music Lyrics Alignment

Method MER CER SER KLER

Scenario I: Ideal images

Baseline

Plain 0.4 1.2 5.2 42.0

With alignment information 15.8 49.1 81.2 54.8

Ours

CNN 15.6 19.5 53.6 21.4

CRNN 5.2 10.8 30.9 9.7

CNNT PE 1D 5.2 11.6 33.9 10.7

CNNT PE 2D 3.1 7.8 22.4 6.7

Scenario II: Camera-based images

Baseline

Plain 1.9 1.2 5.2 42.9

With alignment information 29.1 19.0 57.1 67.9

Ours

CNN 13.0 31.7 90.5 25.5

CRNN 4.8 8.1 25.1 8.6

CNNT PE 1D 5.5 17.2 44.6 13.5

CNNT PE 2D 5.5 13.6 24.6 16.2

Attending to red circles in Fig. 5b, it is necessary to clarify that the key—
represented as *k[b-e-a-d-g-] in this example—prevents the need for writing
every single note of the piece with its accidental. As a result, notes—graphically
identical—are annotated differently (i.e., when it renders, it omits the Z or \
inherited from the key). Red circles indicate this context knowledge problem.

Finally, pink boxes specify where there have been alignment problems
and text transcription errors. In Fig. 5a, a syllable—“ver”—was predicted one
timestep earlier than expected. This can also be noticed in Fig. 5b. The underly-
ing problems when transcribing simultaneously lyrics and music can be visually
seen in these examples.
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(a) Prediction result of 4909.krn from the test partition.

(b) Prediction result of 748.krn from the test partition.

Fig. 5. Representative errors in AMNLT in ideal conditions. Predictions are obtained
from the CNNT PE 2D model. Errors are highlighted in different colors according to
their nature. (Color figure online)
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It is also well noticed that even with an evaluation process done with what
we consider pessimistic metrics (i.e., CER and SER), to our best knowledge
predictions obtained as showed and described in this section are rather reliable
for automatic score transcription.

5 Conclusions

In this work, we define a novel research line derived from the Optical Music
Recognition (OMR) field, denoted as Aligned Music Notation and Lyrics Tran-
scription (AMNLT): the challenge of automatically obtaining the aligned music
and lyrics transcription from music score images. In addition, a generated dataset
is provided for future benchmarking on AMNLT.

This work also presents the first neural formulation to simultaneously obtain
music and text transcriptions and their respective alignments directly in one step.
Our proposal adapts holistic approaches widely used in staff-level OMR and line-
level and multi-line HTR to perform this process. For the specific implementation
of this approach, we considered fully-convolutional, recurrent, and Transformer
architectures, in order to provide a robust baseline for AMNLT.

Our experiments were divided into two scenarios: one using ideal images
without any distortion and the other using distorted images to simulate a
camera-capturing process. The results demonstrate that our AMNLT proposal
drastically reduces the alignment errors compared to an OMR+OCR baseline.
improvement of 84% and 80% in the metric that considers both transcription
and alignment (KLER), for the scenarios with ideal and camera-based images,
respectively.

In future work, we plan to extend this approach to other handwritten corpora,
where alignment is likely to be even more complex. In addition, according to the
results obtained in our experiments, a promising approach for the near future
would be to leverage the quality of the independent transcriptions (music and
text), which are more accurate if we ignore the alignment, as an auxiliary input
of the holistic AMNLT model.
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Abstract. Handwritten chemical equation recognition is an appealing
task, but its development is hampered by the lack of publicly available
datasets. To this end, we propose a multi-level synthesis strategy to syn-
thesize the corresponding handwritten equations from LaTeX expressions
and regard the chemical equation recognition as an image-to-markup
task. In particular, our approach first decomposes the LaTeX expression
into a symbol layout tree (SLT) and obtains different multi-level com-
ponents in stages by traversing the SLT. Then, online isolated symbols
are placed in appropriate locations consistent with handwritten habits
through a baseline-based layout strategy. Furthermore, expression pat-
terns are enhanced at the local, component, and global levels to increase
the diversity of synthesized data. It is worth noting that our synthesis
strategy is theoretically applicable to any LaTeX-based expression. We
also collected a real dataset containing 1595 handwritten chemical equa-
tions, and the experimental results confirm that our proposed method
can effectively improve the performance of handwritten chemical equa-
tion recognition systems. The dataset we generated will be released.

Keywords: Handwritten chemical equations · Synthesis strategy ·
LaTeX decomposition · Symbol layout tree

1 Introduction

As a form of representing the reaction relationships between chemical substances,
chemical equations play an integral role in academic and educational scenar-
ios. Traditional human-computer interaction when inputting chemical equations
relies on the click-and-drag style [15], which has severely limited the possibility
of developing the digital level of chemical equations. Therefore, as a more natu-
ral and efficient interaction method, handwritten chemical equation recognition
(HCER) technology has attracted the attention of many researchers.

Chemical equations include both inorganic and organic chemical equations.
Because of the complexity of the ring structure, the recognition of organic chem-
ical equations usually requires compound partitioning and classification first
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(a) HCE synthesized incorrectly. (b) HCE synthesized by our strategy

Fig. 1. Deficiencies in directly applying synthesis methods of HMEs to generate hand-
written chemical equations.

[6,21]. In this paper, we will focus on end-to-end handwritten inorganic chemical
equation recognition.

Inorganic chemical equations consist mainly of numbers, letters, operators,
and graphical symbols, which cause many challenges in the recognition of hand-
written chemical equations, such as special 2-D structures, complex reaction
condition symbols, variable handwritten styles, and so on [2,4,17]. Due to the
strong structural similarity with mathematical expressions (MEs), some work
[9,15] uses the seq2seq approach, which has proven effective in HMER on inor-
ganic chemical equation recognition. For these methods based on deep learning,
a massive and diverse dataset is necessary. However, to our knowledge, there is
no publicly available dataset of online handwritten chemical equation (OHCE),
which is an obstacle to the development of corresponding recognition tasks.

Given the high cost and inefficiency of data input and subsequent proofread-
ing, manually synthesizing large quantities of HCEs is considered a better solu-
tion. However, in chemistry, there are few synthesis strategies for single molecu-
lar formulas and no mature work on handwritten chemical equations. Although
there has been a lot of work on synthesizing HMEs with impressive results, they
are difficult to use directly for generating handwritten chemical equations.

In most HME synthesis work, expressions are synthesized with symbols as
the base unit. The position of the last symbol is only relevant to the previous
one, which may lead to ambiguities in the layout of some chemical equations due
to the writing habits of upper and lower case letters. On the other hand, in the
writing habits of CEs, the length of “=” usually changes dynamically depending
on the content of the reaction terms above or below it, which cannot be achieved
in the synthesis strategy of HMEs. These situations arise because only the rel-
ative position of the previous symbol is considered in the layout, rather than
considering the previous component as a unit. Figure 1(a) shows these possible
layout deficiencies when synthesizing handwritten chemical equations only on
the symbol level.

To solve the above problems, we consider the recognition task as an
image2markup task and propose a multi-level synthesis strategy that can syn-
thesize arbitrary inorganic HCEs from LaTeX expressions. In this work, we first
transform the collected LaTeX expression into a symbol layout tree (SLT) based
on positional relationships, in which the depth-first search (DFS) result of each
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node is a sub-string of the related LaTeX expression. Then, the concept of com-
ponent is introduced to allow for multi-level trajectory synthesis, which can
be seen as a group of connected nodes of the SLT. For example, as shown in
Fig. 1(b), the sub-tree representing “2+” is an ionic component, and “+Ca” is
a chemical component, so the ionic component can be placed correctly on the
top right of the chemical component. Based on the SLT, the trajectory of one
or more symbols is merged into different single-branch components with dif-
ferent positional relationships. To ensure that the non-horizontal components
can be placed in the right place, we start by merging the non-horizontal com-
ponents into multi-branch components and then placing all the multi-branch
components horizontally to obtain the final handwritten chemical equation. In
this process, we also design a baseline-based layout strategy based on chemical
equation writing habits to reduce the impact caused by the irregular symbol
position. Specifically, we divide the vertical space into three grids with four lines
according to English writing habits. Then we place the upper and lower case
symbols by aligning them between different baselines instead of simply aligning
them centrally. In addition, to further enhance the expression patterns, we also
distort each symbol obtained during the traversal process by random translation,
scaling, and rotation models at three levels to generate more diverse samples.
The experiment shows that the synthesized handwritten chemical equations can
significantly improve the accuracy of the recognition system.

The main contributions of our work are summarized as follows:

• To the best of our knowledge, this is the first attempt to solve the HCER
task by obtaining the corresponding LaTeX expressions end-to-end.

• A multi-level synthetic strategy is proposed to obtain HCEs from arbitrary
LaTeX expressions. Specifically, benefiting from SLT, we use multi-level com-
ponents as the basic unit for synthesizing HCEs, which can effectively avoid
spatial location errors. And a new baseline-based layout strategy is adopted
to make synthesized data more compatible with handwritten habits.

• Compared with only real data for training, the Expression Recognition Rates
increased by 43.70% and the Word Error Rates decreased by 17.76% after
using extra data synthesized by our proposed method.

The rest of this paper is organized as follows: Sect. 2 reviews the advanced meth-
ods of handwritten expressions synthesis. Section 3 describes our proposed syn-
thesis strategy and the recognition method we used. The experimental results
are given in Sect. 4, and the conclusions are given in Sect. 5.

2 Related Work

2.1 Data Generation in HCEs

As an effective method to improve the accuracy of model recognition, data gen-
eration and augmentation have been widely used in the field of optical character
recognition (OCR) [1,8]. However, relatively little work has been done in the field
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of chemistry in terms of data synthesis, except for a small number of synthetic
strategies for individual molecular formulas. Liu et al. [15] collected corpus data
of 97 different chemical equations at the middle school and high school levels,
and called about 200 teachers and students to write the individual molecular
formulas in the equations. The formulas collected were then randomly rotated
to obtain a more diverse dataset of handwritten molecular formulas, which is
the earliest publicly available handwritten chemical formula data. However, this
dataset is less diverse due to the lack of complete chemical equations and the
lack of graphical symbols commonly used in chemical equations.

The earliest dataset we are aware of for chemical equations is from Microsoft
Research Asia [6], a dataset of 35,932 manually written chemical equations con-
taining 2,000 chemical expressions, 25% of which are organic expressions, but
this dataset is not publicly available. Hagag et al. [9] extracted the corresponding
chemical equations and individual molecular formulas from chemical equations
commonly used in educational institutions, but the final sample images were also
completely written manually, which is inefficient and costly to obtain, resulting
in a small overall data volume. To the best of our knowledge, there is no well-
formed work on the synthesis of handwritten chemical equations.

2.2 Data Generation in HMEs

In contrast to the generation of chemical equations, there have been many excel-
lent works in the field of mathematical expression synthesis, most of which are
based on the CROHME dataset [18]. Le et al. [11] decomposed the original HMEs
into multiple sub-HMEs by grammar rules. However, each sub-HME has the
same trajectory and writing style as the original HME, which may lead to over-
fitting due to the lack of local diversity [10]. Truong et al. [20] first decomposed
LaTeX expressions in CROHME into a syntactic parse tree and then randomly
exchanged the sub-components with approximate aspect ratios to generate new
syntactically valid HMEs. However, this method of scaling and replacing sub-
HMEs may lead to severe symbol distortion during subsequent rendering, and
such substitutions are only based on finite expressions in CROHME.

Synthesizing HMEs from arbitrary LaTeX expressions can improve the spa-
tial diversity of the data. MacLean et al. [16] first generated the random HME
templates through a grammar model, then transcribed and annotated all the
templates to obtain a large database of HMEs. However, manual transcription
of expression templates in this work is labor- and material-intensive. Awal et
al. [3] first obtained a corpus of LaTeX expression counterparts and then gen-
erated a database of handwritten mathematical expressions from the collected
isolated symbols, but they only use one handwritten sample template for each
symbol. Deng et al. [7] extracted a large corpus of LaTeX expressions from aca-
demic papers and then rendered the expressions using individual handwritten
symbols in Detexify. Similar to this work is the HME synthesis method pro-
posed by Khuong et al. [10]. However, both synthesis methods are based on the
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symbolic level in the layout process, which is different from our habit of writ-
ing expressions in blocks according to their spatial locations, so the synthesized
handwritten expressions have a large gap with the real writing trajectory.

In addition to this, there are many other efforts in data augmentation. Li et
al. [13] increased the training samples by first randomly scaling the formula to
a scale while ensuring the aspect ratio, and then zero-filling it to a fixed size.
However, this approach only provides diversity on a global scale. Le et al. [11]
proposed a pattern generation strategy to increase the training samples by dis-
torting the shape of HMEs through operations such as scaling, perspective, and
rotation, but this kind of augmentation cannot produce various spatial rela-
tionships. Although the current HME synthesis strategies have a good effect on
HMER [7,10], they do not consider the spatial positional relationships between
English symbols, so they are difficult to extend to the field of chemistry.

3 The Proposed Approach

The task of synthesizing handwritten chemical equations is divided into three
main stages: single symbol trajectory sampling, LaTeX expressions decomposing,
and symbol layout. There are already many publicly available datasets that
provide handwritten symbol trajectory data. In this section, we focus on how to
better decompose the 2-D structure of expressions and a more rational layout
strategy. The specific process of our synthesis strategy is illustrated in Fig. 2. In
addition to this, we also introduce the end-to-end recognition model we used in
the experimental phase in this section.

Fig. 2. Pipeline of the proposed synthesis strategy.

3.1 LaTeX Decomposition

LaTeX expression trajectories can be described at stroke level, symbol level, and
expression level, respectively, most commonly based on expression level. How-
ever, handwritten expressions have a special 2-D structure and such positional
relationships between symbols cannot be explicitly expressed in 1-D LaTeX
expressions. Considering that subsequent layout operations require accurate spa-
tial structure information, we chose to decompose LaTeX into a symbol layout
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tree (SLT) instead of a symbol operator tree before synthesis [25], which repre-
sents the symbol position on the baseline.

We decompose chemical equations according to symbol operators by the
method proposed by Zanibbi et al. [22], and the symbol layout tree can be
obtained through the official toolkit provided by CROHME. Firstly, the posi-
tional relationships present in chemical equations are classified into the following
five types: above, below, sup, sub, and right. Then, in the process of decompo-
sition, the first symbol in the LaTeX expression is regarded as the root node
of this symbol layout tree, and adjacent symbols are decomposed into different
branches of the parent node based on their positional relationships. Each node
in the SLT stores the ground truth of the symbol and its spatial location relative
to the parent node, with the leaf node representing the end of the decomposition
at the current spatial position.

As an example, for the chemical equation “CO {3}ˆ{2-}+Caˆ{2+} =
CaCO { 3}\downarrow”, its symbol layout tree obtained by the above decom-
position strategy is shown in Fig. 3, in where each node represents the ground
truth of the corresponding symbol, and the labels between the nodes represent
the position of the child nodes relative to their parent node. Specifically, The first
symbol “C” on the baseline is the root node of the SLT, and “Right” represents
the branch of “O” is on the same baseline as “C”. For the symbol “O”, “Sub”
represents the spatial location of the branch where “3” belongs is a subscript,
same as “Sup” represents the spatial location of the branch where “2” belongs is
a superscript, and “Right” represents the symbol “+” is on the same baseline as
the component composed of “C” and “O”. By traversing the symbol layout tree
by Depth First Search (DFS), we can obtain the complete chemical equation
CO2−

3 +Ca2+ = CaCO3 ↓. In addition, we can also obtain the sub-strings of the
chemical equation based on the tree structure by traversing any non-leaf node.

3.2 Symbol Layout

After collecting a sufficient corpus of chemical expressions, the generation of the
corresponding HCEs requires us to scale and move each symbol in expressions
to its corresponding position using a proper strategy, which is called the symbol
layout of HCEs, and the trajectory coordinates of each symbol are randomly
extracted from three different public datasets. The overall layout of symbols
is based on Cartesian coordinates, where the upper left corner is defined as the
origin of the coordinate system, the horizontal coordinate is oriented to the right,
and the vertical coordinate is oriented downward.

Multi-level Layout Strategy. In the field of HMEs synthesis, most layout
strategies are performed with the symbol as the basic unit, in which the scale size
and layout position of the present symbol are determined according to its previous
symbol. However, in chemical equations, such a strategy may cause ambiguities in
spatial positions due to the writing habits of upper and lower case letters. As shown
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Fig. 3. SLT of chemical equations and multi-level layout steps based on the SLT.
The different colored boxes represent the different components at each stage, and the
branches with only leaf nodes represent components with an isolated symbol. The
dashed grey line indicates that the two branches have not been merged. (Color figure
online)

in Fig. 4(a), for the ionic symbol such as “Ca2+”, if only use the previous symbol
“a” to determine the layout of “2”, the final position of “2+” will be very close to
the writing baseline, which may lead the system to recognize the positional rela-
tionship as “Right”. Therefore, we need to consider the preceding “+Ca” as a unit
to determine the layout of “2+” (see Fig. 4(b)). Also, for some of the more complex
spatial structures, the size of the symbol needs to be determined according to its
multiple symbols in different positions (as the symbol “=” shown in Fig. 1(b)), so
it is essential to consider all symbols within the same positional relationship as a
component to improve the regularity of synthesis.

Using the decomposition method in Sect. 3.1, we can decompose an arbitrary
LaTeX expression into a symbol layout tree, whose nodes store the ground truth
and relative positional relationships of individual symbols. Since SLT is obtained
by parsing the positional relationships between symbols, if the number of chil-
dren in any parent node is greater than one, it means that there is a different
spatial layout of subsequent symbols, and this kind of node is defined as multi-
branch nodes. Based on this characteristic, instead of using only the symbol-level
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(a) HCE synthesized with symbols as the basic unit.

(b) HCE synthesized with components as the basic unit.

Fig. 4. Different handwritten chemical equations generated from the symbol-level and
the multi-level respectively, and the different colored boxes represent different levels of
symbols or components (Color figure online)

layout as in previous work, we propose a multi-level strategy for synthesizing
handwritten chemical equations by first merging symbols into components at
different scales and then using components as the basic unit for synthesis.

As shown in Fig. 3, starting with the first symbol of each branch, all symbols
on each branch are merged into a component until reaching a multi-branch node
or leaf node, and such a component is called a single-branch component (green
boxes). Considering that components in the horizontal direction are the last
to be written during the writing process, then we merge all the non-horizontal
sub-trees into a multi-branch component (orange boxes), according to the rela-
tionships of the components to their parent components. Subsequently, during
the layout process, we place all the multi-branch components horizontally to
obtain the final handwritten chemical equation. This layout method takes more
account of real handwriting habits, paying more attention to the position of the
different components, effectively avoiding potential ambiguities in the synthesis
process and making the synthesized data more standardized.

Baseline-Based Layout Strategy. The baseline in the symbol layout tree rep-
resents the horizontal writing line in the writing process. Symbols on the baseline
are usually of the same height and size. However, chemical equations are mainly
composed of English symbols, so even if the upper and lower case letters are in a
horizontal relationship, there will still be variations in size and relative position
(see Fig. 5(a)). To avoid ambiguities caused by such writing habits and to reflect
the position of symbols more accurately, we have redefined the baseline in SLT
based on the 4-line-3-grid layout in English writing and proposed a new baseline-
based layout strategy that divides the horizontal space position into three grids
through four lines. All uppercase letters and numbers occupy the top two grids,
while lowercase letters and some other special symbols occupy different grids
according to their shape (see Fig. 5(b)). In the layout process, symbols obtained
by the traversal are first normalized to the appropriate size according to the size
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of the grids they occupy, and divided into components according to the SLT.
The components are then scaled and shifted according to the multi-level lay-
out strategy. The baseline-based layout strategy makes the spatial relationships
between symbols in synthetic HCE more obvious, and because this constraint
is more compatible with the writing conventions of English symbols, it works
better for chemical equations.

(a) HCE obtained by only using the central writing line for alignment in
the layout process.

(b) HCE obtained by using four parallel baselines for alignment in the
layout process.

Fig. 5. The different handwritten molecular formulas obtained by our proposed
baseline-based approach and using only the center line for alignment.

3.3 Data Augmentation

Because of the limited amount of trajectory data for individual symbols, in
addition to enhancing the 2-D structure by defining arbitrary LaTeX expressions,
another point to consider is how to increase the shape diversity of the symbols.
At the layout stage of generating a new handwritten expression, we first adopt
a certain range of random scaling, translation, and rotation as local distortions
at the symbol level and component level, respectively, and then adopt random
rotation and scaling as global distortions at the whole expression level. The
overall process of our data augmentation strategy is shown in Fig. 6.

We use both equal scaling and random stretching when scaling at the symbol
level to enrich the symbol shape as much as possible. At the same time, because
adjacent symbols are generally tilted in the same direction in real writing, we
obtain random rotation angles in the same rotation direction when rotating sym-
bols in the same component. All of the above distortion operations are performed
based on matrix operations on trajectory coordinates. For offline handwritten
chemical equations, they can be obtained by rendering the corresponding tra-
jectory data.
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Fig. 6. The overall process of our data augmentation strategy, the symbol pool is
composed of different trajectories for each symbol, from which it is randomly extracted
during the synthesis process.

3.4 HCE Recognition Method

A typical end-to-end recognition network system consists of an encoder and a
decoder. The encoder is usually a convolutional neural network, which is used
to extract features from the input image and send them to the decoder, and the
decoder is usually a recurrent neural network with GRU or LSTM. At moment
t, the decoder computes the next output yt by using the context vector ct, the
hidden state ht−1 of the previous moment, and the current embedding xt, and
finally obtains the recognition results in sequence, i.e. the LaTeX expression
corresponding to the formula.

We chose the Counting-Aware Network (CAN) [12] for our experiments,
which obtained an accuracy of 57% on the CROHME dataset in HMER. CAN
is in a similar structure to the traditional end-to-end recognition model, with
the addition of a weakly supervised counting module, which is used to alleviate
overfitting and underfitting of symbols at the global level. Its overall structure
is shown in Fig. 7, which is composed of three modules: backbone, multi-scale
counting module (MSCM), and counting-combined attentional decoder (CCAD).
The backbone of the CAN is densenet [23], which extracts the corresponding fea-
tures and sends the feature map to MSCM and CCAD. The MSCM consists of
two parallel branches with two different sizes of convolutional kernels to effi-
ciently handle symbol changes at various scales and finally obtain the counting
vector V ∈ R1∗N , where N is the number of symbol classes.

In most end-to-end HMER methods, the output is calculated using the con-
text vector ct, hidden state ht−1, and embedding xt, all of which contain only
local information from the beginning to the current moment t [5,24,27]. Since
vt is obtained from the global level of the input image, we regard it as addi-
tional global information to make the prediction more accurate. At moment t,
the hidden state ht is calculated by the GRU using ht−1 and xt, then attention
at is obtained jointly by ht, M’, and the cover attention, where M’ is obtained
by spatial location encoding [19] based on the feature map M. After that, at is
multiplied with the M to get the context vector ct, which is weighted to guide
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Fig. 7. The overall structure of the Counting-Aware Network [12].

the model to focus on the important positions in the current moment. Finally,
the prediction result yt is calculated sequentially by ct, vt, ht and xt together.

4 Experiments

4.1 Datasets

We collected 1182 common inorganic chemical equations from high school and
college and then gathered volunteers to write 1,595 real handwritten chemical
equations based on them, which were stored as trajectory coordinates. These
equations contain a total of 133 symbols including letters, numbers, operators,
e.g., “=”, “+”, “−”, and other graphical symbols such as “↑”, “↓” “�” etc.
We obtained the images of the handwritten chemical equations by rendering
the trajectory coordinates of the symbols, of which 650 images were randomly
selected as a test set and the remaining 945 as a training set to provide a reference
baseline for the experiment.

In contrast to the wealth of LaTeX expressions available in the mathematical
field, there is only a very limited corpus in the field of chemistry. To further
enrich the corpus information, we use the collected chemical equations as a basis
from which we extract all the individual chemical equations and special symbols
to synthesize a batch of nonsense LaTeX expressions for synthesis. To make
our work reproducible, the individual symbol trajectories needed to synthesize
HCEs were extracted from currently publicly available datasets, we parsed and
extracted the required parts from each of the three publicly available datasets,
Detexify1, OLHWDB [14] and HIT-OR3C [28].

1 http://detexify.kirelabs.org/classify.html.

http://detexify.kirelabs.org/classify.html
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Based on these chemical expressions of LaTeX, we generated 7092 handwrit-
ten equations using the proposed synthesis method mentioned in Sect. 3 and
added them to the initial training set to obtain a new dataset with 8037 data.
Then, the data augmentation operation and the improved baseline-based layout
strategy were added in turn to generate different datasets with the same amount
of data for comparison. The random rotation angle is set to θ ∈ (−10, 10), and
the scaling ratio is limited to α ∈ (0.8, 1.2). Considering the actual writing habits,
we do not change the direction of rotation of symbols in the same component.
Figure 8 shows some samples of handwritten chemical equations synthesized by
our proposed strategy.

Fig. 8. The different chemical equations synthesized by our proposed strategy.

4.2 Experimental Details and Metrics

We used the PyTorch framework to train the recognition model, which was
trained on four 1080Ti with 12G of memory per GPU. The total number of
model iterations was 120, and the batch size was set to 16. To prevent overfitting
of the training process, we set the dropout to 0.6 and the weight decay in Adelta
optimizer to 1e−6, and the initial learning rate grows from 0 to 1 in the warm-
up phase and then decays to 0 by cosine schedules [26]. Since some symbols in
LaTeX are not visible in the actual formula [12], we ignore the “sos”, “eos”, “{”,
“}”, “ˆ”, “ ” in the counting module.

Referring to the ranking rules in the CROHME competition, we measure the
performance of the model based on the Expression Recognition Rate (ExpRate),
which represents the proportion of correctly predicted formulas out of all for-
mulas. We denote the total number of CEs in the test set as EN , where the
number of symbols contained in each LaTeX is {n1, n2, ......, nN}. In the recog-
nition process, we represent the number of expressions with incorrect symbols
as Ew, and the number of incorrectly recognized symbols in each formula as
{e1, e2, ...ei, i ≤ N}. ExpRate is obtained as shown in Eq. 1.

ExpRate =
EN − Ew

EN
(1)

We use “e1” and “e2” to represent the percentage of formulas where the
number of incorrectly identified symbols is ≤ 1(or 2), which can be a good metric
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for the global performance metric of the recognition model. To more accurately
evaluate the improvement due to the synthetic dataset, we also use the Word
Error Rate (WER) at the symbol level to measure the model as shown in Eq. 2,
WER represents the symbol level recognition accuracy, which is a more accurate
measure of model performance.

WER =

N∑

i=1
ei

N∑

i=1
ni

(2)

4.3 Effect of Data Generation

The model was trained using the different datasets we synthesized in Sect. 4.1
as a way to evaluate the performance of our synthesis strategy for handwritten
chemical equations. We first trained the model using the 945 real datasets col-
lected and then tested it on the remaining 650 real datasets as a benchmark. On
this basis, we separately added data obtained by different synthesis strategies to
the training set to obtain different training sets, where n = 1182 is the number
of chemical equations we collected, and the amount of synthesized data is 6n.
The experimental results are shown in Table 1, from which it can be seen that
our synthetic data without the modified layout strategy and data augmentation
could lead to a 40.31% improvement in the recognition accuracy of the model.
The addition of the new layout strategy and data augmentation to the synthesis
method further improves the accuracy by 1.08% and 1.23% respectively. In addi-
tion, the model achieved 89.95% accuracy when both strategies were combined
to generate handwritten chemical equations, and the WER decreased by 17.76%
compared to training with only real data.

Table 1. Effect of different synthetic strategies on model performance.

Synthesis strategy Result

Generation Layout Augmentation ExpRate ≤ 1 error ≤ 2 error WER

✗ ✗ ✗ 46.15 50.77 54.31 19.85

� ✗ ✗ 86.46 88.77 90.15 3.44

� ✗ � 87.54 86.62 88.31 4.38

� � ✗ 87.69 90.62 92.77 2.57

� � � 89.85 92.00 93.54 2.09

To analyze the effect of the data volume of the synthesis HCEs on training,
we used the optimal synthesis strategy discussed above to generate 1182 × T
synthetic data by making T=2, 4, 6, 8, and 10, respectively. This data was then
mixed with 945 real data as the training set, and the remaining 650 real data
were also used as the test set. The final test results are shown in Table 2, which
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shows that relatively good results can be achieved when T=6. Thereafter, as n
grows, the effect of synthetic chemical equation data on model performance is
no longer apparent.

Table 2. Effect of synthetic data volume on model performance.

Synthetic data volume
n = 1182

Result

ExpRate ≤ 1 error ≤ 2 error WER

0 46.15 50.77 54.31 19.85

2n 88.00 90.46 92.15 2.75

4n 88.92 91.54 93.54 1.95

6n 89.85 92.00 93.54 2.09

8n 89.23 91.38 93.08 2.26

10n 89.38 92.77 93.69 1.99

5 Conclusions

In this paper, we propose a multi-level synthesis strategy based on the sym-
bol layout tree, which can synthesize handwritten chemical equations by arbi-
trary LaTeX expressions to improve the accuracy of recognition models. We first
decompose LaTeX expressions into SLTs, then extract individual symbol trajec-
tories from the three publicly available datasets and place them in appropriate
locations according to the layout strategy. To further improve the diversity of
synthesis, we also explore the impact of different data augmentation strategies
such as symbol shape, writing style, and synthetic data volume.

In our future work, we will focus on organic chemical equations with more
complex structures and variability, which will be more challenging. On the other
hand, considering that the adjustment of parameters such as symbol scaling and
rotation angle is an important but laborious task in the synthesis process, it will
be a valuable research direction to automatically adjust the relevant parameters
through model recognition results.
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Abstract. As a prerequisite of chart data extraction, the accurate detection of
chart basic elements is essential and mandatory. In contrast to object detection
in the general image domain, chart element detection relies heavily on context
information as charts are highly structured data visualization formats. To address
this, we propose a novel method CACHED, which stands for Context-Aware
Chart Element Detection, by integrating a local-global context fusion module
consisting of visual context enhancement and positional context encoding with
the Cascade R-CNN framework. To improve the generalization of our method
for broader applicability, we refine the existing chart element categorization and
standardized 18 classes for chart basic elements, excluding plot elements. Our
CACHED method, with the updated category of chart elements, achieves state-
of-the-art performance in our experiments, underscoring the importance of con-
text in chart element detection. Extending our method to the bar plot detection
task, we obtain the best result on the PMC test dataset. Our code and model are
available at https://github.com/pengyu965/ChartDete.

Keywords: Chart Detection · Chart Data Extraction · Chart Understanding ·
Document Analysis

1 Introduction

Charts are highly abstract data visualization formats, which are convenient for read-
ers to obtain trends or comparisons between different entities but hard to extract the
exact data value from them. Therefore, automated chart data extraction could reduce
the human effort to summarize data from scientific, financial analysis, marketing charts,
etc. The chart data extraction typically involves but is not limited to, element detection,
text OCR, data interpretation, and semantic data conversion. Basic element detection
is the most fundamental part of chart data extraction and would affect all downstream
tasks. Thus, accurately detecting and recognizing the basic elements of the chart out-
side the plot area (see Fig. 1) is the first critical step. Basic element detection would be
challenging due to the highly diverse chart design.

Several methods [24,25] have been proposed for data extraction but only focused
on data plot detection, such as bar plot and line key points, while neglecting most
of the fundamental element detection. Meanwhile, some works [1,12,26] use often-
seen standard two-stage detectors to detect chart elements. These two-stage detec-
tors [2,9,10,13,30] have a limited ability to utilize the context in images, where context
is vitally important for accurate detection in the chart images domain. Unlike common
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Context-aware Chart Element Detection. (a) is a sample of chart element detection
objective, (b) and (c) illustrate the detection in chart images relies on context.

objects in general images, many elements in chart images share a similar visual appear-
ance but different roles. It could only be distinguished by referring to the context, e.g.,
legend label and tick labels are text blocks with different roles according to the func-
tioning position and relationship to the other elements in the chart images (as shown
in Fig. 1(b)(c)). Therefore, a detector that uses local-global context features is needed
to tackle the chart element detection task. Additionally, a comprehensive and reason-
able categorization of the chart elements would help improve generalization on various
charts.

In this paper, we propose a context-aware chart element detection method by inte-
grating the local-global context fusion module between the cascaded RoI head in Cas-
cade R-CNN to draw the importance of context in charts. As Fig. 2 shows, the local-
global context fusion module contains two parts–visual context enhancement (VCE)
and positional context encoding (PCE). The VCE enables the model to gain better visual
context information by incorporating the global feature map into the local feature map.
The PCE allows the model to learn the particular object distribution pattern from the
bbox coordinates. Besides, we look into multiple datasets for analyzing and refining
chart element categorization. A total of 18 classes of chart elements are summarized,
excluding any plot elements. The dataset is updated accordingly for model training and



220 P. Yan et al.

testing. The quantitative evaluation and qualitative analysis of samples show that our
method achieves accurate chart element detection. Overall, our contributions can be
summarized as follows:

– A detector with the local-global context fusion module is proposed for accurate chart
element detection. The module emphasizes the context from two aspects - visual and
positional features. Our method achieves state-of-the-art results on the chart element
detection task.

– Refine chart element categorization and generate additional structural-area objects
to assist the detector in better chart understanding. A total of 18 classes are summa-
rized, and the accordingly updated PMC dataset can be accessed at https://github.com/
pengyu965/ChartDete

– Our method and several common two-stage detectors, including those used in exist-
ing related works, are trained and evaluated on the updated datasets. This can offer
an overview of the performance of these methods on such tasks.

2 Related Work

2.1 Object Detection

Since 2014, many well-designed object detectors have been invented, and most of them
could be divided into two kinds - one-stage detector [22,27–29] and two-stage detec-
tor [2,9,10,13,30]. They have a similar first part – a convolutional neural network
(CNN) based backbone like [8,14–16,31,32,35,36] to extract visual features. The dif-
ference is two-stage detector involves a region proposal module to generate category-
independent region proposals and then classify these objects and refine their localiza-
tion in the second stage, while one-stage detectors directly predict the object position
and category from input images and their feature maps. Intuitively second-stage detec-
tors like Faster R-CNN [30] and Cascade R-CNN [2] achieve higher accuracy in object
localization and recognition but sacrifice the inference speed. The chart element detec-
tion task demands high accuracy on object localization and classification than inference
speed, so we stay with the two-stage detectors for the task.

2.2 Transformers

With the success of Transformer-based methods [7,34] in natural language processing,
many works [17,19,33] put effort into adopting Transformer in vision-related tasks.
Transformer could extract strong feature representations from both visual and text
inputs. In 2020, Carion et al. [3] proposed the first Transformer-based end-to-end object
detector. However, DETR lacks training stability on small-scale datasets and cannot
accurately localize and recognize small or overlapping objects. In a more recent work,
[23] introduced a hierarchical Transformer that leverages shifted windows to extract
features from input images, and the resulting framework serves as a new backbone for

https://github.com/pengyu965/ChartDete
https://github.com/pengyu965/ChartDete
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Fig. 2. Framework of our Method. (a) is the standard Cascade R-CNN model, (b) is the overall
framework of our method, and (c) shows the details of the local-global feature fusion module in
our method.

two-stage detectors. This new backbone has been shown to be effective in improving
the performance of two-stage detectors. Due to the attention mechanism in Transformer
architecture, the Swin Transformer can draw spatial attention and obtain context-aware
image features. The Swin-Transformer backbone is used exclusively in our model and
experiments.

2.3 Chart Data Extraction

In 2017, Jung et al. [26] proposed a semi-interactive system to extract underlying data
from charts. However, it uses human interaction as the first step to set the starting and
ending points. Then rule-based methods are utilized to interpret the data value. This
method heavily relies on human interaction for data extraction and would fail in com-
plicated cases. From 2019–2022, Davila et al. [4–6] organized the chart harvesting com-
petition and offered two valuable datasets: Human-annotated real-world chart images
from PubMed Central documents (PMC dataset) and Adobe synthetic chart dataset.
As a participating group in the 2020 chart harvesting competition, Ma et al. [25] use
Cascade R-CNN and a heatmap-based keypoint detector to detect bar box and line key
points, respectively. It focused on data plot detection within the plot area, while in data
interpretation, they used the elements’ ground truth with the predicted data plots for
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semantic conversion. Later, another EXCEL400K dataset is proposed in [24] by utiliz-
ing the Microsoft Excel API. Similarly to CornerNet [18], an hourglass network back-
bone with key-point heatmap generation is used to predict and group the sets of corner
points on objects. Using the key point detection method, the author generalized their
detection on different charts. However, the dataset proposed in this work only has data
plot annotations within the plot area, and most essential basic elements are left without
annotations.

3 Our Method

In this section, we explain our CACHED method in the following aspects: the local-
global context fusion module, which consists of visual context enhancement and posi-
tional context encoder; loss function for class-wise objects imbalance; the standardized
categorization for broader applicability and generalization.

3.1 Local-Global Context Fusion Module

As Fig. 2 shows, local-global context fusion modules are designed and integrated
between each RoI head for context extraction and fusion. It brings local-global visual
features and relative positional features towards each region of interest before sending
them to the RoI head for regression and classification. The three modules share the
same architecture but are trained with unshared weights, and each module consists of
the following two parts.

Visual Context Enhancement (VCE). Although the field of view of each anchor
would increase with stacking of the convolutional neural network (CNN) layer, it is still
limited to the local field, which has fragile context awareness. However, accurate ele-
ment detection and labeling in chart images require a much larger field of context.(see
Fig. 1). For instance, a text block can be classified as a legend label by the context that
nearly comes from the whole image, where the legend label is beside some (legend)
markers that share the same color with plot elements in the plot area. To address this
issue, similar to SCNet [11], we introduce visual context enhancement (VCE) by incor-
porating the feature maps from the backbone feature pyramid as global visual features
and bringing them into each region of interest. These global visual features are com-
bined with each RoI-aligned local feature map to amplify local-global visual context. As
shown in Fig. 2(c), we first average pool the feature maps from all stages of the feature
pyramid to the same size [N, 256, 7, 7], then concatenate them together, where the shape
becomes [N, 256∗5, 7, 7]. A convolutional neural network further abstracts these global
visual features and reduces the number of channels. Then the global feature maps are
attached to each RoI-aligned feature map. The feature map for each region of interest
with size [N, 512, 7, 7] now consists of local visual features in the first half channels and
global visual features in the rest of the channels. A SE-Net and a 1× 1 convolutional
layer are followed to fuse the local-global visual features channel-wise and reduce the
number of channels, respectively. The final feature maps with size [N, 256, 7, 7], which
align with the original RoI feature map dimension but contain rich local-global visual
context, are used as visual feature representations for each region of interest.
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Fig. 3. The class-wise chart object number distribution in PMC dataset. Chart images have
naturally unbalanced objects class-wisely. The number of x/y tick labels and x/y tick marks is
inevitably larger than others. Some elements are extremely small, like tick groupings and legend
titles.

Positional Context Encoding (PCE). In the general image domain, the detection of
common objects such as people, vehicles, and animals depends mainly on visual fea-
tures, and the positions of the objects in the image have less impact on accurate localiza-
tion and classification. However, since chart images are highly structured data visualiza-
tion formats, where object rendering always follows some specific patterns, e.g., x-tick
labels are always below or beside the x-tick marks and chart titles typically appear on
the edges of the image while rarely appearing in the center part, the relative positional
context among the chart elements is very trivial. We propose a Transformer-based posi-
tional context encoder to obtain the positional context feature. As Fig. 2 shows, the
Transformer-based architecture draws attention among objects’ bounding-box coordi-
nates. Firstly, we normalize the 4-dim coordinates to [0, 1] by the height and width
of the input images. Then a linear layer takes the normalized coordinates and embeds
them into a 512-dim vector. Zero mask paddings are filled in the embedded bbox vector
sequence, where the length of the final embedding bbox sequence is fixed to the max
block size of 1024. The block size of 1024 is enough to cover the maximum sampling
bbox number from the RPN results in training and testing, which is set to a maximum of
1000. We use each head’s output to represent the relative positional context information
from the corresponding bbox to all other bboxes. Then, the encoding vector for each
bbox is concatenated to its RoI visual feature vectors.

3.2 Loss for Class-Wise Objects Imbalance

Unlike the general image domain data imbalance can be reduced by augmentation,
the unbalanced number of objects among different categories is the natural effect in
chart images and is hard to undermine, e.g., the number of tick marks and tick labels
would always be multi-times larger than the number of chart titles and legend labels
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(see Fig. 3). We use the Focal Loss [20] on the classification to undermine the object
imbalance in chart images:

Lcls = −
i=n∑

i=1

(i − pi)γ logb(pi) (1)

Then, smooth L1 loss is used for bounding box regression and balancing it with
classification:

lossμ = Lcls(μ) + λ[μ ≥ 1]Lloc(tμ, v) (2)

where Lloc is the localization loss between the regression results for class μ and the
regression targets. λ is used to tune the loss for outliers where their loss is greater than
1.

3.3 Categorization Refinement

The categorization of chart elements in the dataset is crucial for detection performance.
We analyze the datasets with the annotations of the chart elements and comprehend the
categorization of the elements to generalize the various chart situations (see Table 1).

Fig. 4. Categorization Refinement. It only shows the updated categories for illustration. Some
elements are not visualized.

From the chart competition [5,6], the Adobe Synthetic and PMC datasets offer the
most valuable annotations for chart element detection tasks (a detailed introduction of
the datasets can be found in the experiment section). We refer to these two datasets
for element categorization. In Table 1, the second column is the category in the Adobe
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Synthetic dataset, and the third column is the category annotated in the PMC dataset.
In the PMC dataset, all objects related to the axes, such as the axis title, the tick label,
and the tick mark, are jointly labeled without separation into the x and y axes. Early
experiments showed that if we jointly treat the items based on the x- and y-axis as
the same category, it would be easier to separate these labels later by post-processing.
This is caused by the definition of the x-axis and y-axis, in which the x-axis is defined
as the axis with independent value/label, while the y-axis has dependent values. Such
definitions are more based on the content’s semantic meaning than on the visual or
positional information. Therefore, separating these elements by axis in advance would
help avoid this issue when using the trained model for the application. Meanwhile,
these separated labels also assist our method in understanding the chart’s content and
potentially obtaining better detection results.

Table 1. Categorization Refinement. We look into the Adobe Synthetic Dataset and PMC
Dataset from Chart Competition [5,6] and comprehend the element categories shown in the third
column.

Synthetic PMC Refined Categories

Chart Basic
Skeleton Elements

x-axis title
axis title

x-axis title

y-axis title y-axis title

x tick label
tick label

x tick label

y tick label y tick label

x tick mark
tick mark

x tick mark

y tick mark y tick mark

chart title chart title chart title

legend patch legend marker legend marker

legend label legend label legend label

- legend title legend title

plot text
value label value label

mark label mark label

- tick grouping tick grouping

- others others

Chart
Structural Area

plot area plot area plot area

- -

x-axis area

y-axis area

legend area

The categories in the second part of Table 1 are four additional labels of structural
objects that cover the specific area in the chart images. We break down the chart images
into the four most crucial structures—the x-axis area, the y-axis area, the plot area, and
the legend area. The definitions of these four areas are as follows:
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– Plot area: The plotting area is formed by the x and y axes.
– X/Y axis area: Cover all x/y ticks, x/y labels, and x/y-axis titles.
– Legend area: The area covers all items related to the legend, including legend labels,
legend markers, and legend titles.

A sample of category refinement is shown in Fig. 4. We can see that each axis-
related element is separated and structural-area objects cover the specific area in the
chart image. After refinement, 18 categories for the chart elements are summarized.
Based on the new categories, we update the PMC dataset accordingly by employing
rule-based methods to separate the axis-related elements and generate three additional
structure-area elements than the originally offered plot area. Then the annotation for-
mat is converted to the standard COCO object detection format for convenience. The
updated PMC dataset with conversion tools can be accessed from the link in the contri-
bution summary from Sect. 1.

4 Datasets and Experiments

In this section, we introduce the existing datasets used in our experiments and perform
quantitative evaluation and qualitative analyzes.

4.1 Dataset

Adobe Synthetic Dataset. The adobe synthetic dataset was first proposed in 2019 [4]
and refined in 2020 Chart-infographic Competition [5]. This dataset is synthesized
using Matplotlib and contains 14400 images for 12 types of charts. The annotations
include the chart data information and all elements’ label and location. Such annotations
are valuable for chart classification, element detection, and data extraction tasks. How-
ever, the diversity of chart samples in this dataset is severely limited. The best results
showed in ICPR 2020 Chart Competition [5] in chart classification, text role classifica-
tion, tick mark label association, and legend marker detection are close to 100%, further
indicating the limited variance of the data. Low data variance typically causes unstable
performance and low generalization from the trained deep-learning model on samples
outside the dataset. We only refer to the annotation standards in this dataset for element
categorization refinement.

PubMed Central (PMC) Chart Dataset. This dataset was released and updated with
the Chart Competition in ICDAR 2019 [5], ICPR 2020 [6] and ICPR 2022 [6]. Unlike
the Adobe Synthetic dataset, the PMC dataset is a real-world dataset collected from
PubMed Central Documents and manually annotated. Taking into account the much
more diverse and high-fidelity samples in this dataset, the PMC dataset became the pri-
mary dataset in most recent chart competitions. The most up-to-date PMC dataset is
released in the ICPR 2022 CHART-Infographic competition [6], which contains 5614
images for chart element detection, 4293 images for final plot detection and data extrac-
tion, and 22924 images for chart classification. Although slightly limited by the number
of available training samples due to the time-consuming human annotation process, this
real-world dataset is most valuable, and much more challenging than most synthetic
datasets.
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Table 2. Comparison of Methods in ICPR 2022 Chart Competition. Evaluation on task 2 and
task 3 in chart competition [6] is based on the original PMC categorization. We train our method
with the updated categories but rewind the predicted results backward to be compatible with the
chart competition evaluation metrics.

Team Methods
Task 2 Text Detection Task 3 Text Role Classification

Average IoU Recall Precision F-measure

six seven four 0.435 - - -

IIIT CVIT Chart Understanding 0.790 - - 0.821

Ystar 0.810 - - -

UB-ChartAnalysis 0.820 - - 0.736

Ours 0.869 0.735 0.846 0.787

Excel400K. In [24], the author proposed the ExcelChart400k dataset, which contains
a total of 360k training samples. This dataset is generated using the Excel data sheet
and was used to train the plot element detection model in [24]. However, the dataset
is focused only on annotating data plots inside the plot area, and most basic elements
are left without annotation. We use this additional dataset to qualitatively evaluate the
results of our method.

After conducting early experiments, we observed that including the Adobe synthetic
training dataset decreased the detection performance on real-world chart images. This
was attributed to the uniform chart rendering patterns and limited sample variance in
the synthetic dataset. Taking into account the high diversity and real-world chart data
distribution, we use the PMC dataset as our primary dataset for training and quantitative
evaluation purposes.

4.2 Quantitative Evaluation

To quantitatively evaluate our method, we have undertaken three experiments: (i)
ICPR 2022 Chart Competition Evaluation [6], wherein we employed backward adapted
results from our method; (ii) COCO object detection evaluation with the refined PMC
dataset; and (iii) an extended experiment on detecting bar plots.

ICPR 2022 Chart Competition Evaluation. We compare with the results from the
ICPR 2022 Chart Competition [6]. However, our method shares different detection rou-
tines, where the chart competition treats the text block detection task as a 1-class detec-
tion task (task 2) and leaves the recognition as an additional task (task 3). In the chart
competition, teams could use the ground truth of previous tasks for the current task. Our
method follows the regular detection routine (localization + recognition). After refining
the categorization, the overall categories (see Table 1) expand from the original PMC
dataset used in the competition. Taking these two facts, we compare by adapting our
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Table 3. COCO Evaluation on Refined PMC Dataset. First 4 rows show our trained public
detector models, and the last 3 rows are our method ablation study.

Model Context Module Backbone AP AP50 AP75 APS APM APL

DETR - - 0.536 0.762 0.572 0.384 0.555 0.809

Faster R-CNN - ResNeXt101-FPN 0.665 0.815 0.737 0.557 0.697 0.827

Cascade R-CNN - ResNeXt101-FPN 0.696 0.825 0.759 0.579 0.725 0.899

Cascade R-CNN - SwinT-FPN 0.699 0.838 0.772 0.589 0.732 0.885

Cascade R-CNN PCE SwinT-FPN 0.708 0.842 0.775 0.591 0.742 0.903

Cascade R-CNN VCE+PCE SwinT-FPN 0.713 0.851 0.786 0.597 0.741 0.909

Cascade R-CNNL VCE+PCE SwinT-FPN 0.729 0.845 0.790 0.602 0.763 0.939

prediction results backwards to be compatible for evaluation and splitting the prediction
result into task 2 and task 3. Table 2 shows the result of the official 2022 chart compe-
tition. Our method in task 2 outperforms the best result from ‘UB-ChartAnalysis’. In
task 3, our method detects and recognizes all elements once, without taking the element
localization ground truth as prior knowledge, and this may result in a lower recall for
task 3 due to imperfect detection. Overall, we achieve the best detection result on task
2 and the comparable F-measure score on task 3.

COCO Evaluation on Refined PMC Datasets. To provide a better general overview
of the performance of our method, we use the COCO object detection evaluation met-
ric [21] to evaluate our method with several often used two-stage detectors (shown in
Table 3). To our best knowledge, there isn’t any trained chart element detection model
conducted on PMC datasets publicly available for inference and fine-tuning. We trained
these two-stage detectors on the refined PMC dataset at our end. In Table 3, the first part
includes results from popular two-stage detectors. DETR converges slowly in training
due to the scale of our dataset and the Transformer architecture. The accuracy of small
object detection from DETR also lags behind. An enormous amount of small elements
in chart images result in limited overall accuracy. The Cascade R-CNN with Swin-
Transformer performs best in the standard Cascade R-CNN model zoo. The second
part shows our methods with several ablated setups on the local-global context module,
which consists of visual context enhancement (VCE) and positional context encoding
(PCE). Since the Swin-Transformer backbone can draw spatial attention and potentially
obtain context-aware visual feature representations, we made an ablation by only inte-
grating the positional context encoding (PCE) into the Swin-Transformer-based Cas-
cade R-CNN. As expected, the Swin-Transformer-based Cascade R-CNN with the PCE
performs better than the standard Swin-Transformer Cascade R-CNN. Although the
Swin-Transformer can obtain context-aware visual features, adding VCE could further
enhance the context extraction capability, giving better results. The focal loss with bal-
anced smooth L1 loss can help with sample imbalance problems, and our method with
this loss setup achieves state-of-the-art performance (see the last row in Table 3).
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Table 4. Bar detection evaluation on PMC test dataset. The comparison results are from [25],
and we evaluate our method with the same evaluation metric. The first three columns are F-
measure with different IoU thresholds, and the last column is the calculated score using Chart
Competition [5,6] evaluation criteria.

Model IoU=0.5 IoU=0.7 IoU=0.9 Score a

SSD 43.65 26.28 2.67 25.83

YOLO-v3 58.84 36.14 4.14 60.97

Faster R-CNN 66.37 60.88 29.13 70.03

Faster R-CNN+FPN 85.81 78.05 31.30 89.65

Cascade R-CNN+FPN 86.92 83.53 55.32 91.76

Our Methods 89.30 88.73 76.94 93.75

Extended Experiment on Bar Detection. Although our goal is to offer a robust basic
element detection method, we extend our experiment to bar plot detection. We fine-
tune our method using the PMC bar chart subset and test on the PMC test set (see
Table 4). The results of the first five models were from [25], and we evaluate our results
with the same criteria. The first three columns are F-measure scores with different IoU
thresholds - 0.5, 0.7, and 0.9. The last column, ‘Score a’, is calculated using the ICPR
2022 chart competition [5] evaluation metric for task 6a. Our method achieves state-of-
the-art performance on bar chart detection on the PMC dataset.

4.3 Qualitative Evaluation on Element Detection

Although the Excel400K dataset does not have the ground truth for chart basic ele-
ments, we visualize the prediction results from our method (see Fig. 5) for qualitative
evaluation. Our method is able to locate each element accurately on most samples in
Excel400K datasets. However, our method struggles with the first sample in the third
row of Fig. 5 as the table attached at the bottom confuses the detector due to the lack
of similar samples in the PMC training dataset. Our method generally delivers accurate
localization and classification of the basic elements in charts.
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Fig. 5. Visualization of Our methods on Excel400K.
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5 Conclusion and Future Work

In this work, we propose a method that focuses on the importance of visual and posi-
tional context in chart images for accurate chart element detection. The categories of
chart elements are analyzed and refined to provide a better generalization of various
chart designs, which could benefit data interpretation-related downstream tasks. Our
method trained on the refined PMC dataset achieves state-of-the-art performance on the
chart element detection task.

Considering the context information, the text contains rich information. Due to the
challenging OCR task on chart images, where many symbols are easily confused with
characters or numbers, and the rotation is hard to detect when the text is short, we don’t
include the text embedding into the context extraction. In the future, robust OCR for
extracting chart text and adding chart text embedding as additional context information
to each region of interest may improve performance.
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Filip Darmanović(B) , Allan Hanbury , and Markus Zlabinger

TU Wien, Vienna, Austria
filip.darmanovic.96@gmail.com,

{allan.hanbury,markus.zlabinger}@tuwien.ac.at

Abstract. Extracting figures and similar visual elements from PDFs
of scientific publications is important but non-trivial, and progress is
impeded by a lack of datasets for evaluation and machine learning. In
this work, we describe and publish the SCI-3000 dataset , containing 3 000
PDFs of scientific publications (34 791 pages) with annotations of figures,
tables, and corresponding captions, from the fields of computer science,
biomedicine, chemistry, physics, and technology. We demonstrate the use
of the dataset to benchmark two figure, table, and caption extraction
approaches from recent literature: one rule-based and one deep learning-
based.

Keywords: Figure Extraction · Table Extraction · Caption Extraction

1 Introduction

Scientific papers are generally published electronically in PDF format. Extract-
ing information from PDFs and making it machine-actionable has proven to be
a challenge, sought to be addressed by research in the field of Page Object Detec-
tion (POD), also referred to as Semantic Document Segmentation. The reason
behind this challenge is that vector graphics, various symbols, tables, and other
miscellaneous elements like page decorations get represented by rudimentary vec-
tor drawing commands in a PDF. This makes it difficult to extract individual
blocks of text, figures, tables, etc.

Use cases for extracting these elements are numerous, especially in academia.
In fields like biomedicine and computer science, interest in mining figures from
previous publications is notably high [19,30]. Examples range from various figure
search engines [16,18], to extracting semantic information from graphs [29],
to using curated databases for training machine learning models [1,2]. Going
beyond the benefits to the respective research communities, having textual
descriptions of figures in the form of captions provides input data for train-
ing cross-media machine learning systems, which use different forms of the same
data to extract deeper semantic meaning, for example, neural networks which
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learn to describe images with natural language [23]. Furthermore, Clark and
Divvala [5] show that the number of figures per paper page and the average cap-
tion length have been rising steadily over the past few decades, suggesting that
the amount of information presented visually has been on the increase relative
to plain text.

Although there exist several tools that can take apart a PDF file with vary-
ing degrees of success [24], the task of figure, table, and caption extraction is
an area with much potential for improvement. For the sake of brevity, we refer
to this task simply as figure extraction unless explicitly noted otherwise, as in
[5,30]. The previously-mentioned internal structure of the PDF poses a chal-
lenge for most tools available today, as they are usually not able to discern an
entire graphical element, but instead output its individual pieces, like the back-
ground, text and so on. Extracted separately, these elements are far less valuable
than the entire semantic unit they belong to. Including the corresponding cap-
tion further increases the difficulty of this task. While captions contain essential
information for understanding figures and tables they describe, the number of
document layouts and designs possible makes their extraction difficult. The few
tools that extract both captions and graphical elements from scientific publi-
cations are, in most cases, usable only on works from specific research fields
[19]. This has created the need for more advanced approaches, motivating the
recent increase of research in the field of POD [20]. Nonetheless, researchers have
been vocal regarding the lack of standardized metrics and datasets for evalua-
tion and machine learning. Most extraction tools from the literature have either
been tested on unpublished validation sets, or datasets that are not specifically
tailored for the discipline, for example, by including non-scientific publications.
Other validation datasets currently available have different issues, e.g., only con-
taining images of pages instead of full PDFs, requiring the user to piece together
the dataset from multiple sources, or focusing on only one scientific field or ele-
ment type. Therefore, addressing the lack of standardized metrics and datasets
is a critical research topic.

With that in mind, this paper has three main contributions:

1. A novel dataset, SCI-3000, built by annotating figures, tables, and cap-
tions in 3000 documents (34,791 pages) from the fields of computer science,
biomedicine, chemistry, physics, and technology.

2. A suite of tools for evaluating figure, table, and caption detection, as well as
annotation of such elements.

3. A SCI-3000-based evaluation of two figure-extraction methods from recent
literature; a rule-based approach (PDFFigures2 [5]), and a deep learning-
based approach (DeepFigures [30]).

While previous research efforts have predominantly focused on computer sci-
ence and biomedicine, they have produced methods that do not perform well
on other fields [25]. By including five research disciplines, we make our dataset
more general. SCI-3000 also includes the original PDFs of publications. This is
in contrast to many other datasets [30] [5] that require the user to manually
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acquire them because the underlying licenses prevent redistribution. We publish
SCI-30001 under CC-BY 4.0.

Finally, our evaluation of existing figure-extraction approaches demonstrates
their acceptable effectiveness for tasks where perfect recall or precision is not
required. Still, it shows that there is room for improvement, especially regarding
caption extraction.

2 Available Annotated Datasets

One characteristic of previous work on figure extraction and on POD in gen-
eral, is the focus on single scientific disciplines. Arguably, the most focused-on
domains are computer science (CS) and biomedicine.

The former was the most represented discipline in our literature research,
with 12 papers either using a predominantly CS-based dataset in their evalua-
tion phase, or focusing on building one. The two most prominent open datasets
in this field are the CS-150 [6], containing 150 papers sampled from three CS
conferences, and CS-Large [5], with 350 CS papers published after 1999. The
ICDAR2013 [8] dataset facilitated multiple challenges regarding table detection
and interpretation in PDFs. It was later extended with data on graphs in [14]. A
well-used pair of datasets from this group are the ICDAR2016 and ICDAR2017
[7] challenge validation sets, sampled from the CS-focused repository CiteSeer.
These datasets were used by Saha et al. [27] and Li et al. [20], before Younas et al.
[36] pointed out a lack of quality in the annotations and posted an amended ver-
sion. These datasets have the disadvantage of only containing rasterized versions
(i.e., each page is available as an image) of papers, which means that approaches
taking advantage of PDF structure cannot use them. Younas et al. [36] also noted
that a dataset with more types of page objects, e.g., captions, is needed to push
the field forward. CiteSeer appears to be a popular choice for source material,
as many other publications sourced their datasets from it [4,29,35], even though
these were never made public. Three papers from Kuzi et al. [16–18] sourced
their dataset from the ACL Anthology, which is a repository consisting of work
from the areas of Natural Language Processing and Computational Linguistics.
Finally, Chiu et al. [3] sampled 30 papers from two CS conferences: ACM UIST
and IEEE ICME. Their test dataset was also not made public.

The second research field in terms of representation was biomedicine. PubMed
and repositories like Biomedcentral are the main sources for building PDF
extraction datasets [22,28,32,34]. One popular dataset that came up during our
literature review was the ImageCLEF 2016 Medical dataset [11], used by Tsut-
sui and Crandall [33] and Yu et al. [37]; however, this is a collection of already
extracted images from medical publications. The most recent, and largest dataset
in this category is PubLayNet [38] [13], which includes figures and tables along
with other typical document elements. It does not, however, include relationships
between those elements.

1 DOI: 10.5281/zenodo.6564971
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We found two papers focusing on both computer science and biomedicine.
One is [19], using the previously mentioned CS-150 dataset, and the other is [30].
For the latter dataset, several aspects are missing in terms of usability. While
around 5 million annotations were released publicly on Github2, the licenses
of the underlying publications hosted on arXiv do not allow for redistribution
without explicit permission from each individual author. PubMed, which they
used to source PDFs from the biomedical domain, does have an open publishing
arrangement with the authors3, but the scope of this repository is focused only
on biomedicine and other sub-fields of life science. This limitation means that
the dataset must be pieced together from three sources. While there is no doubt
that these challenges can be overcome, they definitely present hurdles for re-use
in future efforts.

3 Evaluation Methodology

Correctly assessing if and how two sets of annotations differ is an essential part
of our work. When evaluating existing figure extraction approaches, we need to
analyze if their output matches the ground truth. In the crowd-sourced annota-
tion stage (Sect. 4), we need to know if two people agree in their annotation of the
same page. Both of these use cases can be served by a single automated annota-
tion assessment system. Furthermore, we argue that using the same methodology
in both stages is a requirement for the consistency of our work.

To make sure we implement the correct evaluation strategy, we exam-
ined related research on figure extraction from scientific publications. Most
researchers described the performance of their extraction approaches through
metrics like accuracy, recall, F1 measure, and precision. To apply these metrics
to bounding boxes, an adaptation of the Jaccard index to 2D space was often
used, called Intersection Over Union (IOU) [30]. The IOU is computed by divid-
ing the intersection surface of two bounding boxes by the surface area of their
union. Authors of [5,6,20,30] used an IOU of 0.8 as the minimum threshold
when deciding if a predicted bounding box matched the ground truth.

Going beyond these similarities however, the information is so scarce, that
recreating evaluation setups from most papers becomes impossible. This lack of
clarity and standardized evaluation sets was also observed by Choudhury et al.
[4]. Even the most influential papers in the broader field of object detection like
[26] vaguely reference other work instead of giving a detailed description of their
evaluation setup. This makes it hard to know how exactly that referenced work
was applied when benchmarking new systems. Essentially, we had to resolve
three main ambiguities during the implementation of our automated annotation
evaluation system:

1. Mapping of bounding boxes between annotation sets.
2. Handling of misclassifications between Figures, Tables and Captions.

2 https://github.com/allenai/deepfigures-open, accessed on 15.09.2021
3 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist, accessed on 15.09.2021

https://github.com/allenai/deepfigures-open
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
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3. Evaluation of relations between captions and elements they describe (refer
to).

The first ambiguity was addressed by Liu and Haralick [21] by modeling the
task as an optimal assignment problem. This formulation entails two distinct
finite sets, K and L. These represent the two sets of bounding boxes we are
comparing. Let there also be a cost function for associating a k ∈ K with an l ∈ L
denoted with q(k, l) (Euclidean distance between the centers of two bounding
boxes in our case). The goal is to find an optimal assignment a : K → L, such
that the sum of costs for all one-to-one mappings is the smallest possible. If the
cost is a rational valued function, like in our case, the optimal solution(s) can
be found in O(N3) by applying the Hungarian algorithm [15]. The only change
that has to be made to the original problem formulation is to allow K and L to
have different sizes, since the prediction and ground truth sets do not necessarily
have the same cardinality.

Where our approach differs from [21], and by extension from [12], is the way
we handle classes and misclassification errors. In these two papers, detection
(localization) and classification errors are handled separately. For example, if
a predicted bounding box matches the ground truth in the IOU metric, but
its class is wrong, some points are still given. In our case, however, we run the
Hungarian algorithm for each class separately, meaning that a correctly detected
but misclassified element would incur both a false positive for the predicted class
and a false negative for the ground truth class. While our approach makes the
evaluation more strict, it simplifies the result, as each prediction can either be
entirely correct or incorrect.

In contrast, a more lenient approach is taken when assessing the correctness
of relation assignments between captions and tables or figures. More specifically,
we run the Hungarian algorithm for all classes together and match each bounding
box in one annotation set to its closest corresponding annotation in the other set
(if one exists). For every caption-figure/table pair, we then check if the reference
relation exists between their respective closest elements in the other annotation
set. A true positive is recorded if the corresponding pair of elements is linked in
the same manner. When assigning the closest corresponding element, misclassi-
fication or IOU do not play a role. Only the proximity between the center points
of bounding boxes is considered (Fig. 1). This design decision was made in order
to make evaluating the assignment of relations between elements less dependent
on the precision of drawn bounding boxes and their predicted classes.

We have made our implementation of the entire evaluation pipeline available
as a python package4 We encourage other researchers to contribute parsers and
exporters for a variety of tool outputs to it.

4 https://pypi.org/project/sci-annot-eval

https://pypi.org/project/sci-annot-eval
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Fig. 1. Example of a matching reference relation across annotation sets. Even though
the shape and class of the referenced element is not the same on both sides, we match
both bounding boxes by proximity and conclude that the reference relation has been
assigned in the same manner.

4 Building the SCI-3000 Dataset

Before starting with the acquisition of PDFs and the crowd-sourced annotation,
we set four properties that the dataset must fulfill:

1. The included scientific works must be published with a license that allows
redistribution.

2. The dataset should be relevant and useful as a training and benchmarking
aid to other researchers in the area of figure extraction.

3. The dataset should facilitate focus on scientific fields that have previously
been under-represented as targets of figure extraction research but have a
need for such systems.

4. Each scientific field considered in the dataset should have sufficient documents
to act as an individual validation dataset, able to produce performance met-
rics comparable based on statistical significance.

4.1 Data Source and Sampling

To obtain PDFs eligible for redistribution, we turned to the DOAJ5, a meta-
repository hosting millions of open-access publications under the CC BY-SA 4.0
license. DOAJ gives access to the metadata of all indexed work, including journal
language, year of publication, and field of research according to the Library of

5 https://doaj.org/

https://doaj.org/
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Congress Classification Scheme (LCC)6. The following decisions were made when
downloading the papers: (i) to ensure that all papers are in English, we omitted
papers from journals that are indicated as publishing papers in languages other
than English; (ii) for papers that list multiple fields of research, we took the first
field listed as the main one; and (iii) we used the fields at the second level of
the LCC hierarchy and mapped all classifications to this level (except for papers
that only provided classifications at the top level).

We included the research fields of computer science and biomedicine due to
the existing extensive related work on POD in these areas.

For the further fields, the results of a meta-study [31] on the number and
sizes of figures and captions in scientific publications across different research
areas helped us identify research fields with an above-average number of per-
page figures and caption lengths. We also identified fields in which at least some
initial work on POD has been done.

Praczyk et al. [25] focused on the automatic extraction of figures from
the field of high-energy physics. When referencing physics in the previously-
mentioned meta-study [31], the authors found that the field has an above-average
number of figures (0.8 compared to 0.7), charts (5.7 versus 3.6), as well as cap-
tion length (468 characters versus 411), which further reinforces the field as a
relevant target of figure-caption extraction approaches.

Choudhury et al. [4] describe an end-to-end figure-caption extraction and
search engine system for chemistry. In the meta-study [31], the authors found
a slightly above-average number of graphs per paper (3.7 compared to 3.6), as
well as caption length (416 versus 411 characters), though the number of images
is significantly lower than the mean (0.3 compared to 0.7).

Kuzi et al. [18] explored the use of their system FigExplorer in support-
ing mechanical failure diagnosis. Referencing the meta-study [31], the field of
mechanical engineering has more than double the average number of charts per
paper and almost five times more images than the mean; however, the average
caption length lies significantly under the mean (119.8 characters compared to
411). Looking at other similar fields, we noticed the same trend, even more pro-
nounced. Therefore, we decided to generalize by including the entire first-level
classification of technology (T) from the LCC in our dataset.

To summarize, we have identified five research fields for which figure extrac-
tion is critical: computer science, medicine, physics, chemistry, and technology.
We equally split the entire corpus into these five research fields and sample
3000 documents, containing 34,791 pages in total. Rasterized versions of these
pages were created using version 22.02.0 of Poppler7, using the default media
box cropping. We limited the maximum number of pages per paper to 20 to
prevent a sampling bias towards longer publications, which would reduce the
variety of visual styles in the dataset. Note that some of the sampled papers
are cross-discipline, belonging to more than just one of the five selected research
fields.

6 https://www.loc.gov/catdir/cpso/lcco/
7 https://poppler.freedesktop.org/, accessed on 24.04.2023

https://www.loc.gov/catdir/cpso/lcco/
https://poppler.freedesktop.org/
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4.2 Data Annotation

We go into detail on how we used Amazon Mechanical Turk (AMT) to crowd-
source the annotations of the 34,791 pages. The annotation tool used in this
process is available on GitHub8

Task Specification. Our task is defined as follows: Bounding boxes have to
be drawn around figures, tables and their corresponding captions in rasterized
document pages. In addition to determining their location and size, the element
to which each caption refers needs to be established. A reference relation has
the cardinality of 1:1, meaning that captions refer to a single element and vice-
versa, although ones without a reference relation are also allowed. While this
should not come up in the context of an entire document, focusing on one page
at a time makes elements without a reference possible if they refer to each other
across pages [19], like a figure whose caption is on the following page. Another
case where this might happen is if a table or figure is broken into multiple parts
to fit on one page. Although the problem could be solved by assigning multiple
bounding boxes to one element, it makes the system needlessly complicated, so
in our formulation of the task, the caption always references its closest part of
figure or table it describes, while all others are considered separate elements
without a reference.

Submission Review Policy. To ensure that submissions are accepted and
rejected consistently and to asses the quality of our dataset, we designed a clear
and transparent submission review process. We describe this process and explain
how it was used to build a pool of workers for our task.

Our previous experience with AMT has shown that picking a few top workers
to annotate the entire corpus is more efficient than opening the task for everyone
and manually reviewing erroneous submissions. To rank workers, we built a
scoring system by giving a worker one point each time a submission was manually
verified as correct by us and subtracting five if it was rejected. This grading
disparity is motivated by the fact that around half of the pages have no elements
to annotate. Making the reward and penalty equal would make the score a
less meaningful indicator of the quality of work. In terms of review criteria, we
aim to be fair and only reject submissions that are intentionally wrong. For
example, assigning random bounding boxes, skipping clearly visible elements,
and submissions that violate our instructions. In cases where less severe mistakes
are made, like imprecise bounding boxes, we simply correct the submission.
In such cases, the worker is still compensated after 72 h without rewarding or
discounting points.

8 DOI: 10.5281/zenodo.7878627
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To build a pool of qualified workers, we submit pages to AMT in batches
of 100 and wait until they are all worked through. At this stage, each page is
annotated by only one person and subsequently reviewed by us. The batching
is done to avoid a small number of workers speeding through all of the possible
assignments hoping they would get the payment without review. Since it would
be infeasible for us to manually review all thirty-four thousand pages, once the
qualified worker pool reaches around 15 members, we start the main annotation
phase by posting more tasks and letting two annotators label each page. We set
a threshold using AMT’s Qualification feature so that only workers with over a
certain number of points could see and work on them.

Manual disagreement resolution would only be needed when two submissions
for the same page have not passed the automated evaluation procedure. It works
by first cropping the whitespace in every bounding box and then applying the
evaluation framework described in Sect. 3, with an IOU threshold set to 95%.
We have released our system for administrating annotation by AMT on GitHub9

Task Pricing. To help us determine a fair compensation amount, we turned to
observational studies of the crowdsourcing marketplace. Two in-depth studies
by Hara et al. [9,10] used an opt-in browser plugin to collect metadata for
3.8 million task instances from AMT, including the compensation. They found
that, once unpaid work like searching for tasks was accounted for, the mean
and median hourly wages were $3.31/h and $1.77/h, respectively. With this way
of calculating wages, only 4% of workers earned more than the U.S. federal
minimum wage of $7.25/h. Ignoring the unpaid work, the median and mean
wages rise to $3.18/h and $6.19/h, respectively. Splitting the earnings by task
type, the authors found that the task of image transcription, which is closely
related to our work, is by far the lowest-paid task type on the platform, with
a median wage of $1.13/h, while at the same time having the most instances
compared to other types.

With the above-mentioned findings in mind, we settle on a price around the
U.S. federal minimum wage of $7.25/h, which we believe is fair considering that
the task does not require any special qualifications. The workers are paid per
annotated page.

After settling on an hourly wage, we measure the median time needed to
annotate a single page and use the result to infer the final compensation amount
per page. We enlisted three volunteers that have never done this task or used our
tool to annotate 40 pages each. The average annotation time measured in this
experiment was between 20 and 35 s. Therefore, we set the payment per page to
$0.04.

Annotation Results. The crowd-sourced annotation process was started by
building a pool of qualified workers. The threshold for the worker score was
set to 25 and stayed in that range during the entire run. This distilled about

9 DOI: 10.5281/zenodo.7878638
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Table 1. Annotation statistics by research field.

Research Field Page Count Figures Tables Captions Empty Pages

Chemistry 7,664 3,880 1,226 5,092 3,981

Computer Science 7,796 4,277 1,784 5,999 4,244

Medicine 6,144 1,752 1,431 3,147 3,872

Physics 5,520 4,025 683 4,703 2,576

Technology 7,667 4,448 1,613 6,027 3,793

Total 34,791 18,382 6,737 24,968 18,466

15 workers out of the 164 from the phase where each submission was manually
reviewed from our side. As the second stage, where each page was annotated by
two workers, took us three weeks, a few more runs of single-worker annotations
were performed to increase the size of the worker pool. At the end of the process,
we had 241 workers and 62,100 submissions but only 20 workers were responsible
for more than 90% of them.

77.8% of all annotations in our dataset were the case where a page was anno-
tated by two workers and their submissions passed our automatic evaluation
procedure (IOU between the annotations greater than 95%). Since those sub-
missions were nearly identical, a random one was picked as the final annotation
in our dataset. The second group of annotations, at 16.4%, resulted from either
in-house annotation or corrections to submissions from the initial annotation
phase (one worker per page). The final 5.7% are disagreements between workers
that we manually resolved by either picking the correct submission or amend-
ing annotation mistakes. When taking into consideration only pages that were
annotated by at least two workers, we derive an inter-annotator agreement of
93.1%.

Throughout the experiment, workers would send requests to overturn our
rejections of their submissions. We handled each of these on a case-by-case basis
and always made sure to explain what was wrong with the submission and why
we rejected it. In total, our rejection rate was less than 1%, most of which were
submissions from the initial pool-building stage.

When analyzing the working time, our initial estimates were correct, as the
average time per task was just over 22 s.

A per-field breakdown of the annotated objects is shown in Table 1. The entire
annotated dataset contains 18,382 figures, 6,737 tables, and 24,968 captions.
Roughly every second page has contains one annotation.

All annotations in the published dataset have had white space surroundings
cropped to make them as precise as possible. Full details on all aspects of the
dataset are available in the thesis10 on which this paper is based.

10 https://doi.org/10.34726/hss.2022.94800

https://doi.org/10.34726/hss.2022.94800
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5 Evaluation

We test the performance of two existing approaches for figure, table, and caption
extraction from scientific publications on the SCI-3000 dataset.

5.1 Evaluated Approaches

Approaches in this research field of POD can be classified on a spectrum between
rule-based systems on one end and machine-learning-based ones on the other.
Between them are systems using both approaches in various proportions. The
best representative of the rule-based group in terms of impact is PDFFigures
2.0 [5]. This system by Clark and Divvala (including the first version [6]) was
referenced by a significant number of papers in the field [4,16,18,19,29–31,33,
36].

As a representative approach for figure extraction using machine learning,
we selected DeepFigures [30]. This system was trained on the largest dataset for
our task currently available, containing over a million papers and over 5.5 mil-
lion labels. Additionally, the dataset contains works from several fields, includ-
ing biomedicine, computer science, biology, and physics. This should make the
model more robust than PDFFigures 2.0, which was fine-tuned only on computer
science papers. A possible drawback of DeepFigures in the context of our com-
parison is that it uses PDFFigures 2.0 for detecting and assigning captions to
graphical elements, meaning that both systems share the same approach for this
sub-task. The authors justify this decision by the way of reduced performance
when the model is trained to also identify captions, although they describe a
different design that could produce a neural network capable of performing both
sub-tasks equally well.

5.2 Experiment Setup

To compute predictions from the selected systems, their respective source codes
were downloaded from GitHub1112.

During the benchmarks, both systems had difficulties with some documents
because of special PDF features or encodings. We skipped thirteen PDFs for
Deepfigures and four for PDFFigures 2.0. A lack of output was considered as
an empty prediction, meaning that a false negative prediction is counted for
each ground truth annotation in skipped documents. We ran both systems on a
machine with 8 AMD EPYC 7542 cores, 8 GB of memory, and around 300 GB of
storage. PDFFigures 2.0 took three hours to complete, and Deepfigures needed
more than 72. However, our aim is not to compare runtimes, and therefore, we
have not used any optimizations that could improve these results.

For the actual evaluation process, we use the strategy described in Sect. 3 to
get True Positive (TP), False Negative (FN), and False Positive (FP) per-page

11 https://github.com/allenai/pdffigures2, accessed on 15.05.2022
12 https://github.com/allenai/deepfigures-open, accessed on 15.05.2022

https://github.com/allenai/pdffigures2
https://github.com/allenai/deepfigures-open
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Fig. 2. F1 Score comparison between PDFigures 2.0 and DeepFigures for the task of
figure detection. The bars represent average F1 scores grouped by research fields, while
the dotted lines represent overall averages.

counts for four element types: figures, tables, captions and references between
captions and their corresponding elements at an IOU of 0.8. From these counts,
we derive the key evaluation metrics: Precision, Recall, and the F1 score.

The metrics are calculated per element type and research field. We use the
macro-averaging strategy for any averages displayed in the next section by first
computing the mean inside each element group and then using the results to
derive the overall average. Because there is a caption for almost every graphical
element and a reference relation between each caption and a figure/table, com-
puting averages over all element types in one step (micro-averaging) would skew
the performance metrics towards these two larger groups. The same reasoning
is applied to research fields, as the amount of graphical elements varies between
them.

5.3 Results

An in-depth breakdown of performance metrics is provided in Table 2. We guide
the reader through these results in a visual manner, starting with figure-specific
performances.

As shown in Fig. 2, there is a substantial performance difference between
PDFFigures 2.0 and DeepFigures regarding figure detection. The former reaches
an F1 score of 0.68, while the latter does better, with a score of 0.79. The
hand-tuned nature of PDFFigures 2.0 can also be seen in the difference in its
performance across different research fields. The system seems to struggle with
publications in the fields of chemistry and technology, while physics publications
seem to be a better extraction target than computer science: the field for which
the system was optimized. On the other hand, DeepFigures shows a similar F1
score across all research fields.

Moving to table detection (Fig. 3), a similar discrepancy can be seen between
the two systems, as both reach almost the same scores for extracting figures,
demonstrating the similarities between those two tasks. This time, however,
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Table 2. Evaluation results for PDFFigures2 and DeepFigures

PDFFigures2 DeepFigures

Research Field El. Type F1 Prec Rec F1 Prec Rec

Average Average 0.68 0.75 0.62 0.79 0.84 0.76

Caption 0.52 0.51 0.53 0.52 0.56 0.48

Figure 0.70 0.83 0.60 0.88 0.95 0.81

References 0.81 0.88 0.75 0.95 0.95 0.95

Table 0.69 0.79 0.61 0.83 0.89 0.77

Chemistry Average 0.60 0.68 0.55 0.80 0.85 0.76

Caption 0.50 0.46 0.54 0.51 0.57 0.47

Figure 0.55 0.74 0.44 0.85 0.97 0.76

References 0.69 0.75 0.64 0.94 0.92 0.96

Table 0.67 0.77 0.60 0.88 0.93 0.84

Computer Science Average 0.71 0.79 0.65 0.75 0.82 0.70

Caption 0.54 0.55 0.53 0.52 0.58 0.47

Figure 0.75 0.87 0.66 0.84 0.93 0.76

References 0.87 0.94 0.81 0.94 0.95 0.92

Table 0.70 0.81 0.61 0.72 0.81 0.65

Medicine Average 0.67 0.77 0.61 0.82 0.86 0.78

Caption 0.53 0.53 0.53 0.54 0.58 0.51

Figure 0.68 0.83 0.57 0.90 0.95 0.85

References 0.81 0.90 0.73 0.97 0.98 0.97

Table 0.68 0.81 0.59 0.85 0.93 0.79

Physics Average 0.76 0.81 0.72 0.84 0.87 0.81

Caption 0.60 0.59 0.60 0.60 0.63 0.58

Figure 0.86 0.93 0.80 0.93 0.97 0.90

References 0.92 0.96 0.88 0.98 0.98 0.97

Table 0.67 0.77 0.59 0.85 0.91 0.80

Technology Average 0.64 0.71 0.59 0.76 0.80 0.73

Caption 0.43 0.40 0.46 0.42 0.46 0.39

Figure 0.65 0.80 0.55 0.86 0.95 0.79

References 0.77 0.84 0.72 0.94 0.93 0.94

Table 0.71 0.79 0.64 0.83 0.87 0.79

PDFFigures 2.0 reaches consistent results across research fields. On the other
hand, DeepFigures underperforms on publications from computer science.

For the task of detecting correct references between captions and
tables/figures, both systems performed better than in the previous two (Fig. 4).
DeepFigures achieves a precision and recall of 0.95, indicating that even when
the underlying bounding boxes do not perfectly overlap with the ground truth,
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Fig. 3. F1 Score comparison between PDFigures 2.0 and DeepFigures in the task of
table detection. The bars represent average F1 scores grouped by research fields, while
the dotted lines represent overall averages.

Fig. 4. F1 Score comparison between PDFigures 2.0 and DeepFigures for the task of
reference assignment between captions and tables or figures. The bars represent average
F1 scores grouped by research fields, while the dotted lines represent overall averages.

the system has a good idea of which elements reference each other. PDFFigures
2.0 achieves an average precision of 0.87 and an average recall of 0.75. The sys-
tem shows similar performance across research fields for the figure extraction
task, suggesting that its reduced performance in reference matching arises from
its inability to consistently detect figures.

For caption detection, PDFFigures 2.0 and DeepFigures reach an F1 score of
around 0.5. We skip a direct comparison between the systems for this sub-task, as
DeepFigures relies on the output of PDFFigures 2.0, making their performance
nearly identical. The reason for this performance drop compared to other sub-
tasks is that PDFFigures 2.0 often produces caption bounding boxes that do not
enclose the entire caption (see example in Fig. 5). This difference is small when
considering the absolute area of the boxes; however, the small size of captions
makes the relative difference significant enough, that the prediction does not pass
an IOU threshold of 0.8. This problem was cited by the authors of DeepFigures
[30] as one of the main hurdles in the neural network training process and was
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Fig. 5. Example of an imprecise caption bounding box produced by PDFFigures 2.0,
compared with our annotation.

the reason why they decided to use PDFFigures 2.0 as the underlying caption
extraction mechanism. The authors of PDFFigures 2.0 even reported this as
an issue in the evaluation phase and used OCR-ed text as a fallback matching
technique [5]. The problem could be fixed by snapping the bounding boxes to a
grid in order to make them less sensitive to changes, but that introduces another
variable to the evaluation process. In our case, the F1 metric for the reference
detection task shows that PDFFigures 2.0 is effective at detecting captions but
ineffective at precisely defining their bounding boxes.

6 Conclusion

We addressed one of the most prevalent problems currently plaguing research
on figure, table, and caption extraction from scientific PDFs: the lack of a large,
cross-discipline, and easily-accessible dataset. We published SCI-3000: a novel
dataset of annotated scientific publications from five research areas: computer
science, biomedicine, chemistry, physics, and technology. Two state-of-the-art
figure, table, and caption extraction methods were evaluated on our dataset,
using an evaluation protocol we made publicly available as a python library.

The SCI-3000 dataset not only surpasses most of its predecessors in size and
scope by incorporating new scientific fields, but also provides source publica-
tions in PDF format, made possible by the permissive licensing of the sourced
PDF articles. This characteristic makes the dataset viable for extension and re-
publication, for example, by adding new annotations for elements like equations
and paragraphs. An alternative future research path would be to make the avail-
able annotations more specific, for example, by classifying figures into different
types such as graphs, light-photography, or biomedical images.

Our evaluation of state-of-the-art methods showed that there is still room for
improvement, especially for the task of caption detection. Therefore, developing
more effective extraction and caption detection methodologies is another viable
path for future research.
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Abstract. Named Entity Recognition (NER) on handwritten docu-
ments is often approached as a decoupled process where Handwritten
Text Recognition (HTR) is used to obtain a transcription and classic
NER techniques are applied to this transcription. This approach is error-
prone due to the noisy nature of the HTR output. On the other hand,
coupled approaches, where HTR and NER are simultaneously performed,
have been proposed. These coupled approaches still have difficulties to
obtain consistent tagging in certain tasks because of long-term dependen-
cies between opening and closing tags. In this paper we propose the usage
of a Finite State Automata (FSA), which acts as a tagging template dur-
ing the decoding stage of a coupled HTR-NER system to syntactically
constrain the output. This ensures consistent tagging and improves the
performance of the base system with a substantially smaller computa-
tional cost compared to other output-constraining methods.

Keywords: Named Entity Recognition · Historical documents ·
Consistent tagging · Computational cost

1 Introduction

Historical archives are vulnerable to degradation as time goes on. Consequently,
digitization of their contents is a powerful tool to keep their data available for
humankind and allow their research. However, having raw data (digitized images)
could be insufficient to work with. Therefore, additional processes, such as tran-
scription of their documents or detection of relevant entities in them, are usually
performed.

In this context, the objective of historical Handwritten Text Recognition
(HTR) [20] is to implement systems to obtain accurate transcriptions from
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scanned pages of historical documents. This technology can help preserve ancient
documents and make them more accessible for future research. Historical HTR
is a mature but open area of study, as the present technology can give good
results but still has to deal with the challenges associated with each corpus [2].

However, there are some tasks in which obtaining a perfect transcription is
not necessarily the objective. In these cases, the goal is to perform some kind of
information retrieval from the images, targeting specific fields within the records
[17]. A way to solve this problem is to rely on Named Entity Recognition (NER)
[13], which is a process that allows the identification of parts of text based on
their semantic meaning, such as proper names or dates.

The majority of NER technology employs Natural Language Processing
(NLP) models [11,30]. These models are usually trained from clean text, which
makes them susceptible to input errors. This is especially significant for hand-
written documents since automatic transcription by using HTR systems is not
free of errors. However, there are works in which NER is performed directly over
sequences of text images [19] without text recognition.

The alternative approach is to perform both tasks with the same model,
known as the coupled approach. The output of this coupled approach is the
transcription of the text along with the tags that help identify and categorize the
Named Entities. While most of these proposals achieve a better transcription and
NER due to the avoidance of error propagation [4,5], they sometimes provide
inconsistent NER tagging, i.e., sequences of tags that do not fit the correct
tag syntax. Some recent research has dealt with the production of consistently
tagged hypotheses [24] by performing additional decoding steps, although with
high computational overhead.

This work aims to obtain precise transcriptions and to efficiently perform
consistent NER tagging in the same process. The main contribution of our work
is the usage of a Finite State Automata (FSA) to syntactically restrict the sys-
tem’s output. The proposed decoding process ensures consistent tagging and,
as a result, improves the model’s performance. This decoding process introduces
substantially less overhead compared to other output-constraining processes [24].

Our work approaches the task of historical HTR and NER over the HOME
corpus [4], a multilingual and multi-author historical document database. The
employed corpus poses additional challenges due to its unique tagging of Named
Entities, in which nested entities appear frequently.

The rest of the paper is structured as follows. Section 2 reviews works related
to this one. Section 3 overviews the employed architecture and describes the
error avoidance strategies that have been considered. Section 4 describes the
experimental methodology followed and discusses the obtained results. Lastly,
Sect. 5 concludes the paper by remarking the key takeaways.
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2 Related Work

When approximating the task of obtaining transcription and tagging entities in
scanned documents, one initial idea could be to use HTR to obtain the tran-
scription of the document and then employ NER techniques on the HTR output.
This is known as the decoupled approximation [1,14]. In contrast, the coupled
approximation tries to obtain the transcription and tagging of the document in
a single step.

As presented above, the decoupled approximation has an error propagation
problem caused by the noisy nature of the HTR output and the input require-
ments of the standard NER techniques, which expect clean text. Consequently,
recent approximations [4,5,22] have shown that the coupled approach improves
transcription and tagging performance by avoiding this mismatch between HTR
output and NER input. This is well-known in other tasks such as NER from
speech recognition [8].

Nevertheless, it is necessary to point out that recent decoupled approxima-
tions, such as those presented in [1,14,23], still obtain good results by using
pre-trained word embeddings (such as those obtained from BERT [6]) on the
HTR output. These sequences of embeddings are used for tagging, generally by
using a Conditional Random Field model [9]. Other NER techniques are pre-
sented in [26,29].

In contrast, the coupled approximation [4] employs an HTR architecture
adapted to the NER task. This adaptation consists of adding the tagging symbols
to the alphabet of the model, which is included in the Convolutional Recurrent
Neural Network (CRNN) responsible for the HTR transcription. This way, the
HTR model can deal with Named Entity tagging during the decoding process.
Although CRNN is one of the most popular models for this process, recent
approaches have proposed the Transformer architecture [27] as well for HTR
decoding.

However, current HTR models have difficulties in learning the long-term
dependencies between opening and closing tags imposed by the parenthesized
tagging syntax, especially for complex tasks with many categories and where
nested tags may appear. This is the example of the HOME corpus and why
consistency techniques are necessary to provide a consistent tag output [24].

3 Framework

3.1 Characteristics of the Task

As said above, the task we are dealing with is HTR and NER on a multilin-
gual historical corpus [4], the HOME dataset. In this dataset, the inputs are
colored images, and the expected output is the transcription of the contents of
the handwritten text in the image, along with their corresponding Named Entity
tags.

HOME is annotated using parenthesized notation for the Named Entities
[4,5]. Therefore, opening and closing tags are required for each Named Entity.
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This notation, in turn, increases the tagging process’s complexity, particularly
by enabling the appearance of nested Named Entities. For example, inside a
proper noun entity, the name of a location may appear, causing the words of the
place to pertain to the proper name as well. When decoding these nested tag
structures automatically, the model must consider syntactic constraints on tag
order (i.e., an opening and closing tag must match adequately). To the best of
our knowledge, HOME is the only corpus reported in the literature where this
phenomenon appears. Figure 1 contains an example of this type of productions.

Ja <persName> Oldrzych z <placeName> Hradczie
</placeName> </persName> wyznawam tiem to listem wssyem,
ktoz gey uzrzye neb cztucz usslyssye, tak jakoss sem prodal

Fig. 1. An example of a location Named Entity nested inside a proper name Named
Entity in a Czech line transcription.

Another problem comes from Named Entities that span over several lines.
To solve this problem, keeping the context of previous lines to the one currently
being processed would be necessary. In our case, since we are dealing with HTR
and NER at line level, we assume that Named Entities that would remain open
at the end of one line are automatically closed at the end of that line. This
simplifies the problem and allows us to focus our efforts on the nested Named
Entities challenge.

3.2 A Coupled Approach for HTR and NER

The formal definition of the coupled HTR and NER decoding starts from the
classic probabilistic definition of the HTR problem. In HTR, given a text line
image as input, the most likely word sequence, ŵ = ŵ1ŵ2...ŵl, is searched given
the feature vector input sequence, x = x1x2...xm, obtained from the input line
image. Thus, it is a search problem in the probability distribution p(w | x):

ŵ = argmax
w

p(w | x) (1)

If we consider the tagging sequence t = t1t2...tl, related with the word
sequence w, as a hidden variable in Eq. 1, we obtain the following equation:

ŵ = argmax
w

∑

t

p(w, t | x) (2)

If we follow the derivation presented in [4] and search for the most probable
tagging sequence t̂ during the decoding process, the resulting equation is:

(ŵ, t̂) ≈ argmax
w,t

p(x | w, t) · p(w, t) (3)
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If the information present in t is merged with the transcription w we obtain
the tagged transcription h, resulting in the following equation:

ĥ ≈ argmax
h

p(x | h) · p(h) (4)

Equation 4 is similar to that of the original HTR problem. The main differ-
ence is that the hypothesis ĥ to be generated contains the most likely transcrip-
tion and tagging. Therefore, we estimate both the optical probability, p(x | h),
and the syntactical probability, p(h), to perform the search for the best hypoth-
esis. We decided to implement a decoding architecture based on a Convolutional
Recurrent Neural Network (CRNN) [28] to estimate the optical probability and
on a character n-gram to estimate the syntactical one. Both models are combined
following the approach introduced in [3].

3.3 Ensuring Consistent Tagging

Syntactical Errors at Named Entity Level. When decoding HTR and NER,
the ideal system should be able to correctly tag Named Entities by enclosing
them between the corresponding opening and closing tags, apart from obtaining
a perfect transcription of their words. Nested entities should be opened and
closed in the correct order (closing the last pending opening tag), and no nested
entities of the same category may appear.

Thus, given these conditions, some errors may happen, which consist of syn-
tactically wrong sequences at the Named Entity level. Those errors include incor-
rect closing of nested tags, tags that remain open at the end of the line, closing
tags without a matching opening tag, and sequences of nested Named Entities
of the same type. Consequently, the proposed error-correcting strategies try to
discard these syntactic errors.

Exploration of the n-Best Hypotheses. In order to avoid syntactical errors,
it is possible to improve the decoding process by restricting the output. Instead
of obtaining the best hypothesis during the decoding phase, the authors of [24]
obtain the lattice, a graph containing a sizeable number of hypotheses, using
Kaldi [15]. This graph is then pruned to obtain a smaller version containing only
the n-best outputs, n being a parameter that can be adjusted. The sequence
of the n-best hypotheses for an input line can be obtained from this reduced
lattice.

The decoding process for a line is an exploration from the 1-best hypothesis
to the n-best. In such exploration, each hypothesis is reviewed by performing a
left-to-right analysis to detect syntactical errors. If the current i-best hypothe-
sis contains a syntactical error, it is rejected, and the exploration follows with
the hypothesis i + 1. This search for the best valid hypothesis finishes when a
hypothesis without syntactical errors is found. For some lines, the correct output
may be deep in the lattice; consequently, a large enough number of hypotheses n
should be considered to obtain such output. This results in a significant overhead
during the decoding process.
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It may also happen that no error-free hypothesis is found among the n-
best hypotheses. This exception should happen less often as the parameter n
increases, but there is no possibility of knowing it beforehand, so it must always
be considered as possible. In those cases, the policy chosen by the authors in [24]
is to keep the 1-best hypothesis as the selected output. Therefore, the result of
this decoding process will be the best valid hypothesis for each line or, in case
of not finding any correct output, the one with the highest probability.

Pruning the Lattice with a Tagging Template. In this work, we propose a
more refined approach that includes a prior probability to indicate the correct-
ness of the tagged hypothesis during the decoding process. That is possible if,
starting from Eq. 4, we model the probability p(h) as the product of the prob-
ability given by the character language model, pL(h), and the probability given
by a tagging template, pT (h). The resulting equation is:

ĥ ≈ argmax
h

p(x | h) · pL(h) · pT (h) (5)

In order to model pT (h), we analyzed the syntax of the tagged data. Our
study revealed that the set of all possible outputs is a regular language, since
no example of two nested tags of the same category was found within the
tagged samples. Therefore, we could represent said language with a Finite State
Automata (FSA). Even though the output language is complex, we can give
some insight into how it is defined and, therefore, into how to build the FSA.

First, let us assume the alphabet Σ and three regular languages P , D, and
O that represent different types of Named Entities.

Σ = {a, ..,Z, 0, .., 9}
P = {<persName>s</persName> | s ∈ Σ∗}

D = {<date>s</date> | s ∈ Σ∗}
O = {<orgName>s</orgName> | s ∈ Σ∗}

We can define the operation � between two different languages, e.g. P and
D, describing Named Entities such that the productions of the second may be
nested in the transcription of the first. This allows the production of more than
one entity of the nested category inside the root entity. This behavior is intended
since we found multiple appearances of this phenomenon in the chosen task. An
example of this operation would be:

P � D = {<persName>s</persName> | s ∈ (Σ∗ ∪ D)∗}

The resulting FSA for this case can be seen in Fig. 2.
As we can see, the resulting language is regular. The operation is right asso-

ciative and it can be applied to languages resulting from the union of languages
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Fig. 2. FSA resulting from the operation P � D.

that describe Named Entities. For example:

(P � D � O) ∪ (P � O � D) = (P � (D � O)) ∪ (P � (O � D)) =
P � ((D � O) ∪ (O � D)) =

{<persName>s</persName> | s ∈ (Σ∗ ∪ ((D � O) ∪ (O � D)))∗}

Using the nesting operation and the union, we can define the output language
as the union between Σ∗ and every permutation without repetition of nested
Named Entities. There are five types of Named Entities in the chosen corpus,
leading us to 325 possible permutations of different lengths: 5 for one type, 20 for
two types, 60 for three types, 120 for four types, and 120 for five types. Figure 2
shows a two-type permutation example. The output language has been modelled
with a FSA with 205 nodes and 17715 edges.

In order to use the FSA that describes the output language as a tagging
template, we set the weight of each node edge to 1. With this, the score for
sequences accepted by the FSA will remain unchanged. On the other hand,
sequences not belonging to the output language will have their score set to 0.

If we rescore the lattice with this model, we successfully discard every syntac-
tically wrong sequence. From this pruned lattice, the 1-best hypothesis is the best
syntactically correct hypothesis. It may happen, however, that the lattice does
not contain any correct path. In those exceptional cases, we automatically cor-
rect the 1-best hypothesis from the original lattice by applying some heuristics,
guaranteeing consistent tagging. The considered heuristics are: ignoring closing
symbols of unopened Named Entities, closing Named Entities before reading an
opening symbol of the same category or upon line ending, and using a stack to
ensure that nested Named Entities are closed in the inverse order in which they
were opened.
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3.4 Evaluation Metrics

Several metrics have been used to assess the performance of our proposal: Char-
acter Error Rate (CER), Word Error Rate (WER), Precision, Recall, F1 Score,
Entity Character Error Rate (ECER), and Entity Word Error Rate (EWER).
ECER and EWER, presented in [24], take into account the Named Entity tag-
ging error along with the inner words transcription quality. Consequently, our
focus will mainly be the improvement of the ECER and EWER scores com-
puted, for each line, as the edit distance between the sequence of recognized and
transcribed Named Entities and the sequence of Named Entities in the ground
truth.

We will also evaluate the system’s performance in terms of computational
cost. As such, we will compare the overhead introduced by each decoding strategy
without considering the time it takes to generate the original lattice, which
contains a large number of hypotheses generated by the base model. This step
is not accounted for since it is necessary to apply the n-gram character language
model, so it can be considered as a part of the baseline decoding strategy.

4 Experimental Method

4.1 HOME Dataset

Experimentation has been carried out with the HOME corpus. This corpus is
composed of handwritten medieval charters, including 499 letters written by sev-
eral authors in three different languages: Latin, Czech, and German. Despite its
ancient nature (letters date from 1145 to 1491), the contents are well preserved.
A more detailed description of the dataset can be found in [4].

We followed the same experimental scheme as in [24], which is similar to that
presented in [4]. Therefore, the available data is split into three parts: a training
set with 80% of the charters, a validation set with 10% of the letters, and a
testing set with the remaining 10%. Table 1 presents the details on how data is
partitioned.

Throughout the corpus, we can find five types of Named Entities: the name
of a person, the name of a place, a date, the name of an organization, and an
extra miscellaneous category for Entities that do not match any of those types.
Therefore, the model must be able to generate the corresponding opening and
closing tags for each type of Named Entity, which is a total of 10 additional
symbols. However, the number of different syntactical structures that can be
generated is significant due to the appearance of nested Named Entities.

During previous experimentation, other authors [4,14] assumed different sim-
plifications over the original problem. In [4], nested tagging sequences were
removed and Named Entities spanning over different lines (Continued Entities)
were split so that their occurrences were always contained within single lines.
In [14], the authors kept the Named Entities that spanned over different lines
but assumed a simplification over nested Named Entities. In the case of nesting,
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Table 1. HOME dataset split, equal to that proposed in [4].

Number Czech German Latin All

Train pages 161 138 99 398

lines 2,905 2,556 1,585 7,046

tokens 52,708 60,427 28,815 141,950

N. Entities 4,973 6,024 2,809 13,806

Validation pages 21 18 12 51

lines 300 252 150 702

tokens 5,997 5,841 2,467 14,305

N. Entities 440 461 188 1,089

Test pages 20 17 13 50

lines 381 388 229 998

tokens 6,891 9,843 3,995 20,729

N. Entities 467 744 295 1,506

the authors “flattened” the Entities, splitting the parent and the nested tagged
sequences into two separate Named Entities.

Our solution employs a coupled model that works at line level. Therefore, we
will maintain the simplification of splitting the Continued Entities, as not doing
so would lead to a noticeable performance decrease. However, we forgo the other
simplification and guarantee syntactical consistency with nested Named Entities.

4.2 Implementation Details

The architecture of the system is based on the coupled approach presented in
Sect. 3.2. The only preprocessing steps applied to line images are scaling to 64
pixels of height, contrast enhancement, and noise removal, as described in [25].

The optical model is composed of a CRNN with four convolutional layers,
where the n-th layer has 16n 3 × 3 filters, and a Bidirectional Long Short-Term
Memory (BLSTM) unit of three layers of size 256 plus the final layer with a
Softmax activation function. The rest of the hyperparameters have the same
values that were used in [16]. This model is implemented and trained with the
PyLaia toolkit [12], which was regarded as one of the best HTR toolkits in [10].

The employed language model is a character 8-gram with Kneser-Ney back-
off smoothing. The estimation of its probabilities was done with the SRILM
toolkit [21] by considering the tagged transcriptions in the training partition.

The optical model and the language model are combined into a Stochastic
Finite State Automata (SFSA) with the Kaldi toolkit [15]. Some additional
parameters (such as Optical Scale Factor and Word Insertion Penalty) were
tuned over the validation partition using the Simplex algorithm provided by
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SciPy1. The final SFSA is used to obtain the hypothesized transcription for
each test line. Our code is available at https://github.com/DVillanova/HTR-
NER.

4.3 Experimental Protocol

We have replicated the experiments performed by [24] and obtained similar
results with both the baseline model and the n-best decoding strategy. In order
to compare the performance of the FSA tagging template to the n-best decod-
ing, we have evaluated both strategies using the same hardware and considering
the time it takes to generate the 998 test hypotheses from the same lattice gen-
erated by the baseline model. We do not consider the time it takes to generate
and compile the FSA tagging template, as it can be done prior to the decoding
process and is not dependent on the size of the dataset.

4.4 Obtained Results

Table 2 shows the best results obtained with each approach. The first column
reports the results obtained with the baseline version of the coupled approach.
The second column shows the best results obtained with the n-best decoding
strategy. Lastly, the third column presents the results obtained with the usage
of the proposed tagging template.

Table 2. Reference results and evaluation scores of the best proposed models, with
95% confidence intervals. Consistency stands for the percentage of syntactically correct
line hypotheses within the 998 test samples.

Metric Coupled model (baseline) [24] Coupled model + 2500-best decoding [24] Coupled model + tagging template

CER (%) 9.23 ±1.80 9.24 ±1.80 9.53 ±1.82

WER (%) 28.20 ±2.79 28.14 ±2.79 28.86 ±2.81

Precision (%) 43.14 ±3.07 40.05 ±3.04 51.57 ±3.10

Recall (%) 37.58 ±3.00 39.97 ±3.04 39.11 ±3.03

F1 (%) 40.17 ±3.04 40.01 ±3.04 44.49 ±3.08

ECER (%) 31.94 ±2.89 28.69 ±2.81 29.31 ±2.82

EWER (%) 46.62 ±3.10 44.42 ±3.08 45.62 ±3.09

Consistency (%) 75.15 97.29 100.00

As we can see, using a tagging template provides very similar results to those
obtained with the n-best decoding strategy. There is a slight drop in transcription
quality, as we can observe from the CER and WER metrics, which happens
because we are selecting hypotheses with lower likelihood (deeper in the lattice).
This is similar to what would happen if we used a big number of hypotheses n
in the n-best decoding strategy. The difference, however, is not large enough to
be considered statistically significant.
1 The documentation for the employed Simplex implementation is available at:

https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html.

https://github.com/DVillanova/HTR-NER
https://github.com/DVillanova/HTR-NER
https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html
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Recall decreases because the number of True Positives is slightly lower than
with the n-best decoding. However, there is a statistically significant improve-
ment in terms of Precision, as the system produces around half the amount of
False Positives. As a result, there is an increase in the F1 score, although not a
statistically significant one.

Compromising transcription quality, together with the lower amount of
tagged Named Entities, results in a subtle decrease in ECER and EWER per-
formance. However, even with these results, the usage of the proposed tagging
template improves the base coupled model.

The main advantage of using a tagging template instead of the n-best decod-
ing is that consistency is guaranteed without tuning the parameter n. Even in
the exceptional case where no correct hypothesis is found, which happened three
times in the 998 test lines, the considered heuristics are enough to produce a
syntactically sound transcription. This, in turn, makes the overhead imposed by
the method only depend on the number of samples to decode. In contrast, it
would be necessary to employ a larger n with the n-best decoding in more com-
plex tasks, resulting in longer decoding times. Furthermore, the temporal cost
of the FSA rescoring is considerably smaller than that of the n-best decoding
when n grows past a certain threshold, as we show in Fig. 3.

Fig. 3. Comparison between the time to decode the 998 test lines with n-best decoding,
for different values of n, and with FSA rescoring. Note that the time to generate the
original lattice is not considered, as it is part of the baseline decoding process.

5 Conclusions

We have presented a technique to improve the performance of the coupled model
on a NER task with nested tagging. Using the proposed FSA tagging tem-
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plate ensures syntactical correctness while not adding as much overhead as the
previously explored techniques. Therefore, we consider the proposed method a
more viable solution when dealing with syntactical constraints in more extensive
databases. Even if we have achieved consistent nested tagging, the challenge of
dealing with Named Entities spanning over several lines remains. As future work,
it would be interesting to find a way to deal with the complete task, possibly
employing paragraph level recognition [7,18].
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Abstract. Hyphenated words are one of the most common challenges in
historical handwritten documents. For information retrieval, users issue
an entire-word query and expect to retrieve all occurrences of this word,
including the hyphenated ones. Thus, methods for predicting hyphen-
ated word fragments and joining them must be developed. In this paper,
we build upon and extend the work of Vidal and Toselli (2021) based
on probabilistic indexing. We propose a new probabilistic framework to
merge prefix/suffix word fragments into “combined spots”, searchable
through entire-word queries, and assess different techniques to estimate
the corresponding relevance (or “spotting”) probabilities. Additionally,
we also consider the use of a hyphenation tool to join these text fragments
at query time. We discuss the obtained retrieval results and storage cost
using either probabilistic indices or plain automatic 1-best transcripts.
The results show that it is possible to train a machine-learning system to
join prefix/suffix word fragments automatically, with good information
retrieval performance and reasonable storage usage.

Keywords: Hyphenated words · Probabilistic Indexing · Document
Retrieval · Handwritten Text Recognition

1 Introduction

One major problem when transcribing and/or indexing historical manuscripts is
the presence of hyphenated words. A hyphenated word (HypWrd) can be defined
as a word that, due to a line break, has been split into two text fragments (HwF).
These fragments account for the prefix and the suffix of the HypWrd respectively.
Some examples of entire and hyphenated words can be seen in Fig. 1.

Hyphenated words present a challenge due to a variety of reasons: first,
diverse hyphenation markup styles can be found in historical manuscripts, mak-
ing their recognition more difficult. Typically, hyphenation is denoted using a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 269–285, 2023.
https://doi.org/10.1007/978-3-031-41676-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41676-7_16&domain=pdf
http://orcid.org/0000-0002-5541-8231
http://orcid.org/0000-0001-6955-9249
http://orcid.org/0000-0003-4579-5196
https://doi.org/10.1007/978-3-031-41676-7_16


270 J. Andrés et al.

Fig. 1. Image region from a document of the Finnish Court Records collection. Prefix
and suffix HwF’s are marked in blue and orange, respectively. All the text tokens not
marked with a BB are entire words.

special symbol (such as “-”) at the end of the prefix. Nevertheless, this con-
vention is not necessarily followed in historical documents: there are documents
where this mark is found at the beginning of the suffix, others where it is both
at the end of the prefix and the beginning of the suffix and even documents
where there is no hyphenation mark at all. Furthermore, there are also other
possible hyphenation symbols such as “=”, “.”, “∼”, etc. Examples of some of
the different hyphenation symbols that are used in the FCR collection can be
found in Fig. 2. In addition, the position (or positions) where the hyphenation
symbol is placed and the symbol itself might vary, even on the same page!

Another difficulty of this task is that historical documents might not follow
the syllable-based hyphenation rules used nowadays in many modern languages.
Depending on the language and time when the text was written, it is possible
that hyphenation rules were different or even that they did not use rules for
splitting words at all. Some examples of hyphenated words that do not follow
modern hyphenation rules can be seen in Fig. 2.

a) b) c)

d) e)

Fig. 2. Examples of hyphenated words where different hyphenation symbols have been
employed: “.” in a), “∼” in b), “=” in c), “-” in d) and no hyphenation symbol in
e). Moreover, the first three HypWrd’s do not follow nowadays hyphenation rules. The
word written in a) is “agande”, b) is “berorde”, c) is “Februari” and d) and e) are
“hemman”.

Last but not least, since our objective is information retrieval, it is not admis-
sible that users have to type all the possible prefix/suffix combinations of the
entire word they want to query. Therefore, it is not enough to recognize the
HwF’s: we need to join the HwF’s to assemble the corresponding HypWrd. More-
over, note that while the correspondence between a prefix HwF and a suffix HwF
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might seem trivial in a relatively modern and simple document, finding this cor-
respondence becomes challenging for documents with non-uniform and complex
layouts.

In the Handwritten Text Recognition (HTR) literature, the most common
approach to deal with hyphenated words is to ignore their hyphenated nature [2,
16–18,21], considering each HwF just as another token written in the image. This
scenario presents the inconvenience of increasing the lexicon with tokens that the
users will not search for. Some of these approaches, [2,16,18] acknowledge the
presence of hyphenated words and try to improve the quality of the obtained
transcripts relying on the usage of hyphenation tools to artificially augment the
vocabulary and enhance the language model used in the HTR decoding process.
Nonetheless, tempting as it might seem, the usage of these tools present various
downsides: first, as previously discussed, hyphenation rules were inconsistently
used in ancient manuscripts. Second, hyphenation rules are different depending
on the language and there are documents which contain multiple languages.
Finally, these tools are only provided for a few modern languages, making it
impossible for minority languages that lack these tools.

Other approaches [24,25] rely on the accurate detection of hyphenated sym-
bols to spot hyphenated words. However, as previously discussed, the usage of
hyphenation symbols is not consistent in historical documents, varying the posi-
tions where the symbols might appear and the employed symbols (if any).

The next approach that we consider is the use of systems that make end-to-
end recognition of paragraphs [4] or pages [5]. One of the advantages of these
systems is that, as they have the context of all the lines belonging to the same
paragraph or page respectively, they can naturally deal with hyphenated word
fragments by joining them. Nevertheless, despite they have shown promising
results when the aim is to obtain the transcription of a document, they do
not match the levels of precision and recall that can be achieved employing
the probabilistic indexing technology [23] when there is poor preservation of the
documents, complex and non-uniform layouts, variable and erratic writing styles
and other inherent difficulties of ancient manuscripts that make the recognition
process more difficult. This fact makes probabilistic indexing a more appropriate
technology to allow information retrieval.

Finally, in [22] a method is proposed to optically predict hyphenated word
fragments and then use hand-crafted geometrical rules to join probabilistic index-
ing spots which contain likely matching HwF’s. However, despite the good infor-
mation retrieval results achieved, an obvious drawback is to have to develop the
appropriate rules for each corpus.

In this paper, we continue and extend the work of [22] with the following con-
tributions: first, we provide a new probabilistic formulation which better allows
to rely on machine learning methods, rather than on handcrafted rules. Second,
we have developed different techniques to estimate the required probabilities.
Third, we have also considered an on-line technique that relies on a hyphen-
ation tool to decompose entire query words into their possible HwF’s. Next, we
have also measured the storage space needed by each technique when assess-
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ing the information retrieval performance. Additionally, we also report results
obtained using pruned probabilistic indices and even plain 1-best transcripts as
input. Finally, we show examples of the most common errors produced by each
technique and discuss probable causes of these errors.

2 Probabilistic Indexing and Search

In previous works, a Probabilistic Indexing (PrIx) framework was conceived to
deal with the intrinsic word-level uncertainty exhibited by handwritten text in
images in general and, in particular, images of historical manuscripts [15,23]. It
stems from previous developments for keyword spotting (KWS), both in speech
signals and text images. Nonetheless, rather than searching for “key” words, any
element in an image which is likely enough to be interpreted as a word is spotted
and stored, along with its relevance probability (RP) and location in the image.
These text elements are referred to as “pseudo-word spots”.

KWS can be interpreted as the binary classification problem about whether
a particular image region x is relevant or not for a given query word v, i.e. try to
answer the question: “Is v actually written in x?”. As in [15,21], we denote this
image-region word RP as P (R=1 | X =x, V = v), but for the sake of conciseness,
we will omit the random variable names, and for R = 1, we will simply write R.
As discussed in [15,23], this RP can be approximated as:

P (R | x, v) ≈ max
b�x

P (R | x, b, v) ≈ max
b�x

P (v | x, b) (1)

where b is any small, word-sized image sub-region or bounding box (BB), and
with b � x we mean the set of all BBs contained in x. P (v | x, b) is just
the posterior probability needed to “recognize” the BB image (x, b). Therefore,
assuming the computational complexity entailed by the maximization in (1) is
algorithmically managed, any sufficiently accurate isolated word classifier can be
used to obtain P (R | x, v) [15].

An alternative to Eq. (1) to compute P (R | x, v) is to use a suitable segmen-
tation-free word-sequence recognizer [15,21,23]:

P (R | x, v) =
∑

w

P (R,w | x, v) =
∑

w:v∈w

P (w | x) (2)

where w is the sequence of words of any possible transcript of x and with v ∈ w
we mean that v is one of the words of w. So the RP can be computed using
state-of-the-art optical and language models and processing steps similar to those
employed in handwritten text recognition, even though no actual text transcripts
are explicitly produced in PrIx.

In any case, image region RPs do not explicitly take into account where the
considered words may appear in the region x, but the precise positions of the
words within x are easily obtained as a by-product. See details in [15,22]. All in
all, the PrIx of an image x consists of a list of “spots” of the form:
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[x, v, p, b] , p
def= P (R | x, v, b) (3)

where v is a “pseudo-word”, b is a BB for v and x here is understood as an
identifier of the corresponding page in the image collection. See details in [22].

Equation (1) will be used in Sect. 3.2 to explain our proposal to build entire-
word spots for HypWrd’s on the base of conventional PrIx’s which contain HwF’s.
On the other hand, Eq. (2) will be used in Sect. 4.3 to explain how the conven-
tional PrIx’s are obtained using HTR models.

3 Searching for Hyphenated Words

In this section, we describe our proposal to allow searching for hyphenated words
using PrIx’s. It is based on two main components: first, prefix and suffix HwF’s
are optically predicted as described in Sect. 3.1. Then, those HwF’s which are
likely to correspond to actual HypWrd’s are joined to build the corresponding
entire word spots. The statistical framework to deal with such an “off-line”
scenario is explained in Sect. 3.2.

We also consider an alternative “on-line” scenario where a hyphenation tool is
used at query time to convert query words into boolean-AND/OR combinations
of HwF’s, as detailed in Sect. 3.3.

3.1 Optical and Language Modeling for Dealing with HypWrd’s

Special optical and language models have been used to predict whether the last or
first token of a given text line is likely to be a prefix or suffix HwF of a HypWrd,
or rather a normal entire word. For this purpose, prefix and suffix HwF’s of the
training transcripts were tagged by appending and prepending respectively the
special symbol “>”. Note that if a specific hyphen character was annotated, it
was removed. So a HypWrd such as Ma– ria is converted into Ma> >ria.

For Optical Modeling, a standard character optical model was trained using
the HypWrd-tagged training transcripts. It is expected that the (often blank)
right and left context of HwF’s help the optical (and language) models learn to
distinguish HwF’s from entire words.

For Language Modeling, a special character N -gram is used both to prob-
abilistic model usual character concatenation regularities, and to enforce two
deterministic hyphenation-derived constraints: a HypWrd prefix can only appear
at the end of a line, while a HypWrd suffix can only appear at the beginning of a
line. Therefore, no HypWrd tags are allowed in the middle of a line. Once a con-
ventional N -gram character language model has been trained, these constraints
can be easily enforced by manually editing the trained back-off parameters.

3.2 Off-Line Merging of Prefix/Suffix HwF Pairs

In this approach we aim to join PrIx spots containing HwF’s into new entire-
word spots. To this end, the following probabilistic framework is proposed to
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estimate the RP P (R | x, v) of these HwF-combined spots, where x is an image
and v a HypWrd in x. Let r and s be a possible prefix and suffix of v (i.e., v = rs)
and let br and bs be possible bounding boxes (BB) of r and s respectively. From
Eq. (1), P (R | x, v) can be approximated in terms of r, s, br and bs as:

P (R | x, v) ≈ max
b�x

P (R | x, v, b) ≈ max
br,bs,r,s:

rs=v,br,bs�x

P (R | x, br, bs, r, s) (4)

Note that this expression is still valid for entire words by just considering that
s is the empty string and bs a null BB, while r is the entire word and br its BB.

The boolean variable R can be considered the conjunction of three boolean
random variables, R = Rr ∧ Rs ∧ Rh, where Rr and Rs denote whether r and
s are actually written in br and bs, respectively, and Rh, denotes whether br is
the BB which bs is referencing to. Clearly R is true iff the three Rr, Rs and
Rt are true, so we can write P (R | x, br, bs, r, s) ≡ P (Rr, Rs, Rh | x, br, bs, r, s).
Now, according to [3,6,7], as in [20], this joint probability can be adequately
approximated as:

P (Rr, Rs, Rh | x, br, bs, r, s)

≈ min
(
P (Rr | x, br, bs, r, s), P (Rs | x, br, bs, r, s), P (Rh | x, br, bs, r, s)

)

≈ min
(
P (Rr | x, br, r), P (Rs | x, bs, s), P (Rh | x, br, bs)

)

≈ min
(
P (r | x, br), P (s | x, bs), P (Rh | x, br, bs)

)
(5)

In the second step, conditional independence has been applied to simplify depen-
dencies and in the last step we just proceed as in Eq. (1) of Sect. 2 for the RPs
P (Rr | x, br, r) and P (Rs | x, bs, s). Finally, from Eqs. (4) and (5):

P (R | x, v) ≈ max
r,br,s,bs:

rs=v,br,bs�x

min
(
P (r | x, br), P (s | x, bs), P (Rh | x, br, bs)

)
(6)

The first terms, P (r | x, br) and P (s | x, bs), are the probabilities that r and s
are written in br and bs respectively, as provided by the original PrIx’s. The last
term accounts for the (pure geometrical) probability that br is paired with bs.

For the maximization (6), the min term is computed for each pair (r, s) found
in the original PrIx of x such that P (Rh | x, br, bs) ≥ γ. Then a entire-word spot
[x, v, p, b] (see Eq. (3)) is built, where v = rs and b is a special BB, representing
the “union” of br and bs. So, as byproduct of Eq. (6), all the relevant HypWrd
spots of x are computed and stored among the other, regular spots.

P (Rh | x, br, bs) can be estimated in different ways, as discussed below:

– Plain: HwF’s are not united at all. In Eq. (6) this corresponds to setting
P (Rh | x, br, bs) to 0 (except for entire words). This “method” just ignores
the hyphenated search problem altogether and is considered as a baseline.

– All combinations: All the possible pairings of prefix/suffix HwF’s that are
found in an image x are allowed, disregarding geometric constraints. This
corresponds to unconditionally setting P (Rh | x, br, bs) = 1.
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– Heuristic: P (Rh | x, br, bs) is set to 1 iff some hand-crafted geometric con-
straints are fulfilled. We use the same rules proposed in [22]: bs is on the left
and a little (no more than 200 pixels) below of br in x.

– MLP: P (Rh | x, br, bs) is estimated using a Multilayer Perceptron (MLP),
where the input features are the center, width and height of br and bs.

– Oracle: This last method amounts to just setting P (Rh | x, br, bs) to 1 iff,
according to the GT, there are two consecutive textlines beginning and ending
with prefix and suffix HwF’s, respectively, to which br and bs belong. This
method obviously yields the maximum performance that could be achieved if
the proposed approaches to merge prefix/suffix pairs never failed.

3.3 Using Hyphenation Software to Generate HwF Queries On-line

Here we consider the idea of using a hyphenation tool at query time to decompose
a query (entire) word into its prefix/suffix HwF’s and build an adequate query
with the resulting HwF’s. Specifically, a boolean AND/OR query is constructed
as illustrated in the following example, where the user is assumed to search
for pages where the word “Katarina” appears. Then, this single-word query is
transformed into the following AND/OR boolean query:

Katarina ∨ (Ka> ∧ >tarina) ∨ (Kata> ∧ >rina) ∨ (Katari> ∧ >na)

This is a rather naive approach, prone to diverse types of errors. As discussed
in Sect. 1, any non-regularly hyphenated instance of this word, such as Katar–
ina, will obviously be a miss. And the above AND/OR query will yield false
positives in images containing pairs of hyphenated words such as Kata– ria and
Seve– rina.

Another significant downside of this idea is the larger complexities it entails
at query time. First, an adequate hyphenation tool and the corresponding word-
to-boolean-query conversion code need to be embedded into the search interface;
and then, each query becomes much more computationally complex than if only
entire words are assumed.

4 Dataset, Assessment and Empirical Settings

To evaluate empirically the performance of the proposed approaches for hyphen-
ated-word PrIx and search, the following sections describe the dataset, query
sets, evaluation measures and experimental setup adopted.

4.1 Dataset and Query Sets

The FCR-HYP [22] dataset, freely available at zenodo,1 has been selected for
the present experiments because of its large proportion of hyphenated words.
It is composed of 600 pages images from the 18th-century manuscripts of the
1 https://doi.org/10.5281/zenodo.4767732.

https://doi.org/10.5281/zenodo.4767732
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Finnish Court Records collection held by the National Archives of Finland. These
manuscripts were written mostly in Swedish by many hands and consist mainly
of records of deeds, mortgages, traditional life-annuity, among others. All the
dataset images were manually transcribed, including annotation of hyphenated
words, according to what was explained in Sect. 3.1.

Following a common practice in search engines and KWS systems alike, our
system retrieves all instances of a given query word without matter of unessential
spelling nuances. To this end, ground-truth transcripts were transliterated. As
in [10], case and diacritic folding was applied, and some symbols were mapped
onto ASCII equivalences to facilitate their typing on standard keyboards.

Basic statistics of the FCR-HYP dataset are reported in Table 1 for the train-
ing and test partitions, including the proportions of HwF’s. More details about
how this dataset was compiled and annotated can be consulted in [22].

Table 1. Basic statistics of the FCR-HYP dataset and their hyphenated word frag-
ments (HwF’s). All the text has been transliterated and the punctuation marks ignored.

Dataset partition: Dataset HwF’s

Train-Val Test Train-Val Test Overall %

Images 400 200 – – –

Lines 25 989 13 341 10 973 5 609 42%

Running words 147 118 73 849 13 081 6 589 9%

Lexicon size 20 710 13 955 4 091 2 677 20%

AllWords query set – 10 416 – – –

MaybeHyph query set – 1 972 – – –

Regarding query sets, we adopt the same ones of [22]: one named Maybe-
Hyph, with 1 972 keywords for which at least one instance in the test set is
hyphenated; and other, AllWords, with 10 416 keywords, which also includes
the MaybeHyph set (see Table 1).

4.2 Evaluation Metrics

Since HypWrd’s are finally indexed in the same way as entire words, search per-
formance can be assessed as usual for a standard PrIx; namely, using the stan-
dard recall and interpolated precision [11] measures. Results are then reported
in terms of both global and mean average precision (AP and mAP, respec-
tively) [12], with confidence intervals at 95% (α = 0.025) calculated employing
the bootstrap method with 10 000 repetitions [1]. Furthermore, to indirectly
evaluate the quality of optical and language modeling, we conduct simple hand-
written text recognition experiments using these models and report word error
rate to assess the 1st best recognition hypotheses (see Sect. 5.1), along with its
confidence intervals at 95%.
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In addition, to measure how much does the size of the PrIx increase when
using the proposed methods, the density [19] of the obtained PrIx has been
calculated as the average number of spots per running word. Therefore, the
higher the density, the larger the storage required for the PrIx.

4.3 Optical and Language Model Settings

PrIx’s were obtained according to Eq. (2). The required word-sequence posterior
P (w | x) is computed using character-level optical and language models. As
described in [22], rather than a 1-best decoding as for plain HTR, a character
lattice (CL) is obtained for each line-shaped image region x.

To this end, an optical model based on Convolutional-Recurrent Neural Net-
works (CRNN) was trained using the PyLaia Toolkit [14]2. The same CRNN
architecture of [22] was adopted, with the last output layer in charge to compute
the probabilities of each of the 59 characters appearing in the training alpha-
bet plus a non-character symbol. On the other hand, for language modelling, a
8-gram character language model (with Kneser-Ney back-off smoothing [9]) was
estimated from the training transcripts. Both optical and language models were
trained on transliterated transcripts, with the HypWrd prefix/suffix tagged with
the “>” symbol, and used later by the Kaldi decoder [13] to produce CLs for all
the test-set lines images.

Finally, a large set of the most probable word-like subpaths are extracted from
the CL of each line image following the indexing methods developed in [15]. Such
subpaths define the character sequences referred to as “pseudo-words” which,
along with their geometric locations and the corresponding relevance probabili-
ties, constitute the spots of the resulting PrIx.

For hyphenated words, their RPs are computed based on the PrIx entries of
possible HwF’s, as explained in Sect. 3, and further detailed in the next section
(Sect. 3.2).

In addition, for testing the quality of produced optical and character language
models, the first-best character sequences obtained from the CLs were used in
the HTR evaluation described in Sect. 5.1.

4.4 Settings for Off-Line Merging Prefix/Suffix HwF’s

First, in the case of the heuristic method for uniting prefix/suffix HwF’s, the
same restrictions employed in [22] are used. These are: bs must be to the left of
br and also a little below (no more than 200 pixels).

Second, in the case of the MLP approach, the network is formed by two
hidden layers of 512 neurons each plus the softmax classification layer. Each
hidden layer is followed by a batch normalization layer and a ReLU activation
function. The Adam solver [8] was used for training with a learning rate of 10−3

and a batch size of 256. Next, as input features for the MLP we have considered
the center, width and height of br and bs, conveniently normalized by the page

2 https://github.com/jpuigcerver/PyLaia.

https://github.com/jpuigcerver/PyLaia
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width and/or height. As training samples, we have employed all the possible
combinations of prefix/suffix HwF’s that are annotated in the GT.

Finally, different values for γ in the range (0,1) have been considered. Due
to this range, note that the only technique that will be affected by γ will be the
MLP approach, since in the rest of techniques P (Rh | x, br, bs) is either 0 or 1.

4.5 Hyphenation Software Settings

To determine the different ways a word can be hyphenated at query time, we
have employed the Pyphen3 library, utilizing Swedish as the chosen language for
this tool.

5 Experiments and Results

The following sections present information retrieval and storage performance
results. The plain HTR transcription word error rate (WER) is also reported to
more directly assess the quality of optical and language models. Moreover, a set
of illustrative examples is also shown to provide a better understanding of the
virtues and limitations of each approach.

5.1 Basic HTR Transcription Performance

For a direct evaluation of the quality of the trained optical and language models,
the test-set images were automatically transcribed, as discussed in Sect. 4.3.
Using only the optical model a 31.1% WER was achieved, while using also an 8-
gram character language model the WER went down to 23.0%. In both cases, the
95% confidence interval was ±0.3%. Under the same conditions, but considering
only HwF’s, the respective WER values were 44.0% and 39.3%, with a 95%
confidence interval of ±1.2%.

5.2 Retrieval and Storage Performance

Table 2 reports mAP, AP and density, for the MaybeHyp query set detailed in
Sect. 4.1, using the different techniques explained in Sects. 3.2 and 3.3.

The densities shown in Table 2 for not pruned PrIx correspond to a storage
usage which is clearly unsuitable for large-scale applications, even without allow-
ing HypWrd search (plain). These results are only aimed to show the maximum
information retrieval performance that could be achieved. To obtain practical
results, suitable for large-scale applications, we have considered pruning all PrIx
spots with RP<10−5, as well as 1-best HTR transcripts (which is roughly equiv-
alent to drastically pruning the PrIx down to one hypothesis per running word).

3 https://pyphen.org/.

https://pyphen.org/
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Table 2. mAP, AP and density for each method with the MaybeHyp queryset and
three levels of PrIx pruning: non-pruned, pruned by RP > 10−5 and 1-best HTR tran-
scription. The MLP threshold, γ, is indicated in parentheses. 95% confidence intervals
are never larger than 0.02 for mAP and 0.01 for AP.

Non-Pruned PrIx PrIx Pruned by 10−5 1-best HTR

Metric mAP AP density mAP AP density mAP AP density

Plain 0.44 0.81 109 0.43 0.80 10 0.35 0.72 1

Pyphen 0.70 0.88 109 0.65 0.87 10 0.43 0.74 1

All combin. 0.74 0.89 37 948 0.68 0.88 271 0.44 0.75 2

Heuristic 0.79 0.91 1 463 0.71 0.89 21 0.45 0.76 1

MLP (10−4) 0.79 0.90 3 218 0.71 0.89 33 0.46 0.77 1

MLP (0.04) 0.77 0.90 1 852 0.70 0.88 24 0.45 0.77 1

MLP (0.35) 0.76 0.90 1 245 0.69 0.88 19 0.45 0.76 1

Oracle 0.80 0.91 345 0.71 0.89 12 0.46 0.77 1

The density of the all combinations method also entails huge storage costs,
even with pruned PrIx’s. So these results are also aimed only at setting a simple
baseline. The huge density comes from joining the HwF pairs of all the PrIx
spots of each page image. Clearly, many (most) of these pairings are wrong, and
do not lead to real entire words; nevertheless, since such non-sense words will
never be queried, they do not hinder retrieval performance significantly.

As expected, the retrieval performance of 1-best transcripts is much worse
than that of PrIx. Also as expected, the mAP and AP of all the HypWrd-aware
approaches are significantly better than those of the HypWrd-agnostic plain
“method”. This clearly puts forward the need of methods which allow HypWrd
searching, since failure to do so entails important losses of retrieval performance.

On the other hand, the on-line pyphen method also achieves a much better
retrieval performance than the plain “method”, without any density increase.
Nonetheless, it does entail a significant increase in retrieval computing time
and overall system complication, as discussed in Sects. 1 and 3.3. Moreover, the
retrieval performance of this technique falls short with respect to all the other
HypWrd-aware off-line methods, because of the inherent downsides of hyphen-
ation tools also discussed previously.

Now, let us analyze the results of the heuristic and MLP approaches. When
a small threshold γ such as 10−4, is applied to the MLP outputs, the retrieval
performance is similar to that of the heuristic approach, but with a significant
increase of density (and storage usage). However, for larger γ values such as 0.04
or 0.35, a better density is achieved, even better than with the heuristic method,
at the cost of a slightly worse retrieval performance. This trade-off can be seen
in more detail in Fig. 3 where we observe that, as γ is increased, both the mAP
and the density of the MLP method fall smoothly.
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Fig. 3. MaybeHyp mAP (left) and density (right), as a function of the MLP threshold
γ, for the different techniques to unite prefix/suffix HwF’s explained in Sects. 3.2 and
3.3, using PrIx’s pruned by 10−5.

Finally, the oracle results clearly show that the heuristic and MLP meth-
ods provide information retrieval performance values which are very close to the
maximum achievable with the current PrIx’s (and 1-best transcripts). Nonethe-
less, there is still room for improvement in storage usage.

Let us now consider the results for the AllWords query set, reported in
Table 3. The best performing approaches are also MLP and the heuristic method.
Moreover, the MLP with γ = 0.35 provides almost identical performance as the
heuristic approach, but at lower density. Finally, note that the difference in
retrieval performance between the plain “method” and the other approaches is
smaller than for the MaybeHyp query set. The obvious reason is the hyphen-
ation rate, which is 4.5% for AllWords, but 13% for MaybeHyp.

Table 4 summarizes the most relevant results. Only pruned PrIx’s are con-
sidered since they have provided the best balance between storage usage and
retrieval performance. All the results are very similar and very close to the max-
imum performance that can be achieved with the indexing accuracy currently
provided by PrIx. MLP with γ = 0.35 yields the best compromise between
retrieval accuracy and density. It hits the most important goal of the present
work; namely, to achieve essentially the same retrieval performance and density
as the heuristic approach, using machine learning methods to learn how to merge
HwF’s, rather than hand-crafted geometric rules which would have to be manu-
ally devised for each manuscript collection. However, these results are achieved
with a density that is larger than the minimum achievable (19 versus 12 spots per
running word). Therefore, future developments should focus on reducing storage
usage (in addition to improve the quality of the PrIx in general).
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Table 3. AP, mAP and density for each method with the AllWords queryset and
three levels of PrIx pruning: non-pruned, pruned by RP > 10−5 and 1-best HTR tran-
scription. The MLP threshold, γ, is indicated in parentheses. 95% confidence intervals
are never larger than 0.02 for mAP and 0.01 for AP.

Non-Pruned PrIx PrIx Pruned by 10−5 1-best HTR

Metric mAP AP density mAP AP density mAP AP density

Plain 0.78 0.84 109 0.72 0.83 10 0.46 0.69 1

Pyphen 0.81 0.86 109 0.75 0.85 10 0.47 0.69 1

All combin. 0.81 0.86 37 948 0.75 0.85 271 0.47 0.69 2

Heuristic 0.84 0.87 1 463 0.77 0.86 21 0.48 0.71 1

MLP (10−4) 0.84 0.87 3 218 0.77 0.86 33 0.48 0.71 1

MLP (0.04) 0.84 0.87 1 852 0.76 0.86 24 0.48 0.71 1

MLP (0.35) 0.84 0.87 1 245 0.76 0.86 19 0.48 0.71 1

Oracle 0.85 0.88 345 0.77 0.86 12 0.48 0.71 1

Table 4. Summary of results. mAP, AP and density for each method with the All-
Words and MaybeHyp query sets when utilizing PrIx pruned by 10−5.

Query set AllWords MaybeHyp -

Method/Metric mAP AP mAP AP density

Heuristic 0.77 0.86 0.71 0.89 21

MLP (γ = 10−4) 0.77 0.86 0.71 0.89 33

MLP (γ =0.35) 0.76 0.86 0.69 0.88 19

Oracle 0.77 0.86 0.71 0.89 12

5.3 Illustrative Examples

To better understand the main virtues and most common errors of the proposed
approaches, in this section we show and discuss some illustrative examples.

Figure 4 shows six pairs of HwF’s accounting for prefixes (denoted in blue)
and suffixes (denoted in orange). The correct prefix/suffix pairing is indicated
with a letter next to the BB. In this example, all the off-line techniques have suc-
ceeded in correctly joining the six prefix/suffix pairs (except the plain “method”,
which does not merge HwF’s at all). On the other hand, pyphen has failed to
retrieve the pair of HwF’s labeled with “E” because this hyphenation does not
follow the rules supported by the tool.

Now, let us discuss some of the most common failures made by the different
off-line approaches.

First, we consider the all combinations method. While this approach correctly
joins the six HwF pairs of Fig. 4, it also creates thirty HypWrd spots with wrong
prefix/suffix pairs, thereby increasing the density and storage requirements with
useless spots.
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Fig. 4. Example text region of the FCR collection. There are six prefix BBs (denoted
in blue) and six suffix BBs (denoted in orange). The correct pairing between prefixes
and suffixes, according to the GT, is denoted employing letters. In the text below it is
detailed which techniques successfully join which pair. (Color figure online)

Second, we analyze some errors made by the heuristic approach. One of the
most common errors is merging a prefix that is found in a marginalia with a
suffix found in another text region. Clearly, the simple hand-crafted geometric
rules of this method can not cope with the variabilities which appear in the many
collection images. While this method does succeed in joining all the correct pairs
of Fig. 4, it also adds wrong, useless HypWrd spots. Specifically, in this case the
heuristic approach has joined the prefix B with the suffixes D and E, and the
prefix C with the suffixes E and F. These errors do not occur in the Pyphen
method, since these prefix/suffix pairs do not yield any real word that a user
would query. The MLP approach does not make these errors either, thanks to a
correctly learnt geometry of the HwF BBs br and bs.

Another common source of errors made by the heuristic approach is sloped
text lines: in Fig. 5 a), the suffix BB is slightly higher than the prefix BB and
the strict geometric rules of the method do not allow joining that prefix/suffix
pair. Similarly, in Fig. 5 b), the suffix BB is further down than allowed by the
geometric constraints and the prefix/suffix pair has also failed to be merged.
These errors do not happen in either the Pyphen approach, since these pairs of
HwF’s do follow modern hyphenation rules, or all combinations, which due to
its nature joins all the prefix/suffix HwF pairs in a page, or the MLP approach,
which is more robust to slope variability than the heuristic method.

Third, we analyze the MLP method. Figure 6 show two examples of failures
made by this approach, due to very low estimates of P (Rh | x, br, bs) in both
cases. These errors do also happen with the Pyphen method, given that these
HwF’s do not follow modern hyphenation rules. Nevertheless, they are correctly
joined by the all combinations “method” (at the expense of creating many wrong,
useless spots), and in the heuristic approach, as the BBs happen to met the
hand-crafted geometrical constraints.

Finally, we would like to offer a public demonstrator which allows the search
for hyphenated words using each of the off-line techniques studied in this paper.
It is available at the following url: http://prhlt-carabela.prhlt.upv.es/fcr-hyp-
icdar23/.

http://prhlt-carabela.prhlt.upv.es/fcr-hyp-icdar23/
http://prhlt-carabela.prhlt.upv.es/fcr-hyp-icdar23/
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Fig. 5. Examples of errors made by the heuristic method due to sloped textlines. In
a) the prefix/suffix pair has not been merged given that the suffix BB is above the
prefix. In b) the system has not joined them because the suffix BB is farther below
than allowed by the geometric restrictions. These errors are not made by any of the
other HypWord-aware approaches.

Fig. 6. Examples of prefix/suffix pairs that have not been joined by the MLP method.
These errors also happen in the on-line approach, given that these HwF pairs do not
match the allowed HwF pairs provided by the hyphenation tool. Nonetheless, note that
these failures do not happen in the all combinations and heuristic methods.

6 Conclusion

To sum up, in this paper we have developed methods to allow the search of
hyphenated words in untranscribed text images. To this end, we rely on prob-
abilistic indexing (PrIx) with optical prediction of hyphenated word fragments
(HwF’s). In the present work we have proposed, developed and assessed a prob-
abilistic framework for off-line merging HwF’s of PrIx spots. We have com-
pared this approach with other methods, including an on-line approach where a
hyphenation tool is used at query time to convert entire words into AND/OR
boolean combinations of HwF’s.

The obtained results show that the off-line methods outperform the hyphen-
ation tool approach. Both the heuristic method and the here proposed MLP
approach achieve the best performances in terms of retrieval performance and
storage usage. But MLP has the advantage of using machine learning to estimate
a probabilistic model of HwF geometry from simple training data, rather than
depending on hand-crafted geometric restrictions. This makes it more robust to
diverse layout difficulties such as marginalias and sloped text lines. Moreover,
it also presents the advantage of allowing adequate trade-offs between storage
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usage and information retrieval performance by simply choosing wisely a prob-
ability threshold.

In future works we will mainly focus on improving the storage usage of the
proposed approaches. To this end, we plan to go beyond plain geometry and
further take into account the lexical contents of the HwF pairs to better esti-
mate P (Rh | x, br, bs, r, s) used in Eq. 5. Moreover, we also aim to assess these
techniques employing automatically detected lines.
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Abstract. Discourse parsing aims to comprehend the structure and
semantics of a document. Some previous studies have taken multiple levels
of granularity methods to parse documents while disregarding the con-
nection between granularity levels. Additionally, almost all the Chinese
discourse parsing approaches concentrated on a single granularity due to
lacking annotated corpora. To address the above issues, we propose a uni-
fied document-level Chinese discourse parser based on multi-granularity
levels, which leverages granularity connections between paragraphs and
Elementary Discourse Units (EDUs) in a document. Specifically, we first
identify EDU-level discourse trees and then introduce a structural encod-
ing module to capture EDU-level structural and semantic information. It
can significantly promote the construction of paragraph-level discourse
trees. Moreover, we construct the Unified Chinese Discourse TreeBank
(UCDTB), which includes 467 articles with annotations from clauses to
the whole article, filling the gap in existing unified corpus resources on
Chinese discourse parsing. The experiments on both Chinese UCDTB and
English RST-DT show that our model outperforms the SOTA baselines.

Keywords: Discourse parsing · Information integration · Unified
corpus

1 Introduction

Discourse parsing is to discover the internal structure of a document and identify
the nuclearity and relationship between discourse units. It has been widely used
in various natural language processing tasks, such as question-answering [1],
machine translation [2], and sentiment analysis [3].

As one of the most influential theories in discourse parsing, Rhetorical Struc-
ture Theory (RST) [4] represents documents by labeled hierarchical structures,
called Discourse Trees (DTs). Generally, discourse parsing is mainly divided into
two levels: EDU-level (intra-paragraph) and paragraph-level (inter-paragraph).
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The former studies the intra- or inter-sentence relationship, while the latter
studies the discourse relationship among paragraphs. An example of a discourse
tree is shown in Fig. 1, its leaf nodes are Elementary Discourse Units (EDUs),
and the neighbouring nodes are combined by relation and nuclearity labels to
form higher-level discourse units. Since the paragraph-level unit contains more
content, the structural information of the EDU level is often used to assist in
determining the paragraph-level discourse tree in the annotation process.

Fig. 1. Example of a discourse tree, where e and p denote EDU and paragraph, respec-
tively.

However, due to the lack of annotated corpora, almost all the Chinese dis-
course parsing approaches have focused solely on obtaining better semantic rep-
resentation at a single granularity level, ignoring the advantages of incorporating
EDU-level structural information in enhancing paragraph-level discourse pars-
ing. The absence of EDU-level structural information presents difficulties for the
model in distinguishing components within a paragraph and extracting meaning-
ful semantics of the paragraph. On the other hand, representing structural infor-
mation is more complicated as it involves hierarchical information that cannot be
easily captured through traditional semantic encoding. Therefore, representing
and leveraging EDU-level structural and semantic information is a severe chal-
lenge. Moreover, the available corpora in Chinese have only ever been annotated
at the EDU or paragraph level. Hence, another challenge is the lack of annotated
corpus to connect the EDU-level and paragraph-level Chinese discourse parsing.

To solve the second challenge, we unify the existing two corpora with dif-
ferent levels of annotation to obtain a unified corpus with both the EDU-level
and paragraph-level annotations. We first unify the EDU-level and paragraph-
level annotation systems to form a document-level Chinese annotation system
from clauses to the whole article. Then, we construct the Unified Chinese Dis-
course TreeBank (UCDTB) according to this annotation system which integrates
CDTB [5] and MCDTB [6] and includes 467 articles.
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To solve the first challenge, we propose a Document-level Chinese Discourse
Parser (DCDParser) that leverages the connection between the EDU and para-
graph granularity. Our model consists of two parts: the EDU-level parser and
the paragraph-level parser. The EDU-level parser constructs the EDU-level DTs
using EDU-level information, while the paragraph-level parser constructs the
paragraph-level DTs using the EDU-level structural and semantic information
and the paragraph-level information, which focuses on leveraging the connections
between different granularity levels. To exploit the information of EDU-level DT,
we introduce a structural encoding module, which uses label embedding method
to embed the EDU-level structure into the text to obtain EDU-level structural
and semantic information. Experiments on both Chinese UCDTB and English
RST-DT show that our DCDParser outperforms the state-of-the-art baselines,
especially the significant improvement at the paragraph level.

2 Related Work

In English, RST-DT [7] is one of the most popular corpora based on Rhetor-
ical Structure Theory and contains 385 articles from the Wall Street Journal
(WSJ). RST-DT annotates the discourse structure, nuclearity and relationship
for the whole document. Unlike the study on English, research on Chinese lacks
a unified corpus, resulting in a lack of research on identifying document-level
discourse trees. Currently, the research of Chinese discourse parsing has two lev-
els: EDU level and paragraph level. CDTB is a corpus annotated at the EDU
level. It annotates each paragraph as a Connective-driven Discourse Tree. The
corpus contains 500 articles annotated with elementary discourse units, connec-
tives, EDU-level discourse structure, nuclearity and relationship. MCDTB is the
only available corpus annotated at the paragraph level. It consists of 720 arti-
cles annotated with paragraph-level discourse structure, nuclearity, relations and
additional discourse information.

On the RST-DT corpus, many works have successfully constructed
document-level discourse trees [8–10]. Recently, discourse parsing utilizing mul-
tiple levels in a document has been proved to be an effective strategy. Feng
et al. [11] used intra-sentence and inter-sentence parsers to parse documents.
Joty et al. [12] divided the documents into two levels (intra-sentence and inter-
sentence) and constructed a discourse structure parser using the dynamic con-
ditional random field, respectively. Based on the study of Joty et al. [12], Feng
et al. [13] proposed a bottom-up greedy parser with CRFs as a local classifier.
Unlike previous studies at two levels, Kobayashi et al. [14] divided documents
into three levels and parsed documents in a top-down method. However, none of
the abovementioned works leverages the connection between granularity levels.

At the Chinese EDU level, Kong et al. [15] proposed an end-to-end Chinese
discourse parser. Zhang et al. [9] used a pointer network to construct a dis-
course structure tree in a top-down manner. Based on this, Zhang et al. [10]
used adversarial learning to consider global information and achieved the SOTA
performance.
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At the Chinese paragraph level, Zhou et al. [16] proposed a multi-view word-
pair similarity model to capture the semantic interaction of two adjacent EDUs
and constructed discourse structure trees through the shift-reduce algorithm.
Jiang et al. [17] proposed the method of global backward reading and local
reverse reading to construct discourse trees. Jiang et al. [18] proposed a hier-
archical approach based on topic segmentation. Based on this, Fan et al. [19]
proposed a method based on the dependency graph convolutional network to
enhance semantic representation and interaction between discourse units and
achieve the SOTA performance.

Table 1. Unified discourse relations. “EDU” means the unmergeable relations at the
EDU level. “Para” means the unmergeable relations at the paragraph level.

Type CDTB MCDTB UCDTB

Same Background Background Background

Coordination Joint Joint

Continue Sequence Sequence

Progression Progression Progression

Inverse Contrast Contrast

Elaboration Elaboration Elaboration

Evaluation Evaluation Evaluation

Merged Cause-Result Cause-Result Cause-Result

– Result-Cause

– Behavior-Purpose Purpose

– Purpose-Behavior

Purpose –

– Statement-Illustration Example

– Illustration-Statement

Example –

EDU Inference – Inference

Hypothetical – Hypothetical

Condition – Condition

Selectional – Selectional

Transition – Transition

Concessive – Concessive

Summary-Elaboration – Summary-Elaboration

Para – Supplement Supplement

– Summary Summary

3 Corpus Construction

As pointed out in the introduction, one crucial issue in constructing document-
level Chinese discourse trees is the lack of a unified corpus. To alleviate this
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issue, we construct the Unified Chinese Discourse TreeBank (UCDTB) based on
existing CDTB and MCDTB.

When we started to build the corpus, we found the differences in the anno-
tation system between the above two corpora due to their different granularity.
In CDTB, because EDUs are sentences or clauses with a small granularity, the
connectives mainly determine the relations between discourse units. However,
in MCDTB, since the EDUs are paragraphs with a larger granularity, some dis-
course relations used at the EDU level are redefined at the paragraph level.

Fig. 2. The architecture of the paragraph-level parser.

As mentioned before, the different annotation systems lead to inconsistencies
in the definition of discourse relations. To address this divergence, we redefine
the discourse relations to form a unified Chinese annotation system from clauses
to the whole article and finally obtain 19 kinds of discourse relations. As shown
in Table 1, there are 7 relations with the same definition in both corpora, so we
inherited them directly. For the relations with different definitions that can be
merged, we merged them into 3 major categories. In addition, there are 7 and 2
unmergeable relations at the EDU level and paragraph level, respectively, which
we have retained.

After unifying the annotation system, we merged the annotation information
in the commonly annotated articles. Firstly, we selected articles that overlapped
in MCDTB and CDTB. Secondly, we modified the text with differences. Finally,
we take the paragraph-level text as the basis and insert EDU-level annotations
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under a paragraph if they exist. In this case, a complete EDU-level discourse
tree is under each paragraph with EDU-level annotation.

At the paragraph level, UCDTB consisted of 467 articles with 2600 para-
graphs. The average number of paragraphs is 5.57 per document, while the
maximum number of paragraphs is 20 and the minimum number of paragraphs
is 2. At the EDU level, the total number of EDUs is 10,324, with an average of
22.11 EDUs per document, while the maximum number of EDUs is 92 and the
minimum number of EDUs is 2.

4 Chinese Discourse Parser on Different Granularity
Levels

The connection between different granularity levels has been neglected in the
existing studies on Chinese, restricting the information obtained at each level.
Thus, we propose a document-level Chinese discourse parser that leverages the
connection between different granularity levels. It consists of two parsers with
different structures: the EDU-level parser and the paragraph-level parser. The
former is to construct EDU-level discourse trees, while the latter is to construct
paragraph-level DTs, which integrate the EDU-level structural and semantic
information with paragraph-level information.

As shown in Fig. 2, the architecture of our paragraph-level parser consists of
four components: 1) Atomic Unit Encoding Module, which is used to encode the
discourse units sequences at each level and obtain their corresponding represen-
tations; 2) Structural Encoding Module, which uses label embedding to embed
each EDU-level discourse tree individually. Then the embedding is encoded to
obtain the structural and semantic information within the paragraph. It is worth
noting that this module exists only in the paragraph-level parser. 3) Information
Integration Module, which integrates the obtained EDU- and paragraph-level
information and sends it to the top-down parser; 4) Top-down Parser, which
identifies the discourse trees in a top-down method within each level by using a
pointer network.

The EDU-level parser only contains three parts: the Atomic Unit Encoding
Module, the Information Integration Module, and the Top-down Parser, i.e.,
without the Structural Encoding Module.

4.1 Atomic Unit Encoding Module

We encode the sequence of EDUs of different levels in the same way. For the
convenience of representation, we follow Kobayashi et al. [14] and use the atomic
unit sequence Unit = {unit1, unit2, ..., unitn} to represent the sequence of EDUs
(paragraphs, sentences or clauses) at each level, where uniti is the i-th EDU,
n is the number of EDUs. The atomic unit encoding module uses XLNet [20]
to encode EDUs. To be consistent with the XLNet input, we represent the unit
sequence Unit into a single string S as follows.

S = unit1 〈sep〉 unit2 〈sep〉 ...unitn 〈sep〉 〈cls〉 (1)
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Then, we feed the input S to XLNet for encoding and take out the vector huniti

at the 〈sep〉 position of each EDU as its semantic representation.

4.2 Structural Encoding Module

Since paragraph text is usually long, it is difficult for the model to grasp valuable
information accurately. However, EDU-level structural information facilitates
the model to better capture the core information by distinguishing the semantic
relationships among the parts within a paragraph. In this paper, we aim to
leverage the EDU-level structural information to facilitate our paragraph-level
discourse tree construction. Since structural information is not convenient to
encode directly, converting the structural information in the text to a serialized
form is a sensible approach for a more straightforward representation. Inspired by
Zhou et al. [21], we use label embedding to embed the structural information (i.e.,
structure, nuclearity) within the paragraph into the input text1, allowing the
paragraph model to obtain both EDU-level structural and semantic information
when encoding.

Fig. 3. Example of label embedding.

First, we refer to the form of the syntactic tree to embed the structure
between discourse units into the input text, represented as a serialized form
as shown in Fig. 3(b). In general, we embed the structural information in a
bottom-up strategy. Specifically, we start at the bottom of the discourse tree
and combine each pair of discourse units that can be merged with brackets to
imply the boundary of the span. The EDU-level discourse tree shown in Fig. 3(a)
is a three-level structure tree containing five EDUs. The bottom level includes
two pairs of discourse units that can be merged, i.e., EDU1 and EDU2, EDU4
and EDU5. Then we combine them to obtain (EDU1 EDU2) and (EDU4 EDU5),
two pairs of discourse units embedded with structural information. In the mid-
dle layer, EDU3 and (EDU4 EDU5) can be merged to obtain (EDU3 (EDU4
EDU5)). Keep searching upward and finally get the embedding representation,
as shown in Fig. 3(b)2.

1 We tried to embed the relationship in, but it did not work well.
2 In practice we use one pair of structure labels 〈unused1〉 and 〈unused2〉 to represent

the left and right brackets.
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Next, we add nuclearity information to make the model identify the core
information. When merging discourse units, the beginning and end of the com-
bined discourse units are labeled with (N and )S if their nuclearity relation is
Nucleus-Satellite, (S and )N if their nuclearity relation is Satellite-Nucleus, and
(N and )N if their nuclearity relation is Nucleus-Nucleus. The obtained label
embedding representation is shown in Fig. 3(c)3.

For paragraph i, the representation embi is obtained after label embedding.
The structural encoding module uses another XLNet to encode structural infor-
mation. Moreover, we do not fine-tune this XLNet during the training process.
We take the vector at the 〈sep〉 position in XLNet as the output of this module
as follows.

hembi = XLNet(embi) (2)

where i = {1, 2, ..., n}, hembi is the output of the structural encoding module.

4.3 Information Integration Module

The information integration module can integrate the obtained paragraph- and
EDU-level information. In the paragraph-level parser, for paragraph i, we sum
up the paragraph- and EDU-level information to get the integrated information
hi as follows.

hi = huniti + hembi (3)

where i = {1, 2, ..., n}. The EDU-level parser uses the huniti obtained from the
atomic unit encoding module as hi directly because there is no EDU-level struc-
ture information encoding module. Compared with LSTM, GRU has a smaller
number of parameters and can achieve comparable performance to LSTM. There-
fore, we use Bi-GRU to enhance the integrated paragraph representation. Send-
ing H = {h1, h2, ..., hn} into the Bi-GRU, the output is H

′
=

{
h

′
1, h

′
2, ..., h

′
n

}

(h
′
j =

[−→
h

′
j ;

←−
h

′
j

]
), where

−→
h

′
j and

←−
h

′
j are the forward and backward outputs, respec-

tively.
Although Bi-GRU can get the contextual information well, it cannot highlight

the split point representation of the pointer network. To alleviate this issue,
consistent with Zhang et al. [9], we use a convolutional neural network to fuse
the EDU information at the left and right ends of the split point to enhance
its semantic representation. The width of the convolution kernel is set to 2 and
the activation function is Rectified Linear Unit (ReLU). For example, for the
article D = {p1, p2, ..., pn}, after feeding it into the Bi-GRU, we can obtain the
paragraph representation H

′
=

{
h

′
1, h

′
2, ..., h

′
n

}
. For the convenience calculation,

we add two zero vectors for padding on the start and end of the EDU sequence,
and the output is I = {i0, i1, ..., in}. In top-down parser, the first and last vectors
are not involved in the calculation at each decoding step.
3 In practice we use three pairs of labels 〈unused1〉 and 〈unused2〉, 〈unused3〉 and

〈unused4〉, 〈unused5〉 and 〈unused6〉 to correspond to the three pairs of tags (N
and )S , (S and )N , (N and )N .
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4.4 Top-Down Parser

In constructing a discourse tree, the input sequence length constantly changes,
and the pointer network [22] can solve this problem well. Thus, the top-down
parser uses a pointer network to determine the split position of discourse units
and build the discourse tree in a top-down method.

The pointer network is an encoder-decoder architecture and its encoder is
a Bi-GRU. We input the split point vector I = {i0, i1, ..., im} obtained from
the information interaction module into the encoder of the pointer network to
gain the output E = {i0, i1, ..., im}. Its decoder is a GRU that uses a stack to
construct the discourse tree. In the initial state, the stack contains only one
element (0, N), i.e., the index pair of the start and end positions of the sequence
to be split. We take the output E of the encoder as the input of the decoder.
At the tth step of decoding, the top discourse unit (l, r) is popped out of the
stack to the decoder, and then the decoder outputs dt. dt interacts with the
encoder output E

′
= {el+1, el, ..., er−1}, and we use a biaffine attention function

to determine the split point as follows.

si
j = eT

i Wdj + Uei + V dj + b (4)

where W , U , V denote the weight matrix, b is the bias, and si
j means the score

of the i-th split point. In each step, the position with the highest score is selected
as the split point, and the discourse unit is divided into two adjacent discourse
units. Then the discourse units with lengths greater than 2 are pushed into the
stack, and the process is repeated to build discourse tree until the stack is empty.

4.5 Model Training

It is worth mentioning that our parser uses the gold standard EDU-level dis-
course trees to achieve EDU-level information in the training phase. In contrast,
it uses the predicted EDU-level discourse trees to obtain EDU-level information
in the test phase.

We use Negative Log Likelihood Loss (NLL Loss) to calculate the split point
prediction loss L (θs). Like Zhang et al. [10], we use one classifier to classify the
nuclearity and relationship to obtain the N-R prediction loss L (θN−R). The final
loss L is shown as follows.

L (θs) = −
batch∑
i=1

T∑
t=1

log Pθs
(yt|y<t,X) (5)

L = αsLθs
+ αN−RLθN−R

(6)

where y<t is the discourse units generated before t-th step of the decoder, T is
the number of discourse units in the stack, and X is the EDU sequence. Since
the convergence speed of the split point prediction loss and the N-R prediction
loss are different, we weighted and summed these two parts to obtain the final
loss L.
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5 Experimentation

5.1 Dataset and Experimental Settings

Our experiments are primarily evaluated on Unified Chinese Discourse TreeBank
(UCDTB). Referring to previous studies [18], we transform the non-binary tree
of the original data into the right-binary tree. There are 80% data (373 docu-
ments) for training, 10% data (47 documents) for validating, and 10% data (47
documents) for testing.

Following previous work [18], we report the micro-averaged F1 score for pre-
dicting span attachments in discourse tree construction (Span), span attach-
ments with nuclearity (Nuclearity), and span attachments with relation labels
(Relation). Specifically, we evaluate the nuclearity with three classes (Nucleus-
Satellite, Satellite-Nucleus, and Nucleus-Nucleus), and we use 19 finer-grained
types for evaluation in relation classification as showned in Table 1. To get a
more intuitive view of how our parser performs at different levels, we evaluate
the performance of our parser at the paragraph level, the EDU level and the
document level (i.e., EDU and paragraph level).

In the atomic unit encoding module and structural encoding module, we use
XLNet-base for encoding. We set the number of GRU layers as 2. The dimension
of the hidden layer is set as 512. We set the learning rate as 1e-4, the training
epoch as 50, the batch size as 32, the αS as 1 and the αN−R as 0.1.

5.2 Baselines

To verify the effectiveness of our DCDParser, we compared it with the following
strong baselines.

Paragraph-level Chinese discourse parser
MDParser-TS [18]: It proposed a hierarchical approach to constructing

discourse structure trees based on topic segmentation.
DGCNParser [19]: It proposed a method based on GCN to enhance seman-

tic representation and interaction between discourse units, which achieved the
SOTA performance on MCDTB.

EDU-level Chinese discourse parser
Top-DownParser [9]: It proposed a top-down method and did not use addi-

tional manual features.
AdverParser [10]: It proposed an adversarial learning strategy based on

Top-DownParser [9] and achieved the SOTA performance on CDTB.

5.3 Experimental Results

To prove the effectiveness of leveraging the connection between different gran-
ularity levels, we compare DCDParser with a model Base-Model without the
structural encoding module, i.e., the granularity levels are independent of each
other and are not connected. In addition, we used DCDParser(S) to denote the
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method of embedding structure information and DCDParser(S-N) to denote
the method of embedding structure and nuclearity information, respectively.

Table 2 shows the performance comparison between our DCDParser and all
the baselines. Comparing our DCDParser with previous state-of-the-art parsers,
it performs better than all baselines due to its ability to leverage the connection
between different granularity levels. Furthermore, our DCDParser(S-N) shows a
significant improvement of 5.69%, 4.74% and 1.9% on span, nuclearity and rela-
tion at the paragraph level, respectively. Obviously, the utilization of EDU-level
structural and semantic information can greatly improve the parsing perfor-
mance.

Table 2. The performance comparison on Chinese UCDTB. Superscript * indicates
we reproduce the model. DCDParser(S-N) was significantly superior to AdverParser
with a p-value <0.05 (t-test).

Level Model Span Nuclearity Relation

Paragraph-level Top-DownParser 59.24 49.29 35.55

DGCNParser* 60.19 46.92 29.38

MDParser-TS 66.35 51.66 37.44

AdverParser 66.82 59.24 48.34

Base-Model 67.30 58.29 46.45

DCDParser(S) 71.09 59.72 50.71

DCDParser(S-N) 72.51 63.98 50.24

EDU-level Top-DownParser 85.59 54.89 50.13

DGCNParser* 83.58 56.52 54.26

MDParser-TS 82.58 55.51 52.01

AdverParser 86.59 63.91 60.65

Base-Model 87.84 65.79 61.78

DCDParser(S) 88.72 65.54 63.91

DCDParser(S-N) 87.97 67.29 63.53

Document-level Top-DownParser 80.08 53.72 47.08

DGCNParser* 78.69 54.51 49.06

MDParser-TS 79.19 54.71 48.96

AdverParser 82.45 62.93 58.08

Base-Model 83.55 64.22 58.57

DCDParser(S) 85.03 64.32 61.15

DCDParser(S-N) 84.74 66.60 60.75

In detail, compared to Base-Model, our DCDParser can improve the perfor-
mance on all three indicators, especially at the paragraph level. DCDParser(S-N)
shows a significant improvement of 5.21% and 5.69% on span and nuclearity at
the paragraph level, respectively. This is due to the utilization of EDU-level
structural and semantic information, which allows the model to focus on the
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core information of the paragraph while grasping the intra-paragraph struc-
ture. In contrast, DCDParser(S) has relatively little improvement on span and
nuclearity at the paragraph level. This is because there is no embedded nucle-
arity information to capture the core semantics in a lengthy paragraph text
accurately. Moreover, these two methods of embedding EDU-level information
achieve similar results on relation. This is due to the global information that
is considered more in paragraph-level relation recognition, and the addition of
EDU-level information is of limited help to it.

These results indicate that there is a connection between the EDU-level struc-
tural and semantic information and the paragraph-level information, and that
the lower-level structural information can assist the upper-level discourse pars-
ing. There is also a performance improvement at the EDU level because the two
models share the atomic encoding module. Ultimately, our parser achieves the
best document-level performance by integrating EDU-level information.

Table 3. Performance on integrating different EDU-level information at the paragraph
level.

Model Span Nuclearity Relation

Base-Model 67.30 58.29 46.45

EDUs TEXT 68.72 59.72 48.82

CORE TEXT 70.62 59.24 49.76

DCDParser(S) 71.09 59.72 50.71

DCDParser(S-N) 72.51 63.98 50.24

6 Analysis

6.1 Analysis on Integrating Different EDU-Level Information

To investigate the effect of integrating different EDU-level information to the
paragraph-level parsing, we replaced the structural encoding module using two
different EDU-level information encoding modules.

The first one is to encode the whole EDU-level discourse tree’s text to get
the whole paragraph’s semantic information, represented by EDUs TEXT.

The second one is to obtain the core discourse unit of the paragraph according
to the nuclearity between discourse units and encode it to get the semantic
information of the paragraph, which is represented by CORE TEXT.4

The experimental results are shown in Table 3. It can be seen that the per-
formance is slightly improved after incorporating the whole EDU-level semantic
information (EDUs TEXT). In addition, the improvement brought by fusing core
EDU-level semantic information (CORE TEXT) is more prominent, indicating

4 Same as the structural encoding module, we encode by using XLNet-base.
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that enhancing text core information effectively understands the semantics of
lengthy paragraphs. The above two approaches integrate EDU-level semantic
information from different perspectives. Our model DCDParser(S-N) captures
not only the core semantics but also the overall structure of the paragraph by
explicitly embedding the structure information, which leads to a more accurate
representation of the paragraph. The results show that it is more helpful to use
EDU-level structural and semantic information than only EDU-level semantic
information at the paragraph level.

6.2 Performance on Different Lengths of Documents
at the Paragraph Level

According to Jiang et al. [18], existing methods perform worse on long doc-
uments due to the larger size and number of discourse units and fewer con-
nectives between them. Hence, the ability of a parser to parse long documents
is worth being focused on. We further analyze the performance of our DCD-
Parser in terms of the number of EDUs. Figure 4 shows the Micro-F1 scores on
span of our parser and several representative baselines. We can find that our
DCDParser(S-N) achieves a significant improvement on long documents larger
than eight paragraphs. The lower overall performance of the long text is due to
the limited ability to exist methods to process long text, and it is difficult to cap-
ture the core semantics of the paragraph-level discourse unit that often contains
much redundant information. These results indicate that our DCDParser (S-N)
can effectively improve the ability to handle long texts by explicitly marking the
nuclearity of EDU-level discourse units.

Fig. 4. Micro-F1 scores (span) on different lengths of documents at the paragraph
level.
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6.3 Performance on Different Layers of Discourse Tree
at the Paragraph Level

To explore where the EDU-level information is helpful for the paragraph level,
we divided the paragraph-level discourse tree node into three layers: top two lay-
ers, middle layers and bottom two layers. We analyzed the parsing ability of the
nodes at different layers. Table 4 shows the performance of DCDParser and other
baselines on different layers of paragraph-level discourse trees. We can find that
DCDParser outperforms all the baselines at all three layers. It is worth noting that
DCDParser(S-N) achieves a considerable improvement of 9.38% in the middle lay-
ers compared to the Base-Model. Since the structural tree with middle layers has
more layers, its structure is more complex and the relationship between discourse
units is more ambiguous. With the integration of EDU-level structure and nucle-
arity information, our model can obtain a more precise and effective paragraph
representation to assist in parsing the complex structure of the middle layers.

6.4 Case Study

The examples of DCDParser(S-N) and the two baselines MDParser-TS and
AdverParser parsing the chtb 0545 paragraph-level discourse tree are given in

Table 4. The performance of span on different layers of paragraph-level discourse trees.

Model top two layers middle layers bottom two layers

MDParser-TS 81.55 28.13 66.96

AdverParser 78.64 46.88 62.61

Base-Model 81.55 43.75 65.22

DCDParser(S) 84.47 46.88 67.83

DCDParser(S-N) 84.47 53.13 67.83

Fig. 5. The paragraph-level discourse tree of chtb 0545 parsed by various models.
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Fig. 5. It shows that MDParser-TS and AdverParser do not accurately capture
the structure and semantics of paragraphs due to the lack of using EDU-level
information and make errors in constructing the upper-level complex discourse
tree. Compared with them, the discourse tree built by our DCDParser(S-N) is
more similar to the golden tree. With the help of EDU-level structure infor-
mation, DCDParser(S-N) can get a more reasonable paragraph representation
and obtain a more accurate bottom discourse unit, laying a good foundation for
constructing the upper discourse tree.

6.5 Experimentation on English RST-DT

To verify the generalization of the proposed parser, we also evaluate our parser
on the English RST-DT. Meanwhile, we processed some cross-paragraph EDUs
in the corpus in the same way as Kobayashi et al. [14]. The upper bound of
the performance at the EDU level is 95.15%. Following previous work [23], we
binarize all non-binary trees with right-branching. Finally, we evaluated our
model using the original Parseval and the results are shown in Table 5.

There are three baselines in Table 5 as follows: 1) DynParser [24]: It pro-
posed a top-down parser with a dynamic oracle; 2) AdverParser [10]: It is
based on the pointer network and proposed an adversarial learning strategy;
3) Parser-EDUPLM [25]: It proposed a second-stage EDU-level pre-training
method and achieved the SOTA performance on RST-DT.

Table 5. The performance comparison on English RST-DT.

Level Model Span Nuclearity Relation

Paragraph-level Base-Model 51.43 42.34 29.09

DCDParser(S) 52.21 44.16 31.17

DCDParser(S-N) 55.06 45.71 29.61

EDU-level Base-Model 81.07 70.67 61.15

DCDParser(S) 81.54 70.83 60.32

DCDParser(S-N) 82.42 71.40 62.09

Document-level DynParser 73.10 62.30 51.50

AdverParser 76.30 65.50 55.60

Parser-EDUPLM 76.40 66.10 54.50

Base-Model 76.13 65.94 55.81

DCDParser(S) 76.65 66.38 55.46

DCDParser(S-N) 77.86 67.11 56.67
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Compared with these baselines, our parser DCDParser(S-N) achieves the best
performance at the document level, which proves the effectiveness of our method
on English discourse parsing. Moreover, similar to the performance on UCDTB,
there is a significant improvement at the paragraph level when integrating EDU-
level structural and semantic information compared to Base-Model. It shows that
integrating EDU-level structural and semantic information is also beneficial to
English discourse parsing.

7 Conclusion

In this paper, we propose a unified document-level Chinese discourse parser that
leverages the connection between granularity levels to construct better discourse
trees. To the best of our knowledge, this is the first study on leveraging infor-
mation at multiple levels of granularity in Chinese. In addition, we construct
the Unified Chinese Discourse TreeBank (UCDTB), which contains 467 articles
with annotations from clauses to the whole article, filling the gap in existing uni-
fied corpus resources on Chinese discourse parsing. Experimental results on both
Chinese UCDTB and English RST-DT show that our DCDParser outperforms
all baselines. In the future, we will explore the use of paragraph-level infor-
mation to help EDU-level discourse parsing, thus further improving the overall
performance of discourse parsing.
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Abstract. Instance-level segmentation of documents consists in assign-
ing a class-aware and instance-aware label to each pixel of the image. It
is a key step in document parsing for their understanding. In this paper,
we present a unified transformer encoder-decoder architecture for en-to-
end instance segmentation of complex layouts in document images. The
method adapts a contrastive training with a mixed query selection for
anchor initialization in the decoder. Later on, it performs a dot product
between the obtained query embeddings and the pixel embedding map
(coming from the encoder) for semantic reasoning. Extensive experimen-
tation on competitive benchmarks like PubLayNet, PRIMA, Historical
Japanese (HJ), and TableBank demonstrate that our model with SwinL
backbone achieves better segmentation performance than the existing
state-of-the-art approaches with the average precision of 93.72, 54.39,
84.65 and 98.04 respectively under one billion parameters. The code is
made publicly available at: github.com/ayanban011/SwinDocSegmenter.

Keywords: Document Layout Analysis · Instance-Level
Segmentation · Swin Transformer · Contrastive Learning

1 Introduction

Document Intelligence (DI) systems help to provide solutions for automating
large document processing workflows for information extraction and under-
standing its contents. Business intelligence processes like document retrieval,
text recognition, content categorization, and others often require to extract the
semantic information from documents when parsing the documents into a struc-
tured machine-readable format. This extracted data can be then integrated into
document processing workflows in Robotic Process Automation tools. Thus,
more efficient solutions have been developed in key industrial sectors (e.g. bank-
ing, finance, healthcare, and so on) [31,34]. Document layout analysis (DLA) has
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become an important task in DI because any task related to document under-
standing entails the need of obtaining a structured representation that helps
to localize the key information stored in them. Initially, remarkable progress
has been observed with classical convolution-based algorithms (CNNs) such as
Faster RCNN [43] for Document Object Detection (DOD), Mask RCNN [5] for
instance segmentation, among other specialized architectures. These architec-
tures are quite simple to implement and effective in some specific case stud-
ies (e.g. table detection [24], layout analysis of scientific articles [49] etc.) but
they lack the generalization ability to address other similar tasks. Recently,
Transformer-based architectures [2,16] have achieved superior performance over
CNNs with the help of a global attention mechanism. However, these models
are not unified which prevents the mutual cooperation between the detection
and segmentation tasks which affects their performance as the detection and
segmentation modules cannot guide each other. Not only that, but those archi-
tectures were also biased toward their pre-trained datasets and failed to perform
domain shifts for a similar task. As these transformer models are often pre-
trained with massive amounts of data originating from a related source domain
(i.e., large-scale industry documents [15] or scientific articles [49]), they fail to
address relatively different tasks (e.g. layout extraction in magazines [10]). The
introduction of this domain shift property to a DLA model has the potential
to reduce computational expenses and help to create a more data-independent
generic model.

To address the aforementioned issues, we propose SwinDocSegmenter frame-
work to perform instance-level segmentation of complex document layouts, using
content query embeddings on a high-resolution pixel embedding map obtained
from the Swin Transformer feature extraction backbone [30] and Transformer
encoder features. It helps define global semantic reasoning of the features at a
higher level which overcomes the drawbacks of using the ResNet-FPN [28] back-
bone. Here, we initialize mask queries as anchors by utilizing the encoder dense
prior to predicting the masks from the top-ranked tokens. It helps to perform
pixel-wise segmentation at an early stage, which helps to enhance boxes. In the
later stages, these boxes help to increase the segmentation performances by for-
mulating dynamic anchor boxes. This phenomenon of mutual task cooperation
helps to obtain a unified model for layout detection and segmentation. We intro-
duce a contrastive denoising training inspired by [48] to accelerate segmentation
training by focusing on low-level instances. It boosts the model performance a
lot as one of the main drawbacks of Transformers to working with unlabeled
data where it penalizes the classes that have a very low number of feature repre-
sentations [4]. Last but not the least, we utilize a hybrid bipartite matching [21]
for more consistent semantic matching which helps to perform domain shift and
utilizes the pre-trained weights of the transformers from a completely different
domain to perform similar tasks. In this case, we utilized the pre-trained weights
of the MS-COCO Object Detection benchmark [29] for the instance segmenta-
tion of complex document layouts.
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The overall contributions of this work can be summarized in three folds:

– A unified Transformer-based framework has been proposed to perform
instance-level document layout segmentation, with a Swin Transformer
backbone, anchor box-guided cross-attention, and enhanced query selection
strategy.

– We introduce contrastive denoising training to enhance the low-level instances
to boost the performance of the unlabeled dataset.

– We utilize hybrid bipartite matching to invoke the domain shift property to
save the pretraining time and use the publicly available pre-trained weights
from diverse domains for a similar task which improves model generalization.

The rest of the paper is organized in the following way: In Sect. 2 we review
state-of-the-art approaches for document layout analysis. We describe the Swin-
DocSegmenter in Sect. 3. We introduce our experimental evaluation as well as
ablation studies in Sect. 4. Finally, Sect. 5 draws the conclusion and guides the
future research directions.

2 Related Work

In order to extract the relevant information from digital documents, layout recog-
nition methods obtain spatial understanding with relational reasoning between
different layout components (e.g. table, text, figures, title, etc.). Mainstream
layout analysis algorithms have been dominated by classical heuristic rule-based
algorithms before the deep learning era. Later on, convolution frameworks play a
leading role to solve this task until the transformers-based architectures achieve
remarkable performance. This section is dedicated to obtaining an overview of
the state-of-the-art for this task by analyzing different methodological schemes.

Heuristic Rule-based Document Layout Analysis. Document layout seg-
mentation using heuristic methods can be further classified into three different
categories: top-down, bottom-up, and hybrid strategies. Bottom-up approaches
[3,38] perform basic operations like grouping and merging of pixels to create
homogeneous regions for similar objects and separate them from the nonsimilar
ones. Top-down strategies [17,19] split the document image into different regions
iteratively, until a definite region has been obtained around similar objects.
Although bottom-up approaches are able to tackle complex layouts, they are
computationally expensive. Moreover, Top-down methods provide faster imple-
mentation but penalize the generalization, and perform effectively only on spe-
cific types of documents. To take advantage of both, hybrid methods [6,11]
combine bottom-up and top-down cues to obtain fast and efficient results. Prior
to the deep learning era, these methods were state-of-the-art for table detection.

Convolution-based Document Layout Analysis. Since 2012, deep learning
algorithms replaced the rule-based algorithm and Convolutional Neural Net-
works (CNNs) became the prior strategy to solve instance document segmen-
tation tasks. Faster-RCNN [37] provides a strong document object detection
that can be utilized to solve page segmentation [25]. Later on, a similar network
Mask-RCNN [1] provides the first layout segmentation benchmark for instance
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segmentation of newspaper elements. Another convolution benchmark has been
provided by RetinaNet [27] for keyword detection in document images. This is a
complex method and only helps to detect the text regions. In order to provide a
new state-of-the-art benchmark for table detection and table structure recogni-
tion, DeepDeSRT [40] utilizes a novel image transformation strategy to identify
the visual features of the table structures and feed them into a fully convolution
network with skip pooling. Similarly, Oliviera et al. [33] used a similar FCNN-
based framework for pixel-wise segmentation of historical document pages which
outperforms the previous convolutional autoencoder-based benchmarks obtained
by Chen et al. [7,8]. Saha et al. [39] provided ICDAR2017 POD (Page Object
Detection) benchmark [12] to obtain state-of-the-art results by using transfer
learning based Faster-RCNN backbone for detection of mathematical equations,
tables, and figures. A new cross-domain DOD benchmark was established in
[23] to apply domain adaptation strategies to solve the domain shift problem.
Recently, A vision-based layout detection benchmark has been provided in [47]
which utilized a recurrent convolutional neural network with VoVNet-v2 back-
bone [20] by generating synthetic PDF documents from ICDAR-2013 and GRO-
TOAP dataset. It obtained a new benchmark to solve the scientific document
segmentation task.

Transformer Based Document Layout Analysis. Nowadays Transformers
which provide a more prominent performance with the utilization of positional
embedding and self-attention mechanism [44]. Here, DiT [22] obtained a new
baseline for document image classification, layout analysis, and table detection
with self-supervised pretraining on large-scale unlabeled document images which
cannot be applicable to small magazine datasets like PRIMA. Similarly, Li et
al. [26] obtained a multimodal framework to understand the structured text in
the documents. However, the model performs very poorly for similar seman-
tics of textual content. In order to improve these performances a TILT [35]
mechanism has been introduced which simultaneously learns textual semantics,
visual features, and layout information with an encoder-decoder Transformer.
A similar transformer encoder-decoder was utilized in [46] which provides a
new baseline for the PubLayNet dataset (AP: 95.95) with the text informa-
tion extracted through OCR. Recently, LayoutLmv3 [16] used joint learning of
text, layout, and visual features to obtain state-of-the-art results in visual doc-
ument understanding (VDU) tasks. It performs significantly well for large-scale
datasets but fails for small-scale datasets. DocSegTr [4] utilized a ResNet-FPN
backbone over the transformer layers with self attention mechanism, which helps
it to converge faster for small scale datasets but unable to achieve state-of-the-
art performances. Other recent approaches [2,13,14,18] also utilize this joint
pretraining strategy to solve several VDU tasks including document visual ques-
tion answering. These techniques are quite helpful to several downstream tasks
by a unified pretraining. However, it comes with a pretraining bias which pre-
vents them to perform a domain shift and they also unable to learn the class
information with low number of instances as their is no weight prioritizing.
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Motivated by the recent breakthrough of transformers and to improve its
performance by solving the above-mentioned issues we are proposing an end-to-
end unified domain adaptive document segmentation transformer benefitted with
contrastive training that not only achieves superior performance on standard
instance-level segmentation benchmarks but also provides the first transformer
baseline for the newly proposed industrial document layout analysis dataset [34].

3 Method

The proposed SwinDocSegmenter is a unified end-to-end architecture that con-
tains a Swin Transformer backbone [30], a Transformer encoder-decoder pair,
and a segmentation branch obtained from multiple projection heads by class
instance mapping. The proposed architecture is illustrated in Fig. 1 where the
model first extracts multi-scale features with a Swin backbone. Then the fea-
tures are flattened and downsampled before feeding them into the transformer
encoder, otherwise it would generate a large number of trainable parameters
which is impossible to train with limited resources. The Transformer encoder
takes those features and their corresponding positional embeddings (obtained
through several convolution layers with kernel size 3×3) as input to perform the
feature enhancement. Here, a unified mixed query selection strategy has been
obtained that passed through a low-level projection head to initialize the posi-
tional queries and anchors. The main advantage of this query selection strategy is
that it does not initialize content queries but leaves them learnable which helps a
lot in times of domain shift. Not only that, with the help of a low-level projection
head it helps to focus on low-dimension image features which are often ignored
in transformer training due to lack of data points. This also makes the decoder

Fig. 1. Proposed SwinDocSegmenter Framework. Given an input document
image from any domain, the model predicts the segmented document layout using
a unified detection and segmentation branch
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ready for contrastive denoising training (CDN) [48]. In the decoder, deformable
attention [45] is utilized to combine the outputs of the encoder with layer-by-
layer query updates. With CDN it is also considered the segmented/wrongly
segmented region as hard negative samples and tries to rectify it with a look
forward twice approach [48] where it passes the gradient between adjacent lay-
ers at early stages. We utilize a hybrid bipartite matching strategy to refine the
segmented region based on the dynamic anchor boxes which help to generate
an accurate segmented region. These two pieces of information are combined
through class instance mapping to get the final query embedding. We perform
a dot-product between the final query embedding and pixel embedding map to
get the final instance segmentation output on document images.

3.1 Segmentation Branch

To perform mask classification, we utilize a key idea [9] to construct a pixel
embedding map (PEM) by combining the multi-scale features (extracted by
Swin backbone) and Transformer encoded features. As shown in Fig. 1, the PEM
is constructed with a fusion between 1/4th resolution feature map from the
backbone (Sb) and upsampled 1/8th resolution feature map from Transformer
Encoder (Te). The output mask M is computed by a dot-product between PEM
and query embedding (Qe) obtained from the decoder (see Eq. 1).

M = Qe ⊗ ð(Γ (Sb) + ψ(Te)) (1)

where Γ is the convolutional layer to map the channel dimension to the trans-
former dimension, ψ is the interpolation function for 2× upsampling of Te, and
ð is the segmentation head. This mechanism is simple and easy to implement.

3.2 Feature Encoding Techniques

The feature encoding techniques consist of four important subparts: Query selec-
tion, low-level and high-level feature projection, and anchor initialization to
boost the performance and simplify the decoding technique.

Query selection strategy. It has been observed that the output of the encoder
contains dense features that can be used as better priors in the decoder. Here,
we adopted one classification, one detection, and one segmentation head, in
the encoder output followed by a low-level and high-level projection head. We
obtained the classification score of each token as a confidence score and used
them to select top-ranked features and feed them into the decoder as content
queries. The selected features also regress boxes via detection and segmenta-
tion heads and passed through the high-level projection head to combine with
the high-resolution feature map via dot product to predict the masks. These
predicted masks and boxes are considered initial anchors for the decoder after
passing it through the low-level projection head. It helps to make the decoder for
contrastive training as both high-level and low-level class instances are present
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and we can improve the performance of low-level class instances without com-
promising the performance of high-level instances by adjusting contrastive loss.

Low-level projection head. It is a shallow multi-layer perceptron (MLP) that
leverages the project features to low-level embeddings for contrastive learning in
low-level views. It helps to learn more fine-grained invariances. Specifically, we
apply a non-linear function F = (f1, f2, ..., fs) on low-level features to enhance
them before initializing them as content queries and anchors in decoders. The
objective function of this low-level projection head is defined in Eq. 2.

Llow =
n∑

i=1

n′∑

j=1

−log
exp(fi · fj/τ)

∑k
c=1 exp(fc · fj/τ)

(2)

where, n and n′ are the no. of features obtained from detection and segmentation
heads, c is the no. of top-ranked features obtained from the classification heads.
Here, we need a temperature hyperparameter τ to tune the layers to enhance the
features based on the datasets we have used. τ = 0.02, 0.6, 0.1, and 0.2 for Pub-
layNet, Prima, HJ, and TableBank respectively. Note: all these hyperparameter
values have been obtained experimentally.

High-level projection head. It is a deep MLP that preserves the high-level
invariance of the high-level features. Basically, it set a different number of proto-
types P = (p1, p2, ..., pm) to obtained different key-value pairs k1v1, k2v2, ..., knvn
which also enriched the feature representation. The objective function of this
prototyping has been defined in Eq. 3.

Lhigh =
n∑

i=1

n′∑

j=1

−log
exp(fi · pj/φj)∑k
c=1 exp(fc · pj/φj)

(3)

where, pj is the prototype of the corresponding key-value pairs and φj is the
concentration estimation indicator [32] for the distribution of representations
around the prototype.

Anchor initialization. Document instance segmentation is a classification task
at the pixel level whereas, object detection is a position regression task at the
region level. Therefore, segmentation is more challenging due to its fine granular-
ity than detection though it is simpler to learn in the beginning. Dot-producting
queries using the high-resolution feature map, for instance, can predict masks
by only comparing semantic similarity per pixel. However, the box coordinates
must be directly regressed for detection in an image. As a result, mask predic-
tion is significantly more accurate than box prediction in the initial stage. As a
better anchor initialization for the decoder, therefore, we derive boxes from the
predicted masks following unified query selection. The enhanced box initializa-
tion has the potential to significantly enhance the detection performance thanks
to this efficient task cooperation.
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3.3 Feature Decoding for Mask Prediction

At this stage, we introduced unified contrastive denoising training for effectively
boosting the performance for the low-level instances and hybrid bipartite match-
ing to perform domain shift. Below, we discuss both strategies in detail.

Unified Contrastive Denoising Training. Query denoising [48] is an effec-
tive technique to improve performance by accelerating convergence. However, it
lacks the capability of separating two nearby class instances. CDN can tackle this
issue by rejecting useless anchors. Here, noises are added to ground truth labels
and boxes, and the Transformer decoder receives them as noised positional and
content queries. Here, we have two hyperparameters λp and λe where, λe > λp

as depicted in Fig. 2. It helps to generate two types of queries (positive and
negative). It is anticipated that positive queries within the inner square will
reconstruct their corresponding ground truth boxes because their noise scale is
less than λp. On the other hand, negative queries have a noise scale greater than
λp and less than λe which are minimized through the focal loss. Generally, we
keep λe very small as it helps to improve the performance by keeping the hard
negative samples close to the ground truth anchors. Each CDN group has posi-
tive and negative queries (see Fig. 2). A CDN group will have 2 × q queries for
an image with q GT boxes, with each GT box producing a positive and negative
query. To increase the efficiency we also employ multiple CDN groups.

In order to train the model, the noised versions of the object features have
been utilized to reconstruct them. We also apply this method to tasks involving
segmentation. Boxes and masks are naturally connected due to the fact that
masks can be seen as a more finely detailed representation of boxes. As a result,
we can train the model to predict masks given boxes as a denoising task and treat
boxes as a noised version of masks. In order to train mask denoising more effec-
tively, the boxes provided for mask prediction are also randomly noised. During

Fig. 2. Unified Contrastive Denoising Training Strategy. Similar to DINO [48]
implementation, however, in place of no object detection we introduced a focal loss to
optimize and enhance the low-level instances.
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training, these noised objects will be added to the original decoder queries, but
they will be removed during inference. We perform a lot of tunning to get the
optimized value of λp and λe. However, it has been observed that, most generic
performance has been achieved with λp = 0.1 and λe = 0.02 respectively.

Hybrid bipartite matching. This technique helps to remove the inconsistency
between the pair of masks predicted from different heads by changing their
corresponding weights. With this motivation, we utilize this concept in domain
shift. Basically, we add an extra mask prediction loss in addition to the L1
and focal loss in bipartite matching. It encourages more accurate and consistent
matching results for one query. So, when we utilized a pre-trained model from a
different domain we penalize this loss more which forced us to make significant
changes in their corresponding weights and slowly decrease the penalizing rate
when it reached near the convergence. This loss is also optimized along with
the L1 and focal loss to make this domain shift unified. Finally, a class instance
mapping is performed between the classes and the predicted instances. It is a
simple one-to-one mapping to perform query embedding which can be combined
with pixel embedding map effectively through dot product in order to complete
the instance segmentation process in and end-to-end manner.

4 Experimental Evaluation

Datasets. The Document Layout Analysis (DLA) community has always been
concerned about the absence of standard public benchmarks. We use large-scale
annotated datasets like PubLayNet [49], TableBank [36], and Historical Japanese
(HJ) [41] as well as small-scale PRIMA [10] for evaluating our proposed segmen-
tation approach in this work (Please refer to Table 1 for a detailed description).
Besides that, we evaluate our model against a recently released standard indus-
trial document layout segmentation benchmark DocLayNet [34]. It contains
91104 object instances of 11 distinct labels (Caption, Footnote, Formula, List-
item, Page-footer, Page-header, Picture, Section-header, Table, Text, and Title)
and covers a wide range of document object sizes (large to small).

Evaluation Metrics. The Intersection over Union (IoU) score is the most gen-
eral way to assess the accuracy of the predicted instance (document category)
for an instance-level segmentation task. Standard Microsoft COCO benchmark
evaluation for instance segmentation uses the mean of APs at various IoU thresh-
olds (0.5 to 0.95 with a step size of 0.05) to calculate the mean Average Precision
(mAP) score for the entire model. Since all of them use a similar environment to
compute the mAP, comparing the proposed approach to those that are already in
use is helpful. In addition, the model performance for evaluating each categorical
document instance has been calculated in accordance with [4,16,42].
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Table 1. Experimental dataset description (instance level)

PublayNet PRIMA Historical Japanese TableBank

Object Train Eval Object Train Eval Object Train Eval Object Train Eval

Text 2,343,356 88,625 Text 6401 1531 Body 1443 308 Table 2835 1418

Title 627,125 18,801 Image 761 163 Row 7742 1538 – – –

Lists 80,759 4239 Table 37 10 Title 33,637 7271 – – –

Figures 109,292 4327 Math 35 7 Bio 38,034 8207 – – –

Tables 102,514 4769 Separator 748 155 Name 66,515 7257 – – –

– – – other 86 25 Position 33,576 7256 – – –

– – – – – – Other 103 29 – – –

Total 3,263,046 120,761 Total 8068 1891 Total 181,097 31,866 Total 2835 1418

The Choice of the Feature Extraction Backbone. In the context of
instance-level document segmentation, extensive ablation studies were carried
out to quantify the significance of each component of our model framework
and to justify its use for segmenting various layout elements. All the ablations
have been performed on the PRIMA dataset as it is the smallest dataset and it
contains difficult layouts. In this study, different CNN and Vision Transformer
backbones has been used (see Table 2). Among them, we take the SwinL Trans-
former backbone to multi-scale feature extraction. Though the no. of trainable
parameters increases, it also improves the performance over ResNet, ResNeXt,
and ViTs by 8%, and from Swin Tiny by 5%. The convolutional backbones
provide attention to local features which are effective for small object detection
however, there is no global attention that penalizes the cost for the large object.
On the other hand, ViTs utilize self-attention but require a large amount of
training data to learn the multi-scale features. Initially, Swin-Tiny will perform
well but it is sensitive to noise so at a later stage, it penalizes the reconstruction
which affects the overall performance. Due to its large size SwinL can eliminate
noise very easily and achieves better performance than the rest.

Table 2. Ablation Study of different feature extraction backbones

Backbone No. of Parameters AP AP@50 AP@75 APs APm APl

ResNet-50 52M 36.065 52.362 41.112 20.152 23.327 38.142

ResNet-101 102M 37.112 54.982 41.872 22.242 26.153 41.986

ResNext-101 104M 38.405 58.405 41.916 25.982 29.364 44.129

ViT-S 126M 40.342 59.763 42.158 29.176 33.129 48.526

ViT-B 164M 46.128 62.689 47.358 31.389 33.458 50.508

Swin-T 178M 49.349 65.956 50.317 34.128 36.909 52.049

Swin-L 223M 54.393 69.313 52.965 39.327 42.061 60.142
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The Choice of the Input Image Resolution. Besides that, the image resolu-
tion also affects the model performance as the model is large and the number of
trainable parameters is huge. So if we use the small image resolution then at the
late stage, it only learns the noise which wastes the computational resources.
Increasing the image resolution improves the performance (see Table 3), how-
ever, we are unable to increase beyond 1024 due to the limited resources. More-
over, from the trend, it can be concluded that increasing image resolution also
improves the system performance until it meets the saturation point.

Table 3. How image resolution affects the instance segmentation performance

Image Resolution AP AP@50 AP@0.75 APs APm APl

256 × 256 45.022 60.189 46.258 28.372 32.458 53.568

512 × 512 50.132 66.235 52.317 32.242 36.909 54.148

1024 × 1024 54.393 69.313 52.965 39.327 42.061 60.142

The Choice of the number of Decoder Queries. Similarly, by taking a deep
dive into the model we observe that, the no. of queries used for initializations in
the decoder affects the overall performance. With a small number of queries it
will be very difficult to generate the negative samples close to the performance,
which not only penalizes the model performance but also increases the opti-
mization time of the loss function. Also, dense queries stabilize the model and
provide an opportunity to rectify the misclassified samples (see Table 4). With
the SwinL backbone, we can extend it to 900–1200 but we have to restrict it to
300 due to the limited computational resources.

Table 4. Ablation Study on No. of queries generated from Transformer Encoder

No. of Queries AP AP@50 AP@0.75 APs APm APl

100 50.022 65.189 52.258 32.372 36.458 53.968

150 50.132 66.235 52.317 32.242 36.909 54.148

200 51.393 67.313 52.765 37.312 41.011 60.111

250 52.092 68.212 52.964 37.512 42.060 60.132

300 54.393 69.313 52.965 39.327 42.061 60.142

The Choice of the Learning Objectives. Last, but not the least an ablation
study of the loss functions has been obtained to understand which combination
of the reconstruction and classification loss is most optimized. From Fig. 3 it has
been observed that the combination of L1 and focal loss is the most effective
one for this task. The L1 loss tends to shrink coefficients to zero which is better
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for feature selection whereas L2 tends to shrink coefficients evenly. On the other
hand, Focal Loss helps to scale the standard cross-entropy loss to down-weight
loss corresponding to easily classifiable examples dynamically and focus more on
hard examples to make the system perform better on hard examples as well.

Fig. 3. The impact of learning objectives. The above graphs study the effective-
ness of different combinations of loss functions

Moreover, the most interesting fact has been observed in Table 5 which shows
how pre-training on similar dataset include biases and shrinks the overall perfor-
mance of the model. Here, we have used one SwinL backbone pre-trained on the
PubLayNet dataset and another one pre-trained on the MSCOCO dataset. We
can observe that the model achieves very high performance on the class”Table”
because it is a common class in both datasets. But as the pre-trained model is
not familiar with the “Separator” region, it penalizes a lot decreasing the overall
performance of the networks as it quickly converges the loss by looking at the
similar classes and ignoring the others by taking them as negative samples in
CDN. Whereas with the MSCOCO pre-training it achieves a generic performance
due to the enhanced and unified query selection which let the content queries
learnable, and hybrid bipartite matching helps to optimize the corresponding
pre-training weights. This helps to eliminate the bias factor.
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Table 5. How pre-training provides biases

pre-training Overall Performance Class-Wise Performance

AP AP@50 AP@75 APs APm APl Text Image Table Math Separator Other

PubLayNet 49.36 64.43 51.45 32.94 34.07 54.21 85.55 72.51 70.68 56.05 8.55 2.83

Ms-COCO 54.39 69.31 52.96 39.32 42.06 60.14 87.72 75.92 49.89 78.19 27.56 7.05

Qualitative Insights. The layout segmentation results on the PRIMA dataset
obtained by SwinDocSegmenter and state-of-the-art approaches are shown in
Fig. 4. In this test case, SwinDocSegmenter is able to segment instances of dif-
ferent layout elements quite effectively.

Fig. 4. Comparative analysis of the SwinDocSegmenter framework with the state-of-
the-art approaches (Left: Predicted layout Right: Ground-truth)

It can be observed from Fig. 4(a), though LayoutParser is quite effective for
PRIMA dataset, it fails for this complex case as the bounding boxes are quite
overlapping and not properly mapped with the ground truth. However, Lay-
outLMv3 (Fig. 4(b)) performs very poor in this case. It identifies text and figure
instances but not the other class instances. DocSegTr (Fig. 4(c)) tries to improve
the performance but it is still far away from the ground truth segmentation. On
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the other hand, our method segments complex document more satisfactorily and
also maps the class instances with the ground truth (Fig. 4(d)).

Table 6. Performance on DocLayNet Benchmark

Classes MaskRCNN FasterRCNN Yolov5 Ours

Caption 71.5 70.1 77.7 83.56

Footnote 71.8 73.7 77.2 64.82

Formula 63.4 63.5 66.2 62.31

List-item 80.8 81.0 86.2 82.33

Page-footer 59.3 58.9 61.1 65.11

Page-header 70.0 72.0 67.9 66.35

Picture 72.7 72.0 77.1 84.71

Section-header 69.3 68.4 74.6 66.5

Table 82.9 82.2 86.3 87.42

Text 85.8 85.4 88.1 88.23

Title 80.4 79.9 82.7 63.27

All 73.5 73.4 76.8 76.85

Quantitative Analysis. The final performance of the SwinDocSegmenter in
terms of mAP is quite interesting and it has the ability to provide a new bench-
mark for Document Layout Segmentation. In Table 6 and 7, the method achieves
a second position as both the LayoutLMv3 [16] and Layout Parser [42] use text
information along with the visual information for instance segmentation task.
In the case of PublayNet, we observe that the proposed is better identifying the
text region than LayoutLMv3 and it provides comparable performance for other
categories except for the “Title”. Now “Title” also contains text so without tex-
tual information, it will be very difficult to solve these borderline cases. Also in
terms of AP@0.5 and AP@0.75, it already surpasses LayoutLMv3 by only using
visual information. Not only that, but it also outperforms the DiT (AP: 93.5) [22]
and achieves comparable performance with UDoc (AP: 93.9) [13] which provide
a standard benchmark on the PubLayNet dataset. The same observations have
been noticed for the PRIMA dataset. It is already observed that LayoutLMv3 is
not good enough to detect small objects. But Layout Parser can, as it has a con-
volution backbone instead of a Transformer backbone and it also uses Microsoft
OCR to extract the textual information from the images to combine them with
visual information. The proposed model surpasses this state-of-the-art for all
categories except “Table” and “Others”. The performance is mainly affected by
the “others” category as there is no such particular definition and without proper
text information it is very difficult to separate them from the other categories.

In Table 8 it has been observed that the proposed method outperforms all
the previous state-of-the-art approaches. It outperforms the DocSegTr in the
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Table 7. Performance Analysis on the PubLayNet and PRIMA Benchmark

PublayNet PRIMA

Object Layout Parser Doc SegTr Layout LMv3 Ours object Layout Parser Doc SegTr Layout LMv3 Ours

Text 90.1 91.1 94.5 94.55 Text 83.1 75.2 70.8 87.72

Title 78.7 75.6 90.6 87.15 Image 73.6 64.3 50.1 75.92

Lists 75.7 91.5 95.5 93.03 Table 95.4 59.4 42.5 49.89

Figures 95.9 97.9 97.9 97.91 Math 75.6 48.4 46.5 78.19

Tables 92.8 97.1 97.9 97.25 Separator 20.6 1.8 9.6 27.56

other 39.7 3.0 17.4 7.054

AP 86.7 90.4 95.1 93.72 AP 64.7 42.5 40.3 54.39

AP@0.5 97.2 97.9 97.94 AP@0.5 77.6 54.2 69.31

AP@0.75 93.8 95.8 96.28 AP@0.75 71.6 45.8 52.965

Historical Japanese dataset by a small margin ( 1%) but shows a significant
improvement in the “Name” and “Position” categories. On the other hand, it
shows a significant improvement ( 5%) in the Table Detection task on the Table-
Bank dataset as it has only one category and comparatively less challenging
layouts.

Table 8. Performance Analysis on HJ and TableBank Benchmark

Historical Japanese TableBank

object Layout Parser Doc SegTr Layout LMv3 Ours object Layout Parser Doc SegTr Layout LMv3 Ours

Body 99.0 99.0 99.0 99.72 Table 91.2 93.3 92.9 98.04

Row 98.8 99.1 99.0 99.0

Title 87.6 93.2 92.9 89.5

Bio 94.5 94.7 94.7 86.26

Name 65.9 70.3 67.9 83.8

Position 84.1 87.4 87.8 93.0

Other 44.0 43.7 38.7 40.57

AP 81.6 83.1 82.7 84.55 AP 91.2 93.3 92.9 98.04

AP@0.5 90.1 90.78 AP@0.5 98.5 98.95

AP@0.75 88.1 88.22 AP@0.75 94.9 98.90

Last but not the least, we have obtained the first Transformer based base-
line for a newly proposed dataset DocLayNet which contains industrial docu-
ments and the layouts are more challenging than PubLayNet benchmark. From
Table 6 we conclude that our proposed SwinDocSegmenter outperforms the
convolutional-based algorithms (MaskRCNN, FasterRCNN, etc.) by a signifi-
cant margin.

5 Conclusion

In this paper we have presented SwinDocSegmenter, a powerful model to per-
form Document Layout Analysis by only utilizing the visual information. The
improvement regarding the state-of-the-art is mainly constructed due to the
enhanced and unified query selection, contrastive denoising training, and look
forward twice approach. Also, the low-level projection head helps to enhance the
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low-level instances which makes a significant improvement in the overall perfor-
mance as the Transformers are usually not good enough to detect small objects.
However, there is still some scope for further improvement. The performance
on PRIMA has still not reached the state-of-the-art with visual features as it
contains a complex layout and very small training samples. A few-shot setting
could help to improve the performance in the future.
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Abstract. While strides have been made in deep learning based Ben-
gali Optical Character Recognition (OCR) in the past decade, absence of
large Document Layout Analysis (DLA) datasets has hindered the appli-
cation of OCR in document transcription, e.g., transcribing historical
documents and newspapers. Moreover, rule-based DLA systems that are
currently being employed in practice are not robust to domain variations
and out-of-distribution layouts. To this end, we present the first multi-
domain large Bengali Document Layout Analysis Dataset: BaDLAD.
This dataset contains 33, 695 human annotated document samples from
six domains - i) books and magazines ii) public domain govt. documents
iii) liberation war documents iv) new newspapers v) historical newspa-
pers and vi) property deeds; with 710K polygon annotations for four
unit types: text-box, paragraph, image, and table. Through preliminary
experiments benchmarking the performance of existing state-of-the-art
deep learning architectures for English DLA, we demonstrate the effi-
cacy of our dataset in training deep learning based Bengali document
digitization models.

Keywords: Handwritten Document Images · Layout Analysis
(Physical and Logical) · Mobile/Camera-Based · Other Domains ·
Typeset Document Images

1 Introduction

Understanding the layout of amorphous digital documents is a crucial step in
parsing documents into organized machine-readable formats that are usable in

Md. I. H. Shihab, Md. R. Hasan, M. R. Emon, A. I. Humayun and A. Sushmit—Equal
contribution.
Project website: https://bengaliai.github.io/badlad.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 326–341, 2023.
https://doi.org/10.1007/978-3-031-41676-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41676-7_19&domain=pdf
https://bengaliai.github.io/badlad
https://doi.org/10.1007/978-3-031-41676-7_19


BaDLAD: A Large Multi-Domain Bengali Document Layout 327

real-world applications. Despite tremendous developments in machine learning
(ML) methods and deep neural networks (DNNs) in recent decades, transcription
of documents, e.g., historical books, remains a difficult challenge [18]. Document
layout analysis (DLA) is a preprocessing phase of a document transcription
pipeline that detects and parses the structure of a document [4] by segmenting
it into semantic units such as paragraphs, text-boxes, images and tables. Such
segmented units are then transcribed via Optical Character Recognition (OCR)
methods, for which robust algorithms have been proposed in literature [12,13].
The preprocessing step performed by DLA systems is often challenging due to
different factors, e.g., free-writing style, deteriorating and faded text, ink spilling,
and artistic lettering. Antiquated property documents, stained and torn papers
and vague handwritten scripts make this task even more difficult [4]. Robust DLA
methods are therefore a major requirement for the digitization of handwritten
records.

A DLA pipeline comprises a number of steps that may differ among
approaches based on the layout of the specific document category and anal-
ysis goals [4]. Although rule-based algorithms and heuristic approaches were
the standard for DLA in its earlier days [1], recent decades have seen a major
push towards solutions that use object detection models. Especially with the
inception of DNNs, the accuracy and speed of such frameworks have greatly
improved [5,9,11,19] paving the way for DNN based DLA methods [18]. While
datasets like DocBank [16] and PubLayNet [20] are large enough to cater to the
sample complexity of DNN based DLA frameworks, the datasets lack diversity
in the orientation of annotations - which are mostly axes aligned. Moreover, such
datasets contain data from a single domain, e.g., pdf articles from PubMed for
PubLayNet. Therefore, DNNs trained on such homogeneous sources, risk being
vulnerable towards domain or distribution shifts [15].

In this paper, we present a dataset of documents collected from the wild,
from multiple domains containing text with diverse layouts and orientations. Our
dataset is the first large scale multi-domain document layout analysis dataset
for Bengali. Our main contributions are as follows:

– We present a human-annotated dataset of 33,693 documents collected in the
wild “BaDLAD”, for document layout analysis in Bengali. BaDLAD is the
largest organic dataset for Bengali DLA to the best of our knowledge. Our
dataset contains 710K polygon annotations for four unit/segment types: i)
text-box, ii) paragraph, iii) images, and iv) table.

– BaDLAD comprises data collected from six different domains, i) books and
magazines, ii) public domain govt. documents, iii) liberation war documents,
iv) new newspapers, v) historical newspapers, and vi) property deeds. To the
best of our knowledge, BaDLAD is also the first multi-domain DLA dataset
for Bengali.

– We present preliminary results benchmarking the performance of popular
DNN based DLA methods on BaDLAD. We show that existing English DLA
state-of-the-art models, fine-tuned on BaDLAD, exhibit improved perfor-
mance on Bengali document layout analysis tasks in the multi-domain setting.
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Apart from this, we also present an additional 4 million un-annotated images
including captured, scanned and printed documents that can be used for unsu-
pervised DLA. The following sections are organized as follows. In Sect. 2 we
discuss related work on Document Layout Analysis that is present in literature.
In Sect. 3 we discuss the challenges present in Bengali DLA, also motivating the
need for documents collected from the wild. In Sect. 4 we present discussions
on our collection protocols, annotation pipeline and statistics of our collected
dataset. In Sect. 5 we present preliminary benchmarks on our dataset and fol-
lowing that in Sect. 6 we present conclusions and future directions. We make the
codes for our benchmarking models and the corresponding data analysis publicly
available under the CC BY-SA 4.0 license.

2 Related Work

Document Layout Analysis. According to [20], Zhong et al. generated and
distributed the PubLayNet dataset for document layout analysis, which includes
automatically annotated data through matching with XML representations.
Using an implementation of the Detectron algorithm, they trained an F-RCNN
model and an M-RCNN model using PubLayNet. This dataset is claimed to be
the largest one out there, containing 1 million pdf pictures of PMCOA (PubMed
Centre Open Access) articles. PubLayNet data represent only scientific papers,
which is topic-specialized and reduces layout diversification.

Li et al. presented a dataset DocBank which contains 500K document-level
images in English with fine-grained token-level annotations for structure anal-
ysis. They performed experiments on this dataset using four baseline models
(BERT, RoBERT, LayoutLM, and Faster R-CNN) and claimed that the dataset
can be utilized in any sequence labeling model [16]. However, this dataset is based
on automatically annotated English documents, which hurts its generalizability.

Pfitzmann et al. presented a manually annotated document layout dataset
DocLayNet in COCO format containing data from diverse sources [18]. They
presented benchmark accuracies for a collection of standard object detection
models (MASK R-CNN, Faster R-CNN and YOLOv5) and analyzed models
trained on PubLayNet, DocBank, and DocLayNet [18]. Non-overlapping, ver-
tically oriented, rectangular boxes were permitted during the annotation pro-
cess. According to them, human-annotated datasets provide more credible layout
ground truth on a diverse range of publication and typesetting styles compared
to DocBank and PubLayNet. Oliveira et al. [3] proposed a block based classifi-
cation method to detect the layout of structured image documents rapidly and
automatically through one dimensional CNN approach with a bi-dimensional
CNN to compare performance and demonstrate their work.

Bengali Document Layout Analysis. Clausner et al. [7] presented several
methods including four open-source SOTA systems for the evaluation of page
analysis and identification algorithms for ancient manuscripts written in Bengali
through their comparative assessment on this topic. This dataset is available in
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ICDAR challenges. For SOTA methods, they used Tesseract 3.04 and 4.0 with
internal binarization and long short-term memory units (LSTMs). Bangla OCR-
I used Google’s Tesseract OCR engine for text classification and only works
on printed scripts, whereas Bangla OCR-II’s primary classification engine is a
feature-based SVM and cannot handle intricate frames [7]. Some current datasets
for Bengali document layout analysis are already being utilized in document pro-
cessing tasks, although their size is rather limited [20].

3 Challenges of Bengali Document Layout Analysis

Bengali, one of the most widely spoken languages globally, is characterized by a
large number of native speakers, estimated at almost 300 million, with 37 mil-
lion international speakers. Despite its extensive usage, the field of Document
Language Analysis (DLA) in Bengali remains in its nascent stages, with limited
research and resources available on the subject. The synthetic data generation
approach, commonly adopted by well-known datasets such as PubLayNet and
DocBank, does not apply to Bengali given the majority of the publicly accessi-
ble Bengali documents are either scanned images or captured photographs of the
original document and thus cannot be annotated using automatic algorithms.
Moreover, such datasets are comprised of synthetic, born-digital documents and
are carefully curated, resulting in annotations with exclusively horizontal and
vertical boundaries. In contrast, our dataset incorporates irregularly-shaped
polygon annotations and preserves their original boundaries. It is our belief
that this approach will enhance the precision of layout detection and related
challenges, such as optical character recognition and form detection.

The Bengali script, being a non-Latin-based script, possesses another chal-
lenge for DLA tasks. Bengali has an intricate writing system encompassing inflec-
tions, multiple script forms, and character composites. This is because individual
characters can exhibit different forms based on their position within a word or
the preceding and succeeding letters. Furthermore, certain characters in Ben-
gali may be represented through a combination of multiple characters [2], which
presents a challenge for models to identify them accurately. These complexities
can result in inaccuracies in layout analysis, as the models may not be capable
of discerning between the text elements and the interconnections among them.

The historical nature of printed Bengali documents, dating back to the early
1800s, coupled with the prevalence of typographical variations and the printing
styles of ancient literature present significant difficulties for the document layout
analysis (DLA) task in this language. Additionally, the complexity of the lay-
out, frequently unintelligible handwriting, deteriorating paper quality, and non-
standard formatting of modern Bengali legal documents further exacerbate the
state of this area of research. Given the recent advances in massively data-driven
deep learning techniques, development of a machine-trainable, hand-annotated
dataset with sufficient diversity to address these challenges should be a priority–
which is precisely what is proposed in the present paper.
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4 Benga li Document Layout Analysis Dataset: BaDLAD

aDLAD comprises of data collected from six different domains. The dataset con-
tains annotations for four semantic unit types via polygon annotations. In this
section we first provide descriptions for the selected data domains and justifi-
cations for the semantic unit types. Following that we discuss our annotation
pipeline and statistics of the collected data.

4.1 Semantic Units for Layout Segmentation

We started by scraping ∼ 20, 000 Bengali PDF files from publicly available online
repositories for books. To explore the layout diversity of these books , we trained
a self-supervised SwAV [6] model which generates prototypes that can be con-
sidered as the cluster centers of the model’s embedding space. Upon inspecting
the cluster centers, and manually inspecting a number of representatives from
each cluster, we noticed four major semantic categories in which the layout can
be partitioned:

• Text-box : A small isolated collection of letters, numbers, word or group
of words, e.g., page number, book name, chapter name, headline/ title, or
incomplete non-contiguous sentences.

• Paragraph : A collection of text that is made up of one or more sentences
and deals with a single topic or idea and is separated from other paragraphs
by a line break or indentation. A single word can be considered as a paragraph
when it is in context and makes a meaningful point or statement on its own,
e.g., in a dialogue.

• Image: Representation of any visual object that is not only comprised of
text, e.g., logo, pictures, graphical handwritten signatures.

• Table : Structured set of data made up of rows and columns, which may or
may not have table headers or borders.

We did not find a significant number of list elements in the clusters. Hence we
did not include the list category as a semantic unit in our dataset. In our dataset,
we have annotated lists as a collection of text-boxes or paragraphs, depending
on which of the aforementioned definitions the list elements are closest to.

4.2 Domain Categories and Sources

To make the dataset diverse and complex, we collected documents from a wide
range of domains, e.g., Novels, Magazines, Poems, Newspapers, Government
Documents, Property Deeds, Liberation War Documents, which we have binned
into the following categories based on sources. We have also presented represen-
tative samples in Fig. 1.

Magazine and Books. This domain comprises of samples from ∼ 20, 000 Ben-
gali PDFs scraped from publicly available online repositories, as mentioned in
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Fig. 1. Different layout categories present in the BaDLAD dataset. Annotations are
color coded as: Text-box, Paragraph, Image, Table. We do not present exam-
ples from the Property Deeds domain to ensure confidentiality. (Color figure online)
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Sect. 4.1. The collection comprised of books, magazines (Fig. 1d), poems (Fig. 1f)
and comics (Fig. 1c) with a very diverse set of layouts. We also take into account
the book covers while sampling from the collected PDFs. All of the PDFs are
scanned or photo captured versions of the original document, without any digi-
tal transcription. Literary works comprising mostly of text, e.g., novels, contain
three major layout types - single page single column (Fig. 1i), single page double
column (Fig. 1h) and double page single scan (Fig. 1k and 1l).

Historical Newspapers. Historical Newspapers that have been published
before December 1971 that were manually scanned. The typesetting of such
newspapers are significantly different from new newspapers, e.g., in terms of
font size, font style, glyphs of consonant conjuncts (Fig. 1a).

New Newspapers. Recently published newspapers manually captured by scan-
ners and cameras (Fig. 1j).

Liberation War Documents. Taken from a 15-part collection of liberation
war documents, manually scanned (Fig. 1e).

Government Documents. We have collected publicly available government
documents by scraping from online repositories and by manually collecting and
scanning. These documents comprise of both handwritten and printed characters
along with logos, seals, tables, headers and graphical elements (Fig. 1g).

Property Deeds. Confidential documents collected with consent via social
media crowd-sourcing campaigns. We have anonymized the documents by remov-
ing sensitive and identifiable information and include them only in the hidden
test dataset. These documents generally contain a lot of handwritten notes, sig-
natures and free-form text, posing a challenging DLA task.

4.3 Annotation and Validation

To ensure diversity of samples, we chose 2 pages randomly from each scanned
document, since pages from the same document have higher probability of being
similar. A team of 13 annotators were trained to annotate document layout on
the “Labelbox” platform. Polygon labeling was used because of the complex
orientation of texts and images in our dataset (as can also be seen in Fig. 1).
Each annotator was tasked to segment all the semantic units in a given sample.
We also kept track of the time required to annotate each sample as metadata,
which can be considered as a segmentation hardness measure for each sample.
The annotators annotated 33,693 samples in total over a course of four months.
During annotation, three curators were assigned the task of annotation verifi-
cation and curation. Any document with wrong annotations were resent to the
original annotator for correction. The annotation guidelines were also dynami-
cally updated during this process. In Fig. 2 we provide a brief overview of our
data collection, annotation and validation process.

Brief Annotation Guideline. In order to obtain more effective data, we devel-
oped objective guidelines for the annotators which applied in a domain-unit spe-
cific manner. All plots or graphs were considered as images. For samples with
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Fig. 2. Data collection and annotation pipeline for the BaDLAD dataset. Candidate
samples from the un-annotated dataset are collected and curated dynamically with
annotation and validation tasks to ensure layout diversity and quality of images.

double page scans, if any portion of the content of one page went to another, then
the divided portions were annotated separately. In the case of poetry, if there
were extra white spaces between lines then the lines were considered separate
paragraphs. Bullets or numbered lists were separately annotated as text-boxes
for one line sentences and paragraphs in the case of multi-line sentences. Hand-
written texts were considered as texts except for signatures, signatures were
marked as images. If there were any extra notes (e.g. URLs, post-scripts) along
with a paragraph, then the extra portion was annotated as a text-box. Vertical
lines, advertisements/links were marked as text-boxes. Tables were annotated
as tables, but the contents were marked according to the definitions as images,
text-boxes or paragraphs. If for a sample, the contents from the other side of a
scanned page were visible due to transparency, the text from the opposite were
ignored and only the main text from the correct side was annotated.

4.4 BaDLAD Statistics

After annotation and curation, the BaDLAD dataset comprises a total of 33,693
samples; of which 30054 samples are from Magazines and Books, 1285 samples
from Govt. Documents, 1004 samples from Liberation War Documents, 861 sam-
ples from Historical Newspapers, 328 samples from Property Deeds and 161 sam-
ples from New Newspapers. While Magazines and Books is the most prevalent
domain, as discussed in Sect.4.2 and presented in Fig. 1, the domain contains
a large diversity of layouts from multiple sources. In Table 1 and Table 2, we
present the domain-wise number of annotations for every unit type, along with
the time elapsed for annotation. We present it for the train and test splits sep-
arately as specified in Sect. 5.1. If we consider the average time required to
annotate a sample as a hardness measure for each sample, we can see that sam-
ples from the Historical Newspapers and New Newspapers domains are the most
challenging. On the other hand, samples from the Liberation War Documents
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domain is considerably easier, which can be attributed to the relatively larger
volume of paragraph annotations. This distinction is also present in the number
of polygon per page histogram, presented in Fig. 4.

Table 1. Domain-wise annotation statistics for BaDLAD (Train)

Domain Samples Text-box Paragraph Image Table Total Annotation Time (Hours) Avg. Annotation Time (Minutes)

Historical Newspapers 516 25452 38990 1252 67 211.52 24.60

New Newspapers 96 3978 2507 494 36 27.35 17.10

Govt Documents 771 44017 2260 762 514 78.44 6.10

Magazines and Books 18380 123099 162570 7734 594 948.58 3.10

Property Deeds 0 0 0 0 0 0.0 0.0

Lib War Docs 602 7330 3262 55 142 22.43 2.24

Total 20365 203876 209589 10297 1353 1288.33 3.80

Table 2. Domain-wise annotation statistics for BaDLAD (Test)

Domain Samples Text-box Paragraph Image Table Total Annotation Time (Hours) Avg. Annotation Time (Minutes)

Historical Newspapers 345 17611 26571 838 54 146.85 25.54

New Newspapers 65 3542 1902 237 24 22.57 20.83

Govt Documents 514 27903 1497 482 301 52.63 6.14

Magazines and Books 11674 80581 103390 4949 376 625.02 3.21

Property Deeds 328 6012 599 930 117 17.03 3.11

Lib War Docs 402 4733 2370 16 104 16.06 2.40

Total 13328 140382 136329 7452 976 880.17 3.96

In Fig. 5 we present the area covered by each unit type as a percentage of the
total area of samples per domain, for the whole dataset. Here, area is calculated
in pixel units. We can see that for Liberation War Documents, Magazines and
Books and Newspapers, a large fraction of the images are covered in paragraphs.
On the other hand, for Govt. Documents, a larger fraction of area is covered
by tables. For all of these graphs, the percentage sum might be larger than
1 since there can be significant overlaps in the area covered by two different
annotations. For example, in Fig. 3ii we present examples of different overlaps
which are frequently present in the dataset.

In Fig. 6, we present the spatial distribution of different unit types for the
whole dataset. The table polygons exhibit a highly concentrated localization
within a distinct square shape, which is a result of the tendency for placing tables
away from the borders of the document. The text-boxes are less overlapped, as is
visible in the distribution, with the exception of the header section. Conversely,
paragraphs are distributed evenly throughout the body of the page and exhibit
a characteristic horizontal dark bar in the center, indicative of the presence
of a significant number of double-page layouts within the original dataset. We
generate the spatial distribution by resizing each image to a 128× 128 square
and counting for every pixel, the number of annotations for each unit type. For
the Images and Tables unit types we use all the samples from the dataset. For
the text-box and paragraphs unit types, we randomly sample 50K annotations
for each, to generate the figures.
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Fig. 3. Annotated samples from the BaDLAD dataset with semantic units (i). Anno-
tation overlaps between different semantic units (ii).
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Fig. 4. Histogram of Polygons per page stacked and colored by the domain presented
in logarithmic scale. Samples from the Government Documents domain contain a lower
number of polygons in every page. Both Historical Newspapers and New Newspapers
contains a higher number of polygons per page, which correlates with their higher avg.
annotation time requirement according to Table 1. Samples from the Magazines and
Books domain contain a large diversity in number of polygons per page.

5 Benchmark

In this section, we evaluate the performance of object detection and segmenta-
tion models that are prevalent in DLA literature. We detail our methodology
for generating a standard training and testing split from our dataset, report
performance of benchmark models and show prediction results with qualitative
analysis.

5.1 Dataset Split

The dataset was split into a train and test partition to perform our benchmarks.
The split was done in a stratified method where a 60:40 train-test ratio was
maintained for each domain listed in Sect. 4.2 except for property deed which
was kept entirely in the test set. Also we ensured that the pages coming from
the same book was kept in the same split to prevent data leakage. Previously
as the authors of PubLaynet [20] and HJDataset [16] claimed that segmentation
masks are the quadrilateral regions for each block, Compared to the rectangular
bounding boxes, they delineate the text region more accurately. The resulting
train and test set had 20,365 and 13,328 samples respectively. Brief statistics of
the train and test split can be found in Tables 1 and 2.

5.2 Model Description and Results

In this section we compare the performance of state-of-the-art DLA and object
recognition methods on our dataset. We trained an F-RCNN and an M-RCNN
model on BaDLAD utilizing the Detectron [10] implementation and a YOLOv8
model utilizing the Ultralytics [14] implementation. The R-CNN models were
trained for 10,000 iterations with default hyperparameters; a learning rate of
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Fig. 5. Area covered by polygons for every unit type, normalized by the total area
of samples per domain. Except for Govt. Documents, all the domains have a larger
area covered by paragraphs. For the Govt. Documents domain, even though the num-
ber of paragraphs is higher than the number of tables, the area covered by tables is
significantly higher than that of paragraphs.

Fig. 6. Un-normalized spatial distribution of annotations for different unit types. Each
sample from BaDLAD is resized to a square 128× 128 image, and pixel-wise density
for each annotation type is presented. While for all cases there is uniformity in spatial
distribution, for Text-box annotations, we see a spike in the distribution around the
top, indicating high density of headers annotated as text-boxes.

0.001 with a decay of 0.1, a minibatch size of 48, and a warm-up iteration of 5.
The YOLO models were trained for 100 epochs. For this, we used a batch size of
8, an initial learning rate of 0.01, a weight decay of 0.0005, and a warm-up itera-
tion of 3. As a feature extractor, the RCNN models employ a ResNet-50 model,
except for the M-RCNN pretrained on PubLayNet, which employs ResNet101.
The performance of the benchmark models utilized in this study is presented in
Table 3. Note that while BaDLAD was labeled via polygon annotations, we also
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Table 3. Comparison of mAP (50-95) for different DLA architectures on BaDLAD.
Models are pre-trained on ImageNet (ImgNet), PubLayNet (PLNet), and COCO
datasets. We present domainwise results for each unit type, categorized as P (Para-
graph), Tx (Textbox), I (Image), and Tb (Table). M-RCNN has a ResNet50 backbone
whereas, M-RCNN* has a ResNet101 backbone.

Arch. Pretrain. Annot.
Historical Newspapers New Newspapers Government Documents

P Tx I Tb P Tx I Tb P Tx I Tb

F-RCNN ImgNet BBox 57.87 17.49 59.05 0.0 39.08 12.47 47.60 2.08 43.96 18.68 22.64 10.70

F-RCNN PLNet BBox 64.94 22.10 67.96 2.38 46.74 16.15 60.68 14.70 46.95 20.03 28.47 64.35

YOLOv8 COCO BBox 97.50 73.30 91.50 45.50 79.70 45.10 87.50 64.90 85.10 82.60 85.70 98.70

F-RCNN ImgNet Mask 58.30 18.68 59.59 0.0 40.92 13.46 47.34 7.29 37.72 18.87 20.48 7.00

M-RCNN ImgNet Mask 60.33 18.29 57.30 0.0 41.39 13.15 45.22 1.91 39.06 18.73 19.43 3.73

M-RCNN* PLNet Mask 68.63 22.34 64.08 3.67 48.06 17.12 55.56 20.21 41.57 21.43 25.88 49.68

YOLOv8 COCO Mask 64.40 27.10 77.20 10.80 55.0 18.0 64.80 14.20 54.90 22.10 34.80 45.00

Arch. Pretrain. Annot.
Magazine and Books Liberation War Documents Property Deeds

P Tx I Tb P Tx I Tb P Tx I Tb

F-RCNN ImgNet BBox 65.16 24.71 48.11 1.61 78.60 26.37 1.83 36.20 0.54 0.55 1.61 0.58

F-RCNN PLNet BBox 68.91 26.29 58.36 15.61 79.63 27.64 1.00 69.60 0.34 0.82 1.24 0.95

YOLOv8 COCO BBox 93.90 68.20 79.40 35.00 98.70 78.50 5.53 91.30 58.00 51.90 36.40 57.00

F-RCNN ImgNet Mask 61.59 25.52 46.81 2.86 70.40 26.63 1.34 40.94 0.70 0.58 1.05 0.86

M-RCNN ImgNet Mask 61.76 25.34 44.90 2.27 71.15 26.80 0.98 40.13 0.60 0.66 2.08 0.61

M-RCNN* PLNet Mask 65.77 27.24 52.03 11.96 72.36 28.87 2.11 66.21 0.51 0.69 2.73 5.68

YOLOv8 COCO Mask 65.20 23.80 58.30 12.20 72.90 24.50 1.50 29.70 38.70 16.20 19.10 6.27

provide best fit bounding box, and segmentation masks as annotation. There-
fore, models trained with an object detection target used bounding box as the
ground truth, whereas, models trained with a segmentation target were evalu-
ated on mask annotations. In accordance with the standard established by the
COCO Competition [17], the Mean Average Precision (mAP) was computed uti-
lizing the intersection over union (IoU) metric for bounding boxes. The YOLOv8
segmentation model employs a custom CNN feature extractor CSPDarknet53,
in combination with a YOLO detection backbone to achieve superior accuracy
in bounding box predictions across all domains and unit types. However, when
it comes to mask prediction, the M-RCNN pre-trained on PubLayNet, exhibit
better performance in predicting paragraphs in historical newspapers, as well as
text boxes, images, and tables in Liberation war documents. YOLOv8 outper-
forms M-RCNN and F-RCNN in all other cases. YOLOv8 obtains an average
mAP of 70.46% and 35.69% in the object recognition and segmentation settings
respectively. The M-RCNN model pre-trained on PubLayNet acquired average
mAP of 32.27% in the segmentation setting. The models are generally more
accurate in detecting paragraphs and images than text-boxes and tables. As our
dataset contains a low number of table annotations, our benchmark models seem
to under-perform for that unit type. However, even after being the second most
frequent unit type, the accuracy of detecting text-boxes is surprisingly low. The
results show that there is major scope for improvement in the DLA tasks using
our dataset.

In Fig. 7, we show performance of the M-RCNN model with ResNet101 back-
bone, on seven test samples. For the first three samples (top-left to bottom-right)
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Fig. 7. Predictions of M-RCNN-101 model on BaDLAD Test samples. The contents of
the third sample (from the Property deeds domain) has been redacted for confidentiality.
The first 3 samples show only bounding box predictions and the rest show segmentation
boundaries.

we show only the bounding box predictions while for the rest of the samples,
we show both bounding box and segmentation masks predicted. We see that
the model performs significantly bad for the third samples. This is due to the
sample coming from the Property Deeds domain which was absent in training.
The fourth sample also contains a number of paragraphs which are not correctly
detected, possibly due to the boldface headers. In the fifth sample, we can see the
network perform well even in the presence of code-switched text. In sample six,
we see the model perform very well, especially since the sample is axes aligned.
For sample seven, the network exhibits robustness to noisy images and partially
torn pages in the scanned document.

6 Conclusion

In this paper, we introduced the BaDLAD Dataset on Bengali document layout
analysis and presented preliminary benchmarking results using RCNN-based and
Yolo-based approaches. Unlike many prominent datasets from this domain, this
is a human-annotated large dataset for layout analysis and presents an unique set
of challenges. As the creation of synthetic layout analysis datasets are challenging
for Bengali, this work can serve as a foundation to the field of Bengali Optical
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Character Recognition and also digitization of historical documents. As we are
also releasing 4 million unannotated samples along with the dataset, future work
can focus on utilizing unsupervised methods for training better models.

Although the dataset has diversity, it is imbalanced both in the source
domains and the semantic units. This dataset will be a stepping stone in analyz-
ing this imbalance. It can also be used as a fine-tuning dataset for a pretrained
model. There are missing domains such as, shopping receipts, application form,
id card etc. These domains can be added in future iterations of the dataset.
We will utilize active learning methods for annotating more domain-diversified
samples un-annotated portion of the dataset. One current trend in the develop-
ment of DLA datasets is the use of having textual information along with layout
information for Language Model based layout segmentation modeling [16]. It is
possible to get word segmentation by using a word detection algorithm [8] and
use a word recognition model to detect the text content. We leave this as a future
work, which can convert the current dataset from a segmentation one to a LM
based layout analysis dataset and hence, improve the quality of segmentation
performance. 1
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Universitat Autònoma de Barcelona, Barcelona, Spain

{sbiswas,abanerjee,josep}@cvc.uab.es
3 CVPR Unit, Indian Statistical Institute, Kolkata, India

{siladittya r,umapada}@isical.ac.in
4 Department of Electronics and Electrical Communication Engineering,

Indian Institute of Technology Kharagpur, Kharagpur, India
saumik@ece.iitkgp.ac.in

Abstract. Document layout analysis is a known problem to the docu-
ments research community and has been vastly explored yielding a mul-
titude of solutions ranging from text mining, and recognition to graph-
based representation, visual feature extraction, etc. However, most of
the existing works have ignored the crucial fact regarding the scarcity
of labeled data. With growing internet connectivity to personal life,
an enormous amount of documents had been available in the public
domain and thus making data annotation a tedious task. We address
this challenge using self-supervision and unlike, the few existing self-
supervised document segmentation approaches which use text mining
and textual labels, we use a complete vision-based approach in pre-
training without any ground-truth label or its derivative. Instead, we
generate pseudo-layouts from the document images to pre-train an image
encoder to learn the document object representation and localization in a
self-supervised framework before fine-tuning it with an object detection
model. We show that our pipeline sets a new benchmark in this con-
text and performs at par with the existing methods and the supervised
counterparts, if not outperforms. The code is made publicly available at:
github.com/MaitySubhajit/SelfDocSeg.
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1 Introduction

From the early days of computer vision and document understanding research,
document layout analysis (DLA) had been a primitive problem and had been
conquered with a multitude of strategies [7] from classical methods [1,26,46]
to state-of-the-art learning-based models [8,36,55]. While intelligent document
processing (IDP) has emerged as an essential step toward automatic document
understanding, bearing the rise of convolutional neural networks (CNN) and
sequence models, researchers have achieved near-perfect accuracy in the context
of DLA with models having vast deployability and reliability. With a rapidly
growing population, and the span of digital personal lives, documents are becom-
ing more unconventional and business applications for IDP are encountering
complex and never-before-seen layouts taking the already solved challenge a
level up with the requirement of deep features exploration and exploitation. To
meet that end, the state-of-the-art DLA strategies had improved a lot over time
and still continue to do so, while remaining one of the most trendy topics for
the research community [47].

The challenge of document segmentation or DLA had been a research inter-
est for nearly a decade and thus had been solved with classical heuristic rule-
based methods [1,26] in the early days, while modern documents understanding
community treats it as a document object detection (DOD) problem and is typ-
ically approached by a standard vision based object detector models [33,43,52].
With the breakthrough in sequence models and language models, researchers
had been using the same along with object detection to solve the problem with
better accuracy [36]. However, the research community has vastly ignored the
fact that the growth in the number of unconventional documents raises the
need for tedious annotation tasks to exploit the knowledge for better document
understanding through the conventional supervised setting, and thus the self-
supervised approaches toward the problem are highly relevant in this context.

Deploying self-supervision in DOD is quite non-trivial as the task inherently
cannot use the power of contrastive learning as the images contain multiple
document objects of different classes and thus naively using each picture as its
own class is not going to help. Apart from handling the class information, the
encoder needs to consider object localization which cannot be realized through
self-supervision without preliminary knowledge of the locations of layout objects.
Moreover, it had been observed that although deep visual features extracted from
document images are rich in information, they are difficult to train and are usu-
ally guided with learned textual [29] or layout [8] cues or both [36] from existing
text spotter and detector models. And thus the efficacy of self-supervision for
document segmentation faces a big question mark, which we address in this
paper.

The core of our design consists of a self-supervised framework designed follow-
ing ’Bootstrap Your Own Latent’ (BYOL) [28] which actively tries to fulfill both
the objectives of representation and localization. As self-supervision is employed
for pre-training of the encoder, we do not have access to the ground-truth doc-
ument object locations and categories. Thus we use classical image processing
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Fig. 1. Scope and Motivation. A basic methodological distinction between Self-
DocSeg and existing approaches. While earlier works utilize information from visual,
layout, and textual modalities for large-scale pre-training, we deal with visual cues only
for boosting representation learning.

to approximate a rough physical layout mask for each document image and use
the same as guidance for both document object localization and representation
learning purpose. We use a backbone image encoder to obtain feature maps,
followed by a mask pooling operation to extract encodings of all the possible rel-
evant physical layout objects and train them in a self-supervised representation
learning framework using negative cosine similarity. In parallel, we use a layout
predictor module on the encoded feature maps, l and the module is tasked with
a classification task of predicting if the salient features at every pixel of the fea-
ture map belong to a document object or not. This module is trained using focal
loss [43] with the supervision of the generated physical layout mask.

The evidence had not been in favour of self-supervised vision-based
approaches for DLA tasks as visual representations needed to be guided with
learned textual and layout embeddings. However, we suggest that self-supervised
visual representation learning can still be explored as visual features prove to be
useful in the supervised settings for the task at hand. This had become the core
motivating factor for our work as we try to explore and exploit the rich visual fea-
tures extracted from the document images using the powerful CNN backbones.



SelfDocSeg: A Self-supervised Approach Towards Document Segmentation 345

The intuition behind the proposed framework is relatively simple as we try to
guide the learning of the backbone encoder using approximated visual layouts
for both document object localization and representation learning. Unlike, the
layout cues in the existing self-supervised strategies, we do not use any layout
information from any pre-trained text recognition model. Instead, we devise the
inherent visual information as a layout to guide the visual representation learn-
ing. A clear distinction in working principles between the proposed framework,
SelfDocSeg, and the existing self-supervised strategies can be realized in Fig. 1.
In summary, our contributions in this paper can be divided into three folds:
(a) A novel vision-based self-supervised framework, specifically designed to pre-
train an image encoder for DLA task;
(b) A pseudo physical layout guided strategy for self-supervision in the region of
interest localization for document segmentation;
(c) A data efficient pre-training strategy to learn multiple document object rep-
resentations simultaneously in the self-supervised setting.
The rest of the paper is organized as follows. A comprehensive literature review is
provided in Sect. 2. The proposed methodology is described in Sect. 3. In Sect. 4
we discuss the experiments and results. Finally, the conclusions are drawn in
Sect. 5.

2 Related Work

2.1 Self-supervision for Visual Representation

As the world of computer vision evolved it demanded undivided attention toward
the exploration and exploitation of complex visual features to learn represen-
tations from images from a multitude of sources. Thus, data-centric machine-
learning models with immense capability of feature extraction and correlation
have emerged as modern-day solutions to the growing sophisticated require-
ments. However, with the huge amount of data required for modern network
architectures, the need for data annotation has increased giving rise to the
plethora of self-supervised strategies. MoCo [32] provided the research commu-
nity with the idea of weight update using the exponential moving averages and
large memory banks in contrastive learning settings. SimCLR [16] improved on
it and introduced a large batch size as an alternative to the memory bank.
DINO [15] introduced self-supervision in vision transformers [23]. Following
suit, MoCov2 [17], SwAV [14] had achieved wonderful performance in the self-
supervised paradigm. On the other hand, BYOL [28], SimSiam [18] treat two
crops from the same image as similar pairs instead of contrastive learning, while
masked autoencoders [31] introduced a masking strategy to the age-old autoen-
coders for learning representation via reconstruction.

Among this plethora of self-supervised methods, self-supervised object detec-
tion and document segmentation remained vastly unexplored. Having signif-
icantly superior performances from supervised object detection methods like
Mask RCNN [33], Yolo [52], Retinanet [43], DETR [13] etc. , their self-supervised
counterparts had been comparatively paler in diversity until recently. In the
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last few years, we have seen end-to-end self-supervised object detection models
like UP-DETR [21], DETReg [6] and backbone pre-training strategies like Self-
EMD [44], Odin [35]. However, being closely related to object detection, instance-
level document layout analysis has barely adopted self-supervision. Although
there had been a few self-supervised document segmentation approaches, none of
them had been explicitly using self-supervised visual representation or guidance.
We address this lack of vision-based self-supervision for document understanding
in this paper.

2.2 Document Understanding

Document Understanding (DU) has been reformulated in the current docu-
ment analysis literature [11] as a landscape term covering different problems
and tasks related to Document Intelligence systems which majorly includes
Key Information Extraction [37,49,56], Classification [30], Document Layout
Analysis [54,63], Question Answering [48,59], and Machine Reading Compre-
hension [58] whenever they involve visually rich documents (VRDs) in contrast
to plain texts or image-text pairs. Recent state-of-the-art DU systems majorly
rely on large-scale pre-training to combine both visual and textual modalities
as in [3,27,29,36,41] while methods like Donut [39] and Dessurt [22] mostly
rely on combining more effective visual features by synthetic generation tech-
niques [10,20,38,61] for learning important layout representation during doc-
ument pre-training. In this work, we aim to identify a new direction toward
boosting visual representation through a self-supervision strategy for document
layout understanding.

2.3 Document Layout Analysis

DLA has evolved as a significant DU application, dedicated towards the opti-
mization of storage and large-scale information workflows [7]. Since the advent
of deep learning and CNN-based approaches [53,55], the segmentation of doc-
ument layouts has been reformulated as DOD. With the launch of large-scaled
annotated DLA benchmarks [54,63] opened a new direction for deep-learning-
based approaches. Later, Biswas et.al. [9] redefined the DLA task as an instance-
level segmentation task to detect both bounding boxes along with segmenta-
tion masks, especially in layouts of pages containing overlapped objects. More
recently, transformer-based approaches [4,8,36] claimed the recent state-of-the-
art on DLA, especially on large-scaled document datasets. However, there is still
a huge scope for improvement of transformer methods, especially in smaller
annotated datasets like [19]. Recently, language-based approaches like Lay-
outLMv3 [36] and UDoc [29] have been tested on PubLayNet [63] benchmark
to get the best performance. But they fail in document benchmarks with more
complex layouts and much smaller annotated samples. In this work, we strive to
propose SelfDocSeg a pure vision-based self-supervised strategy to mitigate the
aforementioned issues.
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Fig. 2. Layout Mask Generation Pipeline. The figure illustrates a stepwise app-
roach with different strategies adapted for generating the final layout mask for a given
document image.

3 Methodology

3.1 Problem Formulation

In the context of document layout segmentation we have access to a relevant
dataset D = {x, y} where x ∈ I3×H×W is a standard RGB document image with
height H and width W , and y = {y1, . . . , yp} with yl having a set of coordinates
ymask

l of object pixels and ylabel
l for the object l = {1, . . . , p} assuming p objects in

the image x. However, according to the core principle of self-supervised learning,
we do not use this dataset as it contains the ground-truth annotations, and thus
we derive a dataset D′ = {x,m} from dataset D such that it contains only the
images without annotated data and a rough binary mask m extracted from x as
described in Sect. 3.2 depicting the physical layout of the document image.

The pre-training strategy for the image encoder briefly described in Sect. 3.3,
has been adapted to our self-supervised framework, SelfDocSeg. Formally, we
train an image encoder Fθ parameterized by θ in a self-supervised setting specif-
ically designed to cater to document object recognition. Once the pre-training
is done we apply these weights to initialize the backbone of an object detec-
tor model to be later fine-tuned for the segmentation of document objects as
described in Sect. 3.4.

3.2 Layout Mask Generation

The layout mask generation is a crucial step for the proposed pipeline as our self-
supervised framework depends on it for some visual guidance. For any document
image x we generate a mask m using classical image processing techniques as
depicted in Fig. 2. At first, we convert the RGB image x to grayscale xgray as
defined by CIE, followed by global thresholding to obtain a binarized output
xbin. We then perform an erosion operation over xbin to make the logical layout
elements of the document like characters, sub-figures, and plot lines a little
thicker and preferably a blob, so that the blobs get connected to form a rough
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physical layout m. The final layout mask m is generated by an inversion operation
of this eroded rough layout m.

3.3 Encoder Pre-training

Overview: The pre-training of the image encoder is quite difficult to achieve as
we are specifically considering the object detection problem, a multi-task chal-
lenge that enforces the encoder to learn important salient features contributing
towards inter-class variance of different logical layout components and simul-
taneously localizing the object regions. To overcome this problem, we use the
layout masks as visual guidance. However, there is no option to use layout masks
directly as we have two distinct yet related tasks at hand. Thus, the challenge
and also the scope of innovation remain on how the guidance is provided for the
two aforementioned tasks.

The proposed architecture of SelfDocSeg is developed inspired by the popular
BYOL [28] self-supervised framework. It mainly consists of two branches, online
and momentum, parameterized by two sets of weights θ and ξ respectively. The
overall learning strategy of the architecture is to use a self-distillation technique
that involves the two branches of the network which exploits the similarity in
salient features extracted from two different views or variations of the same
input. The feature similarity exploitation principle demands the generation of
significantly different views of the input document image x. Thus we augment
x randomly to generate two different versions v1, v2 and feed them to the two
branches of the SelfDocSeg framework as illustrated in Fig. 3. Each of these
branches employs multiple modules to generate meaningful semantic embeddings
from the image through a mask pooling operation. This operation is designed
in a way that simultaneously extracts embeddings for all possible layout objects
as a batch from the input image x using the guidance of the layout mask m as
we roughly extract separate masks of each layout object to obtain an average
pooled vector for each.

In parallel, the layout prediction module ensures that the online network
learns to locate regions of interest in the document image feature map. We
use both the feature maps from v1, v2 to feed the layout predictor module and
generate pixel-wise probability scores of a logical document object being present
at that pixel. This whole module is trained using m with the help of focal loss
[43]. The overall architecture is depicted in Fig. 3 and the overall loss function
used to optimize the training is given by Eq. 1 where LDet comes from the Layout
Prediction Module and LSim comes from Layout Object Representation Learning
as discussed later in the following subsections.

Ltotal = LDet + LSim (1)

Augmentation: The augmentations used to synthesize v1, v2 from the input
document image x are well crafted to match the task and are very similar to
the augmentations used in SimCLR [16]. From the set of augmentations used
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Fig. 3. Model Overview. A simple architectural design of SelfDocSeg pre-training
modeled after the BYOL [28] framework along with a layout prediction module.

by SimCLR, we carefully exclude random cropping and random horizontal flip.
As we are performing mask pooling on the feature map, it simultaneously tries
to learn all the possible physical layout object representations. And thus, taking
two patches from the image and using them as positive or contrastive pairs is
not required and is inherently done for multiple pairs simultaneously. Moreover,
the layout predictor module is designed to predict layout all over the docu-
ment image and thus the task does not align well with taking randomly cropped
patches from the document image. On the other hand, the inputs, being doc-
ument images, contain a large variety of texts and glyphs which could break
the clearly established pattern when flipped at random and thus can hinder the
training of our module. So, we exclude these two from the set of augmentations
and the final set includes the following: (a) Gaussian blurring, (b) color jittering,
(c) color dropping, and (d) solarization. The augmentations are not manually
controlled and are randomly applied on input image x with random parame-
ters which provide a wide range of variations as required to learn the similarity
between the two views v1, v2.

Image Encoder and Mask Pooling: We define the image encoder F :
I3×H×W → f which takes an input image and encodes it to a salient feature
map f ∈ R

c×h×w with c channels and height and width of h and w respectively.
Considering both the online and the momentum branches, we have two image
encoders Fθ and Fξ providing feature maps f and f ′ respectively.

The mask pooling operation is performed on feature maps f and f ′ separately
on the two branches to get all the layout object representation vectors simulta-
neously. The individual object layout masks mk=1,...,n are obtained by detecting
individual contours from m assuming n separate contours in m. Once we have
all the possible layout object masks, we get the average pooled vector y(k) ∈ R

d

with dimension d for each of the objects from the feature map f according to
the established definition of Mask Pooling [35] operation MP : f → y as per
Eq. 2 where i, j are pixel coordinates. Once we get y(k) for all k = 1, . . . , n esti-
mated objects from mk in layout mask m, we neatly stack the vectors to form
y ∈ Rk×d.
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y(k) =
1

∑
i,j mk[i, j]

∑

i,j

mk[i, j]f [i, j] (2)

Layout Object Representation Learning: The overall framework of Self-
DocSeg is designed after BYOL [28] and thus follows a similar strategy to learn
the representations from document images using cosine similarity. The online
branch comprises an image encoder Fθ, projector module Zθ, and a predictor
module Qθ while the momentum branch consists of the image encoder Fξ and
a projector module Zξ where θ and ξ are the sets of parameters for online and
momentum branch respectively.

For inputs v1, v2 we get feature maps f1, f2 and f ′
1, f

′
2 from Fθ and Fξ respec-

tively and we use mask pooling MP as a strategy to get the encoded vector from
the feature map which is designed to pool out all the approximate physical layout
segments into individual encoded vectors simultaneously as discussed earlier and
neatly stack the encodings in a batch resulting in y1, y2 and y′

1, y
′
2, which con-

tain average pooled vectors for all k = 1, . . . , n objects stacked in batches. The
encoded vectors y1, y2 and y′

1, y
′
2 are passed through projector modules Zθ and

Zξ to yield z1, z2 and z′
1, z

′
2 respectively. As the online branch of the framework

has a predictor layer Qθ, it takes input z1, z2 and produces q1, q2.

θ ← optimizer (θ,∇θLtotal, η)
ξ ← τξ + (1 − τ) θ

(3)

SelfDocSeg is designed to learn object representations without labels in a self-
distillation approach and uses exponentially moving average (EMA) to update
the weights of momentum branch ξ from the online branch weights θ. Thus, Fξ

and Zξ are updated using EMA from Fθ and Zθ while Fθ and Zθ are updated
using back-propagation on the loss function as given in Eq. 3 where η is the
learning rate, τ is the momentum of EMA and ∇θLtotal denotes the gradient
corresponding to the total loss Ltotal from Eq. 1. It is also to note that the back-
propagation does not happen in the momentum branch as denoted by the ’stop
gradient’ sign in Fig. 3. The similarity loss LSim uses cosine similarity to compare
representations from online and momentum branches as per Eq. 4.

LSim = 4 − 2
( 〈q1, z′

2〉
||q1||2 · ||z′

2||2
+

〈q2, z′
1〉

||q2||2 · ||z′
1||2

)

(4)

Layout Prediction Module: The layout prediction module L is an auxiliary
module facilitating the layout object localization. This module helps the encoder
to learn better representation specifically for the detection task. The module
takes input from both the feature maps f1, f2 and predicts a mask layout mpred,
which is then compared to the approximated mask m using focal loss [43], LDet

given in Eq. 5 with hyper-parameters α and γ. The intuition behind this module
is to instill a notion of localization of the layout objects, of which the encoder is
learning the representation from LSim.
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LDet = − α
∑

i,j m[i, j]
·
∑

i,j

(m[i, j](1 − mpred[i, j])γ log mpred[i, j]

+(1 − m[i, j])mpred[i, j]γ log(1 − mpred[i, j]))
(5)

3.4 Fine-Tuning

Once the image encoder is trained we proceed towards the main task of document
segmentation and for this purpose, we take the pre-trained weights of the image
encoder Fθ and use it to initialize the backbone weights of an object detector
model. This model is trained with the supervision of ground-truth labels using
whole annotated dataset D and we use Mask RCNN [33] as our object detector
model equipped with a feature-pyramid network (FPN) [42] from intermediate
layers for multi-scale detection.

4 Experiments

Datasets: For the training and evaluation of our framework for document seg-
mentation, we used several datasets specifically designed for the task. We use
the DocLayNet [51] dataset for our pre-training experiments. It contains 69,375
training, 6,489 validation, and 4,999 test images from six different domains with
annotated ground-truth labels for 11 separate classes. However, we only use
the training split without the ground-truth labels for the pre-training phase as
mentioned in Sect. 3.

Once the pre-training is complete we move on to the document layout anal-
ysis task to evaluate the efficacy of our pre-training strategy and for the same,
we use PRImA [2] dataset with 305 labeled images in total; Historic Japanese
[54] dataset, having 181,097 training, 39,410 validation and 39,109 test layout
objects of seven different categories spanning over 2,271 document images; and
the extensive PubLayNet [63] dataset containing 335,703 training, 11,245 vali-
dation, and 11,405 test images with labeled layout masks of five different layout
object classes, along with the DocLayNet [51] dataset used in pre-training.

Implementation Details: The complete self-supervised framework is devel-
oped using a self-supervised library named Lightly-AI [57], that is built on
PyTorch Lightning [25] and PyTorch [50]. All the models are trained on a 48
GB Nvidia RTX A40 GPU.

The mask generation process using classical image processing, described in
3.2, is developed using OpenCV [12]. We empirically found the global threshold
value of 239 working well enough for the pre-training dataset, DocLayNet [51]
given that the grayscale images are having 8-bit unsigned integer datatype. For
the erosion operation, we use a 5×5 rectangular kernel as the structuring element.

Firstly, for the image encoders Fθ, Fξ we use a standard ResNet50 [34] and we
use the last residual block for extracting encoded feature maps, leaving out the
global average pooling and fully-connected layers at the end, and thus the average
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pooled object vectors have dimension d = 2048 same as c in the output of last
residual block. The projectors Zθ and Zξ, and the predictor Qθ, are implemented
as two-layer multi-layer perceptrons (MLPs) with 4096 hidden and 256 output
dimensions. The auxiliary layout prediction module L is implemented by a 1×1
convolution block to predict the layout mask. The focal loss LDet mentioned
in Eq. 5 uses two hyper-parameters, a weighing factor α = 0.25 and a focusing
parameter γ = 2.

In the pre-training phase, the optimal model parameters are learned by opti-
mizing the loss Ltotal from Eq. 1 using LARS [62] optimizer with an initial learn-
ing rate of η = 0.2, and a weight decay of 0.0005. The learning rate is decayed
following a cosine annealing schedule [45] for 800 epochs. For the momentum
branch, the value of the momentum hyper-parameter τ is set to 0.99.

The object detection model in fine-tuning with task-specific ground-truth
annotation uses the same backbone, ResNet50 [34] for Mask RCNN [33] with
FPN [42] and is trained with Detectron2 [60]. We use this framework because it
is built on top of PyTorch, is extremely easy to use, and is reliable for deploying
models. We have used Nvidia RTX A40 GPUs for all of our fine-tuning pur-
poses. Our trained models have been based on ResNet-50 weights pre-trained as
per our proposed framework, SelfDocSeg, on the DocLayNet [51] dataset. The
initial learning rate of the model was 0.0025, and it is trained for a total of
300,000 iterations. A multitude of anchor scales and aspect ratios are considered
to cover the input image, resulting in the number of anchor boxes k = 64. Nes-
terov Momentum was used to train with the Stochastic Gradient Descent (SGD)
optimizer [24], and the batch size per image in the RoI heads was 128. Our task
had a detection non-maximum suppression (NMS) threshold of 0.4 and a detec-
tion minimum confidence score of 0.6. The data loader’s workforce was set at
four. We set the model’s testing threshold in the RoI heads to 0.6 following the
completion of the fine-tuning process. The values mentioned are carefully chosen
after reviewing empirical data.

4.1 Competitors

State-of-the-Art: In this work, our contribution is towards a novel self-
supervised pre-training strategy, which cannot be directly compared to its coun-
terparts without having to look at the performance of the downstream task.
Thus, we compare the methodologies with existing models after fine-tuning the
downstream task using a document object detector.

In the context of self-supervised DLA task, the research community has yet
to see various strategies and thus we have only a few strategies to compare
with. We compared our methods with state-of-the-art (SOTA) self-supervised
methodologies: (a) LayoutLMv3 [36] uses a multi-modal transformer that uses a
masked language modeling and masked image modeling-based strategy using
linear image patch embeddings from the document and textual embeddings
extracted from a pre-trined optical character recognition (OCR) and also tries
to align word patches with image patches jointly with an image and word token
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Table 1. Quantitative analysis of the performance of the document object detection
task along with the guidances used during supervision. V, L, and T stand for visual,
layout, and textual cues respectively.

Methods Cues # Data DocLayNet PubLayNet PRImA HJ

V L T mAP mAP mAP mAP

Supervised DocSegTr [8] ✓ ✗ ✗ - - 90.4 42.5 83.1

LayoutParser [55] ✓ ✓ ✓ - - 86.7 64.7 81.6

Biswas et al. [9] ✓ ✗ ✗ - - 89.3 56.2 82.0

Mask RCNN [33] ✓ ✗ ✗ - 72.4 88.6 56.3 80.1

Self-Supervised LayoutLMv3Base [36] ✓ ✓ ✓ 11M - 95.1 40.3 82.7

UDoc [29] ✓ ✓ ✓ 1M - 93.9 - -

DiTBase [40] ✓ ✗ ✗ 42M - 93.5 - -

Proposed BYOL [28] ✓ ✗ ✗ 81k 63.5 79.0 28.7 59.8

SelfDocSeg ✓ ✗ ✗ 81k 74.3 89.2 52.1 78.8

classification task. (b) UDoc [29] employs a region of interest alignment strat-
egy that aligns the visual features from the document images with the textual
embeddings and location information from a pre-trained OCR to generate joint
embeddings at the sentence level to use them with contextual masking to learn
with visual contrastive learning and visual-textual alignment through a cross
attention module. The noticeable difference between these existing SOTA with
the proposed pipeline can be identified as the use of pre-trained OCR to guide
the pre-training with textual and layout cues along with visual features while we
use only visual features for the purpose. (c) DiT [40] uses only visual features like
the proposed strategy using masked image modeling with BEiT [5] pre-training
over a massive dataset of size 42 million approximately.

In parallel, we show a comparative analysis with supervised SOTA method-
ologies: (a) DocSegTr [8] implements a transformer encoder-decoder architecture,
being the first of its kind, along with a convolutional backbone for document
segmentation. (b) LayoutParser [55] uses a universal framework built on top
of CNN-based approaches for DOD evaluation (c) Biswas et al. [9] had used
a Mask RCNN-styled architecture employing a fully convolutional network, for
instance, level segmentation and class prediction and bounding box regression
empowered by a region proposal network to suggest significant regions of interest
from the features extracted at multiscale by FPN on a backbone.

Comparable Baselines: In terms of DOD, we also establish a few baselines,
both supervised and unsupervised. We used BYOL [28] as a pre-training strategy
to train an image encoder and used it to perform the fine-tune training on the
document object detector, Mask RCNN [33] with ground-truth and consider
it as our potential self-supervised baseline. On the other hand, we train Mask
RCNN [33] in a fully supervised setting with ground-truth annotations.
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Fig. 4. Qualitative analysis of the SelfDocSeg framework on the DocLayNet datasets
(Left: Predicted layout Right: Ground-truth)

4.2 Performance Analysis

The performance of our pre-training strategy is compared with the existing
methodologies in Table 1 in terms of mean average precision (mAP) score at
the pixel level segmentation of document objects along with the depiction of
guidance/cues used for each of the methods and amount of data used for self-
supervised pre-training. (a) LayoutLMv3 [36] and UDoc [29] have superior per-
formance on PubLayNet [63] dataset being the current self-supervised SOTAs.
LayoutLMv3 [36] also has superior performance over other works. However, both
methods use pre-trained OCR for textual and layout cues which provides them
an additional advantage in learning instance-level document layout component
embeddings coupled with the superior backbone of a multi-modal transformer.
In comparison, the proposed SelfDocSeg performs at par without any guidance
from pre-trained OCR. (b) DiTBase [40] has a superior performance compared
to the proposed strategy due to its powerful Vision Transformer [23] backbone
coupled with the huge pre-training dataset of 42 million. (c) DocSegTr [8] uses a
convolutional backbone as well as a transformer architecture with multi-headed
attention that is inherently more powerful for extraction of useful features and
thus supervision with ground truth provides superior performance in this sce-
nario. It is noticed that transformer-based models could not perform well in small
datasets like PRImA [2]. (d) LayoutParser [55] is a comprehensive layout anal-
ysis toolkit that offers state-of-the-art performance with common CNN-based
approaches, which shows decent results owing to a powerful OCR module along
with document image augmentations. (e) The work of Biswas et al. [9] employs
a modified Mask RCNN architecture with end-to-end supervision and performs
decently in the context of Mask RCNN [33], compared to vanilla Mask RCNN
in the fully supervised setting. (f) The vanilla BYOL pre-training fails to learn
meaningful document object representations and thus performs poorly in Mask
RCNN. The possible justification for the performance could be attributed to
unrestricted random cropping and flipping in augmentations, which leads to two
different classes present in the same input document image being treated as
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Table 2. Semi-supervised scenario. We evaluate the performance of Mask RCNN
fine-tuning with varying % of labeled data used in DocLayNet.

% Annotations mAP

10% 41.3

50% 65.1

100% 74.3

Table 3. Ablation Study. Contribution of individual learning objectives during Self-
DocSeg pre-training on DocLayNet.

Loss mAP

w/o LSim 39.1

w/o LDet 69.7

Combined (Ltotal) 74.3

positive pairs. (g) Vanilla Mask RCNN performs decently in the fully supervised
setting. (h) It is evident that although Mask RCNN does not have all-over supe-
riority in performance, it easily outperforms all the transformer-based models in
small datasets like PRImA [2]. (i) It is also noticed that modern self-supervised
strategies use a large amount of data for pre-training. In comparison, the pro-
posed framework has achieved similar performance with significantly less data
in pre-training.

To this end, the SelfDocSeg framework proves to be performing at par with
the Mask RCNN competitors if not outperforming. And at the same time, it
establishes that self-supervised pre-training with only visual features using a
limited amount of data is efficient and effective for document segmentation tasks.
Some visual results of our proposed pipeline are depicted in Fig. 4.

4.3 Ablation Study

How Effective and Generalizable is SelfDocSeg Pretraining? The
importance of pre-training can be realized in the performance of the fine-tuned
document segmentation model and the natural question lingers around the effi-
cacy of the SelfDocSeg pre-training strategy. To answer the same, we perform
several experiments on the fine-tuning stage in a semi-supervised setting. Mean-
ing, we use multiple smaller sets of annotated training data in fine-tuning Mask
RCNN and record the performance in Table 2. Although using all the available
training data has the best result, it is evident that the model generalizes well
enough due to the learning of extensive and useful visual feature extraction dur-
ing pre-training as decreasing the amount of labeled data during fine-tuning does
not seem to affect the model accuracy much. We see the mAP value drops 9%
only while annotated training data is reduced to half. However, it starts getting
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affected as the quantity of labeled data drops drastically as we see more than
30% drop when the annotated dataset is reduced to 10%.

How Well do the Individual Losses Contribute in SelfDocSeg? We use
two loss functions for the proposed pre-training strategy, focal loss in Eq. 5 and
a representation loss with cosine similarity in Eq. 4. To dissect how much these
losses individually contribute towards the pre-training, we train two separate
encoders from scratch, one with focal loss only and another with representation
loss only. The outcomes are depicted in Table 3. It is evident that the focal loss
although helps in localization, it alone is not capable of learning meaningful
object representations from the document images. On the other hand, the rep-
resentation loss is capable enough to learn document object embeddings, but it
falls short in the case of the layout analysis tasks. And both the losses together
help to pre-train an image encoder for the document segmentation task.

5 Conclusion

While self-supervision is fairly new in the documents research community, in
this paper, we studied the exploitation of rich visual features present in the doc-
ument images using self-supervision. To this end, we designed a self-supervised
strategy to pre-train the image encoder in the document layout analysis context.
Our extensive experiments show that the proposed strategy performs decently
and generalizes well enough in document images despite having no textual or
layout guidance from pre-trained text recognition models. In a word, we present
a complete vision-based self-supervised approach towards document segmenta-
tion which involves two specific strategies, i.e. a pseudo physical layout guided
technique for document object localization and a document object representa-
tion learning in a self-supervised setting. We further intend to explore the scope
of performance improvements in DLA using self-supervision.
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Abstract. We develop a diffusion-based approach for various document
layout sequence generation. Layout sequences specify the contents of a
document design in an explicit format. Our novel diffusion-based app-
roach works in the sequence domain rather than the image domain in
order to permit more complex and realistic layouts. We also introduce
a new metric, Document Earth Mover’s Distance (Doc-EMD). By con-
sidering similarity between heterogeneous categories document designs,
we handle the shortcomings of prior document metrics that only evalu-
ate the same category of layouts. Our empirical analysis shows that our
diffusion-based approach is comparable to or outperforming other pre-
vious methods for layout generation across various document datasets.
Moreover, our metric is capable of differentiating documents better than
previous metrics for specific cases.

Keywords: Structured document generation · Document layout ·
Diffusion methods · Generative models

1 Introduction

Document creation involves many steps from generating textual content, orga-
nizing additional media, and producing a layout that makes the information
comprehensible. Layout generation is a key step in document creation. Layouts
differ to best convey the appropriate kind of information for different domains of
documents. To model many different domains of document layouts, general yet
powerful methods need to be developed. We undertake that goal in this paper.

Methodological and domain considerations for layout generation have arisen
as a topic of interest recently in the Computer Vision and Machine Learning
communities [19,33,45]. Fixed length generative methods leveraging adversar-
ial training were shown effective at producing realistic but limited documents
in LayoutGAN [33]. In READ [45] an approach to resolve shortcomings of the
prior work was developed, namely permitting more complex structures in the
layout, as well as introducing document metric considerations in the genera-
tive model literature. This work proposed a recursive autoencoder to iteratively
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extend the layout based on past generated layouts. However, READ [45] relies
on a hierarchical document model that may not apply well in a wide range of
document types, and is dependent on hyperparameters that dictate document
layout length. This work can be seen as a segway to autoregressive methods such
as Layout Transformer [19] where the modern generative techniques of language
modeling have been applied to the field. Autoregressive generation is outlined in
more detail below. This method allows for adaptive stopping that comes from
the encoder states themselves, which change progressively during the generation.
The result is simpler and improved modeling of layouts.

In this paper, we develop a new approach to layout generation using the
recently emerging area of diffusion probabilistic models. The key idea is that
when a diffusion process consists of small steps of Gaussian noise conditioned
on the data, then the reversing process can be approximated by a conditional
Gaussian as well. To use the conventional diffusion methods for discrete sequence
generation, rounding and embedding steps have to be introduced [36].

Our main contributions are introducing a novel document comparison met-
ric with several useful properties and being the first work to employ discrete-
sequence diffusion for layout generation. We show that the proposed metric
behaves well qualitatively and quantitatively by comparing the performance of
different algorithms on well-known datasets. We also show how synthetic layout
training data compares to real document data on an end-to-end task: layout
detection. We compare across different synthetic data generation algorithms by
the mean average precision (mAP) of a trained layout detector of a fixed archi-
tecture. Finally, we provide ablation of the proposed method to several variables.

2 Related Works

2.1 Generative Networks

Generative adversarial networks [15] launched the generative revolution in image
generation [9,25,27,47], and text generation [8,18,61]. This self-supervised train-
ing scheme enables the networks to consume large unlabeled realistic dataset,
and provides a powerful baseline in various downstream tasks like image col-
orization [42], image compositing [53–55], miscellaneous segmentation [21,44],
3D modeling [5,24,62], multi-modal recognition [12,22,39,60] and layout syn-
thesis [4,32]. Variational autoencoder [30] is a counterpart framework in gener-
ative network domain. The network excludes the burden of discriminator and
using only variational loss and regularization loss on latent space in the bottle-
neck. The concise of both network and training scheme support its generalized
representation of the real dataset [20,59].

Modern generative methods have a root in autoencoding pretext tasks from
the NLP literature [11]. Masked language modeling is a category of pretraining
tasks in which pieces of a token sequence are hidden with a [MASK] token and
the model fills in the missing piece. In the autoregressive setting, this approach
is simplified to a forward-looking token regression and so models generally have
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a backward-looking attention emphasis, generating the newest token sequen-
tially. This autoregressive scheme achieves success in computer vision tasks like
ViT [13], large language models [48] like GPT-3 [6].

2.2 Layout Generation

Numerous works focusing layout generation have been proposed recently. Lay-
outGAN [34] and LayoutVAE [26] provide general 2D layout planning for natural
images. More works focus on document layout generation [29,38,58]. In particu-
lar, [7,28] worked on document image generation. The work of [45] introduced
recursive autoencoding for layout generation, as well as a layout similarity Doc-
Sim, which looks at the geometric similarity of layouts weighted by size of the
elements. [19] is an example, in which the transformer architecture is applied in
this autoregressive fashion to generate layout tokens (class labels and bounding
boxes). In [3] ideas from the transformer-based methods mentioned above are
combined with variational autoencoders to produce a more controllable and pre-
dictable generator. This work also implements the Wasserstein sequence distance
as a metric into the layout literature. Our work builds on this idea and gives
the Wasserstein distance more geometric significance, giving us the Doc-EMD
metric that compares well with the Wasserstein and the DocSim.

2.3 Diffusion Generative Methods

Diffusion models use a sequential denoising model as an objective to gener-
ate realistic objects from Gaussian noise [23,43,56]. A domain-specific mean-
estimator is used to model a markov process that is similar in spirit to decon-
volution, but can be trained in an end-to-end manner. This approach is primar-
ily applied in the image domain due to the approximately continuous nature
of images and the denoising approach relying on using a Gaussian estimator
for the inversion step. The diffusion model has achieved great success in text-
image synthesis [17,49,51], 3D neural rendering [46], 3D point cloud genera-
tion [40], image compositing [57], audio generation [1,31], and video genera-
tion [41]. Recent works have shown that to extend this generative mechanism
to discrete spaces, a rounding network can be applied that maps the denoised
token embedding to a dictionary [36]. Our work builds on this and applies this
approach to document layout, producing realistic document layouts that can be
conditioned on partial layouts.

3 Methods

3.1 Diffusion for Layout Generation

Our approach leverages recent advances in denoising diffusion applied to discrete
sequences [36,56]. As Fig. 1 shows, we consider a document layout of N layout
elements given by the 5−tuples S = {si}N

i=1 = {(ci, xi, yi, wi, hi)}N
i=1, where xi is

the upper-left x−coordinate, yi is the upper-left y−coordinate, wi, hi specify the
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Fig. 1. Sequence representation of document layout.

width and height of the box (all in pixel coordinates), and ci specifies the class
(table, figure, formula, etc.) of the i−th box. Note that xi, yi, wi, hi ∈ N and
c ∈ [K] where K is the number of layout classes. To process this data structure
as a sequence, we serialize S by flattening the sequence {c0, x0, y0, w0, h0, c1, . . .}.
Then the geometric entries are discretized and quantized to a fixed vocabulary
G of size |G|. We can offset the class index entries by |G| to keep the class
coordinates distinct, or simply use a unique token outside of the vocabulary for
G. This yields a sequential representation of length 5N with a fixed vocabulary
V = G ∪ [K].

The framework of our method is illustrated in Fig. 2. An embedding step E
is introduced to map the discrete sequence s ∈ V N to a feature vector E(s) ∈
R

d×N . We extend the conventional denoising transition model xt → xt−1 →
. . . x0 with another transition x0 → E(s). Recall that the learned parameters
refine the transition probability estimates:

pθ(xt−1|xt) = N (xt−1;μθ(xt; t), Σθ(xt, t)) (1)

by minimizing the variational upper bound of the negative log likelihood of the
image over θ. The analogy to sequential learning is the log likelihood of the
sequence embedding, so we take x0 ∼ E(s) following [36]. To close the loop with
the original sequence, a rounding module is introduced pθ(s|x0) which estimates
the token sequence from the embedding E(s) ≈ x0. This is done by a rounding
function with learned biases, call it R. So the (bidirectional) Markov chain is:

s
E→ w

q→ x1
q→ . . . xT ,

s
R← w

pθ← x1
pθ← . . . xT . (2)

To solve for the reverse-process parameters several key simplifications were
devised by [23]. The end result was to reduce the full variational bound objective
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Fig. 2. Diffusion for Layout Generation.

to a simpler mean squared loss. The initial variational bound objective is written

L = min
θ

E

⎛
⎝− log(pθ(xT )) −

∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

⎞
⎠ . (3)

This can be rewritten as a series of KL-Divergences [23]

minθ E(DKL(q(xT |x0)||pθ(xT ))+
∑

t>1 DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)))−log(pθ(x0|x1)) (4)

and each term is a divergence between two Gaussian distributions except for
the last. By regrouping terms and throwing out the constant log(xT ) term, the
closed form divergence for each term results in a mean squared error loss

L2 =
T∑

t=1

E‖μθ(xt, t) − μ̂(xt, x0)‖2. (5)

μ̂ is the mean of the posterior and μθ is the predicted mean of the reverse
process computed by a model parameterized by θ. In our implementation we use
a transformer originated from BERT model (“BERT-Base” module) [11]. The
maximum input and output length of the transformer is 256. In our diffusion
framework, the transformer is μθ, and we set T = 2000. Note that for μ̂ a closed
form gaussian, the derivation of which can be found in [23].

3.2 Doc-EMD: Earth Mover’s Distance as a Document Metric

Document metrics are nontrivial because of the complex nature of docu-
ments [45]. Many metrics and similarities have been proposed, all with varia-
tion shortcomings that defy intuitive reasoning about the nature of document
layouts. We propose to leverage the Earth-Mover’s distance, which has been
deployed successfully in contour matching [16] as well as image matching [52], to
provide an underlying distance for document layouts. This allows us to leverage
some useful properties of this well-established distance and we can leverage high
quality existing open-source implementations to implement the Earth-Mover’s
distance [14]. Detailed analysis and description of our fast approximation of
Earth-Mover’s distance can be found in [10]. The runtime is not prohibitive and
can be tuned by subsampling the points used in the distance calculation.
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Definitions and Formal Distance. Consider a layout of N layout elements
given by the 5−tuples S = {si}N

i=1. We call this the source layout, and T =
{ti}M

i=1 is the target layout. In this metric, we consider layouts as consisting of
the 2−d points in the integer pixel coordinates falling inside of each layout box.
Consider a single layout box s = (c, x, y, w, h) we take s ∼= ρ(S) = {p : x < p1 <
x + w, y < p2 < y + h} which we take as equivalent to the uniform pointwise
density generated by those points. Let | · | denote the number of point elements
in this set. Then we define the earth-mover’s distance as

EMD(s, t) = EMD(ρ(s), ρ(T )) = min
F

∑
i,j

Fijd(si, tj) (6)

s.t.
∑

j

Fi,j ≤ 1/|s|,
∑

i

Fi,j ≤ 1/|t|,
∑
i,j

Fi,j = 1.

We conflate the EMD between class bounding box representation of s with ρ(s)
so that the cost of matching the element scales up with the size of the element.
So now we have defined the data structure of the overarching layout S, each
layout element s, and an element-to-element distance EMD which allows us to
compare elements from different layouts.

Now we define the distance between two layouts S and T . First define the
class function C(s = (c, x, y, w, h)) = c and the set function Ĉ(S, c) = {s ∈ S :
C(s) = c}. Let κ(cls;S, T ) be the indicator function as to whether only one of S
and T has elements of class cls (the exclusive or). The Doc-EMD is defined as

DOCλ(S, T ) =
∑
cls

EMD(∪Ĉ(S,cls)s,∪Ĉ(T,cls)t) +
∑

cls:κ(cls;S,T )=1

λ, (7)

where λ is some positive factor used to penalize missing classes (we use λ = 1).
In language, DOC is the sum of the earth-mover’s distances between the sets
of elements in S and T belonging to the same class plus a penalty term for
each class that only appears in S or T . Note that this is very different from the
DocSim [45] since we can avoid the computation of the size weightings in favor of
the pointwise pmf contributions as well as skip the Hungarian matching step in
favor of the earth-movers matching. Meanwhile, our method adds substance to
the layout semantics which is missing from the Wasserstein sequence metrics [3]
as they only capture exact matchings in the location and weight location and
class in a disproportionate manner.

DOC is clearly reflexive, symmetric, and positive. Note that each term con-
sisting of the EMD on subsets of S, T is a metric. Then for the second term,
note that this is the discrete metric on the projection of the pointset to the class
it belongs to scaled by the penalty term λ. So DOCλ is a sum of metrics, which
is also a metric, so it obeys the triangle inequality. This proof sketch shows that
it enjoys all of the formal advantages of the Wasserstein distance.

Qualitative Comparisons with Other Document Metrics and Similar-
ities. In this work we use several metrics to evaluate the performance of our
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proposed algorithm. We begin with a comment that document similarity (or
distance) is a nontrivial problem. Documents are complex objects that can be
represented in a number of ways and typically have no canonical underlying
space from which they are drawn. Modeling that is the goal of generative layout
algorithms, but how to measure the quality is directly related to the complexity
of this problem. There is no perfect solution, so we develop an approach that
covers some of the shortcomings of existing metrics, which we discuss now.

First, DocSim [45] proposes a Hungarian-matching based algorithm that uses
a weighting term that scales linearly in the minimum area between boxes and
exponentially in the size and shape difference. It has several major shortcomings

1. Not having an open-sourced common implementation;
2. Not well normalized so may not compare well between datasets;
3. The “similarity” is not an inner-product, so may not behave well in some

cases.

We show qualitative examples highlighting each of these shortcomings (Fig. 3).

Fig. 3. DocSim Similarities. Visualization of how the DocSim, Wasserstein Distance,
and Doc-EMD Distance vary across pairs of documents. The left image represents the
source and the subsequent images are the targets. The metrics applied between them are
shown below the target. The metrics shown below the source are the self-comparisons.
DocSim is not normalized, has no common “self-similarity” value (this depends on
the document), and does not always vary intuitively across structures. Wasserstein
Distance is overly sensitive to class mismatch and does not capture structural similar-
ities well. Note that this metric is primarily meant for distribution comparison. Also,
note that as it is a distance higher values mean farther away (unlike the similarity of
DocSim). For Doc-EMD Distance, there is a clear separation between single- and multi-
column when classes are similar, the distance is well bounded, and the self-comparison
is standardized.

Second, the Wasserstein sequence distance is applied to the layout sequences
as opposed to the layout geometry. This acts as a distributional distance between
the empirical discrete class label (categorical) distribution and the continuous
bounding box distribution (Gaussian). First, this does not explicitly model sim-
ilarity between two documents well (here it suffers from confusion across vari-
ations of box instances in the individual layouts), but rather between the dis-
tributions of documents given from a corpus. This is the key strength of this
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distance: it is a natural measure of distributional match. This is why we see
this used commonly in generative modeling [2]. Note that it does not allow for
weighting by area in any conventional sense, an advantage of the DocSim which
is lost here.

Finally, the Doc-EMD distance is applicable both at the document pair level
and at the distribution level. To compute the distributional similarity we take a
similar approach to DocSim. We first compute the pairwise distance matrix with
our metric applied to each pair of images. Then we obtain a negative matching
score to which we apply the Hungarian matching algorithm. Key advantages
over the former approaches are:

1. It is well normalized, scaling from 0 to K (the class number) if the appropriate
pixel coordinates are used;

2. It keeps the distance properties of the Wasserstein without losing the geo-
metric specificity of DocSim;

3. It behaves predictably when comparing structurally and semantically different
layouts due to the geometric specificity of the per-class EMD.

Perhaps the greatest weakness of our method is that it requires greater runtime
than the previous two in the pair-wise distance stage. However, as mentioned
above, using open-sourced packages with hardware acceleration and optional
speedups from approximations make it feasible even for very large datasets [14].

4 Experiments

4.1 Dataset

We evaluate our method on various public available document datasets from
journal articles, tables, to magazines.

PubLayNet [64] consists of 330K document layouts by matching XML repre-
sentations of public PDF articles from PubMed CentraTM. It has 5 semantic
categories including Text, Title, List, Figure, and Table. Semantic elements on
each layout are annotated by categorized bounding box in COCO [37] format.
Typically there is no overlapping between semantic units. We utilized its official
splits: 335,703 for training, 11,245 for validation.

DocBank [35] consists of 500K document layouts by weak supervision of arti-
cles available on the arXiv.com. It contains 12 categories including Abstract,
Author, Caption, Equation, Figure, Footer, List, Paragraph, Reference, Section,
Table, and Title. Its annotated bounding boxes are created by merging extraction
results of text lines. In general, this dataset has more (number) and fragmented
(size) annotated bounding boxes compared to PubLayNet [64]. And overlapping
exists between semantic units (Paragraph within Figure etc.). We use 399,811
layouts for training, and 49,980 layouts for validation.

Magazine [63] has 4K magazine layouts classified into 6 semantic categories
including Text, Image, Headline, Text-over-image, Headline-over-image, and
Background. The dataset itself holds natural overlaps between categories.
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4.2 Comparisons

We compare our approach with 3 related methods on document layout generation
task, including LayoutVAE [26], Gupta et al. [19], and VTN [3]. We utilize the
code provided by the author’s repository of [19] for the first two approaches.
In particular, we privilege the ground truth bounding box count to LayoutVAE
and only train its BBoxVAE portion. For Gupta et al. [19], the original inference
code use the first bounding box as input prior and sample the top-k (k = 5)
predicted layout bounding boxes to enable diversity. We modify the inference
code to generate from initial token rather than the first bounding box. During
inference, we find that results’ diversity vanishes fast with k < 5. Thus the top-5
sampling is kept to ensure fairness. For VTN [3], we add the variational training
scheme to the code of [19]. For fairness, all methods are trained for the same
epochs on each dataset. Their models are based on default settings in the code
or recommended settings in the original papers.

Quantitative Results. For all three datasets we list, we generate 1000 (391
for Magazine dataset since its validation dataset is small.) document layouts
by ours and other competitors. Then we compare the generated results with
the same amount of real document layouts by series of metrics. Specifically, the
LayoutVAE [26] is conditioned on an input bounding box count. Gupta et al. [19]
and VTN [3] generation is fully random from initial token.

Our set-by-set comparison is evaluated by 4 quantitative metrics. We already
discuss the capability of Doc-EMD in Sect. 3.2, and we also include DocSim as
reference. In theory, these two metrics should indicate reverse pattern (Smaller
DocSim corresponds to larger Doc-EMD. And our results illustrate this pat-
tern.). Overlap is the percentage of total overlapping area among the generated
layout bounding boxes. Generally, less overlap indicates better performance a
method achieves. However, we notice that there is a certain amount of reason-
able overlapping existing in DocBank (Legend texts in a figure are recognized
as paragraph. Thus its bounding box overlaps with figure’s bounding box, etc.)
and Magazine dataset (The categories of Text-over-image, and Headline-over-
image naturally overlap with Image category.). Thus reasonable amount (< 2%,
etc.) of overlapping area will not affect the realism of generated layouts in terms
of DocBank and Magazine dataset. Finally, Coverage is the percentage of total
bounding box area over the document extent area. The closer value to the real
data one, the better performance a method achieves.

As shown in Tables 1, 2, 3, our method outperforms competitors in most
metrics on 3 datasets. Specifically, our method achieves the best performance
in DocSim and Doc-EMD, and the second in other two metrics. For DocBank,
our method achieves the best performance in Coverage and Doc-EMD, and the
second in DocSim. For Magazine, our method dominates the DocSim, Doc-EMD,
and Overlap. Moreover, our Doc-EMD metric keeps stable scalability and capa-
bility across three datasets, which verify the contributions in Sect. 3.2.
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Table 1. Benchmark performance on PubLayNet Dataset

Approaches DocSim ↑ Doc-EMD ↓ Overlap↓ Coverage

Layoutvae [26] 0.129 0.191 2.02% 56.21%

Gupta et al. [19] 0.137 0.063 0.065% 51.62%

VTN [3] 0.141 0.068 0.083% 53.49%

Ours 0.163 0.053 0.062% 55.30%

Real Data 0.026% 56.09%

Table 2. Benchmark performance on DocBank Dataset

Approaches DocSim↑ Doc-EMD↓ Overlap↓ Coverage

Layoutvae [26] 0.087 0.592 2.02% 56.21%

Gupta et al. [19] 0.078 0.518 0.56% 44.01%

VTN [3] 0.096 0.353 0.61% 44.27%

Ours 0.093 0.319 2.04% 45.49%

Real Data 0.45% 46.20%

Table 3. Benchmark performance on Magazine Dataset

Approaches DocSim↑ Doc-EMD↓ Overlap Coverage

Layoutvae [26] 0.260 0.143 2.23% 80.93%

Gupta et al. [19] 0.176 0.227 12.6% 81.64%

VTN [3] 0.232 0.138 5.29% 79.88%

Ours 0.302 0.117 1.23% 70.55%

Real Data 1.36% 76.00%

Qualitative Results. Figures 4, 5, and 6 show qualitative comparison results
in PubLayNet, DocBank, and Magazine dataset, respectively. The visual quality
indicates that our method is able to produce diverse and realistic document
layouts across three datasets.

For PubLayNet (Fig. 4), LayoutVAE [26] generates layouts that is poor in
alignment, and containing noticeable overlaps. There are significant amount of
“list” categorized bounding boxes appearing in most of the generated layouts
(Fig. 4, the second to the rightmost column in LayoutVAE row), which is not
realistic to open access academic papers that PubLayNet sampled from. The
similar unrealistic pattern also happens in Gupta et al. [19] (Fig. 4, the second
column in Gupta row) and VTN [3] (Fig. 4, the rightmost column in VTN row).
This abnormity will not only reduce the performance of similarity evaluation in
Sect. 4.2, but also negatively impact the downstream tasks using the generated
layouts such as the detection task we discussed in Sect. 4.3. For Gupta et al. [19]
and VTN [3], their performance are similar quantitatively and qualitatively.
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Fig. 4. Qualitative Results for PubLayNet. Competitors are worse in alignment,
repeat similar patterns, contain abnormal bounding box categories, or have noticeable
overlaps. Our method appears to represent PubLayNet better.

We find that if we generate layouts from the initial token rather than inputting
the first bounding box (default setting by original codes), the diversity and
realism of the generated results are rather repeating the same pattern (Fig. 4, the
leftmost, the second, and the forth column in VTN [3] row), or poor in alignment
and overlap (Fig. 4, Gupta et al. [19] row). However, our method outperforms
other methods and generates both realistic and well-aligned document layouts
without category abnormity. Our method illustrates plausible capability in both
single and double column document layouts. The quality of our results will also
support better performance in downstream detection task.

DocBank is the largest and the most complex dataset (more categories,
diverse-sized bounding boxes) in our comparison. In this case, LayoutVAE [26]
is unable to provide reasonable document layouts. For Gupta et al. [19] and
VTN [3], most of generated results are unreal and repeating patterns of per-
muted “equation” and “paragraph” categories (Fig. 5, the leftmost, middle, and
right most column in Gupta et al. [19] row; the middle column in VTN [3] row).
There is also improper permutations of “reference” and ’paragraph’ bounding
boxes (Fig. 5, the second column in VTN [3] row). Our method shows reason-
able patterns of permuted “equation” and “paragraph” categories (Fig. 5, the
leftmost, and the rightmost column in Ours row). Moreover, our method is able
to handle complex design of the cover page (Fig. 5, the second column in Ours
row). And all generated layouts achieve plausible alignment.
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Fig. 5. Qualitative Results for DocBank. Competitors are poor in alignment,
repeating similar patterns, containing abnormity of bounding box categories. Our
method outperforms other competitors

Magazine dataset is the smallest dataset. But it has the most diverse align-
ment among bounding boxes (1 to 4 text columns within a single page), because
the dataset is based on magazine design rather than academic papers. In this
case, our competitors are unable to handle complex alignment and result in
severe unreasonable overlaps between bounding boxes (Fig. 6, the first three
rows). Note that there are natural overlaps in magazine dataset since two of
the categories are defined to be on top of the image category. But most over-
laps are between the same category (Fig. 6, the middle column in VTN [3] row,
“text-over-image” category, etc.), or unreasonable overlaps (Fig. 6, the second
column in VTN [3] row, several “text” rather than ”text-over-image” bounding
boxes are on top of the “image” bounding boxes, etc.). However, our method
is able to handle complex text alignment (Fig. 6, the forth and the rightmost
column in Ours row), and also prevent unreasonable overlaps. Our method also
outperforms quantitatively in Table 3.

4.3 Layout Detection Task

The best way to illustrate benefits of a generative networks is to utilize its
results for downstream tasks, especially for data augmentation. Document lay-
out detection task is a subdomain of Optical Character Recognition (OCR).
The detection network is trained to segment and label each layout bounding box
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Fig. 6. Qualitative Results for Magazine. Competitors are poor in alignment, or
with unreasonable overlaps. Our method outperforms other competitors.

in the given input document images. Practically, the annotation of document
layouts is tedious and time-consuming, and the accuracy of the ground truth
annotation contains inevitable ambiguity. To solve these problems, we can aug-
ment the dataset by generating document images with our generated document
layout designs and labels. In this way, the quality of the annotation is ensured.
And we will have unlimited amount of augmented dataset for better subtask
model training and evaluation.

Similar to [3], as shown in Fig. 7, we develop a synthetic document image
generation framework. First, we utilize our pretrained diffusion networks to ran-
domly generate the same amount of document layouts as original training dataset
(PubLayNet). Second, for each bounding box we generate, we find the nearest
matching bounding box in the training dataset by matching categories, aspect
ratio, size, etc. Then we slice the corresponding group of pixels from the orig-
inal images in PubLayNet dataset, to synthetically mosaic a document image.
Finally, we train a faster R-CNN model [50] as our document layout detector.

Table 4. Detection accuracy comparison between the detector trained by synthetic
generated layouts, and by original PubLayNet.

Ours VTN [3] PubLayNet

mAP (IoU=0.5) 0.795 0.769 0.9646
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We compare the detection performance with the one trained by our competitor
results and the original dataset for evaluation.

In Table 4, we show the mean average precision (mAP) at IoU = 0.5. The val-
ues for VTN [3] and PubLayNet are reported by its original paper. Our diffusion-
based method enable plausible detection accuracy and outperforms VTN.

Fig. 7. Synthetic generation of document images. Utilize our method to create
a training dataset based on PubLayNet images for a layout detector. We use our
generated layouts, find the most similar bounding box in real dataset (by matching
category, aspect ratio, size, etc.). Then crop pixels in the original images and render a
new image dataset.

Table 5. Ablations on Magazine Dataset

Ablations DocSim↑ Doc-EMD↓ Overlap Coverage

lr = 0.0001, steps = 500 0.156 0.315 5.34% 79.80%

lr = 0.0001, steps = 1000 0.203 0.245 3.67% 75.42%

lr = 0.0002, steps = 2000 0.282 0.172 1.56% 72.34%

lr = 0.00001, steps = 2000 0.274 0.133 2.33% 71.21%

Ours (lr = 0.0001, steps = 2000) 0.302 0.117 1.23% 70.55%

Real Data 1.36% 76.00%

4.4 Parameter Ablations

In our model training, we conduct an ablation study on both learning rate and
diffusion steps, as shown in Table 5. In general, more diffusion steps will improve
network performance. But more diffusion steps also lead to extremely longer
training time. We found that more diffusion steps above 2000 have no explicit
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benefits to the performance. Thus we choose diffusion steps as 2000 for all our
trainings on Magazine and other datasets. Meanwhile, a proper learning rate
is also the key to good performance. Though we found that diffusion model
performance is quite robust to different learning rate. An arbitrary learning rate
may still negatively influence the network performance.

5 Conclusion

In this work, we develop a new approach for document layout generation and a
novel metric for document layouts evaluation. Our diffusion-based document lay-
out generation approach shows outperforming and competitive results on several
well known datasets in document layout generation. We have also shown how
our approach can be applied to downstream applications, such as pretraining a
document layout detector. In this paper, we provide extensive qualitative anal-
ysis and examples, so our readers understand both limitations and advantages
of our method and our proposed metric.

In the future work, we plan to explore domain generalization and conditional
generation. For domain generalization, higher specificity layouts as well as full
OCR generation at the line level would provide a more complete document
generation system. Meanwhile, conditioning generation on the right set of factors
allows the proposed method to be used more effectively in document generation
pipelines.
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Abstract. Text detection in historical documents is challenging owing
to the dense distribution of texts with diverse scales and complex layouts,
resulting in low detection accuracy under high Intersection over Union
(IoU) conditions. Historical document digitization requires highly accu-
rate detection results to preserve the contents completely. In this paper,
we present an end-to-end text detection framework, namely Dynamic
Text Detection Transformer (DTDT), for dense text detection in his-
torical documents under high accuracy requirements. We introduce a
deformable convolution-based dynamic encoder to strengthen the text
representation ability at different scales. In addition, the parallel dynamic
attention heads are designed to facilitate better interaction between the
box and mask branches to obtain accurate text detection results. Exper-
iments on the MTHv2 and ICDAR 2019 HDRC-CHINESE (short for
“IC19 HDRC”) datasets show that the proposed DTDT method achieves
state-of-the-art performance. Furthermore, our DTDT achieves competi-
tive results in layout analysis on SCUT-CAB benchmark, demonstrating
its excellent generalization capabilities.

Keywords: Text Detection · Detection Transformer · Historical
Document Understanding

1 Introduction

Historical document digitization, which facilitates the preservation and under-
standing of the knowledge and insights that are contained in ancient books, has
attracted increasing research attention [2,6,10,29,38]. The aim of text line detec-
tion, which is a critical step of historical document digitization, is to locate text
instances. Accurate text detection is beneficial for subsequent tasks such as text
recognition and ancient book restoration. Moreover, accurate text line detection
results can effectively reduce the difficulty of layout analysis, which aims to locate
and categorize document elements such as figures, tables and paragraphs.

With the rapid development of deep learning, scene text detection methods
have made significant success on various benchmarks [19,47,51,57]. However, it
is difficult for these methods to perform well on complex historical documents
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 381–396, 2023.
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with dense text alignment. Figure 1 (a) presents the results of the scene text
detection methods DBNet++ [19], PSENet [47] and FCENet [57] for historical
documents. It can be observed that many of the detection results of these meth-
ods overlap with neighboring texts and do not closely match the texts, and also
suffer from missed and false detections. We summarize the reasons for the insuf-
ficient generalization ability of scene text detection methods for these historical
documents as follows: (1) As illustrated in Fig. 1 (b), the text distribution in
the historical documents is denser than scene text images. For example, MTHv2
[29] contains an average of 33 text instances, while there are only seven text
instances per image on SCUT-CTW1500 [52]. (2) Significant degradation of his-
torical documents, including stains, seal noise, ink seepage, and breakage, makes
it difficult for scene text detection methods [19,24,26,47,48,54,57] to obtain
accurate detection results, which are essential for the subsequent text recogni-
tion. Figure 1 (c)-(f) show examples of the degradation of ancient documents.

(a) Inaccurate detection results from scene text de-
tection methods

(b) Number of text instances
in historical document (left) vs.
scene text image (right)

(c) Stains (d) Seal noise (e) Ink seepage (f) Breakage

Fig. 1. (a) Inaccurate detection results of scene text detection methods on historical
document images, (b) comparison of the number of texts of historical document and
scene text image, and (c)–(f) degradation phenomena such as stains, seal noise, ink
seepage, and breakage.

In this paper, to alleviate the problem of insufficient detection accuracy and
difficulty in generalizing to complex layout scenarios with dense text distribu-
tion by previous methods, we propose the Dynamic Text Detection Transformer
(DTDT) to adapt to the dense and multi-scale characteristics of historical doc-
ument texts and to meet the requirements of high accuracy. Firstly, for the
dense and multi-scale text arrangement, we present a deformable convolution-
based dynamic encoder to fuse the adjacent scale features of the feature pyramid
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with dynamic attention, which leverages spatial attention, channel attention,
and multi-scale feature aggregation to pay attention to text features at different
scales. Second, to meet the high accuracy detection requirements, we introduce
a parallel dynamic attention head using a dynamic attention module to fuse
the Region of Interest (RoI) and image features, and make the box and mask
branches interact effectively. The parallel dynamic attention head facilitates the
mutual interaction of dual-path branch information and precisely detects text
regions in a continuously refined manner. Furthermore, we employ the spatial
attention transform (SAT) mask head [30] to suppress background noise in the
feature maps. Discrete cosine transform (DCT) is also used to encode the text
masks as compact vectors for the accurate representation of text in arbitrary
shapes. We conduct experiments on the historical document datasets MTHv2,
IC19 HDRC and SCUT-CAB, illustrating the strong robustness and generaliza-
tion ability of our model.

The contributions of this paper are summarized as follows:

• We propose an end-to-end text detection model named DTDT, which is based
on a dynamic Transformer for the accurate detection of dense texts in histor-
ical documents with complex layouts.

• We introduce a deformable convolution-based dynamic encoder using
dynamic attention to improve the detection performance of text at differ-
ent scales, and present parallel dynamic attention heads with shared image
features for joint detection and segmentation.

• We adopt the SAT mask head to suppress the background noise and employ
DCT to encode arbitrary-shaped text masks while maintaining a low training
complexity.

• DTDT achieves state-of-the-art results with F-measure of 97.90% and 96.62%
for MTHv2 and IC19 HDRC, respectively. Furthermore, it obtains compet-
itive results for layout analysis on SCUT-CAB, illustrating its outstanding
generalization capabilities.

2 Related Work

2.1 Regression-Based Methods

Regression-based methods directly regress the bounding boxes of the text. [17]
modified the aspect ratios of anchors based on SSD [23] to accommodate the
scale characteristics of text lines. TextBoxes++ [32] regressed the quadrilateral
vertices to detect multi-oriented text. EAST [54] generated rotated rectangles
and quadrilaterals directly at the pixel level. To avoid the learning confusion
caused by the order of points, OBD [24] decomposed the order of the quadrilat-
eral label points into key edges comprising four invariant points and included a
key edge module for learning the bounding boxes. To prevent entangled vertices
from interfering with the learning process, DCLNet [1] regressed each side that
is disentangled from the quadrilateral contour. The above methods are mainly
for horizontal and multi-oriented text, and their performance degrades when
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dealing with irregular text. To tackle the issue of irregular text detection, Tex-
tRay [46] represented arbitrary-shaped text in the polar system using a uniform
geometric encoding. FCENet [57] mapped the text border to the Fourier domain
to obtain Fourier contour embedding that fits curved text contours. Regression-
based methods enjoy simple post-processing algorithms, but a complex repre-
sentation design is required to fit arbitrary-shaped text. The one-stage methods
[17,32,54] are slightly less accurate because they only regress once, and the
two-stage methods [10,24,29] usually require the manual setting of the anchor
to accommodate the multi-scale text distribution. In contrast, our method per-
forms multiple iterations of the learnable query boxes to obtain more accurate
results and proposes a dynamic encoder to fuse multi-scale features to better
adapt to the textual characteristics of ancient documents.

2.2 Segmentation-Based Methods

In segmentation-based methods, text detection is considered as a segmentation
problem. TextSnake [26] described the text as a series of ordered overlapping
disks. PAN [48] adopted a lightweight segmentation head and a learnable post-
processing method known as pixel aggregation. DBNet [18] provided differen-
tiable binarization by adding the binarization step to the network for training.
DBNet++ [19] extended DBNet by introducing an adaptive scale fusion module
to enhance the scale robustness. To better distinguish adjacent text, PSENet
[47] generated text segmentation maps in a progressive scale expansion man-
ner. SAE [43] mapped pixels to an embedding space, drawing closer to pixels
belonging to the same text and vice versa to divide the adjacent text more effec-
tively. Although segmentation-based methods can be adapted to curved text,
they require complex post-processing and are sensitive to background noise, and
are more computationally intensive for ancient text detection owing to the dense
text. Therefore, our method uses DCT to encode individual text instances to
obtain a lightweight mask to reduce computational complexity. The SAT mask
head is used to suppress noise in historical documents with complex layouts.

2.3 Transformer-Based Methods

Transformer [44] has attracted increasing attention in scene text detection. Raisi
et al. [34] proposed a Transformer-based architecture for detecting multi-oriented
text in scene images and a loss function for the rotated text detection problem.
Tang et al. [41] adopted Transformer to model the relationship between a few
sampled features to decode control points. DPText-DETR [51] used explicit box
coordinates to generate and subsequently dynamically update position queries.
The lack of interaction between the branches of the decoding the control points
and those for detecting the bounding boxes prevents them from achieving bet-
ter performance. Our DTDT explicitly establishes the interaction of the box
and mask information for accurate text detection using the dynamic attention
module.
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3 Methodology

3.1 Overall Architecture of DTDT

As illustrated in Fig. 2, our proposed DTDT consists of three components: Back-
bone, Dynamic Encoder and Dynamic Decoder. The backbone network is com-
posed of Swin Transformer (Swin-T) [25] and feature pyramid network (FPN)
[20] to extract feature maps at different stages of the input image. The dynamic
encoder applies dynamic attention to the features at different scales and fuses
adjacent layer features to enhance multi-scale feature representation. The sum of
the image features P extracted from xDE and position embeddings E is fed into
the Transformer encoder for self-attention learning to obtain enhanced features
Z. Based on Sparse R-CNN [40], the RoI features U box

t and Umask
t together with

the enhanced image features Zt−1 are fed into the dynamic attention module [9]
of the box and mask branches, respectively, to obtain the object features Obox

t

and Omask
t for the prediction of the class, bounding box, and mask of each text

instance. Finally, the output of the previous layer will be continuously refined in
the dynamic decoder with parallel dynamic attention heads to obtain accurate
results.

Fig. 2. Framework of proposed DTDT model. Our model consists of three components:
the backbone, the dynamic encoder, and the dynamic decoder with parallel dynamic
attention heads. MHA denotes the multi-head attention and FFN denotes the feedfor-
ward network.

3.2 Dynamic Encoder

In general, large and small objects are assigned to high-level and low-level feature
maps to extract the RoI features, respectively. However, this may not be optimal
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[22] as other unused feature maps may contain information that helps to improve
the final prediction. Therefore, inspired by recent research on dynamic encoder
[7,33], we introduce a dynamic encoder to perform multi-scale feature fusion on
adjacent feature maps, which is depicted in the upper right part of Fig. 2. The
process is divided into three steps. First, given a set of features P = {P2, ..., Pk}
(k = 5) from the feature pyramid, deformable aggregation, which consists of
several deformable convolution layers [55] on each feature map and an averaging
operator, is performed to simulate the spatial attention for specific regions on
Pi.

This process can be formulated as follows:

si = Offseti(Pi) (1)
P ∗
i = {DeformConvi−1(Downsample(Pi−1), si),

DeformConvi(Pi, si), (2)
DeformConvi+1(Upsample(Pi+1), si)}

P
′
i = Avg(P ∗

i ), (3)

where the offset si that corresponds to the feature map Pi is learned using a
3 × 3 convolution Offseti for deformed sampling locations. The neighboring
feature maps Pi−1 and Pi+1 are downsampled and upsampled, respectively, to
the same size as Pi. Deformable convolution is performed on the sampled feature
maps and Pi, and each feature map focuses on the specific position si that is
learned from the middle layer to avoid conflicts during feature aggregation. P

′
i

is obtained by averaging each term of P ∗
i .

Second, P
′
i is used for channel attention learning with the squeeze and exci-

tation (SE) module [13]:
P

′′
i = SE(P

′
i ). (4)

Finally, we use the DY-ReLU [5] activation function, whose parameters are
dynamically generated from the input elements to improve the feature represen-
tation capability:

P o
i = DY -ReLU(P

′′
i ). (5)

3.3 Parallel Dynamic Attention Heads

The feature maps from the dynamic encoder are cropped and aligned using
RoIAlign [12] to obtain the RoI features U ∈ R

k×d×l×l via k learnable query
boxes bt (t = 0), where d is the channel dimension, and l denotes the output
resolution after the pooling. The feature maps of each layer are averaged and
summed to obtain the image features P ∈ R

k×d, which are summed with the
learnable position embeddings E ∈ R

k×d to be fed into the Transformer encoder
and MHA module to obtain Zt−1 ∈ R

k×d. We design parallel dynamic attention
heads with the RoI features U and enhanced image features Zt−1, as indicated
in the bottom right part of Fig. 2.

Existing methods [24,28,29] use the RoI features that are obtained from the
box branch to predict the mask directly, which ignores the interaction between



DTDT 387

the box and mask branches. As illustrated in Fig. 3 (b), we use the dynamic
attention module, namely DynConv, for more effective interaction of the box
and mask branches, thereby enabling improved results. The box branch employs
DynConvbox

t to fuse the RoI features U box
t and enhanced image features Zt−1

to extract object features Obox
t for classification and bounding box regression.

The mask branch leverages the RoI features Umask
t that are extracted from the

predicted box bt and the enhanced image features Zt−1 for further fusion in
DynConvmask

t to obtain the final detection results mt. The above process is
expressed by Eqs. 6 and 7, where Pbox and Pmask denote a pooling operator for
the extraction of RoI features U box

t and Umask
t , respectively. Bt denotes the box

head that is stacked by three linear layers. Mt indicates the SAT mask head.
xDE is the output feature map of the dynamic encoder.

U box
t = Pbox(xDE , bt−1),

Obox
t = DynConvbox

t (U box
t , Zt−1),

bt = Bt(FFN(Obox
t )),

(6)

Umask
t = Pmask(xDE , bt),

Omask
t = DynConvmask

t (Umask
t , Zt−1),

mt = Mt(Omask
t ).

(7)

The above process offers two advantages: (1) it provides the mask information
obtained from the supervision of the mask branch to the box branch, and (2) the
collaborative interaction between the box and the mask branches is improved.
Moreover, we employ the SAT [30] mask head, which has been demonstrated as
effective for dense instance segmentation and exploits spatial attention to sup-
press noise. The implementation details of the SAT mask head are illustrated
in Fig. 3 (a). Average and max pooling operations are carried out along the
channel axis of the object features Omask

t ∈ R
14×14×C that are obtained by

DynConvmask
t to generate the pooling features Pavg, Pmax ∈ R

14×14×1, which
are stacked along the channel, where C denotes the channel dimension. Sub-
sequently, a 3 × 3 convolution layer is applied and the features are normalized
with a sigmoid function. Finally, element-wise multiplication is performed on
the object feature Omask

t . A mask feature of length 40 is obtained using two
convolution and linear layers.

3.4 DCT Mask Representation

The direct prediction of the two-dimensional binary grid incurs a high com-
putational cost for large resolutions. However, fine-grained features cannot be
captured on a small scale. Therefore, we apply DCT [39] to transform the text
mask encoding into the frequency domain. As the energy is concentrated in the
low-frequency part, we keep this part to produce a compact vector as a predic-
tive object to accurately represent the text shape. The flow of the DCT encoding
and inverse DCT (IDCT) decoding is depicted in Fig. 4.
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We resize the ground truth mask Mgt ∈ R
H×W to M ∈ R

K×K during train-
ing, where H and W are the height and width of Mgt, and K denotes the mask
size. We apply two-dimensional DCT transforms M to obtain MDCT ∈ R

K×K .

MDCT (u, v) =
2
K

C(u)C(v)
K−1∑

x=0

K−1∑

y=0

M(x, y)cos
(2x + 1)uπ

2K
cos

(2y + 1)vπ

2K
, (8)

where C(w) = 1√
2

for w = 0 and C(w) = 1 otherwise.
The first N-dimensional vector V is sampled from the MDCT in a “zig-zag”

manner to obtain the one-dimensional mask representation. We extend V to
Mdct ∈ R

K×K by filling in zeros at the end during inference and apply two-
dimensional IDCT processes V to obtain MIDCT ∈ R

K×K .

MIDCT (x, y) =
2
K

C(u)C(v)
K−1∑

u=0

K−1∑

v=0

Mdct(u, v)cos
(2x + 1)uπ

2K
cos

(2y + 1)vπ

2K

(9)
Finally, MIDCT is resized to Mrec ∈ R

H×W using bilinear interpolation. It
is worth noting that the time complexity of DCT and IDCT is O(nlogn) [11].

(a) Implementation details of SAT mask head

(b) Implementation details of dynamic attention module

Fig. 3. (a) Structure of SAT mask head. (b) Dynamic attention module applied to box
and mask branches.

Fig. 4. DCT encoding and IDCT decoding.
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3.5 Loss Function

We adopt the Hungarian algorithm [15] to match the predicted and ground
truth boxes. DTDT applies a set prediction loss to the set of predictions of the
categories, box coordinates, and mask representations. The total loss function
can be formulated as follows:

L = λclsLcls + λboxLbox + λmaskLmask. (10)

Lbox is defined as:
Lbox = λL1LL1 + λgiouLgiou. (11)

Lmask is defined as:
Lmask = LL2 + Ldice. (12)

In the above equations, Lcls is the focal loss [21], and LL1 and Lgiou are the
L1 loss and the generalized IoU loss [37], respectively. LL2 is the L2 loss of the
one-dimensional mask embedding before DCT decoding and Ldice is the dice
loss [31] of the two-dimensional mask after IDCT decoding. λcls, λbox, λmask,
λL1 and λLgiou

are set to 2, 1, 5, 5 and 2, respectively.

4 Experiments

4.1 Datasets

MTHv2 [29] is a Chinese historical document dataset consisting of 2,399 train-
ing images and 800 testing images. The dataset includes character-level and
line-level quadrilateral annotations.

ICDAR 2019 HDRC-CHINESE [38] is a large historical documents dataset
of structured Chinese family records that are annotated using line-level quadri-
laterals. We randomly used 10,715 images for training and 1,000 for testing
among the 11,715 available images.

SCUT-CAB [6] is a complex layout analysis dataset of Chinese historical doc-
uments containing 3,200 training images and 800 testing images. SCUT-CAB
contains two subsets: SCUT-CAB-Logical and SCUT-CAB-Physical, which have
27 and 4 categories, respectively. All text instances are annotated using quadri-
laterals.

4.2 Implementation Details

We used Swin-T [25], pre-trained on ImageNet [8] as the backbone. The number
of learnable proposal boxes was set to 500. The number of iterations was set
to four to improve the accuracy. We selected a mask size of 80 × 80 and a
40-dimensional DCT mask vector. We trained DTDT for 90k iterations with a
batch size of eight on two NVIDIA RTX A6000 GPUs. We used AdamW [27]
as the optimizer and set an initial learning rate of 2.5e−5 and a weight decay of
1e−4. The learning rate was divided by 10 at 50% and 70% of the total number of
iterations. We applied data augmentation methods including random cropping
and multi-scale training. The maximum image scale was set to 1333 × 800.
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4.3 Comparison with Previous Methods

We compared our method with previous state-of-the-art methods on MTHv2
and IC19 HDRC. Tables 1 and 2 display the quantitative experimental results.
Figure 5 shows the qualitative results for MTHv2. Furthermore, by modifying
the number of categories in the class head, we applied DTDT to the SCUT-
CAB dataset to validate the potential of our method in the task of ancient book
layout analysis.

Text Line Detection. The results in Tables 1 and 2 demonstrate the high
accuracy and robustness of our method on these two datasets. Our method
achieved an F-measure of 97.90% on MTHv2, which was 0.18% higher than the

Table 1. Detection results on MTHv2 dataset. “P”, “R”, and “F” indicate the
precision, recall, and F-measure, respectively. Bold indicates the best performance.
Underline indicates second best.

Method IoU=0.5 IoU=0.6 IoU=0.7 IoU=0.8 Post-processing

P R F F F F

Projection analysis [29] – – 69.22 66.87 60.97 – –

EAST [54] – – 95.04 91.55 80.35 – –

Ma et al. [29] – – 97.72 97.26 96.03 – –

Mask R-CNN [12] 98.17 95.98 97.06 96.67 95.51 90.23 –

FCENet [57] 95.16 92.82 93.97 91.30 86.51 73.86 –

OBD [24] 97.83 97.43 97.63 97.32 96.31 90.78 –

Deformable DETR [56] 97.92 94.64 96.25 95.62 93.80 84.22 –

DBNet++ [19] 96.20 94.93 95.56 77.01 36.15 18.70 0.015s

PSENet [47] 93.97 87.84 90.80 88.65 83.68 70.96 0.022s

PAN [48] 97.18 93.14 95.12 92.55 84.63 62.74 0.011s

TextSnake [26] 95.07 89.00 91.94 90.92 89.36 84.58 0.497s

DTDT(Ours) 97.94 97.86 97.90 97.41 95.98 91.18 0.008s

Table 2. Detection results on IC19 HDRC dataset.

Method IoU=0.5 IoU=0.6 IoU=0.7 IoU=0.8 Post-processing

P R F F F F

Mask R-CNN [12] 96.54 96.21 96.37 94.66 88.80 70.01 –

FCENet [57] 93.63 91.50 92.55 87.74 77.25 52.12 –

OBD [24] 94.56 97.02 95.77 93.91 86.83 64.18 –

Deformable DETR [56] 94.43 95.72 94.57 92.55 86.27 71.96 –

DBNet++ [19] 96.37 95.73 96.05 90.64 75.57 48.51 0.021s

PSENet [47] 91.57 88.57 90.04 83.02 68.42 42.19 0.026s

PAN [48] 95.11 92.84 93.96 88.68 71.27 31.65 0.012s

TextSnake [26] 82.90 72.22 77.19 73.40 68.41 51.54 0.512s

DTDT(Ours) 96.89 96.35 96.62 95.15 90.10 71.42 0.016s
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second best score when the IoU threshold was 0.5. Only three methods main-
tained performance above 90% when the IoU was 0.8, and our method is the
best. Analogous results were obtained for IC19 HDRC. Our method obtained
an F-measure of 96.62%, outperforming the second best method by 0.25%. Our
method remained robust under high IoU requirements without much perfor-
mance degradation compared to other methods. Our DTDT still yielded high
accuracy when the IoU threshold was between 0.5 and 0.8. The post-processing
times for the segmentation-based methods and our DTDT are given in Tables 1
and 2, and the results illustrate the rapidity of IDCT decoding.

Layout Analysis Experiments. Table 3 presents the experimental results for
the ancient book layout analysis on SCUT-CAB dataset [6]. The results show
that our method could achieve results that are comparable to those of other
methods in the physical and logical layout analysis tasks. Our model achieved
the best AP75 and AP results on the physical layout analysis task, demonstrating
the effectiveness of DTDT. In the logical analysis task, DTDT yielded the second
best performance, which was slightly lower than that of Deformable DETR.

Table 3. AP50, AP75, and AP of each model on SCUT-CAB testing sets. AP refers
to average precision, AP50 and AP75 are the average precision at IoU = 0.5 and 0.75,
respectively.

Method Physical Logical

Objection Detection Instance Segmentation Object Detection Instance Segmentation

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Anchor-based one-stage

RetinaNet [21] 91.5 82.9 74.7 91.5 81.6 73.8 78.3 61.2 55.1 78.3 61.7 55.0

YOLOv3 [35] 87.6 82.5 75.9 87.1 79.1 73.1 71.4 59.3 52.7 71.4 59.3 52.7

GFL [16] 92.6 74.8 73.7 92.6 73.2 72.4 78.1 57.8 54.1 78.1 58.8 53.5

Anchor-free one-stage

FCOS [42] 83.2 76.0 68.9 83.1 74.7 68.1 74.1 54.4 50.2 74.0 53.4 49.1

FoveaBox [14] 91.3 82.5 74.6 91.3 80.0 73.1 80.4 60.2 54.9 80.3 60.3 54.3

Anchor-based multi-stage

Faster R-CNN [36] 91.3 86.1 77.5 91.0 83.4 75.3 77.4 61.3 54.9 77.3 60.6 54.2

Cascade R-CNN [3] 91.4 87.8 79.9 91.4 84.8 77.4 77.5 62.3 55.9 77.5 60.9 55.4

Mask R-CNN [12] 92.1 87.7 79.1 91.7 87.2 79.5 78.5 61.9 55.1 77.7 63.1 55.3

Cascade Mask R-CNN [3] 92.1 88.6 80.9 92.1 88.4 81.0 78.0 62.7 56.8 77.9 61.8 56.3

HTC [4] 92.8 89.4 81.4 92.8 88.8 81.0 80.1 65.2 58.3 80.0 63.1 58.0

SCNet [45] 94.1 89.0 81.3 94.1 89.1 82.0 83.6 67.3 60.2 83.6 68.0 60.3

Pure Instance Segmentation

SOLO [49] 90.7 81.6 75.2 91.2 84.3 76.7 73.8 57.7 51.6 73.2 57.8 51.5

SOLOv2 [50] 91.5 81.6 75.1 92.2 85.1 78.7 76.4 53.2 50.5 77.0 59.7 53.9

Query-based

Deformable DETR [56] 92.7 87.9 81.0 92.5 85.1 78.8 84.6 69.8 61.6 84.6 69.9 61.1

QueryInst [9] 91.7 87.1 79.3 91.2 86.7 79.2 80.4 65.7 58.5 80.4 65.3 58.1

Multi-modality based

VSR [53] 90.4 85.5 78.5 90.4 84.5 78.2 78.3 61.6 55.7 78.2 61.1 55.1

DTDT(Ours) 94.0 90.0 83.0 94.0 89.6 82.7 81.1 68.0 60.8 81.1 67.8 60.4
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(a) Comparison of detection results on historical documents from
MTHv2 dataset

(b) Qualitative results at each stage: masks from DTDT on MTHv2 dataset

Fig. 5. (a) Visualization results of our method and other scene text detection methods.
Our method achieved a higher detection accuracy. (b) Qualitative experimental results
for the four stages of two example images. The different colors are used to distinguish
the detection results of each text instance of the model.
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4.4 Ablation Study

We performed an ablation study on MTHv2 to verify the effectiveness of our
proposed method. The quantitative results for different settings are presented in
Table 4. The DCT resulted in a 2.78% improvement, indicating that the text
shape can be more represented accurately using DCT masks. The dynamic
encoder achieved performance improvements of 0.12% and 0.23% in the precision
and recall, respectively, on the MTHv2 dataset, indicating its ability to improve
the network’s adaptation to multi-scale text. The parallel dynamic attention
heads resulted in a 0.12% improvement in the F-measure. The design of the
parallel dynamic attention heads provides better interaction and collaboration
between the box and mask branches, facilitating the benefits of the two branches.
The SAT mask, which achieved an F-measure of 97.90%, has a certain ability to
suppress noise.

Table 4. Detection results for different settings of DCT, dynamic encoder, parallel
dynamic attention heads, and SAT mask head on MTHv2 dataset. “DE” indicates
dynamic encoder and “PDAH” indicates parallel dynamic attention heads.

DCT DE PDAH SAT P R F �F

– – – – 92.36 97.33 94.78 –

� – – – 97.83 97.28 97.56 ↑2.78

� � – – 97.95 97.51 97.73 ↑0.17

� � � – 97.89 97.80 97.85 ↑0.12

� � � � 97.94 97.86 97.90 ↑0.05

5 Conclusions

We proposed DTDT, which is a highly accurate text line detection method
for dense text distribution of historical documents. We introduced a dynamic
encoder to improve the representation ability of multi-scale text and parallel
dynamic attention heads to facilitate the mutual benefits of the box and mask
branches for generating more accurate text masks. The experiments demon-
strated that our method achieved state-of-the-art results on historical document
datasets such as MTHv2 and IC19 HDRC, and achieved comparable results on
the layout analysis dataset SCUT-CAB. The potential of DTDT for text detec-
tion in modern documents and other scenarios will be explored further in future
research.
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Abstract. One of the main challenges of automatically transcribing
large collections of handwritten letters is to cope with the high variabil-
ity of writing styles present in the collection. In particular, the writing
styles of non-frequent writers, who have contributed only few letters, are
often missing in the annotated learning samples used for training hand-
writing recognition systems. In this paper, we introduce the Bullinger
dataset for writer adaptation, which is based on the Heinrich Bullinger
letter collection from the 16th century, using a subset of 3,622 annotated
letters (about 1.2 million words) from 306 writers. We provide baseline
results for handwriting recognition with modern recognizers, before and
after the application of standard techniques for supervised adaptation of
frequent writers and self-supervised adaptation of non-frequent writers.

Keywords: Handwriting Recognition · Writer Adaptation · Historical
Documents · Handwritten Letters

1 Introduction

Handwriting recognition remains a mostly unsolved problem and a very active
field of research, because it challenges pattern recognition and machine learning
techniques in various ways: Even when considering samples written in the same
language and time period, there is a high variability in character shapes and char-
acter connections to model, especially in the case of cursive handwriting. When
changing the language, there is a distribution shift regarding language models,
even when the same set of characters are used. For historical documents [4],
additional difficulties include the absence of timing information, which is only
available for modern on-line handwriting with an electronic pen, degraded paper
or parchment due to old age, which leads to artifacts on the scanned page images,
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and a large number of different languages, scripts, and time periods to consider.
Therefore, handwritten text recognition (HTR) usually targets a very specific
type of handwriting, e.g. a historical manuscript written by only a few different
hands, with similar imaging conditions across the scans, the same language, etc.
and is trained with a large amount of annotated learning samples from the same
type of handwriting.

In this paper, we introduce a novel challenge for HTR in the context of a
comprehensive digitization project [2] in Switzerland that aims to create a digi-
tal edition of a large collection of historical letters, namely the Bullinger letters,
which include about 12,000 letters written or received by Heinrich Bullinger
(1504–1575), an important Swiss Reformer. He was in contact with over 1,000
persons, which introduces a high variability of writing styles, as well as differ-
ences in writing support and writing instruments. Furthermore, the letters are
not only written in Latin but also in a premodern form of German, and some-
times the two languages are mixed, while the language might change either from
paragraph to paragraph or even mid-sentence (i.e., code-switching). Over the
past years, transcription and transcription alignment efforts have been focused
on the most frequent writers, i.e. Bullinger himself and persons who have written
a considerable number of letters to him. However, there are thousands of letters
from non-frequent writers, whose writing styles are not present in the annotated
training material. Therefore, one of the most intriguing problems is that of writer
adaptation: “Is it possible to adapt a generic HTR system to the specific writ-
ing style of a non-frequent writer, who is not represented in the training data,
such that the HTR performance is improved?” The same question, although less
challenging, can also be asked for frequent writers, who are represented in the
training set and may also profit from an adaptation to their particular style of
writing.

1.1 Related Work

There is a rich body of literature on the topic of writer adaptation for HTR. To
name just a few, early examples include [17], where the adaptation is performed
based on writer-specific allographs that are used to re-evaluate the output of an
HTR system, and [3], where unsupervised clustering is used to estimate Gaus-
sian mixture models that are specific to a writing style. In [6], a self-training
approach is pursued to improve the performance of an HTR system by adapting
it to the recognition output of unlabeled samples. The work presented in [7]
employs a keyword spotting strategy to adapt an HTR system trained for mod-
ern handwriting to historical handwriting. More recent attempts to perform
transfer learning are reported in [8,10]. A competition organized on the READ
dataset specifically included the problem of writer adaptation with respect to
22 different hands, 5 of which are used both in the training and the test set
to investigate supervised adaptation [21]. The best results are obtained when
adapting both the optical and the language models, and when including data
augmentation [19]. Targeting the more difficult case of unsupervised adaptation,
a style adaptation at multiple abstraction layers of a deep convolutional model
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is proposed in [22]. Another recent unsupervised adaptation scheme is based on
fully synthetic training data [11].

1.2 Contribution

In the present work, we do not introduce a novel method for writer adaptation.
Instead, we introduce the Bullinger dataset for writer adaptation [1] and estab-
lish baseline results using state-of-the-art HTR systems with standard adapta-
tion strategies, i.e. fine-tuning a generic HTR system on the training data of the
frequent writers, and fine-tuning the models on confidently transcribed text lines
of non-frequent writers, following a self-training methodology [6]. The dataset is
publicly and freely available for developing and comparing novel approaches to
writer adaptation.

When comparing the Bullinger dataset with other datasets used for writer
adaptation research, we can highlight the difficulty of the handwriting itself (cf.
Fig. 1), which is also difficult to read for human experts, and the large number
of over one million words, which is suitable for experiments with deep learning
models from the current state of the art. Table 1 provides a comparison with
other related research datasets. Note that only about a quarter of all letters
are currently included in the Bullinger dataset, representing the progress of the
digitalization project. The total number of writers is over 1,000 for the entire
letter collection.

Table 1. Related research datasets for writer adaptation research.

Dataset Number of words Number of writers

Georges Washington [13] 4,860 2

Parzival [5] 23,478 3

Rimes [9] 66,978 1,300

READ [21] 98,239 22

CVL [12] 99,902 310

IAM Handwriting [15] 115,320 657

Bullinger 1,241,714 306

In the remainder, we describe the handwriting present in the Bullinger let-
ters and how it has been transcribed so far, introduce the HTR systems and
writer adaptation techniques considered for the experiments, present the base-
line results, and draw some conclusions.
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2 Dataset

The Bullinger Digital project [2] aims to bring together all available resources
about the comprehensive letter correspondence of Heinrich Bullinger (1504–
1575), a Swiss Reformer, in a single database. For this purpose, all available
meta-information, e.g. about the writers of the letters, but also scanned page
images and existing transcriptions are brought together. Furthermore, the goal
is to automatically align existing transcriptions with the page images and to use
HTR to perform an automatic transcription for the remaining letters. Heinrich
Bullinger was a key actor during the Reformation in Switzerland and Europe.
His letter correspondence includes about 2,000 letters written by himself and
about 10,000 letters that he has received from over 1,000 persons.

Certain writers, including Bullinger, exhibit writing styles that are very diffi-
cult to read, even for human experts. Figure 1 provides an example of Bullinger’s
handwriting. We can observe a mix of Latin and a premodern form of German
phrases, abbreviations, and words that are very difficult to decipher without inti-
mate knowledge of the handwriting, or access to a transcription. At the beginning
of the third line, we can also observe a missing word in the transcription. It is
due to an error of the automatic transcription alignment, which was performed
using the Text2Image module of the Transkribus platform [16]. In general, the
quality of the alignment is high, and thus the quality of the ground truth for
handwriting recognition, but especially at the beginning and at the end of the
text lines errors may arise due to word breaks. Furthermore, the transcription
is not necessarily character-accurate, e.g. abbreviations are often written out in
full. This noise in the automatically generated ground truth is an additional
difficulty for training HTR systems.

Fig. 1. Text lines written by Bullinger with automatically aligned transcriptions.

Figure 2 illustrates the high variability of writing styles present in the
Bullinger dataset. The first line shows three examples of how Bullinger writes his
own name. They exhibit a considerable intra-writer variability. The remaining
words are written by other persons, demonstrating changes in the writing style,
writing support, and writing instrument.
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Fig. 2. Different writing styles and different forms of the word “Bullinger”. The writer
IDs are indicated in the bottom-left corner of each automatically segmented word. All
words of the first line are written by the same writer, Bullinger himself.

Note that the sample word images were automatically cut out from text
lines that have been processed by an HTR system and may contain segmenta-
tion errors. The text lines themselves were cut out from the scanned page images
according to polygonal boundaries provided by Transkribus’ layout analysis sys-
tem. The special background pattern around the text lines is added artificially
instead of white background, to make the background more homogeneous for
HTR.

3 Methods

3.1 Handwriting Recognition

We consider two state-of-the-art models for handwriting recognition, namely
PyLaia [18] and HTR-Flor [20]. They both consider deep convolutional layers to
extract features from text line images, followed by bidirectional recurrent lay-
ers with connectionist temporal classification (CTC) loss to analyze the features
from left-to-right as well as right-to-left to recognize character sequences. They
differ in the composition of the layers as illustrated in Fig. 3. To reduce the num-
ber of trainable parameters, HTR-Flor uses gated convolution and bidirectional
gated recurrent units (BGRU) instead of standard convolution and bidirectional
long short-term memory cells (BLSTM). In effect, HTR-Flor only has around
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820 thousand parameters, which is significantly less than the 9.6 million param-
eters of PyLaia. Nevertheless, both models achieve similar results on several
benchmark datasets [20].

Fig. 3. Architectures of the two HTR systems used: PyLaia [18] and HTR-Flor [20].
Both figures are taken from [20].

3.2 Writer Adaptation

We consider two standard writer adaptation methods to study their impact on
the HTR performance. The first method is used for frequent writers, for which
some of the letters were transcribed and are part of the training set. In this case,
we train a generic HTR system on all letters and then fine-tune it on the training
letters of the frequent writer in order to adapt the model to the specific writing
style.

The second method is used for non-frequent writers, for which none of the
letters have been transcribed and therefore no training material is available. In
this case, we follow the self-training approach proposed in [6]. We start again
with a generic HTR system trained on all letters and apply it to the letters of
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the non-frequent writer. Afterwards, we compute a confidence measure C(s) for
the predicted characters sequences s = c0, . . . , cN ,

C(s) =
N∏

i=0

p(ci) , (1)

where p(ci) is the softmax probability of the character ci according to the CTC
decoding. Afterwards, we sort the character sequences of all text lines according
to their confidence and use the most confident P percent of the text lines as a
new training set for fine-tuning the generic HTR system.

4 Experimental Evaluation

4.1 Database Setup

To study the impact of writer adaptation, we consider text line images from a
subset of 3,622 letters by 306 writers with automatically aligned transcriptions,
which are used as ground truth for the HTR experiments.

As illustrated in Fig. 4, the database is split as follows for the Bullinger
writer adaptation challenge: First, we sort the writers according to their number
of letters, observing a Zipf distribution with only few frequent writers and a
large number of non-frequent writers. Then, using a threshold of 5 letters, we
distinguish two groups of writers:

– Frequent writers: Writers with at least 5 letters.
– Non-frequent writers: Writers with less than 5 letters.

There are 106 frequent writers in total. We use the first 80% of their letters
for training, the next 10% for validation (optimization of hyper-parameters), and
the final 10% for testing. For the non-frequent writers, we select the next 200
writers in the sorted list of writers to compose a second test set of similar size. In
this experimental setup, the test set for frequent writers estimates how well HTR
performs for known writers, where several of their letters have been transcribed
for training, and the test set for non-frequent writers estimates how well HTR
performs for unknown writers, whose writing styles are not present during train-
ing. This scenario reflects the real situation in the Bullinger Digital project [2],
where the transcription efforts are directed towards the most important (most
frequent) writers. Table 2 shows the exact repartition of writers, letters, pages,
text lines, and words across the different sets. The training set has a consider-
able size of 109,627 text lines with 876,003 words. After removing some very rare
characters, we retain a total of 78 distinct characters in the database including
the space character.
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Fig. 4. Database setup. The graph shows the number of letters per writer. Frequent
writers (Freq.) have five or more letters and non-frequent writers (Non-Freq.) have less
than five letters.

Table 2. Database setup: Distribution of writers, letters, pages, text lines and words
for frequent writers (Freq.) and non-frequent writers (Non-Freq.).

Training Validation Test Freq. Test Non-Freq. Total

# of writers 106 106 106 200 306

# of letters 2,581 337 337 367 3,622

# of pages 5,927 806 787 873 8,393

# of lines 109,627 14,516 15,368 15,735 155,246

# of words 876,003 122,211 115,289 128,211 1,241,714

4.2 HTR Setup

The hyper-parameters of the HTR systems were optimized on the validation set
during preliminary experiments. They have been fixed to the same values for
HTR-Flor and PyLaia. The text line images are resized to a height of 128 pixels,
keeping the aspect ratio, and in addition to the three RGB channels we add a
fourth channel with a binary version of the image obtained by means of a global
Otsu threshold. We consider 256 hidden units for the LSTMs/GRUs, a dropout
of 0.3 in the recurrent layers, and a mini-batch size of 64. The learning rate
is optimized with AdamW [14] using a weight decay of 0.0001, β1 = 0.9, and
β2 = 0.98. The peak learning rate is 0.00055. The HTR systems are trained for
100 epochs until convergence and the best model epoch is chosen with respect
to the character error rate on the validation set. We do not observe a significant
overfitting effect. Training one epoch with two NVIDIA TITAN RTX cards took
around 23 min for HTR-Flor and around 30 min for PyLaia.

For the CTC, we use 78 character tokens, decode greedily by considering the
character with maximum probability at each time step, and remove repeated
consecutive characters. Note that we do not use a lexicon for text recognition,
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because of the presence of both Latin and German texts, spelling variants, and
abbreviations. Instead, the text is transcribed character by character. In the
present baseline experiments, we only focus on the optical model and the implicit
language model learned by the recurrent layers on the training set. No explicit
character language model is used.

4.3 Writer Adaptation Setup

For writer adaptation, we first train a generic system on the entire training set.
Afterwards, the system is adapted as follows:

– Frequent writers: The training letters of the writer are used to further
fine-tune the generic system. Either the training is continued with the same,
small learning rate or the training is restarted with the initial, high learning
rate. Either 10 or 20 epochs of training are pursued and the best number of
epochs is determined on the validation letters of the writer.

– Non-frequent writers: Self-training is performed by recognizing the test
letters of the writer with the generic system. Afterwards, the automatic tran-
scriptions are sorted by recognition confidence (see Sect. 3.2) and the top
50%, 75%, or 100% of the text lines are used as learning samples to further
fine-tune the generic system. Training is continued for either 10 or 20 epochs
(since the non-frequent writers have no annotated validation letters, it is not
possible to determine the best epoch prior to 10 or 20).

4.4 Evaluation Measures

We use the standard measures of character error rate (CER) and word error rate
(WER) to evaluate the HTR performance. They are calculated by computing
the string edit distance between the recognition output and the ground truth, to
obtain the number of substitution, deletion, and insertion errors. By dividing the
number of character errors with the number of characters in the ground truth,
we obtain the CER, and similarly the WER.

For measuring the impact of writer adaptation, we report absolute improve-
ments, e.g. CERg −CERa, as well as relative improvements in percentage, e.g.

100 · CERg − CERa

CERg
, (2)

with CERg the error rate of the generic system and CERa the (typically lower)
error rate of the adapted system.
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Table 3. HTR performance. The best results are highlighted in bold.

Frequent writers Non-Frequent writers

HTR-Flor PyLaia HTR-Flor PyLaia

CER 9.56 8.36 10.67 9.85

WER 33.72 29.64 37.56 34.39

Table 4. Frequent writer adaptation. Relative improvement of the CER in percentage
for continuing training during 10 or 20 epochs (C-10 and C-20) and for restarting
training during 10 or 20 epochs (R-10 and R-20). The best results of each HTR system
are highlighted in bold.

Frequent Writers

Configuration HTR-Flor PyLaia

C-10 9.08 3.70

C-20 9.76 3.39

R-10 4.30 –0.05

R-20 6.80 1.56

4.5 Results

HTR Performance. Table 3 shows the CER of the generic (non-adapted) HTR
systems for frequent and non-frequent writers, respectively. The best results are
obtained with PyLaia, which achieves 8.36% CER for frequent writers and 9.85%
CER for non-frequent writers. HTR-Flor performs about one percent CER worse,
which may be due to the reduced number of model parameters when compared
with PyLaia, taking into account the large size of the training set. For both
systems, the error rate for non-frequent writers is significantly higher, which is
expected because the writing styles of the non-frequent writers are not present in
the training set. When comparing the overall HTR performance with the results
for HTR-Flor on the IAM database reported in [20], namely 3.98% CER, the
increased difficulty of the Bullinger database becomes evident.

Frequent Writer Adaptation. Table 4 shows the results of frequent writer
adaptation for different fine-tuning strategies, in terms of relative improvements
of the CER. For both HTR systems, restarting with a high learning rate is
significantly worse than continuing the fine-tuning with a low learning rate. In
the case of PyLaia, restarting 10 epochs even leads to an increase in the CER.
The largest gain is observed for HTR-Flor, where the relative reduction of the
CER is 9.76%.

Non-frequent Writer Adaptation. Table 5 shows the results of non-frequent
writer adaptation for different self-training and fine-tuning strategies. The gain
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Table 5. Non-frequent writer adaptation. Relative improvement of the CER in per-
centage for continuing training during 10 or 20 epochs (C-10 and C-20) and selecting
the 50%, 75%, and 100% most confidently recognized text lines for self-training (S-50%,
S-75%, and S-100%). The best results of each HTR system are highlighted in bold.

Non-Frequent Writers

Configuration HTR-Flor PyLaia

C-10, S-50% 2.65 0.44

C-10, S-75% 2.68 0.51

C-10, S-100% 2.01 0.71

C-20, S-50% 2.88 –1.84

C-20, S-75% 2.54 –2.99

C-20, S-100% 0.79 –4.42

in performance is very limited for PyLaia, which clearly overfits to the self-
labeled transcriptions when fine-tuning 20 epochs. The best results are achieved
when selecting all self-labeled transcriptions and fine-tuning 10 epochs. HTR-
Flor achieves the best result when selecting the 50% most confident text lines
and fine-tuning 20 epochs. In this scenario, the relative improvement of the CER
is 2.88%.

Table 6. Detailed adaptation results for the optimal system configurations. CER,
WER, and improvements in percentage. The improvements for frequent writers and
the improvements of HTR-Flor for non-frequent writers are significant (p < 0.05). The
improvements of PyLaia for non-frequent writers are not significant.

Frequent writers Non-Frequent writers

HTR-Flor PyLaia HTR-Flor PyLaia

Configuration C-20 C-10 C-20, S-50% C-10, S-100%

CER before 9.56 8.36 10.67 9.85

CER after 8.62 8.05 10.36 9.78

Improvement 0.93 0.31 0.31 0.07

Relative improvement 9.76 3.70 2.88 0.71

# writers improved 97/106 84/106 133/200 93/200

% writers improved 91.51 79.25 66.50 46.50

WER before 33.72 29.64 37.56 34.39

WER after 30.96 28.72 36.75 33.99

Improvement 2.75 0.93 0.81 0.39

Relative improvement 8.17 3.12 2.16 1.15

# writers improved 96/106 82/106 129/200 95/200

% writers improved 90.57 77.36 64.50 47.50
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Detailed Adaptation Results. Table 6 provides a more detailed account for
both frequent and non-frequent writer adaptation using the best fine-tuning and
self-training strategies. Besides the improvements and relative improvements in
CER and WER, we also indicate for how many writers the performance was
improved. The improvements for frequent writers and the improvements of HTR-
Flor for non-frequent writers are significant (p < 0.05). The improvements of
PyLaia for non-frequent writers are not significant.

Overall, the adaptation results highlight a clear adaptation success for the
frequent writers but only a limited success for the non-frequent writers. Even
with the best fine-tuning and self-training configurations, the relative improve-
ments in CER and WER remain very modest for the non-frequent writers.

5 Conclusion

The Bullinger dataset for writer adaptation introduced in this paper is a novel
benchmark for developing and comparing writer adaptation methods. Its diffi-
cult handwriting, high variability in writing styles, and large size make it ideally
suited for investigating writer adaptation with deep learning models from the
current state of the art. The baseline results provided for the HTR-Flor and
PyLaia architectures achieve up to 9.76% relative improvement of the CER for
supervised adaptation of frequent writers, but only up to 2.88% relative improve-
ment of the CER for self-supervised adaptation of non-frequent writers.

Promising lines of research to improve over these baseline results include
a conjoint adaptation of optical models and explicit language models, writing
style clustering, data augmentation, and synthetic data generation, to name just
a few.

The Bullinger project is still ongoing and we expect to be able to release
more versions of the challenge in the future, increasing the size of the database
and improving the quality of the ground truth.
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Abstract. This paper presents an unsupervised approach for writer
retrieval based on clustering SIFT descriptors detected at keypoint loca-
tions resulting in pseudo-cluster labels. With those cluster labels, a resid-
ual network followed by our proposed NetRVLAD, an encoding layer with
reduced complexity compared to NetVLAD, is trained on 32×32 patches
at keypoint locations. Additionally, we suggest a graph-based reranking
algorithm called SGR to exploit similarities of the page embeddings to
boost the retrieval performance. Our approach is evaluated on two his-
torical datasets (Historical-WI and HisIR19). We include an evaluation
of different backbones and NetRVLAD. It competes with related work
on historical datasets without using explicit encodings. We set a new
State-of-the-art on both datasets by applying our reranking scheme and
show that our approach achieves comparable performance on a modern
dataset as well.

Keywords: Writer Retrieval · NetVLAD · Reranking · Document
Analysis

1 Introduction

Writer retrieval is the task of retrieving documents written by the same author
within a dataset by finding similarities in the handwriting [14]. In particular,
writer retrieval enables experts in history or paleography to trace individuals or
social groups across different time epochs [7]. Furthermore, it helps to identify
documents of unknown writers and to detect similarities within those documents
[5]. Due to the time-consuming process of analyzing large corpora of documents
required by experts, image retrieval algorithms are applied to find all relevant
documents of a specific writer.

State-of-the-art methods for writer retrieval consist of four parts: First, char-
acteristics of the handwriting within the document are sampled, e.g., by using
interest point detectors such as SIFT [14,20,22]. Then, traditional algorithms or
deep-learning-based approaches are applied to extract features. In the end, those
embeddings are encoded and aggregated to obtain powerful global page descrip-
tors, which are then compared to retrieve a ranked list for each query document.
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Fig. 1. Overview of our proposed pipeline.

Since the datasets contain a training and a test set with disjunct writers, the
performance of writer retrieval approaches is evaluated by using each document
of the test set as a query once.

While on modern datasets, neural networks trained in a supervised manner
dominate [10,14,20,22], for historical datasets, training on writer label infor-
mation [19,25] trails either unsupervised methods [5] or approaches based on
handcrafted features [16]. Historical data introduces additional challenges, e.g.,
degradation, different languages, the amount of text, or even potential writer-
label noise by external influences on handwriting, such as the pen used. However,
a different strategy we investigate to improve the performance of writer retrieval
is reranking : After the global descriptors are calculated and compared, rerank-
ing exploits the geometric relationships in the embedding space, as well as the
information included in the ranked list to refine the final ranking [13].

Our paper presents an unsupervised approach illustrated in Fig. 1. It is based
on a Convolutional Neural Network (CNN) trained on 32×32 patches extracted
at SIFT keypoint locations. As a target label, 5000 classes are generated by
clustering the corresponding descriptors via k-means [5]. We encode the embed-
dings of our neural network by Random NetVLAD (NetRVLAD), particularly
designed for writer retrieval by removing normalization layers and the initializa-
tion, which, we show in our evaluation, harms the performance. In contrast to
[5], we do not rely on external codebooks such as VLAD. Instead, we directly
learn a codebook during the network training within the NetRVLAD layer. The
global page descriptors are obtained by sum pooling. Secondly, we rerank our
global page descriptors with our proposed Similarity Graph Reranking (SGR)
and boost the performance of NetRVLAD. Our reranking is based on the work
of Zhang et al. [27], who build a graph and aggregate its vertices to refine the
features. Their method relies on two hyperparameters (k1, k2) dependent on
the test set whose properties are usually unknown. We propose SGR, where
an initial graph of the global page descriptors is built using cosine similarity
and a weighting function. Afterward, a graph network refines and aggregates
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the node features, which are then considered as the reranked descriptors. SGR
improves the work in [27] by eliminating k1 and is also robust to the choice of k2
across datasets. Additionally, our results show that when using NetRVLAD, the
performance is significantly improved by removing complexity compared to the
original NetVLAD. In our experiments, NetRVLAD performs stable, even when
choosing a smaller codebook size, reducing computational resources. Combined
with SGR, we outperform related work. Ultimately, we show that our approach
is feasible for smaller modern datasets.

Summarizing, our contributions are:

– NetRVLAD, an encoding layer for writer retrieval based on NetVLAD [1],
– SGR, a reranking algorithm using a similarity graph,
– a thorough evaluation of our approach on two historical datasets, namely the

Historical-WI [9], and HisIR19 [7], where we outperform State-of-the-art on
both datasets.

The remaining part of our paper is structured as follows: In Sect. 2, we
describe the related work regarding writer retrieval and reranking strategies
used. We cover our approach, including NetRVLAD and SGR in Sect. 3 followed
by our evaluation protocol and implementation details in Sect. 4. Our experi-
ments and results are given in Sect. 5. We conclude our paper in Sect. 6.

2 Related Work

In the following, we give an overview of related work for writer retrieval as well
as reranking strategies.

2.1 Writer Retrieval

Writer retrieval approaches are divided into codebook-based and codebook-free
methods. Those codebooks are used as a model to calculate statistics of the
handwriting, with Vector of Locally Aggregated Descriptors (VLAD) the most
prominent one for writer retrieval [3,5,6,14]. Additionally, the characteristics
of the handwriting are either extracted by traditional algorithms (handcrafted
features) or deep learning.

For codebook-based methods on modern datasets such as ICDAR2013 [17]
or CVL [15], the authors of [4] compute SURF features encoded by Gaussian
mixture models. Christlein et al. [3] extract Zernike moments of the contours
and build a codebook based on multiple VLAD encodings. In contrast to those
handcrafted features, Fiel and Sablatnig [10] introduced CNNs to the domain of
writer retrieval. Their codebook-free method relies on aggregating CNN activa-
tions via sum-pooling. Similarly, CNNs are applied in [6,14] as a feature extractor
followed by VLAD. The authors of [20,22] investigate NetVLAD [1], a learnable
version of VLAD, plugged in at the end of the network to directly learn the code-
book during training. All of those networks are trained in a supervised manner
with the writer label as target.
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For historical datasets, Christlein et al. [5] show that training on pseudolabels
generated by clustering the SIFT descriptors outperforms supervised methods
such as [25]. Furthermore, for each descriptor, an Exemplar-SVM (ESVM) is
trained to refine the encoding. Peer et al. [19] apply a self-supervised algorithm
using morphological operations to generate augmented views without any labels.
The winners of the HisIR19 competition [7] and the current state-of-the-art
method on the Historical-WI dataset rely on handcrafted features (SIFT and
pathlet) for retrieval. They encode both features via bagged VLAD (bVLAD)
[16]. Our approach is mainly inspired by the work in [5], but we train our network
with triplets and additionally encode our embeddings based on NetVLAD.

2.2 Reranking

While reranking is a method to improve the performance of image retrieval in
general, two approaches [13,22] investigate reranking in the domain of writer
retrieval.

In [22], Rasoulzadeh and Babaali propose an adaption to the standard rerank-
ing method Query Expansion (QE) [8]. They average each descriptor with their
top k Reciprocal Nearest Neighbor (kRNN) and show that they can boost the
retrieval performance by reducing the effect of false matches. Jordan et al. [13]
extend the ESVMs of Christlein et al. [5] as a baseline for their reranking evalu-
ation. They consider additional positive samples for the training ESVMs called
Pair or Triple SVM and increase the performance of [5].

Recent methods in image retrieval apply neural networks to refine the rank-
ing, e.g., Tan et al. [23] suggest reranking transformers, and Gordo et al. propose
attention-based query expansion learning with a contrastive loss [11].

Our approach is based on the work of Zhang et al. [27]. They build a graph
with the k1 nearest neighbors and aggregate the nodes of the k2 nearest neighbors
by using a graph network, arguing the generality of their approach, e.g., includ-
ing approaches like α-QE [21]. We suggest using the similarity of the embeddings
to create the initial graph, which removes the requirement for selecting an appro-
priate value for k1.

3 Methodology

In this section, we describe each aspect of our approach and explain the two
main parts we propose for writer retrieval: NetRVLAD and SGR.

3.1 Patch Extraction

Our preprocessing is based on the approach of Christlein et al. [5]. Firstly, we
detect keypoints for each document as well as the corresponding descriptors,
both via SIFT. These descriptors are normalized with the Hellinger kernel (ele-
mentwise square root followed by l1-normalization) and dimensionality reduction
via PCA from 128 to 32. We cluster the descriptors via k-means in 5000 clusters
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(a) Historical-WI (b) HisIR19

Fig. 2. Examples of the clustered 32 × 32 patches.

[5]. As an additional preprocessing step, we filter keypoints whose descriptors d
violate

||d − μμμ1||
||d − μμμ2|| > ρ, (1)

where μμμi denotes the i-th nearest cluster of d and ρ = 0.9. By applying (1)
we filter keypoints that lay near the border of two different clusters - those
are therefore considered to be ambiguous. The 32 × 32 patch is extracted at
the keypoint location, and the cluster membership is used as a label to train
the neural network. In Fig. 2, we show eight samples of two clusters each for
both datasets used. We observe clusters where characters written in a specific
style dominate, e.g., ’q’ or ’m’ on top, and clusters containing general patterns
included in the handwriting (bottom).

3.2 Network Architecture

Our network consists of two parts: a residual backbone and an encoding layer,
for which we propose NetRVLAD. The output of NetRVLAD is used as a global
descriptor of the 32 × 32 input patch.

Residual Backbone. Similar to [5,22], the first stage of our network is a ResNet
to extract an embedding for each patch. The last fully connected layer of the
network is dropped, and the output of the global averaging pooling layer of
dimension (64, 1, 1) is used. We evaluate the choice of the depth of the network
in our results.

NetRVLAD. The traditional VLAD algorithm clusters a vocabulary to obtain
Nc clusters {c0, c1, . . . , cNc−1} and encodes a set of local descriptors xi, i ∈
{0, . . . , N − 1} via

vk =
N−1∑

i=0

vk,i =
N−1∑

i=0

αk(xi)(xi − ck), k ∈ {0, . . . , Nc − 1}, (2)
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(a) Traditional VLAD (b) NetVLAD

Fig. 3. Traditional VLAD and NetVLAD. While VLAD hard-assigns each descriptor
xi to its nearest cluster to compute the residual, NetVLAD directly learns 1) the
cluster centers and 2) their assignments allowing to aggregate multiple residuals for
one descriptor.

with αk = 1 if ck is the nearest cluster center to xi, otherwise 0, hence mak-
ing the VLAD encoding not differentiable. The final global descriptor is then
obtained by concatenating the vectors vk. Arandjelović et al. [1] suggest the
NetVLAD layer which tackles the non-differentiability of αk in (2) by introduc-
ing a convolutional layer with parameters {wk, bk} for each cluster center ck to
learn a soft-assignment

αk(xi) =
ew

T
k xi+bk

∑
k′ ew

T
k′xi+bk′

. (3)

The cluster centers ck are also learned during training. A schematic compar-
ison is shown in Fig. 3. The input of NetVLAD is a feature map of dimension
(D,H,W ) handled as a D ×N spatial descriptor with N = HW . Normalization
and concatenation of the vectors vk

vk =
N∑

i=0

vk,i =
N∑

i=0

αk(xi)(xi − ck), k ∈ {0, . . . , Nc − 1} (4)

yields the final NetVLAD encoding V ∈ R
Nc×D.

For writer retrieval, the main idea of applying NetVLAD is learning a power-
ful codebook via its cluster centers, representing, e.g., features like characters or
combinations of them or more high-level ones like slant directions of the hand-
writing. We generate a meaningful descriptor by concatenating the residuals
between a patch embedding to the cluster centers. A page is then characterized
by measuring differences between those features. In contrast to VLAD, the code-
book is directly integrated into the network. For our approach, we reduce the
complexity of NetVLAD and adapt two aspects which we call NetRVLAD :
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1) Similar to RandomVLAD proposed by Weng et al. [26], we loosen the
restriction of the embeddings x of the backbone as well as the cluster residu-
als vk lying on a hypersphere. Since we only forward one descriptor per patch
(H = W = 1), we argue that NetVLAD learns this during training on its own -
therefore, we remove the pre- and intranormalization of NetVLAD.

2) Arandjelovic et al. [1] propose an initialization of the convolutional layer
where the ratio of the two closest (maximum resp. second highest value of αk)
cluster assignments is equal to αinit ≈ 100. To improve performance, we initialize
the weights of the convolutional layer and the cluster centers randomly rather
than using a specific initialization method, as this can increase the impact of
the initialization of the cluster centers. Additionally, the hyperparameter αinit

is removed. We compare NetRVLAD to the original implementation in Sect. 4.

3.3 Training

Our network is trained with the labels assigned while clustering the SIFT descrip-
tors. Each patch is embedded in a flattened Nc ×64 descriptor. We directly train
the encoding space using the distance-based triplet loss

LTriplet = max(0, dap − dan + m), (5)

with the margin m where a denotes the anchor, p the positive and n the negative
sample. We only mine hard triplets [24] in each minibatch. Therefore, each triplet
meets the criterion.

dan < dap − m. (6)

3.4 Global Page Descriptor

During inference, we aggregate all embeddings {V0,V1, . . . ,Vnp−1} of a page
using l2 normalization followed by sum pooling

V =
np−1∑

i=0

Vi (7)

to obtain the global page descriptor V. Furthermore, to reduce visual burstiness
[12], we apply power-normalization f(x) = sign(x)|x|α with α = 0.4, followed by
l2-normalization. Finally, a dimensionality reduction with whitening via PCA is
performed.

3.5 Reranking with SGR

Writer retrieval is evaluated by a leave-one-out strategy: Each image of the set
is once used as a query q, the remaining documents are called the gallery. For
each q, the retrieval returns a ranked list of documents L(q). Reranking strategies
exploit the knowledge contained in L(pi) with pi ∈ L(q) and refine the descriptors
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[13]. We can intuitively model those relationships by a graph G =
(V, E)

with
its vertices V and edges E .

Our approach called SGR is conceptually simple and consists of two stages
inspired by the work in [27]. The first stage is building the initial graph using
the page descriptors to compute the vertices. Instead of only considering k near-
est neighbours as described by Zhang et al. [27], we propose to use the cosine
similarity si,j = xT

i · xj and obtain the symmetric adjacency matrix by

Ai,j = exp
( − (1 − si,j)2

γ

)
(8)

with a hyperparameter γ which mainly determines the decay of edge weights
when similarity decreases. Therefore, our approach additionally benefits from a
continuous adjacency matrix by using the learned embedding space. We consider
similarities while replacing the task-dependent hyperparameter k1 in [27].

Furthermore, we compute the vertices by encoding the similarity of each
descriptor instead of adopting the original page descriptors: The rows of the
adjacency matrix A - we denote the i-th row as hi in the following - are used as
page descriptors which we refer to as a similarity graph. While Zhang et al. [27]
propose a discrete reranked embedding space (Ai,j ∈ {0, 1

2 , 1}), we argue that
a continuous embedding space further improves the reranking process by using
our weighting function to refine the embeddings. Thus, we are able to exploit
not only the neighborhood of a page descriptor, but also its distances.

Secondly, each vertex is propagated through a graph network consisting of L
layers via

h(l+1)
i = h(l)

i +
∑

j

si,j h(l)
j , j ∈ N (i, k), l ∈ {1, . . . , L}, (9)

where N (i, k) denotes the k nearest neighbors of vertex i. Those neighbors are
aggregated with their initial similarity si,j . During message propagation, we
only consider the k (equal to k2 in [27]) nearest neighbors to reduce the noise
of aggregating wrong matches (k is usually small, e.g., k = 2) and also elim-
inate the influence of small weight values introduced by (8). The vertices are
l2-normalized after each layer. h(L)

i is used as the final reranked page descrip-
tor. In our evaluation, we report the performances of SGR, as well as the initial
approach by Zhang et al. [27], and provide a study on the hyperparameters of
our reranking.

4 Evaluation Protocol

In this section, we cover the datasets and metrics used and give details about
our implementation.

4.1 Datasets

We use two historical datasets with their details stated in the following. In Fig. 4,
examples of the two datasets used are shown.
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Historical-WI. This dataset proposed by Fiel et al. [9] at the ICDAR 2017 Com-
petition on Historical Document Writer Identification consists of 720 authors
where each one contributed five pages, resulting in a total of 3600 pages. Orig-
inating from the 13th to 20th century, the dataset contains multiple languages
such as German, Latin, and French. The training set includes 1182 document
images written by 394 writers with an equal distribution of three pages per
writer. Both sets are available as binarized and color images. To ensure a fair
comparison, we follow related work and report our results on the binarized ver-
sion of the dataset.

HisIR19. Introduced at the ICDAR 2019 Competition on Image Retrieval for
Historical Handwritten Documents by Christlein et al. [7], the test set consists
of 20 000 documents of different sources (books, letters, charters, and legal docu-
ments). 7500 pages are isolated (one page per author), and the remaining authors
contributed either three or five pages. The training set recommended by the
authors of [7] and used in this paper is the validation set of the competition,
including 1200 images of 520 authors. The images are available in color.

(a) Historical-WI (b) HisIR19

Fig. 4. Example images of the datasets used.

4.2 Metrics

To evaluate performance, we use a leave-one-out retrieval method where each
document is used as a query and a ranked list of the remaining documents is
returned. The similarity is measured by using cosine distance between global
page descriptors.

Our results are reported on two metrics. Mean Average Precision (mAP) and
Top-1 accuracy. While mAP considers the complete ranked list by calculating
the mean of the average precisions, Top-1 accuracy measures if the same author
writes the nearest document within the set.
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4.3 Implementation Details

Patch Extraction and Label Generation. For preprocessing, we rely on the exper-
iments of Christlein et al. [5] and use 32×32 patches clustered into 5000 classes.
We only use patches with more than 5% black pixels for binary images. To filter
the patches of color images, a canny edge detector is applied, and only patches
with more than 10% edge pixels are taken [25]. This value is chosen since the
HisIR19 dataset contains multiple sources of noise (book covers, degradation of
the page, or color palettes) we consider irrelevant for writer retrieval. To decrease
the total number of patches of the test sets, we limit the number of patches on
a single page to 2000.

Training. We train each network for a maximum of 30 epochs with a batch size
of 1024, a learning rate of lr = 10−4 and a margin m = 0.1 for the triplet loss.
Each batch contains 16 patches per class. 10% of the training set are used as
the validation set. We stop training if the mAP on the validation set does not
increase for five epochs. Optimization is done with Adam and five warmup epochs
during which the learning rate is linearly increased from lr/10 to lr. Afterward, a
cosine annealing is applied. As data augmentation, we apply erosion and dilation.
All of our results on the trained networks are averages of three runs with the
same hyperparameters but different seeds to reduce the effect of outliers due to
initialization or validation split. If not stated otherwise, our default network is
ResNet56 with Nc = 100.

Retrieval and Reranking. For aggregation, the global page descriptor is projected
into a lower dimensional space (performance peaks at 512 for Historical-WI, 1024
for HisIR19) via a PCA with whitening followed power-normalization (α = 0.4)
and a l2-normalization. For experiments in which the embedding dimension is
smaller than 512, only whitening is applied.

5 Experiments

We evaluate each part of our approach in this section separately, starting with
NetRVLAD and its settings, followed by a thorough study of SGR. In the end,
we compare our results to state-of-the-art methods on both datasets.

5.1 NetRVLAD

Firstly, we evaluate the backbone of our approach. We choose four residual net-
works of different depth, starting with ResNet20 as in related work [5,22] up to
ResNet110, and compare the performance of NetVLAD to our proposed Net-
RVLAD. As shown in Table 1, NetRVLAD consistently outperforms the original
NetVLAD implementation in all experiments. Secondly, we observe deeper net-
works to achieve higher performances, although, on the Historical-WI dataset,
the gain saturates for ResNet110. ResNet56 with our NetRVLAD layer is used
for further experiments as a tradeoff architecture between performance and com-
putational resources.
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Table 1. Comparison of NetVLAD and NetRVLAD on different ResNet architectures
with Nc = 100. Each result is an average of three runs with different seeds.

Historical-WI HisIR19

NetRVLAD NetVLAD NetRVLAD NetVLAD

mAP Top-1 mAP Top-1 mAP Top-1 mAP Top-1

ResNet20 71.5 87.6 67.4 85.3 90.1 95.4 89.4 94.5

ResNet32 72.1 88.2 67.9 85.5 90.6 95.7 89.6 94.9

ResNet56 73.1 88.3 68.3 85.8 91.2 96.0 90.2 95.3

ResNet110 73.1 88.3 68.9 86.2 91.6 96.1 89.9 95.5

Cluster Centers of NetRVLAD. We study the influence of the size Nc of the
codebook learned during training. In related work [20,22], the vocabulary size is
estimated considering the total amount of writers included in the training set.
However, this does not apply to our unsupervised approach. In Fig. 5, we report
the performance of NetRVLAD while varying Nc. We report a maximum in
terms of mAP when using a codebook size of 128 resp. 256 on Historical-WI and
HisIR19. In general, a smaller codebook works better on Historical-WI; we think
this is caused by a) HisIR19 is a larger dataset and b) it introduces additional
content, e.g. book covers or color palettes as shown in Fig. 4 enabling a better
encoding by learning more visual words. For HisIR19, performance is relatively
stable over the range we evaluate. Since it also contains noise like degradation
or parts of book covers, NetRVLAD seems to benefit when training with more
cluster centers. It is also robust - with a small codebook (Nc = 8), the drop is
only –3.6% resp. –1.9% compared to the peak performance.

5.2 Reranking

Once the global descriptors are extracted, we apply SGR to improve the per-
formance by exploiting relations in the embedding space by building our simi-
larity graph and aggregating its vertices. SGR relies on three hyperparameters:
the k nearest neighbors which are aggregated, the number of layers L of the
graph network, and γ, the similarity decay of the edge weights. While L and γ
are parameters of the general approach and are validated on the corresponding
training set, k is dependent on two aspects:

1. The performance of the retrieval on the baseline descriptors - if the top-
ranked samples are false, the relevant information within the ranked list is
either noise or not considered during reranking.

2. The gallery size nG - the number of samples written by an author, either a
constant or varies within the dataset.

We evaluate SGR by first validating L and γ and then studying the influence
of k on the test set.
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(a) Historical-WI (b) HisIR19

Fig. 5. Influence of Nc on the performance in terms of mAP on the Historical-WI and
HisIR19 test dataset.

Hyperparameter Evaluation. For choosing L and γ, we perform a grid search on
the global descriptors of the training set on both datasets where γ ∈ [0.1, 1], L ∈
{1, 2, 3}. We fix k = 1 to concentrate on the influence of γ and L by prioritizing
aggregating correct matches (nG = 3 for the training set of Historical-WI and
nG ∈ {1, 3, 5} for the training set of HisIR19). The results on both sets are
shown in Fig. 6. Regarding γ, values up to 0.5 improve the baseline performance.
Afterward, the mAP rapidly drops on both datasets - large values of γ also
flatten the peaks in the similarity matrix. The influence of the number of layers
is smaller when only considering γ ≤ 0.5. However, the best mAP is achieved
with L = 1. Therefore, for the evaluation of the test sets, we choose γ = 0.4 and
L = 1.

Reranking Results. Finally, we report our results for different values of k on the
test set as illustrated in Fig. 7. The gallery sizes are nG = 5 for Historical-WI and

(a) Historical-WI (b) HisIR19

Fig. 6. Hyperparameter evaluation of SGR on the training sets with k = 1.
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nG ∈ {1, 3, 5} for HisIR19. SGR boosts mAP and Top-1 accuracy, in particular
the mAP when choosing small values for k. For the two datasets with different
gallery sizes, the best mAP is obtained for k = 2, for which we achieve 80.6%
and 93.2% on Historical-WI resp. HisIR19. Afterward, the mAP drops on the
HisIR19 dataset - we think this is mainly due to the large number of authors
contributing only a single document which may be reranked when considering
too many neighbors. Interestingly, the Top-1 accuracy even increases for larger
values peaking for both datasets at k = 4 with 92.8% and 97.3%.

(a) Historical-WI

(b) HisIR19

Fig. 7. Reranking results of SGR for both datasets. Horizontal lines mark the baseline
performance of NetRVLAD. (γ = 0.4, L = 1)

5.3 Comparison to State-of-the-art

We compare our approach concerning two aspects: the performance of the base-
line (NetRVLAD) and the reranked descriptors (SGR). Our baseline is combined
with the graph reranking method in [27] as well as the kRNN-QE proposed in
[22], which is mainly designed for writer retrieval. For both methods [22,27],
we perform a grid search and report the results of the best hyperparameters to
ensure a fair comparison.

Our feature extraction is similar to Christlein et al. [5] and Chammas et al.
[2] in terms of preprocessing and training. In contrast, the method proposed in
[16] relies on handcrafted features encoded by multiple VLAD codebooks.

For the Historical-WI dataset, NetRVLAD achieves a mAP of 73.4% and,
according to Table 2, our global descriptors are less effective compared to the
work of [5]. Regarding reranking, SGR outperforms the reranking methods pro-
posed by Jordan et al. [13], who use a stronger baseline with the mVLAD app-
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Table 2. Comparison of state-of-the-art methods on Historical-WI. (*) denotes our
implementation of the reranking algorithm, (+) reranking applied on the baseline
method.

mAP Top-1

CNN+mVLAD [5] 74.8 88.6

Pathlet+SIFT+bVLAD [16] 77.1 90.1

CNN+mVLAD+ESVM [5] 76.2 88.9

+ Pair/Triple SVM [13] 78.2 89.4

NetRVLAD (ours) 73.4 88.5

+ kRNN-QE* k=3 [22] 77.1 86.8

+ Graph reranking* k1=4, k2=2, L=3 [27] 77.6 87.4

+ SGR k=2 (ours) 80.6 91.1

roach of [5]. Additionally, SGR performs better than the graph reranking app-
roach [27] our method is based on. When using SGR, our approach sets a new
State-of-the-art performance with a mAP of 80.6% and a Top-1 accuracy of
91.1%. Compared to the other reranking methods, SGR is the only method that
improves the Top-1 accuracy.

Table 3. Comparison of state-of-the-art methods on HisIR19. (*) denotes our imple-
mentation of the reranking algorithm, (+) reranking applied on the baseline method.

mAP Top-1

CNN+mVLAD [2] 91.2 97.0

Pathlet+SIFT+bVLAD [16] 92.5 97.4

NetRVLAD (ours) 91.6 96.1

+ kRNN-QE* k=4 [22] 92.6 95.2

+ Graph reranking* k1=4, k2=2, L=2 [27] 93.0 95.7

+ SGR k=2 (ours) 93.2 96.7

Regarding the performance on the HisIR19 dataset shown in Table 3, Net-
RVLAD achieves a mAP of 91.6% and therefore slightly beats the traditional
mVLAD method in [2]. SGR is better than the reranking methods proposed in
[22,27] with a mAP of 93.2%, a new State-of-the-art performance. However, even
with reranking, the Top-1 accuracy of NetRVLAD+SGR trails the VLAD meth-
ods in [2,16]. The improvements of SGR are smaller than on the Historical-WI
dataset given that the baseline performance is already quite strong with over
90%, increasing the difficulty of the reranking process.

ICDAR2013. Finally, to show the versatility of our unsupervised method, we
report the performance on the ICDAR2013 dataset [18], a modern dataset with
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250/1000 pages including two English and two Greek texts per writer with only
four lines of text each. Although we are limited to less data compared to historical
datasets with a large amount of text included in a page, our approach achieves a
notable performance (86.1% mAP), in particular Top-1 accuracy (98.5%), where
it outperforms the supervised approach [22] as shown in Table 4.

Table 4. Comparison of state-of-the-art methods on ICDAR2013.

mAP Top-1

Zernike+mVLAD [3] 88.0 99.4

NetVLAD+kRNN-QE (supervised) [22] 97.4 97.4

NetRVLAD+SGR k=1 (ours) 86.1 98.5

6 Conclusion

This paper introduced an unsupervised approach for writer retrieval. We pro-
posed NetRVLAD to directly train the encoding space with 32 × 32 patches
on labels obtained by clustering their SIFT descriptors. In our experiments, we
showed that NetRVLAD outperforms the traditional implementation while also
being relatively robust to the codebook’s size and backbone architecture. Fur-
thermore, our graph reranking method SGR was used to boost the retrieval per-
formance. SGR outperformed the original graph reranking and reranking meth-
ods recently applied in the domain of writer retrieval. Additionally, we beat the
State-of-the-art with our reranking scheme and showed the performance on a
modern dataset.

Regarding future work, we think our approach is mainly limited due to the
cluster labels used for training. We could overcome this by unlocking the poten-
tial of self-supervised methods and train the encoding space without any labels.
Other approaches could include learnable poolings, e.g., instead of sum pooling
to calculate the global page descriptors, a neural network invariant to permuta-
tion could be trained on the patch embeddings to learn a powerful aggregation.
Finally, investigating learning-based reranking methods [11,23] are a consider-
able choice for further improving retrieval performance.
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Abstract. Text line detection is an essential task in a historical docu-
ment analysis system. Although many existing text detection methods
have achieved remarkable performance on various scene text datasets,
they cannot perform well because of the high density, multiple scales,
and multiple orientations of text lines in complex historical documents.
Thus, it is crucial and challenging to investigate effective text line detec-
tion methods for historical documents. In this paper, we propose a
Dynamic Rotational Proposal Network (DRPN) and an Iterative Atten-
tion Head (IAH), which are incorporated into Mask R-CNN to detect
text lines in historical documents. The DRPN can dynamically gen-
erate horizontal or rotational proposals to enhance the robustness of
the model for multi-oriented text lines and alleviate the multi-scale
problem in historical documents. The proposed IAH integrates a multi-
dimensional attention mechanism that can better learn the features of
dense historical document text lines while improving detection accuracy
and reducing the model parameters via an iterative mechanism. Our
HisDoc R-CNN achieves state-of-the-art performance on various his-
torical document benchmarks including CHDAC (the IACC competi-
tion (http://iacc.pazhoulab-huangpu.com/shows/108/1.html) dataset),
MTHv2, and ICDAR 2019 HDRC CHINESE, thereby demonstrating
the robustness of our method. Furthermore, we present special tricks
for historical document scenarios, which may provide useful insights for
practical applications.

Keywords: Deep learning · Text line detection · Historical document
analysis

1 Introduction

Historical documents form an important library of human history and are the
valuable heritage of human civilization. Thus, the effective preservation of his-
torical documents is considered to be an urgent research target. The digitiza-
tion of historical document images is a vital component of cultural preservation
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Fig. 1. Examples of scene texts and historical document text lines from different
datasets. (a) ICDAR 2015, (b) CTW1500, (c) Total-Text, (d) CHDAC, (e) MTHv2,
(f) ICDAR 2019 HDRC CHINESE.

because it facilitates the extraction and storage of valuable information from his-
torical documents. Text line detection is one of the most important techniques
for digitizing historical document images. It is a critical stage in the historical
document analysis pipeline for locating the text lines and extracting them from
the historical documents. Localization accuracy seriously affects the performance
of downstream tasks, such as text recognition and document understanding in
historical documents.

Additionally, the difficulties of historical document text line detection and
scene text detection are of different natures, as shown in Fig. 1. The text instances
in historical documents are arranged in a much denser way than those in nat-
ural scenes, with varied scales and closer intervals. Besides, various extents of
degradation often occur in historical documents. Moreover, various layout struc-
tures, writing styles, textures, decorations, rotation, and image warping are other
challenges for the text line detection task.

With the advancement of deep learning, text detection algorithms have
achieved significant improvement in the field of scene text [12,29,30]. However,
the existing methods may not be generic for historical document images. As
shown in Fig. 2, some text instances are not detected by the scene text detector
(second column), and the predicted text boundaries are easily sticky due to the
high density of text lines. Most scene text detectors are prone to miss-detection
and inaccurate localization because they are not optimized for dense multi-scale
text lines in historical documents. Hence it is necessary to design a robust text
line detection algorithm for historical documents.

In this paper, we design a text line detection method named HisDoc R-CNN,
which consists of a Dynamic Rotational Proposal Network (DRPN) and an Iter-
ative Attention Head (IAH), to handle historical document text lines under
complex scenarios. To effectively detect dense text lines in historical documents,
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Fig. 2. Visualization of historical document text line detection results. The first column
is the ground truth. The results of DBNet++ and our method are shown in the second
and third columns, respectively.

we extend the anchor-based method, Mask R-CNN [4], as our overall frame-
work. The anchor-based detection method generally has a higher recall value
and is more appropriate for historical documents because it can detect text
areas precisely by flattening the predefined anchors. In addition, rotated text
lines exist in historical document images due to the camera angle, document
scanning errors, and writing style, which are not well addressed by the gen-
eral anchor-based methods because they only produce horizontal boxes [4,24].
Our proposed DRPN leverages the rotational proposal mechanism (RP) in [31]
to detect multi-oriented text lines in historical documents. Besides, the DRPN
replaces shared convolution in the region proposal network (RPN) with dynamic
convolution (DC). Because the model should use different convolution kernels
to generate proposals based on the feature pyramid network (FPN) features of
different scales, it is beneficial to create proper candidate boxes for multi-scale
text lines in historical documents. Finally, the DRPN can dynamically gener-
ate rotational proposals depending on multi-level features, thus alleviating the
multi-orientation and multi-scale problem of historical document text lines. To
improve the efficiency of the historical document text line detector, we also
propose an Iterative Attention Head consisting of an iterative mechanism and
a multi-dimensional attention mechanism. The iterative mechanism iteratively
trains a box head and a mask head, which is more lightweight than the cascade
structure and significantly improves the accuracy of text line detection in histori-
cal documents. Due to the small interval between historical text lines, the region
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of interest may contain the redundant features of neighboring text lines. The
multi-dimensional attention mechanism makes IAH focus on the text instances
in the foreground, thereby effectively reducing the interference of adjacent text
lines in historical documents.

The contributions of this paper are summarized as follows:

– We propose a Dynamic Rotational Proposal Network (DRPN), which can
efficiently handle horizontal and rotational Chinese historical documents with
various layouts while alleviating the multi-scale problem of dense text lines
in historical documents.

– We present an Iterative Attention Head (IAH) to significantly improve the
accuracy of text line detection in historical documents while reducing the
parameters of our text line detector.

– Our HisDoc R-CNN consistently achieves state-of-the-art performance on
three historical document benchmarks and their rotated versions, demon-
strating the robustness of our method on complex historical documents.

– The tricks used in the historical document scenario are presented, which may
provide useful insights for practical applications.

2 Related Work

2.1 Scene Text Detection Methods

In recent years, the development of deep learning has led to remarkable results
for text detectors. Scene text detection aims to locate text instances in scene
images. Most approaches for scene text detection can be roughly divided into
regression-based and segmentation-based methods.

Regression-Based Methods. Regression-based methods are often motivated
by object detection methods such as Faster R-CNN [24] and SSD [14], which
regarded text detection as a regression problem for bounding boxes. TextBoxes
[9] handled text with extreme scales by refining the scales of anchors and convo-
lution kernels in SSD. TextBoxes++ [8] and DMPNet [16] regressed quadrangles
for multi-oriented text detection. RRD [11] used rotation-invariant features in
the text classification branch and rotation-sensitive features in the text regression
branch to improve the detection of long text. EAST [32] directly regressed text
instances at pixel level and obtained the final result using non-maximum suppres-
sion (NMS). RRPN [19] introduced rotated region proposals to Faster R-CNN
to detect titled text. OBD [15] combined an orderless box discretization block
and Mask R-CNN to address the inconsistent labeling issue of regression-based
methods. However, the above methods cannot deal with curved text effectively.

Segmentation-Based Methods. Segmentation-based methods usually start
with pixel-level prediction and then obtain separate text instances using post-
processing. TextSnake [18] represented text instances using center lines and
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ordered disks. PSENet [29] separated close text instances using a progressive
scale expansion algorithm on multi-scale segmentation maps. PAN [30] proposed
a learnable pixel aggregation algorithm to implement an arbitrary-shaped text
detection network with low computational cost. DBNet [10] designed a differen-
tiable binarization module to realize real-time scene text detection. FCENet [33]
predicted the Fourier signal vector of text instances and then reconstructed the
text contours via an Inverse Fourier Transformation. DBNet++ [12] proposed an
efficient adaptive scale fusion module based on DBNet to improve the accuracy
of text detection. However, these methods are unable to resolve overlapping text
due to pixel-level segmentation.

2.2 Historical Document Text Line Detection Methods

The methods for text line detection of historical documents are also built based
on object detection and semantic segmentation methods. Barakat et al. [1] mod-
ified FCN [17] to segment historical handwritten documents and extracted text
lines using connected component analysis. Mechi et al. [21] proposed an adaptive
U-Net [26] architecture to implement text line segmentation of historical docu-
ment images with low computational cost. Renton et al. [25] defined text lines
through their X-Heights, which can effectively separate overlapping lines in his-
torical handwritten documents. Ma et al. [20] extended Faster R-CNN by adding
a character prediction and a layout analysis branch and then grouped individual
characters into text lines, which achieved high performance. Mechi et al. [22]
investigated adequate deep architecture for text line segmentation in historical
Arabic and Latin document images and used topological structural analysis to
extract whole text lines. Prusty et al. [23] and Sharan et al. [28] adapted Mask
R-CNN to segment complex text lines and layout elements for Indic historical
manuscripts. Most of these methods rely on complex post-processing modules
that lack robustness.

Fig. 3. The architecture of our proposed HisDoc R-CNN, where the Dynamic Rota-
tional Proposal Module (DRPM) and the Attention Head are shown in Fig. 4. B0 is the
initial rotated box generated by DRPM, and Bk is the output rotated box produced
by the Attention Head in the kth iteration.
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3 Methodology

3.1 Overall Architecture

The proposed framework, as shown in Fig. 3, is an anchor-based text line detector
that can be divided into three parts, including backbone, Dynamic Rotational
Proposal Network (DRPN), and Iterative Attention Head (IAH). The back-
bone consists of a ResNet-50 [5] and a Feature Pyramid Network (FPN) [13]
for extracting pyramid feature maps. To handle multi-oriented and multi-scale
text lines, DRPN first dynamically predicts candidate rotated boxes (r-boxes)
based on multi-level features. Then Rotated ROIAlign is used to extract the
region proposal features of the r-boxes for r-box prediction. Finally, the IAH
iteratively refines the r-boxes and corresponding masks of text instances to out-
put the final results, which makes the r-box regression more accurate and reduces
the model parameters.

Fig. 4. (a) The architecture of the proposed Dynamic Rotational Proposal Module
(DRPM). “OD” refers to ODConv. (b) The architecture of the proposed Attention
Head. The multi-dimensional attention mechanism of the head contains channel atten-
tion and spatial attention. The attention module gives the output as input to the box
head and the mask head.

3.2 Dynamic Rotational Proposal Network (DRPN)

Our DRPN consists of a Dynamic Rotational Proposal Module (DRPM) and a
Rotated ROIAlign, as shown in Fig. 3. The standard RPN [24] has two draw-
backs: (1) it can only generate horizontal rectangular proposals for multi-oriented
dense texts that are easily suppressed by NMS, and (2) it is unfair to share
convolutional layers for multi-level features when generating proposals because
each layer is responsible for predicting text instances of different scales. For (1),
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DRPM enables the generation of rotated text proposals for the subsequent IAH
to predict r-boxes and masks. The r-boxes not only fit the multi-oriented text
instances tighter than horizontal boxes but also remove the partial impacts of
adjacent text lines to assist mask prediction while passing Rotated ROIAlign.
For (2), DRPM introduces ODConv [7], which dynamically adjusts the con-
volutional kernel depending on different inputs. Therefore, the production of
multi-scale r-boxes is closely associated with the features of different scales.

As shown in Fig. 4 (a), DRPM adopts a novel and efficient approach to output
a set of rotated proposals. We assume that each anchor is denoted by A =
(Ax, Ay, Aw, Ah), where (Ax, Ay) is the center coordinate, Aw and Ah denote the
width and height of the anchor, respectively. Given a feature map of shape H×W
from FPN as input, we use a shared 3× 3 ODConv1 and two 1× 1 ODConvs to
output the classification score map S and offset map O = (δx, δy, δw, δh, δα, δβ) of
the anchors. The shapes of S and O are H×W ×N and H×W ×6N , respectively.
N is the number of preset anchors for each spatial location. The DRPN combines
A and O to decode the representation parameter R = (x, y, w, h,Δα,Δβ) of the
rotated proposal by the following equation:

⎧
⎨

⎩

x = δx · Aw + Ax, y = δy · Ah + Ay

w = Aw · eδw , h = Ah · eδh

Δα = δα · w, Δβ = δβ · h
(1)

where (x, y) is the center coordinate of the rotated proposal. w and h denote the
width and height of the external rectangular box of the rotated proposal. Δα and
Δβ denote offsets relative to the midpoints of the upper and right bounds of the
external rectangular box. Finally, we define the coordinates of the four vertices
of the rotated proposal as v = (v1, v2, v3, v4), and express v with representation
parameters R as follows:

⎧
⎪⎪⎨

⎪⎪⎩

v1 = (x, y − h/2) + (Δα, 0)
v2 = (x + w/2, y) + (0,Δβ)
v3 = (x, y + h/2) + (−Δα, 0)
v4 = (x − w/2, y) + (0,−Δβ)

(2)

Compared with the original RPN [24], we only need to predict two addi-
tional parameters (Δα,Δβ) which allows us to efficiently regress the rotational
proposal with no significant increase in model parameters.

3.3 Iterative Attention Head (IAH)

The cascade paradigm proposed by Cai et al. [2] can stably improve the perfor-
mance of the two-stage detector. However, its box head uses two fully connected
layers (FC) and the used triple heads involve a large number of parameters
with high storage costs. To alleviate this issue, we propose a new head structure

1 ODConv is a dynamic convolution. For details, please refer to the original paper [7].
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with an iterative mechanism and replace the original FC layers with convolution
layers.

The proposed IAH has only one box head and mask head, as shown in Fig. 3.
For training, the predicted r-boxes pass through the Rotated ROIAlign to extract
features which are fed again into the same head to output new r-boxes, and we
repeat this process three times. During each iteration, we select positive and
negative samples according to a progressively increasing threshold of intersection
over union (IoU). The IoU of the predicted r-box B and the ground truth G is
denoted by IoU(B,G), and the threshold of IoU is denoted by T . We select the
positive and negative samples in the following manner:

I =
{
1, IoU(B,G) > T
0, IoU(B,G) ≤ T

(3)

where I is the indicator function and 1 or 0 indicates whether the r-box is
a positive or negative sample. We set threshold T to (0.5, 0.6, 0.7) for each
iteration following [2]. Compared with Cascade R-CNN [2], the iterative strategy
significantly reduces the model parameters by decreasing the number of heads.

To improve the precision of text line detection for historical documents, we
introduce a multi-dimensional attention mechanism to the head, which includes
a channel attention mechanism and spatial attention mechanism (See Fig. 4(b)).
The multi-dimensional attention mechanism facilitates the flexible extraction of
foreground text line features. We assume that the input feature maps of the head
are X ∈ R

N×C×H×W , where N is the number of rotated proposals. First, we
apply global average pooling to X and obtain the channel attention weights Wc ∈
R

N×C×1×1 using two following 1 × 1 convolutional layers. Then we add Wc to
X to obtain the intermediate features Xc ∈ R

N×C×H×W . Next, we use a spatial
average pool on Xc, and obtain the spatial attention weights Ws ∈ R

N×1×H×W

using a following 3×3 convolutional layer and a 1×1 convolutional layer. Finally,
we sum Xc with the spatial attention weights Ws to get the output features
Xo ∈ R

N×C×H×W . The multi-dimensional attention is defined as follows:

Wc = Channel_Attention(X)
Xc = X + Wc

Ws = Spatial_Attention(Xc)
Xo = Xc + Ws

(4)

where Xo is subsequently adopted for the r-box regression or mask prediction of
text lines in historical documents. Channel_Attention and Spatial_Attention
are the attention modules in the heads. The detailed structures of the box and
mask heads are illustrated in Fig. 4(b). Since the head is mainly composed of
convolutional layers, the model parameters are further decreased.

3.4 Loss Function

Our loss function is defined as:

L = Ldrpn + λ0Liter0 + λ1Liter1 + λ2Liter2 (5)
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where Ldrpn is the loss of the DRPN containing binary cross entropy loss (BCE)
for text classification and smooth L1 loss for r-box regression. Litern

is the loss
of IAH for each iteration, which contains one more BCE loss for text mask
prediction than Ldrpn. λn is used to balance the importance of each iteration,
and we set (λ0, λ1, λ2) to (1, 0.5, 0.25) in all experiments following the Cascade
R-CNN setting.

Fig. 5. Examples from the CHDAC dataset. The challenge of this dataset can be
illustrated in above figures.

4 Experiment

4.1 Datasets

CHDAC. The IACC competition dataset, Chinese Historical Document Anal-
ysis Challenge (CHDAC), is a complex rotated and warped Chinese historical
document analysis dataset including 2,000 images for training and 1,000 for
testing2, respectively. This dataset provides text line detection, recognition, and
reading order annotation to inspire a practical and novel historical document
analysis framework. The text lines in the dataset are numerous, dense, partially
rotated, and warped, which complicates the challenge. Examples of this dataset
are shown in Fig. 5.

2 This paper uses the datasets provided by the organizers in the preliminaries and
finals. The datasets voluntarily submitted by the teams in the final stage are not
included.
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MTHv2. MTHv2 is a Chinese historical document dataset consisting of the
Tripitaka Koreana in Han (TKH) Dataset and Multiple Tripitaka in Han (MTH)
Dataset [20]. It contains 3,199 pages of historical documents, including 2,399
pages for training and 800 for testing. The annotation of each text line consists
of the four vertices of the quadrilateral bounding box and its transcription.

ICDAR 2019 HDRC CHINESE. ICDAR 2019 HDRC CHINESE is a large
structured Chinese family record dataset used to overcome the historical doc-
ument reading challenge [27]. It contains 11,715 training images and 1,135 test
images, which are annotated with the four vertices of the bounding-box quadri-
lateral for the text line detection subtask. However, only 1,172 images are now
publicly available online3 and we randomly divide them into 587 training, 117
validation, and 468 testing samples.

4.2 Implementation Details

We use ResNet-50 pre-trained on ImageNet [3] with FPN as our backbone. Our
model is optimized using AdamW with an initial learning rate of 0.0001. We train
our model with batch size 8 for 160 epochs, and the learning rate is decayed by
a factor of 0.1 at epochs 80 and 128.

We conduct comparison experiments over existing text detection methods
and our HisDoc R-CNN on the above datasets. For the fairness of comparison,
We train and test methods based on the MMOCR toolbox [6] without particu-
lar instructions4. All models are trained using scaling, color jittering, flipping,
cropping, and rotation augmentations. For training, the longer sides of training
images are resized to a fixed size of 1,333, and the shorter sides are randomly
resized to different scales (704, 736, 768, 800, 832, 864, 896). For testing, the
longer and shorter sides are resized to 1,333 and 800, respectively. Color jitter-
ing and horizontal flipping are also applied to the images. We randomly crop the
images to the size of 640 × 640 and rotate them in the range of −10 to 10◦.

To evaluate the robustness of each model, we randomly rotate the testing
images of MTHv2 and ICDAR 2019 HDRC CHINESE datasets from −15 to 15◦

so that all models would use the rotation augmentation with the same range.
All experiments are conducted on two RTX 3090 GPUs.

As metrics to compare the performance of different methods, we usually use
their precision, recall, and F-measure under the IoU threshold of 0.5, which is
the convention for text detection.

4.3 Ablation Studies of the Proposed Method

Effectiveness of the DRPN. In Table 1, the rotational proposal mechanism
(RP) brings a large performance improvement to the baseline (10.13% higher).

3 https://tc11.cvc.uab.es/datasets/ICDAR2019HDRC_1,
4 EAST and OBD are not implemented by MMOCR.

https://tc11.cvc.uab.es/datasets/ICDAR2019HDRC_1
https://tc11.cvc.uab.es/datasets/ICDAR2019HDRC_1
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RP+DC improves the F-measure by 0.11% over RP, and RP+DC+IM+AH
improves by 0.26% over RP+IM+AH, proving the effectiveness of dynamic con-
volution (DC). Finally, our proposed DRPN (RP+DC) significantly improves
the performance on the CHDAC and promotes the Mask R-CNN baseline by
10.24% in terms of the F-measure. The effectiveness of our DRPN is verified,
and the recall is substantially increased compared to Mask R-CNN (12.56%
higher), avoiding the NMS suppression of rotated text lines with a high IoU.
Moreover, the model parameters are increased by only 4.6%, showing that our
method is accurate and efficient.

Table 1. Ablation studies for the effectiveness of our method on the CHDAC. The base-
line is Mask R-CNN. “RP” indicates the rotational proposal. “DC” indicates dynamic
convolution. “CM” and “IM” indicate the cascade and iteration mechanism of the head,
respectively. “AH” indicates the proposed attention head. P: precision, R: recall, F:F-
measure (IoU threshold: 0.5). Params: number of model parameters.

Baseline RP DC CM IM AH P R F Params(M)

Mask R-CNN [4] 89.03 80.90 84.77 43.85√
97.08 92.82 94.90 43.99√ √
96.78 93.46 95.01 45.85√ √
98.15 92.73 95.36 77.04√ √
98.08 92.70 95.31 43.99√ √ √
98.29 93.16 95.66 32.39√ √ √ √
98.19 93.74 95.92 34.25

Effectiveness of the Iterative Mechanism. To demonstrate the effective-
ness of the proposed iterative mechanism, we compare the cascade head (CM)
and our iterative head (IM), which both have a consistent structure for fair-
ness. As shown in Table 1, RP+IM drops the F-measure by 0.05% compared to
RP+CM. The result shows that the iterative mechanism can almost replace the
cascade mechanism with only a slight performance loss. However, the iterative
mechanism eliminates the redundant box and mask heads so that the model
parameters are significantly reduced (42.9% lower).

Effectiveness of the Attention Head. Although the iterative mechanism
certainly streamlines the model, the original head contains fully connected layers
with enormous parameters. Our proposed attention head is mainly composed of
convolutional layers, so the model with attention head (RP+IM+AH) can reduce
the model parameters by 26.4% compared with RP+IM (See Table 1), meanwhile
compensating the performance loss from the iterative mechanism. RP+IM+AH
has a better F-measure than RP+IM (0.35% higher) and RP+CM (0.3% higher),
indicating that the multi-dimensional attention mechanism performs better in
capturing the features of dense text lines in historical documents.
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4.4 Comparison with Existing Methods

To compare the performance of different methods, we evaluate all text detec-
tion methods on three benchmarks. CHDAC is a Chinese historical document
analysis competition dataset, then ICDAR 2019 HDRC CHINESE and MTHv2
are widely used benchmarks for text line detection on historical documents. The
experiment results (given in Table 2, 3 and 4) show that our method achieves
state-of-the-art performance on the three benchmarks and is also the strongest
in rotated text line detection.

Table 2. Detection results for various text detection methods on CHDAC. ∗ indicates
the use of the proposed specific tricks described in Sect. 4.5 (With large scale and crop
ratio(H:0.7, W:0.5)). Bold indicates SOTA. Underline indicates second best.

Method P R F

EAST [32] 61.41 73.13 66.76
Mask R-CNN [4] 89.03 80.90 84.77
Cascade R-CNN [2] 92.82 83.63 87.98
OBD [15] 94.73 81.52 87.63
TextSnake [18] 96.33 89.62 92.85
PSENet [29] 76.99 89.62 82.83
PAN [30] 92.74 85.71 89.09
FCENet [33] 88.42 85.04 86.70
DBNet++ [12] 91.39 89.15 90.26
HisDoc R-CNN(ours) 98.19 93.74 95.92
HisDoc R-CNN(ours)∗ 98.16 96.59 97.37

Results on CHDAC. Most of the text lines in CHDAC are dense or small, and
some are rotated or warped, which trials the capability of text line detectors.
With the help of DRPN and IAH, HisDoc R-CNN achieves the state-of-the-art
result of 98.19%, 93.74%, and 95.92% for precision, recall, and F-measure, respec-
tively (See Table 2). Besides, our method outperforms Cascade R-CNN, which is
a high-quality regression-based detector, by 7.94% for the F-measure. Moreover,
the F-measure of HisDoc R-CNN is also 5.66% higher than DBNet++, which is
a segmentation-based text detection method. As shown in Table 2, the perfor-
mance of our approach significantly surpasses these previous methods, and most
of them have relatively low recall indicating that the existing scene text detectors
are insufficient to handle the dense and multi-scale text lines in historical doc-
uments. Notably, HisDoc R-CNN obtains both the highest precision and recall,
showing that our method accurately locates text instances and effectively allevi-
ates the problems of missed detection and small targets in historical documents.
With our proposed tricks (Details in Sect. 4.5), the F-measure performance can
be further improved by 1.45%.
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Table 3. Detection results for various text detection methods on MTHv2 and its
rotated version. ∗ indicates the use of the proposed specific tricks described in Sect. 4.5
(With large scale and crop ratio(H:0.7, W:0.5)). Bold indicates SOTA. Underline indi-
cates second best.

Method MTHv2 Rotated MTHv2
P R F P R F

EAST [32] 82.79 89.73 86.12 87.01 89.61 88.29
Mask R-CNN [4] 95.83 96.35 96.09 44.27 37.65 40.69
Cascade R-CNN [2] 98.57 96.52 97.53 60.63 44.32 51.21
OBD [15] 98.17 97.19 97.68 97.49 84.72 90.66
TextSnake [18] 94.31 91.77 93.02 94.46 88.45 91.36
PSENet [29] 96.87 95.82 96.34 90.16 89.70 89.93
PAN [30] 97.65 95.28 96.45 97.39 91.58 94.40
FCENet [33] 92.47 88.19 90.28 89.96 89.83 89.89
DBNet++ [12] 93.48 93.22 93.35 89.92 90.16 90.04
Ma et al. [20] – – 97.72 – – –
HisDoc R-CNN(ours) 98.57 97.05 97.80 98.21 96.01 97.10
HisDoc R-CNN(ours)∗ 98.14 98.26 98.20 97.94 98.19 98.06

Table 4. Detection results for various text detection methods on ICDAR 2019 HDRC
CHINESE and its rotated version. ∗ indicates the use of the proposed specific tricks
described in Sect. 4.5 (With large scale and crop ratio(H:0.7, W:0.5)). Bold indicates
SOTA. Underline indicates second best.

Method ICDAR 2019
HDRC CHINESE

Rotated ICDAR 2019
HDRC CHINESE

P R F P R F

EAST [32] 83.36 87.70 85.47 87.46 89.02 88.23
Mask R-CNN [4] 94.50 95.11 94.81 37.19 31.25 33.96
Cascade R-CNN [2] 94.73 95.28 95.00 42.73 33.17 37.35
OBD [15] 94.45 94.78 94.61 93.94 88.59 91.18
TextSnake [18] 81.70 72.95 77.07 83.96 69.96 76.32
PSENet [29] 92.83 93.68 93.25 86.67 91.49 89.01
PAN [30] 93.34 89.34 91.30 92.67 84.75 88.53
FCENet [33] 92.38 91.11 91.74 89.35 87.70 88.52
DBNet++ [12] 93.10 91.05 92.06 92.95 90.75 91.84
HisDoc R-CNN(ours) 94.61 95.65 95.13 94.36 94.35 94.36
HisDoc R-CNN(ours)∗ 95.43 95.27 95.35 93.83 95.82 94.81
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Results on MTHv2. As shown in Table 3, our method also obtains the best
results on MTHv2, with a slightly better F-measure than Ma et al. (0.08% higher)
and a significant performance improvement over EAST (11.78% higher). The
approach proposed by Ma et al. uses more fine-grained supervision to implement
character detection and groups characters to generate text line results by post-
processing. The drawback is that it may not work for historical documents of
other types, while our method has better generalization capability. To evaluate
the robustness of various text detection methods, we randomly rotate the test
images of MTHv2 and train the models with random rotation augmentation. The
results in Table 3 show that our method is quite robust on the rotated images,
while most methods suffer from significant performance degradation. The F-
measure of the anchor-based approach, Mask R-CNN, drops rapidly because the
horizontal boxes for rotational text lines usually have a high IoU and are easily
filtered out by the NMS operation. Thanks to the DRPN, we can still preserve
a high F-measure (97.10%). As shown in Table 3, our proposed tricks also bring
performance gains of 0.4% and 0.96% to HisDoc R-CNN on MTHv2 and its
rotated version.

Results on ICDAR 2019 HDRC CHINESE. We evaluated our method
on ICDAR 2019 HDRC CHINESE to test its performance on historical docu-
ments with other layouts. As shown in Table 4, the F-measure of our method is
96.60%, which is 0.73% higher than the result of Cascade R-CNN. The results
verify that our method can also slightly outperform the rectangular box-based
methods on horizontal historical document texts. Similar conclusions to MTHv2
can be obtained on the rotated ICDAR 2019 HDRC CHINESE. The F-measure
of HisDoc R-CNN is 2.52% higher than DBNet++ on the rotated historical doc-
ument images. Our method guarantees that the performance remains the best

Table 5. Ablation studies of practical tricks based on our method. Each variation is
evaluated on the test set of CHDAC.

Method P R F Δ F

Baseline model(ResNet-50)
Tricks: flip + random crop size (640 × 640)
+ multi-scale training (Longer side: 1,333)

98.19 93.74 95.92 –

Data augmentation
With large scale (Longer side: 2,000) 97.90 94.42 96.13 ↑0.21
With crop ratio(H:0.7, W:0.5) 97.96 93.91 95.89 ↓0.03
With large scale and crop ratio(H:0.5, W:0.5) 97.74 95.68 96.70 ↑0.78
With large scale and crop ratio(H:0.5, W:0.6) 97.71 91.73 94.63 ↓1.29
With large scale and crop ratio(H:0.5, W:0.7) 98.00 94.93 96.44 ↑0.52
With large scale and crop ratio(H:0.6, W:0.5) 97.89 96.32 97.10 ↑1.18
With large scale and crop ratio(H:0.7, W:0.5) 98.16 96.59 97.37 ↑1.45
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(94.36%) on the rotated historical documents with different layouts. As shown in
Table 4, our proposed tricks also result in performance gains of 0.22% and 0.45%
to HisDoc R-CNN on ICDAR 2019 HDRC CHINESE and its rotated version.
Visualization results on each dataset are shown in Fig. 2.

4.5 Ablation Studies of Practical Tricks on Historical Documents

In this section, we analyze practical tricks we used for model refinement in the
historical document scenario based on HisDoc R-CNN. We conduct experiments
on the CHDAC dataset. Our baseline model only uses the random flip, random
crop (crop_size : 640 × 640), and multi-scale resizing for data augmentation.

Effectiveness of the Image Size. We further investigate the effect of the
image size of historical documents on our method. Due to the high density of
text lines in historical documents, a larger image size may result in more details
of dense text lines. We scale up the long sides of the input image to 2,000 and
use a multi-scale strategy for the shorter sides for training. The image is rescaled
to a size of 1, 600 × 1, 600 and kept in aspect ratio for testing. The results in
Table 5 show that a larger image size improves the F-measure by 0.21% but the
performance improvement is not significant. Therefore, we further explore the
effect of crop ratio, which is another important factor determining the size of
the input historical document image.

Effectiveness of the Crop Ratio. Since there are many long vertical text
lines in historical documents (See Fig. 2 and Fig. 5), the common crop ratio
may not be appropriate for historical documents. Therefore, we explore whether
cropping images to long vertical bars is a better data augmentation approach for
historical documents. As shown in Table 5, we set the crop ratios for the height
and width to 0.7 and 0.5 respectively, and find that this strategy decreases
the F-measure by 0.03% for a small image size while increasing the F-measure
significantly by 1.45% for a large image size. In addition, using the crop ratio
(H:0.6, W:0.5) only increases 1.18%, indicating that the higher the ratio the
greater the improvement. By contrast, using the crop ratios (H:0.5, W:0.5) and
(H:0.5, W:0.7) improve the F-measure by 0.78% and 0.52% respectively, while
using the crop ratio (H:0.5, W:0.6) decreases it by 1.29%. The results show that
adjusting the crop ratio according to the long vertical text lines in historical
documents can avoid destroying the characteristics of text lines and help the
model to detect such text lines better.

As shown in Tables 2, 3, 4, the tricks achieve consistent performance gains
on CHDAC, MTHv2, and ICDAR 2019 HDRC CHINESE, as well as on the
rotated datasets. In general, the tricks we propose can improve the performance
of history document text line detection in most cases.
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5 Conclusion

In this paper, we present a robust approach, HisDoc R-CNN, for detecting his-
torical document text lines in complex scenarios, which improves the traditional
anchor-based model from two aspects: (1) we proposed a Dynamic Rotational
Proposal Network, which enhances the robustness of the model by dynami-
cally generating rotational proposals according to multi-level features; (2) we
present an Iterative Attention Head to efficiently improve the accuracy of text
line detection in conjunction with the model parameters. Both modules signif-
icantly improve the performance of the proposed HisDoc R-CNN. The exper-
iments demonstrate that our method consistently outperforms state-of-the-art
methods on three historical document benchmarks and maintains strong per-
formance on rotated text line detection. In particular, we investigate several
useful tricks which may provide useful insights for practical applications in the
historical document scenario.
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Abstract. Recent advances in segmentation-free keyword spotting bor-
row from state-of-the-art object detection systems to simultaneously pro-
pose a word bounding box proposal mechanism and compute a correspond-
ing representation. Contrary to the norm of such methods that rely on
complex and large DNN models, we propose a novel segmentation-free
system that efficiently scans a document image to find rectangular areas
that include the query information. The underlying model is simple and
compact, predicting character occurrences over rectangular areas through
an implicitly learned scale map, trained on word-level annotated images.
The proposed document scanning is then performed using this character
counting in a cost-effective manner via integral images and binary search.
Finally, the retrieval similarity by character counting is refined by a pyra-
midal representation and a CTC-based re-scoring algorithm, fully utiliz-
ing the trained CNN model. Experimental validation on two widely-used
datasets shows that our method achieves state-of-the-art results outper-
forming the more complex alternatives, despite the simplicity of the under-
lying model.

Keywords: Keyword Spotting · Segmentation-Free · Character
Counting

1 Introduction

Keyword spotting (or simply word spotting) has emerged as an alternative to
handwritten text recognition, providing a practical tool for efficient indexing
and searching in document analysis systems. Contrary to full handwriting text
recognition (HTR), where a character decoding output is the goal, spotting
approaches typically involve a soft-selection step, enabling them to “recover”
words that could have been potentially been assigned a more or less erroneous
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decoding. Keyword spotting is closely related to text localization and recogni-
tion. The latter problems are typically cast in an “in-the-wild” setting, where we
are not dealing with a document image, but rather a natural image/photo that
may contain patches of text. The processing pipeline involves producing a set
of candidate bounding boxes that contain text and afterwards performing text
recognition [10] or localization and recognition are both part of a multi-task
loss function [15,32]. The main difference between methods geared for in-the-
wild detection and localization and document-oriented methods is that we must
expect numerous instances of the same character on the latter; differences in
character appearance in the wild relate to perspective distortions and font diver-
sity, while in documents perspective distortion is expected to be minimal; also,
information is much more structured in documents, which opens the possibility
to encode this prior knowledge in some form of model inductive bias.

In more detail, keyword spotting (KWS) systems can be categorized w.r.t. a
number of different taxonomies. Depending on the type of query used, we have
either Query-by-Example (QbE) or Query-by-String (QbS) spotting. The two
settings correspond to using a word image query or a string query respectively.
Another taxonomy of KWS systems involves categorization into segmentation-
based and segmentation-free systems. These differ w.r.t. whether we can assume
that the document collection that we are searching has been pre-segmented into
search target tokens or not; the search targets will usually be word images, con-
taining a single word, or line images, containing a set of words residing in a single
text line. Segmentation-based methods involve a simpler task than segmentation-
free methods, but in practice correctly segmenting a document into words and
lines can be a very non-trivial task, especially in the context of documents that
involve a highly complex structure such as tabular data, or manuscripts that
include an abundance of marginalia, etc.

The former category motivated a representation-driven line of research, with
Pyramidal Histogram of Characters (PHOC) embeddings being the most notable
example of attribute-based representation [2,13,19,20,22,26–28]. Sharing the
same main concept, a different embedding was introduced by Wilkinson et
al. [30], while recognition-based systems were also used to tackle the problem
in a representation level [12,21]. Contrary to segmentation-based literature,
modern systems capable of segmentation-free retrieval on handwritten docu-
ments are limited. A commonly-used methodology is the straightforward sliding
window approach, with [5,6,24] being notable examples of efficient variations
of this concept. Line-level segmentation-free detection uses essentially a simi-
lar concept in its core [17], whilst simplified due to the sequential nature of
text-line processing. Another major direction is the generation of word region
candidates before applying a segmentation-based ranking approach (e.g. using
PHOC representations) [7,25,31,33] Candidate region proposal can be part of
an end-to-end architecture, following the state-of-the-art object detection liter-
ature, as in [31,33], at the cost of a document-level training procedure that may
require generation of synthetic data.
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In this work, we focus on the segmentation-free setting, where no prior infor-
mation over the word location is known over a document page. Specifically, we
aim to bypass any segmentation step and provide a spotting method that works
in document images without sacrificing efficiency. The main idea of this work
is to effectively utilize a per-pixel character existence estimate. To this end, we
first build a CNN-based system that transforms the document input image into a
down-scaled map of potential characters. Then, by casting KWS as a character
counting problem, we aim to find bounding boxes that contain the requested
characters. In a nutshell, our contributions can be summarized as follows.

• We build a computationally efficient segmentation-free KWS system;
• We propose a training scheme for computing a character counting map and

consequently a counting model; training is performed on segmented words,
with no need for document-level annotation which may require synthetic gen-
eration of images to capture large variations over the localization of word
images [31].

• We introduce a document scanning approach for the counting problem with
several computational-improving modifications, including integral images of
one-step sum computations for counting characters and binary search for
efficient detection of bounding boxes.

• We further improve the spotting performance of the counting system; a finer
KWS approach is used on the subset of detected bounding boxes to enhance
performance and reduce counting ambiguities (i.e., “end” vs “den”).

• In this work, we use the trained CNN model in two variations: a pyramidal
representation of counting, akin to PHOC embeddings [1] and a CTC-based
scoring approach, akin to forced alignment [29]. The latter method is also
capable of enhancing the detection of the bounding box, notably improving
performance.

• We propose a new metric to quantify bounding box overlap, replacing the
standard Intersection over Union (IoU) metric. We argue that the new metric
is more suitable than IoU in the context of KWS, as it does not penalize
enlarged detected boxes that do no contain any misdetected word.

The effectiveness of the proposed method serves as a counter-argument to
using object detection methods with complex prediction heads and a predefined
maximum number of detections (e.g. [31]) and showcase that state-of-the-art
results can be attained with an intuitively simple pipeline. Moreover, contrary
to the majority of existing approaches, the proposed method enables sub-word or
multi-word search since there is no restriction over the bounding box prediction.

2 Proposed Methodology

Our core idea can be summarized as: “efficiently estimate the bounding box by
counting character occurrences”. In this section, we will describe how 1) to build
and train such a character counting network, 2) use character counts to efficiently
estimate a bounding box, and 3) provide an enhanced similarity score to boost
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performance. We will only explore the QbS paradigm, which is in line with a
character-level prediction system, however extending this into a simple QbE
system is straightforward (e.g., estimate character occurrences into an example
image and use this as target).

2.1 Training of Character Counting Network

Method Formulation: The simplest way to treat the counting problem is
through regression: given a per-character histogram of character occurrences,
one can train a regression DNN with mean squared loss that takes as input word
images. Nonetheless, such an approach lacks the ability to be easily applicable
to page-level images. A key concept in this work is the per-pixel analysis of the
character probabilities and their scale. This way, the desired counting operation
can be decoupled into two sub-problems: 1) compute the character probability
at each point of the feature map and 2) compute the scale corresponding to each
point (i.e., the size of the point w.r.t. the whole character it belongs to), such
that summation over the word gives us the requested counting histogram.

Fig. 1. Overview of the model’s components and how they contribute to the losses.

Formally, we denote as F the feature map that contains character-level pre-
dictions of their probability, and is generated by a deep neural network. This 3D
tensor F has size equal to Hr × Wr × C, where Hr × Wr is the downscaled size
of the initial H × W size of the input image and C is the number of possible
characters. We also generate a character-independent scale matrix S, also from
a DNN, of size Hr × Wr. Then the scaled feature map is denoted as Fs, where
each spatial point of F is multiplied by the corresponding scale value, that is
Fs[i, j, k] = F [i, j, k]·S[i, j]. Given a bounding box that contains a word, denoted
by the starting point (si, sj) and the ending point (ei, ej), one can compute the
character occurrences yc as:

yc =
ei∑

i=si

ej∑

j=sj

Fs(i, j) , yc ∈ R
C (1)

The latter formulation can be used to straightforwardly regress the models with
respect to the target count histogram.

To assist this decoupling approach, we also constrain the feature map F to
be in line with a handwritten text recognition system, using a CTC loss [8]. In
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other words, character probabilities are explicitly trained with this extra loss.
Note that, even though we do not explicitly train the scale map S, it is actually
implicitly learned to correspond to scale-like predictions through the elegant
combination of the CTC and counting regression loss.

The previous formulation is depicted in Fig. 1. We first feed an image to
a CNN backbone and obtain a feature tensor, which is then used by the CNN
Decoder to predict the feature map F , and also by the CNN Scaler, to predict the
scale map S. Then, the feature map is multiplied with the scale map S, and used
to calculate the counting regression loss. The feature map is also independently
used to calculate the CTC loss.

Module Architectures: Having described now the main idea, we outline in
more detail the architecture of each CNN component. Note that we did not
thoroughly explore these architectures, since it is not the core goal of our paper.
In fact, since efficiency is the main point of this approach, we used a lightweight
ResNet-like network [18], consisted of the following components:

• CNN Backbone: The CNN backbone is built by stacking multiple residual
blocks [9]. The first layer is a 7 × 7 convolution of stride 2 with 32 output
channels, followed by cascades of 3×3 ResNet blocks (2 blocks of 64, 4 blocks
of 128 and 4 blocks of 256 output channels). All convolutions are followed
by ReLU and batch-norm layers. Between cascades of blocks max-pooling
downscaling of 1

2 is applied, resulting to an overall downscale of 1
8 .

• CNN Decoder: The CNN Decoder consists of two layers; one is a simple
3 × 3 conv. operation of 128 output channels, and it is followed by an 1 × 5
convolution, since we assume horizontal writing. The latter conv. operation
has C output channels, as many as the characters to be predicted. Between
the two layers, we added ReLU, batch-norm, and Dropout. Note that we use
only conv. operations so that the decoder can be applied to whole pages.
If we used recurrent alternatives (e.g. LSTM), a sequential order should be
defined, which is not feasible efficiently considering the 2D structure of a raw
document page.

• CNN Scaler: The CNN Scaler also consists of two conv. layers, both with
kernel of size 3 × 3. The first has 128 output channels and the second, as
expected, only one, i.e. the scale value. Again, between the two conv. layers, we
added ReLU, batch-norm and Dropout. Finally, we apply a sigmoid function
over the output to constrain the range of the scale between 0 and 1 (when
the scale s = 1 then the pixel corresponds to a whole character).

These components and their functionality are visualized in Fig. 1. As we
highlighted earlier, the aforementioned architecture contains a novel and crucial
modification; it includes a separate scale map that enables character counting
and is trained implicitly as a auxiliary path.

Training Details/Extra Modifications: The feature map F of character
probabilities is essentially the output of the CNN decoder, after applying a
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per-pixel softmax operation over the characters’ dimension. This way, we can
straightforwardly generate page-level detections of characters as seen in Fig. 2.
Nonetheless, training using the CTC loss requires a sequence of predictions and
not a 2D feature map. To this end, during word-level training, we apply a flat-
tening operation before the aforementioned softmax operation. Specifically, we
use the column-wise max-pooling used in [18].

Fig. 2. Document-level extraction of feature maps. The scale map S is multiplied with
character probability map F to generate Fs. For the 3D tensors F , Fs of C channels,
we indicatively show the per-character activation of characters ‘e’ and ‘y’.

We also used the following modifications to assist training: 1) we extract a
larger region around a word to learn that different characters may exist outside
the bounding box as neighboring “noise” and 2) we penalize pixels outside the
bounding box before the column-wise maxpooling operation and thus force them
to be ignored during the recognition step (we use constant negative values since
we have a max operation)

Overall, the loss used for training was LCTC +10 ·Lcount, where: 1) LCTC =
CTC(Fmax, starget) is the recognition loss, with Fmax being the column-wise
max-pooled version of F with penalized values outside of the bounding box
and starget the target word text, and 2) Lcount = ||yc − tc||2 is the counting
regression loss, where yc is the predicted counting histogram calculated as in
Eq. 1 and tc the target counting histogram. The weights of each individual loss
were set empirically with no further exploration. Since the regression loss is more
important for our case, it was assigned a larger weight.

2.2 Efficient Spotting Using Character Counting

Having defined the counting architecture and its training procedure, we proceed
with our major goal: utilize the generated counting map to efficiently detect
bounding boxes of queries. To this end, in what follows, we will present different
sub-modules designed to provide fast and accurate predictions. Figure 3 contains
a visualization of the proposed pipeline.
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Problem Statement and Initial Complexity: Here, the input is the per-
character scaled map Fs, as generated by the proposed architecture. The task
is to estimate a bounding box that contains a character count that is similar to
the query. Note that this way, the detection is size-invariant - the bounding box
can be arbitrarily large. The simplest way to perform such actions is extremely
ineffective; for each pixel of the (downscaled) feature map, one should check all
the possible bounding boxes and compute their sum, resulting to an impractical
complexity of O(N3

r ), where Nr = Hr ×Wr is the number of pixels of the feature
map. This can be considered as a naive sliding box approach.

Cost-Free Summation with Integral Images: Since the operation of inter-
est is summation, the use of integral images can decrease this summation
step of arbitrary-sized boxes to a constant O(1) step. The use of integral
images is widespread in computer vision applications with SURF features as
a notable example [3], while Ghosh et al. [6] used this concept to also speed-up
segmentation-free word spotting. Moreover, as we will describe in what follows,
the proposed detection algorithm heavily relies on integral images for introducing
several efficient modifications.

Fig. 3. Overview of the proposed spotting pipeline. The box proposal stage is described
in Sect. 2.2, while the scoring steps are described in Sect. 2.3.

Bounding Box Estimation with Binary Search: Next, we focus on how to
search through any window size without the need to actually parse the whole
image. Specifically consider a starting point (xs, ys) on the feature map. We
seek the ending point (xe, ye), where the counting result in the bounding box,
defined by these two points, is as close as possible to the character count of
the query. Here, we make use of a simple property of the generated feature
map. The counting result should be increasing as we go further and further
from the starting point. This property enables us to break this task into two
simple increasing sub-tasks that can be efficiently addressed by binary search
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operations. Note that we compute the required counting value on-the-fly by using
integral images (only the starting point and ending point suffice to compute the
requested summation).

To further simplify the process we act only on the integral image of scale S
and we perform the following steps: 1) Find a rectangular area of count equal
to 1. This is the equivalent of detecting one character. We assume that the side
of the detected rectangle is a good estimation of a word height on this specific
location of the document. This operation is query independent and can be pre-
computed for each image. This step is depicted in Fig. 4(a). 2) Given the height
of the search area, find the width that includes the requested character count.
This step is depicted in Fig. 4(b).

The aforementioned two-step procedure reasoning is two-fold; first it pro-
duces candidate bounding boxes with minor computational requirements and it
also resolves possible axis ambiguity. The latter problem can be seen in Fig. 4(c),
where we can find a “correct” bounding box, containing the requested counting
histogram, across neighboring text-lines.

Fig. 4. (a,b): Binary search operations over the scale map S to find the height (a) and
the width (b) of a possible word. (c): Visualization of the issue of correct counting
across lines. Both boxes contain the requested character counting for the query ‘and’.

Candidate Point Pruning: Up to this point, the proposed modifications
notably decreased the algorithm complexity to O(Nr logNr). Nonetheless,
traversing through all points is unnecessary and we can further decrease com-
putational requirements via a pruning stage over possible starting points. We
distinguish two useful (heuristic) actions that can considerably reduce the search
space:
1) The starting point should have (or be close to a point that has) a non-trivial
probability over the first character of the query. Implementation-wise, a max-
pooling operation with kernel size 3 (morphological dilation) is used to simulate
the proximity property, while a probability threshold is used to discard points.
The threshold is relatively low (e.g., 0.1), in order to allow the method to be
relatively robust to partial character misclassification.
2) Find only “well-centered” bounding boxes. This step is implemented through
the use of integral images, where we compute the counting sum over a reduced
window over y-axis (height) in the center of the initially detected bounding box.
If the counting sum of the subregion divided by the sum of the whole word
region is lower than a threshold ratio, we discard the point. In other words, we
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try to validate if the included information in the bounding box corresponds to
“centered” characters, or it could be a cross-line summation of character parts.

2.3 Similarity Scoring

The proposed detection algorithm acts in a character-agnostic way with the
exception of the first character of the query. Now, we have to find the most
similar regions w.r.t. to the actual query. The most straightforward solution is
to compute the per-character counting inside the bounding box and compare
it to the query counting. The predicted counting can be computed with minor
overhead by using the integral image rationale over the extracted scaled character
probability map. Comparison is performed via cosine similarity.

A counting-based retrieval cannot distinguish between different permutations
of the query characters. For example, “and” and “dan” of Fig. 5(left) have the
same counting description, confusing the system. Therefore, the necessity to
alleviate ambiguities comes in the limelight. Towards addressing this problem,
we propose two different approaches that can be combined into a single method,
as distinct steps, and have a common characteristic: the already trained network
is appropriately utilized to effectively predict more accurate scores. Both steps
are followed by a typical non-maximum suppression step. Figure 3 depicts these
steps, as well as their outputs, in detail.

Fig. 5. Examples of two possible detection problems: character order ambiguity (left)
and box extension to neighboring words (right).

First Step: Pyramidal Counting. A straightforward extension of the basic
counting procedure is building a descriptor in a pyramidal structure, akin to
PHOC [1,27]. The idea is simple: break the query string into uniform parts and
compute the character count into each part. This is repeated for l levels, with l
counting histograms at each vector, resulting to a descriptor of size = l(l+1)C/2.
A Gaussian-based weighting is used for characters belonging to more than one
segments, in order to distribute the value accordingly along the segments.

Given the pyramidal query descriptor, one must find its similarity to the
respective predicted pyramidal counting over the detected boxes. This is also
efficiently performed by using integral images over Fs to compute sub-area sums
of horizontal segments in the interior of each detected box. Matching is then
performed by computing cosine similarity. In its simplest form, this first step
computes the cosine similarity of the count histograms with only 1 level.
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Second Step: CTC Re-scoring. For this re-scoring step, we consider a more
complex approach based on CTC loss with a higher computational overhead.
Thus, we use the descriptors of the first step to limit the possible region can-
didates. This is performed by a non-maximum suppression step with a low IoU
threshold (= 0.2) that prunes overlapping regions. Subsequently, the top K = 30
results per document page are considered for this re-scoring step.

Given a detected box, one can compute the CTC score from the already
extracted map, resembling forced-alignment rationale. Implementation-wise, to
avoid a max-pooling operation of different kernels at each region, we pre-
computed a vertical max-pooling of kernel = 3 over the character probabilities
map. Subsequently, the sequence of character probabilities was extracted from
the centered y-value of the bounding box under consideration.

Despite the intuitive concept this approach, as is, under-performed, often
resulting to worse results compared to a pyramidal counting with many lev-
els. A common occurring problem, responsible for this unexpected performance
inferiority, was the inaccurate estimation of bounding boxes that extended to
neighboring words, as seen in Fig. 5(right). Such erroneous predictions are typ-
ically found if a character existing in the query also appears in neighboring
words. Note that the used counting approach cannot provide extremely accurate
detections and we do not expect it to do so.

The solution to this issue is simple when considering the CTC algorithm: a
score matrix D ∈ R

T×C emerges, where the score D[t, c] corresponds to step
t = 0, . . . , T − 1 assuming that the character c = 0, . . . , C − 1 exists at this step.
Therefore, instead of selecting the score of the last query character (alongside the
blank character - but we omit this part for simplicity) at the last step, we search
for the best score of the last character over all steps, meaning that the whole
query sequence should be recognized and only redundant predictions are omitted.
To assist this approach, an overestimation of the end point is considered over
the x-axis. This approach is straightforwardly extended to correct the starting
point of the box, by inverting the sequence of probabilities along with the query
characters.

Summing this procedure up, we can use the recognition-based CTC algorithm
over the detected box to not only provide improved scores, but also enhance the
bounding box prediction. As one can deduct, the re-scoring step can be performed
by an independent (large) model to further increase performance, if needed. In
this work, however, it is of great interest to fully utilize the already existing model
and simultaneously avoid adding an extra deep learning component which may
add considerable computational overhead.

3 Revisiting Overlap Metrics

Objection detection is typically evaluated with mean Average Precision (mAP)
if the detected bounding box considerably overlaps with the corresponding gt
box. This overlap is quantified through the Intersection over Union (IoU) metric.
Although the usefulness of such an overlap metric is indisputable, it may not be
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the most suitable for the word spotting application. Specifically, in documents,
we have disjoint entities of words that do not overlap. A good detection could
be defined as one that includes the word of interest and no other (neighboring)
word. However, the IoU metric sets a relatively strict constraint of how the
boxes interact. For example, in Fig. 6(left) we have an arguably good detection
of the word, denoted by a green box, that has a very low IoU score of 0.33 with
respect to the groundtruth blue box. This phenomenon is frequent when using
our method, since we have not imposed constraints of how this box should be,
only that it should contain the word that we are interested in. Therefore, for
lower IoU thresholds we report very good performance that deteriorates quickly
when increasing the threshold, even though the detections are notably spot-on.

To address this issue, we propose a different metric that does not penalize
enlarged boxes as long as no other neighboring word is intersected by the detected
box. Specifically, we want to penalize such erroneous intersections and we include
their total area into the denominator of our new metric, along with the area of
the groundtruth box. The numerator, as usual, is the intersection of the detected
box with the groundtruth box. This concept is clearly visualized in Fig. 6(right).

Fig. 6. Visualization of the IoU issue (left), where a good detection is overly penalized,
and of the proposed IoW metric (right), where blue shaded is the original gt area, green
shaded the overlap with the gt word and red shaded the erroneous overlaps.

4 Experimental Evaluation

Datasets: We evaluated the proposed system in two widely-used English
datasets. The first one is the challenging IAM dataset [16], consisted of hand-
written text from 657 different writers and partitioned into writer-independent
train/val./test sets. IAM grountruth has indication of erroneous word-level anno-
tation that was used to mask out these regions from the page-level images. The
second dataset is a collection of manuscripts from George Washington (GW) [4],
consisted of 20 pages with 4860 words in total. The split into training/test sets
follows the protocol of [31] with a 4-fold validation scheme.

Following the standard paradigm for these two datasets, we ignore punctua-
tion marks and we merge lowercase and uppercase characters. All possible words
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that do not contain any non-alphanumeric character are considered as queries.
Only for the case of IAM, queries that belong to the official stopword list are
removed from the query list [1,27].

Metrics: We evaluate our approach using the standard metric for retrieval prob-
lems, Mean Average Precision (MAP). Since the task at hand is segmentation-
free spotting, we also utilize a overlap metric between detections and ground-
truth boxes. Following the discussion of Sect. 3 we consider three different overlap
metrics: 1) standard Intersection over Union (IoU) 2) a modified IoU, dubbed
as x-IoU, that focuses on the overlap over the x-axis by assuming the same
y-coordinates between the detection and the groundtruth, while requires an ini-
tial overlap of over 0.1 IoU. This resembles a more line-focused metric.3) the
proposed IoW metric of Sect. 3.

Implementation Details: Training of our model was performed in a single
NVidia 1080Ti GPU using the Pytorch framework. We trained our model for 80
epochs with Adam optimizer [11] along with a cosine annealing scheduler, where
learning rate started at 1e− 3. The proposed spotting method, applied over the
feature map extracted by the CNN, is implemented with cpu-based Numba [14]
functions in order to achieve efficient running time. GPU-based implementa-
tion of such actions has not been explored, since specific operations cannot be
straightforwardly ported with efficient Pytorch functions (e.g., binary search).
Nonetheless, implementation on GPU could considerably improve time require-
ments as a potential future extension. Code is publicly available at https://
github.com/georgeretsi/SegFreeKWS.

4.1 Ablation Studies

Every ablation is performed over the validation set of IAM using a network of
∼ 6M parameters. The typical IoU threshold is used, unless stated otherwise.

Impact of Spotting Modifications: Here, we will explore the impact of hyper-
parameters (thresholds) selected in the proposed spotting algorithm. Specifically,
we focus on discovering the sensitivity of the candidate pruning thresholds, since
this is the only step that introduces critical hyper-parameters. To this end, we
perform a grid search over the probability threshold pthres and the centering ratio
threshold rthres, as reported in Tables 1. Only the simple cosine similarity of the
character count histogram has used in this experiment and thus the MAP scores
are relatively low. As we can see, the 0.5 ratio threshold to be the obvious choice,
while, concerning the probability threshold, both 0.01 and 0.05 values provide
superior performance with minor differences and thus 0.05 value is selected as
the default option for the rest of the paper, since it provides non-trivially faster
retrieval times.

Impact of Scoring Methods: As we can see from the previous exploration,
relying only on character counting leads to underperformance. Here, we will
explore the impact of the different scoring methods proposed in Sect. 2.3. We
distinguish different strategies according to the use of the CTC re-scoring step.

https://github.com/georgeretsi/SegFreeKWS
https://github.com/georgeretsi/SegFreeKWS
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Table 1. Exploration of pruning thresholds with the character counting retrieval
method - only cosine similarity over character histograms was used. We report MAP
25% IoU Overlap & time (in parenthesis) to retrieve bboxes for a (image, query) pair.

pthres rthres

0.25 0.33 0.5 0.66 0.75

0.001 65.85 (2.422) 65.96 (2.209) 66.15 (1.243) 54.66 (0.499) 35.11 (0.363)

0.01 67.57 (1.101) 67.59 (1.006) 67.97 (0.628) 53.30 (0.317) 32.54 (0.234)

0.05 67.82 (0.643) 67.85 (0.624) 67.99 (0.433) 52.02 (0.263) 31.17 (0.224)

0.1 67.53 (0.569) 67.55 (0.535) 67.67 (0.389) 51.49 (0.253) 30.82 (0.222)

0.2 67.09 (0.509) 67.10 (0.475) 67.16 (0.355) 51.00 (0.249) 30.47 (0.215)

0.5 66.03 (0.445) 66.04 (0.428) 66.04 (0.322) 49.38 (0.238) 29.66 (0.203)

Specifically we report results without the re-scoring step and with the one-way
(adjusting the bound on the right of the box) or two-way (adjusting both hori-
zontal bounds using a reverse pass over the sequence - see Sect. 2.3) CTC step.
We also report results for the multilevel pyramidal representations (denoted as
PCount) of character counting and the PHOC alternative, implemented as a
thresholded version of the counting histogram that does not exceed 1 at each
bin. These results are summarized in Table 2, where we also report the time
needed for a query/image pair. The following observation can be made: • As
expected, adding the CTC scoring step, the results are considerably improved.
The two-way CTC score approach achieves the best results overall, regardless
the initial step (e.g., # levels, PHOC/PCount). • PCount provides more accu-
rate detections compared to PHOC when a single level is used, but this is not
the case in many configurations for extra levels. • For the CTC score variant, we
do not see any improvement when using more level on the first step. This can
be attributed to the fact that extended box proposals was a common error, as
shown in Fig. 5(right), and thus sub-partitioning of the box does not correspond
to actual word partition. • Time requirements are increasing as we use more
levels. Furthermore, as expected, the increase when using the CTC score app-
roach and especially the two-way variant. Nonetheless, due to its performance
superiority, we select the 1-level PCount first-step along with the two-way CTC
score as the default option for the rest of the paper.

Comparison of Overlap Metrics: Even though we presented notable MAP
results for the 25% IoU overlap, we noticed that the performance considerably
decreases as the overlap threshold increases. Specifically, for our best-performing
system, the MAP drops from 88.98% to only 54.68%. Preliminary error analysis
showed that the main reason was the strict definition of IoU for word recognition,
as described in Sect. 3, where many correct detections presented a low IoU
metric. To support this claim, we devised two different overlap metrics (x-IoU
and IoW) and we validated the attained MAP for a large range of threshold
values, as shown in Fig. 7. As we can see, both the alternatives provide almost the
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Table 2. Impact of different scoring approaches: PCount vs PHOC for different lev-
els/use of CTC scoring step (one-way or two-way). We reported MAP 25% IoU Overlap
& time (in miliseconds) to retrieve bboxes for a (image, query) pair.

levels w/o ctc-score w/ one-way ctc-score w/ two-way ctc-score

PHOC PCount time PHOC PCount time PHOC PCount time

1 64.60 67.99 0.44 85.29 85.58 0.68 88.90 88.98 0.81

2 72.57 72.24 0.50 86.30 85.83 0.69 88.90 88.88 0.82

3 73.45 72.65 0.62 86.58 86.06 0.77 88.74 88.55 0.92

4 72.76 71.52 0.78 86.31 86.11 0.87 88.24 88.18 0.98

5 71.14 69.82 0.93 85.86 85.60 1.01 87.85 87.61 1.09

same performance up to 60% overlap threshold whereas rapidly decreases from
early on. Overall the proposed IoW metric has very robust performance, proving
that the main source of performance decrease for larger overlap thresholds was
the “strict” definition of what a good detection is for word spotting applications
(see Sect. 3 for details).

Fig. 7. MAP performance for different overlap thesholds over 3 different overlap met-
rics: IoU, x-IoU and IoW.

4.2 State-of-the-Art Comparisons

Having explored the different “flavors” of our proposed systems, we proceed
to evaluate our best-performing approach (single-level counting similarity along
with two-way CTC score) against state-of-the-art segmentation-free approaches.
Apart form evaluating over the test set of IAM, for the GW dataset, we follow
the evaluation procedure used in [23,31] where two different 4-fold cross valida-
tion settings are considered. The first assumes a train set of 15 pages, setting
aside 5 for testing, while the second assumes a more challenging 5/15 split for
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training/testing, respectively. In each setting, the reported value is the average
across the 4-fold setup. We trained our models only on the pages available and
not pre-training was performed. The results are summarized in Table 3, where
MAP values for both 25% and 50% overlap thresholds are reported. The pre-
sented results lead to several interesting observations: • the proposed method
outperforms substantially the compared methods (even the complex end-to-end
architecture of [31]), for the challenging cases of GW5-15 and IAM, when the
25% IoU overlap is used. In fact, the proposed method is robust even when using
limited training data (e.g., GW5-15), since it does not learn both detection and
recognition tasks, but only relies on recognition. • As we described before, per-
formance is decreased for the 50% IoU overlap, but the different overlap metrics
(x-IoU and IoW) show the effectiveness of the method for larger overlap thresh-
olds, as shown in Table 3(b). Nonetheless, this is not directly comparable with
the other compared methods that relied on IoU. • For the case of GW15-5, we
do not report results on par with the SOTA, even though the same method has
a considerable boost for GW5-15, where fewer data were used. Error analysis
showed that for GW, proposals were extended in the y-axis also, resulting to low
overlap scores. In other words, the “rough” localization of our method leads to
this reduced performance (also discussed in limitations).

Table 3. (a) MAP comparison of state-of-the-art approaches for IAM and two varia-
tions of GW dataset. Both 25% and 50% overlap thresholds are reported. (b) We also
report the performance of our method when the proposed overlap metric alternatives
are considered (x-IoU, IoW).

(a)

GW 15-5 GW 5-15 IAM

method 25% 50% 25% 50% 25% 50%

BoF HMMs [23] 80.1 76.5 58.1 54.6 - -

BG index [5] - - - - - 48.6

Word-Hypothesis [25] 90.6 84.6 - - - -

Ctrl-F-Net DCToW [31] 95.2 91.0 76.8 73.8 82.5 80.3

Ctrl-F-Net PHOC [31] 93.9 90.1 68.2 65.6 80.8 78.8

Resnet50 + FPN [33] 96.5 94.1 - - - -

Proposed (IoU) 91.6 66.4 85.9 66.3 85.8 59.2

(b)

GW 15-5 GW 5-15 IAM

Proposed (IoU) 91.6 66.4 85.9 66.3 85.8 59.2

Proposed (x-IoU) 93.2 92.9 86.8 86.7 86.9 86.8

Proposed (IoW) 92.7 87.6 86.8 83.0 86.9 86.3

Visual Examples: Figure 8 contains examples of retrieval for the GW dataset,
where we can see that retrieved boxes are not tight and can be extended. Specif-
ically, for the case of the query ‘them’, we retrieved erroneous boxes where
the word ‘the’ appears followed by a word that starts with ‘m’. In Fig. 9, we
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present some examples of successful multi-word and sub-word retrieval in the
IAM dataset. Notably, in the sub-word case of the“fast” query, the fast suffix
was detected for the word breakfast in both the handwritten text and also the
typewritten reference text of different scale at the top of the image.

query top-6 retrieved boxes

1775

soon

them

Fig. 8. Examples of QbS with top-6 retrieved words reported for the GW dataset.
Green box corresponds to an overlap greater than 25% IoU, while red to lower.

(a) Query: “he came” (b) Query: “fast”

Fig. 9. Examples of multi-word and sub-word detections.

Limitations: • The bounding box proposal stage of Sect. 2.2 tends to provide
over-estimations of the actual box, as shown in Fig. 5(b). This is adequately
addressed by the CTC re-scoring step, but such phenomena may cause correct
regions to be dismissed before re-scoring. Therefore, a tightened box prediction
could improve the overall performance, especially if we assist this with an appro-
priately designed model component. • The proposed approach does not learn to
distinguish the space character, as a separator between words, and thus we the
ability to detect sub-words can be also be seen as an issue that affects perfor-
mance. In fact, if we let sub-words to be counted as correct predictions the MAP
(at 25% IoU overlap) increases from 88.98% to 89.62%. Even though, detecting
sub-words is a desirable property, it would useful if the user could select when
this should happen. To add such property, we could include and train the space
character as a possible future direction.
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5 Conclusions

In this work we presented a novel approach to segmentation-free keyword spot-
ting that strives for simplicity and efficiency without sacrificing performance. We
designed an architecture that enables counting characters at rectangular sub-
regions of a document image, whereas it is only trained on single word images.
The box proposal and scoring steps are designed to speed-up the retrieval of rel-
evant regions, utilizing integral images, binary search and re-ranking of retrieved
images using CTC score. The reported results for both GW and IAM dataset
prove the effectiveness of our method, while using a simple network of 6M param-
eters.
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Abstract. Large-scale document processing pipelines are required to
recognize text in many different languages. The writing systems for these
languages cover a diverse set of scripts, such as the standard Latin char-
acters, the logograms of Chinese, and the cursive right-to-left of Arabic.
Multilingual OCR continues to be a challenging task for document pro-
cessing due to the large vocabulary sizes and diversity of scripts. This
work introduces a multilingual model that recognizes over nine thou-
sand unique characters and seamlessly switches between ten different
scripts. Our transformer-based encoder-decoder approach combines a
CTC objective on the encoder with a cross-entropy objective on the
full autoregressive decoder. The hybrid approach allows the fast non-
autoregressive encoder to be used in standalone mode or with the full
autoregressive decoder. We evaluate our approach on a large multilingual
dataset, where we achieve state-of-the-art character error rate results in
all thirteen languages. We also extend the encoder with auxiliary heads
to identify language, predict font, and detect vertical lines.

Keywords: Multilingual OCR · Transformer · Hybrid ·
Encoder-Decoder · CTC · Auxiliary heads · Synthetic data

1 Introduction

The ISO 693-3 [3] international standard identifies over 7,800 languages. The
standard includes languages classified as living, extinct, ancient, and artificially
constructed. Approximately 4,000 [8] of these languages have some form of a
writing system, with the most common scripts being Latin, Chinese, and Arabic.
The complexities of these scripts and the size of the vocabulary have made
multilingual OCR a challenging task.

Latin script is widely used for writing European languages, such as English,
French, and Spanish. The relatively small character set and abundance of anno-
tated data have made the script a popular choice for optical character recognition
(OCR) research [16,30]. In contrast, Chinese (Han) script, which is used within
writing the Chinese, Japanese, and Korean languages, includes over 70,000 char-
acters or logograms. Chinese script also contains over 200 radicals that are added
to characters and can change form based on their position. Finally, Arabic is the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 467–483, 2023.
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primary script used by the Arabic, Persian, Pashto, and Urdu languages. The
Arabic script contains approximately 28 characters and is written from right to
left using a cursive style. Arabic script also uses ligatures that join characters
into a single glyph and includes several contextual forms that allow characters
to change shape based on their position in a word.

Recent work in the OCR community has begun to focus on the challenges
of multilingual text within a corpus or document. Datasets such as CAMIO [6],
ICDAR MLT [24], and Text OCR [26], provide annotated training and evaluation
data in a large number of scripts, languages, and domains. There has also been
recent work on multilingual recognition, such as the script-specific head approach
of [15] and the transformer-based encoder-decoder approach of [21].

Just as transformer [29] architectures have dominated the NLP [11], and
Computer Vision communities [13], text recognition has seen a shift from CNN-
LSTM based [25] architectures to those using transformers. Many of these
approaches [9,12] continue to integrate a CNN backbone with the self-attention
encoder to extract visual features. An end-to-end transformer-based encoder-
decoder is used in [21], where the model is initialized using a pretrained Vision
encoder with a pretrained NLP decoder.

The combination of connectionist temporal classification (CTC) [14] with
attention has proven to be an effective approach for sequence-to-sequence prob-
lems. It has been applied to text recognition on recipts [9] and Chinese text [7]. In
addition, CTC with attention has also been used in automatic speech recognition
(ASR) [17]. A hybrid CTC/attention model that uses multi-objective learning
was applied to ASR in [31].

Large-scale document processing pipelines are required to recognize text in
many languages and genres. The documents can include images of web pages,
newspapers, figures, maps, and presentation slides. In addition, they have chal-
lenging layouts, such as multi-column text, diverse fonts, and complex back-
grounds. A solution often requires a separate recognizer for each language and
genre of interest. However, training and maintaining multiple models adds sig-
nificant complexity to document pipelines.

Given the challenges of the multilingual recognition problem, we introduce
a hybrid transformer-based encoder-decoder model for OCR.Our hybrid model
provides true multilingual decoding with a vocabulary of over nine thousand
characters and representing ten diverse scripts. The approach combines Connec-
tionist Temporal Classification (CTC) [14] objective function on the encoder with
a cross-entropy objective function on the full autoregressive (Seq2Seq) encoder-
decoder. This approach allows a single recognizer model to be used for line images
from any of the supported languages and provides the ability to handle script-
switching within a line image. It also eliminates the need for an explicit script
identification step in an OCR pipeline prior to character recognition. Further-
more, the hybrid model can use the faster non-autoregressive encoder in stan-
dalone mode or the full autoregressive model with a beam decoder for improved
accuracy in some challenging conditions.
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Different from [21], we do not rely on a pretrained vision encoder, which
requires a predefined fixed input image size and patch size. Instead, our input
image uses a height that is more naturally associated with the height of text
line images and allows a variable width input that matches the sequence-to-
sequence problem. This approach also allows us to investigate patch sizes that
best match image characters and generalize to multilingual input. Our extensive
experiments with the multilingual CAMIO [6] dataset show that patch size is an
essential parameter of multilingual recognition.

Recognition is often a single step in a more extensive document processing
pipeline. The recognizer forwards its output to other analytics such as document
reconstruction, machine translation (MT), visual question and answer (VQA),
or named entity recognition (NER). These downstream systems can benefit from
additional visual attributes such as language identification, font family identifi-
cation, or line orientation. For example, in the case of document reconstruction,
identifying a similar font and text orientation is essential for converting the doc-
ument image into an editable document that preserves the original layout.

To capture visual attributes of the line image, we extend our robust visual
encoder with auxiliary heads. The approach uses the outputs of the encoder to
train additional heads for language identification, font prediction, and vertical
text detection. The outputs from these auxiliary heads are critical to downstream
tools and analytics in the document processing pipeline.

Our work makes the following contributions to the document analysis and
recognition community:

1. We introduce a hybrid transformer-based encoder-decoder that allows the
faster non-autoregressive encoder to be used in standalone mode or jointly
with the full autoregressive decoder.

2. Our multilingual model includes a vocabulary of over nine thousand charac-
ters in ten unique scripts.

3. Our approach achieves state-of-the-art character error rate results on the
multilingual CAMIO [6] dataset.

4. We include auxiliary heads on the encoder that can identify language, predict
font family, and detect vertical text.

2 Approach

Our multilingual OCR architecture, shown in Fig. 1, combines a CTC-trained
encoder with an autoregressive decoder. This approach allows the self-attention
encoder to be used as a fast standalone non-autoregressive model or in combina-
tion with the decoder for an autoregressive model. During training, we combine
a CTC loss from the self-attention encoder with a cross-entropy loss from the
decoder. The encoder loss forces the model to generate aligned visual embed-
dings in left-to-right order while still allowing the combined encoder-decoder to
be jointly optimized. We also take advantage of this robust visual encoder embed-
ding to train additional auxiliary heads to identify language, font, rotation, and
orientation.
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Fig. 1. A diagram of the hybrid CTC/autoregressive decoder design with auxiliary
heads.
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The encoder takes as input a line image of size (h,w, c) corresponding to
height, width, and channel. The image is resized to a fixed height (hfix) with
variable width (wvar), which maintains the original image aspect ratio. The image
is then divided into non-overlapping patches of size (ph, pw), where patch height
and patch width are hyperparameters of the model. The result is a variable
width sequence of image patches with length sl = h

ph
× w

pw
. Each patch of size

ph × pw × c is then projected to a patch embedding of dimension d. Finally, a
positional embedding is added to each patch embedding to encode the original
patch order of the line image.

The encoder follows a standard transformer architecture that maps the
sequence of sl patches with dimension d into its hidden states using a stack
of residual encoder blocks. Each encoder block includes a multi-headed self-
attention layer and two fully connected layers. The output from the final encoder
hidden state provides a contextualized representation of the input image patches.
This final layer is used both as input to the decoder and is passed to an encoder
language model (LM) head. The encoder LM head projects the final encoder
layer into a logit vector corresponding to the vocabulary size. A CTC loss func-
tion is applied to the encoder LM head outputs during training. The LM head
can be used for inference as a standalone OCR decoder, where a character is
predicted at each patch step.

In addition to the LM head, we train auxiliary encoder heads for several
important visual attributes in an OCR pipeline. The auxiliary heads include
language, font, and vertical detection. Each encoder head takes the final encoder
layer as input and projects the mean of that embedding into a logit vector
corresponding to the attribute vocabulary. The auxiliary heads are trained with
a cross-entropy loss over the logit vector.

The decoder also follows a standard encoder-decoder transformer architecture
and consists of a stack of residual decoder blocks. Each decoder block includes
a self-attention layer, a cross-attention layer, and two fully connected layers. A
decoder LM head maps the outputs from the last decoder block into a logits
vector corresponding to the vocabulary size. A cross-entropy loss is applied to
the decoder LM head during training. The decoder is used in an autoregressive
fashion at inference time to predict the next character sequence using outputs
from the previous timesteps.

3 Experiments

3.1 Train and Evaluation Corpus

We train the model using both real and synthetically generated line images.
The real training images are drawn from the Linguistic Data Consortium (LDC)
Corpus of Annotated Multilingual Images for OCR (CAMIO) [6]. The CAMIO
dataset is a large corpus of text images covering a wide variety of languages that
include text localization and transcript annotations. Figure 2 shows example
documents from the training set split for Chinese and Arabic. The dataset is
partitioned into 13 languages based on the primary or majority language written
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in those images. The languages are Arabic, Mandarin, English, Farsi, Hindi,
Japanese, Kannada, Korean, Russian, Tamil, Thai, Urdu, and Vietnamese. These
cover the 10 scripts of Arabic, Chinese (Simplified), Latin, Devanagari, Japanese,
Kannada, Hangul, Cyrillic, Tamil, and Thai.

For each language partition, there are 1,250 images, split into 625 images
for training, 125 images for validation, and 500 images for testing (50/10/40
split). The images exhibit a wide range of domains and artifacts, including dense
text, unconstrained text, diagrams, tables, multiple text columns, fielded forms,
other complex layouts, perspective differences, lighting, skew, and noise. These
differing artifacts are generally consistent in proportion across the 13 language
partitions. Furthermore, line images were cropped from those images based on
the polygon regions labeled for those full images to be used to train and evaluate
the decoder.

Fig. 2. Sample document images from the CAMIO [6] train split.

3.2 Synthetic Line Images

In addition to the real training data, we generated a set of synthetic line images
for each of the thirteen CAMIO [6] languages. Our synthetic line generation
approach inputs seed text, fonts, and background images and produce a collec-
tion of synthetic images and annotations. The seed text for our images is drawn
from the September 2021 version of the Open Super-large Crawled Aggregated
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coRpus (OSCAR) [5]. This large multilingual set is filtered from the Common
Crawl corpus and is often used for the pretraining of large language models. The
fonts to render the line images are selected from Google Fonts, Noto Fonts, and
GNU Unifont. Table 1 shows examples of synthetic line images using the seed
text, Universal Declaration of Human Rights [28], translated [4] for each of the
thirteen languages.

To identify fonts with the ability to render the given language, we sample a set
of lines from the corresponding OSCAR language and then perform a mapping
of unique character codepoints to each font glyph table. Fonts that match a
selected percentage of the unique characters are added to the candidate fonts
list for that language. Then, at the time of synthetic line image generation, we
randomly select a font from the language list and again perform the codepoint-
to-glyph match to verify the current line of text can be rendered. The GNU
Unifont is used as the default fallback font in instances where a valid font can
not be identified.

In real-world extraction scenarios, the decoder is often presented with noisy
cropped lines. This noise includes complex backgrounds, cutoff words, and
bounding boxes with inconsistent padding. To make our models more robust
to the type of text found in these extraction scenarios, we generate noisy syn-
thetic lines. This includes adding random padding to each line of rendered text’s
top, bottom, left, and right. We also randomly subsample the lines of OSCAR
seed text to create lines with single characters, partial words, and cutoff lines.
Finally, to provide complex backgrounds for the synthetic images, we overlay a
random subset of the images onto crops of the COCO dataset [22] that has been
determined not to include text.

3.3 Evaluation Metric

We evaluate our models using character error rate (CER) over each language
in the CAMIO [6] test set after filtering out images annotated as illegible or
low-quality. CER measures the percentage of incorrect predictions by the OCR
model. Formally, the equation for CER is:

CER = (Ins+ Sub+Del)/Total_Char

The Levenshtein edit distance calculates character misses in the form of inser-
tions, substitutions, and deletions. The algorithm provides the minimum number
of edit operations needed to transform the hypothesis string into the reference
string. The lower the score, the better a system performs, with a CER of 0.0
being the perfect output. Before calculating the CER, we perform a standard
normalization on the hypothesis and reference strings. First, we normalize all
white space characters to a Unicode space (U+0020) and remove repeated white
space. Next, we remove punctuation and convert all characters to lowercase.
Finally, we apply the standard Unicode Normalization Form: Compatibility (K)
Composition (NFKC), which uses compatibility decomposition and canonical
composition.
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Table 1. Synthetic line image examples.

3.4 Dictionary

The character dictionary is generated by selecting each unique character from the
training set, converting it into a Unicode string representation, and storing it in
a list. For example, the ARABIC LETTER WAW with Unicode representation
U+0648 is stored as U0648. The index of the Unicode representation in the list
is used for character mapping during model training and inference. Positions
zero through three of the dictionary are reserved for the special characters start
of sentence <s>, pad </pad>, end of sentence </s>, and mask </mask>. The
CAMIO [6] thirteen language set data plus OSCAR synthetic data generates a
dictionary containing 9,689 characters. Table 2 provides a summary of the scripts
in our model dictionary.

3.5 Logical and Visual Ordering

Our multilingual model can train and perform inference on images that present
text in both left-to-right and right-to-left horizontal reading order. Languages
such as Arabic, Urdu, and Persian use a script that primarily displays right-to-
left text, but also frequenly includes interposed segments of left-to-right text.
Examples include numerals, code switching, or Latin-script strings like e-mail
addresses. For such lines of text, the in-memory storage order (called the logical
order in the Unicode Standard) of the encoded bytes of the text content dif-
fers from the visual reading order of the corresponding glyphs. During training,
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Table 2. Model scripts.

Script Character Count

Arabic 153
Cyrillic 81
Devanagari 94
Han 6315
Hangul 1603
Hiragana 84
Kannada 76
Katakana 76
Latin 337
Tamil 60
Thai 82
Other 723

we convert bi-directional text from its logical ordering into a visual ordering
using the International Components for Unicode (ICU) BiDi Algorithm [10].
This allows us to train and perform inference using the visual ordering for all
languages and then convert back to logical ordering for display and storage.

3.6 Preprocessing

Line images are resized to a fixed height of hfix = 28 and a variable width wvar

that maintains the original aspect ratio. Images are sorted from largest to small-
est width and batched to a fixed maximum width per batch. This provides a vari-
able width batching size that results in smaller batches of wide images and larger
batches of narrow images. Finally, the images within a batch are padded to the
maximum line width of a given batch. Our batching strategy aims to provide max-
imum training efficiency on the GPU with a minimum amount of variance within
batch widths. A fixed height of 28 was selected during parameter optimization over
our validation set. Training images are converted to Arrow tables [1] to provide effi-
cient in-memory access in our distributed training environment. During training,
we filter images with a resized width greater than 1200.

In addition to resizing, we perform a number of augmentations to the
line images during training. These augmentations include Gaussian noise, blur,
JPEG image compression, patch dropout, sharpen, brightness and contrast, and
changes to hue, saturation, and value. One random augmentation is selected
from the set for half of all training images.

3.7 Hybrid Setup

After the input image has been resized to a fixed 28 height, we divide the input
into sl non-overlapping patches of 28 pixels high and 2 or 4 pixels wide. The
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result is an average of about three patches for each character displayed in the
image. Each patch is then projected into a d = 512-dimensional embedding,
resulting in a vector of size (batch size × patch count × 512). A sinusoidal
positional embedding is then added to each patch embedding according to its
position in the patch sequence.

The combined embedding is passed to the encoder, which consists of 16
encoder blocks with 8 attention heads. The encoder also takes as input a padding
mask for images that need to be padded to the maximum batch width. Outputs
from the encoder are a hidden state which maintains the input shape of (batch
size × patch count × 512) and the CTC-head, which projects the hidden state
dimension to the vocabulary size of (batch size × patch count × 9,689). The
decoder takes as input the encoder hidden state of (batch size × patch count ×
512) and adds a sinusoidal positional embedding. This embedding is passed to
the decoder, which consists of 6 decoder blocks with 8 attention heads. The final
output from the decoder has the shape batch size × patch count × 9,689.

The multilingual OCR model is trained in four stages consisting of an
encoder-only (CTC), decoder with a frozen encoder (Seq2Seq), both encoder and
decoder (Joint), and finally, the auxiliary encoder heads. Each pass is trained
in distributed mode on an NVIDIA TITAN RTX with 4 GPU and 24 GB GPU
RAM. The models are trained using a polynomial learning rate scheduler with
a warmup period and an AdamW [23] optimizer.

The first training stage includes only the encoder using CTC loss with mean
reduction. The encoder is trained for 50 epochs, with ten warm-up epochs and
a maximum learning rate of 0.002. The batch size is set to a maximum of 800
line images and a maximum batch width of 80,000 pixels. Training progress is
periodically monitored using CER on the CAMIO [6] validation split.

The second stage trains the autoregressive decoder using the frozen encoder
from the initial training step and a cross-entropy loss with mean reduction. The
decoder is again trained for 50 epochs, with ten warm-up epochs and a maximum
learning rate of 0.002. The batch size is set to a maximum of 300 line images
and a maximum batch width of 30,000 pixels.

The third stage performs a finetune train of both the encoder and decoder,
beginning with the model checkpoints from steps one and two. The learning rate
is reduced to a maximum of 0.0001 with a total of 50 epochs and one warm-up
epoch. The batch size is set to a maximum of 200 line images and a maximum
batch width of 20,000 pixels.

The final stage trains the auxiliary heads using a cross-entropy loss over the
mean of the encoder hidden state output. We provide additional details in the
section on Auxiliary Encoder Heads.

3.8 Results

We evaluate our multilingual hybrid model on the CAMIO [6] thirteen language
test split. The Table 3 shows the results for the initial encoder only (CTC),
the frozen encoder with decoder (Seq2Seq), and the jointly trained encoder
(CTC-Joint) and encoder-decoder (Seq2Seq-Joint). We perform inference on the
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standalone encoder using a greedy argmax decoder and a beam search decoder
with size five on the full encoder-decoder. The results are evaluated using CER
and are shown for input patch sizes of 28× 4 and 28× 2.

The results show that jointly training with the encoder CTC loss and
cross-Entopy loss improves both the standalone encoder and the autoregressive
encoder-decoder. We also see that the smaller input patch width of 2 provides
noticeable improvements over the larger patch width of 4. This improvement is
due to the ability of the smaller patch size to capture small changes in character
shapes for scripts like Chinese and Arabic. The largest difference we see is in
Urdu, where the patch size of two helps to reduce the CER from 23 down to 10.
This is because the Urdu collection contains many lines with Nastaliq fonts, and
the smaller patch size helps capture more context. Overall, we see that the full
encoder-decoder slightly outperforms the standalone encoder for most languages,
at the cost of additional runtime.

We also provide a comparison to pretrained models for Tesseract [27], Easy-
OCR [2], TrOCR [21], and MMOCR [18]. The Tesseract results are based on
the best LSTM model for each language. The TrOCR model is only avail-
able for English and uses the TrOCR-Large-Printed model, available from Hug-
gingface [32]. For MMOCR, we use the SAR [20] model for Chinese, and the
SegOCR [18] for English.

Table 3. Results on the CAMIO [6] test split.

Approach ara zho eng fas hin jpn kan kor rus tam tha urd vie

Patch size (28× 4)

CTC 12.1 6.9 2.6 9.1 7.5 7.5 6.1 3.6 2.8 2.1 6.6 28.9 5.5
CTC-Joint 11.0 6.5 2.3 8.1 6.6 6.9 5.6 3.2 2.5 1.9 5.8 23.9 5.0
Seq2Seq 9.9 8.3 2.5 7.1 6.1 8.1 5.1 3.9 3.3 2.0 4.9 11.7 4.9
Seq2Seq-Joint 8.4 6.7 2.1 6.0 5.0 6.8 4.5 3.2 2.6 1.5 4.1 8.7 4.0
Patch size (28× 2)

CTC 9.7 6.7 2.1 7.3 6.4 7.4 5.4 3.3 2.7 1.9 5.7 13.0 4.8
CTC-Joint 8.7 5.9 1.9 6.4 5.5 6.3 4.8 2.8 2.6 1.6 5.0 10.3 4.2
Seq2Seq 9.5 7.9 2.2 6.8 5.8 8.7 5.1 3.7 3.2 2.0 4.7 9.6 4.5
Seq2Seq-Joint 7.8 6.5 1.8 5.4 4.7 6.2 4.2 3.0 2.9 1.4 3.6 7.3 3.5
Pretrained models
Paddle OCRv3 [19] 49.6 7.7 5.7 59.7 59.4 34.2 – 45.2 58.6 43.1 – 85.6 31.2
Tesseract [27] 23.4 31.0 13.2 21.4 22.4 35.9 17.0 22.3 15.9 30.1 24.4 49.8 19.9
EasyOCR [2] 18.3 29.5 13.6 19.9 16.7 38.5 16.1 22.3 17.4 10.6 18.1 34.0 17.9
MMOCR [18] – 32.3 8.4 – – – – – – – – – –
TrOCR [21] – – 10.9 – – – – – – – – – –
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To understand how the standalone encoder behaves at each patch step, we
visualize the output for a Chinese and Arabic line image from the seed text,
Universal Declaration of Human Rights [4,28]. Figure 3 displays three rows for
each image, which correspond to the original image, an overlay of the patch steps
with width four, and the encoder top one output. The red dot aligns the top one
output to the corresponding patch step. The visualization shows that the CTC
loss helps the encoder align to the patch near the center of a character in both
scripts.

Fig. 3. Hybrid Encoder outputs for CAMIO [6] Chinese and Farsi.

For the multilingual setting, we investigate how the large mixed script vocab-
ulary impacts character confusion by the model. For example, Table 4 shows five
of the top most confused characters for the standalone encoder on the CAMIO [6]
Japanese test split. We observe similar results across the thirteen evaluation
languages, where visually similar characters make up the majority of top model
confusion.

Table 4. Top confusion pairs for CAMIO [6] Japanese.
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3.9 Auxiliary Encoder Heads

The language head is trained using a cross-entropy loss over the mean of the
encoder hidden state output. We freeze the encoder and train only the lan-
guage head using the CAMIO [6] and OSCAR synthetic training sets. Results
are reported in Table 5 using top one, and top two classification accuracy over
the cropped line images of the CAMIO [6] test set. The results show that the
auxiliary head from the encoder provides an overall highly accurate language
identification. We further investigate results for individual languages using the
normalized confusion matrix shown in Fig. 4. We see that most confusions occur
for languages with a common script, such as Arabic (ara), Farsi (fas), and Urdu
(urd). Similar within-script confusions are found between Chinese (zho) and
Japanese (jpn). Overall, the results along the diagonal of the matrix show that
our model provides good accuracy in all of the CAMIO languages.

The font attribute for a line image is not available in the CAMIO [6] test
dataset, so we create a synthetic data to demonstrate the auxiliary font head
of the encoder. First, we hand-selected approximately 95 fonts from the Google
Font set that provides full coverage of the thirteen languages and minimizes
visual similarity within each language. Next, we generated approximately 25,000
synthetic line images for each language using OSCAR as the seed text. The
synthetic lines were split into 80/10/10 for train, validation, and test. The font
head was trained with the frozen encoder using a cross-entropy loss over the
mean of the encoder’s hidden state output. Finally, we evaluate the top 1 and
top 2 accuracy results on the test split, shown in Table 6, to demonstrate the
ability of the auxiliary head to identify line image font.

We also train an auxiliary head to identify vertical text in line images. The
model is trained similarly to the other auxiliary heads using the mean of the
encoder hidden state output. We train and evaluate using the CAMIO Chinese,
Japanese, Korean, and Vietnamese languages. The results in Table 7, show the
precision, recall, and F1-score for the evaluation split in these languages.

Table 5. Language ID accuracy for CAMIO [6].

Auxiliary Head Top 1 Top 2

Language 0.96 0.99

Table 6. Font ID accuracy for synthetic test set.

Auxiliary Head Top 1 Top 2

Font 0.95 0.98
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Table 7. Vertical evaluation results for CAMIO [6] Chinese, Japanese, Korean, and
Vietnamese.

Auxiliary Head Precision Recall F1

Vertical 0.98 0.87 0.92

Fig. 4. Language ID confusion matrix on CAMIO [6].

Table 8. Hybrid OCR inference times on the CAMIO [6] Chinese test split (patch size
28× 2).

Model Total Time in seconds Images per second

CTC-Encoder 1.1 7,280
Seq2Seq 135.9 58

3.10 Inference Speed

We evaluate the CTC, and Seq2Seq model inference speeds on the CAMIO [6]
Chinese test set. The evaluation is performed on a TITAN RTX with 24GB
of memory using CUDA 11.5. We follow our training preprocess approach by
resizing all images to a fixed height of 28 and variable size width that maintains
the original aspect ratio. The images are sorted by width from longest to shortest
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and then batched into groups with a maximum width of 10,000 and a maximum
batch size of 100. For the CTC-Encoder, the inference time is calculated by
summing the total time of the model forward calls. The Seq2Seq inference uses
the Huggingface beam decoder with a beam size of 5. In this case, we calculate
inference time by summing the calls of the beam decoder. Table 8 shows that the
CTC-Encoder provides a fast and accurate alternative to the full autoregressive
model and can average over 7,000 line images per second.

4 Conclusions

This work presents a multilingual approach to text recognition that provides
a single model that can recognize over nine thousand characters from thirteen
diverse scripts. The hybrid transformer-based encoder-decoder model allows the
fast non-autoregressive encoder to be used in standalone mode or with the full
autoregressive decoder. Our approach allows variable-width inputs that naturally
match the sequence-to-sequence recognition problem. We also experimented with
different encoder patch widths and showed how this parameter impacts recog-
nition performance across scripts. In addition, we extend the encoder with aux-
iliary heads for several important visual attributes of the document processing
pipeline. Finally, we evaluate our approach on a challenging multilingual evalu-
ation dataset and show state-of-the-art results for character error rate.
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1 Introduction

Text image machine translation (TIMT) is a cross-modal generation task, which
translates source language texts in images into target language sentences. Various
real-world applications have been conducted for TIMT, such as digital document
translation, scene text translation, handwritten text image translation, and so
on. Existing TIMT systems are mainly constructed with a recognition-then-
translation pipeline model [1,4,7,9,15], which first recognizes texts in images
by a text image recognition (TIR) model [2,16,17,27,28], and then generates
target language translation with a machine translation (MT) model [20,22,29,
30]. However, pipeline models have to train and deploy two separate models,
leading to parameter redundancy and slow decoding speed. Meanwhile, errors in
TIR model are further propagated by MT models, which causes more translation
mistakes in the final translation results.

To address the shortcomings of pipeline models, end-to-end TIMT models
are proposed with a more efficient architecture [14]. Although end-to-end models
have fewer parameters and faster decoding speed, the end-to-end training data is
limited compared with recognition or translation datasets, leading to inadequate
training and limited translation performance of end-to-end models. As a result,
how to explicitly incorporate external recognition or translation results has been
studied by existing research [6,13]. Furthermore, transfer knowledge from TIR
or MT models has been conducted to end-to-end TIMT models through feature
transformation [18] and cross-modal mimic framework [5].

However, sub-modules in end-to-end TIMT models play quite different func-
tions, which need different knowledge from various teacher models. Although
existing methods explore to transfer knowledge from external models, how to
introduce different knowledge into each sub-modules of the end-to-end TIMT
model remains unsolved.

In this paper, we propose a novel multi-teacher knowledge distillation
(MTKD) approach for end-to-end TIMT model, which is designed to transfer
various types of knowledge into end-to-end TIMT model. Specifically, three sub-
modules in end-to-end models are considered to optimize by distilling knowledge
from different teacher models.

• Image encoder aims at extracting features of input images from pixel space to
dense feature space, which has a similar function as the TIR image encoder.
As a result, TIR image encoder is utilized as the teacher model for image
encoder in end-to-end TIMT model to improve the image feature extraction.

• Sequential encoder in end-to-end TIMT model fuses the local image features
into contextual features, which learns advanced semantic information of the
sentences in text images. To guide semantic feature learning, MT sequential
encoder offers the teacher guidance for TIMT sequential encoder to better
map image features into semantic features.

• Decoder in end-to-end TIMT model generates target translation autoregres-
sively, which has a similar function as the MT decoder. As so, the prediction
distribution on target language vocabulary is utilized as the teacher distri-
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bution to guide the decoder in end-to-end TIMT generate better prediction
distribution.

By transferring different knowledge into corresponding sub-modules in end-
to-end TIMT model, fine-grained knowledge distillation can better improve the
translation quality of end-to-end TIMT models. In summary, our contributions
are summarized as:

• We propose a novel multi-teacher knowledge distillation method for end-
to-end TIMT model, which is carefully designed for fine-grained knowledge
transferring to various sub-modules in end-to-end TIMT models.

• Various teacher knowledge distillation provides more improvements compared
with single teacher guidance, indicating different sub-modules in end-to-end
models need different knowledge information to better adapt corresponding
functions.

• Extensive experimental results show our proposed MTKD method can effec-
tively improve the translation performance of end-to-end TIMT models. Fur-
thermore, MTKD based TIMT model also outperforms pipeline system with
fewer parameters and less decoding time.

2 Related Work

2.1 Text Image Machine Translation

Text image machine translation models are mainly divided into pipeline and
end-to-end models. Pipeline models deploy text image recognition and machine
translation models respectively. Specifically, the source language text images
are first fed into TIR models to obtain the recognized source language sen-
tences. Second, the source language sentences are translated into the target
language with the MT model. Various applications have been conducted with
the pipeline TIMT architectures. Photos, scene images, document images, and
manga pages are taken as the input text images. The TIR model recognizes the
source language texts, and the MT model generates target language transla-
tion [1,3,4,7,9,23,25,26].

End-to-end TIMT models face the problem of end-to-end data scarcity and
the performance is limited. To address the problem of data limitation, a multi-
task learning method is proposed to incorporate external datasets [6,13,18].
Feature transformation module is proposed to bridge pre-trained TIR encoder
and MT decoder [18]. The hierarchy Cross-Modal Mimic method is proposed
to utilize MT model as a teacher model to guide the end-to-end TIMT student
model [5].

2.2 Knowledge Distillation

Knowledge distillation has been widely used to distillate external knowledge into
the student model to improve performance, speed up the training process, and
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Fig. 1. Overall Diagram of (a) Text Image Recognition, (b) Text Image Machine Trans-
lation, (c) Machine Translation models and Multi-Teacher Knowledge Distillation.

decrease the parameter amounts in teacher models. Specifically, in sequence-
to-sequence generation related tasks, token-level and sentence-level knowledge
distillation have been proven effective in generation tasks [10,11]. Various tasks
have been significantly improved through knowledge distillation method, like bi-
lingual neural machine translation [19], multi-lingual translation [21], and speech
translation [12].

To incorporate more knowledge into one student model, multiple teacher
models are utilized in some studies to further transfer knowledge into student
model. [21] proposed to use various teacher models in different training mini-
batch to make the multilingual NMT model learn various language knowledge.
DOPE is designed to incorporate multiple teacher models to guide different
subnetworks of the student model to provide fine-grained knowledge like body,
hand, and face segmentation information [24].

However, existing methods lack exploration in integrating various knowledge
into end-to-end TIMT models. Our proposed multi-teacher knowledge distilla-
tion effectively addresses this problem by transferring different knowledge into
various sub-modules to meet the corresponding functional characteristics of dif-
ferent modules.
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3 Methodology

3.1 Problem Definition

The end-to-end TIMT model aims at translating source language texts in images
into target language sentences. Let I be the source language text image and cor-
responding target language sentence is Y containing z tokens {y1, y2, ..., yz}. The
training object for the end-to-end TIMT model is to maximize the translation
probability:

P (Y|I; θTIMT) =
z∏

i=1

P (yi|I,Y<i) (1)

where Y<i represents the translation history at the i-th decoding step, and
θTIMT denotes the parameters of end-to-end TIMT model.

Specifically, to generate target language translation, end-to-end TIMT model
is divided into three sub-modules: image encoder, sequential encoder, and
decoder as shown in Fig. 1 (b). Image encoder I extracts image features from
pixel space and ResNet [8] is utilized as the image encoder in our work:

FI = I(I; θI) = ResNet(I) (2)

where I ∈ R
H·W ·C denotes the input text image, and H,W,C represent the

height, width, and channel of input image respectively. FI ∈ R
lI∗c denotes

the image feature, and lI , c represent length and channel of feature sequence
respectively. Generally, image features encoded by convolutional network are
F ′

I ∈ R
h·w·c, where h,w, c represent the height, width, and channel of feature

maps respectively. To meet the requirement of following sequential encoding, fea-
ture maps are resized to feature sequence by reducing height and width dimen-
sion into feature length: lI = h·w. Thus, the output of image encoder is a feature
sequence containing local information of input text image.

Sequential encoder S(·) aims at encoding contextual semantic features given
local features of input text image. Transformer encoder is utilized as the sequen-
tial encoder in this paper:

FS = S(FI ; θS) = TransformerEncoder(FI) (3)

where FS ∈ R
lS ·hS represents the sequential features that contains contextual

semantic information of the whole feature sequence. lS , hS represent sequence
length and hidden dimension of sequential features.

Finally, target language decoder D(·) generates translation results autore-
gressively and transformer decoder is utilized in our work:

FD = D(FS ; θD) = TransformerDecoder(FS) (4)

where FD ∈ R
lD·hD represents the output of decoder. lD, hD represent sequence

length and hidden dimension of decoder features respectively. The final decoded
word ŷi

TIMT is calculated by:
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ŷi
TIMT = arg max

j∈[1,|VY|]
P (ŷi

j |I, Ŷ<i), where P (ŷi
j |I, Ŷ<i) ∝ WoF

i
D (5)

where P (ŷi
j |I, Ŷ<i) denotes the probability that the decoder predicts the j-th

word ŷi
j in vocabulary at i-th decoding step. Wo ∈ R

|VY|·hD denotes a linear
matrix that maps decoder features into target language words. |VY|, hD represent
the size of target language vocabulary and the hidden dimension of decoder
respectively. F i

D means the i-th element of decoder feature FD, which represents
the decoder information at position i. Ŷ<i represents the translation history
before i-th step. In summary, end-to-end TIMT model utilizes image encoder,
sequential encoder, and target language decoder to generate target language
translation results word by word.

To optimize the end-to-end TIMT model, the log-likelihood loss function is
utilized:

LTIMT = −
∑

(I,Y)∈DTIMT

log P (Y|I)

log P (Y|I) =
z∑

i

|VY|∑

j

I(ŷi
j = yi) log P (ŷi

j |I, Ŷ<i)
(6)

where I(ŷi
j = yi) is an indicator function which eques 1 when predicted word

ŷi is the same as the ground-truth yi, otherwise it equals 0. z denotes the sen-
tence length of target language ground-truth. DTIMT represents the text image
translation training dataset.

3.2 Architecture of Teacher Models

Different sub-modules in end-to-end TIMT model play quite different functions
and need various knowledge guidance. Image encoder is utilized to extract local
visual features from input text images, while a sequential encoder further encodes
contextual semantic information from local visual features. Finally, a decoder
is designed to generate translation results given sequential features. To incor-
porate various knowledge into sub-modules of end-to-end TIMT model, three
teacher models are utilized to guide the optimization of image encoder, sequen-
tial encoder, and decoder respectively. Specifically, knowledge of extracting text
image features is transferred from TIR encoder. MT sequential encoder pro-
vides the guidance of contextual semantic feature learning, while MT decoder
distillates the target language generation knowledge into TIMT decoder.

Text Image Recognition Teacher Model. Considering image encoder
extracts local visual features from input text images, which is consistent between
TIMT and TIR tasks, TIR model is incorporated to provide guidance for image
feature learning. In this paper, TIR models are also divided into three sub-
modules as end-to-end TIMT model to better understand the information flow
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between teacher and student models. Similar to TIMT image encoder, TIR image
encoder also aims at extracting local visual features of input text images:

FTIR
I = ITIR(I; θTIR

I ) = ResNet(I) (7)

where FTIR
I denotes the image features encoded by TIR image encoder ITIR(·)

and the dimension of FTIR
I is same as the image feature FI of end-to-end TIMT

model introduced in Sect. 3.1. θTIR
I represents the model parameters of TIR

image encoder. The architecture of TIR image encoder is similar to TIMT image
encoder, but these two models are trained with different supervised data.

TIR Sequential encoder is also designed to further extract contextual infor-
mation by considering whole local visual features:

FTIR
S = STIR(FTIR

I ; θTIR
S ) = TransformerEncoder(FTIR

I ) (8)

where FTIR
S ,STIR(·), θTIR

S denote TIR sequential features, TIR sequential
encoder, and parameters of TIR sequential encoder respectively.

Different from generating target language in TIMT decoder, TIR decoder
predicts source language words autoregressively:

FTIR
D = DTIR(FTIR

S ; θTIR
D ) = TransformerDecoder(FTIR

S ) (9)

where FTIR
D ,DTIR(·), θTIR

D denote TIR decoder features, TIR decoder, and
parameters of TIR decoder respectively. To further map TIR decoder feature
into source language space, a transformation matrix is utilized to transform
decoder feature into source language word:

x̂i
TIR = arg max

j∈[1,|VX|]
P (x̂i

j |I, X̂<i), where P (x̂i
j |I, X̂<i) ∝ WTIR

o FTIRi

D (10)

where x̂i
j represents the j-th word in source language vocabulary at decod-

ing position i, while x̂i
TIR represents the final predicted word of decoder at

i-th decoding step. WTIR
o ∈ R

|VX|·hTIR
D denotes the transformation matrix from

decoder feature space to source language space. |VX|, hTIR
D represent the size

of source language vocabulary and feature dimension of TIR decoder respec-
tively. FTIRi

D denotes the TIR decoder feature at position i. X̂<i represents the
recognition history before i-th decoding step.

The overall architecture of TIR and TIMT models is similar, but the super-
vised data is different. TIR model is trained with recognition data pair < I, X >,
where X means the source language recognition label of input text image I.
While TIMT model is trained with text image translation pair < I, Y >, where
Y means the target language translation of corresponding source language sen-
tence X. To optimize the parameters in TIR model, the log-likelihood loss is
utilized similar to TIMT optimization:

LTIR = −
∑

(I,X)∈DTIR

log P (X|I)

log P (X|I) =
z∑

i

|VX|∑

j

I(x̂i
j = xi) log P (x̂i

j |I, X̂<i)
(11)
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where x̂i
j denotes the j-th word in source language vocabulary at i-th decod-

ing step, while xi represents the ground-truth word at i-th decoding step. z
denotes the sentence length of ground-truth. I(·) means the indicator function
as introduced in Eq. (6). DTIR represents the text image recognition dataset.

Machine Translation Teacher Model. Different from cross-modal genera-
tion TIR and TIMT models, MT model is a text-to-text transformation network.
Thus, the encoder of raw data is quite different from TIR and TIMT models. To
obtain text features from source language sentence strings, an embedding layer
based text encoder is utilized to map the input words into word embedding:

FMT
T = T MT(X; θMT

T ) = Embedding(X) (12)

where FMT
T , T MT(·), θMT

T represent text features, MT text encoder, and param-
eters of MT text encoders respectively.

Word embedding only contains single word information rather than global
semantic information. To better extract contextual semantic features, MT
sequential encoder further encodes contextual information by considering all
input words:

FMT
S = SMT(FMT

T ; θMT
S ) = TransformerEncoder(FMT

T ) (13)

where FMT
S ,SMT(·), θMT

S denote MT sequential feature, MT sequential encoder,
and parameters of MT sequential encoder respectively. Similar to TIR and TIMT
sequential encoder, transformer encoder is utilized to extract contextual semantic
features given MT text features.

MT decoder generates target language translation word by word given MT
sequential features:

FMT
D = DMT(FMT

S ; θMT
D ) = TransformerDecoder(FMT

S ) (14)

where FMT
D ,DMT(·), θMT

D represent MT decoder features, MT decoder, and
parameters of MT decoder respectively. To further map MT decoder features
into target language space, a transformation matrix is utilized to calculate the
translation probability:

ŷi
MT = arg max

j∈[1,|VY|]
P (ŷi

j |X, Ŷ<i), where P (ŷi
j |X, Ŷ<i) ∝ WMT

o FMTi

D (15)

where ŷi
j represents the j-th word in target language vocabulary at i-th decoding

step, while ŷi
MT represents the final predicted word of target language decoder at

decoding position i. X, Ŷ<i denote source language sentence and translation his-
tory before i-th decoding step respectively. WMT

o ∈ R
|VY|·hMT

D denotes the trans-
formation matrix which maps MT decoder features into target language space.
|VY|, hMT

D denote the size of target language vocabulary and hidden dimension
of MT decoder feature respectively.
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LMT = −
∑

(X,Y)∈DMT

log P (Ŷ|X)

log P (Ŷ|X) =
z∑

i

|VY|∑

j

I(ŷi
j = yi) log P (ŷi

j |X, Ŷ<i)
(16)

where ŷi
j denotes the j-th word in target language vocabulary at i-th decoding

step, while yi represents ground-truth word at i-th decoding step. z denotes the
sentence length of ground-truth. I(·) means the indicator function as introduced
in Eq. (6). DMT represents the text machine translation dataset.

From the comparison of TIR, MT, and TIMT architectures, they have sim-
ilar and different functions. For example, TIR image encoder and TIMT image
encoder have similar structure and functions. All the sequential encoders are
similar in architecture and the functions all aim at extracting contextual seman-
tic information. Furthermore, MT decoder and TIMT decoder are both designed
to predict target language sentences, which has similar structure and function.
As a result, sub-modules of TIMT model with similar architecture and function
can as that of TIR or MT models can be improved by multi-teacher knowledge
distillation.

3.3 Knowledge Distillation from TIR Image Encoder

TIMT image encoder and TIR image encoder both extract local visual features
from input text images. Compared with TIMT task, TIR task has much more
training data, thus TIR models can be better optimized to encode image fea-
tures of text images. To address the data limitation of end-to-end TIMT task,
knowledge distillation from TIR image encoder is proposed to transfer text image
encoding knowledge into TIMT image encoder. As shown in Fig. 1, TIMT image
encoder is optimized not only by end-to-end text image translation loss but also
by the guidance from TIR image encoder. To align the TIMT image features
with TIR image features, both token-level and sentence-level knowledge distil-
lation are incorporated to guide TIMT image encoder to predict similar image
features as TIR image features:

Token-Level Image Encoder Knowledge Distillation. TIMT and TIR
image features are feature sequences as introduced in Sect. 3.1. To provide fine-
grained guidance information, L2-Norm constraint is utilized to guide TIMT
image encoder outputs:

LI
TKD =

1
B · lI

B∑

j

lI∑

i

‖F ij
I − FTIRij

I ‖2 (17)

where LI
TKD denotes the token-level image encoder knowledge distillation loss

function. F ij
I , FTIRij

I represent TIMT and TIR image features of j-th sample at
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position i respectively. lI denotes the length of TIMT image feature sequence,
and lI = lTIR

I in our experiments, indicating the sequence length of TIMT and
TIR image features are the same. B denotes the batch size.

Sentence-Level Image Encoder Knowledge Distillation. To provide
sentence-level guidance, both TIMT and TIR global image features are calcu-
lated by average pooling:

LI
SKD =

1
B

B∑

j

‖ 1
lI

lI∑

i

F ij
I − 1

lTIR
I

lTIR
I∑

i

FTIRij

I ‖2 (18)

where LI
SKD represents the loss function of sentence-level image encoder knowl-

edge distillation. By calculating the global image features, the optimization of
TIMT image encoder is guided by the global alignment between TIMT and TIR
image features.

Finally, the token-level and sentence-level image encoder knowledge distilla-
tion loss functions are fused to obtain image encoder knowledge distillation loss
function LI

KD, which provides multi-granularity knowledge distillation guidance
information:

LI
KD = LI

TKD + LI
SKD (19)

3.4 Knowledge Distillation from MT Sequential Encoder

The sequential encoder is vital to TIMT task, because the contextual semantic
features are important for cross-lingual generation. To improve the ability of
TIMT sequential encoder, knowledge distillation from MT sequential encoder is
incorporated to guide the optimization of TIMT sequential encoder as shown
in Fig. 1. Similar to image encoder knowledge distillation, sequential encoder
knowledge distillation also has token-level and sentence-level knowledge distilla-
tions:

Token-Level Sequential Encoder Knowledge Distillation. Similar to the
token-level image encoder knowledge distillation, MT sequential features are
regarded as the guidance for TIMT sequential features through L2-Norm con-
straint:

LS
TKD =

1
B · lS

B∑

j

lS∑

i

‖F ij
S − FMTij

S ‖2 (20)

where LS
TKD represents sequential knowledge distillation loss function.

F ij
S , FMTij

S represent TIMT and MT sequential features of j-th sample at posi-
tion i respectively. lS denotes the length of TIMT sequential feature sequence,
which is set the same as the length of MT sequential feature sequence lMT

S .
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Sentence-Level Sequential Encoder Knowledge Distillation. To further
provide global guidance of sequential feature learning, the sentence-level sequen-
tial encoder knowledge distillation is proposed by performing average pooling on
TIMT and MT sequential features:

LS
SKD =

1
B

B∑

j

‖ 1
lS

lS∑

i

F ij
S − 1

lMT
S

lMT
S∑

i

FMTij

S ‖2 (21)

where LS
SKD denotes the sequential encoder knowledge distillation loss function.

The length of TIMT and MT sequential features are the same (lS = lMT
S ) as

introduced in token-level sequential encoder knowledge distillation.
Overall sequential encoder knowledge distillation loss function LS

KD is
obtained by combining token-level and sentence-level sequential encoder knowl-
edge distillation:

LS
KD = LS

TKD + LS
SKD (22)

3.5 Knowledge Distillation from MT Decoder

Different from image and sequential encoder knowledge distillation, decoder
knowledge distillation is proposed to align the predicted target language vocab-
ulary distribution between TIMT and MT decoders. Token-level decoder knowl-
edge distillation aims at aligning the prediction probability between TIMT and
MT decoders at each decoding step, while sentence-level decoder knowledge dis-
tillation takes the MT predicted target language sentence as the ground-truth
to calculate the decoding loss for the optimization of TIMT model.

Token-Level Decoder Knowledge Distillation. As introduced in Eq. (5),
TIMT decoder predicts the j-th target language word at i-th decoding step
with the probability of P (ŷi

j |I, Ŷ
TIMT

<i ), while MT decoder generates the j-th

target language word at i-th step with the probability of P (ŷi
j |X, Ŷ

MT

<i ) as in
Eq. (15). To align the decoding distribution, I and X are paired text images and

corresponding source language text sentences. Ŷ
TIMT

<i , Ŷ
MT

<i represent decoding
history of TIMT and MT models respectively. The token-level decoder knowledge
distillation loss is calculated by updating the vanilla cross-entropy loss:

LD
TKD = −

z∑

i

|VY|∑

j

P (ŷi
j |X, Ŷ

MT

<i ) log P (ŷi
j |I, Ŷ

TIMT

<i ) (23)

where LD
TKD denotes the token-level decoder knowledge distillation loss. By

transferring decoding knowledge from MT teacher decoder, the TIMT decoder
is guided to have a similar predicted probability of target language words.
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Sentence-Level Decoder Knowledge Distillation. To provide sentence-
level decoding knowledge distillation, the MT model decoded target language
sentences are utilized to replace original ground-truth sentences. Different from
token-level decoder knowledge distillation, which is designed to align the decod-
ing probability between TIMT and MT decoders, sentence-level decoder knowl-
edge distillation aims at guiding the TIMT decoder to have similar translation
results as MT decoder:

LD
SKD = −

z∑

i

|VY|∑

j

I(ŷi
j = ŷi

MT) log P (ŷi
j |I, Ŷ

TIMT

<i ) (24)

where LD
SKD denotes sequence-level decoder knowledge distillation loss function.

Different from the vanilla log-likelihood loss function, the ground-truth sentence
is replaced as the MT prediction results. Thus the indicator function I(ŷi

j = ŷi
MT)

equals 1 when the TIMT decoded word ŷi
j is the same as the MT predicted word

ŷi
MT. By incorporating both token-level and sentence-level decoder knowledge

distillation, the overall loss function of decoder knowledge distillation is formu-
lated as:

LD
KD = LD

TKD + LD
SKD (25)

The final loss function is the combination of end-to-end text image translation
and knowledge distillation loss functions:

LALL = (1 − λKD)LTIMT + λKDLKD

LKD = λILI
KD + λSLS

KD + λDLD
KD

(26)

where λKD, λI , λS , λD represent the loss weight of overall knowledge distillation,
image encoder knowledge distillation, sequential encoder knowledge distillation,
and decoder knowledge distillation respectively.

Fig. 2. Examples of synthetic, subtitle and street-view text image translation datasets.
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4 Experiments

4.1 Datasets

To train the end-to-end TIMT model, the publicly available dataset released
by [13] is utilized in our experiments. As shown in Fig. 2, this dataset con-
tains samples from three domains: synthetic, subtitle, and street-view domains.
The training and validation samples are all from synthetic domain, while sam-
ples in evaluation set are from all three domains. Three translation directions
are conducted in this dataset: English-to-Chinese (EnCh), English-to-German
(EnDe), and Chinese-to-English (ChEn) translation. There are 1,000,000 train-
ing samples, 2,000 validation samples, and 2,000 evaluation samples in synthetic
domain. The subtitle test set contains 1,040 samples, while the street-view test
set has 1,198 samples. To implement knowledge distillation, triple-aligned sam-
ples {source language images, source language texts, target language
texts} are utilized to transfer the pre-trained knowledge from TIR and MT
teacher models into the TIMT student model.

Table 1. Results of various knowledge distillation combinations on English-to-Chinese
translation validation set. TKD and SKD represent using single token-level or sentence-
level knowledge distillation loss. TKD+SKD means the fused token-level and sentence-
level knowledge distillation are used for knowledge distillation loss function. BLEU
Score is utilized to evaluate the translation performance.

No λI λS λD TKD SKD TKD+SKD

1 0 0 1 23.02 22.68 23.16

2 0 1 0 22.63 22.44 22.85

3 0 1 1 23.47 23.04 23.79

4 1 0 0 22.45 22.30 22.68

5 1 0 1 23.28 22.95 23.52

6 1 1 0 23.19 22.73 23.34

7 1 1 1 23.86 23.51 24.13

4.2 Experimental Setup

To provide a faire comparison with existing research on end-to-end TIMT task, a
similar model architecture as [13] is utilized in our experiment. The TIMT image
encoder is composed of TPS Net and Res Net, which extracts the image features
from the raw input text images. The TIMT sequential encoder and decoder are
6-layer transformer encoder and 6-layer transformer decoder respectively, which
is also the same as [13]. The MT model replaced the TIMT image encoder with
an embedding layer based text encoder. The sequential encoder and decoder of
the MT model are kept the same as the TIMT model. The preprocessing method
and experimental setting are the same as [13]. For decoding results, sacre-BLEU
1 is calculated to evaluate the translation performance.
1 https://github.com/mjpost/sacrebleu.

https://github.com/mjpost/sacrebleu
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4.3 Results of Various Knowledge Distillation

Table 1 shows the results of various knowledge distillation (KD) combinations.
Line No.1, No.2, and No.4 show the results of single-teacher KD. Single decoder
KD (No.1) achieves the best single-teacher performance due to the strong guid-
ance from decoding knowledge. Sequential encoder KD (No.2) outperforms image
encoder KD (No.4), indicating semantic knowledge transferring is more impor-
tant for TIMT task. For bi-teacher KD comparison, sequential encoder and
decoder KD combination (No.3) performs well by incorporating semantic and
decoding guidance. Finally, triple-teacher KD (No.7) achieves the best perfor-
mance by transferring image encoder, sequential decoder, and decoder knowledge
into end-to-end TIMT model, indicating incorporating accurate knowledge into
various sub-modules is vital for performance improvements.

4.4 Comparison with Existing TIMT Methods

Compared with existing end-to-end TIMT models, MTKD has significant
improvements by incorporating various knowledge into sub-modules of TIMT
model. Table 2 shows the comparison between MTKD and existing TIMT mod-
els. TRBA [2] is a vanilla TIR model trained with translation dataset. CLTIR [6]
proposed to train TIMT model with TIR multi-task learning. RTNet [18] bridges
pre-trained TIR and MT models with feature transformer. METIMT [13] trains
TIMT model with MT auxiliary task. MHCMM [5] is a mimic learning based
method by introducing MT teacher for TIMT model. Different from existing
research, MTKD incorporates both TIR and MT teachers into TIMT optimiza-
tion. Meanwhile, various knowledge distillation is utilized to transfer accurate

Table 2. Comparison of existing end-to-end models with our proposed multi-teacher
knowledge distillation (MTKD) method. MTKD utilizes the knowledge distillation set-
ting of line No.7 in Table 1.

Architecture Synthetic Subtitle Street

EnCh EnDe ChEn EnCh ChEn ChEn

Existing End-to-End Models

TRBA [2] 9.61 7.36 4.77 12.12 5.18 0.36

CLTIR [6] 18.02 15.55 10.74 16.47 9.04 0.43

CLTIR+TIR [6] 19.44 16.31 13.52 17.96 11.25 1.74

RTNet [18] 18.91 15.82 12.54 17.63 10.63 1.07

RTNet+TIR [18] 19.63 16.78 14.01 18.82 11.50 1.93

MTETIMT [13] 19.25 16.27 13.16 17.73 10.79 1.69

MTETIMT+MT [13] 21.96 18.84 15.62 19.17 12.11 5.84

MHCMM [5] 22.08 18.97 15.66 19.24 12.12 5.87

Our Proposed Multi-Teacher Knowledge Distillation Method

MTKD 22.26 19.38 15.84 19.31 12.17 6.08
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Table 3. Comparison of TIR+MT pipeline method with MTKD method on English-
to-Chinese synthetic test set. Model size represents the parameter amount of the model.
Decoding time means the time of predicting a sentence and the unit is second. BLEU
score is utilized to evaluate the translation performance on valid and test set.

Architecture Model Size↓ Decoding Time↓ Valid BLEU↑ Test BLEU↑
Pipeline 195.1M 0.33s 23.52 20.46

MTKD 121.9M 0.19s 24.13 22.26

knowledge into sub-modules of TIMT model. Finally, MTKD outperforms the
existing best MHCMM model with 0.18 BLEU scores on average. Improvements
in all three evaluation domains reveal the good generalization of MTKD.

4.5 Comparison with Pipeline Method

Table 3 shows the comparison of MTKD with the TIR+MT pipeline model. By
transferring knowledge into TIMT model, MTKD has better translation perfor-
mance, which effectively addresses the error propagation problems in pipeline
model. With an end-to-end architecture, MTKD has fewer parameters than
pipeline model. Meanwhile, MTKD has less decoding time than pipeline model,
which is vital in real-world applications (Table 3).

4.6 Analysis of Hyper-parameter

The loss weight of knowledge distillation is a key hyper-parameter to balance
the end-to-end TIMT loss and knowledge distillation losses. When λKD = 0, the

Fig. 3. Hyper-parameter analysis on the loss weight of knowledge distillation.
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model is only optimized with end-to-end loss function and the performance is
limited due to the end-to-end data scarcity and the difficulty of TIMT task. By
incorporating KD loss, the performance is getting better and the optimal value
for λKD is 0.8. When λKD = 1, the performance drops a bit, indicating end-to-
end TIMT loss by guiding the model learns to predict as the ground-truth is
also important for TIMT task.

5 Conclusion

In this paper, we propose a novel multi-teacher knowledge distillation (MTKD)
method for end-to-end text image machine translation task. Three pre-trained
teacher models are utilized to provide accurate knowledge for corresponding
sub-modules in end-to-end TIMT model. By transferring various knowledge
into sub-modules of TIMT model, the translation performance is significantly
improved compared with existing methods. Meanwhile, token-level and sentence-
level knowledge distillation are complementary for knowledge transferring, indi-
cating that multi-granularity knowledge distillation is vital for TIMT improve-
ments. Furthermore, MTKD based TIMT model outperforms pipeline models
with a smaller model size and less decoding time, which has the advantages of
both end-to-end and pipeline models. In the future, we will explore to transfer
more knowledge into end-to-end TIMT model to further improve the translation
performance.

Acknowledgement. This work has been supported by the National Natural Science
Foundation of China (NSFC) grants 62106265.
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Abstract. Essay writing plays a critical role in Chinese language skill
teaching. With the smart education becomes a hot topic, the demand
for automatic essay scoring (AES) has been emerging among teachers
and students. Existing works frequently ignore the impact of the visual
modal during the scoring process, such as writing quality in terms of
neatness or legibility. This paper addresses the problem with a visual-
textual integrating perspective and proposes a deep learning based multi-
modal AES. Specifically, implicit alignment algorithm is presented to
cohere the distinct visual modal and text modal. Methods are tested on a
large-scale dataset consisting of over 4000 essays including HSK publicly
available samples. The results show that multi-modal AES reduce the
MAE of scoring from 1.13 to 1.06, and the implicit alignment algorithm
reduces it further to 1.01.

Keywords: Automated Essay Scoring · Multi-modal Learning ·
Implicit Alignment

1 Introduction

Essay teaching plays a critical role in teenagers’ Chinese language education.
Currently there exist problems for both students and teachers. From the per-
spective of students, it is difficult to improve the writing ability due to the lack
of timely guidance and feedback. From the perspective of teachers, the dedi-
cated essay scoring is a time-consuming work. Therefore, an automatic system
for handwritten essay scoring is desirable for both industry and academics to
improve the writers’ essay writing abilities.

Existing works mostly tackle the task using natural language processing. The
advent of pre-trained models represented by the bidirectional encoder represen-
tations from transformers (BERT) [3] has made a lot of progress. In recent years,
a number of deep learning-based scoring methods based on text information have
emerged. On the other hand, the industry has also attempt to create auxiliary
teaching systems to reduce the huge burden work of teachers and improve stu-
dents writing skills quickly and easily. However, there are still the following
challenges and problems in achieving a fully usable scoring system.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14187, pp. 505–519, 2023.
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We can see that exiting BERT-based essay assessing methods attribute to
solely text modality. Indeed, teachers will not only pay attention to the content
of the text itself, but also to the visual information, such as neatness of the
handwriting and legibility of the calligraphy. It means that visual features play an
indispensable role in the scoring process. Therefore, the scoring system needs to
consider both textual modal and visual modal simultaneously. How to effectively
integrate visual information into the grading model is also an issue worthy of
study.

The paper proposes a multimodal scoring model based on regression to tackle
the issue. To bridge the gaps between text and visual modalities,implicit align-
ment algorithm is designed. A pretrained full-page recognizer, named FPRNet
[15], is adopted to facilitate the coupling of two modalities. As for visual modal,
features such as the degree of neatness and the degree of writing legibility can
be considered through this model. Experimental evaluations show that fusion
based on implicit alignment outperforms the traditional manner.

2 Related Works

Here we summarize the general work of our predecessors into two parts. First
of all, in terms of composition feature representation, the multimodal feature
representation method can integrate the text information and image information
of the essay, which is helpful for more accurate and comprehensive scoring of
the essay. The current scoring systems mainly include deep learning methods
based on pre-trained models and machine learning methods based on feature
engineering, both of which only evaluate the content of the composition itself.

2.1 Multimodal Feature Text Representation

Multi-modal is one of the natural attributes of document text. For a deep under-
standing of text, not only the text content itself needs to be considered, but also
the image information carrying the text content. How to effectively fuse fea-
tures from multiple digital domains to achieve information complementarity is
of great significance for the study of tasks based on multimodal features. The
main goal of multimodal feature fusion is to reduce the heterogeneous difference
between modalities and obtain multimodal representations while maintaining
the integrity of each modality-specific semantics [4].

In recent years, the pre-training model represented by BERT has achieved
great success. Many scholars have also followed the idea of pre-training and used
a model structure similar to Transformer to carry out research on multi-modal
representation. The model design used in this type of work can be divided into
two types: 1) single-stream structure, for example, VisualBERT [11], Unicoder-V
[9] and VL-BERT [3]; 2) dual-stream structure, such as ViBERT [16], Lxmert
[17], The former maps all data in a unified semantic space, while the latter
requires multi-modal information to be fused with different modal information
through an independent encoder.
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In the field of fusion of text features and visual features, LayoutLM [22]
adopts the idea of single-stream structure to conduct research on document
layout analysis, and provides more abundant information for downstream tasks
through pre-training and natural text location information. The VSR [23] model
uses a two-stream convolutional network to extract image visual features and text
language features respectively. The semantic information is used to obtain the
multimodal aggregation feature map. In scenarios of dense text understanding
such as automatic document understanding and handwritten text review, how
to align and fuse multimodal features is still an urgent problem to be solved.

2.2 Automated Scoring System

Automated essay scoring (AES) is an important research topic in the field of
natural language processing. Typically, the automatic scoring task is modeled as
a supervised machine learning problem. Project Essay Grade (PEG for short) [14]
is the first automatic grading method in the field, which extracts some features
from the text and uses linear regression to predict the score of the composition.
Lonsdale et al. [12] attempted to use a linked grammar to score text, computed
from the average sentence-level score obtained from the parser and style-based
feature vectors, and used regression to predict the paper’s score. At present, the
Chinese-based automatic scoring system is still in the early stage of exploration.
The literature [7] based on the HSK data set, the evaluation indicators are
defined from the perspectives of composition complexity and accuracy, and the
scoring is constructed using multiple linear regression.The literature [21] is based
on the Chinese text processing for the first time, defining feature dimensions
including dependency relationship and discourse structure analysis. The above
work mainly adopts traditional machine learning methods and relies heavily on
the selection of features, but it has gained wide recognition and use because of
its interpretable modeling.

With the development of deep learning in recent years, many researchers have
tried to use neural network models to automatically learn features. Tay et al.
[19] believed that the coherence score of the article can be used as an important
basis for evaluating the composition score, and based on this, they proposed
the LSTM-based SkipFlow model, which can better capture the continuity char-
acteristics between text sequences . The research of Nadeem et al. [13]showed
that using pre-trained neural network can effectively improve the performance
of essay scoring system. Continuing this idea based on deep learning, Li et al.
[10]used the pre-trained BERT model for automatic scoring based on Chinese
composition, and achieved good results. fruit. But in general, the method based
on deep learning lacks good interpretability, and the dimension considered in the
scoring is relatively single, so the scoring conclusion is not convincing.

From above literature study, it’s obvious that the Chinese AES is still in the
early stage of exploration.
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3 Methods

This Chapter mainly introduces the proposed scoring method in detail. First, in
Sect. 3.1 we model the problem. Section 3.2 introduces the scoring method based
on multimodal fusion. As a comparison, Sect. 3.3 mainly introduces the scoring
method based on linguistic features.

3.1 Problem Modeling

It’s easy to see that the scoring problem can be modeled as a numerical regression
problem. From the perspective of the label Y, theoretically, the essay score is a
continuous metric space, and the difference between the predicted value and the
real value d = ytrue − ypred can directly measure the quantitative error between
them. Therefore, it is preferable to model the scoring problem as a numerical
regression problem rather than a classification problem.

But from the perspective of modeling, the essence of the classification model
and the regression model are highly similar. Taking the neural network model as
an example, assuming that the last hidden layer has m neurons, and the outputs
is h = (h1, h2, ..., hm)T . When it’s used to deal with n classification problems,
the hidden layer can be connected to n linear neurons, and then the model
output can be converted into probabilities on n classes through normalization
processing. The final output value is shown in Eq. 1:

h = g(Wx + c), (1)

where W , c are built-in parameters of linear neurons, g(.) is a normalized func-
tion represented by softmax. while handing regression problems, the hidden
layer could be connected to n neurons to achieve dimension reduction, and con-
nect them to one single neuron to normalize then get the output.

Therefore, it is also a feasible modeling scheme to discretize the continuous
essay score value and transform it into a classification problem, and the continu-
ous space hashing has been proved in tasks such as pose estimation, homography
estimation, and image generation. Advantage. Therefore, in this paper will use
two methods of classification and regression to model the essay scoring problem,
and compare the scoring effects of the two modeling methods in the experiment
in Sect. 4.

3.2 Multimodal Essay Scoring Method

Multimodal Feature Fusion Based on Implicit Alignment. Typically,
the multimodal fusion architecture is usually a joint-based architecture, which
maps multiple unimodal representation features into the same semantic space
through operations such as addition and concat. As shown in Fig. 1a, the single-
modal information is subjected to feature encoding, feature extraction, and then
stitched into the same shared semantic space. Assuming that the visual features
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(a) Concat-based approach

(b) Alignment-based approach

Fig. 1. Ways to joining two modalities

Fvisual and semantic features Fling are both hidden space vectors of the shape
[n, d], the fusion feature Fjoint ∈ R2n×d.

Although the above approach can integrate multimodal features, the correla-
tion between multimodal features needs to be captured by downstream modules,
which is not conducive to the realization of information complementarity between
multimodal features. Currently, some unsupervised methods based on display
alignment have been proposed in the academic community to achieve fusion
alignment between multimodal features. [18] proposes a dynamic time warp-
ing (DTW) algorithm based on dynamic programming for alignment between
sequences. When aligning visual features and text sequences, a common practice
is to obtain the corresponding high-dimensional visual features through the posi-
tion of the text in the original image and the estimated receptive field. However,
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Fig. 2. Attention illustration of one sentence

this method needs to perceive the position of the text in the original image in
advance, and thus it is not suitable for the handwritten essay scoring directly.

As for visual features, we consider the pretrained FPRNet model [15]. Com-
bined with the characteristics of the upstream recognition model, since the
decoder of the full-page handwriting recognition model FPRNet [15] adopts a
dimension reduction method based on reshaping, the spatial correlation of high-
dimensional visual features is largely preserved. We analyze the interpretability
of the output results of the recognition model, as shown in Fig. 2, using the gra-
dient map to represent the region of interest of each output Chinese character
in the original image, it can be found that the semantic sequence recognized by
FPRNet and the image features have excellent implicit alignment effect, we do
not need to know the position of the Chinese characters in the original image,
and we can obtain the high-dimensional image features corresponding to the
characters without using the method of receptive field estimation. Using the
serialized feature Fseq and the output result of CTC decoding, the alignment
and fusion of images and text can be realized in the manner shown in Fig. 1b.
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Fig. 3. Multimodal feature encoding method

Multimodal Scoring Model Architecture. The multimodal modeling
method based on BERT transformation can realize direct alignment and feature
fusion of multimodal features, as shown in Fig. 3. The feature vector h ∈ Rn×d is
obtained after the existing text sequence passes through the pre-trained BERT
embedding layer and encoding layer, where n is the sequence length and d is the
feature dimension of the semantic feature. Use the visual features extracted by
the text recognition model to screen, and concat the bit-by-bit visual features
together to obtain the visual feature sequence v = Wv ∈ Rn×d in order to com-
pare it with the position-by-position splicing of semantic features realizes the
direct alignment and fusion of multi-modal features and produces them.

In the selection of the detection head, we will use two modeling methods
to design the detection head. When it is regarded as a classification task, the
cross-entropy loss function is used as supervision, and the formula is shown in
Eq. 2.

L = −
n∑

i=1

yilogS(fθ(xi)) (2)

Where x is the classification label encoding of the model output after one
hot encoding, f(x) is the score belonging to a certain category, and S is the
classification probability after passing the softmax activation function. When
it is regarded as a regression task, the mean square error loss is used, and the
sum of the squares of the error between the predicted value and the real value
is used as the loss function, and its formula is shown in Eq. 3.

L =
1
n

n∑

i=1

(yi − fθ(xi))2 (3)
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Table 1. 90D linguistic features.

Feature category Number of features Example

word complexity 4 number of characters, number of
phrases, ratio of class character and
shape character complex word ratio

statement complexity 7 mean length of sentences, the mean
length of T-units, the mean depth
of the dependency trees

predicate collocations 23 ratio of noun-verb, ratio of
adjective-adverb, ratio of
adjective-noun

dependency structures 41 ratio of subject-predicate, ratio of
inter-object, ratio of
dynamic-complement, mean
distance of subject-predicate, ratio
of class symbol shape symbol in
inter-object relation

logical expression level 15 ratio of level-1 constructions, ratio
of level-2 constructions, ratio of
level-3 constructions

The effects of different modeling methods on scoring will be shown in the
experimental part.

3.3 Scoring Baseline Based on Linguistic Features

We describe a baseline based on linguistic features. The linguistics-based scor-
ing problem is modeled as a standard machine learning problem. It takes the
predicted text as input and aims to evaluate the text from the dimensions of
linguistic features such as word complexity and sentence complexity.

We design 90D features for the baseline system to summarize the linguistic
factors, as shown in Table 1. As the starting point, we consider the research on
the linguistics area [8,20]. We also refer to existing Chinese & English automatic
scoring systems [6,21] and their valuable experience.

In terms of word complexity, we introduce “New Chinese Proficiency Test
(HSK) Vocabulary (2012 Revised Edition)” as a standard, HSK Level 4 or above
vocabulary is regarded as complex words, and the proportion of complex statis-
tical sentence-level language. In the process of counting the linguistic features
in sentence-level, we introduced the pre-trained LTP [2] part-of-speech tagging
model, dependency syntax analysis model and semantic dependency analysis
model for feature extraction, and then consulted the original feature definition
method in [5,21] for linguistic features’ extraction, the relationship between some
typical features and scores are shown in Fig. 4.
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(a) Number of words (b) Ratio of complex words to simple
words

(c) Mean length of sentences (d) Ratio of arguments to parameters
in subject-predicate relation

(e) Root ratio of sophisticated depen-
dency triples

(f) Ratio of 1-level logic words

Fig. 4. Relationship between typical features and scores
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The x-axis in the scatter plot represents the score, the ordinate represents
the value on the feature dimension, and each point represents a sample. Through
the above-mentioned feature definition method, we can see that in most feature
dimensions, samples with the same score are correlated in feature values. But
we can also see that the sample discrimination on some features is not obvious
enough. For example, the average sentence length of articles under different
ratings is 10 to 15 words. Therefore, in addition to using the above five feature
dimensions for class-by-class scoring, we also use stepwise regression and PCA
to clean irrelevant features.

To select a best classification algorithms, we compared the effect of different
methods for scoring tasks, including linear regression algorithm, random forest
algorithm and ordered logistic regression algorithm. In Sect. 4, we will verify the
specific performance of different algorithms on scoring tasks.

4 Experiments

4.1 Dataset

We compiled a data set for the purpose of model validation. We collected the
HSK public available dataset [1] owned by Beijing Language and Culture Uni-
versity, which contains thousands of essay data from examinees of Chinese pro-
ficiency test within more than ten years, including essay picture, essay text and
typos and sentence annotations etc.

After analysis, the scores of the HSK data set are scattered between [40,95]
points, and the scores are all multiples of 5. The average sample score is 69.5
points, and the standard deviation is 10.9. Therefore, its essence is a score set
with a full score of 20 points and a score interval of 1 point. According to the
data distribution characteristics of the HSK data set, the self-owned data set
was processed and normalized, so that the data from different data sources have
the same mean and variance. On this basis, the training set, verification set and
test set are divided by random sampling according to the ratio of 7:1:2.

4.2 Metric

In the selection of evaluation indicators, this paper adopts two standards for
evaluating quality. A more intuitive way to measure performance is to use Mean
Absolute Error (MAE) to intuitively record the absolute difference between the
prediction results and expert scores. The average value of the error, its value is
shown in formula 4.

MAX(X,h) =
1
m

m∑

i=1

|h(xi) − yi| (4)

where X represents the input sample, h represents the scoring function itself, m
represents the number of samples in the input set, yi represents the label value
corresponding to the sample, and the smaller the absolute mean error, the better
the scoring effect of the model.
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Table 2. Comparison between modeling approaches.

Modeling approach Learning rate Loss function MAE

classification 2 e -5 Cross Entropy 1.077

1 e -5 Cross Entropy 1.015

regression 2 e − 5 L2 1.100

1 e − 5 L2 1.089

1 e − 5 SmoothL1 1.100

hierarchical learning rate L2 1.162

4.3 Results

Modeling as Classification or Regression? As mentioned in Sect. 3.1, this
paper designs two modeling methods of classification and regression to solve
the scoring problem based on multimodal features. This section will show the
performance difference between different modeling approaches.

In order to ensure the relative fairness of the comparison, in the model struc-
ture, the feature dimension is changed from the 512-dimensional feature output
Dimensionality reduction to the category number dimension n. In the classi-
fication model, the model output and the label are directly calculated by the
cross-entropy loss function; in the regression model, the linear layer is first used
to output the regression value with sigmoid normalization, and the L2 loss and
SmoothL1 loss are used as the model in the experiment. train.

In the setting of hyperparameters, since the essence of the multimodal scoring
model is the fine-tuning of the BERT pre-training model, Therefore, a smaller
learning rate is used for experiments, and a better hyperparameter configuration
is verified through experiments. In terms of training strategy, in order to pursue a
better effect of the regression model, this paper also tried to use layered training,
setting a small learning rate of 1e − 5 for the BERT coding layer, and for the
regression head Set a larger learning rate 1e − 3 for training. To sum up, the
mean absolute error on the test set is used to measure the effect of the model.
The experimental results of different modeling methods are shown in Table 2.

From the experimental results, it can be seen that modeling by classifica-
tion tasks has achieved better results. In the test A mean absolute deviation of
1.015 was achieved on the set, outperforming regression modeling across multiple
training configurations. Although intuitively the regression model is more in line
with the needs of scoring scenarios, since the data set itself is a discrete score
value, it naturally divides the continuous score range into segments, so the use
of the cross-entropy loss function better captures the differences between classes.
Applicable to the current scene requirements.

The Role of Multi-modal Architecture. In order to verify the gain of
multimodal features to scoring models, this paper first constructs scoring models
based on linguistic unimodal features and visual unimodal features. In the text
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Table 3. Evaluation of the multimodal method.

Modality Feature fusion method MAE

visual unimodal / 1.278

text unimodal / 1.131

dual-modal joint 1.063

dual-modal implicit alignment 1.015

unimodal feature, use the pre-trained BERT encoder to connect to the learnable
output layer and classifier; in the visual unimodal feature, use the serialized
visual features extracted from the output of the recognition model as input
and classify device for training. In order to verify the advantages of multimodal
features based on implicit alignment, this paper also implements a multimodal
feature fusion method based on concat. Visual features and linguistic features
are spliced along the sequence direction and then passed to the classifier for
scoring verification.

The four different modeling methods are all modeled as classification prob-
lems. Experiments are carried out using the cross-entropy loss function with the
same optimizer and hyperparameters. The performance of the models obtained
by the above-mentioned different experiments is shown in Table 3.

It can be seen from the experimental results that the serialized visual features
and BERT-based linguistic features have preliminary scoring effects due to the
introduced prior bias, and the average errors directly used for scoring are 1.278
and 1.131, respectively. The dual-modal features promote each other, and the
use of dual-modal features can effectively improve the effect of the scoring model.
Compared with the traditional concat-based feature fusion method, the method
based on implicit alignment can better establish the correlation between the
two modes, and further reduce the average error to 1.015, which proves the
effectiveness of the fusion method based on implicit alignment.

Visualize the prediction results of the model based on multi-modal scoring,
and count the error value between the model prediction score and the actual
label score to obtain the scoring error distribution shown in Table 3. According
to the table, in the test set, the model prediction value of 92.47 % of the samples
is within the error range of two points above and below the true value, and
the scoring model based on multi-modal features basically meets the usability
requirements of the scoring system.

Comparison with Linguistic Features. This paper extracts linguistic fea-
tures from the five dimensions of word complexity, sentence complexity, predi-
cate collocation, dependency grammar and logical expression, and evaluates the
writing quality from five aspects. In addition, this paper also uses the main pro-
gram analysis method and the stepwise regression method to extract and reduce
the dimensionality of features to obtain comprehensive linguistic features for
scoring. In the experiment, we will respectively verify the effect of the feature
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definition method of the above five dimensions and the two fusion features in
the composition scoring task.

As for the selection of the classification model, this paper also verified the per-
formance of the linear regression model, the random forest model and the ordered
logistic regression model on the scoring task through experiments. Taking the
mean absolute error on the test set as the evaluation index, the performance of
different classifiers on different feature selections is shown in the Fig. 5.

Fig. 5. Performance of different classifiers on different feature selections

From the perspective of feature selection, screening features from the per-
spective of word usage, predicate collocation, and dependency grammar can
better score articles, while features in dimensions such as sentence complexity
and logical expression lack advantages, which is similar to Fig. 4. The visual-
ization results have similar performance, and the samples under different scores
lack good separability in terms of logical word usage and average sentence length.
On the whole, the best scoring performance is obtained by using dimensional-
ity reduction data and using ordered logistic regression model training, with an
average absolute error of 1.136 points, which is consistent with the BERT-based
single-modal text scoring performance shown in Table 3. Reached a similar level,
in line with overall expectations.

From the perspective of the model, the ordered logistic regression method
generally achieves better performance. Compared with the random forest
method, it has a 1%–5% improvement in the characteristics of each dimension.
The ordered logistic regression algorithm models the task as a mixed task of
regression and classification, which is naturally more in line with the charac-
teristics of the scoring task, and its advantages have also been confirmed by
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experimental data. From the point of view of feature fusion, both dimension-
ality reduction using principal component analysis and feature screening using
stepwise regression can improve the performance of the scoring model, and it is
meaningful to add linguistic comprehensive scores to the integrated system.

5 Conclusion

Aiming at the problem of visual information negligence in automatic essay scor-
ing, this paper proposes a multimodal scoring method based on implicit align-
ment. The recognition output is introduced to bridge between the text modal-
ity and the visual one. Validation was done on the data sets consisting more
than 4000 samples including HSK publicly available corpus It shows that the
multimodal feature fusion method based on implicit alignment is superior to
the traditional single-modal method and joined multimodal method, and the
MAE achieves an accuracy of 1.015. In addition, the method based on multi-
dimensional linguistic features achieves the MAE of 1.036 which is slightly lower
than the multimodal one. When the interpretation is preferable, linguistics-based
features find its potential.
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Abstract. This paper deals with automatic image segmentation in
poorly resourced areas. We concentrate on map content segmentation in
historical maps as an example of such a domain. In such cases, conven-
tional computer vision (CV) approaches fail in unexpected unique regions
such as map content area exceeding the map frame, while deep learning
methods lack boundary localization accuracy. Therefore, we propose an
efficient approach that combines conventional CV techniques with deep
learning and practically eliminates their drawbacks. To do so, we rede-
fine the learning objective of a simple fully convolutional network to
make the training easier and the model more robust even with few train-
ing samples. The presented method provides excellent results compared
to more sophisticated but solely deep learning or traditional computer
vision techniques as shown in “MapSeg” segmentation competition, where
all other approaches were significantly outperformed. We further propose
two additional approaches that improve the original method and set a
new state-of-the-art result on the MapSeg dataset. The methods are fur-
ther tested on an extended version of the Map Border dataset to show
their robustness.

Keywords: Historical Map · Segmentation · Little Data

1 Introduction

Historical maps owned by various national archives and libraries are a rich source
of information. They often contain valuable and precisely plotted geographical
entities. The digitized materials then offer a great potential for many historical
studies [4] and they are beneficial for geographical information systems (GIS)
communities for example. The process of map vectorization is thus of a great
interest.

In the last decades, such maps have been gradually digitized and a lot of the
materials are already accessible in an electronic form. However, the digitization
is only the first step in the processing of the maps. There is a number of tasks
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that have to be carried out in order to facilitate the search and fully utilize the
materials which brings a number of research problems in the image processing
field. The main emphasis is put on automatic approaches with good generaliza-
tion abilities. However, this is problematic to achieve in some specific domains
given the limited amount of annotated training data, which is almost always the
case in the historical documents. It holds true in the case of historical maps as
well. There are many differences between maps from different areas e.g. differ-
ent colors, width of strokes, decorations and also map borders. Therefore, every
collection is more or less unique. The manual annotation is time-consuming and
therefore costly, which can explain also the lack of datasets in this domain.

The segmentation is an essential task which must be done after digitization.
It allows further processing to focus only on the relevant area. Therefore, high
demands are placed on the segmentation results. In this work, we concentrate
on map content area detection according to the Task 2 of the ICDAR 2021
Competition on Historical Map Segmentation [4] (MapSeg). The main goal is
to provide a segmentation mask of a map content area (Fig. 1) and to remove
features surrounding the actual map like map frame, legends and titles. Those
elements are separated from the map content area by frames, however this is not
the case for all of them. Moreover, the frames are frequently crooked or damaged
and also exceeded by the map content area.

Although neural networks have remarkable learning capacity and achieved
state-of-the-art results in many visual tasks including segmentation, their results
still contain more or less errors in mask predictions given the low amount of
training data. In the worst case, they do not work at all. On the other hand,
it is also hard to handle document uniqueness with only conventional computer
vision methods.

Therefore, we propose three methods with an easier learning objective that
combines both conventional and deep learning approaches and lowers the effort
needed for handcrafted features. Even though the methods utilize the simple
FCN model, a significant improvement is achieved compared to much more
sophisticated but purely deep learning or conventional computer vision tech-
niques. We do not focus on different neural network architectures in this work,
even though it may play a role. We instead focus on the combination of con-
ventional and deep learning features in order to obtain the best results with a
limited amount of data while minimizing the effort needed.

2 Related Works

Many methods were proposed for general image segmentation, e.g. fully convo-
lutional networks (FCNs), where the input image and a segmentation mask are
provided as a training sample. However, they rarely take into account the lack
of data and the task specificity and only a few of them relate directly to maps.
We first briefly report methods submitted to the MapSeg competition. Then we
summarize methods solving map segmentation and analysis in general.

CMM [4] method is a representative of traditional approaches. The idea is
to detect the contour lines and reconstruct them from the center of the image. It
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Fig. 1. MapSeg dataset sample: The map image overlayed with map content area
ground-truth [5]

consists of several steps including the quasi-flat zone algorithm to eliminate map
margin and a watershed to close the contour. IRISA [1] is another well performing
traditional computer vision approach, that does not require any training. It
relies on line segments. These segments are extracted from the image at various
resolutions. Then, the grammatical rules are used to detect the map content area
contour. L3IRIS [4] approach utilizes the state-of-the-art few-shot segmentation
method HSNet [16].

The problem of map segmentation was solved for example in [14]. The authors
proposed a method based on linear element features. A robust grid detection in
historical maps relying on Hough transform is presented in [3]. The boom of
neural networks and deep learning brought new possibilities for automatic seg-
mentation and analysis of historical map resources. The potential usage of such
methods was discussed in [10]. A method based on convolutional neural networks
(CNN ) was proposed in [15]. It uses an advanced guided watershed transform
for obtaining superpixels [13]. A shallow CNN is then used for superpixel clas-
sification. A method for map segmentation utilizing handcrafted features, CNN
and mathematical morphology was presented in [7]. A novel architecture for map
segmentation was proposed in [9]. It has an encoder-decoder structure similarly
as U-Net [19] and additionally uses cross-scale skip connections. A cadastre bor-
ders and important markers are detected in [12] utilizing an FCN or conventional
computer vision techniques. A combination of deep learning and conventional
computer vision methods is proposed in [8] to vectorize the historical maps.
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Names of cities and other landscape features are detected using several object
detection models and further processed in [11].

3 Map Content Area Segmentation

Since deep learning can deal with hardly definable specialties in the map docu-
ments, we employ a simple model as a feature extractor to predict the borders of
the area. We have identified experimentally that predicting only border contours
is a much easier learning objective than predicting the whole map content area
(Fig. 2). If we train the FCN model to predict the whole map content area, we
want to predict every pixel there as positive (e.g. roads, buildings or text). There
are also similar conflicting objects outside the map content that we want to pre-
dict as negative (legends for example). On the other hand, when predicting only
border contours, the network can focus for example on lines, transitions between
“empty” and “non-empty” areas, border decorations or legends. The number of
possible input variants for a positive pixel is therefore much lower than in the
previous case. We found this helpful to train the network.

The predicted border contour can be closed and transformed into the map
content area utilizing morphological operations for example. At the same time,
the conventional computer vision approaches can improve the results in terms of
localization accuracy. Therefore, the three main steps of the methods are border
prediction, image binarization to improve localization details and post-processing
to close the contour.

First, we describe the border prediction and image binarization steps. Since
the post-processing step changes across the approaches, details are provided
within each specific approach.

Fig. 2. Modified learning objective
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3.1 Border Prediction

For the border prediction, we adapt a simplified U-Net-like FCN for general seg-
mentation [2] as a feature extractor. As was shown in the paper, FCNs generalize
well and they can also deal with the small amount of training samples. Further-
more, the border contours often appear close to image borders. That information
can be utilized by the network thanks to the padding as discussed in the paper.

Compared to [2], the utilized network has half of the filters in the convo-
lutional layers. The network’s input is the whole down-sampled image and the
output is the predicted mask of the borders. Since the input images are large,
they are firstly eroded to propagate thin black lines and then down-sampled to
fit 1024 px rectangle. The reason for the down-sampling is a compromise between
network context capability, localization accuracy and computational costs. We
refer to [2] for further details of the architecture.

The ground-truth was automatically generated from the provided map con-
tent area masks in the original image resolution (Fig. 2). The value for each
pixel x was obtained using Gaussian function (Eq. 1), where (x − b) stands for
the distance to the border and σ is set to 50.

f(x) = exp

(
−1
2
(x − b)2

σ2

)
(1)

The reason for that is to provide more true positives and decrease the possi-
bility of discontinuities in predictions. The uncertainty, that the pixel does not
have to be strictly classified as the border or not, can also make classification
more robust as discussed in [18]. We also use image augmentation techniques
(mirroring, rotation and random distortion) to enlarge the training set.

3.2 Image Binarization

Since the borders are usually present in the input image, we found it useful to
use them directly in order to have as precise results as possible. Therefore we
adapt a recursive Otsu binarization method [17].

In a nutshell, the method firstly removes the background estimated by a
median filter. It is ideal to propagate thin lines and also to discard large homo-
geneous areas. This step also allows the method to deal with the brightness
inconsistency. After that, the image is recursively binarized using Otsu thresh-
olding with hysteresis that reduces the amount of noise present in the binarized
image. A drawback is a significant amount of remaining noise in the result mak-
ing it difficult to process.

3.3 UWB Method

The winning method of the MapSeg competition is depicted in Fig. 3. The input
image (Fig. 3a) is binarized (Fig. 3b) and the map content area borders (Fig. 3d)
are predicted in parallel. The prediction of map border is followed by post-
processing resulting in an estimated mask of the map content area (Fig. 3e).
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a b c

d e f&

Fig. 3. Map content area segmentation process of UWB method: (a) input image, (b)
binarized input image, (c) binarized image masked with estimated mask, (d) FCN
border prediction, (e) estimated mask, (f) result

The estimated mask is then combined with binarized image utilizing logical
and operation (Fig. 3c). Finally, the post-processing is repeated to obtain map
content area mask (Fig. 3f).

The same post-processing is used for producing both masks Fig. 3e and 3f
from the inputs Fig. 3d and Fig. 3c, respectively. It is similar to the morphological
closing. It starts with dilation to fill eventual discontinuities. Then, the biggest
connected component is selected and filled. Finally, the erosion is applied. The
dilation and the erosion use the same rectangular kernel which is chosen with
respect to the input images where map content borders usually follow horizontal
and vertical lines.

A drawback of this method is the need to manually set the kernel. It is prone
to improper settings and can cause fragmentation and errors if the contour is not
properly closed. The post-processing also results in losing details as can be seen
in Fig. 10. Therefore, we have proposed two improved versions of the method as
described below.

3.4 BEW Method

To face the drawback of the baseline method, we use Border prediction,
Euclidean distance transform and Watershed (BEW ) according to Fig. 4. The
method does not utilize any conventional features. Therefore, it can be used even
if there is no possibility to extract the details conventionally.

A similar approach was presented in [8], but it fails if the contour is not
properly closed. Therefore, we further extend the approach and use euclidean
distance transform (Fig. 4c). In that case, the missing fragments are fixed as
illustrated in Fig. 5.
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a b c d

Fig. 4. Map content area segmentation process of BEW method: (a) input image, (b)
FCN border prediction, (c) euclidean distance transform, (d) result using watershed

Fig. 5. From the left: detail of unclosed contour prediction, its euclidean distance
transform, the result after watershed

3.5 BBEW Method

Optionally, the image binarization features can be used in order to improve local-
ization accuracy as in the baseline method. The BBEW method uses Border
prediction, Binarization, Euclidean distance transform and Watershed accord-
ing to Fig. 6. The binarized image (Fig. 6b) is masked with predicted borders
(Fig. 6d). Then, the euclidean distance transform is used to deal with unclosed
contours. It provides a border distance matrix (Fig. 6c). Finally, the watershed
is used to segment the map content area (Fig. 6f).

a b c

d e f

&

Fig. 6. Map content area segmentation process of BBEW method: (a) input image, (b)
binarized input image, (c) euclidean distance transform, (d) FCN border prediction,
(e) binarized image masked with predicted borders – dilated for visualization purposes,
(f) result using watershed
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4 Experimental Set-Up

In this section, we describe the dataset and evaluation criteria. For more details
on the methods from Sect. 3, we refer to https://gitlab.kiv.zcu.cz/balounj/21_
icdar_mapseg_competition, where the source codes and other related materials
are freely available for non-commercial purposes.

4.1 MapSeg Competition Dataset

The map sheets constituting this dataset [5] are collected from 9 atlases
of the City of Paris published between years 1894 and 1937. There are
approximately 20 sheets for each year and the image resolution is very high
(about 10000× 10000 pixels).

The competition involved three tasks: Detect building blocks, Segment map
content area and Locate graticule lines intersections. For each of these tasks,
training, validation and test sets are available. For the second task, the sizes
of train, validation and test sets are 26, 6 and 95 respectively. The dataset is
available at https://zenodo.org/record/4817662.

4.2 Map Border Dataset

The Map Border dataset [12] consists of historical cadastral maps originating
from the second half of the nineteenth century. It contains annotations for
cadastre borders, important landmarks and other features for the task of border
detection. We have extended the annotations with the map frame masks for the
purposes of this work.

The image resolution is about 8400× 6850 pixels. As illustrated in Fig. 7, the
map sheets have different characteristics than the ones from MapSeg dataset.

We used 12 images for testing and 22 images for training and validation.

5 Evaluation Criteria

For the reported results, we follow the MapSeg competition [4] scenario and also
use the provided evaluation tools [6]. For the map content area segmentation
evaluation, the 95th percentile variant of Hausdorff distance (dH0.95) is used as
error measure. The final measure is the average of all test image measures.

We consider the Hausdorff distance appropriate for the task, since it focuses
on shapes and details at the borders. The result is not distorted since it is not
affected by the large area as in Intersection over Union for example.

https://gitlab.kiv.zcu.cz/balounj/21_icdar_mapseg_competition
https://gitlab.kiv.zcu.cz/balounj/21_icdar_mapseg_competition
https://zenodo.org/record/4817662
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Fig. 7. Sample from Map Border dataset

6 Results

In this section, we report the obtained results and compare our UWB, BEW
and BBEW methods with the best methods on the MapSeg dataset [5]. The
proposed methods are further verified on the Map Border dataset.

As can be seen in Table 1, our methods surpassed the other methods by a
significant margin. The proposed methods show excellent results even on the
noisy historical map images.

Table 1. Final Hausdorff error (dH0.95 [px]) for map content area segmentation task

Method MapSeg dataset Map Border dataset

CMM 85 –
IRISA 112 –
L3IRIS 126 –
UWB (Ours) 19.0 25.5
BEW (Ours) 18.1 12.0
BBEW (Ours) 12.0 9.5
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Fig. 8. Test images error distribution for map content area segmentation task on
MapSeg dataset (Ours in red color)

The conventional approaches (CMM and IRISA) are very precise in the areas
that contain the border contours, but they can hardly deal with other unique
areas like map content exceeding the frame and some legends. This leads to
higher variance in the errors in Fig. 8.

The deep learning approach (L3IRIS ) has higher median value but smaller
variance of errors. It usually catches the unique areas but it is missing the pre-
cision at the borders and the localization accuracy is not very convincing.

In the same figure, our approaches have small median value and also
small variance of errors. They profit from both conventional and deep learn-
ing approaches and practically eliminate their drawbacks. On the other hand,
the outliers in Fig. 8 are usually caused by wrongly predicted legends and are
still present in each approach. This could be probably solved by extending the
training part of the dataset, improved augmentation or further post-processing.

Fig. 9. Test images error distribution for map content area segmentation task on Map
Border dataset
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Fig. 10. Details of UWB method result

Fig. 11. Details of BEW method result

Fig. 12. Details of BBEW method result

The UWB method provides good results and allows to utilize the details
provided by image binarization step. But naive post-processing has several
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drawbacks that can cause errors and loss of detail as in Fig. 10. As presented in
Fig. 9, this issue is more evident on the results from Map Border dataset.

The BBEW method solves these drawbacks and provides as many details as
possible while preventing the erroneous closing of the contour. It sets the new
state-of-the-art result of dH0.95 = 12.0. As illustrated in Fig. 12, the amount of
detail is fascinating, especially in areas where border features can be obtained
conventionally and further combined with deep learning features.

Interesting observation is a very good result of BEW method (Fig. 11). It
indicates the advantage of the modified learning objective. L3IRIS utilizing the
state-of-the-art few-shot segmentation method fails compared to BEW utilizing
the simple general FCN segmentation model with modified learning objective
and contour closing. It is obvious, that the border prediction is a much more
suitable learning objective for the task and it has probably a bigger impact than
the selection of the model.

7 Conclusions

In this paper, we faced the segmentation of historical maps. In such poorly
resourced domain, common deep learning approaches often fail due to the lack
of training data or even related data that could be used for transfer learning.

We have proposed three efficient map segmentation approaches that utilize
an easier learning objective for a general FCN and post-processing to get the
original objective. It allows them to work even with little training data while
producing excellent results that can be optionally refined using conventional
image binarization features.

The proposed methods are evaluated on the MapSeg dataset which was used
in the ICDAR 2021 segmentation competition. We have shown that the proposed
methods outperform significantly all other approaches and that the more suitable
learning objective may have a bigger impact than the choice of a deep learning
model. With BBEW method, we set the new state-of-the-art of dH0.95 = 12.0
on MapSeg dataset. We further verified the methods on the Map Border dataset
with corresponding results. Thus, the combination of deep learning with conven-
tional computer vision techniques seems very promising, especially for poorly
resourced domains such as historical documents.

Another contribution of our work consists in the availability of the source
codes for the research purposes.

Acknowledgements. This work has been partly supported by the Grant No. SGS-
2022-016 Advanced methods of data processing and analysis.
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Abstract. Memes are a popular form of communicating trends and
ideas in social media and on the internet in general, combining the modal-
ities of images and text. They can express humor and sarcasm but can
also have offensive content. Analyzing and classifying memes automat-
ically is challenging since their interpretation relies on the understand-
ing of visual elements, language, and background knowledge. Thus, it is
important to meaningfully represent these sources and the interaction
between them in order to classify a meme as a whole. In this work, we
propose to use scene graphs, that express images in terms of objects
and their visual relations, and knowledge graphs as structured represen-
tations for meme classification with a Transformer-based architecture.
We compare our approach with ImgBERT, a multimodal model that
uses only learned (instead of structured) representations of the meme,
and observe consistent improvements. We further provide a dataset with
human graph annotations that we compare to automatically generated
graphs and entity linking. Analysis shows that automatic methods link
more entities than human annotators and that automatically generated
graphs are better suited for hatefulness classification in memes.

Keywords: hate speech · internet memes · knowledge graphs ·
multimodal representations

1 Introduction

Internet memes are items such as images, videos, or twitter posts that are widely
shared on social media and typically relate to several subjects, such as politics,
social, news, and current internet trends.1 Memes are a popular form of com-
munication and they are often used as a means to express an opinion or stance
1 Disclaimer: This paper contains examples of hateful content.
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Fig. 1. The steps performed by the MemeGraphs method. The automatic augmenta-
tion consists of scene graphs generated automatically by a pre-trained model (Schemata
[26]) and entities detected in the text by a pre-trained Named Entity Recognition
(NER) model. Background knowledge for each entity is retrieved from a knowledge
base (Wikidata). The final MemeGraphs input is created by concatenating these aug-
mentations and adding them after the [SEP] token following the text of the meme in
order to feed it to a Transformer for text classification.

in a humorous or sarcastic manner, but they can also be hateful and promote
problematic content that is likely to hurt specific groups of people and hence be
harmful to society in general [2]. Thus, analyzing trending memes can provide
insight into people’s reactions and opinions to important societal matters, as
well as to the traits of different groups. This can help in tasks like filtering out
harmful memes from internet platforms or extracting user opinions for socioe-
conomic studies. This work focuses on memes in the form of images with some
form of superimposed text (sometimes referred to with the technical term image
macros) with the goal of detecting hateful content.

Lately, there has been increased interest in deep learning models for analyz-
ing memes and classifying them [10,11,23], for example in the context of the
Hateful Memes competition organized by Facebook [13] and the shared task in
the Workshop on Online Abuse and Harms (WOAH) 2021 that was the contin-
uation of the first competition [21]. Another shared task in Semeval 2022 aimed
at detecting misogyny in memes [11]. Alongside these shared tasks, the corre-
sponding datasets were published with human annotations capturing important
properties such as hatefulness and misogyny. Recent works use multimodal repre-
sentation learning based on image features from Convolutional Neural Networks
(CNNs), Transformer-based language models for the text [3,13,14] or multi-
modal (vision+language) Transformer models in order to classify memes [13].
Some works additionally incorporate specifically extracted image features such
as race [33], person attributes [1,23], and automatic image captioning output
[4,7]. However, none of these works have included the relations between objects
in the form of scene graphs or background knowledge in the form of a text
description for the objects depicted in the image.
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In this paper, we address the issue of classifying hateful memes by perform-
ing an automated augmentation in order to represent the visual information
and background knowledge (Fig. 1). We built on the MultiOFF dataset, which
contains memes extracted from social media during the 2016 U.S. Presidential
Election [28]. An off-the-shelf scene graph generation model was employed to pro-
duce scene graphs, which contain detected visual objects and relations between
them for each meme, and a NER model to detect entities that we linked to
background knowledge. The scene graphs were serialized as text resulting in a
unified way to represent all the modalities expressed in a meme. This allows
using a (unimodal) text classifier to classify the multimodal memes. Hence, we
incorporated the automatically produced augmentations to classify the memes
using a text-based Transformer model and show that they can improve its perfor-
mance. The explicit representation of the image as serialized tokens also provides
a more interpretable intermediate representation (compared to hidden layers in
multimodal models such as ImgBERT [13,14]).

Furthermore, in order to examine how the results of the automatic augmenta-
tion would deviate from human ones, we performed manual augmentation. Two
human evaluators corrected the automatically produced scene graphs and man-
ually added background knowledge. We compare our automatic MemeGraphs
method with models operating on the manually augmented data (only for train-
ing or for both training and inference) and find that automatic augmentations
assist in achieving better results than manual ones.

Contribution. Our contributions can be summarized as follows:

– We propose MemeGraphs, a novel method for classifying memes utilizing
scene graphs augmented with knowledge and providing insights for processing
multimodal documents.

– We show that adding this kind of knowledge to a text-based Transformer
model can improve its classification performance. Furthermore, we show that
this yields improvements compared to a simple model only using learned
representations to classify the memes, such as ImgBERT.

– We conduct extensive experiments with manual and automatic settings
for obtaining this knowledge and show that the automatic setting of our
MemeGraphs method provides more meaningful information.

In the following, we discuss related work and present our MemeGraphs
method. Subsequently, in Sect. 4, we describe the models we implemented and
report their results. Finally, we provide a qualitative analysis, including a discus-
sion of the findings of human augmentation, and compare this with the automatic
MemeGraphs method.2

2 Related Work

Combining text and image inputs is crucial for many tasks, e.g. for image search
or (visual) question answering, relying on an image and its caption. Research
2 The code and data for the MemeGraphs method are available on:

https://github.com/vasilikikou/memegraphs.

https://github.com/vasilikikou/memegraphs
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has shown that adding images to text-based tasks (e.g., machine translation)
improves the performance of the models [31]. However, the meaningful inter-
pretation of text and image and, in particular, the relations between them,
still remains challenging [5,17]. Commonly used approaches rely on Transformer
models that are pre-trained on image+text pairs [6,12,18–20,27]. A step towards
better scene understanding is to generate scene graphs [15]. Scene graphs provide
structured knowledge about an image, e.g., objects, relations, and attributes.
Recent works have shown that we can improve scene graph generation using
message propagation between entities [29,32], and by employing background
knowledge in form of knowledge graphs [26], texts [25], or using feedback con-
nections. In [26], the authors proposed Schemata, a scene graph generation model
consisting of two parts: the backbone module and the relational reasoning com-
ponent. Additionally, Schemata uses feedback connections to further encourage
the propagation of higher-level, class-based knowledge to each neighbor. The
backbone is pre-trained on ImageNet [8] and the whole network is fine-tuned
on Visual Genome [15] on the scene graph classification task. Scene graphs can
help to achieve state-of-the-art results in several visual tasks [22,30]. Inspired by
these approaches, we generate scene graphs to represent the visual information
contained in memes by using the Schemata model (see Sect. 3).

A specific instance of vision and language tasks is memes classification. To
address the need for automatic means that can detect hateful content in memes,
datasets and models [3,23,28] were published in the last couple of years, and
shared tasks [11,13,21] were organized to attract interest on this task. Meth-
ods that have been implemented for hateful memes detection can be grouped
into three categories: 1. Unimodal methods that use either only the text or the
image as input, 2. Multimodal approaches, where image embeddings from an
image encoder are fed to a text model and both models are trained separately,
and 3. Multimodal methods, consisting of vision+language Transformers, being
pre-trained in a multimodal fashion. Current methods experiment with models
from all three categories and focus on improving models from the third category
by adding extra features [3,4,16,23]. These features can be visual attributes
extracted from CNNs [1,13,16] (e.g. objects, entities or demographics), repre-
sentations from CLIP [23,24], automatically generated captions [4,7], etc.

The Hateful Memes Challenge, hosted in 2020 by Facebook, was a binary
classification task of hate detection [13].3 Kiela et al. [13] created a dataset with
10,000 memes to which they added counterfactual examples in order to make the
task more challenging for unimodal approaches. They experimented with several
different settings and found that multimodal methods worked best. An extended
version of the Hateful Memes Challenge was included as a shared task in the
Workshop on Online Abuse and Harms (WOAH) [21]. The same dataset was used
but it now included new fine-grained labels for two categories: protected category
and attack type. In this shared task, multimodal approaches were dominant as
well. A multimodal method introduced by [13] and subsequently also used for
the shared task in WOAH [14] incorporated image embeddings as inputs to a

3 https://www.drivendata.org/competitions/64/hateful-memes/.

https://www.drivendata.org/competitions/64/hateful-memes/


538 V. Kougia et al.

text classifier.4 This method belongs to the second category and is an early
fusion approach meaning that the image embedding and the text embedding are
concatenated before feeding them to the classifier. Different types of image and
text components are employed in different works. Specifically, in ImgBERT [14],
first, they feed the memes images to a convolutional neural network (CNN) and
extract their embeddings. Then, they provide the text of the meme as input
to BERT [9] and extract the [CLS] token representation. They concatenate the
[CLS] token representation with the embedding of the meme’s image and use
the result as input to the classifier. During training only the text-based BERT
part of ImgBERT is trained, while the image embeddings remain frozen.

Another dataset for detecting hateful content in memes is the MultiOFF
dataset [28]. It contains memes that were extracted from social media during the
2016 U.S. presidential elections. The dataset was first shared on Kaggle and con-
sisted of the image URL for each meme, its text and metadata, e.g., timestamp,
author, likes, etc.5 The authors obtained the images from the URLs and discarded
any metadata. In total, this dataset contains 743 memes, which were annotated as
hateful or non-hateful. In [28] the authors experimented with unimodal (text only)
and multimodal (text and image) approaches, and the model with the highest F1
score was a CNN operating only on the text of the memes.

The above mentioned datasets focus on hate and offensive speech, but there
are also datasets that cover other aspects of harmful content in memes. In
[10], the authors focused on detecting propaganda in memes. They created and
released a dataset with 950 memes extracted from Facebook groups, annotated
for 22 different propaganda techniques. In their experiments they used existing
unimodal and multimodal models and found that the latter, especially multi-
modally pre-trained Transformers perform best in their setting. Recently, a chal-
lenge called Multimedia Automatic Misogyny Identification (MAMI) focused on
detecting misogyny and its exact form, i.e., stereotype, shaming, objectification
and violence in memes [11]. In [23], they studied harm in memes and proposed a
framework to detect harmful memes and the entities targeted. The authors also
released their dataset with 7,096 memes in total about politics and COVID-19.

The existing challenge sets, resources and models show the importance of
analyzing internet memes and the challenge to combine all the modalities that
form a meme. However, current works focus on incorporating visual information
in the form of individual features like the ones described above or automatically
generated captions. We propose a novel approach to represent the visual content
of memes using scene graphs, hence “translating” them into text form. Further-
more, current methods only extract entities from the images, but not from the
captions or texts. We argue that often this is not sufficient (or feasible), since
memes can also incorporate screenshots of text, as it is the case in the Multi-
OFF dataset. Hence, we approach this problem by extracting the entities from
the text in order to obtain more information. We further retrieve background

4 The method was called Concat BERT in [13] and ImgBERT in [14]. Here we call it
ImgBERT because we use their implementation.

5 https://www.kaggle.com/datasets/SIZZLE/2016electionmemes.

https://www.kaggle.com/datasets/SIZZLE/2016electionmemes
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knowledge for each extracted entity, and show that this approach is worthwhile
to explore, since it allows for a more grounded and comprehensive automatic
interpretation of memes.

3 MemeGraphs

In this section, we describe our method for automatic augmentation of a memes
dataset, an approach we call MemeGraphs. Our proposed method consists of
three steps: 1. Scene graph construction, 2. Knowledge linking to detected enti-
ties and 3. The construction of the final MemeGraphs input. The first two steps
are performed automatically by using off-the-shelf models. Hence, the result of
MemeGraphs are knowledge graphs representing the meme as a whole, which
can be used to classify them, e.g., for hate detection. We build on the MultiOFF
dataset, which contains memes extracted from social media during the 2016 U.S.
Presidential Election [28]. In what follows, we present the three individual steps
of MemeGraphs in detail and how the final result is constructed.

Fig. 2. The occurrences of the top 15 mostly detected objects (left) and relations (right)
based on the automatic annotation.

3.1 Scene Graphs

Scene graphs provide information for an image in the form of a graph SG =
{V,E}, where V are the objects depicted in the image (nodes) and E the relations
between them (edges). Models that generate scene graphs output a set of relation
triplets in the form of {object1, relation, object2}, which constitute the graph.
In our task, we generate scene graphs for memes. Each meme m consists of two
modalities (Im, Tm) ∈ I × T , where I is the set of images and T is the set of
texts of the memes. We employ a scene graph generation model G, which takes
as input a meme image and outputs a scene graph SG as:

SGm = G(Im) (1)
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Towards this end, we apply Schemata, a pre-trained scene graph generation
model [26] that was trained with a multi-task learning strategy to automati-
cally predict scene graphs. We do not further fine-tune the model on the memes
present in our data and we only consider the objects ranking amongst the top 16
objects for the scene graph according to the detection scores.6 Hence, the scene
graph generated for each meme is a set of triplets as follows:

SGm ⊆ {(objecti, relation, objectj)}, (2)

where 0 ≤ i, j ≤ 15, relation ∈ R and R is the set of all possible relations.
For 67 memes, Schemata did not produce any output. For the remaining 676

memes, 10,426 relations and 9,666 objects were detected in total. The number
of unique objects and relations was 142 and 970 respectively. And while the
number of objects detected in an image ranged from 2 to 16, the number of
detected relations ranged from 1 to 40. The top 15 most frequently detected
object and relation types are shown in Fig. 2.

3.2 Knowledge Linking

The second step of our MemeGraphs method is to obtain background knowledge
for a given meme. In order to do that, first, we employ an NER model. This model
detects named entities in a text, which can be person names, organizations,
locations, etc. - depending on the task. It can provide useful information that
assists to natural language understanding. Here, we feed the text of the meme as
input to the NER model and get a list of extracted entities E as E = NER(Tm),
where Tm is the text of the meme. Each entity is then searched for in a knowledge
base and its related information is retrieved. This way we obtain a text Ti for
each entity Ei, so for a given meme we have:

KNm = {Ti} = {KB(Ei)} (3)

For the NER model we employ an off-the-shelf pre-trained Transformer model
from spacy.7 Then, we automatically search for each entity in Wikidata using the
API, from which we obtain the description of a data entry for the corresponding
entity.8 Each data entry contains also other information besides the descrip-
tion that could be useful, e.g., the translation of the word in other languages,
references to other databases, relevant images and relations e.g., “instance-of”,
“part-of”, etc.

3.3 Knowledge Graph Input

The final result of the MemeGraphs augmentation is a serialized text-only repre-
sentation of the meme that combines the information for all its modalities in one
6 This number was chosen after observation of the scene graphs resulting from the

memes in order to avoid having an overcrowded scene graph with multiple objects.
7 https://spacy.io/universe/project/spacy-transformers.
8 https://www.wikidata.org/wiki/Wikidata:Main Page.

https://spacy.io/universe/project/spacy-transformers
https://www.wikidata.org/wiki/Wikidata:Main_Page
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text. For the scene graphs we concatenate all the triplets that are detected in a
meme (Eq. 2) and thus end up with a text Tsg,m. For the retrieved background
knowledge we concatenate the texts of the KN for each meme (Eq. 3) and get a
text Tkn,m. The final MemeGraphs input is the text of the meme followed by a
[SEP] token and the concatenation of Tsg and Tkn.9 This text can then be used
as input to a classifier that will decide about the hatefulness of the meme. The
complete process of the MemeGraphs method is depicted in Algorithm 1.

Algorithm 1: Outline of the MemeGraphs method
Data: a set of memes M consisting of images I and texts T.
Result: a set Tkg of texts representing the knowledge graphs of the

memes.
1 // define a list to save the scene graphs for each meme;
2 SG = {} ;
3 // apply the Schemata model;
4 for m ∈ M do
5 SGm = G(Im) ;

6 // define a list to save the entities of each meme text;
7 E = {} ;
8 // apply the NER model;
9 for m ∈ M do

10 Em = NER(Tm) ;

11 // retrieve information from the knowledge base for each entity;
12 KN = {} ;
13 for m ∈ M do
14 for e ∈ Em do
15 KNm = KB(e) ;

16 // define lists to save the concatenated texts for each meme;
17 Tsg, Tkn, Tkg = {}, {}, {} ;
18 for m ∈ M do
19 Tsg,m = concat(SGm) ;
20 Tkn,m = concat(KNm) ;
21 Tkg,m = concat(Tsg,m, Tkn,m) ;

22 return Tkg

4 Benchmarking

4.1 Models

To evaluate the results of our automatic augmentation and how it can affect the
performance of hateful memes classification, we employed a text-based Trans-
former with and without the MemeGraphs information as well as a multimodal
9 All the texts are concatenated with a full stop.
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Fig. 3. The architecture of MemeGraphs[SceneGr+Know]. The scene graph produced
by the Schemata model and the background knowledge for each entity are concatenated
and given as input to BERT after the text of the meme and the [SEP] token.

model. Previous work has shown that using only the text of the memes for classi-
fication gives results highly competitive with multimodal methods [13,14,28]. On
the other hand, unimodal image-based models have lowest results. We use a pre-
trained BERT [9] model that takes as input the text of each meme (TxtBERT)
[14] and different variants of this approach that include the MemeGraphs input.
In order to feed the graphs as input to the model, we represent them as a text
sequence (see Sect. 3), which is given as an extra text input after the [SEP] token
(Fig. 3). In the model that we call MemeGraphs[SceneGr], this sequence con-
tained only the scene graphs, which were represented by triplets of the detected
objects and the relations between them (Eq. 2), e.g., “0-man has 11-eye. 0-man
wearing 12-shirt.”. In the model called MemeGraphs[Know], the text descrip-
tions from the knowledge base corresponding to the detected entities are added
as extra input (Eq. 3). For example, the second input sequence for the meme
shown in Fig. 3 will be “American politician, businessman, and 29th Governor
of New Mexico.”. While in the MemeGraphs[SceneGr+Know] model, informa-
tion from the whole knowledge graphs is added, comprising the scene graphs and
the background knowledge concatenated with a full stop into one sequence (see
Subsect. 3.3). In all the models, the [CLS] token is fed into a final linear layer
with a sigmoid activation function that produced the probability of the meme
being hateful.

In order to compare our MemeGraphs approach with a method that employs
learned visual representations, we use ImgBERT, an early fusion multimodal
model (see Sect. 2).

4.2 Experimental Setup

Each meme was labeled in the original dataset as offensive or non-offensive.
The classification was based on the offensiveness labels that exist in the
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Table 1. Test set precision (P), recall (R), and F1 scores averaged over twenty runs
with different initializations and standard error of mean.

Model P R F1

ImgBERT 0.394 ± 0.041 0.522 ± 0.080 0.408 ± 0.048

TxtBERT 0.457±0.020 0.516 ± 0.063 0.442 ± 0.032

MemeGraphs[SceneGr] 0.456 ± 0.010 0.577 ± 0.050 0.482 ± 0.019

MemeGraphs[Know] 0.446 ± 0.011 0.574 ± 0.045 0.484±0.019

MemeGraphs[SceneGr+Know] 0.451 ± 0.010 0.583±0.063 0.469 ± 0.035

Table 2. Test set precision (P), recall (R), and F1 scores from the model selected as
best on the development set.

Model P R F1

ImgBERT 0.389 1.000 0.560

TxtBERT 0.403 0.897 0.556

MemeGraphs[SceneGr] 0.398 0.845 0.541

MemeGraphs[Know] 0.396 0.690 0.503

MemeGraphs[SceneGr+Know] 0.426 0.948 0.588

MultiOFF dataset. The dataset is slightly imbalanced with 42% of the samples
being offensive. For training and testing the models, we used the split provided
by the authors of the dataset. The split consisted of training, validation, and
test sets, which contained 445, 149, and 149 memes respectively. We employed
the pre-trained BERT model provided by Hugging Face and fine-tuned it on
our dataset.10 To obtain image embeddings, we experimented with several pre-
trained CNN models and based on the best results we chose DenseNet with
161 layers. The embeddings were extracted from the last pooling layer. The max
length was set as the average token length of the training texts, depending on the
input of each model. The models were trained using batch size 16, the weighted
binary cross entropy loss, and AdamW optimizer with an initial learning rate
of 2e−5. We used early stopping based on the validation loss with a patience of
3 epochs. We trained all models 20 times with different seeds and the training
lasted between 4 and 6 epochs in each run. During inference, a threshold was
used to determine if a meme is hateful or not based on the produced probability.
This threshold was set to 0.5 for all the models.

4.3 Benchmarking Results

For each model, we obtained predictions for the test set from all twenty dif-
ferently initialized runs. We evaluated each prediction set by calculating the

10 https://huggingface.co/docs/Transformers/model doc/bert#Transformers.
BertForSequenceClassification.

https://huggingface.co/docs/Transformers/model_doc/bert#Transformers.BertForSequenceClassification
https://huggingface.co/docs/Transformers/model_doc/bert#Transformers.BertForSequenceClassification
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F1 score defining the minority class (offensive class) as positive. In Table 1,
we report the average F1 score over the twenty runs for each method and
the corresponding standard error. In Table 2, the test score of the model that
achieved the best score on the development set is shown. We observe that
MemeGraphs[SceneGr+Know] outperforms the other models when predicting
with the best checkpoint (Table 2). On the other hand, when looking at the
average, the model with only the background knowledge as input achieves the
best F1 score (MemeGraphs[Know]). We generally observe that the methods
that incorporate our automatic augmentation (MemeGraphs) outperform the
simple text-based fine-tuned BERT. Also, ImgBERT is outperformed showing
that when the visual information is employed in the form of scene graphs the
performance is improved, compared to when using only the image embeddings.

5 Analysis

5.1 Human Augmentation

Since the MemeGraphs augmentation is produced automatically it can poten-
tially result in inaccuracies that can deteriorate the performance of the clas-
sification models. In order to examine this scenario and also the scene graphs
themselves, which were produced by an off-the-shelf model, we performed human
augmentation. The augmentation was conducted by two male students, who were
doing a Master of Arts (M.A.) in Digital Humanities and the process lasted about
10 weeks. Several discussions took place before the augmentation started for the
evaluators to get familiar with this study and understand its scope. They also
carefully studied the guidelines before and during the process.

The goal of the human augmentation was to correct the automatically gener-
ated scene graphs and add background knowledge by linking the detected objects
to a knowledge base (see Fig. 1). For each detected object or relation, the first
step for the evaluators was to evaluate if it is correct or not and in case of an
incorrect object to correct it. The second step was to link each object to its
entry in Wikidata. For example, the detected object “man” was linked to the
entry for “man”. The objects represent generic types, e.g., “man”, “woman”
etc., but in some cases, a specific instance of the object type might be shown,
which we call entity, e.g., the woman depicted is Hillary Clinton (as shown in
Fig. 1). Then, the evaluators searched for the entry of each detected object and
its entity (if existing) in Wikidata and added the corresponding links. The eval-
uators worked towards achieving high precision and in order to limit the scope
of the augmentation, no new objects or relations were added.

After a first round of augmenting a small sub-sample (around 10%), prelim-
inary guidelines were created. These guidelines described the process mentioned
in the previous paragraph in simple and brief steps. A few systematic difficulties
for the Schemata algorithm were encountered in this first round that can be
summarized as follows:
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– The text of the meme appearing on the image was often detected as a “sign”
and some parts of the text as “letter”. However, this text is not actually a
sign and is not part of the image.

– In some cases, the same object was detected multiple times.
– Some memes in the dataset were screenshots of text, so there was not any

useful visual information extracted from them.
– In a few cases, there was a specific entity depicted in the meme, but the

corresponding object type was not detected.

The above-mentioned difficulties were discussed with the evaluators and the
guidelines were revised to include clear instructions for those cases. Based on
that and other observations of the evaluators about the data, the following final
guidelines were defined:

– Meme text or sign. A distinction between a meme’s text and an actual
sign in the image, e.g., a sticker or a banner with text, was made. Detected
objects that were referring to the meme text were discarded.

– Multiple object detection. In cases where the same object type appeared
multiple times, the annotators would inspect the bounding boxes in the
images to verify whether it is the same object. If yes, then only one occurrence
was kept.

– Screenshots. Memes that are screenshots of text and do not contain visual
information were disregarded from the augmentation process.

– Missed objects. The human augmentation is based on the automatically
generated scene graphs and thus, no new objects or their corresponding enti-
ties were added.

Fig. 4. Examples of memes after the automatic augmentation. In sub-figures (a) and
(b), we see cases where the detected object is incorrect (e.g., “10-tree” in (a) and “13-
wheel” in (b)), but the correct object is not clear to define. In sub-figure (c) we see
that the same object, i.e., “0-face” can depict two entities.
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– Bounding boxes. The bounding boxes that were drawn on the image during
the automatic augmentation are not used in our study, hence they were not
changed in the human augmentation.

– Incorrect objects. For each detected object, the evaluators determined if
its type was correct or not. If not, then the correct type for this object was
indicated, when it was possible. In cases where the object did not exist in the
image at all, it was simply removed.

– Relation correction. For each relation, the evaluators determined if it was
correct or not. If the type of objects that the relation referred to was incorrect,
then, the type was replaced with the correct one. Following the same approach
as with the objects, no new relations were added neither was an object that
was not detected added to a relation.

– Knowledge base. Each object was mapped to a specific entity when possible
by adding a link to Wikidata.

After the guidelines were finalized, the entire dataset was augmented. The
inter-annotator agreement and Cohen’s kappa regarding the correctness of the
detected objects were 83.84% and 0.60 respectively, while for the correctness of
the detected relations it was 78.05% and 0.53. The first evaluator found that
12.95% of the automatically detected objects needed correction. The second
evaluator found a larger percentage of incorrect objects around 21.86%. Similar
outcomes were observed for the relations, where the first evaluator found 22.13%
of the relations to be incorrect, while the second found 31.48%. The number of
objects found incorrect by both evaluators was 1,127 and for these cases, they
agreed on the correct object 282 times. This low agreement shows that deciding
about the exact type of objects shown in an image is a difficult task. The relations
found incorrect by both evaluators were 1,820. Regarding the knowledge base
linking, more inconsistencies were found and the evaluators added the same link
in 4,314 out of 9,666 cases. In Fig. 4, we see examples of cases that caused the low
agreement. Sub-figures (a) and (b) contain detected objects that both evaluators
agreed are incorrect (e.g., “10-tree” in (a) and “13-wheel” in (b)). However,
they did not add the same correct object. For example, the object “13-wheel”
in (b), was corrected as “shoe” by one evaluator and as “foot” by the other.
Both of these corrections can be considered valid. Regarding adding the links to
Wikidata, similar uncertainties can be found. In cases of disagreement, we chose
the correct object or link for the final dataset by the following heuristic: for each
annotated alternative, we counted its occurrence in the part of the dataset that
had 100% agreement, i.e., the more frequent object or link was finally chosen.
For the entity links, there are cases that the evaluators added a different link, but
both of the links were correct. In sub-figure (c), we see such a case in which “0-
face” depicts both “Bernie Sanders” and “Yoda”. Hence, both links were added
to the final augmentations. In cases where the evaluators disagreed regarding
the correctness of an object or relation, they were removed.

To conclude our analysis based on human augmentation, we used the results
of the aforementioned process as inputs to the models described in Sect. 4.1. We
experimented with two different settings for training and testing the models.
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First, we used the results of the manual augmentation, which are the corrected
scene graphs and manually linked knowledge, both for training and inference
(manual/manual). Second, we combined the two augmentations and trained on
the manual ones, and tested on the automatic ones (manual/automatic). In this
case, the automatic augmentations are the scene graphs corrected automatically
based on the manual corrections of the training data. We kept in the development
and test scene graphs only the objects that were manually marked as correct at
least once in the training scene graphs and removed the rest (i.e., the ones that
the evaluators found were always falsely detected by the scene graph model).
The knowledge base information consisted of the descriptions of the automat-
ically detected text entities (See Subsect. 3.2). We used the same experimental
setup as for the MemeGraphs method described in Subsect. 4.2. The average
results over the 20 runs are shown in Table 3 and the score of the models per-
forming best on the development set in Table 4. We observe that in both settings
MemeGraphs[SceneGr+Know] achieves the best F1 score in Table 4, similar to
the fully automatic setting (Table 2). On the other hand, when looking at the
average, the TxtBERT with only the scene graphs as input obtains the best score
(MemeGraphs[SceneGr])in both the manual/manual and the manual/automatic
settings.

Table 3. Precision (P), recall (R) and F1 scores averaged over twenty runs and stan-
dard error of mean on the test set for each setting.

Model Manual/manual Manual/automatic

P R F1 P R F1

ImgBERT 0.394 ± 0.041 0.522 ± 0.080 0.408 ± 0.048 0.394 ± 0.041 0.522 ± 0.080 0.408 ± 0.048

TxtBERT 0.457±0.020 0.516 ± 0.063 0.442 ± 0.032 0.457 ± 0.020 0.516 ± 0.063 0.442 ± 0.032

MemeGraphs[SceneGr] 0.410 ± 0.024 0.604±0.051 0.474±0.029 0.404 ± 0.024 0.592±0.050 0.467±0.029

MemeGraphs[Know] 0.408 ± 0.024 0.507 ± 0.050 0.434 ± 0.030 0.460±0.050 0.309 ± 0.079 0.254 ± 0.049

MemeGraphs[SceneGr+Know] 0.436 ± 0.031 0.560 ± 0.051 0.443 ± 0.033 0.368 ± 0.030 0.331 ± 0.079 0.280 ± 0.045

Table 4. Precision (P), recall (R) and F1 scores on the test set of the best model based
on the development set for each setting.

Model Manual/manual Manual/automatic

P R F1 P R F1

ImgBERT 0.389 1.000 0.560 0.389 1.000 0.560

TxtBERT 0.403 0.897 0.556 0.403 0.897 0.556

MemeGraphs[SceneGr] 0.419 0.845 0.560 0.417 0.828 0.555

MemeGraphs[Know] 0.400 0.655 0.497 0.406 0.931 0.565

MemeGraphs[SceneGr+Know] 0.424 0.862 0.568 0.422 0.931 0.581
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5.2 Discussion

We observe that overall our proposed method outperforms its competitors
in terms of F1 score in all settings (fully automatic, manual/manual, man-
ual/automatic). Between the different settings, we see that the models with the
fully automatic setting have the best scores (MemeGraphs[Know] in Table 1 and
MemeGraphs[SceneGr+Know] in Table 2), even though manual augmentations
would be expected to be more accurate than the automatic ones. Furthermore,
not only the best score is achieved by the MemeGraphs[Know] model in the
fully automatic setting, but this model’s performance is improved in this setting
compared to the manual ones. The scene graphs infused model also achieves
better results in the fully automatic setting, showing that the automatically
produced scene graphs are accurate enough and no manual correction is needed.
In the manual/automatic setting, all the models performed worse compared to
the other settings. This fact shows that models trained on manual annotations
are not able to generalize in the automatic setting. This holds true especially in
the MemeGraphs[Know] model, since in the automatic setting no information
for the type of the objects exists in the input. To gain insights into that behav-
ior, we analyze the different challenges that were faced in the manual and the
automatic augmentation and compare their results.

During the manual augmentation, both correcting the scene graphs and
adding background knowledge were found challenging. Regarding the scene
graphs, memes contain complex information and images, which made the correc-
tion of objects difficult for the evaluators (see Subsect. 5.1). Background knowl-
edge for specific entities was also difficult to add for three main reasons: 1. the
evaluators may not know the person depicted in the image, 2. many memes were
screenshots of posts, so there was no actual visual information, and 3. meme
texts often refer to entities that are not shown in the image. This resulted in
detecting entities for only 409 memes out of 743. The automatic entity detection,
on the other hand, was based on the text, which assisted in overcoming the three
aforementioned challenges and extracted entities for all the memes.

Regarding the automatic augmentation based on the entities detected by
the NER model, the main challenge consists of linking the detected entities to
the knowledge base. Even though the model managed to extract entities from
all the texts showing that we can obtain rich information, linking them to the
knowledge base was not easy. Many times the entities appear in the text with
only their first name, e.g., “Hillary”, or their first and last name concatenated,
e.g., “donaldtrump”, or are detected alongside some other word, e.g., “green
Bernie”. When these entities are searched for in the knowledge base, the results
might not be accurate and contain data entries for many entities from which we
choose the first as the most related one. However, this can lead to adding a link
to the wrong entity.
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6 Conclusion

In order to understand memes, it is necessary to correctly interpret the image,
and the text and to connect it with appropriate general background knowledge
(outside of the meme). In this work, we introduced models infused with scene
graphs and world knowledge retrieved from WikiData. As a foundational rep-
resentation, scene graphs were automatically generated, which relate the most
important objects in the meme image to each other. Typed objects from the
scene graph and named entities from the text were extracted automatically and
linked to WikiData. This structured information (scene graph and information
from WikiData) was then serialized as a sequence of tokens and concatenated
with the original text from the meme for classification with a Transformer lan-
guage model. We found that adding the graph representation and knowledge
from Wikidata improved performance on hateful meme detection compared to
classification on text alone, and compared to a multimodal model based on pre-
trained image embeddings in addition to text. We also provide a dataset with
human corrections of the automatically generated graphs, and an analysis that
shows that the (uncorrected) automatic graphs and the corrected ones perform
similarly well for hatefulness detection with our approach.
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