
Victor Malyshkin (Ed.)
LN

CS
 1

40
98 Parallel Computing 

Technologies
17th International Conference, PaCT 2023
Astana, Kazakhstan, August 21–25, 2023 
Proceedings



Lecture Notes in Computer Science 14098
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Victor Malyshkin
Editor

Parallel Computing
Technologies
17th International Conference, PaCT 2023
Astana, Kazakhstan, August 21–25, 2023
Proceedings



Editor
Victor Malyshkin
Institute of Computational Mathematics
and Mathematical Geophysics SB RAS
Novosibirsk, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-41672-9 ISBN 978-3-031-41673-6 (eBook)
https://doi.org/10.1007/978-3-031-41673-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7874-3686
https://doi.org/10.1007/978-3-031-41673-6


Preface

The 17th International Conference on Parallel Computing Technologies (PaCT 2023)
was a four-day event held in Astana, Kazakhstan. It was organized by the Institute of
Computational Mathematics and Mathematical Geophysics of the Russian Academy of
Sciences (Novosibirsk) in cooperation with Astana IT University (Astana, Kazakhstan),
Novosibirsk State University, and Novosibirsk State Technical University.

The PaCT conference series started in Novosibirsk (Akademgorodok) in 1991 and
has been held in various Russian cities mainly every odd year since then. The 15th
Conference, PaCT 2019, took place in Almaty, Kazakhstan, and it was an honor to
collaborate with our partners in Kazakhstan this year again. Since 1995, all the PaCT
proceedings have been published by Springer in the LNCS series. The aim of the PaCT
2023 conference was to provide a forum for an exchange of views among the interna-
tional community of researchers in the field of the development of parallel computing
technologies. The PaCT 2023 Program Committee selected papers that contributed new
knowledge in methods and tools for parallel solution of large-scale numerical simulation
and data processing problems. The papers selected for PaCT 2023

– present results in development of automatic programming tools,
– study parallel implementation of basic data structures and algorithms,
– propose high-level HPC/HTC services and frameworks,
– investigate the problems of HPC systems management, such as job scheduling and

monitoring.

Number of submitted papers: 23. They were subjected to a single-blind reviewing
process. The average number of reviews per submitted paper was 2.4. The Program
Committee selected 15 full papers for presentation at PaCT 2023.

Many thanks to our sponsors: the Ministry of Science and Higher Education of the
Russian Federation, Russian Academy of Sciences, Ministry of Science and Higher
Education of the Republic of Kazakhstan, and RSC Technologies.

August 2023 Victor Malyshkin



Organization

Organizing Committee

Conference Chair

V. E. Malyshkin ICMMG SB RAS, NSU, NSTU, Novosibirsk,
Russia

Conference Secretary

M. A. Gorodnichev ICMMG SB RAS, NSU, NSTU, Russia

Organizing Committee Members

S. B. Arykov ICMMG SB RAS, NSTU, Russia
M. A. Gorodnichev ICMMG SB RAS, NSU, NSTU, Russia
S. E. Kireev ICMMG SB RAS, NSU, Russia
A. E. Kireeva ICMMG SB RAS, Russia
D. V. Lebedev Astana IT University, Kazakhstan
Yu. G. Medvedev ICMMG SB RAS, Russia
V. A. Perepelkin ICMMG SB RAS, NSU, Russia
V. S. Timofeev NSTU, Russia
G. A. Schukin ICMMG SB RAS, NSTU, Russia
N. K. Zhakiyev Astana IT University, Kazakhstan

Program Committee

Victor Malyshkin (Chairman) Institute of Computational Mathematics and
Mathematical Geophysics, Russian Academy
of Sciences, Novosibirsk State University,
Novosibirsk State Technical University, Russia

Sergey Abramov Program Systems Institute, Russian Academy of
Sciences, Russia

Farhad Arbab Leiden University, The Netherlands
Jan Baetens Ghent University, Belgium
Stefania Bandini University of Milano-Bicocca, Italy
Thomas Casavant University of Iowa, USA



viii Organization

Jou-Ming Chang National Taipei University of Business, Taiwan
Hugues Fauconnier University of Paris, The Research Institute on the

Foundations of Computer Science (IRIF),
France

Dan Feng Huazhong University of Science and Technology,
People’s Republic of China

Juan Manuel Cebrián González University of Murcia, Spain
Yuri G. Karpov Peter the Great St. Petersburg State Polytechnic

University, Russia
Alexey Lastovetsky University College Dublin, Ireland
Jie Li University of Tsukuba, Japan
Giancarlo Mauri University of Milano-Bicocca, Italy
Igor Menshov Keldysh Institute for Applied Mathematics,

Russian Academy of Sciences, Russia
Dana Petcu West University of Timisoara, Romania
Viktor Prasanna University of Southern California, USA
Waleed W. Smari Ball Aerospace & Technologies Corp., USA
Victor Toporkov National Research University “Moscow Power

Engineering Institute”, Russia
Roman Wyrzykowski Czestochowa University of Technology, Poland

Additional Reviewers

Sergey Kireev
Anastasia Kireeva
Vladislav Perepelkin
Georgy Schukin
Andrey Vlasenko

Sponsoring Institutions

Ministry of Education and Science of the Russian Federation
Russian Academy of Sciences
RSC Group



Contents

Automatic Programming and Program Tuning

Automation of Programming for Promising High-Performance Computing
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Vladimir Bakhtin, Dmitry Zakharov, Nikita Kataev,
Alexander Kolganov, and Mikhail Yakobovskiy

Automatic Parallelization of Iterative Loops Nests on Distributed Memory
Computing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A. P. Bagliy, E. A. Metelitsa, and B. Ya. Steinberg

Didal: Distributed Data Library for Development of Parallel Fragmented
Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Victor Malyshkin and Georgy Schukin

Trace Balancing Technique for Trace Playback in LuNA System . . . . . . . . . . . . . 42
Victor Malyshkin, Vladislav Perepelkin, and Artem Lyamin

Case Study for Running Memory-Bound Kernels on RISC-V CPUs . . . . . . . . . . 51
Valentin Volokitin, Evgeny Kozinov, Valentina Kustikova,
Alexey Liniov, and Iosif Meyerov

Frameworks and Services

Pair of Genes: Technical Validation of Distributed Causal Role Attribution
to Gene Network Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Diana Dolgaleva, Camilla Pelagalli, Stefania Pilati, Enrico Blanzieri,
Valter Cavecchia, Sergey Astafiev, and Alexander Rumyantsev

HiTViSc: High-Throughput Virtual Screening as a Service . . . . . . . . . . . . . . . . . . 83
Natalia Nikitina and Evgeny Ivashko

Expanding the Cellular Automata Topologies Library for Parallel
Implementation of Synchronous Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . 93

Yuri Medvedev, Sergey Kireev, and Yulia Trubitsyna



x Contents

Algorithms

Parallel-Batched Interpolation Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Vitaly Aksenov, Ilya Kokorin, and Alena Martsenyuk

Parallel Generation and Analysis of Optimal Chordal Ring Networks
Using Python Tools on Kunpeng Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Oleg Monakhov, Emilia Monakhova, and Sergey Kireev

Combinatorial Aspect of Code Restructuring for Virtual Memory
Computer Systems Under WS Swapping Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Stepan Vyazigin and Madina Mansurova

Distributed Systems Management

Probabilistic Resources Allocation with Group Dependencies
in Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Victor Toporkov, Dmitry Yemelyanov, and Artem Bulkhak

Multicriteria Task Distribution Problem for Resource-Saving Data
Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Anna Klimenko and Arseniy Barinov

Scheduling of Workflows with Task Resource Requirements in Cluster
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Oleg Sukhoroslov

Verifying the Correctness of HPC Performance Monitoring Data . . . . . . . . . . . . . 197
Danil Kashin and Vadim Voevodin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



Automatic Programming and Program
Tuning



Automation of Programming
for Promising High-Performance

Computing Systems

Vladimir Bakhtin , Dmitry Zakharov , Nikita Kataev(B) ,
Alexander Kolganov , and Mikhail Yakobovskiy

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
dvm@keldysh.ru, kaniandr@gmail.com

http://dvm-system.org

Abstract. Automation of parallel programming may focus on various
tasks the programmer is burdened while developing a parallel program.
Related tools assist the program profiling and aid the programmer with
transforming the program to a form suitable for the efficient paralleliza-
tion. Finally, these tools express an implicit program parallelism using a
chosen programming model and optimize the parallel program for target
architectures. However, the choice of the target Application Program-
ming Interfaces (API) is of great importance in the development of inter-
active parallelization tools. On the one hand, the perfect choice of API
should ensure the programming of the variety of modern and promising
architectures. On the other hand, API must simplify the development
of assistant tools and allow the programmer to explore the decisions
made by the automated parallelization system. System FOR Automated
Parallelization (SAPFOR) is an umbrella of assistant tools designed to
automate parallel programming. It accomplishes various tasks and allows
the user to take an advantage of the interactive semi-automatic paral-
lelization. SAPFOR expresses parallelism using the DVMH directive-
based programming model, which aims at developing efficient parallel
programs for heterogeneous and hybrid computing clusters. The paper
presents an empirical study that examines the capability of SAPFOR to
assist parallel programming on the example of development of a parallel
program for numerical simulation of hydrodynamic instabilities.

Keywords: Automation of parallelization · Heterogeneous
computational clusters · GPUs · Directive-based programming models ·
DVMH · SAPFOR

This work was supported by Moscow Center of Fundamental and Applied Mathemat-
ics, Agreement with the Ministry of Science and Higher Education of the Russian
Federation, No. 075-15-2019-1623.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-41673-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_1&domain=pdf
http://orcid.org/0000-0003-0343-3859
http://orcid.org/0000-0002-6319-5090
http://orcid.org/0000-0002-7603-4026
http://orcid.org/0000-0002-1384-7484
http://orcid.org/0000-0002-9498-1457
https://doi.org/10.1007/978-3-031-41673-6_1


4 V. Bakhtin et al.

1 Introduction

Parallel program development is typically done with lower level APIs such
as MPI, POSIX Threads, CUDA and OpenCL. Heterogeneous systems, which
became a mainstream in past years, make the programmer use a variety of dif-
ferent APIs in a single parallel program. MPI allows the programmer to take
advantage of distributed memory systems, POSIX Threads is suitable to utilize
multicore compute nodes with shared memory, and CUDA and OpenCL provide
the programmer with control over the GPUs. However, the application of lower
level parallel programming models raises concerns from the complexity, correct-
ness, and portability and maintainability perspectives. Portability is affected
because programming of different architectures can be only accomplished using
different API. For example, NVIDIA GPUs require CUDA while AMD GPUs
rely on OpenCL to express parallelism. To address all mentioned concerns par-
allel programming approaches must raise the level of abstraction above that of
lower level APIs.

A possible approach is to extend general-purpose languages with parallelism
specifications expressed with higher level directives. This approach facilitates and
unifies parallel programming for different architectures because the compiler is
responsible for the implicit delivery of parallelism across different architectures
using specific API. Directive-based programming models preserve the sequential
code. Hence the ability for the normal compiler to neglect this kind of paral-
lelism specifications greatly simplifies the introduction of new models of parallel
programming.

An example of a model that supports multi-platform shared-memory parallel
programming is OpenMP. The recent versions of the OpenMP standard propose
an extension of the model for accelerator programming. Using this extension the
programmer is capable to distribute parallelism across the whole cores (CPU and
GPU) available in a single cluster node. A similar approach was implemented
by Cray, NVIDIA and AMD in the OpenACC standard . It provides a set of
compiler directives designed for developing parallel applications on both CPUs
and GPUs. The arising of these higher level APIs significantly simplifies parallel
programming. Now, instead of three programming models, only two are necessary
to achieve a massive performance, for example MPI with OpenMP or MPI with
OpenACC.

The DVMH [1] model, proposed at Keldysh Institute of Applied Mathemat-
ics, goes even further. In addition to API that provides the developer with a set of
directives to distribute computations, the model also introduces specifications to
facilitate interaction between cluster nodes. DVMH supports partitioning data
between processors, manages accesses to remote data and implements global
operations among data located on different nodes. Therefore, using DVMH the
developer can completely abandon MPI like APIs. Parallel applications written
in DVMH languages remain unchanged if they are transferred from one HPC
system to another. The performance problem is addressed by the DVMH compil-
ers and run-time system which implement various optimizations aimed at better
utilization of target architecture.



Automation of Programming for Promising HPC Systems 5

While directive-based models reduce the programmer effort and increase soft-
ware maintainability and portability, they are still explicitly parallel. Therefore,
to purse high performance the programmer is burdened with the tasks of identi-
fying code regions which mainly affect the application performance and revealing
loop-carried data dependencies along with spurious dependencies, which do not
prevent loop parallelization but require explicit specifications in a source code.
Furthermore, in case of distributed memory systems the programmer chooses
data to be partitioned between compute nodes and corresponding distribution
rules, and finally specifies communication points in a source code to exchange
data between different compute nodes. Thus, although explicit higher level APIs
decrease the overall parallel programming complexity, they still complicate code
writing and debugging. Introduction of interactive tools that perform program
analysis and transformation is the next step towards the simplification of parallel
programming.

In this paper we explore the capability of System FOR Automated Par-
allelization (SAPFOR) [1] to assist parallel programming on the example of
development of a parallel program for numerical simulation of hydrodynamic
instabilities. On the one hand, SAPFOR uses an implicit parallel programming
methodology [2], which assumes that the auto-parallelizing compiler, it contains,
turns the well-formed sequential program into a parallel one. On the other hand,
SAPFOR extends an implicit parallel programming methodology and it provides
the user with the interactive tools to examine the program at each step of paral-
lelization and to obtain a well-formed version of a sequential program from the
original one. This paper summarizes all previous works which form SAPFOR
and presents an empirical study of its capabilities.

The rest of the paper is organized as follows. Section 2 briefly summarizes
architecture and main capabilities of SAPFOR, it also discusses the use of the
SAPFOR interactive subsystem in the process of parallelization. Section 3 in
details describes parallelization of the program for numerical simulation of hydro-
dynamic instabilities. We highlight the main steps of parallelization and outline
the contribution of SAPFOR at any of them. Section 4 presents the performance
of the obtained parallel program. We examine its execution on a heterogeneous
computational cluster and show how the choice of a launch configuration (num-
ber of CPU cores and GPUs) affects the program performance. Section 5 dis-
cusses the related work and, finally, Sect. 6 concludes this paper.

2 Architecture of SAPFOR

SAPFOR focuses on three main tasks:

– Exploration of sequential programs (program analysis and profiling).
– Automatic parallelization (according to the high-level programming model)

of a well-formed program for which a programmer maximizes algorithm-level
parallelism and asserts high-level properties (implicit parallel programming
methodology).

– Semi-automatic program transformation to obtain a well-formed sequential
version of the original program.



6 V. Bakhtin et al.

We can distinguish three major parts of SAPFOR that focus on solving these
tasks: the core subsystem, that manages program analysis and transformation,
the dynamic analysis library and the interactive subsystem. These parts are
independent from each other and communicate using specific APIs, that allow us
to use different implementations of interactive subsystem and dynamic analyzers
if necessary.

The integration between core and interactive subsystem [3] relies on the
client-server model implemented using message passing interface with messages
encoded in JSON. The interactive subsystem can be implemented as a standalone
Integrated Development Environment (IDE) or as an extension for widely used
tools. In this study we use the implementation of the interactive subsystem as
an extension for the Visual Studio Code editor.

SAPFOR implements instrumentation-based dynamic analysis [6], hence the
dynamic analysis library is an external library that implements a specific inter-
face functions. Dynamic analysis results are encoded in JSON.

The core subsystem is organized as a pass framework. Passes perform analysis
and transformation of the program. To implement new capabilities the number
of existing passes can be extended. Another major part of the core subsystem is
a multi-level representation of the program. It includes three levels. At the low
level LLVM IR [4] is used to perform program analysis and property sensitive
transformations that bring the low level program representation to the most
suitable form for program analysis. At the top level Clang AST and Flang AST
are used to perform source-to-source transformation of the original program and
to navigate the programmer through the analysis results in a user-friendly way.
At the middle level extended metadata-based representation is used to establish
correspondence between lower level IR and higher level AST.

Data dependencies between statements determine the information structure
of a sequential program [5]. Hence from the SAPFOR perspective we need to
focus on memory accesses to exploit implicit parallelism. Analysis of memory
accesses addresses recognition of data dependencies that prevent program paral-
lelization, as well as spurious data dependencies (reduction and induction vari-
ables, privatization techniques), alias analysis and points-to analysis, recogni-
tion of pointers captured in function calls, data flow analysis, etc. The program
representation influences the quality of analysis results. Hence we interested in
application analysis techniques after specific transform sequences, which may
include but not limited to construction of Static Single Assignment (SSA) form,
dead code elimination, function inlining, combining redundant instructions, nat-
ural loop canonicalization and etc. Moreover distinct pass sequences are better
suited to different properties to be analyzed.

SAPFOR performs mentioned transformations on top of the low level pro-
gram representation and does not affect the source code. To bring the gap
between LLVM IR and AST-based representations we proposed a novel data
structure, called source-level alias tree [7].

The source-level alias tree allows SAPFOR to establish correspondence
between IR-level memory locations accessed in a transformed program and AST-
level memory locations accessed in the original program. Thus, analysis in SAP-



Automation of Programming for Promising HPC Systems 7

FOR is organized as a number of concurrent pass sequences (analysis servers) [8].
Each sequence contains analysis and transform passes that are better suited
to investigate required program property. We combine multiple analysis results
using a source-level alias tree and, finally, obtain the overall analysis of the pro-
gram.

A separate passes were implemented to perform source-to-source transforma-
tions, parallelization for shared memory systems (multicore CPUs and GPUs) [8]
and parallelization for distributed memory systems [9].

If SAPFOR relies on DVMH model to express loop-level parallelism, it auto-
matically generate the following specifications to get a resulting parallel program:
(1) specifications for data distribution, (2) specifications of the loops which can
be executed in parallel, as well as specifications of private and reduction vari-
ables, and a pattern of array accesses, (3) specification of the compute regions
which can be executed on the accelerators, each region may enclose one or more
parallel loops, (4) high-level specifications of data transfer between a memory of
CPU and a memory of accelerator (actualization directives).

Here is a brief description of the major stages of the parallelization strategy:

1. Clang and Flang are used as frontends to parse the sequential program into
an intermediate representation. The user uses the interactive subsystem to
form a project to be analyzed and to specify compiler options required to
parse source code. SAPFOR has the ability to use a compilation database
which specifies how translation units are compiled in the project. Some build
tools like CMake support generation of compilation databases.

2. The programmer uses a DVMH profiling tool, which is a part of the DVM sys-
tem, or other conventional tools like gprof and llvm-cov to emphasize source
code regions that should be considered in parallelization. SAPFOR uses static
and dynamic techniques to assess the possible parallel program performance
and to determine the best parallelization strategy. The programmer is also
able to use SAPFOR instrumentation-based analysis techniques to maximize
the overall accuracy of the program analysis.

3. The interactive subsystem allows the programmer to observe analysis results
and to make assertions about program properties that SAPFOR has been
failed to analyze.

4. If the original computations are not parallelizable as given the programmer
chooses essential transformations and regions of a source code to be trans-
formed. SAPFOR checks precondition to approve that desirable transforma-
tions do not affect the original program behavior. If automatic transformation
is successful, the parallelization continues from steps (2) or (3). Otherwise,
the program should be transformed in a manual way.

5. Automatic parallelizing compiler, which is a part of SAPFOR, explicitly
expresses parallelism in a source code using preferred parallel programming
API (DVMH or OpenMP are supported at the moment). The problem of
distributed memory parallelization requires a solution to three main sub-
problems: data and computation distribution and communication optimiza-
tion [9]. To reduce parallelization overheads SAPFOR explores all mem-
ory accesses in the entire program while it solves the data partitioning sub-



8 V. Bakhtin et al.

problem. To reduce the complexity of the problem, which is generally NP-
hard, the programmer can specify regions of the source code to resolve sep-
arately. Finally, the programmer needs to join the obtained solutions in a
manual way to find resulting solution for the entire program.

3 Development of a Parallel Program

In this section we follow the major stages in the parallelization of a software
package for numerical simulation of hydrodynamic instabilities. The paper [10]
discusses algorithms used for calculation of hydrodynamic. Various modifications
of this package are developed and used for scientific calculations at Keldysh
Institute of Applied Mathematics RAS [11–13].

3.1 Original Program Profiling

We conducted a performance evaluation to extract regions of code to be con-
sidered in parallelization and to estimate the impact of optimizations made by
state-of-the-art compilers.

The results were gathered on the system equipped with Intel Xeon CPU E5-
1660 v2, 3.70GHz. The application was compiled with Intel C/C++ Compiler
version 19.0.2.187 with option -O3. We used representative test data with the
reduced grid size (3000 × 1257) and the reduced number of iterations (10) to
collect results within a reasonable time. The program execution time was 266 s
(4.5min). Computations in one function, namely compute_it, takes 95.6% of
the program execution time. Further analysis showed that this function con-
sists of two independent parts of computations (functions compute_heat and
compute_hydro) that takes 70% and 30% of the function execution time corre-
spondingly. I/O of intermediate results takes the rest of the program execution
time.

This performance study showed that the main computations are organized
in the form of loop. Thus we decided to use capabilities of the DVMH model to
express loop-level parallelism.

3.2 Original Program Analysis

The original program totals about 10000 lines of code in the C language. It
contains 187 functions, including 137 user-defined functions, functions from the
C standard library and the GNU Scientific Library [14]. User-defined functions
declare 1617 variables and comprise 244 loops. However, SAPFOR found direct
calls of 101 functions only. SAPFOR also found 11 indirect function calls, hence
there may be more functions involved in the computations. The total amount
of calls from user-defined functions is 612. Absence of LLVM IR representation
for precompiled library functions prevents SAPFOR from ascertaining the total
number of function calls and corresponding callees.



Automation of Programming for Promising HPC Systems 9

The time-consuming part of the code involves 82 directly called functions
(414 call statements from compute_it and its descendant functions in the pro-
gram call graph): 29 functions are called from compute_hydro (93 call state-
ments, 2 indirect calls, 22 user-defined functions), 18 functions are called from
compute_head (94 call statements, 7 indirect calls, 10 user-defined functions).

Initially, SAPFOR recognized only 66 loops without significant paralleliza-
tion issues (loop-carried data dependencies, I/O statements, multiple loop exits,
statements that lead to the unexpected program termination). Unfortunately,
the most important loops were not fully analyzed due to the presence of indirect
function calls and inaccuracy of the alias analysis. SAPFOR was not managed
to disambiguate formal parameters which points to the beginning of different
arrays. As a result, it made an assumption of indirect accesses to these arrays.

To resolve these issue we transform the original program in a way discussed in
the next section and perform dynamic analysis to investigate memory accessed
from the indirect function calls.

3.3 Original Program Transformation

In this section we overview source-to-source transformations we made to improve
the accuracy of points-to analysis.

In the program different array parameters of a function refers to different
physical quantities. Each element of the array represents a compute state in
a corresponding grid point. Thus, different array parameters point to different
memory locations and do not alias. We use the restrict qualifier, which is natural
in C language, and helps SAPFOR to properly compute alias relations. We man-
ually changed prototypes of several functions and added 15 restrict qualifiers.

However, when using arrays of pointers, the restrict qualifier is not enough
to disambiguate memory accesses to formal parameters. The C language turns
accesses to these arrays into sequences of two dereference statements. In this
case, the restrict qualifier does not affect the second statement that refers a
pointer stored inside the array. We implemented a demand-driven source-to-
source transformation in SAPFOR aimed at splitting small arrays of pointers
into independent variables. Each element of the original array-parameter results
in an independent parameter of a pointer type, hereafter we can apply the restrict
qualifier.

There are two steps in the transformation:

1. The programmer specifies parameters to replace. SAPFOR creates a copy of
an original function, with a modified set of formal parameters. It also replaces
accesses to original parameters in the body of new function.

2. The programmer specifies function calls to replace with a copy of the callee
which has been created in the first step.

Listing 1.1 shows the first step of the transformation. The SAPFOR directive
replace specifies a parameter to replace in the function foo. Its copy foo_spf0
with a new prototype is created and all accesses to ss[0] and ss[1] are replaced



10 V. Bakhtin et al.

with new parameters ss_0 and ss_1 correspondingly. The nostrict clause has
a meaning similar to the restrict qualifier. In the example it ensures SAPFOR
that all accesses to ss in the foo function occur through ss. Without this clause
the transformation was still possible, however SAPFOR would pass a pointer
to each element of ss to the foo_spf0 function. Therefore like in the original
program, two dereference statements would form accesses to values stored in the
array.

Listing 1.1. Automated replacement of an array-parameter in a function

void f oo ( state_t ∗∗ s s ) {
#pragma sp f trans form rep l a c e ( s s ) n o s t r i c t

/∗ acce s s e s to s s [ 0 ] and ss [ 1 ] ∗/
}

/∗ Replacement f o r vo id foo ( s ta t e_t ∗∗ s s ) ∗/
void foo_spf0 ( state_t ∗ss_0 , state_t ∗ss_1 ) {
#pragma sp f trans form metadata \

r ep l a c e ( foo , { . 0 = ss_0 , . 1 = ss_1 })
/∗ acce s s e s to ss_0 and ss_1 ∗/

}

Listing 1.2 shows the second step of the transformation. SAPFOR replaces
a call to foo with a call to foo_spf0.

Listing 1.2. Automated replacement of the calling function

void bar ( state_t ∗∗ s s ) {
#pragma sp f trans form rep l a c e with ( foo_spf0 )
foo ( s s ) ;

}

void bar ( ) {
foo_spf0 ( s s [ 0 ] , s s [ 1 ] ) ;

}

3.4 Dynamic Analysis

At the next step we checked data dependencies in the program at runtime. Then
we complemented static analysis results with the gathered data. Blended analysis
of the transformed program allows SAPFOR to find 95 loops without significant
parallelization issues including important loops that spend the most part of
the program’s execution time. Some loops with indirect function calls were also
chosen for parallelization. These loops can be parallelized for multicore CPU,
however parallelization for distributed memory and GPU requires additional
parallelism specifications that cannot be applied to indirect function calls.



Automation of Programming for Promising HPC Systems 11

To reduce dynamic analysis time we instrumented important functions only,
including functions which are called indirectly. SAPFOR provides a programmer
with an option to select the starting points for instrumentation. It uses a pro-
gram call graph to only instrument selected functions and connected descendant
functions. We also explicitly select functions which are called indirectly. Pointers
to these functions are initialized at the program beginning before any compu-
tations are started. Input data determines particular functions to be called at
runtime. Thus, it was enough to select all the functions, pointers to which can
be used.

We explicitly selected 14 functions, including 10 indirectly called functions.
As a result, SAPFOR instrumented 75 functions instead of 139, which are instru-
mented if it analyzes the entire program. We used reduced grid size (150 × 63)
and profiled 1 iteration only. Our measurements were taken on a desktop work-
station which consists of Intel Core i7-10510U, 1.8GHz CPU. The total analysis
time was 409 sec. (6min. 49 sec.), the memory consumption during the analysis
was 336 MB. The program execution time without using dynamic analysis is
0.2 sec. Thus, dynamic analysis slows down the program up to 2045 times. For
comparison, the time of static analysis of the program is 102 sec.

3.5 Parallelization for Shared Memory

SAPFOR was capable to recognize important loops without significant paral-
lelization issues after the step mentioned in the previous sections. However, par-
allelization for GPUs required additional program transformations.

Firstly, it is not allowed to take address of a function in a host code and
to use this address in device code. We manually replaced 10 indirect function
calls with direct calls to enable parallelization of important loops. Secondly,
calls to the GSL library within the loop body prevent parallelization for GPUs,
because there is no GPU conformance version of the library available. In total
184 GSL library calls were restructured and 20 GSL vectors were replaced with
natural C arrays. Finally, CDVMH language, which is a target API SAPFOR
uses, imposes some restrictions on functions that is called in regions of code
which are scheduled for GPU execution [15]. These functions cannot produce
side effects and accesses remote data which are located on another processor.
SAPFOR performed inline substitution of these functions in the source code.

The application of the mentioned restructuring techniques made it possible
to construct DVMH version of the original program suitable for execution on
multicore CPUs and GPUs.

3.6 Parallelization for Distributed Memory

Unlike incremental parallelization applicable for shared memory, distributed
memory requires global decision making. Three main sub-problems need to be
addressed: data and computation distribution and communication optimization.
Unfortunately, linearized multidimensional arrays and program modularity dras-
tically complicate data distribution.



12 V. Bakhtin et al.

It is natural to use a multidimensional grid to represent a multidimensional
space and a multidimensional array to represent a state of computations at any
point in the grid. The DVMH model relies on a multidimensional view of a
distributed memory system and it provides the programmer with explicit spec-
ifications to map data and computations to a node in a multidimensional grid
of virtual compute nodes. If the main source of parallelism is nested loops, the
parallel directive specifies compute nodes to execute iterations on. An entire
iteration of a loop can be executed by a single node only. Hence to improve
data locality and to reduce communication overhead a compute node need to
allocate all data an iteration accesses. Thus, there is a relation between elements
of different arrays. In the source code the align directive expresses this rela-
tion. It establishes the arrangement of array elements relative to each other on
the multidimensional view of the compute system. To specify alignment affine
expressions in a form a*i+b is used for each dimension of an array.

Linearized view of data corresponds to the array representation in memory,
but hides the multidimensional structure of data and hinders data partition-
ing. SAPFOR implements techniques to recover the form of multidimensional
arrays in the C99 language, which presented in lower level LLVM representa-
tion in a linearized form [16]. While SAPFOR can recover the original form of
multidimensional arrays, a source-to-source transformation that turns linearized
arrays into multidimensional ones is not implemented yet. It can be done only
by looking at all array accesses in an entire program and it requires complex
interprocedural analysis.

The original program is structured into modules. This modularity raises the
compiler issue of interprocedural analysis because it is not known at compile
time which of the functions will be called during a specific execution. Different
modules require different data partitioning and some of the modules cannot be
parallelized because of loop-carried data dependencies or unstructured control
flow.

Thus, for the entire program, SAPFOR was not able to construct the data
distribution in an automatic way. However, SAPFOR implements incremental
parallelization techniques for distributed memory [1]. We applied SAPFOR to
independently solve data distribution problem for the explicitly selected well-
formed regions of source code. The found solutions helped us to manually select
data distribution for the entire program.

3.7 Parallel Program Optimization

The main drawback the parallel program has at this step was the presence of
imperfect loop nests in the compute_heat function that spend for than 90% of
the program’s execution time. As a result, it was not possible to collapse iteration
spaces of two nests of loops to increase loop-level parallelism. We applied several
code reconstruction techniques to obtain perfectly nested loops.

Firstly, SAPFOR performs automatic function inlining in loops that form
a loop nest. Secondly, we expand a number of dimensions of 10 arrays which
were used temporarily within an iteration of an outer loop. The transformation



Automation of Programming for Promising HPC Systems 13

makes each iteration in the nest access a separate element of an array and breaks
data dependencies in the loop. We did this reconstruction in a semi-automatic
way. We applied these two transformations to 2 loops. Each of these loops had
had 2 directly nested inner loops, a call of a function that contains 3 loops and
standalone statements. As a result, we obtained 14 loop nests with each nest
containing 2 perfectly nested loops. The transformation enables the partitioning
of computations in the program between nodes of a two-dimensional grid of
cluster nodes.

Finally, all discussed steps follow us to a parallel DVMH program that is
suitable for execution on heterogeneous computation cluster with accelerators.
The resulting program totals 21450 lines of code of which DVMH directives
occupy about 500 lines. The following specifications have been inserted:

– 107 directives to specify parallel loop nests (parallel),
– 20 directives to specify execution on GPU (region, get_actual, actual),
– 160 data distribution directives (distribute, align, realign, redistribute),
– 66 directives to specify functions that inherit data distribution from the caller

function (inherit),
– 5 directives to specify accesses to remote data (remote_access).

4 Parallel Program Performance Evaluation

We have measured the performance of the developed parallel program on the
K60 supercomputer of Shared Resource Center of KIAM RAS [17]. Figure 1 and
Fig. 2 show the execution time we observed depending on number of CPUs and
GPUs.

Fig. 1. The execution time (sec.) of 100 iterations on the grid 3000× 1528

Source code reconstruction techniques discussed in previous sections reduce
the program execution time on a single core. On the 3000 × 1528 grid the program
speedup is of about 1.5. On 64 cores of two Intel Xeon Gold 6142v4 processors



14 V. Bakhtin et al.

it runs up to 59 faster than the original program. A single NVIDIA Tesla V100
GPU is enough to achieve speedup of about 141. Figure 2 shows fragments of
the output of the performance analysis tool which is a part of the DVM system.
The figure compares the main characteristics that form program execution time
on 12000× 5028 grid if 1 and 4 GPS are used correspondingly.

Fig. 2. Performance profiling on 1 and 4 GPUs (grid size 12000× 5028)

On 4 GPUs the overhead increases (the lost time field) up to 5.64 s in com-
parison with 0.95 s on 1 GPU. Exchange of shadow edges between different GPUs
incurs the overhead of about 0.92 s. However, despite the increasing overhead 4
GPUs improve the program performance and reduces the execution time from
162 s on 1 GPU to 48 s on 4 GPUs (3.3 times).

The obtained results allow us to point out the high efficiency of the developed
parallel version of the program.

5 Related Works

Various approaches exist to simplify parallel programming.
Many of them advocate explicit parallel programming while relies on higher-

level APIs to increase programming productivity. DSLs [18,19] introduce
narrowly specialized language constructs, however allow the programmer to
achieve greater performance into a given domain. If the high-performance
libraries [20,21] are used, a general-purpose programming languages are enough
to utilize parallel platforms. However, the programmer is limited by the capa-
bilities a library implements and by parallel architectures a library supports.
Directive-based programming models are general enough to express parallelism
in different ways, but they stile require a developer to be very aware of parallel
programming.



Automation of Programming for Promising HPC Systems 15

Another group of approaches proposes assistance tools which address differ-
ent steps of the parallelization process. Some of them do not make decision of
how to parallelize loops but perform data dependence profiling [22] or make rec-
ommendations to the user which code regions to parallelize first [23]. However,
the most desirable tools are automatic parallelizing compilers.

Model-based parallelizing compilers [24–27] represent the entire transforma-
tion sequence as a single transformation and discover it in an automatic way
using mathematical optimization methods. Usually these compilers implement
incremental parallelization techniques and utilize shared memory systems only.
Moreover, a complex mathematical model which is used to represent the program
fragments drastically complicates user participation in the parallelization.

Tools that target distributed memory systems do not usually overcome all
sub-problems: data and computation distribution, communication optimization.
These compilers may derive computation distribution from predefined data dis-
tribution [28,29] or introduce special data types to simplify decision making [30].

If the program parallelization require preliminary transformations of a source
code or a compiler fails to analyze the program properties, the compiler generates
code which is not optimal. Some tools provide the user with capabilities to
participate in the parallelization process using an interactive subsystem [28] or
asserting program properties in a source code [31].

6 Conclusion

Many sequential applications have been written since the appearance of com-
puter systems. These programs form the basis for the development of parallel
programs. However, it is apparent that automatic parallelization for heteroge-
neous and hybrid computing cluster cannot be applied to large-scale codes yet.
In this paper we point out main steps in the parallelization process that current
assistant tools should focus on to make semi-automatic parallelization to become
beneficial to developers of large-scale applications. We summarize the experience
of parallel program development we gain in Keldysh Institute of Applied Math-
ematics RAS to propose a methodology the developers can follow to overcome
the main parallel programming issues: complexity, correctness, and portability
and maintainability.

We proposes an automation system (SAPFOR) and parallel API, which
explicitly expresses parallelism in a source code (DVMH), that complement each
other to empower opportunity of semi-automatic parallel program development.
SAPFOR implements various techniques to assist any step of the parallelization
process: sequential program profiling, extraction of the original program proper-
ties essential for its parallelization, reconstruction of the source code, data and
computation distribution as well as communication optimization.

DVMH programs can be executed without any changes on workstations and
HPC systems equipped with multicore CPUs, GPUs, and Intel Xeon Phi copro-
cessors. The performance gains, which are achieved on different architectures,
are caused by various optimizations implemented in the DVMH compiler and



16 V. Bakhtin et al.

runtime system. At startup the programmer configures desirable resources (the
number of cluster nodes, threads and accelerators, the number of processors per
node as well as performance of different processing units) the parallel applica-
tion should utilize. Thus the best configuration can be selected to improve the
efficiency of computational resources utilization in HPC centers.

References

1. Bakhtin, V.A., Krukov, V.A.: DVM-approach to the automation of the develop-
ment of parallel programs for clusters. In: Programming and Computer Software,
vol. 45, no. 3, pp. 121–132 (2019) https://doi.org/10.1134/S0361768819030034

2. Hwu, W.-M., et al.: Implicitly parallel programming models for thousand-core
microprocessors. In: Proceedings of the 44th annual Design Automation Conference
(DAC ’07), pp. 754–759. ACM, New York, NY, USA (2007). https://doi.org/10.
1145/1278480.1278669

3. Kataev, N.: Interactive Parallelization of C Programs in SAPFOR. In: Scientific
Services & Internet 2020. In: CEUR Workshop Proceedings, vol. 2784, pp. 139–148
(2020)

4. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04). Palo Alto, California (2004)

5. Voevodin, V.V.: Information structure of sequential programs. Russ. J of Num.
An. Math Modell. 10(3) 279–286 (1995)

6. Kataev, N., Smirnov, A., Zhukov A.: Dynamic data-dependence analysis in SAP-
FOR. In: CEUR Workshop Proceedings, vol. 2543, pp 199–208 (2020)

7. Kataev, Nikita: Application of the LLVM compiler infrastructure to the program
analysis in SAPFOR. In: Voevodin, Vladimir, Sobolev, Sergey (eds.) RuSCDays
2018. CCIS, vol. 965, pp. 487–499. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-05807-4_41

8. Kataev, N.: LLVM based parallelization of C programs for GPU. In: Voevodin, V.,
Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331, pp. 436–448. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64616-5_38

9. Kolganov, A.S., Kataev, N.A.: Data distribution and parallel code generation for
heterogeneous computational clusters. In: Proceedings of the Institute for System
Programming of the RAS (Proceedings of ISP RAS), vol. 34, no. (4), pp. 89–100
(2022) https://doi.org/10.15514/ISPRAS-2022-34(4)-7

10. Tishkin, V.F., Nikishin, V.V., Popov, I.V., Favorski A.P.: Finite difference schemes
of three-dimensional gas dynamics for the study of Richtmyer-Meshkov instability
(in Russian), vol. 7, no. 5, pp. 15–25 (1995)

11. Ladonkina, M.E.: Numerical simulation of turbulent mixing using high perfor-
mance systems. PHD Thesis, Institute for Mathematical Modelling RAS (2005)

12. Kuchugov, P.A.: Dynamics of turbulent mixing processes in laser targets. PHD
Thesis, Keldysh Institute of Applied Mathematics RAS (2014)

13. Kuchugov, P.A.: Modeling of the implosion of thermonuclear target on heteroge-
neous computing systems (in Russian). In: Proceedings of international conference
Parallel computational technologies (PCT’2017), pp. 399–409. Publishing of the
South Ural State University, Chelyabinsk (2017)

14. GSL - GNU Scientific Library. https://www.gnu.org/software/gsl/ Last Accessed
6 May 2023

https://doi.org/10.1134/S0361768819030034
https://doi.org/10.1145/1278480.1278669
https://doi.org/10.1145/1278480.1278669
https://doi.org/10.1007/978-3-030-05807-4_41
https://doi.org/10.1007/978-3-030-05807-4_41
https://doi.org/10.1007/978-3-030-64616-5_38
https://doi.org/10.15514/ISPRAS-2022-34(4)-7
https://www.gnu.org/software/gsl/


Automation of Programming for Promising HPC Systems 17

15. C-DVMH language, C-DVMH compiler, compilation, execution and debugging of
DVMH programs. http://dvm-system.org/static_data/docs/CDVMH-reference-
en.pdf Last Accessed 6 May 2023

16. Kataev, N., Vasilkin, V.: Reconstruction of multi-dimensional arrays in SAPFOR.
In: CEUR Workshop Proceedings, vol. 2543, pp. 209–218 (2020)

17. Heterogeneous cluster K60. https://www.kiam.ru/MVS/resourses/k60.html. Last
Accessed 6 May 2023

18. Beaugnon, U., Kravets, A., Sven van Haastregt, Baghdadi, R., Tweed, D., Absar, J.,
Lokhmotov, A.: Vobla: A vehicle for optimized basic linear algebra. In: Proceeidngs
of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools
for Embedded Systems, LCTES ’14, pp. 115–124, New York, NY, USA (2014)

19. Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., Amarasinghe, S.: Graphit:
A high-performance graph dsl. In: Proceedings ACM Program. Lang., 2(OOPSLA),
pp. 121:1–121:30 (2018)

20. An, P., et al.: STAPL: an adaptive, generic parallel C++ library. In: Dietz, Henry
G.. (ed.) LCPC 2001. LNCS, vol. 2624, pp. 193–208. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-35767-X_13

21. Bell, N., Hoberock, J.: Thrust: A Productivity-oriented library for CUDA. In: GPU
Computing Gems, Jade Edition, Edited by Wen-mei W. Hwu, pp. 359–371 (2012).
https://doi.org/10.1016/B978-0-12-385963-1.00026-5

22. Kim, M., Kim, H., Luk, C.-K.: Prospector: a dynamic data-dependence profiler to
help parallel programming. In: 2nd USENIX Workshop on Hot Topics in Paral-
lelism (HotPar ’10) (2010)

23. Garcia, S., Jeon, D., Louie, C., Taylor, M.B.: Kremlin: rethinking and rebooting
gprof for the multicore age. In: ACM SIGPLAN Notices June (2011). https://doi.
org/10.1145/1993316.1993553

24. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Notices 43(6), 101–
113 (2008)

25. Verdoolaege, S., Juega, J. C., Cohen, A., Gomez, J. I., Tenllado, C., Catthoor, F.:
Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code Optim.
9(4), 1–23 (2013)

26. Grosser, T., Groesslinger, A., Lengauer. C.: Polly – performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(04),
1250010 (2012)

27. Grosser, T., Hoefler, T.: Polly-ACC Transparent compilation to heterogeneous
hardware. In: ICS ’16: Proceedings of the 2016 International Conference on Super-
computing June 2016, pp. 1–13 (2016). https://doi.org/10.1145/2925426.2926286

28. Zima, H., Bast, H., Gerndt, M.: SUPERB: a tool for semi-automatic MIMD/SIMD
parallelization. Parallel Comput. 6, 1–18 (1998). https://doi.org/10.1016/0167-
8191(88)90002-6

29. Amarasingh, S. P., Lam, M. S. Communication Optimization and Code Gener-
ation for Distributed Memory Machines. In: PLDI ’93: Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and implementation,
pp. 126–138 (1993) https://doi.org/10.1145/155090.155102

30. Kruse, M.: Introducing Molly: distributed memory parallelization with LLVM.
CoRR, vol. abs/1409.2088 (2014). https://doi.org/10.48550/arXiv.1409.2088

31. Vandierendonck H., Rul S., Koen De Bosschere. The Paralax infrastructure: auto-
matic parallelization with a helping hand. In: Proceedings of 2010 19th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
IEEE, pp. 389–400 (2010). https://doi.org/10.1145/1854273.1854322

http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf
http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf
https://www.kiam.ru/MVS/resourses/k60.html
https://doi.org/10.1007/3-540-35767-X_13
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1145/1993316.1993553
https://doi.org/10.1145/1993316.1993553
https://doi.org/10.1145/2925426.2926286
https://doi.org/10.1016/0167-8191(88)90002-6
https://doi.org/10.1016/0167-8191(88)90002-6
https://doi.org/10.1145/155090.155102
https://doi.org/10.48550/arXiv.1409.2088
https://doi.org/10.1145/1854273.1854322


Automatic Parallelization of Iterative
Loops Nests on Distributed Memory

Computing Systems

A. P. Bagliy(B) , E. A. Metelitsa , and B. Ya. Steinberg

Southern Federal University, Rostov-on-Don, Russia
{abagly,elmet,byshtyaynberg}@sfedu.ru

Abstract. This work is aimed at creating tools for automatic paral-
lelization of iterative loops nests on computing systems with distributed
memory. The automation for parallelization of the Gauss-Seidel algo-
rithm for the Dirichlet problem on a high-performance cluster is given
as an example. To be able to parallelize the original loops nest, we use
tiling and hyperplane method (wavefront). Parallelization automation
tools are proposed to be built on the basis of a parallelizing system with a
high-level internal representation. Tiling and the hyperplane method are
performed automatically by the Optimizing Parallelizing System. The
results of numerical experiments demonstrating a significant speedup
are presented. The relevance of the study is increasing due to the emer-
gence of high-performance “supercomputer-on-a-chip” microprocessors
with thousands of cores, which have higher performance than previous
multi-core processors. Recommendations are given for creating optimiz-
ing parallelizing compilers for such microchips.

Keywords: automatic parallelization · distributed memory · program
transformations · data allocation · data transfer

1 Introduction

This paper describes ways to create automatic tools for parallelization of pro-
grams for computing systems with distributed memory.

Industrial parallel compilers (GCC, ICC, MS-Compiler, LLVM) parallelize
programs for shared memory computing systems. The problems of creating auto-
matic parallelizing compilers are noted in [1]. Many papers describe systems for
automatic creation of parallel code for distributed memory computing systems
(DMCS), which involve adding pragmas to the text of a sequential program
without preliminary transformation [1–4].

For computer systems with distributed memory inter-processor data transfer
becomes a time-consuming operation. For high-performance clusters, such trans-
fers can cancel out the speedup from parallelization and even cause slowdowns.

Research supported by Russian Science Foundation grant No. 22-21-00671, https://
rscf.ru/project/22-21-00671/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 18–29, 2023.
https://doi.org/10.1007/978-3-031-41673-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_2&domain=pdf
http://orcid.org/0000-0001-9089-4164
http://orcid.org/0000-0001-6253-150X
http://orcid.org/0000-0001-8146-0479
https://rscf.ru/project/22-21-00671/
https://rscf.ru/project/22-21-00671/
https://doi.org/10.1007/978-3-031-41673-6_2


Iterative Loop Nests in Distributed Memory 19

To effectively map a program onto such computer systems, the program must
meet very strict requirements. But recently, multi-core processors, sometimes
called “supercomputers on a chip”, with tens, hundreds and thousands of cores
have appeared. [5–7], Transferring data between processor cores on the same chip
takes much less time than on a communication network (Ethernet, Infiniband,
PCI-express, etc.). This causes an expansion of the set of efficiently paralleliz-
able programs and makes it worthwhile to develop parallelizing compilers for
such systems. Automatic mapping of programs to programmable architectures
(High Level Synthesis) includes the problems of parallelization on DMCS [8].

[9] describes many problems of linear algebra and mathematical physics, for
the parallel solution of which cyclic transfers are used on DMCS.

[1] states: “Data distribution and distribution of computation are closely
related - changing data distribution in a simple way often requires a complete
rewrite of the computation and communication code.”. Block-affine array place-
ments are well suited as a way of distributing data for these types of computa-
tions [10,11], since such layouts are described by a small number of parameters
and all the most commonly used ways of allocating non-sparse multidimensional
arrays are included in the scope of such layouts.

Overlapped Data Distribution Method [12,13] significantly speeds up parallel
iterative algorithms by reducing the number of transfers when the sets of trans-
ferred data elements become bigger. The number of inter-processor transfers
depends on the placement of data in distributed memory. The paper [14] consid-
ers the problem of aiding automatic parallelization of a program loop on DMCS
and minimizing inter-processor transfers. Loops are parallelized if they contain
only assignment statements and use one-dimensional arrays. Works [12,15,16]
describe highly efficient transformations of iterative algorithms for solving differ-
ential equations of mathematical physics containing the Laplace operator. These
transformations used data localization and parallelization for shared memory
computing systems. Optimizing transformations in these works were carried out
manually.

Automatic tiling for not tight loop nests is described in [17]. Automatic tiling
for nests of iterative loops is described in [18]. In [19] automatic parallelization of
nests of iterative type loops is given on a GPU. [20,21] describes the implemen-
tation of automatic skew tiling and parallelization of the Gauss-Seidel algorithm
in OPS (Optimizing parallelizing system) [22] for the Dirichlet problem on a
computer system with shared memory and a ten-fold acceleration on an 8-core
processor (with shared memory).

This paper presents automatic implementation in OPS for tiling and par-
allelization of iterative loop nests on DMCS. In this case, tiles must be pro-
cessed in parallel. Generation of MPI code, inter-processor data transfers and
data placement in distributed memory is implemented. The results of numerical
experiments demonstrating the speedup are presented. These numerical experi-
ments show that even for high-performance clusters, tools for automatic creation
of efficient programs can be useful.



20 A. P. Bagliy et al.

A list of program transformations is given that should be in a compiler
that automatically parallelizes a wide variety of nests of iteration-type loops
on DMCS. Recommendations are given for the internal representation of a par-
allelizing compiler for DMCS.

2 Nests of Loops of Iterative Type

We will consider loop nests of a special form, which we will call iterative. These
are loops of the kind shown in Listing 1.1. Here we rely on examples of loops
that process 2D meshes, but the methods used generalize to more dimensions in
a simple way.

Loop nests of this kind appear in implementations of finite difference meth-
ods. It is possible to apply the “skewed tiling” transformation to them, which
changes the order of loop iterations, but the order of memory accesses does not
change, which makes the transformation equivalent. After that, the hyperplane
method is applied, in which [21] tiles are executed in parallel.

Listing 1.1. Example of an iterative loop nest

for ( int k = 0 ; k < K; ++k ) %// Loop over iterations (1)
for ( int i = 1 ; i < N − 1 ; ++i ) // Loop over mesh

elements (2)
for ( int j = 1 ; j < M − 1 ; ++j )

u [ i ] [ j ] = a∗u [ i −1] [ j ] + b∗u [ i + 1 ] [ j ] +
c∗u [ i ] [ j −1] + d∗u [ i ] [ j + 1 ] + e∗u [ i −

1 ] [ j − 1 ] +
f ∗u [ i + 1 ] [ j − 1 ] + g∗u [ i + 1 ] [ j − 1 ] +
h∗u [ i + 1 ] [ j + 1 ] ;

The following restrictions were chosen to represent a wide enough class of
programs that would be possible to process automatically:

– coefficients before array entries u (a, b, c, d, e, ...) can be constants, variables,
array elements.

– The entire loop nest is tight.
– Values of multidimensional arrays are calculated based on their neighboring

elements in the body of the inner loop. Dimension of the arrays (whose values
are calculated) is equal to the depth of the loop over the mesh elements (2),

– Array indices are loop counters over mesh elements and they do not depend
on the loop counters over iterations (1).

– For each array entry, each index depends on one (only one) of loop counters.
For example, u[i][j] = u[i – 1][j] or u[j][i] = u[j – 1][i] (the difference between
the corresponding indices is a constant), and the assignment of type u[j][i] =
u[i][j] is not allowed.

– Coefficient before loop counter used inside array index is equal to 1 (i.e. each
index has the form [I + C]) where C is a constant

– Also, there are no goto, continue, break, exit statements in the entire nest.



Iterative Loop Nests in Distributed Memory 21

– The loops bounds are arbitrary.
– for “iterative loops” restrictions on accessing arrays are replaced by the fol-

lowing: X[i1−a1, i2−a2, ..., in−an] = X[i1−b1, ..., in−bn]+A[. . . ], i.e. coef-
ficients before counters = 1, each index (dimension) depends on one counter,
other arrays can be accessed by similar indices, but elements are assigned
always in a single array.

An example of the loop nest and its transformation is shown in Fig. 1. This
loop nest is used as an example in this work.

Fig. 1. Applying rectangular tiling to two inner loops in OPS. The result is a nest of
loops with dimension of 5

Memory Allocation for Data Transfers. When placing data for the mesh
method in distributed memory, it is necessary to take into account the need to
transfer data between nodes that process adjacent blocks of the mesh. When
using block-affine array placements, the typical way to allocate data in dis-
tributed memory would be to partition the mesh into blocks and distribute
blocks among nodes.

With such placements, during the iterations of the method, it will be nec-
essary to send elements of block boundaries between neighboring computing
nodes. During calculations, the nodes will have to store those elements that
were received from their neighbors. Block layouts with overlapping arrays are
suitable to provide a generic way to process data for a particular computational
method.

Each node will store in its memory not only the elements of the block, but
also the boundary elements of neighboring blocks up to a certain depth.



22 A. P. Bagliy et al.

After placing the data on the computing nodes, iterations of the computa-
tional method are performed. To do this, each node stores a list of those grid
blocks that are in its memory. Block metadata stores information about the
information dependencies associated with each block. The order of block cal-
culations within a node is chosen so that the node performs calculations with
the blocks for which data has already been prepared. Data transfers are per-
formed after the completion of calculations with the current block if there is a
dependency that needs to be satisfied by those transfers.

Each block is identified by coordinates in n-dimensional grid that are calcu-
lated from the way original mesh was split into these blocks. We will call the
set of these points “block iteration space” to represent different ways of ordering
the blocks for processing as in n-dimensional loop nest.

The parallel processing scheme implemented makes it possible to use the
hyperplane (wavefront) method for processing computational mesh blocks in
distributed memory. This is achieved by changing the order the blocks are pro-
cessed in to allow several blocks to be processed in parallel. Blocks are processed
in separate “waves”, each wave consisting of blocks on the same hyperplane
of block iteration space. Computing nodes work independently of each other,
performing transfers of boundary elements as they are ready.

Data Transfers. In the method used, each iteration requires data transfers.
All data elements of the computational mesh are distributed in the form of
blocks among the computational nodes, each node has a set of neighboring block
elements in its memory. During the execution of one iteration of the hyperplane
method, each node works according to the following algorithm:

– Get the next block from the queue.
– If needed, get the border elements of this block from its neighbors.
– Process the taken block.
– Pass border elements of the finished block to other neighbors

Each node stores its blocks in a queue to restrict the order in which the blocks
are processed. All nodes have information about which boundary elements are
required to process each block, which node stores these elements, and where to
send other boundary elements obtained after processing the block.

After the completion of the next iteration, all blocks must update their
boundary elements from their neighbors again, so this algorithm is repeated. For
illustration, we present the scheme of data exchange between nodes on Fig. 2,
which is required for the example loop to work in the same way as the initial
loop nest.

The indicated scheme of node interactions can be easily generalized for itera-
tive loop nests of any dimension, given restrictions listed earlier. For example, in
the case of the Gauss-Seidel method for solving the three-dimensional Dirichlet
problem, all computing nodes can work according to the described algorithm
with three-dimensional arrays. In order for the final results to be equivalent to
the sequential solution, it is necessary that:



Iterative Loop Nests in Distributed Memory 23

Fig. 2. Element interchange order

– The order in which blocks are processed on each node prevents deadlocks.
– The necessary transfers of boundary elements for each node were indicated in

the mesh metadata that is calculated before the main computation. Transfer
data is compiled from the information dependencies in the initial loop nest.

– The chosen way of placing blocks on computer nodes is correct given the
necessary data transfers.

In the case of a 3D problem, the data transfer directions are similar, but
each block may need to send data to three neighboring blocks instead of two
and receive data from three others.

Run-Time Library. In order to significantly simplify the task of code genera-
tion, it is expedient for the selected parallel processing scheme to be implemented
as a “layer” between the created parallel program and low-level data exchange
functions provided by the selected parallel processing framework.

All operations of transferring mesh blocks and boundary elements are made
in the form of library functions, the role of which is to ensure data storage on
the nodes in accordance with the selected processing scheme and the selected
data distribution.

The role of the compiler is to automate the generation of a parallel program
in a following way:

– Finding suitable loop nests.
– Selecting a parallel processing scheme.
– Filling in data about information dependencies between blocks.
– Conversion of the original loop nest to a form that allows using it as a com-

putational kernel in the selected scheme.
– Generation of a new parallel program based on library function calls, to which

the generated computational kernel is passed as a parameter.



24 A. P. Bagliy et al.

Automation. When using the chosen method of creating a parallel program,
it is necessary to automate the following steps:

1. Selecting a nest of loops as a computational kernel
2. Determine appropriate distributions for all arrays used in the loop nest
3. Transformation of the loop nest into computational kernel inside a function
4. Replacing the original nest of loops with a program fragment that organizes

parallel computation using the library
5. Determining the necessary transfers of block elements for the selected block

distribution over nodes in accordance with the data dependencies in the source
loop nest

Not all of these steps can yet be carried out completely automatically. The
1, 3, 4 steps are fully automated, the 2 step is partially automated, and the 5
step still needs to be provided with data about the dependencies between the
blocks, which in the future will be automatically formed according to the lattice
graph of the original loop nest.

The creation of the parallel program presented in this paper was performed
partially automatically using OPS. The loop nest is automatically transformed
by skew tiling and the hyperplane method. These transformations lead to com-
plex variable index expressions, which are then optimized by the normal OPS
compiler transformations. OPS has block-affine allocations of arrays in dis-
tributed memory, which are not yet automatically connected in this example.
Block-affine placements with overlaps are implemented in OPS, but for one-
dimensional loops mapped onto DMCS with a ring communication network. A
mesh network may require more complex 2D or 3D layouts with overlaps.

3 Benchmark Results

Benchmark Environment. Performance tests of programs obtained according
to the described methods were carried out on two computer clusters:

1. SMRI Blohin Cluster1

– two 20-core Intel Xeon Gold 6230 processors per node
– more than 500 GB RAM on each node
– Ethernet communication network
– up to 3 physical nodes involved

2. IBMX Cluster from Collective High-Performance Computing Center, MMCS
SFedU2

– one 3.0 GHz 2-core Intel Xeon 5160 processor with 8 GB RAM per node.
– up to 13 physical nodes involved
– DDR Infiniband communication network

1 https://nano.sfedu.ru/en/education/howto/cluster/?CODE=cluster.
2 http://hpc.sfedu.ru/index.html.

https://nano.sfedu.ru/en/education/howto/cluster/?CODE=cluster
http://hpc.sfedu.ru/index.html


Iterative Loop Nests in Distributed Memory 25

All experiments were carried out with programs obtained from examples of
loop nests for two- and three-dimensional Dirchlet problems for the Poisson
equation, solved by the Gauss-Seidel method. Parallel programs were obtained
using the methods described in the paper. Sequential programs for comparing
results (running on a single node) contained only the original loop nests without
any extra overhead of data allocation in distributed memory. The number of
processes in these results refers to the number of processes running in parallel.
When there were not enough physical cluster nodes, some processes ran on the
same nodes. All run-time data is an average of 20 runs.

Two-Dimensional Problem Results. The Table 1 shows the achieved
speedup of the resulting program compared to sequential implementation. The
execution time on bigger mesh is shown in Fig. 3. Only block sizes that make
sense for the chosen number of nodes and the method of block distribution were
tested. In our case, the number of block rows must be divisible by the number
of nodes, otherwise some nodes will not get a single block row. Tested programs
executed 10 iterations of the method. Initial data distribution is not taken into
account in time measurements, so low number of iterations was sufficient to esti-
mate typical speedup. From the given data, it can be seen that the program
generated in this way makes it possible to achieve speedup in comparison with
the original sequential program.

Table 1. Speedup for 10 iterations over different node counts and block sizes

4096 8192

number of processes 4 8 16 4 8 16

block size

128 1.10 1.00 1.58 – – –

256 1.28 1.52 7.19 1.04 1.42 1.96

512 1.54 3.50 – 1.14 1.89 8.07

1024 2.40 – – 1.75 4.38 –

2048 – – – 2.01 – –

It is clearly seen that the block size and the number of nodes greatly affect
the computation time, but the resulting speedup shows the effectiveness of this
method. To achieve maximum computational efficiency, it is necessary that each
node processes the smallest possible number of blocks, because the overhead of
organizing data storage and exchange is very noticeable.



26 A. P. Bagliy et al.

Fig. 3. Time of the computational method at 10 iterations on a grid of size 8192 (in
seconds)

From the above data, we can conclude that the method of storing data and
transferring it creates large overhead costs, the impact of which decreases with
an increase in the number of iterations. At the same time, if each node stores
the smallest possible number of blocks, then it is possible to achieve a noticeable
speedup compared to running on one node, when the entire mesh is stored in
one array.

3d Problem Benchmark Results. Experiments were also carried out on the
processing of a three-dimensional loop nests, which solves a similar problem. The
running time of the program on a lattice of size 512 with blocks of size 128 on
an IBMX cluster is shown in Table. 2:

Table 2. Time to complete 10 iterations of a 3D problem on a 512 mesh (in seconds)

Number of nodes time, sec.

1 20.41

4 7.27

8 6.30

16 3.77

As can be seen from this data, the overhead of data transfers greatly reduces
parallel speedup. But this problem can be solved by optimizing the run-time
library functions. It is possible to optimize block storage on each node. It is also
possible to use different node interaction schemes, for example, to implement a
job queue scheme so that the blocks are selected for processing to better balance
the load on the nodes. Load imbalance could arise because of hyperplane method
(wavefront) applied to a small number of parallel processes.



Iterative Loop Nests in Distributed Memory 27

4 Automation of Mapping Programs onto DMCS

On the basis of the data presented in this paper, we can conclude that an opti-
mizing compiler that effectively maps iterative loop nests onto DMCS should
include the following program transformations.

1. Selecting a loop nest as a computing kernel.
2. Checking if the loop nest is of iterative type? Determining the parameters of

this nest: the dimension of the calculated array; constants in index expressions
of a computed array.

3. Skewed tiling.
4. Hyperplane method, which will allow simultaneous execution of skewed tiles.
5. Prediction of optimal tile sizes, for example based on the static analysis to

approximate amount of computations performed on average per each data
element.

6. Block-affine placements of multidimensional arrays with overlaps in accor-
dance with the capabilities of the communication network. With a ring over-
lap network for two neighboring nodes, for a two-dimensional mesh - for 4
neighboring nodes, for a three-dimensional mesh - for 6 neighboring nodes.

7. Inserting the necessary data transfers into the text of the program with the
selected placement of blocks on the nodes in accordance with the informa-
tional dependencies in the source loop nest.

8. Code generator for parallel execution on a DMCS (MPI or SHMEM).
9. Loop nesting to match the number of iterations of the loop being parallelized

and the number of DMCS nodes
10. Transformations that optimize index expressions of arrays after they have

been complicated by tiling, hyperplanes, and nesting.

Some of the above transformations are fully automated based on OPS. The
above list of transformations and recommendations for the internal representa-
tion can be considered as the basis of a project to create a compiling parallelizing
system oriented to new generation of distributed memory computing systems.

5 Conclusions

When making the creation of a parallel code for DMCS more automatic, some
difficulties arise. It is advantageous to overcome these problems in a translator
from C to C, for example, based on the Optimizing Parallelizing System.

This work continues the research of the authors on the creation of optimiz-
ing parallelizing compilers for DMCS. Previous works have discussed automatic
parallelization of simple program loops that contain only occurrences of one-
dimensional arrays and no other loops.

This work demonstrates the automation of parallelization of nests of itera-
tive loops, which require large amounts of calculations and are found in many
problems of mathematical modeling.



28 A. P. Bagliy et al.

One of the results of this work is a list of transformations that need to be
included in the DMCS compiler, and recommendations for the internal represen-
tation of such a compiler. Arguments are made to support a high level internal
representation.

The obtained speedups of the program under consideration demonstrate the
prospects of developing compilers for DMCS.

The study was supported by the Russian Science Foundation grant No. 22-
21-00671, https://rscf.ru/project/22-21-00671/.

References

1. Bondhugula, U.: Automatic distributed-memory parallelization and code gen-
eration using the polyhedral framework. In: Technical report, ISc-CSA-TR-
2011-3, p. 10, September 2011. https://mcl.csa.iisc.ac.in/downloads/publications/
uday11distmem-tr.pdf

2. DVM-system for parallel program development — DVM-system. https://dvm-
system.org/ru/about/

3. Kataev, N., Kolganov, A.: Additional parallelization of existing MPI programs
using SAPFOR. In: Malyshkin, V. (ed.) PaCT 2021. LNCS, vol. 12942, pp. 41–52.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86359-3 4 ISSN: 1087-
4089

4. Kwon, D., Han, S., Kim, H.: MPI backend for an automatic parallelizing compiler.
In: Proceedings Fourth International Symposium on Parallel Architectures, Algo-
rithms, and Networks (I-SPAN 1999), pp. 152–157, June 1999. https://doi.org/10.
1109/ISPAN.1999.778932. ISSN 1087-4089

5. Processor from NTC “modul”. https://www.cnews.ru/news/top/2019-03-06 svet
uvidel moshchnejshij rossijskij nejroprotsessor

6. SoC esperanto. https://www.esperanto.ai/
7. Peckham, O.: SambaNova launches second-gen DataScale system. https://www.

hpcwire.com/2022/09/14/sambanova-launches-second-gen-datascale-system/
8. Dordopulo, A.I., Levin, I.I., Gudkov, V.A., Gulenok, A.A.: High-level synthesis

of scalable solutions from C-programs for reconfigurable computer systems. In:
Malyshkin, V. (ed.) PaCT 2021. LNCS, vol. 12942, pp. 88–102. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86359-3 7

9. Prangishvili, I.V., Vilenkin, S.Ia., Medvedev, I.L.: Parallelnye vychislitelnye
sistemy s obshchim upravleniem. Energoatomizdat, Moskva (1983). https://
www.livelib.ru/book/1000878401-parallelnye-vychislitelnye-sistemy-s-obschim-
upravleniem-iveri-prangishvili

10. Shteinberg, B.Ia.: Blochno-affinnye razmeshcheniia dannykh v parallelnoi pamiati.
Informatsionnye tekhnologii 6, 36–41 (2010). https://www.elibrary.ru/item.asp?
id=14998775. ISSN 1684–6400. Place: Moskva Publisher: OOO “Izdatelstvo Novye
tekhnologii”

11. Shteinberg, B.Ia.: Optimizatsiia razmeshcheniia dannykh v parallelnoi pamiati.
Prioritetnye natsionalnye proekty. Obrazovanie. Izdatelstvovo Iuzhnogo Feder-
alnogo Universiteta, Rostov-na-Donu (2010). ISBN 978-5-9275-0687-3

12. Ammaev, S.G., Gervich, L.R., Steinberg, B.Y.: Combining parallelization with
overlaps and optimization of cache memory usage. In: International Conference on
Parallel Computing Technologies, pp. 257–264 (2017)

https://rscf.ru/project/22-21-00671/
https://mcl.csa.iisc.ac.in/downloads/publications/uday11distmem-tr.pdf
https://mcl.csa.iisc.ac.in/downloads/publications/uday11distmem-tr.pdf
https://dvm-system.org/ru/about/
https://dvm-system.org/ru/about/
https://doi.org/10.1007/978-3-030-86359-3_4
https://doi.org/10.1109/ISPAN.1999.778932
https://doi.org/10.1109/ISPAN.1999.778932
https://www.cnews.ru/news/top/2019-03-06_svet_uvidel_moshchnejshij_rossijskij_nejroprotsessor
https://www.cnews.ru/news/top/2019-03-06_svet_uvidel_moshchnejshij_rossijskij_nejroprotsessor
https://www.esperanto.ai/
https://www.hpcwire.com/2022/09/14/sambanova-launches-second-gen-datascale-system/
https://www.hpcwire.com/2022/09/14/sambanova-launches-second-gen-datascale-system/
https://doi.org/10.1007/978-3-030-86359-3_7
https://www.livelib.ru/book/1000878401-parallelnye-vychislitelnye-sistemy-s-obschim-upravleniem-iveri-prangishvili
https://www.livelib.ru/book/1000878401-parallelnye-vychislitelnye-sistemy-s-obschim-upravleniem-iveri-prangishvili
https://www.livelib.ru/book/1000878401-parallelnye-vychislitelnye-sistemy-s-obschim-upravleniem-iveri-prangishvili
https://www.elibrary.ru/item.asp?id=14998775
https://www.elibrary.ru/item.asp?id=14998775


Iterative Loop Nests in Distributed Memory 29

13. Gervich, L.R., Steinberg, B.Ya.: Automation of the application of data distribution
with overlapping in distributed memory. Bulletin of the South Ural State Univer-
sity. Ser. Math. Model. Program. Comput. Softw. (Bull. SUSU MMCS) 16(1),
59–68 (2023)

14. Krivosheev, N.M., Steinberg, B.Y.: Algorithm for searching minimum inter-node
data transfers. In: Procedia Computer Science, 10th International Young Scientist
Conference on Computational Science. Accessed 1 July 2021

15. Levchenko, V., Perepelkina, A., Zakirov, A.: DiamondTorre algorithm
for high-performance wave modeling 4(3), 29. https://doi.org/10.3390/
computation4030029. https://www.mdpi.com/2079-3197/4/3/29. ISSN 2079–
3197

16. Perepelkina, A.Y., Levchenko, V.D.: The DiamondCandy algorithm for maximum
performance vectorized cross-stencil computation (225), 1–23. https://doi.org/10.
20948/prepr-2018-225-e. https://keldysh.ru/papers/2018/prep2018 225 eng.pdf.
ISSN 20712898, 20712901

17. Song, Y., Li, Z.: A compiler framework for tiling imperfectly-nested loops. In:
Carter, L., Ferrante, J. (eds.) LCPC 1999. LNCS, vol. 1863, pp. 185–200. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44905-1 12

18. Song, Y., Li, Z.: Automatic tiling of iterative stencil loops. In: Carter, L., Ferrante,
J. (eds.) LCPC 1999. LNCS, vol. 1863, pp. 185–200. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-44905-1

19. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchitec-
tures. In: 2011 IEEE International Parallel & Distributed Processing Symposium,
pp. 676–687 (2011)

20. Steinberg, B.Ya., Steinberg, O.B., Oganesyan, P.A., Vasilenko, A.A., Veselovskiy
Null, V.V., Zhivykh, N.A.: Fast solvers for systems of linear equations with
block-band matrices. East Asian J. Appl. Math. 13(1), 47–58 (2023). https://
doi.org/10.4208/eajam.300921.210522. https://global-sci.org/intro/article detail/
eajam/21301.html. ISSN 2079–7362, 2079–7370

21. Vasilenko, A., Veselovskiy, V., Metelitsa, E., Zhivykh, N., Steinberg, B., Steinberg,
O.: Precompiler for the ACELAN-COMPOS package solvers. In: Malyshkin, V.
(ed.) PaCT 2021. LNCS, vol. 12942, pp. 103–116. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86359-3 8

22. Optimizing parallelizing system (2018). https://www.ops.rsu.ru

https://doi.org/10.3390/computation4030029
https://doi.org/10.3390/computation4030029
https://www.mdpi.com/2079-3197/4/3/29
https://doi.org/10.20948/prepr-2018-225-e
https://doi.org/10.20948/prepr-2018-225-e
https://keldysh.ru/papers/2018/prep2018_225_eng.pdf
https://doi.org/10.1007/3-540-44905-1_12
https://doi.org/10.1007/3-540-44905-1
https://doi.org/10.4208/eajam.300921.210522
https://doi.org/10.4208/eajam.300921.210522
https://global-sci.org/intro/article_detail/eajam/21301.html
https://global-sci.org/intro/article_detail/eajam/21301.html
https://doi.org/10.1007/978-3-030-86359-3_8
https://doi.org/10.1007/978-3-030-86359-3_8
https://www.ops.rsu.ru


Didal: Distributed Data Library
for Development of Parallel Fragmented

Programs

Victor Malyshkin1,2,3 and Georgy Schukin1,2(B)

1 Institute of Computational Mathematics and Mathematical Geophysics,
SB RAS, Novosibirsk, Russia

{malysh,schukin}@ssd.sscc.ru
2 Novosibirsk State Technical University, Novosibirsk, Russia

3 Novosibirsk State University, Novosibirsk, Russia

Abstract. Nowadays with rapid evolution of high-performance comput-
ing systems it’s becoming essential to have tools to simplify development
of efficient portable parallel programs for these systems. Fragmented pro-
gramming is a technology where parallel program is represented as a
collection of pieces of data (data fragments) and computations on these
pieces (computation fragments), able to be tuned to the resources of a
computing system and automatically provide such facilities as dynamic
load balancing. Didal is a distributed data library to support develop-
ment of efficient parallel fragmented programs on distributed memory
supercomputers. The library contains facilities for data partitioning, dis-
tribution and load balancing. In this paper foundations of the library are
explained and applicability of the library is demonstrated with Particle-
in-Cell (PIC) method implementation, which shows performance compa-
rable to conventional parallel programming tools.

Keywords: Parallel programming · Fragmented programming ·
Distributed data · High-performance computing

1 Introduction

High-performance computing systems of today consist of hundreds of computing
nodes and thousands of cores. To utilize all these resources a way to develop effi-
cient and portable parallel programs for distributed memory is required. Con-
ventional parallel programming tools for distributed memory - such as MPI -
usually are too low-level and in many cases are not sufficient to create portable
and easily re-configurable parallel programs. Didal is a library aimed to simplify
creation of efficient portable parallel programs. As a base model for parallel
program fragmented programming model is used.

This work was carried out under state contract with ICMMG SB RAS 0251-2022-0005.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 30–41, 2023.
https://doi.org/10.1007/978-3-031-41673-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_3&domain=pdf
http://orcid.org/0000-0002-7874-3686
http://orcid.org/0000-0001-6003-0891
https://doi.org/10.1007/978-3-031-41673-6_3


Didal: Distributed Data Library 31

Fragmented programming [1] is a technology where parallel program is rep-
resented as a collection of pieces of data (data fragments) and computations on
these pieces (computation fragments), able to be tuned to the resources of the
system and automatically provide such facilities as dynamic load balancing.

Didal is a distributed data library to support development of efficient par-
allel fragmented programs on distributed memory supercomputers. The library
contains facilities for data partitioning, distribution and load balancing. In this
paper foundations of the library are explained and testing of its performance is
presented.

Fragmented programming technology is a part of the active knowledge app-
roach [2]. This approach is aimed at automation of construction of efficient paral-
lel programs in order to reduce complexity and laboriousness of programs devel-
opment and allow programmers to focus on the subject domain, not on low-level
problems of parallel programming.

It is known that implementation of such automation in general case is an
algorithmically hard problem, so no general solution is to be expected here.
Nevertheless, in many limited subject domains such automation can be achieved
if the subject domain has a lot of particular solutions already exist.

The idea is to automatically reuse existing software accumulated in particular
subject domains, rather than manually reuse of the software in form of, say, a
subroutines library. To achieve this goal the active knowledge approach suggests
making a formal description of existing pieces of software in a subject domain.
Such description must allow automatic search and application of the pieces for
solution of a problem, formulated in terms of the subject domain. For that
a theoretical basis was proposed in [3]. Although main ideas were formulated
there, application of the approach in particular subject domains still requires
research.

Of interest are ways to incorporate particular algorithms, programs and other
solutions, specific to a subject domain. In present paper we study a case of
incorporating some high performance numerical programs development prac-
tices, methods and algorithms for particular parallel programs class within the
framework of fragmented programming technology. In particular, we propose
particular algorithms implemented as the Didal library to make the algorithms
be available for automatic reuse for parallel programs construction. In the paper,
however, these algorithms implementations are employed manually to ensure
their efficiency with real applications.

The paper is organized as follows. The Sect. 2 contains review of related
works. The Sect. 3 describes fragmented programming technology. The Sect. 4
describes Didal’s architecture and design decisions. The Sect. 5 contains descrip-
tion of PIC method application used to test Didal’s applicability and Sect. 6
contains results of performance experiments.

2 Related Works

There is a vast body of research in the field of high-level parallel programming,
with many projects, as active as inactive ones. Such systems as Charm++ [4],



32 V. Malyshkin and G. Schukin

Chapel [5] or Legion [6] represent complete frameworks or languages for dis-
tributed memory parallel programming. While these systems allow for high-level
creation of parallel programs, they may contain some downsides. First, an user
of a system may be required to learn completely new language or framework.
Second, usually these systems manage not only data but also computations, and
thus it may be not easy to combine a program in such system with another
parallel programming tool or paradigm or to use some third-party library. Thus,
it was decided to make Didal a library in conventional C++ programming lan-
guage which provides distributed data facilities, so a programmer controls how
data is processed, be it in a single thread or using OpenMP, multiple threads,
GPU, etc.

Other systems for parallel programming may use a form of language exten-
sion, such as mpC [7] or DVM [8]. These systems require special compiler which
understands the extension, whereas Didal, being a library, works with any C++
compiler. Also, the base language they extend (C or FORTRAN) may lack some
desired capabilities; in Didal we may use C++ static and dynamic polymor-
phism to enable compile-time optimizations or make resulting algorithms and
data types extensible and adaptable.

Examples of libraries which provide facilities for distributed data (distributed
data containers) are DASH [9], BCL [10], STAPL [11], HCP++ [12] and UPC++
[13]. These libraries usually hide data partitioning details from an user and
provide imitation of a global address space (PGAS, partitioned global address
space). In such libraries a unit of access is a single data element; when a remote
element is accessed, it causes a separate remote operation. Although this allows
to simplify parallel programs, many accesses to remote elements can degrade
efficiency due to high latency. Didal supports explicit fragmentation where data
elements can be grouped into data fragments and be accessed with a single
operation, also making a place of such remote access explicit.

3 Fragmented Programming Technology

Fragmented programming represents a way to construct a parallel program which
then can be executed on a wide variety of computing machines and for which
different optimizations can be automatically employed.

Fragmented program is a collection of pieces of data (data fragments) and
computations (computational fragments) which compute output data fragments
from input data fragments. Fragmented program can be executed in parallel by
executing independent (i.e. without data dependencies) computational fragments
in parallel. In a case of distributed memory, distribution of data and computa-
tional fragments on different nodes of a supercomputer may be required.

Among the benefits of a fragmented program is that the same program can
be used for many different architectures, provided that a special run-time system
or library exists which performs mapping of the program to existing resources.
Many optimization strategies, such as dynamic load balancing, can be auto-
matically performed by changing distribution of data/computational fragments,



Didal: Distributed Data Library 33

without much intervention from a programmer. To optimize program’s perfor-
mance for a particular machine, strategies for data partitioning, distribution,
load balancing, etc. can be changed (by run-time system or a programmer),
possibly in automatic or semi-automatic way.

4 Didal: Distributed Data Library

Didal is a C++ library designed to support fragmented program development for
distributed memory machines. The library presents high-level abstractions and
interfaces which should simplify creation of portable efficient parallel fragmented
programs. Leveraging capabilities of C++ static and dynamic polymorphism,
the library can also serve as a platform for development of reusable fragmented
algorithms and distributed data types.

The main unit in the library is a distributed collection of objects. A data
fragment is an example of such object. The collection is distributed, so each com-
puting node stores some objects from the collection. Each object has an unique
global identifier, by which it can be accessed from any node. The library allows
many operations with distributed objects: creation, copying, moving, deletion,
etc. Objects’ distribution, location and synchronization of access are managed
by the library internally.

Fragmented programs in Didal are written in terms of working with dis-
tributed collections of objects (data fragments).

4.1 Library’s Structure

The structure of the library is presented in Fig. 1, where each layer utilizes
facilities provided by lower layer.

Fig. 1. Didal’s structure.



34 V. Malyshkin and G. Schukin

The core of Didal is distributed collections of objects. This layer also includes
different data partitioning, migrating and balancing strategies for these collec-
tions. Using these distributed collections, high-level distributed data types and
parallel algorithms can be constructed and it’s with these data types and algo-
rithms an user of the library will be interfacing. Domain-specific libraries and
applied programs can be created using Didal (top level on the picture, outside
of Didal’s scope).

Distributed collections itself are functioning using asynchronous remote func-
tion call as the main way of communication between computing nodes of a dis-
tributed memory machine. This mechanism allows to call any function/method
remotely on any node from any node and receive the result asynchronously.

To make possible remote function call with any types of arguments and return
value, data needs to be transmitted through network, first arguments to the call-
ing site and then return value back again. This requires an ability to send/receive
data (communication) as well to serialize/deserialize it to make it suitable for any
data type to be transmitted using low-level primitive communication routines
(serialization). Didal automatically provides serialization for built-in elementary
types, simple types whose objects are stored as one memory block, as well as
standard C++ containers such as vector, list or map. Serialization of objects of
any other complex type may be easily build by recursively serializing its compo-
nents.

The bottom layer (also outside of Didal’s scope) is a system layer and contains
such stuff as low-level communication primitives (for example, MPI), thread and
memory management, etc. This layer is provided by standard C++ library and
an operating system.

The next subsections describe Didal’s components in more details.

4.2 Distributed Data Types and Algorithms

Distributed data type is a type consisting of many objects which are stored on
different computational nodes simultaneously. Distributed algorithm is an algo-
rithm that works with distributed objects and which is executed simultaneously
by different nodes. The algorithm consists of operations on distributed objects
with necessary communication and synchronization between them. Didal allows
to build different reusable distributed data types and algorithms.

The example of a parallel program using distributed data types and algo-
rithms is presented in the listing below:

const int N = 100 ;
ddl : : Distr ibutedArray<double> a (N) ;
ddl : : initRandom (a ) ; // i n i t d i s t r i b u t e d array
double sum = ddl : : sum( a ) ; // compute sum of e lements



Didal: Distributed Data Library 35

4.3 Distributed Collections

Distributed collection of objects is a base for any distributed data type in Didal.
A collection works as an associative array (dictionary, map), where each objects
has its unique global identifier. Objects are stored distributively on different
computing nodes; usually each node stores a subset of objects from the collection.
Different distribution strategies can be used to control how objects are actually
distributed. A location strategy is used to locate any object (i.e. to determine
its storing node) from any node.

A distributed collection supports such operations on its objects as creation,
removal, copy, modification, etc. (each can be done with any object from any
node, a local or a remote one). An object’s id is used to identify the object
globally.

Listing below presents an example of working with a distributed collection:

const int N = 100 , numOfBlocks = 10 ;
// Par t i t i on array onto b l o c k s and d i s t r i b u t e them .
ddl : : S t a t i cB l o ckD i s t r i bu t i on <1> d i s t r (N, numOfBlocks ) ;
ddl : : D i s t r i bu t edCo l l e c t i on <int ,

Block1D<double>> c o l l (& d i s t r ) ;
// Each proces s c r e a t e s data b l o c k s as s i gned to i t .
for (auto ind : d i s t r . l o c a l I n d i c e s ( ) ) {

auto block = randomBlock ( d i s t r . b l o ckS i z e ( ind ) ) ;
c o l l . add ( ind , b lock ) ;

}
// D i f f e r en t ways to opera te on b l o c k s .
double sum = 0 , sum2 = 0 ;
for (auto ind : d i s t r . a l l I n d i c e s ( ) ) {

// Request b l o c k and proces s i t .
auto blockFuture = c o l l . get ( ind ) ;
auto block = blockFuture . get ( ) ; // wai t f o r b l o c k
sum += sumElements ( b lock ) ;
// Perform opera t ion on b l o c k and ge t the r e s u l t .
auto ca l lFu tu r e = c o l l . c a l l ( ind , &sumElements ) ;
sum2 += ca l lFutu r e . get ( ) ; // wai t f o r r e s u l t

}

4.4 Asynchronous Remote Function Call

The main way of accessing a remote data (object) in Didal is a remote function
call. With this call one can get a copy of the remote object (for read) or perform
some operation on the object and receive a result. Didal also allows to call
procedures on remote objects (without returning result) or to call class methods
on these objects if their data type is a class.

Remote call is asynchronous which means that a caller can initiate a remote
operation and then try to access its result later. This allows to overlap compu-
tations and communications (a caller can perform another actions while remote



36 V. Malyshkin and G. Schukin

operation is being completed) and to start several (independent) operations at
once to minimize communication latency. Standard C++ future mechanism is
used for result’s retrieval.

In this scheme only caller initiates a communication, so receiving (remote)
site needs not to be aware. This allows for greater flexibility for programming
communications, but may require synchronization when remote operation mod-
ifies data.

4.5 Synchronization

When calling an operation on remote object, a caller needs to be sure that
this object exists and, in case of mutable objects, has a correct state. Due to
distributed nature of a typical parallel Didal application, there could be time
differences between access to a remote object and actual creation/update of
this object. Synchronization is necessary to ensure that a correct value of the
remote object is accessed. Didal supports several modes of synchronization in
its distributed collections.

Any object is accessed by its id, so when a remote node is checked for an
object with some id, it will wait until an object with this id is actually created. If
only immutable (non-modifiable) objects are used in a program, this by-a-fact-
of-creation synchronization is usually enough to ensure program’s correctness.

When an object can be modified, things become more complex, because now
we need to be sure that a remote object is in correct state when accessed. Partic-
ular details of synchronization may depend on an actual program and problem at
hand, but for this case Didal supports additional synchronization with epochs.
Each object can additionally store its corresponding epoch - usually a single
integer number; when the object is updated, its epoch number increases. Call-
ing site, when accessing an object with a remote function call, also specifies its
desired epoch number. The object will be accessed only if its current epoch num-
ber is no less than this specified epoch number, in another case the access will
be postponed.

4.6 Serialization and Communication

For any remote function call its arguments need to be transmitted to the remote
node and the result needs to be transmitted back. For actual data transmission
in Didal low-level communication utilities (such as MPI) are used. These utilities
usually work with data as with an array of bytes. To be able to transmit objects
of any data type serialization is used which first converts any object to an array
of bytes on the sending node and then restores it on the receiving node. Serial-
ization allows to transfer any complex data types, such as containing pointers
and references.

Low-level communication between nodes in Didal is done via asynchronous
messages. Each message has a body (actual data to transmit) and a header
(contains such information as receiver id for message routing). On each node
usually there is a separate thread for processing of incoming messages.



Didal: Distributed Data Library 37

5 Program Example: Particle-In-Cell (PIC) Method

Particle-in-cell (PIC) method is used in many areas of computational physics,
for example to simulate behaviour of dust or plasma. In the current example we
are using PIC to simulate dust clouds under gravitational forces [14].

Simulation domain contains particles and regular grids which values for den-
sity distribution and gravitational forces and potential. These grids form a mesh
of regular cells, with values in a cell’s vertices and with particles inside a cell.
Usually, only particles inside a cell affect field values for this cell.

The simulation process consist from the following repeating steps:

1. Density distribution is computed based on particles’ current position
2. Gravitation potential is computed by solving Poisson’s equation on the grid
3. Gravitational forces are computed on the grid from potential
4. Particles’ position and velocity are updated based on computed forces

Parallelization of the method is performed by dividing cells and particles
between processes/nodes and performing computation on different cells in par-
allel. For locality reasons particles in a cell are stored together with this cell.
When a particle’s position is changed, it can start belonging to another cell, and
should be physically transferred to this cell. For distributed memory that means
that particles are transferred between computing nodes.

6 Experiments

In the experiments we compared performance of Didal and pure MPI imple-
mentations of the PIC method. Both versions utilized the same low-level com-
putational code. For data transfer Didal version used asynchronous access to
distributed objects with remote function calls, whereas MPI version used asyn-
chronous MPI calls.

The following hardware and software was used for the experiments:

– MVS-10P OP2 cluster: two Intel Xeon Gold 6248R 24-core processors (48
cores total) per computing node, Intel Omni-Path interconnect

– MPI library: OpenMPI 4.1.3
– Compiler: GCC 10.2.0

Both MPI and Didal versions allowed up to 24 processes per computing node,
so each thread in a process ran on a separate core. In Didal version each process
used two threads (the main thread with computations and background thread
for receiving and processing of messages). MPI version was a single-threaded
application and in theory might have used more then 24 processes per node,
but in practice its performance degraded in this case. This also allowed to make
both versions use shared memory or inter-node network communication with the
same number of processes.

For the PIC method its parameters were: 3-dimensional regular mesh con-
sisted of 1283 cells (128 cells by each dimension) and contained 107 particles,
1000 time steps (iterations) were performed. For fragmented (Didal) version the
mesh was partitioned onto 83 regular blocks (8 blocks by each dimension).



38 V. Malyshkin and G. Schukin

6.1 Results

The first test was a strong scalability test, the size of the problem (number of
cells and particles) was fixed. Particles were initially located in a cloud in a
center of the domain. For MPI version the mesh was partitioned (by all three
dimensions) onto blocks of cells and each process was assigned a single block;
all processes were arranged into a three-dimensional lattice topology. For Didal
version mesh of fragments was partitioned onto blocks (groups) of fragments and
each process was assigned a block of fragments.

Results of working time (measured in seconds) and parallelization efficiency
(measured in percents) are presented in Tables 1 and 2 correspondingly; N
denotes number of processes. As can be seen from the results, Didal version
outperforms MPI version up to 128 processes. Explanation for the speed-up can
be fragmentation effect, where smaller fragment size of Didal version allows to
utilize cache more efficiently, hence providing faster computing time. For larger
number of processes amount of data per process becomes smaller and communi-
cation starts to play major role. Utilizing nearest-neighbor asynchronous com-
munications and mostly avoiding global synchronization allowed Didal version
to show more-or-less comparable scalability with MPI version, although the gap
increases for a large number of processes.

Explanation for this gap can be follows. First, current version of Didal used
MPI internally on low level with multi-threaded MPI mode, whereas pure MPI
program used single-threaded MPI mode. Single-threaded MPI mode is usually
more efficient than multi-threaded. Second, to be able to communicate data of
any type, Didal uses data serialization. This serialization introduces additional
overhead. Optimization of communications is a topic of further research.

Table 1. Strong scalability, working time.

N 1 2 4 8 16 32 64 128 256 512

MPI 1900.11 961.07 482.03 238.08 172.15 122.66 85.49 37.35 16.89 8.31
Didal 996.91 522.04 280 161.91 123.53 91.64 65.44 36.37 22.73 11.49

Table 2. Strong scalability, efficiency.

N 2 4 8 16 32 64 128 256 512

MPI 98.9 98.6 99.8 68.9 48.4 34.7 39.8 43.9 44.7
Didal 95.5 89 76.9 50.4 33.9 23.8 21.4 17.1 16.9

Table 3 shows parallelization efficiency for separate steps of the PIC appli-
cation: computation of density distribution (Density), gravitational potential
(Potential), gravitational forces (Forces), update of particles’ position and veloc-
ity (Part. update) and migration of particles between cells (Part. migrate).



Didal: Distributed Data Library 39

Update of particles and computation of forces show the best efficiency due to
the fact that they doesn’t require any communication and are easily paralleliz-
ible. Update of particles for MPI version even shows super-linear speedup, which
is caused by efficient utilization of cache on a large number of processes, when
the size of a cell block per process becomes rather small. For the remaining three
steps efficiency gradually diminishes. Computation of potential requires global
reduce operation to solve Poisson equation with iterative method. Amount of
computations itself is small. Low efficiency for density computation and migra-
tion of particles is due to non-uniform distribution of particles and caused by it
load imbalance.

Table 3. Strong scaling, steps efficiency.

N 2 4 8 16 32 64 128 256 512

Density (Didal) 95.1 91.4 88.3 56.9 35.3 29.2 24.5 16.1 16.3

Density (MPI) 100.2 109.9 128.4 81.5 61.7 42.7 32 28.6 27

Potential (Didal) 93.1 91.1 72.8 53.2 39.4 14.7 9.7 5.8 5.3

Potential (MPI) 95.9 91.3 86.1 73.5 60.4 61.3 17.5 9.9 5.3

Forces (Didal) 96.9 95.8 92 85.7 88.9 89.8 89.5 87.7 85.3

Forces (MPI) 99.1 94 86.2 82.1 79.5 76.4 77.5 78.5 74.5

Part. update (Didal) 97.2 95.3 93.5 91.1 92.5 92.5 93.4 91.7 95.3

Part. update (MPI) 99.8 100.7 96.7 105.7 125.2 149 170.1 176 182.2

Part. migrate (Didal) 93 75 49.8 23.5 13.7 8.7 8.4 7.8 7.7

Part. migrate (MPI) 97 90.1 91 43.6 24.3 15.8 21.9 29.4 36.3

The second test was weak scalability test, where problem size per process
was fixed and total problem size was scaled with a number of processes. Each
process contained 1283 cells with 107 particles, which were distributed uniformly
in the domain. For fragmented Didal version a cell block on each process was
partitioned into 83 fragments.

Working time results are presented in the Table 4, and efficiency - in the
Table 5. In this test Didal always outperforms MPI version, again due to benefits
from fragmentation and asynchronous access to remote data. Now when relation
between computations and communications doesn’t change, parallel efficiency of
both versions is quite close.

Table 4. Weak scaling, working time.

N 1 2 4 8 16 32 64 128 256 512

MPI 294.51 346.97 372.95 393.37 430.48 445.05 493.34 496.68 500.20 601.55
Didal 200.33 222.25 238.65 248.31 277.42 308.57 341.3 354.49 392.81 501.88



40 V. Malyshkin and G. Schukin

Table 5. Weak scaling, efficiency.

N 2 4 8 16 32 64 128 256 512

MPI 84.9 79 74.9 68.4 66.2 59.7 59.3 58.9 49
Didal 90.1 83.9 80.7 72.2 64.9 58.7 56.5 51 39.9

Efficiency for different steps is presented in the Table 6. Again, update of par-
ticles and computation of forces shows the best efficiency. Computation of density
and potential and migration of particles have better efficiency than in the strong
scalability test. Even with uniform distribution of particles efficiency for these
phases still drops in both versions, but now because amount of transmitted data
per process remains more or less constant, so total amount of transmitted data
increases with increasing number of processes, so performance of the network
may be not enough. Another reason for decrease in efficiency is that although
initial particle distribution is uniform, it may become non-uniform due to parti-
cles’ migration and cause load imbalance. In that case dynamic load balancing
may be required, which is a topic of the future research.

Table 6. Weak scaling, steps efficiency.

N 2 4 8 16 32 64 128 256 512

Density (Didal) 84.4 73.1 69 62.5 54.3 47.8 49.1 46.1 39.8

Density (MPI) 75.7 64.1 58 51.8 49.9 45.2 44.7 44.3 35.2

Potential (Didal) 85.2 80.8 76.7 67.1 59.2 55.1 49.7 41.4 26.5

Potential (MPI) 97.8 93.1 89.1 83.5 82.5 74.9 55.2 41.5 19.9

Forces (Didal) 98 95.4 90.8 78.9 79.5 79.8 79.8 76.7 76.6

Forces (MPI) 98.1 93.5 91.1 82.1 82.1 81 83 80.6 80.2

Part. update (Didal) 101.2 101.6 106.4 106.3 108.5 110.6 108.5 107.7 109.7

Part. update (MPI) 84.4 77.9 75.1 77.5 80 80.9 82.3 87 97.5

Part. migrate (Didal) 95.2 90.8 78.2 55.4 44.8 32.7 28.6 24.9 19.4

Part. migrate (MPI) 86.4 91.8 87.2 56.7 47.4 34.9 37.5 40 36.9

7 Conclusion

The distributed data library Didal was developed to simplify development of par-
allel fragmented programs for distributed memory supercomputers. It’s applica-
bility is tested by PIC method implementation, where it showed comparable or
even better performance and not much worse scalability than conventional low-
level parallel programming tools such as MPI. Further research includes opti-
mization of the library and testing of different data distribution and dynamic
load balancing strategies.



Didal: Distributed Data Library 41

References

1. Kireev, S., Malyshkin, V.: Fragmentation of numerical algorithms for parallel sub-
routines library. J. Supercomput. 57, 161–171 (2011). https://doi.org/10.1007/
s11227-010-0385-3

2. Malyshkin, V.: Active knowledge, LuNA and literacy for oncoming centuries. LNCS
9465, 292–303 (2015)

3. Valkovsky, V.A., Malyshkin, V.E.: Synthesis of parallel programs and systems on
the basis of computational models, Nauka, Novosibirsk, pp. 128 (1988). In Russian:
Valkovsky, V.A., Malyshkin, V.E. (eds.) Sintez parallelnykh program i system na
vychislitelnykh modelyah. Nauka, Novosibirsk, 128 str. (1988)

4. Acun, B., et al.: Parallel programming with migratable objects: Charm++ in prac-
tice. In: SC ’14: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 647–658. IEEE Press (2014). https://doi.org/
10.1109/SC.2014.58

5. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007).
https://doi.org/10.1177/1094342007078442

6. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: SC ’12: International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE Com-
puter Society Press, Washington, DC (2012). https://doi.org/10.1109/SC.2012.71

7. Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with
mpC. J. Parallel Comput. 28(10), 1369–1407 (2002). https://doi.org/10.1016/
S0167-8191(02)00159-X

8. Bakhtin, V.A., Krukov, V.A.: DVM-approach to the automation of the develop-
ment of parallel programs for clusters. J. Program. Comput. Softw. 45, 121–132
(2019). https://doi.org/10.1134/S0361768819030034

9. Fürlinger, K., Fuchs, T., Kowalewski, R.: DASH: A C++ PGAS library for dis-
tributed data structures and parallel algorithms. In: IEEE 18th International Con-
ference on High Performance Computing and Communications (HPCC). IEEE
Press (2016). https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140

10. Brock, B., Buluç, A., Yelick, K.: BCL: a cross-platform distributed data structures
library. In: ICPP ’19: 48th International Conference on Parallel Processing, pp.
1–10. Association for Computing Machinery Press, New York (2019). https://doi.
org/10.1145/3337821.3337912

11. Buss, A., et al.: STAPL: standard template adaptive parallel library. In: SYSTOR
’10: 3rd Annual Haifa Experimental Systems Conference, pp. 1–10. Association for
Computing Machinery Press, New York (2010). https://doi.org/10.1145/1815695.
1815713

12. Beckman, P.H., Gannon, D., Johnson, E.: HPC++: experiments with the parallel
standard template library. In: ICS ’97: 11th International Conference on Super-
computing, pp. 124–131. Association for Computing Machinery Press, New York
(1997). https://doi.org/10.1145/263580.263614

13. Bachan, J., et al.: UPC++: a high-performance communication framework for
asynchronous computation. In: 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 963–973. IEEE Computer Society Press
(2019). https://doi.org/10.1109/IPDPS.2019.00104

14. Kireev, S.: A parallel 3D code for simulation of self-gravitating gas-dust systems.
In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 406–413. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03275-2_40

https://doi.org/10.1007/s11227-010-0385-3
https://doi.org/10.1007/s11227-010-0385-3
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1016/S0167-8191(02)00159-X
https://doi.org/10.1016/S0167-8191(02)00159-X
https://doi.org/10.1134/S0361768819030034
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1145/1815695.1815713
https://doi.org/10.1145/1815695.1815713
https://doi.org/10.1145/263580.263614
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1007/978-3-642-03275-2_40


Trace Balancing Technique for Trace
Playback in LuNA System

Victor Malyshkin1,2,3 , Vladislav Perepelkin1,2,3(B) , and Artem Lyamin2

1 Institute of Computational Mathematics and Mathematical Geophysics,
SB RAS, 630090 Novosibirsk, Russia
{malysh,perepelkin}@ssd.sscc.ru

2 Novosibirsk State University, 630090 Novosibirsk, Russia
3 Novosibirsk State Technical University, 630073 Novosibirsk, Russia

Abstract. In the paper an improved trace playback technique is pre-
sented. Run-time systems are widely used in parallel programming to
provide dynamic properties of programs execution. However, run-time
system often cause significant overhead. Trace playback is a technique,
oriented to improve parallel program execution by reducing the over-
head. It consists in recording a special log (called trace) while run-time
system executes a program. The trace contains enough information on
exact actions performed to reproduce the execution without the run-
time system. Run-time system overhead is thus eliminated. The tech-
nique is usable in such systems as LuNA. The proposed improvement of
the technique consists in modification of (“balancing”) the trace before
trace playback in order to fit more efficiently into given multicomputer.
Particular balancing algorithm, as well as experimental study results are
presented in the paper. The improvement showed a significant perfor-
mance increase.

Keywords: LuNA System · Fragmented Programming · Trace
Playback · Trace Balancing · Parallel Programs Construction
Automation

1 Introduction

Development of parallel programs for numerical simulations on supercomput-
ers is troublesome and laboriousness. This is caused by the fact that provi-
sion of satisfactory efficiency of parallel program execution requires solution of
diverse problems, related to system parallel programming, such as data and com-
putations decomposition, handling concurrent execution, synchronizing access
to shared resources, scheduling computations and communications, etc. Often
dynamic memory management, dynamic load balancing, check-pointing and
other dynamic properties provision are also required.

To overcome many of these problems parallel programming systems are often
helpful. They make parallel programs construction easier by providing a higher

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 42–50, 2023.
https://doi.org/10.1007/978-3-031-41673-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_4&domain=pdf
http://orcid.org/0000-0002-7874-3686
http://orcid.org/0000-0002-6998-4525
https://doi.org/10.1007/978-3-031-41673-6_4


Trace Balancing Technique for Trace Playback in LuNA System 43

level programming abstractions to the user than those of conventional parallel
programming and automate the process of parallel programs construction while
taking care of many low-level efficiency-related problems. Particularly, dynamic
properties are often provided by run-time systems.

One of the main problems of run-time systems use is the overhead they
imply. In many cases the overhead can be times greater than the effective work
(i.e. the computational workload excluding run-time system overhead or other
work, related to communications, synchronization, etc.). Reduction of run-time
systems overhead is a relevant problem for run-time systems.

Trace playback is a powerful technique for run-time systems overhead reduc-
tion [1]. It is applicable for the cases where a series of numerical experiments has
to be run. The essence of the technique is to perform an ordinary execution of a
parallel program under run-time system control while recording every effective
action the run-time system decides to take. Such a recording is called trace. The
rest of the executions of the series are performed without the run-time system.
Instead, a lightweight trace playback system (TPS) is used. The TPS just reads
the trace and reproduces the actions taken by the run-time system in the first
round.

Trace playback technique is not new. In different forms the idea was employed
in different fields. In databases trace playback is used to optimize query handling
[2] (MS SQL [3], Oracle RDBMS [4], PostgreSQL [5]). Similar approach is used
in Just-In-Time (JIT) compilation [6], used in Java [7], JavaScript [8], .NET
framework [9] etc. [10] In hardware microarchitectures where (emulated) machine
code is translated in run-time by processor to another (native) machine code,
the translated machine code is cached and reused [11] (Transmeta Crusoe [12],
QEMU [13], Intel Pentium 4 [14]). In parallel programming the technique is
implemented in LuNA [1] programming system.

Trace playback technique possesses a possibility to further improve efficiency
of parallel program execution. It consists in transforming a trace before execution
to make it fit better into particular hardware. The modification may include
changing distribution of workload to computing nodes, reordering operations,
etc. The main two reasons to transform the trace (‘balance it’) are as follows.
Firstly, even if the work was ideally balanced with normal (run-time based)
execution, the trace may provide full load of hardware resources, since the trace is
being executed in different conditions (i.e. absence of run-time system overhead).
Secondly, if a trace has to be played back on another number of computing nodes,
then the work imbalance is likely to occur. In both cases the trace can be modified
in order to improve efficiency of the playback.

In this paper an improvement to the trace playback technique is proposed,
which consists in balancing the trace before playback. The improved technique
is implemented on the basis of LuNA system for parallel programs construc-
tion automation. This work continues the work [1], where the trace playback
technique implementation for LuNA was proposed.

The rest of the paper is organized as follows. The next section provides neces-
sary background on LuNA system and the basic trace playback technique imple-



44 V. Malyshkin et al.

mentation in the system. Section 3 proposes the improvement of the technique.
Section 4 presents the experimental results. The conclusion closes the paper.

2 LuNA Computational Model and Trace Playback
Technique

The trace playback technique cannot be implemented for a random programming
language or a system. The computational model of the language or the system
matters. Let us illustrate this by considering an example of the system LuNA
as an example of a computational model which allows implementation of the
technique.

LuNA (Language for Numerical Algorihtms) is a language and a system for
numerical parallel programs construction automation [15]. It is an academic
project of the Institute of computational mathematics and mathematical geo-
physics SB RAS. The system is based on computational models [16] and follows
the active knowledge [17] approach.

In LuNA a program is considered as a description of a recursively enumerable
set of triplets of form 〈in,mod, out〉, where in and out are correspondingly input
and output immutable aggregated variables called data fragments (DF) and mod
is a no side-effects computational module (e.g. a conventional serial subroutine).
The triplets are called computational fragments (CF). Each CF computes values
of out DFs from values of in DFs. LuNA program execution is execution of all
its CFs according to the dataflow model. Immutability of DFs and the absence
of side effects of the modules allows the system to distribute and redistribute
CFs and DFs to computing nodes of a multicomputer, reorder CFs execution
(unless information dependencies are violated), automate communications and
do many other routines in order to provide the program execution and improve
its efficiency.

It should be noted that LuNA program is a finite sequence of a symbols in
a final alphabeth which describes a potentially infinite number of triplets in a
parametric form. Execution of LuNA program on particular input data defines
the particular set of triplets executed, and the set may be different for different
input data. For example if a set of triplets is defined with a loop-like descriptor,
then particular number of iterations may vary depending on input data.

Decisions on behavior of the program (i.e. distribution of CFs and DFs, CFs
execution order, etc.) are made and implemented by LuNA run-time system,
which is the source of the overhead. But in the end all the run-time system is
effectively does is executing particular modules with particular arguments on
particular computing nodes. If the sequence of such executions is recorded for
each computing node (and each working thread) then it can be reproduced from
this recording with the same computational result as if the run-time system was
performing the exectution. This is the basic idea of trace playback implementa-
tion in LuNA system. Immutability of DFs and absence of module side effects is
essential here.



Trace Balancing Technique for Trace Playback in LuNA System 45

Trace is essentially a sequence of tuples 〈n, ts,mod, id1, id2, ..., idk〉. Each
tuple describes the execution of a CF, where n is the computing node where
execution took place, ts is a timestamp when the CF was executed, mod is a
module, related to the CF, idi are the identifiers of CF’s input and output DFs.

Trace playback technique has a number of advantages.

1. It practically eliminates the run-time system overhead because no run-time
system is running with trace playback. The TPS only implies a minor over-
head, as compared to normal run-time system. Note, that the run-time system
overhead is caused by necessity for the run-time system to dynamically make
decisions, and dynamic decision making often requires extra communications,
memory and computations.

2. Many unnecessary actions can be taken dynamically by a run-time system
due to the absence of global and postmortem information at run-time. For
example, dynamic load balancing often causes multiple migrations of a CF
between nodes until it reaches the node on which a CF is computed. Or a DF
transfer over network can take multiple hops while reaching the destination
(dynamic routing). In case of trace playback all intermediate and unnecessary
actions are omitted.

3. Garbage collection with trace playback can be simplified, since all actual data
consumptions are directly seen in the trace.

4. While trace is static, the behavior may often be as efficient as if dynamic
properties were actually provided, since the behavior was produced by run-
time system decision making, although in previous program execution. For
example, if during the first execution round a workload imbalance occurred,
and the run-time system has managed to balance the load, the other execution
rounds will execute more efficiently, if the imbalance was the same as in the
first round. This is often the case with series of numerical experiments with
similar input data.

5. It is possible to add some lightweight dynamic properties support to TPS
in order to improve performance, but without the necessity to run a heavy
run-time system.

However, there are also a number of essential drawbacks of the technique, which
significantly reduce the possibilities of its application in practice.

1. It is generally impossible to playback a trace on different input data, since
the effective work may not provide a valid execution of the program. This is
the case when different input data corresponds to a different set of triplets
executed. Conditional branches or indirect addressing are examples of pro-
gram constructs which may affect the set of triplets to execute. However, the
fact that the trace is not valid for particular input data can be relatively easy
detected during playback. Also, in many practical cases input data do not
affect the set of triplets executed and thus the technique can be safely used.

2. Trace playback presumes no dynamic decision making, thus the decisions on
program behavior may be inadequate for different input data. Although this
will not lead to incorrect outputs computation, the efficiency may be poor.
This is likely to occur for programs with dynamic load imbalance.



46 V. Malyshkin et al.

3. Also inefficiency of the behavior recorded in the trace may be caused by
the fact that the behavior related decisions were made in the conditions of
the presence of the run-time system, while the playback is performed in the
absence of the run-time system. At least partial elimination of this drawback
is the main purpose of the proposed trace balancing technique.

3 Trace Balancing Technique

The main idea behind the proposed trace balancing technique is to analyze the
trace to disclose probable workload imbalance, and to redistribute some of CFs
from overloaded computing nodes to underloaded ones.

The trace balancing technique can be divided into two main steps: generation
of corrective distribution of CFs to computing nodes and the modification of the
trace in accordance with the corrective distribution of CFs.

The generation of corrective distribution of CFs to computing nodes also can
be divided into several steps: gathering information of the computational load
of cluster nodes, identifying load imbalance with further reduction of the imbal-
ance by transferring CFs between computing nodes. The computational load on
the computing nodes comprises CFs execution time periods. In order to deter-
mine the load imbalance a quantization-based algorithm was used. Corrective
distribution generation algorithm is described below.

1. Collect information about CFs’ execution time periods.
2. Apply quantization - divide the program running time into equal intervals, the

value of which is equal to the quantization step (a parameter of the algorithm).
3. In each quantum for each node calculate computational load and average

quantum load.
4. If there is a load imbalance in the quantum, then transfer CFs from the most

loaded node to the least loaded node.

This algorithm does not consider information dependencies between CFs.
The next step is to modify the trace according to the corrective distribution

of the CFs. Below we will consider a trace not as a single sequence, but as a
finite set of traces, each comprising all records, related for particular computing
node. The term modification here refers to the process of relocating CFs between
cluster nodes’ traces. If CFs are relocated incorrectly, the modified trace may
enter a deadlock state during trace playback. The deadlock can occur if mod-
ification violates information dependencies. Let us denote correct trace a trace
that is replayed without deadlocks. Maintaining trace correctness during trace
modification is mandatory.

To ensure the trace remains correct during modification it is necessary to
uphold the order of execution for CFs. It is convenient to use timestamps of the
start of execution of CFs since the beginning of the execution of a CF implies
that all its information dependencies have been fulfilled, thereby ensuring the
absence of deadlocks. The expected problem here is desynchronization of clocks
on different computing nodes. The problem is well-studied in literature, so we



Trace Balancing Technique for Trace Playback in LuNA System 47

will only highlight that the problem is worth solving by shifting timestamps in
the traces rather than trying to synchronize clocks in run-time, since even the
tiniest desynchronization may lead to deadlocks.

Let us also note that the algorithm parameter (quantization step) signifi-
cantly affects the effectiveness of the algorithm (Sect. 4 confirms that statement
experimentally). Obtaining a suitable value of the parameter is a problem to be
solved. In the work the parameter values were obtained empirically. To reduce
the parameter value search time a simple trace playback emulator was developed.

Trace Playback Emulator. By having knowledge of the playback time for
each CF, it becomes possible to emulate the TPS. The process of emulating trace
playback differs from actual trace playback in that, instead of reproducing CF
execution, the execution time is adjusted by increasing a timer. Additionally, it
is necessary to consider the delays in data transmission between cluster’s nodes,
which are specific to each respective cluster.

The utilization of a TPS emulator considerably expedites the parameter
search process for the corrective distribution generation algorithm. This is due
to the faster emulation compared to actual trace playback and the absence of
necessity to use multicomputer for emulation (e.g. a PC can be used). Based on
the predicted data from the emulator, the most successful modified traces can
be selected.

4 Experimental Study

To study the playback performance of balanced traces, a program simulating
a self-gravitating dust-cloud using the Particle-In-Cell (PIC) method [18] was
selected as an exemplary complex real-world task specifically designed for execu-
tion on supercomputers. This program serves as a valuable example for studying
the playback performance of balanced traces.

The tests were conducted on the Information and Computing Center cluster
of Novosibirsk State University1. The testing was performed on traces generated
using various parameters of the corrective distribution generation algorithm (see
Table 1). Task parameters: mesh size 503, number of particles 108. The task
executions were carried out on 4 computing nodes, with 4 cores available on
each node.

Table 1 presents the testing results, with LuNA representing the original pro-
gram written in LuNA language. LuNA-TP refers to the execution time of the
LuNA program using the trace playback technique. Balanced LuNA-TP indi-
cates the playback time of a balanced LuNA-TP trace, considering different
quantization step values.

From Table 1 it can be seen that trace playback technique does reduces the
execution time, while trace balance technique further improves the performance.

1 https://nusc.nsu.ru/.

https://nusc.nsu.ru/


48 V. Malyshkin et al.

Table 1. Comparative execution time with different quantization step

Execution time (sec.)

LuNA LuNA-TP Balanced LuNA-TP (quantization step, s.)
0.5 s 1 s 5 s 10 s 15 s.

601.185 136.055 127.94 115.685 110.503 100.808 136.340

Quantization step significantly affects the execution time with the optimal value
of 10 s (among tested ones).

The following tests (Table 2) were conducted on a program where all CFs and
DFs were distributed to a single computing node while other 3 nodes were idle.
Trace balancing technique thus was used to generate fragments’ distribution
to computing nodes. This experiment emulates the case where the run-time
system fails to construct a reasonable distribution of fragments to nodes. Trace
balancing technique, however, still can be used to improve the distribution for
trace playback. From the tests it can be seen that the best result was reached
for quantization step of 5 s.

Table 2. Balancing a deliberately imbalanced fragments’ distribution

Execution time (sec.)

LuNA LuNA-TP Balanced LuNA-TP (quantization step, s.)
0.5 s 1 s 5 s 10 s.

509.284 184.139 204.139 197.857 157.402 158.247

The next tests were devoted to the usage of the trace balance technique to
subsequently improve the efficiency. The idea behind the experiment is that
trace playback itself can be used to produce a new trace, which can be balanced
again, etc. Since all timings (CFs execution times, DFs transfer times, etc.) will
normally change with trace playback as compared to run-time system execution,
new imbalances can emerge (and be balanced).

In Table 3 the subsequent trace balances and playback times are shown. The
1st iteration is the same as in Table 2. The best time at quantization step of 5 s
is selected for the next iteration. I.e. a new trace was recorded while executing
the 1st iteration, and it was balanced with different quantization steps (the 2nd
iteration row). The best result (at quantization step of 10 s) was selected for the
third iteration. The execution time was reduced further to 136.402 s.

This test demonstrates that trace balancing technique can be used iteratively
to improve trace playback efficiency.



Trace Balancing Technique for Trace Playback in LuNA System 49

Table 3. Trace execution time with iterative trace balancing

Quantization step 0.5 s. 1 s. 5 s. 10 s.
1st iteration 204.139 197.857 157.402 158.247
2nd iteration 202.446 182.182 151.841 145.109
3rd iteration 173.843 175.532 139.715 136.402

5 Conclusion

Trace playback technique is a promising approach to eliminating run-time system
overhead, which can be implemented for suitable parallel programming systems,
and employed in some computational experiments. In the paper an improvement
over the technique is proposed, which is based on balancing traces before play-
back. The improved technique was implemented on the basis of LuNA system for
automatic parallel programs construction. The tests showed that the proposed
improvement is effective at least in some practical cases, especially when the
run-time system fails to provide satisfactory workload distribution.

Further study of the topic may include development of validation methods
to ensure the trace is valid for given input data. Trace balancing techniques
should be improved to consider communications impact. Here many existing cost
models and scheduling algorithms can be employed. Another promising study
topic is generation of imperative parallel programs from a trace (e.g. a C++/MPI
program). Also dynamic trace balancing algorithms can be employed with trace
playback. The latter is a trade-off between dynamic properties provision and
run-time system overhead.

Acknowledgements. The work was supported by the budget project of the ICMMG
SB RAS No.0251-2022-0005 and partially funded by the Science Committee of the
Ministry of Science and Higher Education of the Republic of Kazakhstan [Grant No.
AP09058423].

References

1. Malyshkin, V., Perepelkin, V.: Trace-based optimization of fragmented programs
execution in LuNA system. In: Malyshkin, V. (ed.) PaCT 2021. LNCS, vol. 12942,
pp. 3–10. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86359-3_1

2. Viglas, S.D.: Just-in-time compilation for SQL query processing. In: IEEE 30th
International Conference on Data Engineering. Chicago, IL, USA, pp. 1298–1301
(2014). https://doi.org/10.1109/ICDE.2014.6816765

3. SQL Server Distributed Replay. https://learn.microsoft.com/en-us/sql/tools/
distributed-replay/sql-server-distributed-replay?view=sql-server-ver16. Accessed
01 May 2023

4. Galanis, L., et al.: Oracle database replay. In Proceedings of the 2008 ACM SIG-
MOD International conference on Management of data (SIGMOD ’08). Association
for Computing Machinery, New York (2008). https://doi.org/10.1145/1376616.
1376732

https://doi.org/10.1007/978-3-030-86359-3_1
https://doi.org/10.1109/ICDE.2014.6816765
https://learn.microsoft.com/en-us/sql/tools/distributed-replay/sql-server-distributed-replay?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/tools/distributed-replay/sql-server-distributed-replay?view=sql-server-ver16
https://doi.org/10.1145/1376616.1376732
https://doi.org/10.1145/1376616.1376732


50 V. Malyshkin et al.

5. Pgreplay – record and replay real-life database workloads. https://github.com/
laurenz/pgreplay. Accessed 01 May 2023

6. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35(2), 97–113
(2003). https://doi.org/10.1145/857076.857077

7. Krall, A.: Efficient JavaVM just-in-time compilation. In: Proceedings. 1998 Inter-
national Conference on Parallel Architectures and Compilation Techniques (Cat.
No.98EX192), Paris, France, pp. 205–212 (1998). https://doi.org/10.1109/PACT.
1998.727250

8. Ha, J., Haghighat, M.R., Cong, S., McKinley, K.S.: A concurrent trace-based just-
in-time compiler for single-threaded javascript. Proc. PESPMA (2009)

9. Bebenita, M., et al.: SPUR: a trace-based JIT compiler for CIL. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA ’10), pp. 708–725. Association for Computing
Machinery, New York (2010). https://doi.org/10.1145/1869459.1869517

10. Izawa, Y., Masuhara, H.: Amalgamating different JIT compilations in a meta-
tracing JIT compiler framework. In Proceedings of the 16th ACM SIGPLAN Inter-
national Symposium on Dynamic Languages (DLS 2020), pp. 1–15. Association
for Computing Machinery, New York (2020). https://doi.org/10.1145/3426422.
3426977

11. Böhm, I., von Koch, T., Kyle, S.C., et al.: Generalized just-in-time trace compi-
lation using a parallel task farm in a dynamic binary translator. SIGPLAN Not.
46(6), 74–85 (2011). https://doi.org/10.1145/1993316.1993508

12. Dehnert, J.: The transmeta code morphing software: using speculation, recovery,
and adaptive retranslation to address real-life challenges. In: Dehnert, J., Grant, B.,
Banning, J., Johnson, R., et al. (eds.) Proceedings of the International Symposium
on Code Generation and Optimization (2003)

13. QEMU: a generic and open source machine emulator and virtualizer. https://www.
qemu.org/. Accessed 01 May 2023

14. Boggs, D., et al.: The microarchitecture of the intel pentium 4 processor on 90 nm
technology. Intel Technol. J. 8(1) (2004)

15. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23178-0_5

16. Valkovsky, V.A., Malyshkin, V.E.: Synthesis if parallel programs and system on
the basis of computational models, Nauka, Novosibirsk, p. 128 (1988). In Russian:
Valkovsky, V.A., Malyshkin, V.E. (eds.) Sintez parallelnykh program i system na
vychislitelnykh modelyah. Nauka, Novosibirsk, 128 str (1988)

17. Malyshkin, V.: Active Knowledge, LuNA and literacy for oncoming centuries.
LNCS 9465, 292–303 (2015)

18. Kireev, S.: A parallel 3D code for simulation of self-gravitating gas-dust systems.
In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 406–413. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03275-2_40

https://github.com/laurenz/pgreplay
https://github.com/laurenz/pgreplay
https://doi.org/10.1145/857076.857077
https://doi.org/10.1109/PACT.1998.727250
https://doi.org/10.1109/PACT.1998.727250
https://doi.org/10.1145/1869459.1869517
https://doi.org/10.1145/3426422.3426977
https://doi.org/10.1145/3426422.3426977
https://doi.org/10.1145/1993316.1993508
https://www.qemu.org/
https://www.qemu.org/
https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/978-3-642-03275-2_40


Case Study for Running Memory-Bound
Kernels on RISC-V CPUs

Valentin Volokitin, Evgeny Kozinov, Valentina Kustikova, Alexey Liniov,
and Iosif Meyerov(B)

Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia
meerov@vmk.unn.ru

Abstract. The emergence of a new, open, and free instruction set architecture,
RISC-V, has heralded a new era in microprocessor architectures. Starting with
low-power, low-performance prototypes, the RISC-V community has a good
chance of moving towards fully functional high-end microprocessors suitable
for high-performance computing. Achieving progress in this direction requires
comprehensive development of the software environment, namely operating sys-
tems, compilers, mathematical libraries, and approaches to performance analy-
sis and optimization. In this paper, we analyze the performance of two available
RISC-V devices when executing three memory-bound applications: a widely used
STREAM benchmark, an in-place dense matrix transposition algorithm, and a
Gaussian Blur algorithm.We show that, compared to x86 and ARMCPUs, RISC-
V devices are still expected to be inferior in terms of computation time but are very
good in resource utilization. We also demonstrate that well-developed memory
optimization techniques for x86CPUs improve the performance onRISC-VCPUs.
Overall, the paper shows the potential of RISC-V as an alternative architecture for
high-performance computing.

Keywords: High-Performance Computing · RISC-V · ISA · C++ · Performance
Analysis and Optimization · Memory-Bound Applications

1 Introduction

The development of new CPU architectures significantly affects the progress of com-
puter technologies and their application in computer-aided design and engineering. At
first glance, there has already been a variety of CPU architectures that satisfy many
current needs. These architectures have gone through a thorny path from the first ideas
and experimental samples to full-fledged products mass-produced by leading micropro-
cessor manufacturers. It is also necessary to take into account the difficulties with the
deployment of new devices, the development of a full stack of specific software and
growing of educational ecosystem. All these things are quite expensive and very diffi-
cult. However, attempts to freeze progress and settle for only incremental improvements
will by no means lead to any significant breakthroughs that people need. Additionally,
the closeness and commercial ownership of the existing proprietary architectures (x86,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 51–65, 2023.
https://doi.org/10.1007/978-3-031-41673-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-41673-6_5


52 V. Volokitin et al.

ARM, and others) leads to complicated problems and limitations. Technologies con-
trolled by large companies are usually closed to change, which reduces the potential for
further development.

The project of a new free and open architecture RISC-V [1, 2] based on the RISC
(Reduced Instruction Set Computer) concept [3]whichwas presentedmore than 10 years
ago at the University of California at Berkeley deserves attention. In just 12 years hard-
ware and software developers have managed to introduce quite efficient CPUs, publicly
available for purchase and use. The performance of existing RISC-V CPUs is still far
even from mobile x86 and ARM CPUs, but progress in this area is proceeding at a sig-
nificant pace. It is unlikely that anyone dares to predict when the first high-performance
RISC-V CPUwill be created, but the prospects look quite real, and it is confirmed by the
current announcements of developers, the investments of industry leaders (for example,
Intel), and the growing interest of the community [4].

In this paper, we analyze the performance of two available RISC-V devices in solving
problems in which memory management is the main factor affecting computation time.
Our main interest is to assess current opportunities and future prospects and answer the
following key questions:

• What are the opportunities to adapt existing system software to work on RISC-V
CPUs, and what efforts are needed?

• What performance indicators related to the memory subsystem of available RISC-V
devices are achievable on standard benchmarks that are commonly used on x86 and
ARM architectures?

• How does the attainable performance of RISC-V devices compare with the peak
performance specified by the hardware manufacturers?

• Are well-established memory optimization techniques applicable to improve perfor-
mance on RISC-V devices?

To get the first answers to these questions, we tested performance on two RISC-V
devices (Mango Pi MQ-Pro and StarFive VisionFive), an ARM device (Raspberry Pi
4 model B), and a high-performance Intel Xeon 4310T server. We study performance
on the following memory-bound benchmarks: a standard STREAM test [5], an in-place
dense matrix transpose algorithm, and an image filtering algorithm. On the STREAM
benchmark, we determined the memory bandwidth for each of the devices. Using the
implementations of transposition and filtering algorithms, we studied how well-known
techniques for optimizing performance by improving the reuse of data loaded into a cache
affect the computation time on RISC-V devices. When analyzing the results, we paid
not so much attention to comparing the total computation time, which obviously looks
unfair, but to studying how efficient the utilization of available computing resources is.
To the best of our knowledge, this work is at least one of the first papers analyzing the
performance of algorithms on RISC-V devices.

2 RISC-V Architecture

RISC-V is an open instruction-set architecture (ISA) that was originally designed for
research and education [1, 2, 6–8]. It is developed from scratch, taking into account
the shortcomings of other open architectures and free from the issues of proprietary



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 53

architectures that are forced to maintain backward compatibility. RISC-V avoids “over-
architecting” for a particularmicroarchitecture style and has amodular design, a compact
base ISA and many extensions [2, 8]. So it can be used in systems of any complexity
up to high-performance devices like manycore CPUs or accelerators. Support for IEEE-
754 floating-point standard, extension for vector operations, privileged and hypervisor
architecture allow us to develop both conventional and HPC applications, operating
systems, and virtualization software.

The main difference between RISC-V and other popular architectures, such as Intel
or ARM, is primarily its openness and free availability. Additionally, it is distinguished
by the small size of the basic instruction set (47 instructions only), modular extension
principle, fixed base set and extensions after their standardization. All of this allows for
relatively easy build of architectures for different application areas. The ability to run
Linux on almost anyRISC-V system and standardized requirements for runningAndroid
give hope that the architecture will be popular in mobile and IoT devices, infrastructure,
industrial and HPC systems.

Architecture authors develop the corresponding CPU core microarchitectures, pro-
cessors, and complete systems. Since 2011, when the “Raven 1” SoC was created (ST
28 nm FDSOI), they have released a number chips of Raven [9, 10], Hurricane [11, 12],
Craft, Eagle, BROOM [13] families. The latter of these use the BOOMmicroarchitecture
[14–16], which is structurally similar and performance competitive with commercial
high-performance out-of-order cores. CPU and system-on-a-chip implementations of
the architecture are performed by tens of companies and ranged from microcontrollers
to high-performance cluster prototype [17]. The number of RISC-V processor cores
shipped to date exceeds 10 billions [18].

The RISC-V software stack includes all the necessary tools for application develop-
ment. The operating system (Linux), compiler (gcc, Clang), core libraries and program-
ming tools are available for every existing implementation. Current prototypes support
a limited set of HPC technologies, namely OpenMP, a set of base libraries (openmpi,
openBLAS, fftw), and a set of applications which can be compiled and built on RISC-
V (WRF, BLAST, GROMACS, VASP, and others) [19, 20]. However, the interest and
support from the academic community, commercial companies and government orga-
nizations [20–23] will likely bring RISC-V systems to the level of high-performance
solutions in the near future.

3 Benchmarking Methodology

3.1 Infrastructure

We employed two currently available RISC-V devices:

1. Mango Pi MQ-Pro (D1) with Allwinner D1 processor (1 x XuanTie C906, 1 GHz)
and 1 GBDDR3L RAM. Ubuntu 22.10 operating system (RISC-V edition) and GCC
12.2 compiler were installed.

Some architectural features of C906 are as follows: RV64IMAFDCV ISA, 5-
stage single-issue in-order execution pipeline, L1 2-way set-associative I-Cache and
4-way set-associative D-Cache with a size of 32 KB each and cache line size of 64



54 V. Volokitin et al.

bytes, Sv39 MMU, fully associative L1 uTLB with 20 entries (10 I-uTLB and 10 D-
uTLB), 2-way set-associative L2 jTLB of 128 entries, gshare branch predictor with
16 KB BHT, hardware prefetch for instructions (the next consecutive cache line is
prefetched) and data (two prefetch methods: forward and backward consecutive and
stride-based prefetch with stride less or equal 16 cache lines), 16, 32, 64-bits integer
and fp scalar and 512-bit vector operation including fp FMA.

2. StarFive VisionFive (v1) with StarFive JH7100 processor (2 x StarFive U74, 1 GHz)
and8GBLPDDR4RAM.OSUbuntu22.10 (RISC-Vedition) andGCC12.2 compiler
were installed.

Some architectural features of U74 core are as follows: RV64IMAFDCB ISA, 8-
stage dual-issue in-order execution pipeline, L1 2-way set-associative I-Cache and 4-way
set-associative D-Cache with a size of 32 KB each, cache line size of 64 bytes and a
random re-placement policy (RRP), 128 KB 8-way L2 cache with a RRP, hardware data
prefetch (forward and backward stride-based prefetch with large strides and automat-
ically increased prefetch distance), Bare and Sv39 MMU modes, fully associative L1
ITLB and DTLB with 40 entries each, direct mapped L2 TLB with 512 entries, branch
predictive hardware with 16-entry BTB and 3.6 KB BHT, 64-bits integer and 32, 64-bits
floating point scalar operation including fp FMA.

To compare results, we also used a Raspberry Pi device (ARM) and an Intel Xeon
server processor (x86) with the following configuration:

1. Raspberry Pi 4 model B with Broadcom BCM2711 (4 x Cortex-A72, up to 1.5 GHz)
processor and 4 GB LPDDR4 RAM. Ubuntu 20.04 operating system and GCC 9.4
compiler were installed.

2. Server with 2 x Intel Xeon 4310T (2 × 10 Ice Lake cores, up to 3.4 GHz) and 64 GB
DDR4 RAM. CentOS 7 operating system and GCC 9.5 compiler were installed. Only
the cores of the first CPU were used to eliminate the occurrence of NUMA effects
that are obviously absent on other devices.

A direct comparison of powerful server hardware and low-power devices may seem
patently disadvantageous for the latter, however, we decided to include the x86 server
in the comparison because performance results on a x86 server look reasonable and
expected by the HPC community.

3.2 Benchmarks

In this paper, we study the performance of RISC-V devices on three memory-bound
benchmarks. First, we experimentally determine the memory bandwidth using the com-
monly applied STREAM benchmark [1], which performs elementary operations on
vectors. Measuring memory bandwidth allows us to interpret the results of subsequent
experiments on x86, ARM and RISC-V devices and compare them, taking into account
the capabilities of the hardware. Next, we consider the in-place matrix transpose algo-
rithm, which is one of the basic dense linear algebra algorithms. We present several
implementations of the algorithm and check how typical memory optimization tech-
niques performing well on x86 and ARM CPUs work on RISC-V devices. Finally, we
follow the same idea in studying the Gaussian Blur algorithm, successively applying



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 55

different approaches to code optimization and testing to what extent they speed up cal-
culations on different devices, with a particular focus on RISC-V devices. Summarizing
the obtained results, we formulate the main conclusions about the future prospects for
using RISC-V devices in HPC applications.

3.3 Performance Metrics

The computation time is typically used as the main performance metric. However, we
should keep in mind that our comparison involves a single-core low-power processor of
the RISC-V architecture, which is still at the beginning of its development, and a 10-core
powerful Xeon processor that uses many advances in the field of high-performance com-
puting. Therefore, in addition to the computation time, we also used relative metrics that
allow us to make a fair comparison in terms of the utilization of available computational
resources.

Given that the RISC-V architecture is still experimental, it is not clear which of the
optimization techniques typical for x86 and ARM work well on RISC-V. Therefore, the
following question is of interest: what kind of improvement from a naïve version of
the algorithm can be obtained by performing a series of memory optimizations typical
for conventional CPUs. This metric allows us to understand what kind of improvement
can be leaded to by a certain optimization in each particular case, supplementing the
computation time, which is dependent from a device features.

Another metric we employ allows us to evaluate how efficiently we use the available
memory channels. To evaluate this, we introduce the following metric. At first we cal-
culate the ratio of the data number of bytes that needs to be moved between DRAM and
CPU to the computation time.We divide the value calculated in this way by the achieved
memory bandwidth, measured by the STREAM benchmark. The result belongs to the
segment from zero to one and is dimensionless. The closeness of this value to one indi-
cates that the algorithm uses the bandwidth of thememory channels quite rationally. This
metric allows us to compare the devices, taking into account their significantly different
performance of the memory subsystem.

Overall, absolute (computation time,memory bandwidth) and relative (speedup from
a naive implementation, “utilization of a memory subsystem”) metrics allow us to draw
conclusions about the current state of the considered RISC-V devices.

4 Numerical Results

4.1 STREAM Benchmark

The STREAM benchmark [1] is one of the popular ways to measure achieved memory
bandwidth. Like other similar benchmarks, STREAM is based on the idea of reading
and writing an array of data from the memory of the corresponding level. STREAM uses
4 tests that have different bytes/iter and FLOPS/iter values:

1. COPY – is simple copying from one array to another (a[i] = b[i]). This operation
transfers 16 bytes per iteration and does not perform floating point calculations.



56 V. Volokitin et al.

2. SCALE – is copying from one array to another with multiplication by a constant (a[i]
= d * b[i]). This operation transfers 16 bytes per iteration and does 1 FLOPS/iter.

3. SUM – the sum of elements from two arrays is stored in the third array (a[i] = b[i]
+ c[i]). This operation transfers 24 bytes per iteration, but still does 1 FLOPS/iter.

4. TRIAD – FMA (fused multiply-add) from elements from two arrays (a[i] = b[i] + d
* c[i]) is stored in the third array. This operation transfers 24 bytes per iteration and
does 2 FLOPS/iter.

Fig. 1. The results of the STREAM benchmark

We select the sizes of the arrays in such a way that they are not forced out of the
memory of the considered level and could not be cached efficiently in faster memory.
All levels of memory that are available on each specific device are considered. We
run a multi-threaded (for a shared memory) or sequential (for an individual resource, for
example, an L1 cache) version of STREAM. In the sequential experiments the results are
multiplied by the number of cores. Overall, we use the maximum value that is achieved
during sufficiently large number of repetitions of the experiment.

The results of the obtained throughputs are presented in Fig. 1. It turned out that
the RISC-V devices have a number of drawbacks. We found that there is only L1 cache
with a rather low bandwidth on the Mango Pi board with the Allwinner D1 processor
compared to other devices. In the case of the StarFive board on JH7100, we observe
the low bandwidth of DRAM which corresponds to the reduced memory channel in the
device. Overall, the memory subsystem of the RISC-V devices is behind its analogue
on ARM and, as expected, is even more inferior to the x86 Xeon CPU.



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 57

4.2 In-Place Dense Matrix Transposition Algorithm

Algorithm. The in-place dense matrix transposition algorithm is one of the key algo-
rithms in linear algebra [24]. It is used both as a standalone procedure and as part of
other linear algebra algorithms. In this section, we consider a sequence of optimizations
to the matrix transposition algorithm that incrementally improve performance from the
most basic (naïve) implementation to the efficient high-performance version.

Naïve Implementation (“Naïve”). The following implementation (Listing 1) is a code
that a programmer often develop without thinking about performance optimization.
Of course, such an implementation cannot be expected to perform efficiently, but it is
inefficient for all the devices. All are on equal terms.

1: Transpose_baseline (double * mat, int size)
2:     for (i=0; i < size; i++)
3: for (j=i+1; j < size; j++)
4: mat[i][j] = mat[j][i]

Listing 1. Pseudocode of the naïve implementation

Parallelization (“Parallel”). Since most modern hardware is multi-core, using mul-
tithreading is an important way to reduce the computation time. In this algorithm, the
iterations of the outer loop are independent of each other. Therefore, the algorithm can
be easily parallelized using the OpenMP technology. Note that OpenMP is supported by
all compilers on 4 considered devices. However, the Allwinner D1 (Mango Pi) device
is single-core, so it makes no sense to use parallelism there, and other optimizations for
this device are performed in sequential code.

Better Data Reuse: Cache Blocking (“Blocking”). The next optimization is to avoid
unnecessary data loads and better reuse of data already loaded into caches. This can be
achieved by block traversal of a matrix, which is typical for many matrix algorithms.
Listing 2 shows the pseudocode without unnecessary implementation details.

1: Transpose_block (double * mat, int size)
2: parallel_for (i_blk=0; i_blk<size; i_blk+=blk_size)
3: for (j_blk=i_blk; j_blk<size; j_blk+=blk_size) 
4: for (i=i_blk; i<i_blk+blk_size; i++)
5: for (j=j_blk +1; j<j_blk+blk_size; j++)
6: mat[i][j] = mat[j][i]

Listing 2. Pseudocode of the block algorithm implementation

Improved Memory Access (“Manual_blocking”). The next optimization continues
and enhances the ideas of the previous one. Its main task is to provide, if it is possible,
sequential access to RAM. To do this, blocks are loaded into the cache manually, after
which they are transposed and data is exchanged with other blocks. The pseudocode is
shown in Listing 3.



58 V. Volokitin et al.

1: Transpose_improvedMemAccess (double * mat, int size)
2: parallel_for(i_blk=0; i_blk<size; i_blk+=blk_ size)
3: double cache_blk[blk_size*blk_size] 
4: for (j_blk=i_blk; j_blk<size; j_blk+=blk_size)
5: load_block_to_cache (i_blk, j_blk)
6: transpose_block_in_cache()
7: swap_block (j_blk, i_blk)
8: transpose_block_in_cache()
9: store_block (i_blk, j_blk)

Listing 3. Pseudocode of the improved block algorithm implementation

Dynamic Scheduling (“Dynamic”). The final version of the code differs from the
previous one in the dynamic scheduling of the parallel loop. It makes it possible to
eliminate the imbalance in the computational load that occurs in traversing the rows of
an upper triangular matrix, which obviously have different lengths.

Performance Results and Discussion. Figure 2 shows the computation time of the
presented algorithms on four devices. In accordance with the previously introduced
metrics, it shows the computation time of the naïve version of the algorithm on different
devices, as well as the acceleration of optimized implementations relative to the naive
version for each of the platforms. The lack of acceleration of parallel implementations
(Parallel and Dynamic versions) on Mango Pi is due to the single-core CPU.

We found that optimizations that were developed for the x86 architecture perform
well also on RISC-V devices. Despite significant architectural differences between the
devices, the memory subsystems are organized with the similar principles, so optimiza-
tions have made it possible to better utilize memory resources of RISC-V, ARM and
x86 CPUs. Note that the presented optimizations show a good acceleration, especially
considering that this algorithm does not use vector instructions, which in many cases
can speed up calculations and make working with memory more efficient.

Given the substantially larger computing capabilities of Intel Xeon, we compare the
overall computation time on RISC-V and Raspberry Pi CPUs. Note that despite the very
large advantage of the latter in memory bandwidth at the STREAM benchmark over
both RISC-V devices, the gap in computation time between RISC-V and ARM is much
smaller.Moreover, with an increase of thematrix size to 16384, the difference in speedup
compared to the naïve version on ARM and RISC-V CPUs decreases. It confirms better
utilization of available resources of RISC-V CPU.

Comparing the results of twoRISC-V boards with each other, we noticed that despite
the good memory bandwidth on the device with the Allwinner D1 (Mango Pi) processor
compared to the second one on the JH7100, their computation time is almost identical.
To find out the reason for this phenomenon and analyze the performance in terms of
one of the previously announced metrics, we calculated the relative memory bandwidth
utilization (Fig. 3). This metric shows how efficiently the reuse of data loaded from
memory is implemented, and how significantly the computation time depends on the
properties of the memory subsystem. The optimal value of this metric, equal to one, is
not achievable in many cases, but closeness to one indicates efficient memory utilization.



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 59

Fig. 2. Computation time of five implementations of the matrix transposition algorithm on four
computing devices (Intel Xeon server, Raspberry Pi and two RISC-V boards). The labels above
the bars of the diagram show the computation time of the naïve version of the algorithm given in
seconds, as well as the speedup of the optimized implementations relative to the naïve ones on the
corresponding devices. The top panel contains the results for a 8192 x 8192 matrix, the bottom
one for a 16384 x 16384 matrix. The bottom panel does not contain results for Mango Pi because
the matrix does not fit in memory of this device.

Fig. 3. Effectiveness of the relative memory bandwidth utilization for four devices. The metric
is calculated for the naïve implementation and the best optimized implementation for each of the
devices. The matrix size is 8192 x 8192 (left panel) and 16384 x 16384 (right panel). The right
panel does not show results for the Mango Pi because the matrix does not fit in memory.



60 V. Volokitin et al.

All devices show almost the same increase in this relative indicator for sufficiently large
matrices. In the case of Raspberry Pi, it seems unusual that memory utilization is at
such a low level. Probably, this is due to the lack of ARM-specific optimizations, but in
this case the devices are on equal terms, because we run C codes without architecture-
specific optimizations only. The metrics show that StarFive (JH7100) performed well
in terms of memory bandwidth utilization. This is primarily due to the low memory
bandwidth on StarFive, however, this board has two memory channels for two cores. In
the case of Mango Pi (D1), it can be seen that there is a low memory utilization both in
the naïve implementation and in the most optimized one. Note that this device has only
one level of cache with only modest improvements compared to DRAM, which affects
the performance.

Summing up the results of optimizations of the in-place dense matrix transposition
algorithm on RISC-V devices, we note that despite the expectedly large difference in
the computation time, the available RISC-V CPUs make it possible to achieve a high
degree of utilization of resources using commonly applied optimization techniques.

4.3 Gaussian Blur Algorithm

Algorithm. In this section we consider an image filtering with a Gaussian Blur algo-
rithm as a benchmark. The problem is formulated as follows. Let there be an image
(tensor) containing one or three channels at the input. Each image pixel contains one
or three intensity values, respectively, each in the range from 0 to 255, or from 0 to
1, if normalization is performed. The problem of filtering involves passing through the
image from left to right and from top to bottom, applying the Gaussian filter kernel to
the pixels, and calculating a discrete convolution. The output is an image that has the
same spatial dimensions as the input one and contains updated intensity values.

We chose the filtering task as a benchmark for the following reasons. Firstly, it is
necessary in many computer vision (CV) algorithms for the preliminary preparation
of input data. Secondly, there are efficient implementations of the Gaussian filter for
different computing architectures, in particular, in OpenCV. Therefore, there are opti-
mized implementations to compare performance. The third and most important reason
is that discrete convolution is a basic operation of convolutional neural networks, which
are commonly used in CV applications. The performance of convolutions significantly
affects the time of a direct pass through the neural network, which is critical in the
implementing deep neural network models in real applications. The efficiency of the
implementation of this operation on the target hardware highly influences the overall
computation time when solving CV problems using convolutional networks. Therefore,
the filtering task is the first step towards deep neural networks inference optimization
on RISC-V architectures. Then we consider several implementations of the algorithm
that consistently improve the efficiency of utilization of computing resources, and, as
before, analyze the achieved performance results.

Naïve Implementation (“Naïve”). As a basic implementation, we use an algorithm in
which the Gaussian filter kernel is used to sequentially calculate the intensities of each
pixel of the resulting image row by row (Listing 4).



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 61

1 :  cntChannel = 3
2 : middle = sizeFilter / 2
3 : for (i = 0; i < h - sizeFilter; i++)
4 : for (j = 0; j < w - sizeFilter; j++)
5 : for (c = 0; c < cntChannel; c++)
6 : sum = 0.f
7 : for (i_f = 0; i_f < sizeFilter; i_f++)
8 : for (j_f = 0; j_f < sizeFilter; j_f++)
9 : pos_i = (i + i_f) * (w * cntChannel)
10: pos_j = (j + j_f) * (cntChannel) + c
11: sum += srcData[pos_i + pos_j] * 

filter[i_f * sizeFilter + j_f]
12: i_d = i + middle; j_d = j + middle
13: distData[(i_d*w+j_d)*cntChannel + c] = sum

Listing 4. Pseudocode of the naïve implementation of the Gaussian Blur algorithm

Fig. 4. Gaussian Blur filter optimization for color images: unit-stride memory access. Left panel:
naïve implementation. Right panel: improved implementation.

Unit-stride Access (“Unit-stride”). Note that if a color image is used, then memory
access is not unit-stride (Fig. 4, left panel). As a first modification, we change the order
of the loops so that the loop through the image channels (line 5) is inside the filter kernel
application loop (line 8). As a result, memory access is unit-stride (Fig. 4, right panel),
which is much better in terms of memory usage.

One-dimensional Kernels (“1D_kernels”). For further optimization, we rearrange the
computations [25] based on the following representation of the Gaussian filter:

G(x, y) = 1

2πσ 2 e
− x2+y2

2σ2 =
(

1√
2πσ

e− x2

2σ2

)(
1√
2πσ

e− y2

2σ2

)
(1)

Now we can successively apply two one-dimensional Gaussian filter kernels instead
of using a two-dimensional kernel (see Fig. 5).

The use of one-dimensional filters reduces the computational complexity of the
entire algorithm. When using two-dimensional filters, the complexity can be estimated
asO

(
W · H · C · F2

)
, whereWandH are thewidth and height of the image, respectively,

C is the number of channels, and F is the size of the filter kernel. By using two one-
dimensional filters, the complexity can be reduced to O(W · H · C · F).



62 V. Volokitin et al.

Fig. 5. Applying of the two-dimensional kernel (top row) and two one-dimensional kernels
(bottom row) of the Gaussian blur filter

ImprovingMemory Access (“Memory”). In the previous implementation, the perfor-
mance of applying the horizontal kernel of the Gaussian filter is low due to an inefficient
memory access pattern. Therefore, we use the order of loops, in which each element of
the kernel interacts with the entire row from the original image matrix (Listing 5).

1: for (i = 0; i < h - sizeFilter; i++)
2: for (i_f = 0; i_f < sizeFilter; i_f++)
3:      pos_i = (i + i_f) * (w * cntChannel)
4: for (j = 0; j < w * cntChannel; j++)
5:        tmpData[(i + middle) * w * cntChannel + j] +=

srcData[pos_i + j] * filter1D[i_f]

Listing 5. Pseudocode of the improved implementation of the Gaussian Blur algorithm

Parallel Implementation (“Parellel”). The computations are independent and well-
balanced, thereforeweparallelize the algorithm trivially byusing#pragma parallel
for from OpenMP.

Performance Results and Discussion. We used a color image of size 2544 × 2027 for
the experiments. To apply the filter, the intensities of each pixel were converted to the
float type. The size of the kernel of the Gaussian filterF = 19. The computation time and
the speedups achieved are shown in Fig. 6. As before, the sizes of the bars correspond
to the computation time of a particular algorithm on the corresponding device, while the
captions above the bars show the computation time for the naïve version and speedup of
other versions relative to the naïve implementation. The experimental results allow us to
draw the following conclusions. Firstly, we found that the baseline implementation lags
behind OpenCV1 by several orders of magnitude, regardless of the device architecture.
Then, the computation time of the first modification of the algorithm (“Unit-stride”) is
obviously better because of sequential memory access which us much faster due to an
efficient data prefetch. Apparently, this is not the case for the StarFive device, where
data prefetch does not speed up calculations because low memory bandwidth does not
allow data to be prepared on time and only leads to additional overhead.

1 In the case of using processors with RISC-V architecture, the OpenCV computation time was
measured on a Linux image that supports vector instructions.



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 63

Fig. 6. Computation time of five implementations of the Gaussian Blur algorithm on four com-
puting devices (Intel Xeon server, Raspberry Pi and two RISC-V boards). The labels above the
bars of the diagram show the computation time of the naïve version of the algorithm given in
seconds, as well as the speedup of the optimized implementations relative to the naïve ones on the
corresponding devices.

Next, we paid attention to the computation time and speedup of the next modifica-
tion of the algorithm (“1D_kernels”). As expected, the calculations are faster. It is worth
noting in particular that with a filter size of F = 19, one would expect a substantial
speedup. Apparently, it did not happen due to an excessive amount of memory access.
This assumption is confirmed by the results of the following modification of the algo-
rithm (“Memory”). Due to much more efficient memory access, the speedup compared
to the naïve implementation becomes much larger. The acceleration by more than 19
times on the server with Intel Xeon 4310T processors is justified by the fact that the
compiler has been able to vectorize the code with the loop order, used in the “Memo-
ry” implementation. The computation time and speedup of parallel implementations are
shown in Fig. 6 (“Parallel” bar). Since the problem is memory bound, speedup is limited
by the number of available memory channels.

Like for the matrix transposition benchmark, we analyze the effectiveness of mem-
ory bandwidth usage (see Fig. 7). When calculating this relative metric (see Sect. 3.3),
we used a “1D_kernels” implementation as a baseline. We conclude that the memory
subsystem of Mango Pi does not allow for high performance of the image filtering
algorithm due to the lack of L2 cache and slow L1 cache. StarFive lags behind Raspber-
ryPi in memory access performance, but overall, the results are comparable. In case of
Intel Xeon 4310T, the parallel algorithm provided an increase in the memory bandwidth
usage metric due to the presence of a larger number of memory channels, which are not
available in other devices under consideration.



64 V. Volokitin et al.

Fig. 7. Effectiveness of the relative memory bandwidth utilization for four devices. The metric is
calculated for the three optimized implementations of the Gaussian Blur algorithm. Labels show
the improvement compared to the “1D_kernels” implementation.

5 Conclusion

In this paper, we explored new opportunities and perspectives of the RISC-V computing
architecture. Despite the many papers studying of architectural ideas and their possi-
ble implementations, testing existing RISC-V devices and studying their performance
issues are of great interest. In this regard, the paper presents an analysis of the perfor-
mance of two RISC-V devices on three memory-bound benchmarks in comparison with
well-studied ARM and x86 CPUs. First, we measured the memory bandwidth using the
commonly used STREAM benchmark. The results showed that the existing RISC-V
prototypes are still significantly behind ARM and x86 devices. Therefore, when consid-
ering two benchmarks from linear algebra and image processing, we proposed to take
into account not only the computation time, but also the efficiency of using the mem-
ory subsystem. It turned out that in the matrix transposition algorithm, RISC-V devices
demonstrate excellent utilization of available resources, while when filtering images,
memory is used less efficiently, which is caused by a small number of memory channels.
We especially want to note that the typical memory optimization techniques worked
out over the past decades on ARM and x86 behave as expected on RISC-V, allowing
to significantly speed up calculations. As a result, we can conclude that although the
available RISC-V devices are not yet suitable for HPC, but nevertheless they show a
high potential for further development.

Acknowledgements. The study is supported by the LobachevskyUniversity academic leadership
program “Priority-2030”. Experiments were performed on the Lobachevsky supercomputer.

References

1. Asanović, K., Patterson, D.A.: Instruction sets should be free: the case for RISC-V. EECS
Department. University of California, Berkeley. UCB/EECS-2014–146 (2014)

2. Waterman, A., Asanović, K.: The RISC-V instruction set manual, volume I: user-level ISA,
document version 20190608-base-ratified. In: RISC-V Foundation (2019)

3. Furber, S.B.: VLSI RISC Architecture and Organization, 1st edn. CRC Press (1989)



Case Study for Running Memory-Bound Kernels on RISC-V CPUs 65

4. Asanović, K.: Advancing HPC with RISC-V. In: Invited Talk at Supercomputing Conference
(2022)

5. McCalpin, J.: Memory bandwidth and machine balance in current high performance
computers. IEEE Comput. TCCA Newsl., 19–24 (1995)

6. History – RISC-V International. https://riscv.org/about/history/. Accessed 09 May 2023
7. Chen, T., Patterson, D.A.: RISC-V genealogy. EECS Department, University of California,

Berkeley, Technical report UCB/EECS-2016-6 (2016)
8. Waterman, A., Asanovic, K., Hauser, J.: The RISC-V instruction set manual, Volume II:

privileged architecture, document version 20211203 (2021)
9. Lee, Y., et al.: Raven: A 28nm RISC-V vector processor with integrated switched-capacitor

DC-DC converters and adaptive clocking. In: 2015 IEEE Hot Chips 27 Symposium (HCS),
pp. 1–45. IEEE (2015)

10. Zimmer, B., et al.: A RISC-V vector processor with tightly-integrated switched-capacitor
DC-DC converters in 28nm FDSOI. In: 2015 VLSI Circuits, pp. 316–317. IEEE (2015)

11. Schmidt, C., et al.: Programmable fine-grained power management and system analysis of
RISC-V vector processors in 28-nm FD-SOI. IEEE Solid State Circuits Lett. 3, 210–213
(2020)

12. Wright, J.C., et al.: A dual-core RISC-V vector processor with on-chip fine-grain power
management in 28-nm FD-SOI. IEEE Trans. VLSI Syst. 28(12), 2721–2725 (2020)

13. Celio, C., et al.: BROOM: an open-source out-of-order processor with resilient low-voltage
operation in 28-nm CMOS. IEEE Micro 39(2), 52–60 (2019)

14. Zhao, J., et al.: SonicBOOM: the 3rd generation berkeley out-of-order machine. In: Fourth
Workshop on Computer Architecture Research with RISC-V, vol. 5, pp. 1–7 (2020)

15. RISC-V BOOM. https://boom-core.org/. Accessed 09 May 2023
16. BOOM: The Berkeley out-of-order RISC-V Processor. https://github.com/riscv-boom.

Accessed 09 May 2023
17. Bartolini, A., et al.: Monte cimone: paving the road for the first generation of RISC-V

high-performance computers. In: 2022 IEEE 35th International System-on-Chip Conference
(SOCC), pp. 1–6. IEEE (2022)

18. Europe steps up as RISC-V ships 10bn cores. https://www.eenewseurope.com/en/europe-
steps-up-as-risc-v-ships-10bn-cores/. Accessed 09 May 2023

19. RISC-V Software Ecosystem Status. https://sites.google.com/riscv.org/software-ecosystem-
status. Accessed 09 May 2023

20. Davis, J.D.: RISC-V in Europe: the road to an open source HPC stack. https://www.eur
opean-processor-initiative.eu/wp-content/uploads/2022/03/EPI-@-HPC-User-Forum.pdf.
Accessed 09 May 2023

21. First International workshop on RISC-V for HPC. https://riscv.epcc.ed.ac.uk/community/
isc23-workshop/. Accessed 09 May 2023

22. RISC-V ISA – MIPS. https://www.mips.com/products/risc-v/. Accessed 09 May 2023
23. Framework Partnership Agreement for developing a large-scale European initiative for HPC

ecosystem based on RISC-V. https://eurohpc-ju.europa.eu/framework-partnership-agreem
ent-fpa-developing-large-scale-european-initiative-high-performance_en. Accessed 09 May
2023

24. Chatterjee, S., Sen, S.: Cache-efficient matrix transposition. In: IEEE Proceedings Sixth
International Symposium on High-Performance Computer Architecture, HPCA-6 (Cat. No.
PR00550), pp. 195–205 (2000)

25. Moradifar, M., Shahbahrami, A.: Performance improvement of Gaussian filter using SIMD
technology. In: International Conference on Machine Vision and Image Processing, pp. 1–6
(2020)

https://riscv.org/about/history/
https://boom-core.org/
https://github.com/riscv-boom
https://www.eenewseurope.com/en/europe-steps-up-as-risc-v-ships-10bn-cores/
https://sites.google.com/riscv.org/software-ecosystem-status
https://riscv.epcc.ed.ac.uk/community/isc23-workshop/
https://www.mips.com/products/risc-v/
https://eurohpc-ju.europa.eu/framework-partnership-agreement-fpa-developing-large-scale-european-initiative-high-performance_en


Frameworks and Services



Pair of Genes: Technical Validation
of Distributed Causal Role Attribution

to Gene Network Expansion

Diana Dolgaleva2(B) , Camilla Pelagalli4, Stefania Pilati5 ,
Enrico Blanzieri3,4 , Valter Cavecchia3, Sergey Astafiev1 ,

and Alexander Rumyantsev1

1 Institute of Applied Mathematical Research, Karelian Research Centre of RAS,
Pushkinskaya Str. 11, Petrozavodsk 185910, Russia

seryymail@mail.ru, ar0@krc.karelia.ru
2 Petrozavodsk State University, Lenina Pr. 33, Petrozavodsk 185910, Russia

abcdi do@mail.ru
3 CNR-IMEM, Trento, Italy

{enrico.blanzieri,valter.cavecchia}@unitn.it
4 DISI, University of Trento, Trento, Italy
camilla.pelagalli@studenti.unitn.it

5 Research and Innovation Centre, Fondazione Edmund Mach,
San Michele all’Adige, TN, Italy

stefania.pilati@fmach.it

Abstract. The paper is dedicated to preliminary results and valida-
tion of the distributed solution for causal role attribution in gene net-
work expansion problem. The key ingredients of the solution are the web
application based on Shiny framework, RBOINC backend as an interface
between R language and BOINC desktop grid framework, and parallel
(multicore) implementation of the Peter-Clark (PC) algorithm for causal
role attribution. The approach is technically validated on a gene network
expansion problem for the grapevine (Vitis vinifera).

Keywords: Causal Relationship Discovery · Distributed Computing ·
RBOINC · Gene Network Expansion

1 Introduction

The computing experiments are an important part of bioinformatics, which is a
well established field in the intersection of mathematics, computer science and
biology. Among the tasks with high computational complexity are the problems
in the field of genetics (e.g. reconstruction of the DNA from sequencing data),
molecular biology (establishing the structure of a given protein, as well as drug
discovery for a specific disease) and many others. In those fields, high computa-
tional power is needed, ranging from top supercomputers to the desktop grids,
depending on the application field.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 69–82, 2023.
https://doi.org/10.1007/978-3-031-41673-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_6&domain=pdf
http://orcid.org/0000-0002-0606-6583
http://orcid.org/0000-0001-7103-9613
http://orcid.org/0000-0001-6524-0601
http://orcid.org/0000-0002-4486-798X
http://orcid.org/0000-0003-2364-5939
https://doi.org/10.1007/978-3-031-41673-6_6


70 D. Dolgaleva et al.

The genes are coded in the DNA and they are transcribed into mRNA that
eventually is translated into proteins. It is nowadays possible to sequence the
mRNAs and, by estimating their concentration, obtain data about the transcrip-
tion level of each gene, namely their expression. The possible casual relationships
between the expression levels of genes are important to determine and are usu-
ally studied by intervening in the system, however purely observational data
(without intervention) are widely available, which makes it possible to perform
causal relationship discovery in-silico. In particular, the study of gene expression
regulators, such as transcription factors, is essential to reconstruct gene regula-
tion processes and how they are altered under different experimental conditions.
This information is represented by means of gene regulatory networks, namely
graphs whose nodes are genes and edges indicate the presence of a chain of events
that connect the expression level of one gene to another one.

Causal relation discovery from observational data to compute gene regula-
tory networks is a recent research topic that has been actively studied both
theoretically and technically. In our case, observational data are represented by
publicly available genome-wide gene expression compendia, that are collections
of homogeneous normalized transcriptomic datasets. For the case study reported
below, the dataset of a Vitis vinifera - the common grapevine - compendium
has been used [25], but the same analysis is undergoing also for Homo sapiens
and Mus musculus (mouse) transcriptomic datasets. Applying a causal inference
algorithm, such as the PC algorithm, to this kind of data should be effective in
catching causal-effect relationships among genes, thus providing hypotheses of
molecular mechanisms and interactions occurring during development, disease,
or any other biological process of interest. The in silico analyses need to be
experimentally validated, but can contribute to accelerate novel discovery. The
output is a directed graph where genes are the nodes and their interactions are
represented as oriented edges. The overall idea of this approach is to refine a
“first-level” co-expression network by applying a further step based on condi-
tional independence to remove indirect or distantly related connections, thus
producing the so-called association network. Then, and this is the focus of the
work presented here, a third step computes the orientation of the edges, finally
producing a gene regulatory network.

Due to the high computational complexity of the PC algorithm, this pro-
cess is divided into two steps, both developed to be used in the more general
framework of parallel and distributed computing. The first step, called OneGenE
(One Gene Expansion), considers the whole transcriptomic datasets and applies
a partial version of the PC algorithm to produce lists of associated genes with-
out the direction information, called OneGenE expansion lists, for each gene of
the dataset (Ref. [8,30]). This huge computation has been made possible by the
implementation of a BOINC-based desktop grid. Then, here we present the sec-
ond step, consisting in analyzing each expansion list by applying the complete
version of the PC algorithm to the most associated genes to detect the causal-
effect relationships among them thus producing oriented networks. To solve the
problem of high computational need, we implemented a cloud web application



Pair of Genes 71

with a BOINC desktop grid backend, and is validated using the grapevine data.
Thus, the key contribution is the novel technical approach to causal role attribu-
tion which uses both parallel (multicore) and distributed (BOINC-based) com-
puting to solve the computationally intensive task in the field of bioinformatics.
A technical validation of the results is then presented, based on literature. Note
that the approach is general purpose, and can be adopted to transcriptomic data
of various origin, however, in the present paper we focus on the case study based
on the grapevine dataset.

The structure of the paper is as follows. In Sect. 1.1 a brief literature survey is
presented. A cloud application for causal attribution of gene regulatory network
is discussed in Sect. 2, where, in particular, the details on the data acquisition and
usage are given in Sect. 2.4. The results of technical validation of the approach
are given in Sect. 3. The paper is finalized with a conclusion and discussion of
some future research directions.

1.1 Related Literature

Here we briefly recall the literature related to causal relationship discovery and
causal attribution. The key monograph sources for the causal relationship dis-
covery are [13,18,23,27,29,35], to name a few, with a focus on correlation in [18],
nice theoretical background in [35], application focus to econometrics and epi-
demiology in [27], implementation focus of the graph-based and association-
rules-based methods in [23], machine learning techniques in [29] and state-of-art
in [13].

Note that many fields of bioinformatics and, in particular, the causal rela-
tionship discovery problem, are computationally intensive and require supercom-
puter resources, see e.g. [11] and [24]. At the same time, many problems in the
bioinformatics field may be solved by the resources that are widely available (on
the contrast to supercomputers), namely, the desktop grid based systems [36].
The latter class of systems is mainly suitable for the specific class of problems
which can be divided into many independent sub-problems (e.g. the so-called
embarrassingly parallel applications), which is the case studied in the present
paper.

Important ideas about causation and the study of the effect of the causes are
given in fundamental work [14]. Accordingly, the causation studies developed
in a few directions in accordance with mathematical structures used. One of
these directions is based on graph-like structures for the causal relationships.
In [28], such a structure is reconstructed as a tree (undirected acyclic graph)
connecting the “visible variables” to the invisible (so-called hidden causes) using
the conditional independence property.

In subsequent works, motivated by applications in social sciences and biol-
ogy, the directed acyclic (DAG) [26] and directed cyclic graphs [33] were used
as the models for causal relationships. Reconstruction of DAG by the so-called
constraint-based method was suggested in the PC (Peter-Clark) algorithm pro-
posed in [16] and further developed in [17] into the package pcalg for R language.



72 D. Dolgaleva et al.

One of the key strengths of the PC algorithm implemented in the (recent ver-
sions of) pcalg package is related to the independence of the result on the order
of the input, which is a very important feature for the causality studies [10]. A
parallel version of the PC algorithm is presented in [20].

Finally, we mention the work [34] dedicated to comparative benchmarking
of the causal relationship discovery algorithms which gives preference to the PC
algorithm from pcalg package for medium and large size datasets.

2 Cloud Application for Causal Role Attribution

In this section we introduce and discuss the technical peculiarities of the app-
roach used for the causal role attribution in the gene network expansion problem.
The technical solution is novel, and is in fact a cloud-based web application built
using the following key components (available as open source, or written earlier
by the authors):

Shiny framework for building and running web applications having R lan-
guage [32] interpreter server as a backend [9];

RBOINC R package as a software interface to the underlying distributed com-
puting system [6];

BOINC framework for organizing and maintaining the desktop grid based dis-
tributed computing system [1,2];

VirtualBox virtualization software used to run the R tasks independently of
the compute node operating system and in isolated environment [19];

pcalg R package for the PC algorithm for causal relationship discovery, used with
parallel (multicore) computing option in fast (C++) implementation [17].

Hereafter we discuss a few details on implementation of this software
combination.

2.1 Shiny Web Application

Here we describe the so-called frontend of the solution, which is a novel web
application built using the Shiny framework. As the computational backend,
the application uses the RBOINC package written and submitted earlier by the
authors (see Sect. 2.2).

The Shiny framework based web application serves as the entrance point for
the calculations of causal role attribution. Its aim is to simplify and automate the
launch of calculations of the algorithm for detecting causal relationships between
elements of the gene network. The application can be used for offering gene
network causal studies as a cloud service over distributed computing backend.
Selection of Shiny framework and R language is motivated by the fact that R
ecosystem has a large number of packages in bioinformatics e.g. in Bioconductor
repository [15].

At server side, the service uses gene expression level data for grapevine (the
dataset is described in more details in Sect. 2.4). At user level, a batch of input



Pair of Genes 73

files may be uploaded containing the so-called expansion lists in text format (the
gene of interest and a list of related genes, see Sect. 2.4) to the server, and rel-
ative frequency threshold parameter (called Frel in the dataset, see [31] on the
parameter interpretation) may be selected so as to find balance between the com-
putation time and results accuracy. The filtered correlation matrix containing
the genes of interest, as well as the corresponding R task, is then wrapped into
a virtual machine and sent to BOINC-based desktop grid hosts using RBOINC
package (see Sect. 2.2). The results may be obtained from the service using a
text file of special format containing the batch descriptor. The results are down-
loaded in the form of a batch of files containing oriented graphs (in text format),
each graph corresponding to one of the input files in the batch.

2.2 Distributed Computing Backend

The computations are based on BOINC-based desktop grid [2] and the (intro-
duced earlier) RBOINC package that serves as the interface between R compu-
tations and BOINC infrastructure [7]. RBOINC software consists of 3 parts:

– RBOINC.cl R package that provides functions for interaction with BOINC
server (necessary for batch processing of the workunits and results acquisi-
tion);

– Server part that is installed along with BOINC server and extends the appli-
cation programming interfaces (API) of BOINC;

– Virtual machine (VM) build tools, i.e. collection of (shell) scripts that greatly
simplify building the corresponding VM containing code and data sent to the
BOINC hosts (computers used for distributed computing with BOINC).

RBOINC.cl is an R package that RBOINC users install into R environment in
standard way. The package is capable of creating a batch of tasks directly from
elements of R environment. Specifically, the user of the package indicates the
function and the data to run the function over. The RBOINC.cl package then
splits the data into several units and creates appropriate batch of workunits
using BOINC API functions. Each such a workunit is in fact a virtual machine
along with an appropriate R script and data to run the script over. As such, the
computing environment is isolated from the host machine and may be effectively
suspended and resumed during the busy times, without losing the intermediate
results of computation.

A few other important functions of the package are:

– connection manipulation routines create connection and close
connection interact with BOINC server using web API;

– workunit manipulation is performed by create jobs and cancel jobs;
– update jobs status is capable of results retrieval into R environment of the

package user.

The server part is installed directly on the BOINC server and provides func-
tions that are not implemented in BOINC or whose implementation in BOINC



74 D. Dolgaleva et al.

is too complicated to use. First of all, this is the creation of unique names, base
templates for work units and results, as well as simple validator.

Finally, the VM build tools are a few scripts that greatly simplify creation of
a VM image usable by RBOINC. In theory, they can be of help for any BOINC
VirtualBox project. These scripts are compatible with Gentoo Linux (due to
its small storage footprint and great flexibility) and allow one to automatically
update most distribution packages to the latest version, install the necessary R
packages and build a minimal1 bootable disk for VM that can perform RBOINC
jobs. To drastically reduce the size, root file system of the machine is com-
pressed into a read-only squashfs image. Read/write access is achieved thought
the use overlayfs with tmpfs (read-write file system in the random access mem-
ory). As part of RBOINC project, a preconfigured virtual machine is provided
that contains the VM build scripts installed. Note that RBOINC is available at
R-Forge [7].

2.3 Causal Attribution Algorithm

Several implementations of the famous PC algorithm were considered to be
used as the functions to be sent using RBOINC.cl package to the hosts of the
BOINC desktop grid. These implementations include the standard pcalg pack-
age [17] with various parameters and a parallel version from the ParallelPC
package [21]. While authors of ParallelPC claim that the algorithm imple-
ments the stable version of the PC algorithm from pcalg package using parallel
computing, an unwanted feature of the row order dependence was obtained in
preliminary experiments with ParallelPC package, which is a significant dis-
advantage of the implementation (as opposed to the order-independent stable
version in the pcalg package). As code study of the ParallelPC package ver-
sion 1.2 (available at GitHub) has shown, the parameter solve.confl of the
call of udag2pdagRelaxed function the original implementation of pc function
in pcalg package version 2.7–8 (line 2241 of pcalg.R) was missing in the call of
udag2pdagRelaxed in pc parallel function of ParallelPC package (line 736 of
ParallelPC.R). Modification of this line in accordance with original implementa-
tion in pcalg package makes the ParallelPC implementation order-independent.

A few preliminary runs were performed using the original R implementation
of the algorithm in pcalg package, the (modified to be order-independent)
version from ParallelPC as well as the pcalg version of pc function
with skel.method="stable.fast" parameter. In all cases, the parameter
solve.confl = TRUE was used so as to guarantee order independence on the
input. The experiments were performed on a generic multicore desktop com-
puter (as the typical desktop grid host). As a result, the following conclusions
were drawn.

– Identical results were obtained using all three implementations.

1 At least 330 MB, approximately 370 MB for this work due to additional packages
installation. Required RAM dependents on task, minimum is 256 MB.



Pair of Genes 75

– The fastest implementation of the PC algorithm is the pc function from
pcalg package with skel.method="stable.fast", then goes the ParallelPC
implementation, and finally, the original implementation from pcalg package
with the parameter skel.method = "stable".

– The fastest implementation, pc function with skel.method="stable.fast"
parameter from pcalg package, allows to increase speedup by using multicore
computation with a numCores parameter of the pc function.

The main reason for the high performance of the stable.fast implementation
is probably the C++ language of implementation used behind the R wrapper
of the function. Thus, a choice for validation experiment was made in favor of
a standard package pcalg with pc function and skel.method="stable.fast"
parameter together with numCores=detectCores(logical = FALSE)-1 (with
appropriate number of cores selected automatically).

2.4 Data Sources for Gene Network Expansion Problem: A Case
Study

The presented approach can be applied for the transcriptomic datasets of various
origin, and is not limited to the focus of the present paper, the Vitis vinifera
dataset [25]. This, however, comes at a price of small modifications of the source
code at the cloud service implementation step. In this section, we describe the
dataset needed for validation case study which is of interest for this research.

In this case study, the dataset used at the server level of the cloud service
uses the results of computation obtained by TN-Grid. The TN-Grid platform
(https://gene.disi.unitn.it/test) is a joint project between the Institute of Mate-
rials for Electronics and Magnetism (IMEM) of the National Research Council
of Italy (CNR), the Fondazione Edmund Mach (FEM), S. Michele all’Adige,
Trento, Italy and the Department of Information Engineering and Computer
Science (DISI) of the University of Trento, Italy. It uses the BOINC platform
to provide advanced computational capabilities for local research activities. The
project currently hosted on TN-Grid is called gene@home [4] and currently runs
the OneGenE experiments [3], a graphical snapshot of the procedure is shown
in Fig. 2 and how it is integrated into the scientific pipeline is illustrated on
Fig. 3. In May 2023 the TN-Grid platform has ≈ 3500 registered users, ≈ 65000
registered hosts and a peak computational power of ≈ 33 TFLOPS.

The standard BOINC server architecture has been locally modified to suit the
TN-Grid specific purposes, the overall picture of it and the changes are depicted
in Fig. 1.

For this case study, the OneGenE experiment ran on a filtered and imputed
version of the Vitis vinifera transcriptomic dataset [25]. The experiment com-
puted the expansion, using the specific version of the PC algorithm known as
PC-IM [5], of each of the 28013 genes it contains. The used PC-IM parameters
were tsize = 1000, iter = 2000 and α = 0.05. Any single (seed) gene expan-
sion has been subdivided in 95 workunits (the computational unit sent to the
volunteers) each one packed with 500 PC tiles. A cutoff of 2 has been applied

https://gene.disi.unitn.it/test


76 D. Dolgaleva et al.

Fig. 1. BOINC on TN-Grid

Fig. 2. The OneGenE experiment

to the output list, i.e. any couple of genes present less than two times has been
discarded from the output. The initial post-processing phase combines together
all the results of the 95 workunits discarding any couple which doesn’t contain
the seed gene thus obtaining an expansion list which is actually a undirected (the
PC-IM algorithm doesn’t keep track of the PC’s separation set thus the direc-
tion of the interaction remains undefined)“star” graph centered on the seed gene,
ordered by relative found frequency. These files with seed gene and expansion
list were then used as the input files of the technical validation phase described
in Sect. 3.



Pair of Genes 77

Fig. 3. The OneGenE scientific pipeline

3 Technical Validation Results

Hereafter we briefly report the preliminary results of validation of the app-
roach to causal attribution described in Sect. 2. The grapevine dataset and its
expansion lists described in Sect. 2.4 were used. For validation purpose, N = 51
expansion list Li of the Ethylene Responsive Factor 45 (ERF45) gene was sent
as a batch to the cloud service. ERF45 is a transcription factor, i.e. a gene
which regulates other genes downstream in the cell signaling cascade. It is a
marker of grapevine berry ripening onset, but its target genes have not been
identified yet [22]. The computations for each such an expansion list were per-
formed by the pc function from pcalg package with parameters maj.rule=TRUE,
solve.confl=TRUE, u2pd ="relaxed" and skel.method="stable.fast". To
enable multicore parallelism at the host level, in the function pc the parameter
numCores = detectCores(logical = FALSE)-1 was used as well. The results
were obtained from the cloud service and summarized as follows: N directed
acyclic graphs (DAG) Gi = 〈Vi, Ei〉, i = 1, . . . , N , were received as the results
of computation. These graphs were then merged into a single graph G = 〈V,E〉
in the following steps.

1. All the edge data from the sets Ei, i = 1, . . . , N , were aggregated by summing
up the number of times each edge, say, e ∈ E = {(a, b), a ≤ b ∈ V := ∪N

i=1Vi}
was having (say) right, r(e), left, l(e), or no, u(e) direction (the latter option
in fact means that the algorithm wasn’t able to find evidence on selecting a
specific direction, which can be interpreted as selecting both directions with
equal probability).

2. For each edge e, two attributes were added. The weight, w(e) was defined
as the number of times the edge (of any direction) was found in the results,
divided by the number of times the pair of vertices of the edge was found in
the input files,



78 D. Dolgaleva et al.

ERF045

bHLH075

WRKY14

MYBA4bHLH055

SKS8

MYB4B

MYBA1

bZIP52

ERF005

UFGT1

Fig. 4. Validation results of the experiment with causal attribution of the graph com-
posed after processing of ERF45 gene expansion lists. The gene ERF45 is highlighted
with gray color. The edge thickness is obtained in (1) and intensity of the gray color is
obtained as in (2), whereas the direction of the edge is selected as the majority from
the possible directions obtained in the experiments.

w(e) =
r(e) + l(e) + u(e)

∑N
i=1 1e∈Li

≤ 1, e ∈ E. (1)

The color intensity c(e) was then obtained as the number of times the specific
orientation was obtained, compared to the overall number of times the edge
was present in the output,

c(e) =
max(r(e), l(e))

r(e) + l(e) + u(e)
≤ 1, e ∈ E. (2)

3. Finally, the edges were filtered so as to have w(e) ≥ 0.5 and c(e) ≥ 0.5, and
the largest connected component of the graph G = 〈V,E〉 was obtained.

The resulting graph G was depicted on the Fig. 4 with igraph library using
the weight as w(e) in terms of edge thickness, color as c(e) in terms of gray



Pair of Genes 79

color intensity, and direction selected according to max(r(e), l(e)) (in obvious
notation). The nodes are named using gene symbol (if available). The specific
codes were omitted in attempt to make the graph more readable. The so-called
Davidson–Harel algorithm for locating the nodes was used, by the parameter
layout with dh of the igraph function. Such an approach allows to build and
depict the graph as the results of the batch computation in an automatic way.

This analysis is quite valuable as it produces a prediction of causal rela-
tionships between gene pairs that can be tested experimentally. For ERF45, we
identified two target genes, one of these bHLH075, has been already character-
ized for being an important regulator of ripening [12], and two genes potentially
regulating ERF45, which are two transcription factors themselves and are inter-
esting candidates for further studies. Nonetheless, there are still some critical
issues that we need to further investigate to refine this prediction, but they con-
cern the post-processing part. In particular, we need to better understand the
factors affecting the direction, as it is not always conserved, to improve the final
estimation.

4 Conclusion

Regulatory networks applying causal inference to transcriptomic data are still
quite a rare resource for plant biologists, so the gene networks elaborated by this
approach on a genome-wide scale represent a powerful tool that can support and
boost molecular plant science. Parallel and distributed computing using BOINC
platform proved to be a successful method to speed up research and manage
big project in a reasonable time. Large scale experiments are planned to be
performed.

We note that the software solution is currently under development, so there
is no public repository available yet. However, it is planned to avail the solution
to the community, and before that the setup can be repeated by the researchers
familiar with the appropriate technologies independently using the description
presented in this paper. As a technical perspective, we can also mention that
the setup presented in this paper is not limited to the PC algorithm, and so
one of the future directions may be in comparison of various causal attribution
algorithms (see e.g. [34]) on the basis of the dataset used.

Acknowledgements. The research described in this publication was made possible
in part by R&D Support Program for undergraduate and graduate students and post-
doctoral researchers of PetrSU, funded by the Government of the Republic of Karelia.

References

1. Anderson, D.: BOINC: a platform for volunteer computing. J. Grid Comput. 18,
99–122 (2020)

2. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID 2004, Washington, DC, USA, pp. 4–10. IEEE Computer Society (2004).
https://doi.org/10.1109/GRID.2004.14

https://doi.org/10.1109/GRID.2004.14


80 D. Dolgaleva et al.

3. Asnicar, F., Masera, L., Pistore, D., Valentini, S., Cavecchia, V., Blanzieri, E.:
OneGenE: regulatory gene network expansion via distributed volunteer computing
on BOINC. In: 2019 27th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), Pavia, Italy, pp. 315–322. IEEE
(2019). https://ieeexplore.ieee.org/document/8671629/

4. Asnicar, F., et al.: TN-Grid and gene@home project: volunteer computing for
bioinformatics. In: Proceedings of the Second International Conference BOINC-
based High Performance Computing: Fundamental Research and Development
(BOINC:FAST 2015), vol. 1502, pp. 1–15. CEUR-WS (2015). https://ceur-ws.
org/Vol-1502/paper1.pdf

5. Asnicar, F., et al.: TN-grid and gene@home project: volunteer computing for
bioinformatics. In: Proceedings of the Second International Conference BOINC-
based High Performance Computing: Fundamental Research and Development
(BOINC:FAST 2015). No. 1502 in CEUR Workshop Proceedings, Aachen (2015).
https://ceur-ws.org/Vol-1502

6. Astafiev, S.N., Rumyantsev, A.S.: Distributed computing of R applications using
RBOINC package with applications to parallel discrete event simulation. In: Vish-
nevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) Distributed Computer and
Communication Networks. CCIS, vol. 1552, pp. 396–407. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-97110-6 31. iSSN 1865–0937

7. Astafiev, S., Rumyantsev, A.: R-Forge: RBOINC (2022). https://r-forge.r-project.
org/projects/rboinc/

8. Blanzieri, E., et al.: A computing system for discovering causal relationships among
human genes to improve drug repositioning. IEEE Trans. Emerg. Top. Comput.
9(4), 1667–1682 (2021). https://ieeexplore.ieee.org/document/9224179/

9. Chang, W., et al.: shiny: Web Application Framework for R (2023). https://shiny.
rstudio.com/. r package version 1.7.4.9002

10. Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal struc-
ture learning. J. Mach. Learn. Res. 15, 3741–3782 (2014)

11. Dumancas, G.G.: Applications of supercomputers in sequence analysis and genome
annotation. In: Advances in Systems Analysis, Software Engineering, and High
Performance Computing, pp. 149–175. IGI Global (2015). https://doi.org/10.4018/
978-1-4666-7461-5.ch006

12. Fasoli, M., et al.: Timing and order of the molecular events marking the onset
of berry ripening in grapevine. Plant Physiol. 178(3), 1187–1206 (2018). https://
academic.oup.com/plphys/article/178/3/1187-1206/6116656

13. Hernan, M.A., Robins, J.M.: Causal Inference: What If. Chapman &
Hall/CRC, Boca Raton (2020). https://www.hsph.harvard.edu/miguel-hernan/
causal-inference-book/

14. Holland, P.W.: Statistics and causal inference. J. Am. Stat. Assoc. 81(396),
945–960 (1986). https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.
10478354

15. Huber, W., et al.: Orchestrating high-throughput genomic analysis with Biocon-
ductor. Nat. Methods 12(2), 115–121 (2015). https://www.nature.com/nmeth/
journal/v12/n2/full/nmeth.3252.html

16. Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)

17. Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H., Bühlmann, P.: Causal
inference using graphical models with the R Package pcalg. J. Stat. Softw. 47(11)
(2012). https://www.jstatsoft.org/v47/i11/

https://ieeexplore.ieee.org/document/8671629/
https://ceur-ws.org/Vol-1502/paper1.pdf
https://ceur-ws.org/Vol-1502/paper1.pdf
https://ceur-ws.org/Vol-1502
https://doi.org/10.1007/978-3-030-97110-6_31
https://r-forge.r-project.org/projects/rboinc/
https://r-forge.r-project.org/projects/rboinc/
https://ieeexplore.ieee.org/document/9224179/
https://shiny.rstudio.com/
https://shiny.rstudio.com/
https://doi.org/10.4018/978-1-4666-7461-5.ch006
https://doi.org/10.4018/978-1-4666-7461-5.ch006
https://academic.oup.com/plphys/article/178/3/1187-1206/6116656
https://academic.oup.com/plphys/article/178/3/1187-1206/6116656
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478354
https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478354
https://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
https://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
https://www.jstatsoft.org/v47/i11/


Pair of Genes 81

18. Kenny, D.A.: Correlation and Causality. Wiley, New York (1979)
19. Khan, R., AlHarbi, N., AlGhamdi, G., Berriche, L.: Virtualization software secu-

rity: oracle VM VirtualBox. In: 2022 Fifth International Conference of Women in
Data Science at Prince Sultan University (WiDS PSU), Riyadh, Saudi Arabia, pp.
58–60. IEEE (2022). https://ieeexplore.ieee.org/document/9764794/

20. Le, T.D., Hoang, T., Li, J., Liu, L., Liu, H., Hu, S.: A fast PC algorithm for high
dimensional causal discovery with multi-core PCs. IEEE/ACM Trans. Comput.
Biol. Bioinform. 16(5), 1483–1495 (2019). https://ieeexplore.ieee.org/document/
7513439/

21. Le, T.D., Xu, T., Liu, L., Shu, H., Hoang, T., Li, J.: ParallelPC: an R package
for efficient causal exploration in genomic data. In: Ganji, M., Rashidi, L., Fung,
B.C.M., Wang, C. (eds.) PAKDD 2018. LNCS (LNAI), vol. 11154, pp. 207–218.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04503-6 22

22. Leida, C., et al.: Insights into the role of the berry-specific ethylene responsive fac-
tor VviERF045. Front. Plant Sci. 7 (2016). https://journal.frontiersin.org/article/
10.3389/fpls.2016.01793/full

23. Li, J., Liu, L., Le, T.D.: Practical Approaches to Causal Relationship Exploration.
SECE. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14433-7

24. Maples, R., Ramasahayam, S., Dumancas, G.G.: Supercomputers in modeling of
biological systems. In: Advances in Systems Analysis, Software Engineering, and
High Performance Computing, pp. 201–222. IGI Global (2015). https://doi.org/
10.4018/978-1-4666-7461-5.ch008

25. Moretto, M., et al.: VESPUCCI: exploring patterns of gene expression in grapevine.
Front. Plant Sci. 7 (2016). https://journal.frontiersin.org/Article/10.3389/fpls.
2016.00633/abstract

26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Series in Representation and Reasoning, Elsevier
Science (1988)

27. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge
University Press (2009). https://www.cambridge.org/core/product/identifier/
9780511803161/type/book

28. Pearl, J., Tarsi, M.: Structuring causal trees. J. Complex. 2(1), 60–77 (1986).
https://linkinghub.elsevier.com/retrieve/pii/0885064X86900233

29. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations
and Learning Algorithms. Adaptive Computation and Machine Learning Series.
The MIT Press, Cambridge (2017)

30. Pilati, S., et al.: Vitis OneGenE: a causality-based approach to generate gene
networks in vitis vinifera sheds light on the laccase and dirigent gene families.
Biomolecules 11(12), 1744 (2021). https://doi.org/10.3390/biom11121744

31. Pilati, S., et al.: Vitis OneGenE: 1 causality-based approach to generate gene
networks in vitis vinifera sheds light on the laccase and dirigent gene families.
Biomolecules 11(12) (2021). https://www.mdpi.com/2218-273X/11/12/1744

32. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2021). https://www.R-project.
org

33. Richardson, T.: A discovery algorithm for directed cyclic graphs. In: Proceedings
of the Twelfth International Conference on Uncertainty in Artificial Intelligence,
UAI 1996, pp. 454–461. Morgan Kaufmann Publishers Inc., San Francisco (1996).
Event-place: Portland, OR

https://ieeexplore.ieee.org/document/9764794/
https://ieeexplore.ieee.org/document/7513439/
https://ieeexplore.ieee.org/document/7513439/
https://doi.org/10.1007/978-3-030-04503-6_22
https://journal.frontiersin.org/article/10.3389/fpls.2016.01793/full
https://journal.frontiersin.org/article/10.3389/fpls.2016.01793/full
https://doi.org/10.1007/978-3-319-14433-7
https://doi.org/10.4018/978-1-4666-7461-5.ch008
https://doi.org/10.4018/978-1-4666-7461-5.ch008
https://journal.frontiersin.org/Article/10.3389/fpls.2016.00633/abstract
https://journal.frontiersin.org/Article/10.3389/fpls.2016.00633/abstract
https://www.cambridge.org/core/product/identifier/9780511803161/type/book
https://www.cambridge.org/core/product/identifier/9780511803161/type/book
https://linkinghub.elsevier.com/retrieve/pii/0885064X86900233
https://doi.org/10.3390/biom11121744
https://www.mdpi.com/2218-273X/11/12/1744
https://www.R-project.org
https://www.R-project.org


82 D. Dolgaleva et al.

34. Singh, K., Gupta, G., Tewari, V., Shroff, G.: Comparative benchmarking of causal
discovery algorithms. In: Proceedings of the ACM India Joint International Con-
ference on Data Science and Management of Data, Goa India, pp. 46–56. ACM
(2018). https://dl.acm.org/doi/10.1145/3152494.3152499

35. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. Adap-
tive Computation and Machine Learning, 2nd edn. MIT Press, Cambridge (2000)

36. Talbi, E.G., Zomaya, A.Y. (eds.): Grid Computing for Bioinformatics and Compu-
tational Biology. Wiley, Hoboken (2007). https://doi.org/10.1002/9780470191637

https://dl.acm.org/doi/10.1145/3152494.3152499
https://doi.org/10.1002/9780470191637


HiTViSc: High-Throughput Virtual
Screening as a Service

Natalia Nikitina1(B) and Evgeny Ivashko1,2

1 Institute of Applied Mathematical Research, Karelian Research Center of the
Russian Academy of Sciences, 185910 Petrozavodsk, Russia

nikitina@krc.karelia.ru
2 Petrozavodsk State University, 185035 Petrozavodsk, Russia

Abstract. High-performance and high-throughput computing play an
important role in drug development and, in particular, in solving the
computationally intensive problem of virtual screening. The variety and
complexity of tools require technical knowledge for selection, setup and
usage of the computational platform. There is need for ready solutions
and services to simplify the process. With low cost and high scalability,
Desktop Grid systems can significantly expand the computational capac-
ity available for a virtual screening. This paper describes High-Through-
put Virtual Screening as a Service (HiTViSc): we present three logical
levels of operation (computational, virtual screening and user level), the
user workflows related to virtual screening, resource administration and
visualization and analysis of results, and the multi-user access. The nov-
elty of the work is related to implementation of the Desktop Grid as a
Service concept. In particular, comparing to other cloud-based virtual
screening services, we use Desktop Grid resources to implement compu-
tationally intensive work. Comparing to umbrella Desktop Grid projects,
the users of HiTViSc can be both consumers and providers of comput-
ing resources at the same time, and employ additional steps of virtual
screening based on supportive utilities provided by HiTViSc.

Keywords: High-throughput computing · Desktop Grid · Volunteer
computing · Cloud computing · Virtual screening · BOINC · HiTViSc

1 Introduction

Drug development is a complex, multi-stage, resource-consuming process and
is assisted by in silico methods also known as CADD (computer-aided drug
design) [21,23]. Recent literature emphasizes the following main directions of
contemporary development of CADD technologies:

– Enhancement of the iterative exchange with a laboratory, experimental eval-
uation and validation of in silico results;

– Application of new computational technologies and expansion of their scope
to reduce time and money needed for drug development;

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 83–92, 2023.
https://doi.org/10.1007/978-3-031-41673-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_7&domain=pdf
http://orcid.org/0000-0002-0538-2939
http://orcid.org/0000-0001-9194-3976
https://doi.org/10.1007/978-3-031-41673-6_7


84 N. Nikitina and E. Ivashko

– Enhancement of mathematical and computer models of biological processes.

High-performance computing (HPC) technologies play an important role in solv-
ing these challenges, as they allow researchers to process large amounts of data
and implement complex simulations [14]. As an alternative, one may use high-
throughput computing (HTC) to solve large numbers of loosely-coupled compu-
tational tasks, which arise in multiple stages of CADD such as virtual screen-
ing, molecular dynamics simulations with different parameters, modeling protein
folding, etc. Conventional HTC systems are clusters, commercial clouds and
Grids. In our work, we concentrate on another type of HTC systems: Desktop
Grids. Desktop Grid is a system using idle time of non-dedicated geographically
distributed computing nodes (typically, desktop computers) connected to the
central server by the Internet or a local access network. Such systems were pro-
posed in 1980s s and have been used by many of the world’s leading research
institutions for large-scale computational projects (e.g., Washington University:
Rosetta@home [22], Folding@home [26]; CERN: LHC@home [8]; University of
Oxford: Climateprediction.net [5]).

An example of a computationally intensive problem well fit to be solved on
Desktop Grids is the virtual screening, an in silico alternative to high-throughput
screening. It is a computational technique allowing to process large libraries of
small chemical compounds and obtain the molecules with high predicted binding
activity against a specified therapeutic target. The selection is made basing on
the results of molecular docking of each small compound to the target.

This paper is organized as follows. In Sect. 2, we review related work on the
usage of HPC/HTC for virtual screening. In Sect. 3, we present the High-Thro-
ughput Virtual Screening as a Service. In Sect. 4, we describe the physical setup
of the system. Finally, Sect. 5 concludes the paper.

2 Related Work

Virtual screening is one of the most computationally intensive stages of drug
development. Despite the fact that molecular docking of a ligand to a target
is fast, the volumes of ligand libraries lead to the need for HPC/HTC tools
for virtual screening. In [12], the authors review the variety of HPC options
when performing virtual screening with AutoDock Vina software and provide
important observations on computational efficiency and reproducibility.

In a recent review [16], the authors consider implementations of paralleliza-
tion algorithms for virtual screening on HPC systems. In particular, they empha-
size the computational complexity and discuss parallelization strategies at all
steps of virtual screening. Another recent review [25] focuses on molecular dock-
ing on supercomputers and illustrates the demand for HPC systems for virtual
screening. The methodology of GPU acceleration with appropriate numerical
optimization for virtual screening has been described in [6] on the example of
the Summit supercomputer.

This illustrates that HPC technologies provide biochemist scientists with
computational systems of various scales, efficiencies and costs. But on the other



HiTViSc: High-Throughput Virtual Screening as a Service 85

hand, the variety and complexity of HPC/HTC tools require technical knowl-
edge for selection, setup and usage of a platform. When the platform has been
selected and setup, one needs to orchestrate many software programs and data
processing algorithms in the process of drug development. This leads to the need
for ready solutions and services to simplify the process. Recent overviews of such
services based on cloud computing are given, for example, in [20,24]. A service
based on the Chinese National Grid CNGrid is described in [28]; based on the
supercomputer Tianhe-2 – in [15].

There are a number of commercial solutions that provide a full cycle of virtual
screening based on cloud computational resources – Virtual Screening as a Ser-
vice [1,7,13]. Such software solutions are proprietary, and within their framework
it is difficult (or impossible) to implement own algorithms for library preparation
and the whole computational experiment, and the amount of available compu-
tational resources is limited.

At the same time, Desktop Grid computing gives a potentially large com-
putational capacity at a low cost. This is important because research groups
(especially of a small/medium size) typically do not have immediate, on-demand
access to supercomputing resources. Desktop Grids complement HPC tools when
performing virtual screening (see, for instance, [27]). A range of research works
investigate various combinations of Desktop Grids and cloud computing, aiming
to gain advantages of both concepts (see [10] for an overview).

3 High-Throughput Virtual Screening as a Service

The aim of this work is to develop a computing service that, on the one hand,
offers users a convenient web interface for virtual screening, visualization and a
primary analysis of results, and on the other hand, provides an HTC tool for
virtual screening using distributed computing based on Desktop Grids, including
the feature of administration of available computational resources.

3.1 Logical View

High-Throughput Virtual Screening as a Service system implements the concept
of Desktop Grid as a Service [10], which provides the user with scalable Desktop
Grid resources in the form of a specialized cloud service.

From the logical viewpoint, High-Throughput Virtual Screening as a Service
has three implementation levels (see Fig. 1):

1. The first level - computational - provides high-performance computations
basing on resources of a Desktop Grid. At this level, a Desktop Grid server
implements the functions of task generation, communication with computing
nodes (task assignment, transfer of input data and computational applica-
tions) and results accounting. This level can be implemented on the basis of
an existing Desktop Grid software platform, for example, BOINC.



86 N. Nikitina and E. Ivashko

2. The second level - virtual screening - implements special virtual screen-
ing functions, including uploading a target file, a ligand database and a
computational application, parameter settings, a protocol for molecular dock-
ing and results processing, and the selection of external applications for anal-
ysis and visualization of results.

3. The third level - user level - provides the graphical user interface of the cloud
application, including interfaces and settings for management of the virtual
screening, progress visualization, results visualization and analysis, as well as
administration of computational resources.

The computing nodes are Desktop Grid clients that provide distributed compu-
tational resources.

Fig. 1. High-Throughput Virtual Screening as a Service: logical levels and the main
software tools used in the implementation of each level.

3.2 Workflows

The primary user of the system is a scientist (alone or in a group) conducting
virtual screening within three workflows: 1) execution of a computational exper-
iment, 2) administration of computational resources, 3) expert analysis of the
results.

1. The computational experiment is performed as follows:
(a) Load the target. PDB format is widely used to describe the 3D structure of

the target for molecular docking. This format is used in the leading open
database of structural protein models RCSB Protein Data Bank (RCSB
PDB) [3]. In the current practice of virtual screening, the user uploads a
PDB file or specifies a PDB identifier in the RCSB PDB database. Then
the file is prepared for molecular docking by software utilities and/or
manually.

(b) Select the ligand library. Preparation of the ligand library is an expert
task, the result of which affects the quality of virtual screening. File format
depends on the selected molecular docking program. For example, SDF
format is used for CmDock, PDBQT format is used for AutoDock Vina,



HiTViSc: High-Throughput Virtual Screening as a Service 87

etc. The initial selection is made among the libraries available on the
system server, accessible via online interfaces or uploaded by the user.
The library is then filtered according to the user’s requirements. The
prepared ligand library is stored on the server and is an important part of
a specific computational experiment of virtual screening. It is also possible
to specify a set of reference ligands that the user will need to prepare the
target and/or analyze the results of virtual screening.

(c) Select the molecular docking program. There are many software (such as
the already mentioned CmDock, AutoDock Vina) that differ both con-
ceptually and technically (settings format, file formats, etc.). In current
practice, the entire virtual screening process is designed for a software
available on the server or locally.

(d) Configure the docking protocol. The type and format of the parame-
ters depend on the specific molecular docking program. For example, for
CmDock, these are 3D coordinates of the center of the binding site and
the size of the docking area, the number of repeats of molecular docking,
various restrictions and filters1. The system interface provides a default
protocol with the ability to edit settings.

(e) Set up the protocol of the computational experiment. The protocol deter-
mines the criteria for hits selection and for stopping the computational
experiment.

– The criterion for hits selection is the binding energy value to consider
the ligands as hits. It may be a threshold value, ligand efficiency (bind-
ing energy normalized by the number of atoms) or a more complex
selection criterion.

– A criterion for stopping a computational experiment may be, for
example, a given number of tested molecules, a given number of hits,
or a given proportion of hits in a fixed number of tested molecules.

(f) Select computational resources. To perform a virtual screening, the user
has options for selecting computational resources. At the same time, in
accordance with the concept of Desktop Grid, the basis is the resources
of non-dedicated computers, including those invited to the system by the
user. Computations within the framework of the experiment can be of
one of three types:
i. testing: to verify the correctness of the experiment settings,
ii. public: the results of the experiment, including the target, settings

and results of virtual screening are available to a wide audience,
iii. private: the results of the experiment are available only to the user

and his partners.
(g) Start or stop a computational experiment.
(h) Display the progress of the computational experiment. From the point of

view of the experiment dynamics, the following parameters are central:
i. the proportion of processed molecules from a given library,

1 https://gitlab.com/Jukic/cmdock/-/blob/master/docs/reference-guide/docking-
protocol.rst.

https://gitlab.com/Jukic/cmdock/-/blob/master/docs/reference-guide/docking-protocol.rst
https://gitlab.com/Jukic/cmdock/-/blob/master/docs/reference-guide/docking-protocol.rst


88 N. Nikitina and E. Ivashko

ii. the number of hits found,
iii. library coverage (for example, the number of clusters),
iv. a forecast of the completion time of the computational experiment.

2. Administration of computational resources. The service concept assumes
three types of computational resources that can be used in virtual screen-
ing as Desktop Grid computing nodes:
(a) Test environment. A limited amount of highly available and reliable com-

putational resources used to test parameters on a small amount of com-
putations.

(b) Computational resources of the system provided for general use by volun-
teers and other users of High-Throughput Virtual Screening as a Service
and used to perform experiments.

(c) Own and partners’ computational resources connected to the system,
which can be used for own experiments, partner projects or provided
for general use.

It is important to take into account the computational resources actually
used. One of the possible policies of the service may be that the priority
of a particular experiment decreases or increases depending on how many
resources does the user provide to other projects. At the same time, the
connection of “own” resources is carried out using a special connection link.

3. Analysis of the results of virtual screening. The results of the virtual screening
are a list of hits ordered by estimates of their binding energy to the target.
For each hit, an estimate of the binding energy and a specific conformation
corresponding to this estimate and representing a three-dimensional spatial
model of the molecule are stored. In practice, the most often used methods
for the analysis and visualization of the results are the principal component
analysis and clustering. They are performed by third-party programs (such
as R, Clustvis, etc.) that implement suitable algorithms.
Another basic method for analyzing the results of virtual screening is visu-
alization. One uses 2D visualization in the form of points projected onto a
plane (for visual evaluation of clustering and chemical diversity) and 3D visu-
alization in the form of molecular structures docked to the target (for visual
evaluation of the results of molecular docking and comparison with reference
ligands, if any).
Finally, the function of uploading data filtered by any criteria is a universal
opportunity to use third-party independent programs to analyze the results.

3.3 Multi-user Access

High-Throughput Virtual Screening as a Service is a scalable multi-user system.
This means that within the framework of the service, many users can indepen-
dently conduct their computational experiments. At the same time, in general,
each user has access to the entire pool of computational resources which is shared
among users by the task scheduler.

A multi-user approach is also used within the computational project: the
owner (founder) of the project can provide other participants with more or less



HiTViSc: High-Throughput Virtual Screening as a Service 89

limited access to the project settings, computational resources and results. Such
a division of user roles corresponds to the practices adopted in scientific research.
Each user is provided with the following features:

1. Access to an account for performing computational experiments, storing and
analyzing the results.

2. Use of computational resources.
3. Sharing with the other users the results of computational experiments accord-

ing to one of three access options: the results are available to all users of the
system, to a certain group of users, or to the author only.

The main considered operational mode implies that all generated data (pre-
pared targets and ligand libraries, found hits, binding energy estimates, etc.) can
be used by a wide range of users for further expert analysis with the preservation
of the authorship.

At the same time, an open library of results is, on the one hand, the basis
for attracting volunteers to the project to provide computational resources (as
this is a common motivation in volunteer computing), and on the other hand, a
contribution to the overall scientific progress in the field of bioinformatics.

The described multi-user environment is different from standard cloud ser-
vices and the BOINC system in that users of HiTViSc system are both consumers
and providers of computational resources. But unlike BOINC umbrella projects
where users can run their own subprojects and volunteers compute for them,
HiTViSc system offers a virtually unlimited flexibility of the experiment setup.
Also, there is no need for a public presentation of the project, with an option
of running a private instance of the whole system which is useful at the stage of
preliminary experiments that might take months in a real setting.

4 System Setup

As described above, the proposed system operates on three logical levels. On
the first level, we employ BOINC software: an open source platform for Desktop
Grid computing with a client-server architecture. BOINC server consists of a
number of parallel services sharing a database (see [2] for detailed architecture).
BOINC client connects to the server to request tasks, performs computations
and sends the results back to the server. The server validates and assimilates the
results, aggregating them to obtain hits of virtual screening.

Here, the clients are desktops and other types of computers that can be
provided by the user, volunteers and other individuals. The total computational
performance depends on the project needs. Practice shows that it is possible to
gather several tens of computers for a short-term, local experiment [11] or several
thousand computers for a long-term public project on virtual screening [19].

On the second level, the management of virtual screening is implemented at a
dedicated server, which can be shared with BOINC, by virtual screening-specific
applications like molecular docking software (CmDock, AutoDock Vina), third-
party molecular visualization systems (Molmil, PyMOL), R scripts for results
analysis and visualization, etc. It holds the functionality of the cloud application.



90 N. Nikitina and E. Ivashko

On the third level, the graphical user interface is implemented as a web
portal built on Angular, NodeJS and MySQL. The main software tools used for
implementation of each level are shown in Fig. 1.

At the moment, the implementation of HiTViSc system is in progress. In the
design and development of the system, we base on a large series of computa-
tional experiments previously conducted locally [11] in a BOINC-based Desktop
Grid using the molecular docking application AutoDock Vina and in a public
BOINC project Sidock@home [19] using CmDock. The experiments embraced
the whole cycle of virtual screening in a Desktop Grid environment. The majority
of BOINC clients have been desktop computers, but overall, the hardware var-
ied from dedicated servers to routing devices. The experiments in SiDock@home
involved up to 10, 000 heterogeneous computers simultaneously. It took on aver-
age 1.5 months for virtual screening of 1-billion ligands library (an analogue is
the whole ZINC dataset [9]) against one therapeutical target. With further opti-
mization of the workflow [17], expected processing time of one target is going
to be about 3 weeks. The statistics gathered during the experiments allowed to
design the database and system environment of HiTViSc system.

5 Conclusion

High-performance computing plays a significant role in conducting modern fun-
damental and applied research and development. To date, many problems cannot
be solved without the use of HPC/HTC systems. At the same time, to solve a
specific computationally complex problem, an appropriate tool should be selected
that allows one to find a solution effectively.

Desktop Grid systems have proven themselves well in solving the problem
of virtual screening, providing high performance and scalability. However, the
process of deploying Desktop Grid and maintaining the computing process is
usually technically difficult for scientists (this reason, in particular, affects the
number of existing relevant volunteer computing projects). In this work, we
suggest a solution to this problem: High-Throughput Virtual Screening as a
Service, a cloud-based virtual screening service based on Desktop Grid, built on
the principles of Desktop Grid as a Service.

The presented paper describes High-Throughput Virtual Screening as a Ser-
vice (HiTViSc): we present three logical levels of operation (computational, vir-
tual screening and user level), the user workflows related to virtual screening,
resource administration and visualization and analysis of results, and the princi-
ple of multi-user access. Further work is related to the development of architec-
ture, design and implementation of the High-Throughput Virtual Screening as
a Service. In particular, an important direction of work is development of new
efficient problem-specific task scheduling algorithms for the exploration of ligand
library, analysis of hits and iterative process of virtual screening.

It is important to note that the proposed architecture is not restricted to
virtual screening only. The developed approach is applicable to solving any
computationally-intensive problems that may be implemented on the basis of



HiTViSc: High-Throughput Virtual Screening as a Service 91

HTC and, in particular, Desktop Grids. Specifically, these are the problems
belonging to the class of Bag-of-tasks (BoT) which are present in many appli-
cations of science and technology. A modular, flexible architecture of HiTViSc
allows to adapt it for different computational problems.

Moreover, problem-specific mathematical models and algorithms that will be
implemented on the second logical level of the system (as presented in Subsect.
3.1) are not restricted to for virtual screening either, and can be expanded to
a broad range of problems. For example, the task scheduling algorithm for fast
discovery of diverse results, earlier proposed by the authors [18], can be efficient
for exploring parameter spaces, and has been applied in solving a problem of
parameter identification of a hydride decomposition model [4].

References

1. Blaze Cloud from Cresset. https://www.cresset-group.com/products/blaze/#
blaze-cloud. Accessed 31 Jan 2023

2. Anderson, D.P.: BOINC: a platform for volunteer computing. J. Grid Comput.
18(1), 99–122 (2020)

3. Berman, H.M., et al.: The protein data bank. Nucl. Acids Res. 28(1), 235–242
(2000). https://doi.org/10.1093/nar/28.1.235

4. Chernov, I.: Effective scanning of parameter space in a desktop grid for identifi-
cation of a hydride decomposition model. Program Syst. Theory Appl. 9(4(39)),
53–68 (2018). https://doi.org/10.25209/2079-3316-2018-9-4-53-68

5. Climateprediction.net | the world’s largest climate modelling experiment for the
21st century. https://www.climateprediction.net. Accessed 31 Mar 2023

6. Glaser, J., et al.: High-throughput virtual laboratory for drug discovery using mas-
sive datasets. Int. J. High Perform. Comput. Appl. 35(5), 452–468 (2021)

7. Hawkins, P.: Virtual Screening At Ultra-Large Scale: 1.5 Billion And Counting
- Webinars. https://www.healthtech.com/openeye-scientific-virtual-screening-at-
ultra-large-scale/. Accessed 31 Jan 2023

8. Home | LHC@home. https://lhcathome.web.cern.ch. Accessed 31 Mar 2023
9. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: Zinc: a

free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768
(2012). https://doi.org/10.1021/ci3001277

10. Ivashko, E.: Desktop Grid as a service concept. In: Voevodin, V., Sobolev, S.,
Yakobovskiy, M., Shagaliev, R. (eds.) Supercomputing: 8th Russian Supercomput-
ing Days, RuSCDays 2022. LNCS, vol. 13708, pp. 632–643. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22941-1_46

11. Ivashko, E.E., Nikitina, N.N., Möller, S.: High-performance virtual screening
in a BOINC-based Enterprise Desktop Grid. Vestnik Yuzhno-Ural’skogo Gosu-
darstvennogo Universiteta. Seriya Vychislitelnaya Matematika i Informatika 4(1),
57–63 (2015)

12. Jaghoori, M.M., Bleijlevens, B., Olabarriaga, S.D.: 1001 ways to run AutoDock
Vina for virtual screening. J. Comput. Aided Mol. Des. 30, 237–249 (2016)

13. Krasoulis, A., Antonopoulos, N., Pitsikalis, V., Theodorakis, S.: DENVIS: scalable
and high-throughput virtual screening using graph neural networks with atomic
and surface protein pocket features. J. Chem. Inf. Model. 62(19), 4642–4659 (2022)

14. Liu, T., et al.: Applying high-performance computing in drug discovery and molec-
ular simulation. Natl. Sci. Rev. 3(1), 49–63 (2016)

https://www.cresset-group.com/products/blaze/#blaze-cloud
https://www.cresset-group.com/products/blaze/#blaze-cloud
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.25209/2079-3316-2018-9-4-53-68
https://www.climateprediction.net
https://www.healthtech.com/openeye-scientific-virtual-screening-at-ultra-large-scale/
https://www.healthtech.com/openeye-scientific-virtual-screening-at-ultra-large-scale/
https://lhcathome.web.cern.ch
https://doi.org/10.1021/ci3001277
https://doi.org/10.1007/978-3-031-22941-1_46


92 N. Nikitina and E. Ivashko

15. Mo, Q., Xu, Z., Yan, H., Chen, P., Lu, Y.: VSTH: a user-friendly web server
for structure-based virtual screening on Tianhe-2. Bioinformatics 39(1), btac740
(2023)

16. Murugan, N.A., Podobas, A., Gadioli, D., Vitali, E., Palermo, G., Markidis, S.:
A review on parallel virtual screening softwares for high-performance computers.
Pharmaceuticals 15(1), 63 (2022)

17. Nikitina, N., Ivashko, E.: Optimization of the workflow in a BOINC-based Desktop
Grid for virtual drug screening. In: Voevodin, V., Sobolev, S., Yakobovskiy, M.,
Shagaliev, R. (eds.) Supercomputing, RuSCDays 2022. LNCS, vol. 13708, pp. 686–
698. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22941-1_50

18. Nikitina, N., Ivashko, E., Tchernykh, A.: Congestion game scheduling implementa-
tion for high-throughput virtual drug screening using BOINC-based Desktop Grid.
In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 480–491. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62932-2_46

19. Nikitina, N., Manzyuk, M., Podlipnik, Č, Jukić, M.: Volunteer computing project
SiDock@home for virtual drug screening against SARS-CoV-2. In: Byrski, A.,
Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds.) ANTICOVID 2021.
IAICT, vol. 616, pp. 23–34. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-86582-5_3

20. Olğaç, A., Türe, A., Olğaç, S., Möller, S.: Cloud-based high throughput virtual
screening in novel drug discovery. In: Kołodziej, J., González-Vélez, H. (eds.)
High-Performance Modelling and Simulation for Big Data Applications. LNCS,
vol. 11400, pp. 250–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-16272-6_9

21. Prieto-Martínez, F.D., López-López, E., Juárez-Mercado, K.E., Medina-Franco,
J.L.: Computational drug design methods-current and future perspectives. In: Sil-
ico Drug Design, pp. 19–44 (2019)

22. Rosetta@home. https://boinc.bakerlab.org. Accessed 31 Mar 2023
23. Sabe, V.T., et al.: Current trends in computer aided drug design and a highlight

of drugs discovered via computational techniques: a review. Eur. J. Med. Chem.
224, 113705 (2021)

24. Singh, N., Chaput, L., Villoutreix, B.O.: Virtual screening web servers: designing
chemical probes and drug candidates in the cyberspace. Brief. Bioinform. 22(2),
1790–1818 (2021)

25. Sulimov, A.V., Kutov, D.C., Sulimov, V.B.: Supercomputer docking. Supercomput.
Front. Innov. 6(3), 26–50 (2019)

26. Together We Are Powerful - Folding@home. https://foldingathome.org. Accessed
31 Mar 2023

27. Zhang, B., D’Erasmo, M.P., Murelli, R.P., Gallicchio, E.: Free energy-based virtual
screening and optimization of RNase H inhibitors of HIV-1 reverse transcriptase.
ACS Omega 1(3), 435–447 (2016)

28. Zhang, B., Li, H., Yu, K., Jin, Z.: Molecular docking-based computational platform
for high-throughput virtual screening. CCF Trans. High Perform. Comput. 1–12
(2022)

https://doi.org/10.1007/978-3-031-22941-1_50
https://doi.org/10.1007/978-3-319-62932-2_46
https://doi.org/10.1007/978-3-030-86582-5_3
https://doi.org/10.1007/978-3-030-86582-5_3
https://doi.org/10.1007/978-3-030-16272-6_9
https://doi.org/10.1007/978-3-030-16272-6_9
https://boinc.bakerlab.org
https://foldingathome.org


Expanding the Cellular Automata
Topologies Library for Parallel

Implementation of Synchronous Cellular
Automata

Yuri Medvedev1,2(B) , Sergey Kireev1,2 , and Yulia Trubitsyna2

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

2 Novosibirsk State University, Novosibirsk, Russia
{medvedev,kireev}@ssd.sscc.ru, ulia.trubiciina@gmail.com

Abstract. The paper discusses the implementation of cellular automata
on supercomputers. It outlines the requirements for the software: ease of
program construction and usability, ability to handle a wide range of
transition functions, compatibility with various platforms, and ability
to scale the size of cellular arrays with efficient use of computational
resources. A review of software tools suitable for implementing cellu-
lar automata was conducted. One of these tools, a library of cellular
automata topologies (CATlib), has been extended to implement syn-
chronous cellular automata in parallel on multicomputers. The paper
presents performance evaluation results emphasizing the high efficiency
of the parallel implementation.

Keywords: Cellular automata · Parallel implementation · Software
library · Supercomputer software · Simulation · Domain decomposition

1 Introduction

Cellular automaton (CA) is a mathematical model consisting of cells with dis-
crete states combined into a regular spatial structure with local interactions,
called a cellular array. The configuration of links between the cells is called a
topology. The collective state of the cellular array changes iteratively. The state
of each individual cell changes according to some discrete function called a tran-
sition function. Applying the transition function to the cells in a specific order
and for a specific number of times is called an iteration.

CA was proposed back in the 1940s as a model of self-replicating systems
[1], later they were used to study various physical, biological and chemical pro-
cesses [2]. At the moment, there are many tools that simplify the development
and study of CA models. However, most of them cannot provide the necessary

This work was carried out under the state contract with ICMMG SB RAS 0251-2022-
0005.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 93–105, 2023.
https://doi.org/10.1007/978-3-031-41673-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_8&domain=pdf
http://orcid.org/0000-0001-8134-7249
http://orcid.org/0000-0003-2217-8777
https://doi.org/10.1007/978-3-031-41673-6_8


94 Y. Medvedev et al.

functionality for a thorough study of large-scale processes, do not support large
cellular arrays, and are mostly oriented to visualization instead of high comput-
ing performance. As a result, there is a need for a tool for developing software
implementations of CA that meets the following criteria:

1. Simplicity of constructing CA models and convenience of their use.
2. Extensibility, i.e. supporting different types of CA with various transition

functions.
3. Cross-platform, i.e. the ability of the system to run on different computer

architectures and operating systems.
4. Scalability, i.e., with an increase in the size of the cellular array, the efficiency

of using computing resources should remain acceptable.

In this paper, we will distinguish three functional categories of specialists
involved in modeling: a user, an application programmer and a system pro-
grammer. The user runs a software product and solves the problem of engineer-
ing modeling without modifying any program code. An application programmer
develops a simulation system, creates a program code for this system using soft-
ware tools provided to him by a system programmer, which are designed to
greatly facilitate his work. And finally, the system programmer develops these
software tools for the application programmer. This is a generally accepted
scheme.

Computer-aided engineering (CAE) systems are usually implemented in the
form of three functional modules: a preprocessor, a solver, and a postprocessor.
Using the preprocessor, the user sets the initial and boundary conditions of the
problem, including geometry, parameters of materials and media. The solver
finds a solution to the problem and almost does not interact with the user.
In CA modeling methods, the role of solver is played by a simulator of the
process under study. The postprocessor usually includes a viewer and various
converters to present the simulation result to the user in a comprehensible way. If
an application programmer follows this generally accepted architectural pattern
when developing his CAE system, then a system programmer should provide a
development tool as three sets of system routines: for the preprocessor, for the
simulator and for the postprocessor.

In the context of high-performance computing, the pre- and postprocessor
are of no interest to us, since their use in interactive mode usually does not cause
difficulties. The simulator’s system procedures apply the CA transition function,
implemented by the application programmer in the form of a software compo-
nent, to each cell of the cellular array repeatedly, a given number of iterations.
They also implement the interaction of cells with each other without the partic-
ipation of application software components. So, since the execution of simulator
procedures turns out to be quite heavy due to the large number of repetitions,
especially when processing large cellular arrays, the system programmer faces
the task of repeatedly reducing the execution time of these procedures. Of course,
the natural solution would be their parallel execution.

As mentioned above, CA operate iteratively. The order in which the cells
of the array change their state during one iteration will be referred to as the



Expanding the Cellular Automata Topologies Library 95

mode of operation [3]. In synchronous mode, all cells of the array change their
states simultaneously in accordance with the transition function. A common way
to implement synchronous mode on a serial computer is to use a duplicate of
the cellular array, into which the new cell states will be written during their
traversal. In asynchronous mode, cells change their states at random moments
in time, which is implemented by traversing them in random order.

Section 2 of the paper provides an overview of software tools that can be
used to implement CA modeling systems. It is shown that none of the available
tools satisfies all of the above criteria. The authors are developing the Cellular
Automata Topologies Library (CATlib) [4], which is aimed at high performance
and usability. Until recently, the library supported single-core execution only.
In this paper, another step was taken in the development of the library, sup-
port for distributed memory systems for synchronous CA was implemented.
Section 3 contains a brief description of the library and its programming inter-
face. Section 4 describes the CATlib support for parallel distributed memory
systems. Section 5 presents an example of CA, which is used for validation and
performance evaluation of the library. Section 6 presents performance evaluation
results. Section 7 concludes the paper.

2 Overview

Consider the existing software tools focused on the implementation of CA.
The ALT modeling system (Animating Language Tools) is designed

for experiments with fine-grained parallel algorithms [5]. The system consists
of a combination of text and graphical tools for visualizing fine-grained parallel
computing. The processes are modeled using the parallel substitution algorithm
[6]. To describe the constructions of this algorithm, ALT uses a special high-level
language derived from the C language. The system also has various tools for tex-
tual and graphical editing of models and a number of tools for displaying the
parameters of the computational process during modeling. The main advantages
of using such a modeling system for research is the ability to monitor the calcula-
tion process and the ease of creating and editing various models. However, ALT
does not support large cellular arrays and parallel processing. It was developed
to run under the DOS operating system, and is now outdated and not supported
by developers.

The system of simulation of algorithms with fine-grained paral-
lelism WinALT is a continuation of the ideas of the ALT system [7,8]. The
system has two versions: console and graphical. Modeling is performed using
a special language designed to describe fine-grained parallel computing in the
system, and also allows the use of functions written in C and C++ languages.
WinALT has adopted all the advantages of the ALT system. In addition, it
has the ability to select the operating mode of CA (synchronous, asynchronous,
block-synchronous), create and edit modeling programs, and the maximum sizes
of cellular arrays are slightly increased. The system does not provide for setting
custom CA topologies, and the set of pre-implemented topologies is very scarce.
WinALT was developed for Windows OS and may run on a Windows cluster.
Currently, the system is not supported by developers.



96 Y. Medvedev et al.

Mirek’s Cellebration (mCell) program was created to study existing and
create new models of 1D and 2D CA [9]. The program supports 14 families of
CA. It is possible to build CA with different types of neighborhood: Moore neigh-
borhood, von Neumann neighborhood, Margolus neighborhood, and hexagonal
neighborhood. For each family of CA, there are many built-in transition func-
tions in the program: from well-known and well-studied to those developed by
the author himself. Moreover, the user himself can add transition functions using
external libraries in the “.dll” format. The presence of a graphical interface allows
you to simply and quickly set the states of cells, as well as change these states
during the evolution of the CA. mCell provides an opportunity to study CA with
a cellular array size not exceeding 100000 × 2500 cells. There are also tools for
collecting various statistics. mCell program may run only under Windows OS
and does not support computing on a cluster. At the moment it is not supported
by developers.

The Cafun (Cellular Automata Fun) application [10] is a tool for mod-
eling complex systems, such as social groups, living organisms, natural processes,
etc. The program was created to search for general laws of complex systems in
order to better understand their development, structure and behavior. The prac-
tical result is the ability to give more accurate forecasts in economics, biology,
physics and other areas where complexity plays a role. The concept of complex
systems is based on three principles:

– Complex systems consist of many elements with individual properties and
behavior.

– The properties of elements are the result of their local environment and indi-
vidual history. Their behavior is determined by a limited and locally available
amount of information without any centralization.

– The interaction between the elements occurs simultaneously. There is no pre-
established sequence in which they occur.

The program uses the original notation of the concept of CA and an object-
oriented approach to describing the laws of the CA. Its operation requires the
Java Runtime Environment. The program is not intended to be used in dis-
tributed computing systems and currently is not supported by developers.

The Golly application is designed to study the behavior of various 1D, 2D
and 3D CA [11]. Despite the fact that the developers position the application as
an implementation of the Conway’s Game of Life [12], Golly is a pretty powerful
tool for building other models. In the application, it is possible to implement
various classes of CA both using built-in software modules and using Python and
Lua scripts. The application allows you to set different cellular array topologies.
Efficient use of memory ensures work on cellular spaces of almost unlimited size,
provided that most cells will still be empty, because only those cells that are
not empty at the moment are processed. Golly can run on operating systems
such as iOS, Android, Windows, Mac and Linux. As of August 2022, the system
was supported by developers. The application does not allow calculations to be
performed on the cluster.



Expanding the Cellular Automata Topologies Library 97

The Tiled CA program was developed for the purpose of modeling by
means of 1D and 2D CA [13]. The program allows you to split the modeling area
in various ways, thus setting the neighborhood of each cell, but does not allow
you to set a user-defined topology. The construction of CA models is carried
out using a graphical editor, which allows you to quickly and easily edit the
shape and states of cells. The program has few possibilities for constructing new
transition functions, since Tiled CA supports only the variations of the Game of
Life [12]. The program allows the user to set the size of the field, but they cannot
exceed a certain fixed value. Tools for expanding the possibilities of building CA
are not provided. Tiled CF only works on Windows, and it cannot be run on a
cluster. Currently, the program is not supported by developers.

Wolfram Mathematica software has built-in libraries for a number of
areas of technical computing, including for creating CA with some transition
functions pre-defined in the system [14,15]. The software allows to implement
1D, 2D and 3D CA and supports a large number of transition functions for
them. To implement a CA, it is required to choose one of the proposed transition
functions, but at the same time Wolfram Mathematica provides opportunities for
its modification. Wolfram Mathematica works under Windows, Linux, macOS,
Android operating systems, and also has a web version. Upon completion, the
program displays the final cellular array, but does not allow you to monitor its
evolution.

The CelLab web application is designed to study various processes using
2D CA [16]. The application provides an opportunity to create CA by writing
programs in Java and JavaScript, as well as to display the process of their evo-
lution. The program allows you to set the transition function, the colors of cells
depending on their state, control the display process and modify the transition
function. The developers also provide a CelLab Development Kit archive, a wide
range of ready-to-run transition functions that simulate various physical, chemi-
cal and biological processes. However, there is no way to run this application on
a cluster and collect statistics.

The MATLAB application software package provides a wide range of
possibilities for working with matrices. It also allows you to perform graphical
multidimensional modeling of various systems. And although it is not a special-
ized tool for the implementation of CA, we mention it here, because attempts
have been made to use it for the study of CA models [17,18]. The topology of
the cellular array must be set by the user himself. The complexities of program-
ming nontrivial topologies are fully present. In addition, the performance of the
resulting code is much worse than that of implementations made manually in
common programming languages.

As can be seen, the considered software tools do not solve the problem of
high-performance implementation of large-scale CA. On the other hand, there are
software tools for developing parallel programs that make it possible to develop
large-scale CA models and use parallel computing systems for computations.
Most of them require low-level system programming, which contradicts the first
criterion. The easiest to use are shared-memory or PGAS-like tools, for example,



98 Y. Medvedev et al.

Coarray Fortran [19], DVM [20], UPC [21]. In addition, there are a number of
tools that use special high-level programming models and relieve the user from
the problems of system parallel programming [22,23]. A common disadvantage
of all these parallel programming systems is that they do not take into account
the specifics of CA algorithms and require writing additional code common to
many implementations of CA. This is especially evident when implementing CA
modes of operation other than synchronous.

3 The Cellular Automata Topologies Library

The Cellular Automata Topologies Library (CATlib) [4] is a set of system
routines written in the C language that can be used by an application program-
mer to implement a modeling system (CAE) embodying the desired CA as a
solver. Following the generally accepted architectural pattern described in the
Introduction, the CATlib contains three subsets of system procedures: for imple-
menting a preprocessor, for implementing a simulator, and for implementing a
postprocessor.

The preprocessor converts the initial conditions in a physical formulation
into cell states, and also initializes the service structure containing the dimen-
sions of the cellular array and its topology, the size of memory required to store
the cell state, the operating mode of the CA, etc. The following system proce-
dures are available to the application programmer to implement the preprocessor.

CAT_InitPreprocessor – takes information about topology, model type, size
of additional information, cell size in bytes, number of cells per meter and cellular
array sizes; initializes the preprocessor environment in computer memory.

CAT_PutCell – takes the new state of the cell and its indexes in the cell
array; writes the received state to the memory location corresponding to this
cell.

CAT_FinalizePreprocessor – takes the name of the output file; saves the
parameters of the CA set by the user and the state of the cellular array initialized
by the user to a file in a special format defined by the library, frees the allocated
memory.

The simulator iteratively applies the transition function of the CA to all
cells of the array, taking into account a given operating mode, while ensuring
the interaction of neighboring cells with each other in accordance with a given
topology. The following system procedures are available to the application pro-
grammer to implement the simulator.

CAT_InitSimulator – takes the name of the input file containing the param-
eters of the CA and the state of the cellular array; initializes the control structure
and the cellular array with data read from this file.

CAT_Iterate – takes a pointer to the procedure in which the application
programmer implemented the transition function of the CA; applies the obtained
function to the cells of the array, taking into account the operating mode that
was set at initialization, performing one iteration of the CA.



Expanding the Cellular Automata Topologies Library 99

CAT_FileSave – takes the name of the output file, saves the current state of
the cellular array to the file.

CAT_FinalizeSimulator – takes the name of the output file; saves the result-
ing state of the cellular array, frees the allocated memory.

The postprocessor converts the states of the cells obtained as a result of
the operation of the CA into a format that can be read and used by the user for
further research. The following system procedures are available to the application
programmer to implement the postprocessor.

CAT_InitPostprocessor – takes the name of the input file containing the
parameters of the CA and the state of the cellular array; initializes the control
structure and the cellular array with data read from this file.

CAT_GetCell – accepts cell indexes in the cellular array; returns its state.
CAT_FinalizePostprocessor – saves simulation results in formats under-

standable to the user, frees up allocated memory.
The implementation of the simulator for the Game of Life CA using

the CATlib is shown in Listing 1.1.

Listing 1.1. Implementation of the simulator for the Game of Life CA

1 #inc lude <s td i o . h>
2 #inc lude " c a t l i b . h"
3
4 const int neighborsNumber = 8 ;
5 const int i terat ionsNumber = 100 ;
6
7 void gameOfLife (void ∗n){
8 int ∗ c e l l = n ;
9 int sum = 0 ;

10 for ( int i = 0 ; i <= neighborsNumber ; i++)
11 sum += c e l l [ i ] ;
12 c e l l [ 0 ] = ( c e l l [ 0 ] | sum) == 3 ;
13 }
14
15 void main ( int argc , char ∗argv [ ] ) {
16 CAT_InitSimulator ( " inputFileName" , CAT_SYNC) ;
17 for ( int i = 0 ; i < iterat ionsNumber ; i++)
18 CAT_Iterate ( gameOfLife ) ;
19 CAT_FinalizeSimulator ( "outputFileName" ) ;
20 }

As can be seen from the Listing 1.1, to create a fully functional simula-
tor, it is enough for an application programmer to implement only the tran-
sition function of his/her CA, in this case gameOfLife(). The library pro-
cedure CAT_InitSimulator() takes care of memory allocation for the cellu-
lar array and loads the cellular array and all necessary data from the file
“inputFileName”, including the selected topology, prepared by the preprocessor.
The CAT_Iterate() procedure searches for the values of neighboring cells and



100 Y. Medvedev et al.

applies the gameOfLife() transition function to each cell in synchronous mode.
This procedure extracts the states of the current cell and its neighbors from the
cell array and passes them to the transition function as a one-dimensional array
void *n, and then returns the resulting state to the main array, hiding from
the application programmer all the interactions of cells with each other. The
CAT_FinalizeSimulator() procedure saves the result of the simulator in the
form of a new cell array to the “outputFileName” file. This file has the same
format as “inputFileName” and can be used both for postprocessing and for
continuing the simulation by restarting the simulator.

The CATlib development plan is shown in Table 1.

Table 1. The CATlib development plan

Mode of
operation

Computer architecture

Single-
core
CPU

Shared
memory
parallel

Distributed
memory
parallel

GPU

Synchronous done done the present paper planned
Asynchronous done in development in development planned

The library provides the application programmer with the means to imple-
ment synchronous and asynchronous CA for different computer architectures.
It is available online1. Table 1 shows the development status for various library
components. The purpose of this work is to develop support for synchronous CA
on distributed computing systems.

4 Parallel Implementation

The algorithms and system procedures of the CATlib presented in this paper
are designed to create parallel software implementations of synchronous cellu-
lar automata for distributed memory systems. They support the development
of the simulator as a module of applied CAE systems. The preprocessor and
postprocessor do not need parallel implementation as much as the simulator.

The 1D decomposition of the cellular array was chosen as the method of
parallelization, since the difference in efficiency compared to the two-dimensional
decomposition is small due to the high degree of inherent parallelism of CA [24].
Parallelization was performed using the MPI software interface. When running
in parallel, the library automatically performs the following actions.

1 https://gitlab.ssd.sscc.ru/medvedev/catlib

https://gitlab.ssd.sscc.ru/medvedev/catlib


Expanding the Cellular Automata Topologies Library 101

1. At the simulator initialization:
(a) the master process reads the cellular array from the file in approximately

equal parts according to the number of processes;
(b) distribution of these parts among processes;
(c) broadcasting the common task parameters read from the file to all pro-

cesses.
2. During the execution of each iteration:

(a) boundary exchange - each process transfers the updated states of bound-
ary cells to neighboring processes;

(b) application of the transition function to each cell of their own part of the
cellular array.

3. On selected iterations and at the simulator finalization:
(a) the master process collects parts of the resulting cellular array from all

processes;
(b) saving the assembled cellular array to a file;
(c) saving common task parameters to a file.

From the application programmer’s point of view, nothing changes when soft-
ware components that support parallelism are added to the library. All program
interfaces with the library remain unchanged. The only new requirement is that
the MPI library is installed on the system.

5 Domino Cellular Automaton

We decided to test a new parallel version of the CATlib on a 2D CA forming
a domino pattern (Domino CA in the following) taken from the literature [25–
27]. We found this CA suitable for our purposes because its transition function
has moderate complexity and its neighborhood is extended to a distance of
two. Domino CA is an asynchronous 2D CA with a cellular array forming a
square lattice with periodic boundaries. The cell’s state is ∈ {“0”, “1”, “#”}. The
neighborhood of a cell includes 24 cells forming a 5× 5 square with a considered
cell in the center. The transition rule is applied to a cell and, depending on
its state and the states of its neighbors, can change its state. Cells with the
state “#” are considered as “0” cells when checked, but they do not change their
state during evolution. The purpose of the CA is to cover the cellular array with
domino tiles of size 3× 4 and 4× 3, which are adjacent pairs of “1” cells (kernel)
surrounded by “0” or “#” cells (hull). Hulls of different domino tiles are allowed
to intersect, but kernels are not. An example of covering an area of size 10× 10,
surrounded by cells “#”, is shown in Fig. 1.

The rule we have chosen to implement (combination of Basic rule and Rule
option 2 in [26]) tries to maximize the number of domino tiles in the cellular
array. It applies a predefined set of 5 × 5 templates to the neighborhood of the
selected cell and counts the number of hits (h). Then, a new state is calculated
depending on the value of h according to the formula (1).



102 Y. Medvedev et al.

statenew =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

random ∈ {0, 1}, if h = 0, applied with probability π0,
random ∈ {0, 1}, if h = 1, applied with probability π1,

0, if h = 2 or h = 3 or h = 4,
1, if h = 100,

stateold, otherwise.

(1)

Fig. 1. Example of domino tiles covering an area of size 10 × 10 as a result of the
Domino CA operation: iteration 0 (a), iteration 372 (b), iteration 1715 (c)

Each template contains the correct domino tile attached by one of its cells to
the center of the template (horizontal and vertical tiles with 12 cells each give 24
templates). When applying a template to a cell and its neighborhood, only the
non-central cells of the template that are part of the tile are checked. If all the
states of the template cells being checked match the states of the corresponding
neighboring cells, then the template is considered as matched and the counter h
is incremented. The special case is when the template with “1” in the center is
matched, in which the counter h is set to 100.

Parameters π0 and π1 (see formula 1) define the degree of random noise
in case the value of h is small. We have found that the best values of these
parameters, giving on average the fastest convergence to the maximum number
of domino tiles, are π0 ∈ [0.4; 1.0], π1 ≈ 0.005 [28].

The CATlib allows one to create a parallel implementation of synchronous
CA only. Therefore, to test the parallel version of the library, the mode of Domino
CA operation was changed to synchronous. This transition is justified, because in
synchronous mode, Domino CA can achieve maximum coverage of the cellular
array with domino tiles in a number of iterations comparable to when asyn-
chronous Domino CA is used [28]. The optimal values of the parameters π0 and
π1 are the same in both modes. The noticed difference is that for synchronous
Domino CA, the range of acceptable values of the π1 parameter is narrower than
for asynchronous Domino CA.



Expanding the Cellular Automata Topologies Library 103

6 Performance Evaluation

To verify that the library allows for implementing complex cellular automata,
and to evaluate the parallelization efficiency achieved with the library, we imple-
mented the synchronous Domino CA described in the previous section. The
following parameters were used: the size of the cellular array 10000 × 100 cells,
the number of iterations is 1000. Tests were performed on the MVS-10P cluster
of JSCC RAS [29]. The results are shown in Fig. 2.

Fig. 2. Execution time (a) and parallelization efficiency (b) of synchronous Domino
CA obtained with the CATlib

Figure 2a shows that the execution time in the case of one process was 483 s,
and in the case of 256 processes it was 3 s. The efficiency of parallel implementa-
tion (Fig. 2b) was more than 65%, except for the last case of 464 processes, when
we occupied the entire cluster. When using a single cluster node (16 cores), the
parallelization efficiency is more than 85%.

The maximum CA size that we managed to run on the cluster was 60000 ×
60000. Larger cellular arrays did not fit into the cluster’s memory. The time it
took to reach 95% of maximal domino coverage was about 15 h on 256 processes.

7 Conclusion

Appropriate software tools are required to develop large scale CA models. The
criteria to be met by such tools are formulated. The review found that none of
the considered software met all of these criteria. The paper presents the Cellular
Automata Topologies Library, designed to satisfy all the criteria upon comple-
tion of development. The next step of its development is presented, which is
the support of distributed computing systems for the implementation of syn-
chronous CA. The new version of the library was tested on the synchronous



104 Y. Medvedev et al.

version of Domino CA. Parallelization efficiency of more than 65% was achieved.
The maximum size of the cellular array that we managed to process in a reason-
able time was 3.6 gigacells.

Further research is planned to improve the computational performance of
the parallel component of the library; in particular, it is planned to introduce
a dynamic balancing algorithm similar to the one described in [30], which will
improve the efficiency of the parallel implementation for some classes of cellular
automata, such as lattice gas [24].

References

1. Von Neumann, J.: General and logical Theory of Automata, Hixon Symposium,
reprinted in Taub, A.H. (ed.) Collected Works, vol. 288–328 (1948/1961)

2. Vanag, V.K.: Study of spatially extended dynamical systems using probabilistic
cellular automata. Phys. Usp. 42(5), 413–434 (1999). https://doi.org/10.1070/
PU1999v042n05ABEH000558

3. Bandman O.: Implementation of large-scale cellular automata models on multi-
core computers and clusters. In: International Conference on High Performance
Computing & Simulation (HPCS), Helsinki, Finland, pp. 304–310 (2013). https://
doi.org/10.1109/HPCSim.2013.6641431

4. Medvedev, Yu.G.: Architecture of the cellular automata topologies library. Bull.
Nov. Comput. Center Comput. Sci. (46) (2022)

5. Pogudin, Y., Bandman, O.: Simulating cellular computations with ALT. A tuto-
rial. In: Malyshkin, V. (ed.) PaCT 1997. LNCS, vol. 1277, pp. 424–435. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63371-5_52

6. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Algo-
rithm. Theory and Application. World Scientific Publ. (1994). https://doi.org/10.
1142/2369. 232 p

7. Piskunov, S.: WinALT - a simulation system for computations with spatial paral-
lelism. Bull. Nov. Comput. Center Comput. Sci. (6), 71–85 (1997)

8. Beletkov, D., Ostapkevich, M., Piskunov, S., Zhileev, I.: WinALT, a software tool
for fine-grain algorithms and structures synthesis and simulation. In: Malyshkin,
V. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 491–496. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48387-X_57

9. Mirek’s Cellebration, 1-D and 2-D Cellular Automata viewer, explorer and editor.
http://www.mirekw.com/ca/index.html. Accessed 1 May 2023

10. Homeyer, A.: A Brief Introduction To Cafun. https://cafun.de/information/a_
brief_introduction_to_cafun/index.html. Accessed 1 May 2023

11. Golly Game of Life Home Page. https://golly.sourceforge.io. Accessed 1 May 2023
12. Gardner, M.: Mathematical Games - The fantastic combinations of John Conway’s

new solitaire game “life”. Sci. Am. 223(4), 120–123 (1970). https://doi.org/10.
1038/scientificamerican1070-120

13. Tiled, C.A.: http://linuxenvy.com/bprentice/TiledCA/TiledCA.html. Accessed 1
May 2023

14. CellularAutomaton - Wolfram Language Documentation. https://reference.
wolfram.com/language/ref/CellularAutomaton.html. Accessed 1 May 2023

15. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424
(1984). https://doi.org/10.1038/311419a0

https://doi.org/10.1070/PU1999v042n05ABEH000558
https://doi.org/10.1070/PU1999v042n05ABEH000558
https://doi.org/10.1109/HPCSim.2013.6641431
https://doi.org/10.1109/HPCSim.2013.6641431
https://doi.org/10.1007/3-540-63371-5_52
https://doi.org/10.1142/2369
https://doi.org/10.1142/2369
https://doi.org/10.1007/3-540-48387-X_57
http://www.mirekw.com/ca/index.html
https://cafun.de/information/a_brief_introduction_to_cafun/index.html
https://cafun.de/information/a_brief_introduction_to_cafun/index.html
https://golly.sourceforge.io
https://doi.org/10.1038/scientificamerican1070-120
https://doi.org/10.1038/scientificamerican1070-120
http://linuxenvy.com/bprentice/TiledCA/TiledCA.html
https://reference.wolfram.com/language/ref/CellularAutomaton.html
https://reference.wolfram.com/language/ref/CellularAutomaton.html
https://doi.org/10.1038/311419a0


Expanding the Cellular Automata Topologies Library 105

16. Cellular Automata Laboratory. https://www.fourmilab.ch/cellab/manual.
Accessed 1 May 2023

17. Athanassopoulos, S., Kaklamanis, C., Kalfoutzos, G., Papaioannou, E.: Cellular
automata: simulations using Matlab. In: Proceedings of the Sixth International
Conference on Digital Society (ICDS), pp. 63–68 (2012)

18. Duarte Duarte, J.B., Talero Sarmiento, L.H., Sierra Juárez, K.J.: Evaluation of
the effect of investor psychology on an artificial stock market through its degree of
efficiency. Contaduríay Administración 62(4), 1361–1376 (2017). https://doi.org/
10.1016/j.cya.2017.06.014

19. Chivers, I., Sleightholme, J.: Coarray Fortran. In: Introduction to Programming
with Fortran, pp. 501–512. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-17701-4_32

20. Bakhtin, V.A., Krukov, V.A.: DVM-approach to the automation of the devel-
opment of parallel programs for clusters. Program. Comput. Softw. 45, 121–132
(2019). https://doi.org/10.1134/S0361768819030034

21. Carlson, W., Draper, J., Culler, D., et al.: Introduction to UPC and Language
Specification. CCS-TR-99-157, IDA Center for Computing Sciences (1999)

22. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a high-
productivity programming language for HPC with logical regions. In: SC 2015:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Austin, TX, USA, pp. 1–12 (2015). https://
doi.org/10.1145/2807591.2807629

23. Akhmed-Zaki, D., Lebedev, D., Malyshkin, V., Perepelkin, V.: Automated
construction of high performance distributed programs in LuNA system. In:
Malyshkin, V. (ed.) PaCT 2019. LNCS, vol. 11657, pp. 3–9. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25636-4_1

24. Medvedev, Yu.G.: Lattice gas cellular automata for a flow simulation and their
parallel implementation. In: Tarkov, M.S. (ed.) Parallel Programming: Practical
Aspects, Models and Current Limitations. Series: Mathematics Research Develop-
ments, pp. 143–158. Nova Science Publishers, Inc., Hauppauge, New York (2014)

25. Hoffmann, R., Désérable, D., Seredyński, F.: A probabilistic cellular automata
rule forming domino patterns. In: Malyshkin, V. (ed.) PaCT 2019. LNCS, vol.
11657, pp. 334–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25636-4_26

26. Hoffmann, R., Désérable, D., Seredyński, F.: A cellular automata rule placing a
maximal number of dominoes in the square and diamond. J. Supercomput. 77,
9069–9087 (2021). https://doi.org/10.1007/s11227-020-03549-8

27. Hoffmann, R., Désérable, D., Seredyński, F.: Minimal covering of the space
by domino tiles. In: Malyshkin, V. (ed.) PaCT 2021. LNCS, vol. 12942, pp. 453–
465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86359-3_35

28. Kireev, S., Trubitsyna, Yu.: Software implementation of asynchronous and syn-
chronous cellular automata with maximum domino tiles coverage. Bull. Nov. Com-
put. Center Comput. Sci. (46) (2022)

29. Savin, G.I., Shabanov, B.M., Telegin, P.N., et al.: Joint supercomputer center of
the Russian Academy of Sciences: present and future. Lobachevskii J. Math. 40,
1853–1862 (2019). https://doi.org/10.1134/S1995080219110271

30. Medvedev, Y.: Dynamic load balancing for lattice gas simulations on a cluster. In:
Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 175–181. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-23178-0_15

https://www.fourmilab.ch/cellab/manual
https://doi.org/10.1016/j.cya.2017.06.014
https://doi.org/10.1016/j.cya.2017.06.014
https://doi.org/10.1007/978-3-319-17701-4_32
https://doi.org/10.1007/978-3-319-17701-4_32
https://doi.org/10.1134/S0361768819030034
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1007/978-3-030-25636-4_1
https://doi.org/10.1007/978-3-030-25636-4_26
https://doi.org/10.1007/978-3-030-25636-4_26
https://doi.org/10.1007/s11227-020-03549-8
https://doi.org/10.1007/978-3-030-86359-3_35
https://doi.org/10.1134/S1995080219110271
https://doi.org/10.1007/978-3-642-23178-0_15


Algorithms



Parallel-Batched Interpolation Search Tree

Vitaly Aksenov1, Ilya Kokorin1,2(B), and Alena Martsenyuk1,2

1 ITMO University, Saint Petersburg, Russia
2 vk.com, Saint Petersburg, Russia

kokorin.ilya.1998@gmail.com

Abstract. A sorted set (or map) is one of the most used data types in
computer science. In addition to standard set operations, like Insert,
Remove, and Contains, it can provide set-set operations such as Union,
Intersection, and Difference. Each of these set-set operations is equiv-
alent to some batched operation: the data structure should be able to
execute Insert, Remove, and Contains on a batch of keys. It is obvious
that we want these “large” operations to be parallelized. These sets are
usually implemented with the trees of logarithmic height, such as 2–3
trees, treaps, AVL trees, red-black trees, etc. Until now, little attention
was devoted to parallelizing data structures that work asymptotically
better under several restrictions on the stored data. In this work, we
parallelize Interpolation Search Tree which is expected to serve requests
from a smooth distribution in doubly-logarithmic time. Our data struc-
ture of size n performs a batch of m operations in O(m log log n) work
and poly-log span.

Keywords: Parallel Programming · Data Structures ·
Parallel-Batched Data Structures

1 Introduction

A Sorted set is one of the most ubiquitous Abstract Data Types in Computer
Science, supporting Insert, Remove, and Contains operations among many oth-
ers. The sorted set can be implemented using different data structures: to name
a few, skip-lists [21], red-black trees [11], splay trees [22], or B-trees [9,10].

Since nowadays most of the processors have multiple cores, we are interested
in parallelizing these data structures. There are two ways to do that: write
a concurrent version of a data structure or allow one to execute a batch of
operations in parallel. The first approach is typically very hard to implement
correctly and efficiently due to problems with synchronization. Thus, in this
work we are interested in the second approach: parallel-batched data structures.

Several parallel-batched data structures implementing a sorted set are pre-
sented: for example, 2–3 trees [18], red-black trees [17], treaps [6], (a, b) trees [2],
AVL-trees [15], and generic joinable binary search trees [5,23].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 109–125, 2023.
https://doi.org/10.1007/978-3-031-41673-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-41673-6_9


110 V. Aksenov et al.

Although many parallel-batched trees were presented, we definitely lack
implementations that can execute separate queries in o(log n) time under some
assumptions. However, there exist at least one sequential data structures with
this property — Interpolation Search Tree, or IST.

Despite the fact that concurrent IST is already presented [8,20] we still lack
its parallel-batched version: it differs much from the concurrent version since it
allows many processes to execute scalar requests simultaneously, while we use
the multiprocessing to parallelize large non-scalar requests.

The work is structured as follows: in Sect. 2 we describe the important prelim-
inaries; in Sect. 3 we present the original Interpolation Search Tree; in Sects. 4, 5,
and 6 we present the parallel-batched contains, insert and remove algorithms; in
Sect. 7 we present a parallelizable method to keep the IST balanced; in Sect. 8
we present a theoretical analysis; in Sect. 9 we discuss the implementation and
present experimental results; we conclude in Sect. 10. The full version of the
paper appears at [3].

2 Preliminaries

2.1 Parallel-Batched Data Structures

Definition 1. Consider a data structure D storing a set of keys and an opera-
tion Op. If Op involves only one key (e.g., it checks whether a single key exists
in the set, or inserts a single key into the set) it is called a scalar operation.
Otherwise, i.e., if Op involves multiple keys, it is called a batched operation.

A data structure D that supports at least one batched operation is called a
batched data structure.

We want the following batched operations from a sorted set:

– Set.ContainsBatched(keys[]) — the operation takes an array of keys of
size m and returns an array Result of size m. For each i, Result[i] is true
if keys[i] exist in the set, and false otherwise.

– Set.InsertBatched(keys[]) — the operation takes an array of keys of size
m. If keys[i] does not exist in the set, the operation adds it to the set.

– Set.RemoveBatched(keys[]) — the operation takes an array of keys of size
m. If keys[i] exists in the set, the operation removes it from the set.

Note, that: 1) InsertBatched calculates the union of two sets;
2) RemoveBatched calculates the difference of two sets; and 3) ContainsBatched
calculates the intersection of two sets.

We can employ parallel programming techniques (e.g., fork-join paral-
lelism [7,14]) to execute batched operations faster.

Definition 2. A batched data structure D that uses parallel programming to
speed up batched operation execution is called a parallel-batched data structure.



Parallel-Batched Interpolation Search Tree 111

2.2 Time Complexity Model

In our work, we assume the standard work-span complexity model [1] for fork-
join computations. We model each computation as a directed acyclic graph,
where nodes represent operations and edges represent dependencies between
them. This graph has exactly one source node (i.e., the start of the execution
with zero incoming edges) and exactly one sink node (i.e., the end of the execu-
tion with zero outcoming edges). Some operations have two outcoming edges —
they spawn two parallel tasks and are called fork operations. Some operations
have two incoming edges — they wait for two corresponding parallel tasks to
complete and are called join operations.

Considering the execution graph of the algorithm, our target complexities
are: 1) work denotes the number of nodes in the graph, i.e., the total number of
operations executed; 2) span denotes the number of nodes on the longest path
from source to sink, i.e., the length of the critical path in the graph.

2.3 Standard Parallel Primitives

In this work, we use several standard parallel primitives. Now, we give their
descriptions. Their implementations are provided, for example, in [12].

Parallel loop. It executes a loop body for n index values (from 0 to n-1,
inclusive) in parallel. This operation costs O(n) work and O(log n) span given
that the body has time complexity O(1).

Scan. Result := Scan(Arr) calculates exclusive prefix sums of array Arr
such that Result[i] =

∑i−1
j=0 Arr[j]. Scan has O(n) work and O(log n) span.

Filter. Filter(Arr, predicate) returns an array, consisting of elements of
the given array Arr satisfying predicate keeping the order. Filter has O(n)
work and O(log n) span given that predicate has time complexity O(1).

Merge. Merge(A, B) merges two sorted arrays A and B keeping the result
sorted. It has O(|A| + |B|) work and O(log2(|A| + |B|)) span.

Difference. Difference(A, B) takes two sorted arrays A and B and returns
all elements from A that are not present in B, in sorted order. It takes O(|A|+|B|)
work and O(log2(|A| + |B|)) span.

Rank. Given that A is a sorted array and x is a value, we denote
ElemRank(A, x) = |{e ∈ A|e ≤ x}| as the number of elements in A that are
less than or equal to x. Given that A and B are sorted arrays, we denote Rank(A,
B) = [r0, r1, . . ., r|B|−1], where ri = ElemRank(A, B[i]). Rank operation can
be computed in O(|A| + |B|) work and O(log2(|A| + |B|)) span.

3 Interpolation Search Tree

3.1 Interpolation Search Tree Definition

Interpolation Search Tree (IST) is a multiway internal search tree proposed
in [16]. IST for a set of keys x0 < x1 < . . . < xn−1 can be either leaf or non-leaf.



112 V. Aksenov et al.

Definition 3. Leaf IST with a set of keys x0 < x1 < . . . < xn−1 consists of
array Rep with Rep[i] = xi, i.e., it keeps all the keys in this sorted array.

Definition 4. Non-leaf IST with a set of keys x0 < x1 < . . . < xn−1 consists of
two parts (Fig. 1 and 2):

– An array Rep storing an ordered subset of keys xi0 , xi1 , . . . xik−1 .
– Child ISTs C0, C1 . . . Ck: 1) C0 is an IST storing a subset of keys

x0, x1 . . . xi0−1; 2) for 1 ≤ j ≤ k − 1, Cj is an IST storing a subset
of keys xij−1+1, . . . xij−1; and 3) Ck is an IST storing a subset of keys
xik−1+1, . . . xn−1;

Fig. 1. Example of a non-leaf IST. Rep[0] = x3, Rep[1] = x6, Rep[2] = x10. C0 stores
keys x0 . . . x2, C2 stores keys x4 . . . x5, C3 stores keys x7 . . . x9, C4 stores keys x11 . . . x12.

Any non-leaf IST has the following properties: 1) all keys less than Rep[0]
are located in C0; 2) all keys in between Rep[j −1] and Rep[j] are located in Cj ,
and, finally, 3) all keys greater than Rep[k − 1] are located in Ck.

3.2 Interpolation Search and the Lightweight Index

Fig. 2. Example of an IST built on array in Fig. 1.

We can optimize oper-
ations on ISTs with
numeric keys, by lever-
aging the interpolation
search technique [16,19,
24]. Each node of an IST
has an index that can
point to some place in
the Rep array close to the
position of the key being
searched. This approach
is named interpolation
search. The structure of
a non-leaf IST with an
index is shown in Fig. 3.



Parallel-Batched Interpolation Search Tree 113

Fig. 3. Non-leaf IST contains: (1) Rep array; (2) an array
of pointers to child ISTs C; (3) an index, allowing for fast
lookups of keys in the Rep array.

In the original IST,
the index uses an
array ID of size m ∈
Θ(nε) with some ε ∈
[ 12 ; 1). ID[i] = j iff
Rep[j] < a + i · b−a

m ≤
Rep[j + 1] where a
and b are the lower
and upper bounds on
the values. In [16],
ID[�x−a

b−a · m�] is the
approximate position
of x in Rep.

After finding the approximate location of x in Rep, we can find its exact
location by using the linear search, as described in [16]. Let us denote i :=
ID[�x−a

b−a · m�]. If i points to the right place — we stop. Otherwise, we go in the
proper direction: to the right of i (Fig. 4a) or to the left of i (Fig. 4b).

Note, we can use more complex techniques instead of the linear search, e.g.,
exponential search [4]. However, they are often unnecessary, since the index
usually provides an approximation good enough to finish the search only in a
couple of operations. Also, we can use other index structures, e.g., a machine
learning model [13].

3.3 Search in IST

Suppose we want to find a key in IST. The search algorithm is iterative: on each
iteration we look for the key in a subtree of a node v. To look for the key in the
whole IST we begin the algorithm by setting v := IST.Root.

To find key in v, we do the following (k is the length of v.Rep):

1. If v is empty, we conclude that key is not there;
2. If key is found in v.Rep array, then, we found the key;
3. If key < v.Rep[0], the key can be found only in v.C[0] subtree. Thus, we

set v ← v.C[0] and continue the search;
4. If key > v.Rep[k - 1], the key can be found only in v.C[k] subtree. Thus,

we set v ← v.C[k] and continue the search;
5. Otherwise, we find j such that v.Rep[j - 1] < key < v.Rep[j]. In this

case key can be found only in v.C[j]. Thus, we set v ← v.C[j] and continue
our search in the j-th child.



114 V. Aksenov et al.

(a) Searching for the key on the right
to the approximate position.

(b) Searching for the key on the left to
the approximate position.

Fig. 4. Determining the exact location of the key given the approximate location

3.4 Executing Update Operations and Maintaining Balance

The algorithm for inserting a key into IST is very similar to the search algorithm
above. To execute Insert(key) we do the following (Fig. 5):

1. Initialize v := IST.Root;
2. For the current node v, if key appears in v.Rep array, we finish the opera-

tion — the key already exists.
3. If v is a leaf and key does not exists in v.Rep, insert key into v.Rep keeping

it sorted;
4. If v is an inner node and key does not exists in v.Rep, determine in which

child the insertion should continue, set v ← v.C[next_child_idx] and go to
step (2).

Fig. 5. Insert 15: proceed from the root to the second
child and then to the first child.

To remove a key from
IST we introduce Exists
array in each node that
shows whether the corre-
sponding key in Rep is in
the set or not. Thus, we
just need to mark an ele-
ment as removed without
physically deleting it. We
have to take into account
such marked keys during
the contains and inserts.
The removal algorithm is
discussed in more detail
in [16].



Parallel-Batched Interpolation Search Tree 115

The problem with these update algorithms is that all the new keys may
be inserted to a single leaf, making the IST unbalanced. In order to keep the
execution time low, we should keep the tree balanced.

Definition 5. Suppose H is some small integer constant, e.g., 10. An IST T,
storing keys x0 < x1 < . . . < xn−1, is said to be ideally balanced if either: 1) T
is a leaf IST and n ≤ H; 2) T is a non-leaf IST, n > H, and elements in Rep
are equally spaced, Rep[i] = x(i+1)·�n

k �, and all child ISTs {Ci}k
i=0 are ideally

balanced.

For non-leaf IST, we aim to have the size of Rep as k = �√n�. Consider
an ideally balanced IST storing n keys (Fig. 6). As we require, the root of IST
contains Θ(n

1
2 ) keys in its Rep array; any node on the second level has Rep array

of size Θ(n
1
4 ); generally, any node on the i-th level has Rep array of size Θ(n

1
2i ).

Thus, an ideally balanced IST with n keys has a height of O(log log n).

Fig. 6. Height of an ideal IST

In order to keep IST
balanced we maintain
the number of modifi-
cations (both insertions
and removals) applied to
each subtree T. When
the number of modifica-
tions to T exceeds the
initial size of T multi-
plied by some constant C,
we rebuild T from scratch
making it ideally bal-
anced. This rebuilding
approach has a proper
amortized bounds and is
adopted from papers about IST [8,16,20].

3.5 Time and Space Complexity

Mehlhorn and Tsakalidis [16] define of a smooth probability distribution. For
example, the uniform distribution is smooth. Suppose we are given μ that
is smooth. From [16] we know that: 1) IST with n keys takes O(n) space;
2) the expected amortized cost of μ-random insertion and random removal is
O(log log n); 3) the amortized insertion and removal cost is O(log n); 4) the
expected search time on sets, generated by μ-random insertions and random
removal, is O(log log n); 5) the worst-case search time is O(log2 n).

Therefore, IST can execute operations in o(log n) time under reasonable
assumptions. As our goal, we want to design a parallel-batched version of the
IST that processes operations asymptotically faster than known sorted set imple-
mentations (e.g., red-black trees).



116 V. Aksenov et al.

4 Parallel-Batched Contains

In this section, we describe the implementation of ContainsBatched(keys[])
operation. We suppose that keys array is sorted. For simplicity, we assume that
IST does not support removals. In Sect. 6, we explain how to fix it.

We implement ContainsBatched operation in the following way. At
first, we introduce a function BatchedTraverse(node, keys[], left, right,
result[]). The purpose of this function is to determine for each index left ≤
i < right, whether keys[i] is stored in the node subtree. If so, set result[i] =
true, otherwise, result[i] = false. Given the operation BatchedTraverse,
we can implement ContainsBatched with almost zero effort (Listing 1.1):

Listing 1.1. Implementation of ContainsBatched on top of BatchedTraverse
routine

fun ContainsBatched(keys[]):
result[] := [array of size |keys|]
// search for all keys in the root subtree (i.e., in the whole IST)
BatchedTraverse(IST.Root, keys, 0, |keys|, result)
return result

Now, we describe BatchedTraverse(node, keys[], left, right, result[]).

4.1 BatchedTraverse in a Leaf Node

Fig. 7. Execution of BatchedTraverse in an IST
leaf. Here Rank(node.Rep, keys[left..right)) = [1,
1, 2, 2, 3, 4].

If node is a leaf node, we
determine for each key
in keys[left..right)
whether it exists in
node.Rep. Since node is
a leaf, keys cannot be
found anywhere else in
node subtree.

We may use Rank
function to find the
rank of each element
of keys[left..right)
in node.Rep and, thus,
determine for each key
whether it exists in node.Rep (Fig. 7, Listing 1.2). As presented in Sect. 2.3,
ranks of all keys from subarray keys[left..right) may be computed in par-
allel in linear work and poly-logarithmic span.



Parallel-Batched Interpolation Search Tree 117

Listing 1.2. Using Rank to find keys in a leaf node in parallel
rank := Rank(node.Rep, keys[left..right))
pfor i in left..right:

r := rank[i - left]
if r = 0 or node.Rep[r - 1] �= keys[i]:

result[i] ← false
else:

result[i] ← true

4.2 BatchedTraverse in an Inner Node

Consider now the BatchedTraverse procedure on an inner node (Fig. 8).
We begin its execution with finding the position for each key from

keys[left..right) in node.Rep. We may do it using Rank function as in
Sect. 4.1. However, we can also use the interpolation search (described in
Sect. 3.2): see Listing 1.3. Denote T as an interpolation search time in node.Rep.
As stated in Sect. 3.5, T is expected to be O(1). Thus, this algorithm can be exe-
cuted in O((right− left) ·T ) work and polylog span in contrast to the algorithm
based on the Rank function, that takes O((right − left) + |node.Rep|) work.

Fig. 8. Execution of BatchedTraverse in an inner node of an IST.

Listing 1.3. Using interpolation search to find keys in IST leaf node in parallel
pfor i in left..right:

idx := interpolation_search(node.Rep, keys[i])
result[i] ← node.Rep[idx] = keys[i]

Some keys of the input array (e.g., 5 and 11 in Fig. 8) are found in the Rep
array. For such keys, we set Result[i] to true. After that, all other keys can
be divided into three categories:

– Keys that are strictly less than Rep[0] (e.g., 0 and 2 in Fig. 8) lie in C[0]
subtree. Therefore for such keys we should continue the traversal in C[0];

– Keys that are strictly greater than Rep[k - 1] (e.g., 100 and 101 in Fig. 8)
can only be found in C[k]. Therefore for such keys we continue the traversal
in C[k].



118 V. Aksenov et al.

– Keys that lie between Rep[i] and Rep[i + 1] for some i ∈ [0; k − 2] (we can
find such i for each key using the same search technique as described above).
For example, 6 and 7 for i = 1 or 9 and 10 for i = 2 in Fig. 8. Such keys can
only be found in C[i + 1]. Therefore for such keys we should continue the
traversal in C[i + 1];

Note that some child nodes (e.g., C[1] and C[4] in Fig. 8) can not contain
any key from keys[left..right) thus we do not continue the search in such
nodes.

After determining in which child the search of each key should continue we
proceed to searching for keys in children in parallel.

5 Parallel-Batched Insert

We now consider the implementation of the operation InsertBatched(keys[]).
Again, we suppose that array keys[] is sorted. For simplicity, we consider
InsertBatched implementation on an IST without removals. In Sect. 6 we
explain how to fix it.

Fig. 9. Inserting a batch of keys in the IST

We begin the insertion procedure
with filtering out keys already present
in the set. We can do this using the
described ContainsBatched routine
together with the Filter primitive:
we filter out all the keys for which
ContainsBatched returns true.

We implement our procedure
recursively in the same way as
BatchedTraverse. Note, that each
key being inserted is not present in
IST, thus, for each key our traversal
finishes in some leaf (Fig. 9).

After we finish the traversal —
we need to insert subarray
keys[lefti . . . righti) into some leaf
leafi. For example, in Fig. 9 we insert
keys[0..2) (i.e., 0 and 3) to the left-
most leaf, while inserting keys[2..4)
(i.e., 18 and 19) to the rightmost leaf.

To finish the insertion, we just merge keys[lefti . . . righti) with leafi.Rep
and get the new Rep array. Now, each target leaf leafi contains all the keys that
should be inserted into it.

6 Parallel-Batched Remove

We now sketch the implementation of the operation RemoveBatched(keys[]).
Again, we suppose that array keys is sorted.



Parallel-Batched Interpolation Search Tree 119

We use the same approach as our previous algorithms. At first, we filter out
the keys that do not exist in the tree. Then, we go recursively, find the keys in
Rep arrays, and set the corresponding Exists cell to false.

Since now we have a logical removal, we should modify the implementations
of ContainsBatched and InsertBatched.

During the execution of ContainsBatched when we encounter the key
being searched in the Rep array of some node v (v.Rep[i] = key), we check
v.Exists[i]: 1) if v.Exists[i] = true then key exists in the set; 2) other-
wise, key does not exist in the set.

Now, we explain the updates to InsertBatched. As was stated in Sect. 5, we
cannot encounter any of the key being inserted in the Rep array of any node of
IST, since we filter out all the keys existing in IST. However, when keys can be
logically removed this is not true anymore. Such keys have the corresponding
entry in v.Exists array set to false, since the key does not logically exist in
IST (Fig. 10a).

Suppose we are inserting key and we encounter it in some v.Rep. Thus,
we can just set v.Exists[i] ← true (Fig. 10b). This way the insert operation
“revives” a previously removed key.

(a) Keys 1, 10 and 23 are marked as
removed

(b) Keys 10 and 23 are revived by a
subsequent insert operation

Fig. 10. Insertion of a key, that still exists in the IST physically, but is removed logically

7 Parallel Tree Rebuilding

7.1 Rebuilding Principle

As stated in Sect. 3.4, we employ the lazy subtree rebuilding approach to keep
IST balanced. This algorithm is adopted from papers [8,16,20].

For each node of IST we maintain Mod_Cnt — the number of modifications
(successful insertions and removals) applied to that node subtree. Moreover, each
node stores Init_Subtree_Size — the number of keys in that node subtree
when the node was created.



120 V. Aksenov et al.

Suppose we execute an update operation Op in node v and Op increases
v.Mod_Cnt by k (i.e., it either inserts k new keys or removes k existing keys).

If v.Mod_Cnt + k ≤ C · v.Init_Subtree_Size (where C is a predefined
constant, e.g., 2) we increment v.Mod_Cnt by k and continue the execution of
Op in an ordinary way. Otherwise, we rebuild the whole subtree of v.

The subtree rebuilding works in the following way. At first, we flatten the
subtree into an array: we collect all non-removed keys from the subtree to array
subtree_keys[] in ascending order. This operation is described in more detail
in Sect. 7.2. If the operation, that triggered the rebuilding, was InsertBatched,
we merge the keys, we are inserting, with the keys from the subtree_keys. Oth-
erwise, (that operation is RemoveBatched) we remove the required keys from the
subtree_keys via the Difference operation (see Sect. 2.3 for details). Finally,
we build an ideal IST new_subtree, containing all entries from subtree_keys.
This operation is described in more detail in Sect. 7.3.

7.2 Flattening an IST into an Array in Parallel

First of all, we need to know how many keys are located in each node subtree. We
store this number in a Size variable in each node and maintain it the following
way: 1) when creating new node v, set v.Size to the initial number of keys in
its subtree; 2) when inserting m new keys to v’s subtree, increment v.Size by m;
3) when removing m existing keys from v’s subtree, decrement v.Size by m.

To flatten the whole subtree of node we allocate an array keys of size
node.Size where we shall store all the keys from the subtree. We implement the
flattening recursively, via the Flatten(v, keys[], left, right) procedure,
which fills subarray keys[left..right) with all the keys from the subtree. To
flatten the whole subtree of node into newly-allocated array subtree_keys of
size node.Size we use Flatten(node, subtree_keys, 0, node.Size).

Note that non-leaf node v has 2k + 1 sources of keys: v.C[i] with
v.C[i].Size keys and v.Rep[i]. C[i] is 2 · i-th key source and Rep[i] is
2 · i + 1-th key source. Note that for a leaf node all children just contain 0
keys.

Now for each key source we must find its position in the keys array. To
do this we calculate array sizes of size 2k + 1. i-th source of keys stores its
keys count in sizes[i]. After that we calculate positions := Scan(sizes)
to find the prefix sums of sizes. After that positions[i] =

∑i−1
j=0 sizes[j].

Consider now i-th key source. All prior key sources should fill positions[i]
keys, thus, i-th key source should place its keys into the array starting from
left + positions[i] position (Fig. 11). Therefore:

– v.C[i] places its keys in the keys array starting from left + positions[2·
i] by running Flatten(v.C[i], left + positions[2 · i], left +
positions[2 · i] + v.C[i].Size).

– If v.Exists[i] = false then v.Rep[i] should not be put in the keys array;
– Otherwise, v.Exists[i] = true and v.Rep[i] should be placed at
keys[left + positions[2 · i + 1]] since v.Rep[i] is the (2 · i + 1)-th
key source.



Parallel-Batched Interpolation Search Tree 121

Each key source can be processed in parallel, since there are no data depen-
dencies between them.

Fig. 11. Parallel flattening of an IST node

In Fig. 11, C[0] will place its keys in keys[left .. left + 3) subarray,
Rep[0] will be placed in keys[left + 3], C[1] will place its keys in keys[left
+ 4 .. left + 5) subarray, Rep[1] will not be placed in keys array since its
logically removed, C[2] will place its keys in keys[left + 5 .. left + 9)
subarray, Rep[2] will be placed in keys[left + 9] and C [3] will place its keys
in keys[left + 10 .. left + 12) subarray.

7.3 Building an Ideal IST in Parallel

Suppose we have a sorted array of keys and we want to build an ideally balanced
IST (see Sect. 3.4) with these keys. We implement this procedure recursively via
build_IST_subarray(keys[], left, right) procedure — it builds an ideal
IST containing keys from the keys[left..right) subarray and returns the
root of the newly-built subtree. Thus, to build a new subtree from array keys
we just use new_root := build_IST_subarray(keys[], 0, |keys|).

If the size of the subarray (i.e., right - left) is less than a predefined
constant H, we return a leaf node with all the keys from keys[left..right)
in Rep array.

Otherwise (i.e., if right - left is big enough), we have to build non-leaf
node. Let us denote m := right - left; k := �√m�−1. As follows from Def-
inition 5, Rep array should have size Θ(

√
m) and its elements must be equally

spaced keys of the initial array. Thus, we copy each k-th key (k-th, 2 · k-th,
etc.) into array Rep. Note, our subarray begins at position left of the initial
array, since we are building IST from the subarray keys[left..right). Thus,
we copy keys[left + (i + 1) · k] into Rep[i]. All the copying can be done
in parallel since there are no data dependencies. This way we obtain Rep array
of size Θ(

√
m) filled with equally-spaced keys of the initial subarray (Fig. 12).

Now we should build the children of the newly-created node (Fig. 12):



122 V. Aksenov et al.

– Rep[0] = keys[left + k]. Thus, all keys less than keys[left + k] will be
stored in C[0] subtree: C[0] ← build_IST_subarray(keys[], left, left
+ k);

– for 1 ≤ i ≤ k − 2, Rep[i - 1] = keys[left + i · k] and
Rep[i] = keys[left + (i + 1) · k]. Thus, all keys x such that
Rep[i-1] < x < Rep[i] should be stored in C[i] subtree. Since keys array is
sorted, C[i] must be built from the subarray keys[left + i · k + 1..left
+ (i + 1) · k), thus, C[i] ← build_IST_subarray(keys[], left + i · k
+ 1, left + (i + 1) · k);

– Rep[k - 1] = keys[left + k2]. Thus, all keys greater than keys[left +
k2] are stored in C[k] subtree: C[k] ← build_IST_subarray(keys[], left
+ k2, right).

We can build all children in parallel, since there is no data dependencies
between them.

Fig. 12. Building children of a new node

To finish the construction of a node we need to calculate node.ID array
described in Sect. 3.2. We can build it in the following way:

– Create an array bounds of size m + 1 such that bound[i] = keys[left]+ i ·
(keys[right - 1]− keys[left])/L where L = Θ(nε) with some ε ∈ [12 ; 1);

– Use Rank primitive to find the rank of each bounds[i] in the Rep array.

8 Theoretical Results

In this section, we present the theoretical bounds for our data structure. These
bounds are quite trivial, so we just give intuition.

Theorem 1. The flatten operation of an IST with n elements has O(n) work
and O(log3 n) span. The building procedure of an ideal IST from an array of size
n has O(n) work and O(log n · log log n) span. Thus, the rebuilding of IST with
n elements costs O(n) work and O(log3 n) span.



Parallel-Batched Interpolation Search Tree 123

Proof (Sketch). While the work bounds are trivial, we are more interested in
span bounds. From [16] we know that in the worst case, the height of IST with n
keys does not exceed O(log2 n). Thus, the flatten operation just goes recursively
into O(log2 n) levels and spends O(log n) span at each level. This gives O(log3 n)
span in total. The construction of an ideal IST has O(log log n) recursive levels
while each level can be executed in O(log n) time, i.e., copy the elements into
Rep array. This gives us the result.

This brings us closer to our main complexity theorem.

Theorem 2. The work of a batched operation on our parallel-batched IST has
the same complexity as if we apply all m operations from this batch sequen-
tially to the original IST of size n (from [16], the expected execution time is
O(m log log n)). The total span of a batched operation is O(log4 n).

Proof (Sketch). The work bound is trivial — the only difference with the original
IST is that we can rebuild the subtree in advance before applying some of the
operations. Now, we get to the span bounds. From [16], we know that the height
of IST with n keys does not exceed O(log2 n). On each level, we spend: 1) at
most O(log2 n) span for merge and rank operations; or 2) we rebuild a subtree
at that level and stop. The first part gives us O(log4 n) span, while rebuilding
takes just O(log3 n) span. This leads us to the result of the total O(log4 n) span.

9 Experiments

We have implemented the Parallel Batched IST in C++ using OpenCilk [7] as
a framework for fork-join parallelism.

We tested our parallel-batched IST on three workloads. We initialize the
tree with elements from the range [−108; 108] with probability 1/2. Thus, the
expected size of the tree is 108. Then we call: 1) search for a batch of 107 keys,
taken uniformly at random from the range; 2) insert a batch of random 107 keys,
taken uniformly at random from the range; 3) remove a batch of random 107

keys, taken uniformly at random from the range.
The experimental results are shown in Fig. 13. The OX axis corresponds to

the number of worker processes and the OY axis corresponds to the time required
to execute the operation in milliseconds. Each point of the plot is obtained as
an average of 10 runs. We run our code on an Intel Xeon Gold 6230 machine
with 16 cores.

As shown in the results, we achieve good scalability. Indeed: 1) 14x scaling on
ContainsBatched operation for 16 processes; 2) 11x scaling on InsertBatched
operation for 16 processes; 3) 13x scaling on RemoveBatched operation for 16
processes.

We also compared our implementation in a sequential mode with std::set.
std::set took 9257 ms to check the existence of 107 keys in a tree with 108

elements while our IST implementation took only 3561 ms. We achieve such
speedup by using interpolation search as described in Sect. 3.2.



124 V. Aksenov et al.

Fig. 13. Benchmark results for Parallel-batched Interpolation Search Tree

10 Conclusion

In this work, we presented the first parallel-batched version of the interpolation
search tree that has an optimal work in comparison to the sequential imple-
mentation and has a polylogarithmic span. We implemented it and got very
promising results. We believe that this work will encourage others to look into
parallel-batched data structures based on something more complex than binary
search trees.

References

1. Acar, U.A., Blelloch, G.E.: Algorithms: Parallel and sequential. https://www.
umut-acar.org/algorithms-book 6 (2019)

2. Akhremtsev, Y., Sanders, P.: Fast parallel operations on search trees. In: 2016
IEEE 23rd International Conference on High Performance Computing (HiPC), pp.
291–300. IEEE (2016)

3. Aksenov, V., Kokorin, I., Martsenyuk, A.: Parallel-batched interpolation search
tree. arXiv preprint (2023). arXiv:2306.13785

4. Bentley, J.L., Yao, A.C.C.: An almost optimal algorithm for unbounded searching.
Inform. Process. Lett. 5(3), 82–87(SLAC-PUB-1679) (1976)

5. Blelloch, G.E., Ferizovic, D., Sun, Y.: Just join for parallel ordered sets. In: Pro-
ceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architec-
tures, pp. 253–264 (2016)

6. Blelloch, G.E., Reid-Miller, M.: Fast set operations using treaps. In: Proceedings
of the Tenth Annual ACM Symposium on Parallel Algorithms And Architectures,
pp. 16–26 (1998)

7. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

8. Brown, T., Prokopec, A., Alistarh, D.: Non-blocking interpolation search trees
with doubly-logarithmic running time. In: Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 276–
291 (2020)

https://www.umut-acar.org/algorithms-book
https://www.umut-acar.org/algorithms-book
http://arxiv.org/abs/2306.13785


Parallel-Batched Interpolation Search Tree 125

9. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. (CSUR) 11(2), 121–137 (1979)
10. Graefe, G., et al.: Modern b-tree techniques. Foundations and Trends® in

Databases 3(4), 203–402 (2011)
11. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: 19th

Annual Symposium on Foundations of Computer Science (sfcs 1978), pp. 8–21.
IEEE (1978)

12. JáJá, J.: An introduction to parallel algorithms. Reading, MA: Addison-Wesley
10, 133889 (1992)

13. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index
structures. In: Proceedings of the 2018 International Conference on Management
of Data, pp. 489–504 (2018)

14. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, pp. 36–43 (2000)

15. Medidi, M., Deo, N.: Parallel dictionaries using AVL trees. J. Parallel Distrib.
Comput. 49(1), 146–155 (1998)

16. Mehlhorn, K., Tsakalidis, A.: Dynamic interpolation search. J. ACM (JACM)
40(3), 621–634 (1993)

17. Park, H., Park, K.: Parallel algorithms for red-black trees. Theoret. Comput. Sci.
262(1–2), 415–435 (2001)

18. Paul, W.., Vishkin, U.., Wagener, H..: Parallel dictionaries on 2–3 trees. In: Diaz,
Josep (ed.) ICALP 1983. LNCS, vol. 154, pp. 597–609. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0036940

19. Peterson, W.W.: Addressing for random-access storage. IBM J. Res. Dev. 1(2),
130–146 (1957)

20. Prokopec, A., Brown, T., Alistarh, D.: Analysis and evaluation of non-blocking
interpolation search trees. arXiv preprint arXiv:2001.00413 (2020)

21. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

22. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM (JACM)
32(3), 652–686 (1985)

23. Sun, Y., Ferizovic, D., Belloch, G.E.: Pam: parallel augmented maps. In: Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 290–304 (2018)

24. Willard, D.E.: Searching unindexed and nonuniformly generated files in \log\logn
time. SIAM J. Comput. 14(4), 1013–1029 (1985)

https://doi.org/10.1007/BFb0036940
http://arxiv.org/abs/2001.00413


Parallel Generation and Analysis
of Optimal Chordal Ring Networks Using
Python Tools on Kunpeng Processors

Oleg Monakhov(B) , Emilia Monakhova , and Sergey Kireev

Institute of Computational Mathematics and Mathematical Geophysics of SB RAS,
Lavrentieva 6, 630090 Novosibirsk, Russia

{monakhov,emilia}@rav.sscc.ru, kireev@ssd.sscc.ru

Abstract. Parallel versions of the reduced exhaustive search algorithm
based on the Python tools are implemented to optimize chordal ring
networks, which are of practical interest in the design of systems on
a chip and supercomputer systems. An analysis of the effectiveness of
parallel programs with different numbers of MPI processes on Kunpeng
processors was carried out. The speed-up of several parallel computing
schemes was experimentally evaluated and analyzed. The large dataset
of all optimal chordal networks with numbers of up 6 · 104 nodes was
generated for the first time. A preliminary analysis of experimentally
obtained dataset has been carried out and the existence of new families of
optimal chordal ring networks with analytical descriptions of parameters
has been discovered.

Keywords: Optimal chordal ring networks · Parallel algorithm ·
Discovery of families of graphs

1 Introduction

In [1], Arden and Lee introduced a class of chordal ring networks of degree
three as a possible topology for communication networks of multicomputer sys-
tems. They investigated a new class in three directions: determining the diameter
of graphs, finding the shortest paths for them, and determining the maximum
number of vertices for a given diameter. This work aroused great interest in the
study of the properties of new structures of communication networks in terms of
extending the proposed topology, see, for example, the works [2–11]. Researches
were carried out in the following areas: an expanding the range of graph gen-
erators, increasing the degree of graph vertices and the degree of its symmetry,
considering directed chordal ring networks, including the study of their reliabil-
ity in case of element failures, building hierarchical structures based on them
etc.

Supported by state assignment of ICMMG SB RAS N 0251-2022-0005.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 126–135, 2023.
https://doi.org/10.1007/978-3-031-41673-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_10&domain=pdf
http://orcid.org/0000-0001-8316-418X
http://orcid.org/0000-0002-6814-4655
http://orcid.org/0000-0003-2217-8777
https://doi.org/10.1007/978-3-031-41673-6_10


Parallel Generation and Analysis of Optimal Chordal Ring Networks 127

Let us give the basic definitions. An undirected chordal ring graph (network),
denoted as CN (1,−1, s), where 3 ≤ s ≤ N/2 is an odd number and N is an
even number, has a set of vertices V = ZN = {0, 1, ..., N − 1}, in which each
vertex of the graph i is connected to the vertices i ± 1 (mod N) and each odd
vertex i is connected to i + s (mod N). The number s is the generator (or
chord length) of the graph, N is its order. The graph diameter is the length
of the maximum shortest path on the set of all possible pairs of vertices. The
diameter estimates the maximum latency, respectively, when executing routing
algorithms of a network [12,13]. For a fixed value of N , we call optimal a chordal
graph CN (1,−1, s) with the smallest possible diameter for the given N .

Figure 1 shows the optimal chordal network C20(1,−1, 5) of diameter d = 4. It
should be noted that chordal ring networks of the form CN (1,−1, s) as bipartite
graphs are a subset (with an even number of vertices and ordered removal of
edges s or −s) of the another widely studied class – circulant graphs of the form
C(N ; 1, s) [3–5,14].

Fig. 1. Chordal ring network C20(1,−1, 5).

In this paper, we study the solution of the optimization problem of finding
optimal chordal networks - graphs with a minimum diameter for a given number
of vertices (order) of the graph. The authors of [2] obtained the family of extremal
graphs with maximal N for a given diameter (in Table 1 it is denoted as f0).
But the problem of minimizing the diameter for a given N is more difficult
to solve than maximizing N , because the diameter does not always increase
monotonically with increasing value of N . The authors of [2] have also found
five other infinite families of graphs with the smallest possible diameter, using
dense packing of graphs on the plane. Table 1 shows all these found families of
optimal graphs, denoted by us as f0 ÷ f5, with descriptions of the parameters of
graphs as functions of the diameter d.



128 O. Monakhov et al.

Table 1. The families of optimal chordal graphs from [2]

Family [2] Order of a graph Generator d(mod 2)

f0 N = (3d2 + 1)/2 s = 3d 1
N = 3d2/2− d s = 3d+ 1 0

f1 N = 3d2/2− 2d s = 3d− 1 0
f2 N = 3d2/2− d− 1/2 s = 3d− 2 1
f3 N = 3d2/2− 2d− 3/2 s = 3d− 4 1
f4 N = 3d2/2− 2d+ 1/2 s = 3d− 4 1
f5 N = 3d2/2− 3d− 1/2 s = 3d− 6 1

In this paper, for solution of the optimization problem, the parallel algorithms
using three different variants of Python tools for the synthesis of optimal chordal
graphs are developed, compared and implemented on cluster of Kunpeng 920
processors. The new features of this investigation are as follows: (1) developed,
analyzed and compared three new parallel algorithms for synthesizing optimal
chordal ring graphs based on Python tools; (2) a large dataset with N ≤ 60000
was developed based on new effective parallel algorithms (until now, datasets for
chordal ring networks were not known); (3) based on an analysis of the dataset,
new analytically described families of optimal chordal ring networks described by
functions of the network diameter were discovered; (4) an error was found in the
formula for the diameter of chordal ring graphs given in [1]; and (5) the features
of using the igraph library of operations on graphs in a parallel environment
that affect the acceleration are determined.

2 Parallel Algorithms for Building a Dataset of Optimal
Chordal Networks

To build a dataset of optimal chordal networks for a given range of nodes, we use
and compare three coarse-grain parallel algorithms based on Python tools for
parallel processing on task level. Each task consists in synthesis of all optimal
chordal networks for a given number of nodes, and the search for all optimal
chordal networks for a given range of nodes can be performed in parallel and
independently. For synthesis of all optimal chordal networks for a given number
of nodes, a reduced sequential brute-force algorithm was developed based on
bounds for generators (the bounds are given in Sect. 4). To reduce the time of
operations with graphs, a special graph library igraph [16] was used. Note that
the igraph is implemented in the C language and has an order of magnitude
higher performance on some operations on graphs than, for example, another
popular library for graphs Networkx [15].

The first parallel algorithm “Queue” uses the Queue() class from Python’s
multiprocessing module [17], which is a first-come-first-served data structure.
This class can store simple objects and is useful for exchanging data between



Parallel Generation and Analysis of Optimal Chordal Ring Networks 129

processes. The Queue() class of the multiprocessing module returns a shared
process queue implemented with a pipe and multiple locks/semaphores. Queues
are useful when passed as a parameter to a process function to allow it to consume
data. Using the put() function, we can push data into the queue, and with get(),
we can get items from the queues. In the algorithm, the master process spawns a
given number of worker processes and two queues input and output. In the input
queue, the master process places tasks (the number of vertices for each network
for which need to find the optimal parameters) for all worker processes, and
in the output queue it receives results from worker processes (optimal network
parameters). Each worker process takes a task from the head of the input queue,
independently calculates the optimal parameters, and puts the results of the
computation at the end of the output queue. The algorithm ends when the
master process receives the results for all tasks.

The second parallel algorithm “Pool” uses the Pool() class of the multipro-
cessing module [17] and a master process creates an object that manages a
pool with given number of worker processes to which tasks are submitted. The
worker process pool supports asynchronous execution of tasks and has a parallel
implementation. In the algorithm a multiprocessing pool in Python is used to
execute a given function by applying that function to each element in parallel
using the Pool map() method. For the synthesis of optimal chordal ring networks,
the specified range of the number of vertices is evenly distributed among parallel
processes (data parallelism). Each worker process independently executes its
tasks, and after parallel processing all tasks the master process receives the
results of execution.

The third parallel algorithm “MPI” is based on MPI for Python package
(mpi4py) [18], which provides Python binding to the Message Passing Interface
(MPI) standard, allowing Python applications to use multiple processors in clus-
ters. The package builds on the MPI specification and provides an object oriented
interface resembling the MPI-2C++ bindings. The third parallel algorithm cre-
ates size processes, and each process with rank r independently executes tasks
with node numbers {nmin+r, nmin+r+size, nmin+r+2∗size, ...}, based on
a simple cyclic (round-robin) procedure for a given range of nodes (nmin, nmax)
of chordal networks. This rather simple algorithm does not require any interac-
tion and synchronization between processes, except for synchronization of the
end of computations.

3 Experimental Results with Parallel Algorithms

Computational experiments were carried out in order to compare the results
of various implementations of parallel algorithms for the synthesis of optimal
chordal ring networks. The results of the synthesis were compared in terms of
the speedup and efficiency of the synthesis of all optimal networks for a given
range of the number of vertices and for a given number of processes. Com-
putational experiments were mainly carried out on an one node of cluster of
ICMMG SB RAS with the following characteristics: 2 × 64-core Kunpeng 920



130 O. Monakhov et al.

2.6GHz processors (128 cores per node), openEuler v20.09 operating system,
gcc v.9.3.1 compiler, OpenMPI 4.1.0 library, Python 3.8.5 with libraries mpi4py
3.1.4, igraph 0.10.4, networkx 3.0. The implementations of the considered syn-
thesis algorithms were used to construct a dataset of graphs with up to 6 · 104
vertices. An experimental comparison of the algorithms was carried out when
obtaining the results of the synthesis of networks with the number of vertices
from 5000 to 10120.

During the experiments, we found that the standard import of the igraph
module leads to the fact that this module is loaded on only one processor core
and all other processes send requests to this core. To overcome this bottleneck, we
have used the Python’s standard utility OS module with os.sched_setaffinity()
method to set a per-process affinity mask that specifies the core or set of cores
the process can run on.

Figure 2 and Fig. 3 demonstrate the speedup and efficiency obtained on one
node for a given number of processes with respect to a sequential program (one
process) for different variants of implementation for the parallel synthesis algo-
rithm. The following set of configurations were considered for MPI, Pool and
Queue programs with Pr in {1, 2, 4, 8, 16, 32, 64, 128 } (Pr is the number
of processes). Figure 2 and Fig. 3 show that the maximum speedup and maxi-
mum efficiency on one node is obtained with the MPI program. For example,
we get speedup equal to 110.1 with efficiency 0.86 for 128 processes. The greater
efficiency and acceleration of the MPI program is explained by the absence of
overhead costs for organizing of a job queue or a pool of processes. An another
advantage of the MPI program is that it can be executed on several cluster
nodes, unlike the other two programs. For example, with the MPI program we
get speedup equal to 222.1 with efficiency 0.86 for two nodes with 256 processes
and speedup equal to 319 with efficiency 0.83 for three nodes with 384 processes.

4 Analysis of the Dataset of Optimal Chordal Networks

For development of the synthesis algorithm we used the following options to
reduce the search for optimal graphs. First, when determining the diameter of
a chordal graph, due to its symmetry, one can use finding the length of the
maximum path in a graph (diameter) from one a vertex, for example, zero. This
reduces the diameter calculation time proportionally to N . Second, an another
option to reduce the search time and, accordingly, increase the size of the base
of optimal graphs obtained is to use parallel search algorithms. This option and
different versions of its realization have been considered in Sects. 2 and 3 in
detail.

Using the search algorithm with the options indicated, we have built a dataset
of optimal chordal graphs. For a given N , all generators 3 ≤ s ≤ N/2 were enu-
merated and the graph(s) with the minimum diameter was (were) determined.
Table 2 shows a fragment of the resulting dataset of optimal chordal ring net-
works (N, s, d) for 130 ≤ N ≤ 166. The corresponding cells contain values of
order N , generators s and the minimum diameter d of the graph. The full ver-
sion of the dataset for N ≤ 60000 will be available in github.



Parallel Generation and Analysis of Optimal Chordal Ring Networks 131

Fig. 2. The speedup obtained for a given number of processes for different variants of
the parallel synthesis algorithm

Fig. 3. The efficiency obtained for a given number of processes for different variants of
the parallel synthesis algorithm

Figure 4 shows a plot of values of diameter d versus N (N ≤ 24000) and s of
optimal chordal networks for a part of dataset. Interesting dependencies between



132 O. Monakhov et al.

Table 2. Fragment of the dataset of optimal chordal ring networks (N, s, d).

130,39,10 134,61,11 138,41,11 144,19,11 148,19,11 152,69,11 158,29,11

130,49,10 136,13,11 138,51,11 144,39,11 148,27,11 154,13,12 158,35,11
132,29,10 136,21,11 138,61,11 144,43,11 148,33,11 154,15,12 158,43,11
134,13,11 136,25,11 140,31,10 144,53,11 148,41,11 154,21,12 158,47,11
134,15,11 136,37,11 142,13,11 144,63,11 148,65,11 154,23,12 160,29,11
134,17,11 136,41,11 142,15,11 144,65,11 148,67,11 154,27,12 162,29,11
134,21,11 136,51,11 142,17,11 146,15,11 150,17,11 154,43,12 162,59,11
134,25,11 136,59,11 142,19,11 146,17,11 150,27,11 154,45,12 164,45,11
134,29,11 136,61,11 142,21,11 146,19,11 150,33,11 154,57,12 164,49,11
134,37,11 138,13,11 142,25,11 146,27,11 150,41,11 154,65,12 166,17,12
134,39,11 138,15,11 142,31,11 146,43,11 150,45,11 154,67,12 166,19,12
134,49,11 138,19,11 142,39,11 146,53,11 150,55,11 154,69,12 166,37,12
134,51,11 138,21,11 142,63,11 146,55,11 152,27,11 156,43,11 166,45,12
134,57,11 138,25,11 144,15,11 148,15,11 152,45,11 156,57,11 166,49,12
134,59,11 138,31,11 144,17,11 148,17,11 152,67,11 156,69,11 166,61,12

parameters of graphs are observed. The analysis is complicated by the fact that
for different orders of a graph the number of optimal generators varies from one
to a predetermined number

Analyzing the resulting dataset, we first found an error in the formula for the
diameter of chordal ring graphs, given in [1], equal to several orders of magnitude
of the diameter. We also obtained a number of new analytically described families
of optimal chordal networks described by functions of the network diameter d.
Some of them with different types of generators are shown in Table 3.

After that, all families found have been tested for existence in the range
of diameters from d = 4 to d = 200 and N ≤ 60000 using the dataset of
optimal chordal ring networks. The results of the check are shown in the last
column of Table 3. After a description of the formulas for the parameter N ,
the minimum values of diameters (dmin) are indicated, starting from which the
obtained descriptions of families of optimal chordal networks exist.

Further scientific research will include a theoretical proof of the existence
of the families found for any values of the diameter and finding other infinite
families of optimal graphs using data mining and artificial intelligence methods.



Parallel Generation and Analysis of Optimal Chordal Ring Networks 133

Fig. 4. The diameter d versus number of nodes N and generators s of optimal chordal
ring networks

Table 3. New families of optimal chordal networks

Family Order of a graph Generator d(mod 2) dmin

k1 N = 3d2/2− 4d, s = 3d+ 1 0 10
k2 N = 3d2/2− 4d− 2, s = 3d+ 1 0 12
k3 N = 3d2/2− 7d, s = 3d+ 1 0 30
k4 N = 3d2/2− 7d− 4, s = 3d+ 1 0 34
k5 N = 3d2/2− 3d+ 3/2, s = 3d 1 7
k6 N = 3d2/2− 3d− 1/2, s = 3d 1 7
k7 N = 3d2/2− 6d+ 5/2, s = 3d 1 15
k8 N = 3d2/2− 6d− 3/2, s = 3d 1 19
k9 N = 3d2/2− 5d, s = 3d− 1 0 14
k10 N = 3d2/2− 8d, s = 3d− 1 0 38



134 O. Monakhov et al.

5 Conclusion

The paper considers the problem of developing parallel algorithms for finding
chordal ring networks with a minimum diameter and represents three paral-
lel algorithms based on Python tools to generate a dataset of optimal chordal
ring networks. An experimental analysis and comparison of the speed-up and
efficiency of parallel programs for three different schemes of parallel computing
with the various number of processes on a cluster of Kunpeng processors has
been carried out. The results of computational experiments made it possible to
determine which configurations for the parallelization schemes provide the great-
est speed-up and efficiency among the possible variants of the implementation
of parallel algorithms and allow to reduce the execution time by several times.

We have shown that the proposed effective parallel algorithms allow us to
obtain optimal chordal ring networks with a minimum diameter up to N ≤ 105

nodes. The generators of optimal networks were obtained by us using the devel-
oped algorithm in a few seconds. The constructed dataset of optimal chordal
ring networks is an effective tool for further studying the topological and com-
municative properties of chordal networks and discovering patterns in the search
for analytical descriptions of optimal networks. The dataset can serve as a basis
for selecting elements for building reliable hierarchical communication structures
for networks on a chip and supercomputer systems. The proposed parallel algo-
rithms will make it possible to increase the dataset for a larger number of vertices
with acceptable time costs, expand the area of study of the properties of optimal
chordal graphs and test various mathematical hypotheses for them.

References

1. Arden, B.W., Lee, H.: Analysis of chordal ring network. IEEE Trans. Comput.
C-30(4), 291–295 (1981)

2. Morillo, P., Comellas, F., Fiol, M.A.: The optimization of Chordal Ring Networks.
Commun. Technol., Eds. Q. Yasheng and W. Xiuying. World Scientific, 295–299
(1987)

3. Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a
survey. J. Parallel Distrib. Comput. 24, 2–10 (1995)

4. Hwang, F.K.: A survey on multi-loop networks. Theoret. Comput. Sci. 299, 107–
121 (2003)

5. Monakhova, E.A.: A survey on undirected circulant graphs. Discr. Math. Algo-
rithms Appl. 4(1), 1250002 (2012)

6. Pedersen, J.M., Riaz, T.M., Madsen, O.B.: Distances in generalized double rings
and degree three chordal rings. In: IASTED International Conference on Parallel
and Distributed Computing and Networks (IASTED PDCN2005), pp. 153–158.
Austria (2005)

7. Parhami, B.: Periodically regular chordal rings are preferable to double-ring net-
works. J. Interconnection Netw. 9(1), 99–126 (2008)

8. Farah, R.N., Chien, S.L.E., Othman, M.: Optimum free-table routing in the opti-
mised degree six 3-modified chordal ring network. J. Commun. 12(12), 677–682
(2017)



Parallel Generation and Analysis of Optimal Chordal Ring Networks 135

9. Chen, S.K., Hwang, F.K., Liu, Y.C.: Some combinatorial properties of mixed
chordal rings. J. Interconnection Netw. 4(1), 3–16 (2003)

10. Gutierrez, J., Riaz, T., Pedersen, J., Labeaga, S., Madsen, O.: Degree 3 networks
topological routing. Image Process. Commun. 14(4), 35–48 (2009)

11. Ahmad, M., Zahid, Z., Zavaid, M., Bonyah, E.: Studies of chordal ring networks via
double metric dimensions. Math. Probl. Eng., Article ID 8303242 (2022). https://
doi.org/10.1155/2022.d303242

12. Monakhova, E.A., Monakhov, O.G., Romanov, A.Y.: Routing algorithms in opti-
mal degree four circulant networks based on relative addressing: comparative anal-
ysis for networks-on-chip. IEEE Trans. Netw. Sci. Eng. 10(1), 413–425 (2023)

13. Monakhov, O., Monakhova, E., Romanov, A., Sukhov, A., Lezhnev, E.: Adap-
tive shortest path search algorithm in optimal two-dimensional circulant networks:
implementation for networks-on-chip. IEEE Access 8, 215010–215019 (2021)

14. Huang, X., Ramos, A.F., Deng, Y.: Optimal circulant graphs as low-latency net-
work topologies. J. Supercomput. 78, 13491–13510 (2022). https://doi.org/10.
1007/s11227-022-04396-5

15. Platt, E.: Network Science with Python and NetworkX Quick: Start Guide. Packt,
Birmingham, UK (2019)

16. igraph - The network analysis package. https://igraph.org/. Accessed 14 May 2023
17. Zaccone, G.: Python Parallel Programming Cookbook. Packt, Birmingham, UK

(2015)
18. Dalcin, L., Paz, R., Storti, M., D’Elia, J.: MPI for Python: performance improve-

ments and MPI-2 extensions. J. Parallel Distrib. Comput. 68(5), 655–662 (2008).
https://doi.org/10.1016/j.jpdc.2007.09.005

https://doi.org/10.1155/2022.d303242
https://doi.org/10.1155/2022.d303242
https://doi.org/10.1007/s11227-022-04396-5
https://doi.org/10.1007/s11227-022-04396-5
https://igraph.org/
https://doi.org/10.1016/j.jpdc.2007.09.005


Combinatorial Aspect of Code Restructuring
for Virtual Memory Computer Systems Under

WS Swapping Strategy

Stepan Vyazigin(B) and Madina Mansurova

Al-Farabi Kazakh National University, Almaty, Kazakhstan
wismas1996@gmail.com

Abstract. This paper presents innovative findings on the restructuring of code
for virtual memory systems operating under a working set swapping strategy.
Despite extensive research spanning five decades and numerous studies dedicated
to restructuring, the persisting absence of definitive solutions has motivated this
inquiry. The NP-hard problem of code block relocation across virtual memory
pages to minimize cost function reflects a core challenge inherent to the problem.
For ill-defined programs,many practical cluster-based solutions lack a quantifiable
approximation error to the unknown optimal or ε-optimal solution. This paper elu-
cidates the computational process by offering a geometric interpretation, enabling
the construction of a combinatorial mathematical model of the restructuring pro-
cess. This model incorporates both functional elements and constraints to define
acceptable solutions. The unique aspects of the model provide a foundation for
subsequent research aimed at designing an algorithm that delivers an optimal or ε-
optimal solution to the original problem, with some algorithmic details discussed
herein. Themodel also paves the way for the development of a swift, cost-effective
working set-like swapping algorithm, amplifying the applicability of the results
obtained.

Keywords: working set · swapping strategy · shared virtual memory system ·
combinatorial space · restructuring · ill-defined program code

1 Introduction

Program transformations, such as program restructuring [1–9] and refactoring [10, 11],
or other types of code reorganization are widely recognized for their positive impact on
program behavior, including code locality. This impact is especially noticeable for ill-
structured, frequently run programs, prompting researchers to strive for optimal, or at the
very least, practically acceptable solutions when implementing code transformations.
Importantly, these transformations must not compromise program properties such as
correctness and locality.

In this context, it’s important to note that many studies on restructuring, including
our research focus, primarily employ clustering techniques [2, 6], which, despite yield-
ing improved experimental outcomes, provide only approximate solutions of unknown

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 136–147, 2023.
https://doi.org/10.1007/978-3-031-41673-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_11&domain=pdf
http://orcid.org/0000-0002-3214-4434
http://orcid.org/0000-0002-9680-2758
https://doi.org/10.1007/978-3-031-41673-6_11


Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems 137

accuracy. Specifically, this paper emphasizes the problem of program reorganization for
virtual memory systems, where the clustering technique offers the potential to enhance
program behavior, albeit with an unknown approximation to the exact solution. We are
particularly interested in the combinatorial aspect of the research, and our approach does
not rely on a universally accepted method such as clustering.

Virtual memory, a common memory organization concept, extends beyond the typ-
ical memory hierarchy of desktop PCs and multicomputer systems like shared virtual
memory (SVM) systems. It also serves as an interface between the central and graphics
processors, as exemplified in Compute Unified Device Architecture (CUDA) [12].

Our results, distinct from those aforementioned, pertain to the combinatorial aspect
of restructuring. We believe they will prove useful in studying similar issues in multi-
core and multiprocessor systems, such as SVM-like multicore systems. Concerning the
working set (WS) swapping strategy, it’s worth mentioning that although WS strategies
are often used as a theoretical basis for research or for comparative or auxiliary purposes,
they are generally considered costly to implement. However, for programs with a block
structure, our findings suggest the potential to construct a rapid, cost-effective WS-like
swapping algorithm.

One common approach to improving program structure is program refactoring [10,
11]. Despite the superficial similarity, code restructuring and code refactoring bear dis-
tinct differences.Code refactoring techniquesmainly aimat transformingobject-oriented
code without considering how the transformation aligns with the optimal code version.
In contrast, our work focuses on instruction-level code where refactoring methods are
not applicable. We face two intertwined issues: diminished system performance due to
excessive page faults and deteriorated code locality. The initial question is identifying
the specific code items causing these issues. Through initial code experimentation using
the WS swapping algorithm, we can identify a subset of items suitable for restructur-
ing, which we designate as situation A. Alternatively, situation B involves identifying a
predefined set of interacting code items for restructuring.

2 Conceptual Level. The Initial Statement of the Main Problem
of Program (Code) Optimization

Let us consider a code (or program) consisting of n interacting blocks, b1, b2, . . . , bn
(abbreviated as 1, 2, …, n), that have been pre-identified and distributed across p
pages Sg1 , Sg2 , . . . , Sgp of virtual memory. For simplicity, we denote these pages as
S1, S2, . . . , Sp. The code execution may cause a problem due to an unexpectedly high
number of page faults, significantly impacting the system because of the code’s ill-
defined structure, which in turn reduces the performance of both the code (program) and
the system itself. Such adverse behavior can also result from code segments being writ-
ten by different authors from disparate programming teams at different times. Under the
previouslymentioned situation B, any reference from the residential set during code exe-
cution should be to one block from {b1, b2, . . . , bn} only. For situation A, this restriction
is not mandatory, and we will elaborate on this later.

Let vr denote the length of the r-th page r = 1, 2, . . . , p and let li be the length of
block i = 1, 2, . . . , n. This notation indicates that the system supports multidimensional



138 S. Vyazigin and M. Mansurova

page sizes. Here, blocks refer to code components such as subroutines, linear segments
of code, independent interacting programs, application data blocks, etc. The distribution
of blocks b1, b2, . . . , bn across pages S1, S2, . . . , Sp is predetermined, represented via a
Boolean matrix x = (xri)p×n, where an element xri = 1 if block i belongs to page r and
xri = 0 otherwise. We denote all such matrices by X.

Consider that random data, denoted by D = {θ}, and the swapping strategy also
impact the value of the functional. Assuming that after code execution with any given
θ ∈ D, the reference string of blocks (pages) corresponding to θ is available (Fig. 1, 2).
This paper chooses theworking set (WS) strategy as its swapping strategy. The residential
set R of pages in the main memory at any moment t of a program run coincides with
the working set of pages at the moment t, denoted by the universally accepted notation
W (k, t) [3]. We regard the block analogy of the working set as a control state (c.s.) of
the code (program), using q as the corresponding notation for c.s.

It is important to note that there are natural constraints (a)–(c) on the matrix x ∈ X ,
which we will conceptually describe below before presenting formal correlations and
details:

Functionals: For the main problem, we consider the mathematical expectation
(expected value) of the number of page faults per program (code) run as the func-
tional. For the auxiliary problem, the functional is the mean value of page faults for h ≥
1 program (code) runs.

Constraint (a): This constraint implies that the total length of the blocks allocated to
any page does not exceed the length of that page.

Constraint (b): This constraint states that any block of the program (code) belongs
to only one page of the program (code).

Constraint (c): This constraint requires that the total length of any working set gen-
erated during the program (code) execution does not exceed a system constant known
in advance.

Remember, these constraints (a)–(c) are defined by the matrix x = (xri)p×n, which
determines the distribution of blocks b1, b2, . . . , bn across pages S1, S2, . . . , Sp.

Despite the abundance of papers dedicated to program restructuring, particularly for
our interpretation of the problem [2–6], no definitive solution or appropriate model for
reorganization to achieve exact (optimal) solutions with the aforementioned functional
exists.

3 Control State of the Program.Working Set Generated by Control
State q and Matrix x = (xri)p×n. The Set of Control States Q

When considering the concept of the working set, we typically refer to two related
notations derived from P. Denning: W(t − τ, t) with a window size τ, and W(k, t) with
parameter k. In the latter case, an integer k ≥ 1 can also be interpreted as the window
size. In the first scenario, the working set refers to the pages of a program referenced
within the interval [t− τ, t) of virtual time. In our case, we have adopted the variantW(k,
t) as the working set. Considering the control state (c.s.) qt of the program at moment
t, let us define it as the set of program blocks referenced in the last k moments prior to
time t. Therefore, the control state (c.s.) of the program (code) at moment t essentially
represents the block analogy of the working set for pages at that same moment.



Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems 139

It’s important to note the role of the Boolean matrix x = (xri)p×n, which, as
previously mentioned, defines the program’s structure, i.e., the distribution of blocks
b1, b2, . . . , bn across pages S1, S2, . . . , Sp. As we established, this matrix x must com-
ply with constraints (a)–(c), and all matrices of this type constitute the set X. Ultimately,
among the matrices in X, an optimal matrix should be identified that assigns an optimal
structure to the code (program) based on the aforementioned functional.

3.1 Reference Strings to Pages and Blocks. Control State qt.Working Set R
(
qt, x

)

Examining the reference string for one program run (Fig. 2) and the corresponding frame
divided into k cells beneath it, which incrementally moves from left to right along the
time axis t, we should concurrently direct our attention to Fig. 1.

.  .  .  
tt

St+1

t1 t2 t3

    .   .   .   .    .    .

Fig. 1. The reference string to the program’s pages for a single program run, where the working
set R(q_t, x) is derived, corresponds to W(4, t) with k = 4, under t = t1, t2, …, tγ.

In Fig. 1 and 2, moments t1, t2, t3, …, tγ represent instances of references, starting
from t0 and ending at tγ, which is the final moment for the run with the random data θ

∈ D. In Fig. 1, over the time axis t, the notations St, t = 1, 2, 3,…, γ represent the pages
(or their numbers) that have been referenced during the execution of the program for a
specific θ ∈ D, given k = 4, and a fixed x ∈ X. For Fig. 2, notations i(tj), j = 1, 2, …, tγ,
are the numbers of blocks corresponding to the page numbers in Fig. 1 that have been
referenced during the execution of the program for the same θ ∈ D, given k = 4, and the
same x ∈ X.

The contents of the frame in Fig. 2 are blocks, potentially with repetitions, which
form the control state (c.s.) qt at moment t. The contents of the frame in Fig. 1 are page
numbers, also potentiallywith repetitions, which form theworking setR(qt, x) generated
by the c.s. qt and matrix x = (xri)p×n at moment t. Each page S(ij) in the frame contains
block ij of c.s. qt , where j = 1, 2, . . . ,m(qt).

It’s For R(qt, x), an important condition holds: every page within R(qt, x) contains
at least one block of the c.s qt . In our case, no other type of working set exists. Thus, as a
multiset,R(qt, x) is

{
S(i1), S(i2), . . . , S(im(qt)

}
, but the actualworking set corresponding

to R(qt, x) should not contain repeated pages. Let R(q, x) denote the working set without
page repetitions corresponding to R(qt, x). Note, it’s easy to perform this transformation
by eliminating the repetitions in qt to transition from R(qt, x) to R(q, x).

Proceeding from Fig. 2 it is easy to notice that the next c.s. qt+1 forms as qt ∪{i}, i.e.
qt+1 = {

i2, i3, . . . , im(qt), i
}
. Such kind of event, i.e. reference from c.s. qt to the block

i we may denote as qt → i and number i becomes available by the end of processing
c.s. qt .

Thus, as we can see, a content of the frame at anymoment t with repetitions of blocks
numbers coincides with a control state (c.s.) of the program at moment t, the denotation



140 S. Vyazigin and M. Mansurova

   t

i

t1 t2 t3

    .   .   .   .    .    ....
t

Fig. 2. Reference string to blocks of a program for one run of the program, where for any t of the
process is derived c.s. qt

for it is qt = {
i1, i2, . . . , im(qt)

}
(see above and Fig. 2), in contrast with corresponding

denotation for c.s. without repetitions, i.e. q = (i1, i2, . . . , im(q)). Besides we can omit
index t from qt since for us there are no differences between {i1, i2, i3} and {i2, i1, i3}
or {i3, i1, i2} and so on and we will write instead of all of them, the ordered record
(i1, i2, i3), where i1 < i2 < i3. And the same for c.s. q = (i1, i2, . . . , im(q)) takes place
the correlation: i1 < i2 < . . . < im(q), where in q already there are no repetitions of
blocks. Moving the frame along reference string to the blocks from the left to the right
we will receive some of the c.s. but it is possible that most of them are multisets and we
have considering both of them, i.e. a multiset and corresponding set without repetitions
as the same set. In spite of that for qt , in contrast with q, we introduced the separate
refinement of the denotation, namely qt = {

i1, i2, . . . , im(qt)
}
and treated qt as amultiset.

Having excluded from found qt the repetitions of block’s numbers and then if qt is new,
that checking, by way of comparing qt with q from the set Q = {q}, that has formed
for the current moment t, then qt has to be included into Q, as new q. Thus, by way of
new runs of the program (code) by and by we reach a situation when the set Q does not
change. And finally the set Q = {q} consist of different q, where in any q there are no
repetitions of blocks and Q does not change even after λ ≥ 1 additional runs.

0

J

:=  +1; 
if then
additional 
run

initial
  See 

update

J stable? 

no

yes

update k

are 
determined

Fig. 3. Sets Q and J generation

Here at the Fig. 3, the set
{
q1θ , q

2
θ , . . . , q

μ(θ)
θ

}
is a multiset of control states, are

obtained under one run of the code, corresponding a separate θ ∈ D, and anyone new of
them without repetitions will be included into Q. Each subsequent run brings us closer
to a stable Q. The condition “Is Q stable?” in Fig. 3, when answered affirmatively for
the first time, indicates that Q was unstable in previous iterations but has become stable
in the current iteration, showing no difference from Q in the preceding iteration. If υ is
less than or equal to λ, the process must follow the upper line, update θ, and proceed
according to the scheme.

The set J is the collection of block numbers i that occur during the transition qt →
i as the frame moves along the time axis in Fig. 2. After at least λ additional runs, by



Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems 141

reassigning elements of J new numbers from 1, 2,… to n, we will obtain the set of blocks
that need restructuring, which is suitable for further examination.

However, a question arises:what if, even afterλormore additional runs, a newcontrol
state is discovered? This would suggest that the choice for λ was overly optimistic and
that λ needs to be reassessed, necessitating a restart of the process.

The situation described above corresponds to situations A and B (see the end of point
1 in the Introduction), but for situation B, the set J is ignored. Note that in situation B,
the set J is predefined.

3.2 Correlations Between c.s. qt and c.s. qt+1

Here, the c.s. qt+1 (see Fig. 2) forms from subset of qt , including the case qt itself, which
has to be join with {i} and then the next correlations hold: qt+1 ⊂ qt or qt ⊂ qt+1, or
qt+1 = qt . Indeed, c.s. qt = {

i1, i2, . . . , im(qt)
}
and qt+1 = {

i2, i3, . . . , im(qt), i
}
(see

middle fragment of Fig. 2), then we have several steps to continue:

I. If i1 ∈ qt+1 = {
i2, i3, . . . , im(qt), i

}
and i /∈ {

i2, i3, . . . , im(qt)
}
, then qt ⊂ qt+1, (see

Fig. 4.a).
The next situation is

II. if i1 ∈ qt+1 and i ∈ {
i2, i3, . . . , im(qt)

}
then qt = qt+1 (see Fig. 4.b).

And further,
III. if i1 /∈ {

i2, i3, . . . , im(qt)
}
and i /∈ {

i1, i2, . . . , im(qt)
}
then (see Fig. 4.c).

Here qt = {
i1, i2, . . . , im(qt)

}
and qt+1 = {

i2, i3, . . . , im(qt), i
}

IV. If i1 /∈ {
i2, i3, . . . , im(qt)

}
and i ∈ {

i2, i3, . . . , im(qt)
}
then qt+1 ⊂ qt (see Fig. 4.d),

where qt = {
i1, i2, . . . , im(qt)

}
, qt+1 = {

i2, i3, . . . , im(qt)
}
.

Steps I, II, IV are standard, but for step III we may consider, that while intermediate
node q go by the process, the time moment equal t + 1/2 (see Fig. 4.c).

c)

( ,( ,

a) d)b)

( ,

Fig. 4. Variants of movement in a bipolar combinatorial space

At the fragments of Fig. 4we can notice the arc (qt, qt+1), and the arc (qt, qt+1/2) and
the arc (qt+1/2, qt), each having the weight (±i, β), where β ∈ {0, 1}. Here ±i means
a movement up or down that either enriches c.s. qt (see Fig. 4.a), with i moving up or
impoverishes the c.s. qt (see Fig. 4.d), by way of i1 (movement down) or sequentially
both of them (Fig. 4.c). A number iwithout sign (Fig. 4.b) means the situation qt = qt+1.

Parameter β equal 1 or 0 and related the event, when page fault happens or not under
corresponding movement from c.s. qt to c.s. qt+1.



142 S. Vyazigin and M. Mansurova

3.3 Final Notices to Determine the Set of Control States Q

After conducting multiple runs of the program under different θ ∈ D and repeatedly
identifying c.s. qt , once we reach the situation where the set Q does not change, and
after the next additional λ ≥ 1 runs the set Q remains the same, we will consider the
set Q as defined (see Fig. 3, also refer to the conclusion of point 4.2, step 1.). For a
moment, let’s assign a special c.s. q0 = ∅ to the set Q, which initially corresponds to
the starting point of the process. The c.s. q0 may also occur at later moments when our
program unexpectedly offloads from main memory and is reactivated after a while as if
it’s running from the start (cold start). Another start is a warm start, where the system
ensures the computational process, including the c.s., is restored to the state just before
the program was offloaded, allowing the program to bypass the wait time in secondary
memory and continue the process as if no offload occurred. Going forward, we propose
treating any such event as a warm start (restart), considering it as an additional page fault,
which will be accounted for in additional terms in expressions (1), (2) for the functional
of the main and auxiliary problem (see details in point no. 4).

4 Random Variables. Describing Functionals and Constrains
of the Main and Auxiliary Problems

In this point, we start from finding expressions both the functional of main and auxiliary
problem and expressions for corresponding constrains for matrix x = (xri)p×n. As well,
it is useful to discuss about geometric aspect of our approach to the initial problem.
Further we are considering, that sets Q,Q

∧

are determined.

4.1 Random Variable ξqi and the Function δqi(x), Where q ∈ Q, i = 1, 2, . . . ,n

Drawing upon the information provided earlier, let’s revisit the topic of the random
variable ξqi, which is a number of references to block i under execution of c.s. q (see
Fig. 2) for one run of the program, q ∈ Q, i = 1, 2, . . . , n.

Let random variable ξ
j
qi be the same as ξqi but in j-th run of the program, j= 1, 2, …,

h. Let expected value of ξqi and ξ
j
qi be a E(ξqi) = E(ξ

j
qi) = Eqi, j = 1, 2, . . . , h and a

mean value E(h)
qi = (1/h) ·∑h

j=1ξ
(j)
qi , for any q ∈ Q, i = 1, 2, . . . , n.More over, we have

suggested that a series of h ≥ 1 runs are carried out with our program (code). After each
run, denoted by number j, the variables ξ

j
qi (q ∈ Q, i = 1, 2, . . . , n) have been calculated.

Remember, eventually concerning ξ
j
qi we have to calculate mean value E(h)

qi for which,
convenient for us, a recurrent formula is proposed beneath (see point no. 4.2), for all
q ∈ Q, i ∈ {1, 2, . . . , n}; i /∈ q. Thus the values E(h)

qi , (q ∈ Q, i ∈ {1, 2, . . . , n}; i /∈ q) is
having been calculated after h runs of the program.

An intriguing question to address is whether the reference to block i under the
execution of c.s. q triggers a page fault or not (as depicted in the middle section of
Fig. 2). Such an event, as illustrated in the middle section of Fig. 2, can occur anywhere
along the axis t during the execution of the program, even within a single run. Let’s
denote this event, by analogy with qt → i, as q → i, and under a fixed x, the event



Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems 143

q → i produces the same response regardless of where along the axis t it occurs. The
response to this question is given by a function that depends on the c.s. q and the matrix
x = (xri)p×n. Namely the function δqi(x):

δqi(x) =
{
0, if block bi ∈ S ∈ R(q, x)
1, otherwise

where S is denotation of a page from R(q, x). The value δqi(x) = 0 corresponding the
absence of the page fault under event q → i, i.e. the value δqi(x) = 0, if block i belongs
some page S from R(q, x). Otherwise, the value δqi(x) = 1 corresponding to the page
fault. Of course, if block i ∈ q then it has to be δqi(x) ≡ 0 for any x ∈ X . Moreover if
matrix x = (xri)p×n is fixed then it does not matter at what moment and under which
runs of the program happen the event q → i. In any case, between the two possible
outcomes - a page fault either occurs or does not occur for all events q → i, meaning the
answer is consistent for all events q → i given q, i, and a fixed x ∈ X. In other words,
the same outcome applies to all events q → i, regardless of where along the axis t the
event takes place (refer to Fig. 2, point no. 3). It’s important to note that any matrix x ∈
X adheres to restrictions a)–c) mentioned earlier (also refer to point no. 4.2 correlations
(3)–(6)).

Calculation of the δqi(x) can be done the way

δqi(x) =

⎧
⎪⎨

⎪⎩

0, if
m(q)∑

j=1

p∑

r=1
xri · xrij ≥ 1, q �= q0

1, otherwise

and it is easy to notice that if block i ∈ q then δqi(x) = 0 for any x ∈ X .

4.2 Functionals F0(x) and F(h)(x) and Constraints for x ∈ X

From now on let us remove c.s. q0 from Q, and let θ ∈ D. Taking into account content
of the points no. 3 and point no. 4.1 a total number of page faults for one run of the
program, let it be random function ξθ (x)

ξθ (x) =
∑

q∈Q.

∑n

i=1
ξqi · δqi(x) +

∑n

i=1
ξq0i,

then for the functional of the main problem, which has to be minimize we have

F0(x) =
∑

q∈Q.

∑n

i=1
Eqi · δqi(x) +

∑n

i=1
Eq0i → min

x∈X (1)

It worth to note that in expression for ξ above, the any value ξqi does not depends
on matrix x ∈ X and in contrast, the function δqi(x) depends on given q ∈ Q and i and
x ∈ X , and not depends on, where at axis t the random event q → i happens.

For the functional F (h)(x) of auxiliary problem holds

F (h)(x) =
∑

q∈Q.

∑n

i=1
E(h)
qi · δqi(x) +

∑n

i=1
E(h)
q0i

→ min
x∈X (2)



144 S. Vyazigin and M. Mansurova

It is interesting to note that valueE(h)
qi from (2) can be assigned as a weight to the edge

(arc), which connects the node q and the node q ∪ i of the Boolean, where the function
δqi(x) = 1 (movement up). Otherwise, i.e., if the function δqi(x) = 0 this edge (arc)
has to be weighted as zero. It may helps to calculate the value of the functional F (h)(x)
for fixed x ∈ X , but, actually, not necessary do such kind of modification the edges
of the Boolean. It will be enough, if weight of the any edge (arc) under consideration,
directed upward, equals 1 or 0, depending on page fault happen or not (remember the
function δqi(x)) under transition from adjacent nodes, as alreadymentioned above. Then,

in corresponding cases, the values E(h)
qi have to be keep in mind, and using them as

multipliers in (2).

The Restrictions (a)–(c). The system of restrictions (conditions (a)–(c), point no. 2)
setting the set ofX of admissible solutions for both themain problem (1) and for auxiliary
problem (2) registers in the form:

n∑

i=1

li · xri ≤ vr, r = 1, 2, . . . , p; (3)

p∑

r=1

xri = 1, i = 1, 2, . . . , n; (4)

p∑

r=1

vr · Hqr(x) ≤ Nq, q ∈ Q; (5)

xri ∈ {0, 1}, r = 1, 2, . . . , p; i = 1, 2, . . . , n (6)

where in (5) the value vr is length of page r, r = 1, 2, . . . , p. The system (3)–(6) contains
p + n + |Q| non-trivial correlations. Note that constraints (3)–(5) corresponding to
restrictions (a)–(c) respectively, which mentioned above (point no. 2). The function
Hqr(x) : Hqr(x) = 1, if page Sr ∈ R(q, x) andHqr(x) = 0, otherwise, i.e. the function
Hqr(x) is characteristic function of the R(q, x) set.

Under given q and r it is easy to calculateHqr(x) via elements of thematrix x, namely
if q = (i1, i2, . . . , im(q)) ∈ Q then Hqr(x) = max

1≤j≤m(q)
xrij .

Here it worth to remember that the matrix x = (xri)p×n has the only ones positioned
in any column including columns i1, i2, . . . , im(q), see correlation (4) above.

In conclusion of the point let us pay attention at steps which will be useful under
solution of auxiliary problem (2) with functional F (h)(x):

0. Step. It has to be given: an initial matrix = (xri)p×n. As the matrix x, possible to
take the matrix x0 = (

x0ri
)
p×n is using in system before code reorganization; values

l1, l2, . . . , ln (lengths of blocks) and values v1, v2, . . . , vp (lengths of pages) and
values k, h are considered to be given. The value k-parameter of WS(k, t) strategy
and the frame dimension too (see Fig. 2, point no. 3, 3.1) is considered to be given.
The value h ≥ 1 is a number of runs of the code for the functional F (h)(x) to be
formed.



Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems 145

1. Step. Integer parameter λ ≥ 1 is considered to be given. The value λ ≥ 1 is parameter
of a common procedure which could be chosen by anybody who is interested in to
determine the set Q. It means that if after λ additional runs of the code with a try to
find new c.s., the set Q has not changed, then it is considered, that the set Q is found.
Let the set of c.s. Q according the descriptions in the sections no. 3.1, 3.3 and notice
above is determined (see also Fig. 3).

2. Step. Integer parameter N > 0 considered to be given The system constant N , which
very likely known in advance, will be used instead of constant Nq in restriction (5)
above. Here, the constant N has to limited a dimension of any working set R(q, x),
then in (5) we put Nq = N for any q ∈ Q. An option to put N = max

q∈QNq implies to

know any constant Nq, q ∈ Q and it is possible to do, under not large cardinality ofQ
and extra calculation. However under the real cardinality of Q, which we may come
across, the choice of N = max

q∈QNq not acceptable and not appropriate for us.

3. Step. Calculation of coefficients E(h)
qi . Remember, the number h is a number of runs

to calculate coefficients E(h)
qi in (2). Here we can use convenient for us the formula:

where number j is j− th run of the code. Starting value E(0)
qi = 0, for all q ∈

Q, i ∈ {1, 2, . . . , n}; i /∈ q. Here after any run, including j− th run, the values
ξ
j
qi, q ∈ Q, i = 1, 2, . . . , n; i /∈ q; j = 1, 2, . . . , h are available. Indeed, during
any run of the code, say it be j− th run, the reference string to blocks, by and by,
becaming available and not difficult to calculate values ξ

j
qi. Namely, it is possible,

to calculate them, while the frame moving along axis t from left to the right (see
Fig. 2, point no. 3), q ∈ Q, i = 1, 2, . . . , n; i /∈ q; j = 1, 2, . . . , h. Here, it worth to
introduce, for any ξ

j
qi wanted to be calculate, the special counter, let it be η

jt
qi, where

for momentt = 1, 2, . . . , γ , under the frame movement along axis t (see Fig. 2, point
no. 3), the value

η
jt
qi =

{
η
j(t−1)
qi + 1, if current c.s. is q and the next reference to block is i

η
j(t−1)
qi , otherwise

and after the current run finished, it is necessary to put ξ
j
qi = η

jγ
qi , here γ is last

moment of j− th run (see Fig. 2, point no. 3). Starting values ξ
j
qi = 0, ηj0qi = 0 for

any q ∈ Q, i = 1, 2, . . . , n; i /∈ q. In general, here not necessary to introduce array
of variables: η

j0
qi, η

j1
qi, . . . , η

jγ
qi . In programmer’s style, it is enough to use only one

variable, for example, ηjqi and rewrite formula above: ηjqi := η
j
qi+1, if current c.s. is q

and the next reference to block is i, otherwise η
j
qi := η

j
qi. Here the random sequence

of the initial data from D = {θ} in order to do runs, and corresponding reference
strings to the blocks after any run is considered to be available.



146 S. Vyazigin and M. Mansurova

4. Step. Solution of problem (2) with functional F (h)(x) with restrictions (3)–(6). The
question is reduced, what kind algorithm will be acceptable for solution problem
(2). Here, it is possible try to use ideas imbedded into classical algorithms, starting
from implicit enumeration algorithm; branch and bound algorithm; pseudo Boolean
programming method; and other algorithms.

5 Conclusion

This paper has constructed a combinatorial analytical model for restructuring ill-
structured programs (code) in page systems of virtual memory using the Working Set
(WS) swapping strategy. Despite its practical applications, the problem has substantial
theoretical interest, given that some versions of the problem belong to the NP class.

The approach we’ve developed is rooted in a key factor: the existence of restructur-
ing invariants, or elements of set Q, which are entirely determined by the WS swapping
strategy. Each invariant or control state q ∈ Q corresponds to a respective node of the
Boolean. We present a geometric interpretation of the computational process as a ran-
dom walk over these Boolean nodes. This visualization simplifies understanding of the
process and geometrically explains the construction of the main and auxiliary problem
functionals, as well as the estimation functional for both. The estimation functional
plays a crucial role in constructing an optimization algorithm, which will be the next
step of this research. We have discussed some details of such an algorithm. Additionally,
the geometric approach provides a basis to reduce the dimension of the combinatorial
problem corresponding to the model presented in this paper.

Earlier developed approaches, primarily based on cluster techniques, offer practical
solutions with an unknown approximation error to the optimal solution of (1). If the
distribution laws of the introduced random variables are known in advance, then the
model constructed in this paper provides a basis to find an optimal solution to the main
problem (1). Conversely, if the distribution laws of the randomvariables are unknown, the
model offers a means to find the optimal solution for the auxiliary problem (2). Under
certain conditions for the initial data, an optimal solution of (2) will be an ε-optimal
solution for the main problem (1).

Our results focus on the combinatorial aspect of restructuring, differing from cluster
or graph approaches.We believe these results will prove useful for similar research, such
as SVM-like multi-computer systems.

It’s worth noting that to date, the WS strategy has primarily been used as a theoret-
ical basis for research for comparison or ancillary purposes. It’s often considered too
expensive for practical implementation. However, in our case, if a program (code) has a
block structure, our findings suggest the possibility of constructing a fast and inexpensive
WS-like swapping algorithm, amplifying the value of the results obtained.

References

1. Ngetich, M.K.Y., Otieno, C., Kimwele, M.: Amodel for code restructuring, a tool for improv-
ing systems quality in compliance with object oriented coding practice. IJCSI Int. J. Comput.
Sci. Issues 16(3), pp. 32–36 (2019)



Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems 147

2. Marian, Z., Czibula, I.-G., Czibula, G.: A hierarchical clustering-based approach for software
restructuring at the package level. In: 2017 19th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), pp. 239–246 (2017)

3. Ferrari, D.: Computer Systems Performance Evaluation, 1st edn. Prentice Hall, 1 April 1978.
554 p.

4. Machado, J.P.L., Paula-Sobrinho, E.V.P., Maia, M.A.: Anti-bloater class restructuring: an
exploratory study. J. Softw. Evol. Process 34 (2022)

5. Kaur, S., Kaur, A., Dhiman, G.: Deep analysis of quality of primary studies on assessing the
impact of refactoring on software quality. Mater. Today Proc., January 2021

6. Masuda, T., Shiota, H., Noguchi, K., Ohki, T.: Optimization of program organization by
cluster analysis. In: Proceedings of the IFIP Congress, pp. 261–266 (1974)

7. Dyusembaev, A.E.: Correct models of program segmenting. J. Pattern Recognit. Image Anal.
3(6), 187–204 (1993)

8. Dyusembaev, A.E.: Mathematical Models of Program Segmentation. M: Fizmatlit (Nauka,
MAIK) (2001), 208 p.

9. Foulds, L.R.: Combinatorial Optimization. Springer, Heidelberg (1984). 280 p.
10. Kaur, S., Singh, P.: How does object-oriented code refactoring influence software quality?

Research landscape and challenges. J. Syst. Softw. 157, 110394 (2019)
11. Tenorio, D., Bibiano, A.C., Garcia, A.: On the customization of batch refactoring. In:

IEEE/ACM 3rd International Workshop on Refactoring (IWoR) (2019). https://doi.org/10.
1109/IWoR.2019.00010

12. Harris, M.: Unified Memory for CUDA Beginners, 19 June 2017. https://developer.nvidia.
com/blog/unified-memory-cuda-beginners/

https://doi.org/10.1109/IWoR.2019.00010
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Distributed Systems Management



Probabilistic Resources Allocation with Group
Dependencies in Distributed Computing

Victor Toporkov(B), Dmitry Yemelyanov, and Artem Bulkhak

National Research University “MPEI”, Moscow, Russia
{ToporkovVV,YemelyanovDM,BulkhakAN}@mpei.ru

Abstract. In this work, we introduce and study a set of tree-based algorithms for
resources allocation considering group dependencies between their parameters.
Real world distributed and high-performance computing systems often operate
under conditions of the resources availability uncertainty caused by uncertainties
of jobs execution, inaccuracies in runtime predictions and other global and local
utilization events. In this way we can observe an availability over time function
for each resource and use it as a scheduling parameter. As a single parallel job
usually occupies a set of resources, they shape groups with common probabilities
of usage and release events. The novelty of the proposed approach is an efficient
algorithm considering groupings of resources by the common availability proba-
bility for the resources’ co-allocation. The proposed algorithm combines dynamic
programming and greedy methods for the probability-based multiplicative knap-
sack problem with a tree-based branch and bounds approach. Simulation results
and analysis are provided to compare different approaches, including greedy and
brute force solution.

Keywords: Distributed Computing · Resource · Uncertainty · Availability ·
Probability · Job · Group · Knapsack · Branch and Bounds

1 Introduction and Related Works

High-performance distributed computing systems, such as Grids, cloud, and hybrid
infrastructures, provide access to large amounts of resources. These resources are typi-
cally required to execute parallel jobs submitted by users and include computing nodes,
data storages, network channels, software, etc. The actual requirements for resources
amount and types needed to execute a job are defined in resource requests and specifica-
tions provided by users [1–5]. Distributed computing systems organization and support
bring certain economical expenses: purchase and installation of machinery equipment,
power supplies, user support, etc. As a rule, users and service providers interact in eco-
nomic terms and the resources are provided for a certain payment. Economic models
[3–5] are used to efficiently solve resource management and job-flow scheduling prob-
lems in distributed environments such as cloud computing and utility Grids. Majority of
scheduling solutions for distributed environments implement scheduling strategies on a
basis of efficiency criteria [1–5].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 151–165, 2023.
https://doi.org/10.1007/978-3-031-41673-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-41673-6_12


152 V. Toporkov et al.

Traditional models consider scheduling problem in a deterministic way. Such an
approach is sometimes justified by the strict market rules for resources acquisition and
utilization during the purchased period of time. Commercial Grids and cloud service
providers usually own full control over the resources andmay reliably consider their local
schedules for some scheduling horizon time [1, 3]. Besides, market-based interactions
andQoS constraints compliance require deterministic model for the resources utilization
profile. Thus, it is convenient to represent available resources as a set of slots: time
intervals when particular nodes are idle and may be used for user jobs execution [4–8].
However general distributed computing systems with non-dedicated resources usually
cannot rely on deterministic utilization schedules and instead make predictions based on
the utilization predictions and probabilities [9–12]. The probabilities of the resources’
availability and utilization at any given time may originate from jobs execution and
completion time uncertainties, local activities of the resource provider, maintenance,
or numerous failure events. Particular utilization characteristics and patterns usually
strongly depend on the resource types. However, according to [9] about 20% of Grid
computational nodes exhibit truly random availability intervals.

The scheduling problem in Grid isNP-hard due to its combinatorial nature and many
heuristic solutions have been proposed. When scheduling under uncertainties, proactive
and reactive approaches are usually distinguished [12]. Proactive algorithms concen-
trate on the resources’ utilization predictions and heuristic-based advanced resources
allocations and reservations. Reactive algorithms analyze current state of the comput-
ing environment and make decisions for jobs migration and rescheduling. Both types
of algorithms may be used in a single system to achieve even greater resource usage
efficiency. The resources availability predictions for the considered scheduling interval
may be obtained based on the historical data processing, linear regressionmodels or with
help of expert and machine learning systems [9–11]. In [10], a set of availability states is
defined to model resource behavior and probabilities state transitions. On the other hand,
sometimes it is possible to identify distributions of resources utilization and availability
intervals [9]. Economic scheduling models are implemented in modern distributed and
cloud computing simulators GridSim and CloudSim [13]. They provide reliable tools for
resources co-allocation but consider price constraints on individual nodes and not on a
total window allocation cost. However, as we showed in [6], algorithms with a total cost
constraint are able to perform the search among a wider set of resources and increase the
overall scheduling efficiency. Algorithms [14–16] implement knapsack-based slot selec-
tion optimization according to a probability-based criterion with a total job execution
cost constraint.

This paper extends scheduling algorithms and model presented in [14–16]. We pro-
pose proactive algorithms for resources selection and co-allocation computing environ-
ments with non-dedicated resources and corresponding availability uncertainties. The
uncertainties aremodeled as resources availability events and probabilities: a naturalway
of machine learning and statistical predictions representation [16]. Common resources’
allocation and release times are modeled with interdependent resource groups.



Probabilistic Resources Allocation with Group Dependencies 153

The novelty of the proposed approach consists in a dynamic programming scheme
performing resources selectionwith a total availability criterionmaximization. The paper
is organized as follows. Section 2 presents availability-based scheduling problem and
several greedy, knapsack and branch and bounds-based approaches for its solution.
Section 3 contains an experiment setup and simulation results obtained for the considered
algorithms. Section 4 summarizes the paper and highlights further research topics.

2 Resource Selection Algorithm

2.1 Probabilistic Model for Resource Utilization

In our model we consider a set R of heterogeneous computing nodes with price ci char-
acteristics under utilization uncertainties. The probabilities (predictions) pi(t) of the
resources’ availability and utilization for the whole scheduling interval L are provided
as input data. We model a resource utilization schedule as an ordered list of utiliza-
tion events, such as resource’s allocation, occupation (execution) and release events.
An individual job execution on a single resource is modeled as a sequence of alloca-
tion, occupation (actual execution) and release events (see Fig. 1). Additionally, global
resources utilization uncertainties, such as maintenance works or network failures, are
modeled as a continuous occupation events with Po << 1 during the whole considered
scheduling interval.

Fig. 1. Example of a single resource occupation probability schedule.

Figure 1 shows an example of a single resource occupation probability Po schedule.
With two jobs already assigned to the resource, there are two resources allocation events
(with expected times of allocation at 85 and 844 time units), two resources occupation
events (starting at 133 and 921 time units) and two resources release events (expected
release times are 545 and 1250 time units respectively). Gray translucent bar at the
bottom of the Fig. 1 represents a sum of global utilization events with a total resource
occupation probability Po = 0.06. During the whole execution interval, the resource’s
occupation (utilization) probability is assumed as Po = 1. Utilization probability for
allocation events is modeled by random variable with a normal distribution, and for
release events - with a lognormal distribution to take into account the long tails [15].
Expected allocation and release times are derived from the job’s replication and execution
time estimations. Corresponding standard deviations depend on the job’s features and
may be predicted based on user estimations or historical data [9–11, 15]. Hence, in Fig. 1
the resource occupation probability at expected times of allocation and release events
are: Po(85) = Po(545) = Po(844) = Po(1250) = 0.5.



154 V. Toporkov et al.

However, to execute a job, a resource should be allocated for a specified time period
T . Based on the model above, we propose the following procedure to calculate a total
availability probabilityPa of a resource r during time intervalT .Pa describes probability,
that the resource r will be fully available and will not be interrupted during T .

1. Retrieve a set of independent utilization events ei active for the resource r during the
time interval T . When a subset of dependent events is active during the interval, then
only a single event providing the maximum occupation probability Po is retrieved.
For example, from the allocation-occupation (execution)-release events chain only
the execution event is retrieved with Po = 1.

2. For each independent event ei amaximum occupation probability during the interval l
is calculated:Pmax

o (ei) = max
tεT

Po(ei, t). Corresponding partial availability probability

Pa(ei) is calculated for each event ei as a probability that the resource will not be
occupied by the event during the interval T : Pa(ei) = 1 − Pmax

o (ei).
3. The resource will be available during the whole-time interval T only in case it will

not be occupied by any of the active utilization events. Thus, the total availability
probability for the resource r is a product of all partial availability probabilities
calculated for independent events ei:

Pr
a =

∏

i

Pa(ei) (1)

Fig. 2. Example of a resource occupation probability schedule.

For example, consider a resource availability probability for an interval T : [545;
844] presented as a dotted rectangle in Fig. 2. Three independent events are active during
the interval: 1) resource release event e1 with the expected release time at 545 time units,
2) resource allocation event e2 with the expected allocation time at 844 time units, and 3)
a global utilization event e3 with a constant occupation probability Po = 0.06 (related
details were provided with a Fig. 1 example). Corresponding partial occupation and
availability probabilities are: Pmax

o (e1) = 0.5, Pmax
o (e2) = 0.5, Pmax

o (e3) = 0.06, while
Pa(e1) = 0.5, Pa(e2) = 0.5, Pa(e3) = 0.94. So, the total probability of the resource
availability during the whole interval T is Pr

a = 0.235.

2.2 Parallel Job Scheduling and Group Dependencies

To execute a parallel job, a set of simultaneously available nodes (a window) should be
allocated ensuring user requirements from the resource request. The resource request
usually specifies number n of nodes required simultaneously for a time period T and a



Probabilistic Resources Allocation with Group Dependencies 155

maximum available resources allocation budgetC. The total cost of a window allocation
is calculated as CW = ∑n

i=1 T ∗ ci, where ci is resource i price for a single time unit.
These parameters constitute a formal generalization for resource requests common

among distributed computing systems and simulators [13–16]. Period T of the resources
acquisition is usually the same for all resources selected for a parallel job. Common
allocation and release times ensure the possibility of inter-node communications during
the whole job execution. In this way, the total window availability is a function of
availability probabilities of all the selected resources during the considered time interval
T . More formally, when a set of n resources is selected for a job, the total window
availability Pw

a during the expected job execution interval can be estimated as a product
of availability probabilities Pri

a of each independent window nodes:

Pw
a =

n∏

i

Pri
a . (2)

Here Pri
a can be calculated for each resource by the algorithm described in Sect. 2.1. If

any of the window nodes will be occupied during the expected job execution interval
(i.e., Pri

a = 0), the whole parallel job will be postponed or even aborted. Therefore,
in general, the window allocation procedure should consider maximization of the total
probability of availability Pw

a → max. Based on the model above the general statement
of the window allocation problem is as follows: during a scheduling interval L allocate
a subset of n nodes with performance pi ≥ p for a time T , with common allocation and
release times and a restriction C on the total allocation cost. As a target optimization
criterion, we assume maximization of the whole window availability probability (2).

As we additionally showed in [14, 15], this general problem can be reduced to
the following task: at a given time t, which defines the set and state of m available
resources, allocate a subset of n nodes with a restriction C on their total allocation cost
while performing maximization of their total availability probability (2). In [14, 15]
we proposed several approaches to solve the problems above. However, their statement
and solution assume independence of individual resources as well as their utilization
events. That is why in (2) we calculate the total window availability as a product of the
availability probabilities of its elements.

In a more general and realistic model, the resources and their utilization events are
not independent. On the contrary, there are group dependencies between the resources’
parameters. The most typical example of such a dependency is a result of a parallel job
execution. When a parallel job is scheduled, a set of selected resources is allocated for a
common period T . That is, all the selected resources will share allocation, occupation,
and release times. So, they should be modeled with a common chain of allocation-
occupation-release events. In another words, these resources have a group dependency.

Figure 3 shows example of utilization events modeled for a parallel job, which
requested three nodes. Red areas present resources’ utilization probability for allocation
and release events. As the exact allocation and release times are unknown, the corre-
sponding occupation probabilities Po(t) < 1. Green areas show execution event with the
occupation probability Po = 1. The main issue is that criterion (2) becomes inaccurate
when applied to a resources’ set with many internal group dependencies. For example,
in Fig. 3 if we consider total availability probability of resources 1, 4 and 5 at time



156 V. Toporkov et al.

t = 400, criterion (2) will calculate it as a product Pw
a = P1

a ∗P3
a ∗P4

a . However, as these
resources are used by the same parallel job (and have a common group dependency),
their actual total availability probability Pw

a = P1
a = P3

a = P4
a ≥ P1

a ∗ P3
a ∗ P4

a .

Fig. 3. Example of a parallel job execution schedule.

To describe it more formally we consider a set of groups G over the set R of the
available resources. Each component group Gi ∈ G represents a subset of resources
rj ∈ R with a common group dependency. For example, one scheduled job, like in the
example above, forms a single groupGi which includes all the resources selected for the
job. So, for example, if one resource rj ∈ Gi is selected for a window W , the common

group availability PGi
a should be used for calculation of a totalW availability probability

Pw
a . However, additionally selecting any other resources from Gi will not affect Pw

a , as
their group probability component PGi

a is already considered.
So, the total window W availability probability can be calculated as follows:

Pw
a =

n∗∏

i

PGi
a , (3)

where n∗ is a number of different groups used for the windowW , and PGi
a is availability

probability for each different group Gi used for the window. Group Gi is added to (3)
if at least one of its resources is selected for the window. It is worth noting, that in the
extreme case each groupGi can contain only one resource, and thus (3) will converge to



Probabilistic Resources Allocation with Group Dependencies 157

(2). In this paper we propose and study resources allocation algorithm which performs
(3) Pw

a → max optimization considering economic constraint on the total window
cost and group dependencies G. However firstly we should introduce helper algorithms
performing (2) Pw

a → max optimization without the group dependencies configuration.

2.3 Direct Solutions of the Resources Allocation Problem

Let us discuss in more details an algorithm which allocates an optimal (according to the
probability criterion Pw

a ) subset of n resources from the set R of m available resources
with a limit C on their total cost.

Firstly, we consider maximizing the following total resources availability criterion
Pw
a = ∏n

j p
rj
a , where p

rj
a = pj is an availability probability of a single resource rj ∈ R

during a considered interval T . In this way we can state the following problem of an n -
size window subset allocation out of m nodes:

Pw
a =

∏m

j
xjp

rj
a → max,

∑m

j
xjcj ≤ C, xj ∈ {0, 1}, j = 1..m,

∑m

j
xj = n, (4)

where cj is total cost required to allocate resource rj, xj - is a decision variable determining
whether to allocate resource rj (xj = 1) or not (xj = 0) for the current window.

This problem relates to the class of integer linear programming problems, and we
used 0–1 knapsack problem as a base for our implementation. The classical 0–1 knapsack
problem with a total weight C and items-resources with weights cj and values pj have
a similar formal model except for extra restriction on the number of items required:
x1+x2+· · ·+xm = n. Therefore, we implemented the following dynamic programming
recurrent scheme:

fj(c, v) = max{fj−1(c, v), fj−1(c − cj, v − 1) ∗ pj},
j = 1, ..,m, c = 1, ..,C, v = 1, .., n, (5)

where fj(c, v) defines the maximum availability probability value for a v-size window
allocated from the first j resources of m for a budget c. After the forward induction
procedure (4) is finished the maximum availability value Pw

a max = fm(C, n). xj values
are then obtained by a backward induction procedure.

An estimated computational complexity of the presented knapsack-based algorithm
KnapsackP is O(m ∗ n ∗ C).

Another approach for n-size window allocation is to use a more computationally
efficient greedy approach. We outline four main greedy algorithms to solve the problem
(3). The task is to select n out of m resources providing maximum total availability
probability Pw

a with a constraint on their total allocation cost n.

1. MaxP selects first n nodes providingmaximum availability probability pj values. This
algorithm does not take into account total usage cost limit and may provide infeasible
solutions. Nevertheless,MaxP can be used to determine the best possible availability
options and estimate a budget required to obtain them.

2. An opposite approach MinC selects first n nodes providing minimum usage cost cj
or an empty list in case of exceeding a total cost limit C. In this way,MinC does not
perform any availability optimization, but always provides feasible solutions when it



158 V. Toporkov et al.

is possible. Besides, MinC outlines a lower bound on a budget required to obtain a
feasible solution.

3. Third option is to use a weight function to regularize nodes in an appropriate manner.
MaxP/C uses wj = pj/cj as a weight function and selects first n nodes providing
maximum wj values. Such an approach does not guarantee feasible solution, but
nonetheless performs some availability optimization by implementing a compromise
solution between MaxP and MaxC.

4. Finally, we consider a composite approach GreedyUnited for an efficient greedy-
based resources allocation. The algorithm consists of three stages.
a. Obtain MaxP solution and return it if the constraint on a total usage cost is met.
b. Else, obtainMaxP/C solution and return it if the constraint on a total usage cost is

met.
c. Else, obtain MinC solution and return it if the constraint on a total usage cost is

met.

This combined algorithm GreedyUnited is designed to perform the best possible
greedy optimization taking into account a restriction on a total resources’ allocation cost
C.

Estimated computational complexity for the greedy resources’ allocation step is
O(m ∗ logm). More details regarding the algorithms above are provided in [14–16].

2.4 Resources Allocation Algorithms with Group Dependencies

Based on KnapsackP andGreedyUnited implementations above we propose the follow-
ing algorithm for a general resource allocation problem considering group dependen-
cies between the available resources. It takes as input set R of the available resources
(each resource is characterized with cost ci) and set G of groups over R (each group Gi

has a common availability probability pi). The algorithm then allocates a subset of n
resources with a restriction C on their total cost while performing maximization of their
total availability probability (3). The problem is solved by branch and bounds method
by maintaining max-heap data structure H containing interim candidate solutions Sj.
The higher the achieved availability probability Pw

a (3) or its upper bound, the closer
the solution S to the top of the heap H . For each solution S we maintain two subsets of
groups that should (G+) and should not (G−) be used in the current solution. Both G+
and G− are initialized as empty sets. Additionally, we consider subset G0 as all groups
from G not included in G+ orG−, so G0 is initialized as G.

Initial candidate solution S0 with empty G0 = G and empty sets G+ and G−, is
placed into H with Pw

a = −infinity. Next, we perform the following steps.

1. Retrieve next solution candidate S from H . If S is marked as valid solution, then
return S as a result, end of the algorithm.

2. Prepare list of resources Rs to calculate Pw
a for S.

a. Init Rs as empty set.
b. For each group Gj from G+ add the cheapest resource to the solution windowWs

with the pi = P
Gj
a ; add other resources from this group ri ∈ Gj to Rs with pi = 1.



Probabilistic Resources Allocation with Group Dependencies 159

c. For each groupGj fromG0 add all resources ri ∈ Gj to Rs with pi = k
√
P
Gj
a , where

k is number of resources in Gj.
3. Use algorithmKnapsackP orGreedyUnited to perform direct solution of S to allocate

resources into Ws (it can be partially filled during step 2.b) from set Rs of prepared
resources with (2) Pw

a → max optimization without group dependencies.
4. Check if the resulting solution is valid.

a. If all resources from Ws are included in groups from G+, then put this solution S
into H with key Pw

a and mark it as a valid solution.
b. If at least one resource rs fromWs is included in some group Gs from G0, then we

need to split this solution S into two candidates: S+ and S−. For S+ remove group
Gs from G0 and add into G+. For S− remove group Gs from G0 and add into G−.

Put both solution candidates S+ and S− into H with key Pw
a as an upper estimate.

5. Go to step 1.

The algorithm above performs branch and bounds approach by splitting candidate
solutions by sets of resources groupsG+ andG− required to use or skip correspondingly.
A special resource setRs preparation in step 2 allows us to use (2) optimization algorithms
and obtain either a final valid solution or a candidate solution with pretty accurate upper
estimate. The algorithm finishes when the next solution obtained from the max-heap
data structure is a valid solution composed of resources from G+ groups and, thus, its
Pw
a calculated with (2) satisfies rules for group dependencies availability calculations

(3).

3 Simulation Study

3.1 Considered Algorithm Implementation

For the simulation study we consider and compare the following algorithm implemen-
tations.

1. Firstly, we implemented brute-force algorithm to solve the resources allocation prob-
lem with (3) Pw

a → max optimization. We used this algorithm for a preliminary
analysis in small experiments with up to 21 resources to compare its optimization
efficiency with other approaches.

2. Next, we prepared three implementations of a general branch and bounds algorithm
described in Sect. 2.4. First implementation KnapsackGroup uses KnapsackP for all
interim allocations during the algorithm step 3. Greedy performs interim optimiza-
tions at step 3 withGreedyUnited algorithm. Finally,Greedy+ runsGreedyUnited for
all interimoptimizations, but once the solution is found, the final solution optimization
is performed again using more accurate KnapsackP approach.

3. Finally, we consider KnapsackP (KnapsackSingle) as standalone algorithms for the
comparison. This algorithm does not support group dependencies and performs (2)
Pw
a → max optimization. The obtained solution is then recalculated accordingly to

(3) to compare it to the algorithms above.



160 V. Toporkov et al.

For the simulation study we execute and collect resulting data for all the considered
algorithms (BruteForce, KnapsackGroup, Greedy, Greedy+ and KnapsackSingle) in
different resource environments with randomized characteristics ci, pi and group depen-
dencies. An experiment was prepared using a custom distributed environment simulator
[6, 14, 15]. For our purpose, it implements a heterogeneous resource domain model:
nodes have different usage costs and availability probabilities (https://github.com/dmi
eter/proba-sch/commits/master). Each node supports a list of active global and local
job utilization events. Figure 3 shows an example of such an environment with many
resources and a Gantt chart of the utilization events.

Additionally, we generate random uniformly distributed group dependencies
between the resources. So, the resources allocation problem can be defined with the
following parameters: N – number of available resources (each characterized with cost
ci and availability probability pi), G – number of different groups (containing random
non-intersecting subsets of resources), n – number of resources required for allocation
and C – available budget, i.e. constraint on the total cost of the selected resources.

3.2 Proof of Optimization Efficiency

The first experiment series studies algorithms optimization and computational efficiency
in comparison with BruteForce approach. Brute force is usually inapplicable in real-
world tasks due to its exponential computational complexity. However, it guarantees
exact optimization solution, and can be used to evaluate optimization characteristics of
other considered algorithms. During each simulation experiment, the resources alloca-
tion was independently performed by algorithms BruteForce, KnapsackGroup, Greedy,
Greedy+ and KnapsackSingle. The comparison is obtained with different values of
G, n,C of the allocation problem. As BruteForce applicability is limited, firstly we
performed resources allocation simulation with only N = 21 available resources.

Figure 4 shows resulting availability probabilityPw
a depending onnumbern ∈ [1; 21]

of requested resources in environment withN = 21 available resources,G = 8 different
groups and without the total cost restriction (C = ∑N

i ci). The main result is that pro-
posed algorithms KnapsackGroup, Greedy and Greedy+ provided the same Pw

a value
as BruteForce (that is why they are not presented in Fig. 4). KnapsackGroup theoret-
ically guarantees exact problem solution in integers and is expected to provide results
identical to BruteForce. Greedy algorithms provided optimal solution due to the lack of
the total cost limit (see GreedyUnited and MaxP descriptions in Sect. 2.3). However,
KnapsackSingle in most cases failed to provide optimal solution with up to 5% lower
availability probability compared to BruteForce. The equality is achieved only in two
simplified scenarios with n = 1 and n = 21, when group dependencies are not relevant
for the problem.

Figure 5 shows actual algorithms’ execution time required to achieve allocation
results fromFig. 4.As canbe seen,BruteForce calculation timedramatically increases for
n ∈ [7; 15] and exceeds half a second for n = 11. This is explained by the combinatorial
nature of selecting subset of n fromN available resources. Even themost computationally
complex KnapsackGroup algorithm, which combines pseudo polynomial 0–1 knapsack
implementation with branch and bounds approach is presented in Fig. 5 as a straight line
100 times lower compared to the BruteForce maximum. Greedy approaches were up to

https://github.com/dmieter/proba-sch/commits/master


Probabilistic Resources Allocation with Group Dependencies 161

Fig. 4. Simulation results: resulting availability probability Pwa depending on number n of
requested resources.

1000 times faster than BruteForce. So, according to the trend in Fig. 5, in environments
withN > 25BruteForcebecomespractically inapplicable andother exact algorithms and
approximations should be considered. The accuracy of such approximations in general
should be estimated with the economical restriction C on the total window allocation
cost.

Fig. 5. Simulation results: average calculation time depending on number n of requested
resources.

Figure 6 shows howwindowavailability probability depends on the allocation budget
C ∈ [30; 120] in problem setup with n = 8, G = 8 and N = 21. In this environment
only KnapsackGroup was able to obtain exact solutions (identical to BruteForce) for
all C values. Additionally, KnapsackGroup provides almost constant 5% advantage
over KnapsackSingle. The results of Greedy algorithms are also within 5% of the exact
solution and reaches BruteForce for C > 90. In general, the obtained simulation result
confirms accuracy of KnapsackGroup algorithm and gives an approximate estimate of
the accuracy of the more computationally simple algorithms.



162 V. Toporkov et al.

Fig. 6. Simulation results: resulting availability probability Pwa depending on the budget C ∈
[30; 120].

3.3 Practical Optimization Efficiency Study

Next experiment series studies proposed algorithms in more complex problem settings
withN = 200,G = 40 and n = 20. As brute force becomes impractical for such figures,
we use KnapsackGroup as a reference and accurate solution of (3).

Firstly, Fig. 7 shows availability probability as a function of C ∈ [40; 220]. Lower
bound was selected so that it was almost impossible just to allocate any 20 resources
with budget C < 40, without any optimization. So, the resulting Pw

a generally increase
with increasing C. Upper bound C > 200 allows to select almost any resources without
checking for the total cost limit. In this experiment setup with more resources and
optimization variability, Greedy algorithms are already seriously losing the accuracy
of the solution. The advantage of KnapsackGroup exceeds 20% for some values of C.
This result generally correlates with works [14, 15]. At the same time, KnapsackSingle
provides availability probability only 10% lower than the exact solution. In this way,
the absence of group dependencies information turns out advantageous compared to
the accuracy of greedy approximations of the multiplicative knapsack problem. Only in
scenarios with C > 200, i.e., without the cost restriction, Greedy is able to outperform
KnapsackSingle in environment with group dependencies between the resources.

Another important factor for the practical applicability is the algorithms’ calculation
time presented in Fig. 8 for the same environment settings. The obvious trend is that
tighter restrictions on the budget C cause a strong increase in working time for branch
and bounds - based algorithms (KnapsackGroup, Greedy, Greedy+). This is explained
by the necessity to select resources with respect to the C constraint, rather than by the
target criterion.



Probabilistic Resources Allocation with Group Dependencies 163

Fig. 7. Simulation results: resulting availability probability Pwa depending on the budget C ∈
[40; 220].

Fig. 8. Simulation results: average calculation time depending on the budget C.

And this strategy requires consideration of more different groups and splitting in
branch and bounds approach. For example, with C = 40, an average size of the solution
tree for KnapsackGroup was almost 5000 elements causing nearly 8 s of the execution
time. And with C = 120 the tree size decreased to nearly 100 elements leading to a sub
second execution time. Similar calculation time trend applies to Greedy tree algorithms
as well.

Thus, based on Figs. 7, 8 we conclude, that with tight economical budget restrictions
the most practically adequate option is a simple multiplicative 0–1 knapsack algorithm
[14], as such problem setup requires greater emphasis on the cost optimization and
less on the groups’ combinations. With a looser cost restriction (C ∈ [100; 200] in our
experiment) tree-based KnapsackGroup becomes a preferred option as it provides exact
optimization solution for an adequate calculation time. Finally, when there is no cost



164 V. Toporkov et al.

restriction, a tree-based Greedy algorithm can provide exact optimization result in the
least amount of calculation time.

4 Conclusion and Future Work

In this work, we address the problem of dependable resources co-allocation for parallel
jobs in distributed computing with group dependencies over the resources. Such group
dependencies usually define utilization events common for subsets of resources, such as
simultaneous allocation or release events. To handle this problem, we designed several
branch and bounds algorithms based on a multiplicative 0–1 knapsack problem.In a
simulation study we proved accuracy of the proposed algorithms in comparison with
a brute force approach, estimated their calculation time and practical applicability in a
more complex scheduling problems with up to 200 available computing nodes.

Future work will concern additional optimization in the algorithms’ complexity and
calculation time. In addition, we plan to consider similar allocation task based on an
additive 0–1 knapsack problem.

Acknowledgments. This work was supported by the Russian Science Foundation (project No.
22-21-00372, https://rscf.ru/en/project/22-21-00372/).

References

1. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven scheduling for cloud services
with data access awareness. J. Parallel Distrib. Comput. 72(4), 591–602 (2012)

2. Garg, S.K., Konugurthi, P., Buyya, R.: A linear programming-driven genetic algorithm for
meta-scheduling on utility grids. Int. J. Parallel Emerg. Distrib. Syst. 26, 493–517 (2011)

3. Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in grid computing. J. Concurr. Comput. Pract. Exp. 5(14), 1507–1542 (2002)

4. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid computing. In:
Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4_8

5. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria aspects of grid re-source
management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds.) Grid Resource Management.
State of the Art and Future Trends, pp. 271–293. Kluwer Academic Publishers (2003)

6. Toporkov,V., Toporkova,A., Bobchenkov,A.,Yemelyanov,D.:Resource selection algorithms
for economic scheduling in distributed systems. In: ICCS 2011, 1–3 June 2011, Singapore
(2011). Procedia Computer Science. Elsevier, vol. 4. pp. 2267–2276

7. Netto, M.A.S., Buyya, R.: A flexible resource co-allocation model based on advance reserva-
tions with rescheduling support. In: Technical Report, GRIDSTR-2007–17, Grid Computing
and Distributed Systems Laboratory, The University ofMelbourne, Australia, 9 October 2007

8. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In: Feitelson,
D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45540-X_6

9. Javadi, B., Kondo, D., Vincent, J., Anderson, D.: Discovering statistical models of availability
in large distributed systems: an empirical study of SETI@home. IEEE Trans. Parallel Distrib.
Syst. 22(11), 1896–1903 (2011)

https://rscf.ru/en/project/22-21-00372/
https://doi.org/10.1007/3-540-36180-4_8
https://doi.org/10.1007/3-540-45540-X_6


Probabilistic Resources Allocation with Group Dependencies 165

10. Rood, B., Lewis, M.J.: Grid resource availability prediction-based scheduling and task
replication. J. Grid Comput. 7, 479 (2009)

11. Tchernykh, A., Schwiegelsohn, U., El-ghazali, T., Babenko, M.: Towards understanding
uncertainty in cloud computing with risks of confidentiality, integrity, and availability. J.
Comput. Sci. 36 (2016)

12. Chaari, T., Chaabane, S., Aissani, N., and Trentesaux, D.: Scheduling under uncertainty:
survey and research directions. In: 2014 International Conference on Advanced Logistics and
Transport (ICALT), pp. 229–234 (2014)

13. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. J. Softw. Pract. Exp. 41(1), 23–50 (2011)

14. Toporkov, V., Yemelyanov, D.: Availability-based resources allocation algorithms in dis-
tributed computing. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331,
pp. 551–562. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_47

15. Toporkov, V., Yemelyanov, D., Grigorenko, M.: Optimization of resources allocation in high
performance distributed computingwith utilization uncertainty. In:Malyshkin, V. (eds.) PaCT
2021. LNCS, vol. 12942, pp. 325–337. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-86359-3_24

16. Toporkov, V., Yemelyanov, D., Bulkhak, A.: Machine learning-based scheduling and
resources allocation in distributed computing. In: Groen, D., de Mulatier, C., Paszynski, M.,
Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2022. LNCS, vol. 13353,
pp. 3–16. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08760-8_1

https://doi.org/10.1007/978-3-030-64616-5_47
https://doi.org/10.1007/978-3-030-86359-3_24
https://doi.org/10.1007/978-3-031-08760-8_1


Multicriteria Task Distribution Problem
for Resource-Saving Data Processing

Anna Klimenko(B) and Arseniy Barinov

Institute of IT and Security Technologies, RSUH, Kirovogradskaya Street, 25-2,
Moscow, Russia

anna_klimenko@mail.ru

Abstract. In the current paper a question of the resource-saving tasks distribution
is under consideration. The problem of computational resource saving is topical
because of the enormous data volumes, which are preprocessed partially by the
fog- and edge- network layers. In general, scheduling and resource allocation are
modeled via combinatorial optimization problems without consideration of the
fact that the computational environment is geographically distributed. The con-
sequence of such distribution is that the tasks assigned to some nodes have to
transmit the data through some transit network sections. As the data transmis-
sion produces workload and consumes time, which degrade the average residual
time of the nodes, in this paper we propose the novel problem model, which is
structural-parametric and focuses not only on the functional tasks assignment to
the nodes, but to the data transmission workload, which disseminates through the
data transmission routes. The generic solution method is proposed on the base
of multiplicative convolution and random search. The produced results show the
positive effect of theworkload distribution on the nodes reliability function values.

Keywords: Fog Computing · Tasks Distribution · Reliability

1 Introduction

Nowadays distributed computing is almost ubiquitous, including data processing in the
dynamic environments, such as fog and edge network layers. As the data volumes to
be processed increase, a lot of problems emerge in this field: resource allocation in
the lack of time condition [1, 2], information exchange between the participants of the
computational process [3, 4], load balancing [5, 6], energy consumption optimization
[7], etc.

Yet, very seldom publications are met, which pay attention to the average residual
life of the computational nodes within the fog- and edge- network tiers [8–10]. One can
see that the increase of the average residual life of the node, as well as the increase of the
reliability function values and the decrease of the failure rate allow to prolong the time of
resource expedient exploitation. Besides, some researches were made in this field [11],
it has been shown that the reliability function, as well as the average residual life of the
nodes depend on the way of computational tasks distribution.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 166–176, 2023.
https://doi.org/10.1007/978-3-031-41673-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_13&domain=pdf
http://orcid.org/0000-0001-6527-8108
https://doi.org/10.1007/978-3-031-41673-6_13


Multicriteria Task Distribution Problem for Resource-Saving Data Processing 167

However the most part of the papers consider the task distribution process as the
distribution within the environment with the fully interconnected nodes, while the situ-
ations when there are some transit nodes, which just transmit the information, are out of
the scope (Fig. 1).

Fig. 1. The comparison between full graph communication environment and the random one.

For example, studies [12, 13] consider the problem of nodes average residual life as a
reliability problem and formalize it with the load balancing objective function. Indeed, it
was demonstrated that such approach improves the gammapercent timebetween failures.
So the expedient exploitation time of the nodes increases and the exploitation cost, vice
versa, decreases. However, the studies considered focus on the fully interconnected
communication environment between the nodes, while the need to transmit data through
the intermediate network sections is out of the consideration.

Our previous studies present so-called “egoistic”(greedy) technique, which allows
to decide, if the computational node is more suitable for the data processing, or it is more
profitable for this particular node to transmit this data further (from the data source).
This approach can be quite insufficient, because we consider just one node and, actually,
this model and strategy can be used in the manner of “greedy” heuristic, which, of cause,
can produce the results of very high – or very low quality.

So, the purpose of this research is to create a basicmodel of tasks distribution problem
with the possibility to assign the priorities for the particular nodes. The model must take
into account the data transmission processes and the presence of intermediate nodes. We
assume the data transmission channels reliable and of the sufficient throughput. As the
problem model is produced, the generic technique for its solution must be provided and
tested.

The following sections of the paper contain:

– brief overview of the previous works;
– the problem formalization and the generic problem solution technique;
– some experimental results.



168 A. Klimenko and A. Barinov

2 Previous Work

The field of the tasks distribution through the network environments, including fog and
edge, is of a high importance for researchers. It can be mentioned that this field – in
the focus of resource allocation – is multidisciplinary, and includes, at least, such prob-
lematic areas as scheduling (non-linear discrete optimization problems), computational
complexity research (because of np-hard scheduling problems), heuristic and meta-
heuristic methods (to solve np-hard problems), the problems of dynamic re-scheduling,
and so on.

There are a lot of studies devoted to the resource allocation, the workload distribution
between fog and cloud, between fog nodes and edge nodes [14–16]. In general, these
problems are formulated as scheduling ones, or as knapsack problems [17].

As is mentioned earlier, the large number of works are devoted to the problem
of energy consumption, while the computational resource saving is almost out of the
consideration.

Our previous work [18], devoted to the saving of the computational resources, con-
sider only the situation, when the nodes follow the fairway of the “egoistic” behavior of
the nodes. Each node considers the question, if it is more profitable for it to process some
data or to retransmit it to the next node, which is further from the edge of the network. In
these works we consider the basics of the mathematical framework of the subject from
the reliability function point of view.

Reliability function value depends on the failure rate of the computational node,
while failure rate is connected to the device temperature and workload:

λ = λ0 · 2�T
10 (1)

where

– λ is a resulting failure rate,
– λ0 is the failure rate under conditions of unloaded device,
– �T is the temperature difference between the temperature of unloaded device and

the temperature of loaded one.

Also, the coefficient can be determined, which connects the node temperature and
the workload.

λ = λ0 · 2 kD
10 (2)

Consequently, the reliability function is determined as follows:

P(t) = e−λt = e−λt·2kD/10
(3)

where D is the node workload.
Consider the node workload for the node 3 (Fig. 2) as follows (for the case when the

node transits some data):

D = wi

pjttransfer
(4)



Multicriteria Task Distribution Problem for Resource-Saving Data Processing 169

where wi is the computational complexity of the task, ttransfer is the time needed for the
data transfer.

Consider the data processing shift discussed in [18], where the data transmission to
the cloud takes place (Fig. 2).

Fig. 2. Data processing shift illustration

With the data processing shift the workload of the processing node is:

D = wi

pjtprocess
(5)

Obviously, with the data shift tprocess is bigger than ttransfer , and so D decreases.
And, finally the following “egoistic” rule has been formed in [18].

wreceice + wprocess + wsend < 2
wreceive

x
, (6)

where x – time fraction for the time of data transfer process of the particular node,
wreceive – the computational complexity of the data receiving process,
wsend – the computational complexity of the data transmission process,
wprocess – the computational complexity of the data processing.

So, the data processing shift to the particular node is expedient in terms of reliability
when the computational complexity of the data receiving, sending and processing is
less than the division of two computational complexities of the data receiving by time
fraction of data transfer through the node.

One can see, that according to this rule, the duty of data processing can be passed
further and further from the initial point in the network, till the situation, when time
constraints will never be met. So, in the study [18] we stated that if the “duty” of tasks
processing moves away too far, the nearest node, which is in one network hop distance,
is chosen for the data processing.

As it was mentioned, such “egoistic” approach can result in acceptable solution, but
there is always risk to get poor results.

So, in the next section, a new problem is formulated – in a way of multiobjective (or
multicriteria) optimization problem.



170 A. Klimenko and A. Barinov

3 Task Distribution Problem for Resource-Saving Data Processing

Previously we consider the “greedy” strategy to distribute the computational tasks
through the nodes. In this situation every node doesn’t know about the state of its
neighbours, takes care just of itself, and estimates just its own computational resource
state.

It is obvious, that the problem formalization as an optimization one is much more
appropriate: to choose the best distribution such as to improve the overall reliability
state. This can be formulated in the following way.

Consider the network graph G = <V, U>, where V is a set of computational nodes,
U is a set of ribs. V = {vj} = {<j, pj>}, where j is the node identifier, pj is the node
performance.

The user operation is described as an acyclic graph T, which vertexes are assigned
to tasks, and ribs are assigned to information connections between them:

T = {ti} = {<i, wi, di>}, where i - is the subtask identifier,
wi - is the computational complexity of the subtask,
di - is the data volume transferred to the network.

The problem solution is the following tasks assignment:

A =
∣
∣
∣
∣
∣
∣

tij ...

...

... tnm

∣
∣
∣
∣
∣
∣

, such as P0(τ ) → max . (7)

where P0(τ ) is an overall system reliability, tij are the timemoments of task i assignment
to the node j.

Consider the objective function. In general, talking of the reliability of the system,we
have to consider two basic system structures, with parallel and consequent connection
of the elements.

So, parallel connection presupposes that system functions till at least one element
functions. Otherwise, consequent connection presupposes that system functions when
all elements are alive and performs their tasks. For parallel system P0(τ ) is described
with the following equation:

P0(τ ) = 1 −
∏

(1 − Pj(τ )),Pj(τ ) = e−λj t∗2
kDj
10 . (8)

Where P0(τ ) – is the overall reliability function value for the computational process
participants;
D – is the node workload;
k – is the coefficient of node temperature increase depending on the current workload,
tij – the moment of assignment of task i to the node j.

The consequent system reliability function is described as follows:

P0(τ ) =
∏

(Pj(τ )),Pj(τ ) = e−λj t∗2
kDj
10 . (9)



Multicriteria Task Distribution Problem for Resource-Saving Data Processing 171

The constraint for this problem is as follows: τ ≤ tdecl .
Such problem formalization allows to get the resulting tasks distribution, esteeming

the overall reliability function for the nodes community. So, the tasks are distributed
through the network in terms of “common good” of the community.

Besides, it is obvious that it is hardly possible to present the random network graph in
terms of parallel-consequent connections. So, the development of such network model
seems to be inexpedient.

To avoid the mentioned issues, we propose to formulate the problem of tasks
distribution as the multiobjective optimization problem.

Consider the computational process participants. Following the previous problem
statement, we replace the objective function (8–9) with the following: the number of
objective functions is equal to the computation process participants, including the data
transmission intermediate nodes. So, the objective functions can be represented in the
following way:

P1(τ ) = e−λ0τ ·2kD1/10;
P2(τ ) = e−λ0τ ·2kD2/10;
...

Pm(τ ) = e−λ0τ ·2kDm/10
.

(10)

where m is the number of nodes.
It must be mentioned that with every new tasks assignment, we have some new

objective functions in the objective functions vector, due to the distinguishes between
the data transmission routes. Data transmission routes emerge because of the need to
transfer data between tasks, which can be assigned to the distant nodes.

Then, we use the multiplicative convolution to get one-criterion optimization prob-
lem and to solve it. The usage of themultiplicative convolution approach allows to assign
some preference weights to the chosen nodes:

P0(τ ) =
m

∏

i=1

(Pi(τ ))ξi (10)

where ξi determines the preference of the particular node, which, for example, we’d like
to offload.

The generic method of iterative creating and testing of the tasks assignment effect is
presented in the Fig. 3.

Fig. 3. The generic method of the problem solving



172 A. Klimenko and A. Barinov

4 Experimental Results

Firstly, the computational problem graph was generated (Fig. 4): the nodes are weighed
with the computational complexity of the tasks, the edges are weighed with the data
volumes which are transmitted from task to task.

Fig. 4. Computational problem structure

The network graph is taken as is shown in the Fig. 5. We assume the network
connections of the sufficient bandwidth, as well as the network is homogeneous.

Fig. 5. Network structure

To solve themultiobjective problem described above some software were developed.
We used the following general means to search the solution for our tasks distribution
problem:

– Simple random search for the solutions improvement;
– Random forming of the routes for those cases when tasks, assigned to the nodes, have

to transmit their data through the mediator nodes;
– Random assignment of the tasks to the nodes.

Our problem is a structural-parametric one. According to the method in the Fig. 3
the following steps are performed.

– The tasks are assigned to the nodes in a random manner;
– Then, the routes are formed in a random way as well;
– So we have the community of the nodes, which take part in a computational process,

including those ones, which just transmit the data (because the data transmission is a
computational task as well);



Multicriteria Task Distribution Problem for Resource-Saving Data Processing 173

– The objective function is calculated for the nodes community.

Within the experiment we compare the initial solution (objective function value) and
the solution after the random search.

Initial objective function value F = 0,5943 with the tasks distribution shown in the
Fig. 6.

Fig. 6. Initial tasks distribution

After the 10000 search iteration the following objective function value was achieved:
F = 0,8777.

The distribution of the tasks is as shown in Fig. 7.

Fig. 7. Final tasks distribution

One can see that despite the increase of the tasks number per node, the number of
nodes decreases as well as the number and the length of the data transmission routes,
while the latter impacts the time for computational task processing. Also one can see
that tasks 0, 2, 3 are assigned to the same node, while the data transfer is quite intensive
between those tasks, and task 1 is assigned to the node 4, which is situated within one
network hop from the node 1. The tasks with intensive data exchange are assigned to the
scattered nodes, the main consequence of this is the need to use routes to transmit data
and to waste the time for it.

To complete the experimental research it is useful to estimate the individual relia-
bility functions of the nodes, which are the participants of the computational process
(Figs. 8, 9).



174 A. Klimenko and A. Barinov

Fig. 8. Reliability functions on the initial stage

Fig. 9. Reliability functions after the optimization

The comparison of two graphs presents the individual – for each node – effect
of the optimization: one can see that the optimized distribution shows better reliability
function estimations for all nodes.With the reliability function improvement the potential
exploitation time of the nodes increases too.

5 Conclusions

The main contribution of this research is the novel tasks distribution problem
formalization with the resource-saving objective function.

The main peculiarity of the model proposed is that we take into account the routes
between the nodes with assigned tasks, which affect the nodes set composition, the time
of data processing and the final appearance of the objective function vector.

The multiobjective optimization problem solving allows, by means of multiplicative
convolution values improvement, to increase the individual nodes reliability function
values and so to improve the expedient exploitation time of the nodes.

The experimental results proved the expediency of the approach proposed.



Multicriteria Task Distribution Problem for Resource-Saving Data Processing 175

References

1. D’Amato, A., Andrade, W.: A resource allocation model driven through QoC for distributed
systems (2022). https://doi.org/10.5772/intechopen.106458

2. Zhijun, G., Gang, C.: Distributed dynamic event-triggered and practical predefined-time
resource allocation in cyber–physical systems. Automatica 142, 110390 (2022). https://doi.
org/10.1016/j.automatica.2022.110390

3. Junbin, L., Jie, Z., Victor, L., Xu, W.: Distributed information exchange with low latency for
decision making in vehicular fog computing. IEEE Internet Things J. 9, 18166–18181 (2022).
https://doi.org/10.1109/JIOT.2021.3075516

4. Kanika, S., Bernard, B., Jennings, B.: Graph-based heuristic solution for placing distributed
video processing applications on moving vehicle clusters. IEEE Trans. Netw. Serv. Manag.
19, 1 (2022). https://doi.org/10.1109/TNSM.2022.3173913

5. HaghiKashani,M.,Mahdipour, E:. Load balancing algorithms in fog computing, 1–18 (2022).
https://doi.org/10.1109/TSC.2022.3174475

6. Singh, P., et al.: A fog-cluster based load-balancing technique. Sustainability 14, 1–14 (2022).
https://doi.org/10.3390/su14137961

7. Mahmoudi, Z., Darbanian, E., Nickray, M.: Optimal energy consumption and cost perfor-
mance solution with delay constraints on fog computing. Jordanian J. Comput. Inf. Technol.,
1 (2023). https://doi.org/10.5455/jjcit.71-1667637331

8. Yao, J., Ansari, N.: Fog resource provisioning in reliability-aware IoT networks. IEEE Internet
Things J., 1 (2019). https://doi.org/10.1109/JIOT.2019.2922585

9. Klimenko, A.: The basic elements of devices resource consumption decreasing metodology
for distributed systems on the basis of fog- and edge-computing. Proc. Southwest State Univ.
26, 151–167 (2023). https://doi.org/10.21869/2223-15602022-26-3-151-167

10. Melnik, E., Korovin, I., Klimenko, A.: Improving dependability of reconfigurable robotic
control system. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS
(LNAI), vol. 10459, pp. 144–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66471-2_16

11. Korovin, I., Melnik, E., Klimenko, A.: The fog-computing based reliability enhancement
in the robot swarm. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS
(LNAI), vol. 11659, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26118-4_16

12. Klimenko, A.B., Melnik, E.V.: A method of improving the reliability of the nodes containing
ledger replicas. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2021. LNNS, vol.
232, pp. 584–592. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90318-3_47

13. Klimenko, A., Kalyaev, I.: A technique to provide an efficient system recovery in the fog- and
edge-environments of robotic systems. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.)
ICR 2021. LNCS (LNAI), vol. 12998, pp. 100–112. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-87725-5_9

14. Salem, A., Algaphari, G.: Resource allocation in fog computing: a systematic review. J. Sci.
Technol. 27, 9–31. https://doi.org/10.20428/jst.v27i2.2052

15. Gong, C., He,W., Wang, T., Gani, A., Qi, H.: Dynamic resource allocation scheme for mobile
edge computing. J. Supercomput. (2023). https://doi.org/10.1007/s11227-023-05323-y

16. Liu, Z., Lan, Q., Huang, K.: Resource allocation for multiuser edge inference with batching
and early exiting. IEEE J. Sel. Areas Commun., 1 (2023). https://doi.org/10.1109/JSAC.2023.
3242724

https://doi.org/10.5772/intechopen.106458
https://doi.org/10.1016/j.automatica.2022.110390
https://doi.org/10.1109/JIOT.2021.3075516
https://doi.org/10.1109/TNSM.2022.3173913
https://doi.org/10.1109/TSC.2022.3174475
https://doi.org/10.3390/su14137961
https://doi.org/10.5455/jjcit.71-1667637331
https://doi.org/10.1109/JIOT.2019.2922585
https://doi.org/10.21869/2223-15602022-26-3-151-167
https://doi.org/10.1007/978-3-319-66471-2_16
https://doi.org/10.1007/978-3-030-26118-4_16
https://doi.org/10.1007/978-3-030-90318-3_47
https://doi.org/10.1007/978-3-030-87725-5_9
https://doi.org/10.20428/jst.v27i2.2052
https://doi.org/10.1007/s11227-023-05323-y
https://doi.org/10.1109/JSAC.2023.3242724


176 A. Klimenko and A. Barinov

17. Murhekar, A., Arbour, D., Mai, T., Rao, A.: Dynamic vector bin packing for online resource
allocation in the cloud (2023)

18. Klimenko, A.:Model andmethod of resource-saving tasks distribution for the fog robotics. In:
Ronzhin, A., Meshcheryakov, R., Xiantong, Z. (eds.) ICR 2022. LNCS, vol. 13719, pp. 210–
222. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23609-9_19

https://doi.org/10.1007/978-3-031-23609-9_19


Scheduling of Workflows with Task
Resource Requirements in Cluster

Environments

Oleg Sukhoroslov(B)

Institute for Information Transmission Problems of the Russian Academy of Sciences,
Moscow, Russia

sukhoroslov@iitp.ru

Abstract. Workflows is a popular model for computational and data
processing applications in science and technology. Such applications are
structured as a graph of tasks that run in distributed computing environ-
ments such as clusters, grids, and clouds. The choice of algorithm used
for scheduling the workflow tasks significantly affects the achieved perfor-
mance. The proposed workflow scheduling algorithms often use simpli-
fied resource allocation models and ignore resource fragmentation effects
arising in cluster environments with multicore machines. In this paper
we investigate the impact of task resource requirements on performance
of several well-known scheduling algorithms in such environments. By
means of simulated execution of real scientific workflows we demonstrate
that the performance of existing algorithms degrades in the presence
of task resource requirements due to inability to efficiently “pack” the
tasks in available resources. We propose an alternative approach based
on portfolio of heuristics that seeks to strike a balance between the effi-
cient task packing and prioritizing the critical tasks. The proposed app-
roach outperforms the existing algorithms for workflows with irregular
task requirements.

Keywords: Distributed computing · workflow · cluster · task
scheduling · resource allocation

1 Introduction

Many practical applications executed on parallel and distributed computing envi-
ronments are structured as a set of loosely coupled tasks with data or control
dependencies between them. In particular, computational and data processing
pipelines in science and technology are often described and executed in the form
of workflows [10]. A workflow task corresponds to execution of a standalone pack-
age which reads input data, performs data processing and writes output data.
The workflow description defines the data flows between the tasks in the form of
producer-consumer relationships. Workflows can be modeled as directed acyclic
graphs (DAGs) which vertices correspond to the tasks and edges correspond to
the data dependencies between the tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 177–196, 2023.
https://doi.org/10.1007/978-3-031-41673-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_14&domain=pdf
http://orcid.org/0000-0003-2836-2524
https://doi.org/10.1007/978-3-031-41673-6_14


178 O. Sukhoroslov

The scientific workflows frequently have high computational demands and
therefore are commonly executed in distributed computing environments such
as clusters, grids or clouds. The execution of workflows in such environments is
automated by means of runtime systems which perform resource management,
task scheduling and data movement [11]. An important challenge faced by run-
time systems is the task scheduling, i.e. when and on which resource to execute
each of the tasks. The scheduling decisions must be made so as to meet the
user objectives and constraints, which can encompass notions of performance,
monetary cost, energy consumption, reliability, etc. The scheduling decisions are
made using a scheduling algorithm which significantly affects the achieved per-
formance in terms of the mentioned objectives. In this work we consider the
execution of workflows on clusters of multicore machines and the most popular
objective for such environments – minimization of the workflow execution time.

An important practical aspect of workflow execution is the presence of task
resource requirements and associated capacity constraints. Indeed, each task
requires for its execution a specific number of CPU cores, amount of RAM, disk
space and so on. On the other hand, each machine of the target execution envi-
ronment provides some limited amount of CPU cores, RAM and disk space for
the execution of the workflow tasks. The assignment of tasks to machines should
be made such as to not exceed the available resource capacity of each machine.
Unfortunately, such constraints are often ignored in the literature. Many works
on DAG and workflow scheduling use a simple model where each machine is
capable of executing any task but only one at each time moment. However, such
model is not adequate for modern cluster environments consisting of multicore
machines that can have different capacities and can run many tasks simultane-
ously [43]. In such environments it is necessary to use a more complex resource
allocation model that take into account the resource requirements of individual
workflow tasks, which can vary from task to task. This aspect is poorly studied
in the context of workflow scheduling. While a few works do take into account
task resource requirements, they use them only for checking the feasibility of
running a task on a machine and do not try to optimize resource allocation.

While the existing workflow scheduling algorithms can be easily modified
to respect the additional resource requirements and constraints, it is not clear
whether their performance will be maintained in a setting of a cluster of multi-
core machines. And if not, how the performance can be improved? In this paper
we aim to answer these questions by means of simulating the execution of real-
world scientific workflows on a diverse set of cluster configurations using several
well-known scheduling algorithms. We model different scenarios by varying the
task resource requirements in terms of CPU cores and memory. We demonstrate
that the performance of critical path-based algorithms degrades in the pres-
ence of task resource requirements due to resource fragmentation. We propose
an alternative approach based on portfolio of heuristics that seeks to strike a
balance between the efficient task packing and prioritizing the critical tasks.
The proposed approach outperforms the existing algorithms for workflows with
irregular task requirements.



Scheduling of Workflows with Task Resource Requirements 179

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the studied workflow scheduling problem, used application
and system models, and the evaluated scheduling algorithms. Section 4 presents
the evaluation setup, including the used workflow instances, system configura-
tions and algorithm comparison metrics. Section 5 presents and discusses the
evaluation results for three scenarios with varying complexity of task packing.
Finally, Sect. 6 concludes and outlines the future work.

2 Related Work

The design of algorithms for scheduling workflows or, more generally, task graphs
has received an enormous amount of effort. The problem of scheduling a task
graph with precedence constraints such as to minimize the makespan has been
extensively studied in the context of both homogeneous and heterogeneous multi-
processor systems [22,36,41]. This problem is NP-complete in the general case
[15], and polynomial-time solutions are known only for a few restricted cases.
Therefore researchers have resorted to designing heuristics which can find good
solutions within a reasonable amount of time. These heuristics employ vari-
ous techniques such as list scheduling, task clustering, duplication and guided
random search. List scheduling heuristics, based on prioritizing the tasks along
the critical path, such as the well-known Heterogeneous Earliest Finish Time
(HEFT) algorithm [41], generally provide better results at a lower scheduling
time than the other approaches.

The majority of classic DAG scheduling algorithms including HEFT [3,6,
35,41] assume that the target system consists of a set of processors capable
of executing any task but only one at each time moment, and that each task
is executed by a single processor. The model where processors have different
capabilities, i.e. can execute only a subset of the tasks, has been studied in [33].
The basic model has also been refined to account for data-parallel tasks that can
be executed on arbitrary numbers of processors [28].

The proliferation of distributed computing environments, clouds and work-
flow management systems [5,10] has stimulated a new wave of research related to
workflow scheduling algorithms [2,4,18,24,31]. The studied problem models and
assumptions are refined based on the practical aspects of workflow execution
in modern computing environments. The problem of efficient workflow execu-
tion in grid environments has been addressed by taking into account resource
heterogeneity, optimizing network data transfers and using application perfor-
mance models [7,26]. The monetary costs associated with task execution in grid
and cloud computing environments have been taken into account by extensively
studying the related problem statements, including the deadline-constrained
[1,45], budged-constrained [32] and multi-objective [37,40] formulations. In con-
trast to previously considered target environments with static configuration, the
use of clouds allows to dynamically assemble and manage the task execution
environment from the allocated virtual machines (VMs) [27]. More recent works
consider the problem of cost-efficient scheduling of multiple workflows in clouds



180 O. Sukhoroslov

while meeting the diverse QoS requirements [20,25,30,46]. The rising impor-
tance of energy efficiency has led to development of workflow scheduling algo-
rithms that explore trade-offs between performance and energy efficiency [13].
The impact of network contention for data-intensive workflows along with the
used data placement and transfer strategies are studied in [38,39].

Despite the increased complexity and diversity of the problem settings, most
of the proposed workflow scheduling algorithms are based on ideas and princi-
ples from the classic DAG scheduling literature and inherit the simple model of
resource allocation. As a rule, task resource requirements are ignored and it is
naively assumed that any task can be executed on any of the available machines.
The simultaneous execution of multiple tasks per machine is also not considered.
For example, in a recent work [30] it is assumed that all used VM types have
sufficient memory to execute any of the tasks and are only capable of processing
one task at a time. A few works that take into account resource requirements
use them only for checking the feasibility of running a task on a machine [26,34].
Many works targeting cloud environments avoid resource allocation issues by
executing different types of tasks on different VM types with capacities selected
based on task requirements [14,30,44]. A common argument against running
multiple tasks simultaneously on the same VM is that resource contention can
impact the task execution times [44]. However, since VMs actually run on and
share resources of physical machines (PMs), this just pushes the resource allo-
cation and isolation issues to the cloud provider which has to map VMs to PMs
[14,19].

Despite the rise of cloud computing, clusters of multicore machines is still a
popular target environment for workflow execution. In such environments it is a
common practice to simultaneously run multiple tasks per machine in order to
achieve high resource utilization [43]. Task resource requirements are taken into
account during the task scheduling in order to avoid resource shortage and con-
tention. Packing tasks with diverse requirements into machines can lead to such
effects as resource fragmentation (the “holes” of unused resources are too small
to be useful) and stranding (inability to use idle resources of one type because
there are no spare resource of another type) [42]. A common approach to avoid
such problems is to employ heuristics for the multidimensional bin packing. This
approach has been applied both in the context of task to machine mapping [16]
and virtual machine placement [29]. In [17] authors consider scheduling of data-
parallel jobs represented as DAGs on clusters. The proposed Graphene scheduler
substantially improves the job completion times by leveraging both awareness
of task dependencies and efficient task packing. The authors demonstrate that
ignoring any of these aspects, i.e. using a critical path-based scheduler or a
packing-based scheduler, can lead to poor results for DAGs with heterogeneous
resource requirements.

To the best of our knowledge, there are only two recent works that consider
scheduling of workflow applications under a similar resource allocation model.

In [47] authors study workflow scheduling in clouds using a model which
allows multiple tasks to run concurrently on a VM according to their multi-
resource demands. The authors propose a list-scheduling framework for this



Scheduling of Workflows with Task Resource Requirements 181

model and a deadline-constrained workflow scheduling algorithm based on this
framework to optimize the cost of workflow execution. However, this work tar-
gets a dynamically provisioned cloud-based environment and considers deadline-
constrained cost optimization, while our work targets static cluster environment
and considers makespan optimization.

In [21] authors consider workflow scheduling on multi-resource clusters with
the goal of minimizing the average makespan. They propose GoDAG, an app-
roach that directly learns the scheduling policy from experience through deep
reinforcement learning. However, the authors compare GoDAG only with simple
Shortest Task First heuristic, classic Dynamic Critical Path algorithm for identi-
cal processors [23] and task packing heuristic from [16]. Also, the workflows used
in evaluation consist of only 100 tasks and, while using structures from three
classic workflow applications, contain randomly generated resource demands and
execution times. In contrast, our work includes comparison with several state-
of-the-art algorithms, uses a more diverse set of real workflow instances of differ-
ent sizes and considers multiple scenarios for generating task requirements with
increasing complexity. Unfortunately, it is hard to compare our approach with
GoDAG because its implementation is not published.

3 Workflow Scheduling

3.1 Problem Statement

Workflow is modeled as a directed acyclic graph (DAG) G = (T,D), where T is
the set of tasks and D is the set of dependencies between the tasks. If (i, j) ∈ D
then task tj depends on some data produced by task ti, i.e. ti is a parent task for
tj . A task without parents is called an entry task and a task without children is
called an exit task. The edge weight dij is equal to the amount of data transferred
from task ti to task tj . A task can be executed on some machine only after all its
parent tasks are completed and their outputs are transferred to the machine. It
is assumed that tasks are unaware of each other and do not communicate during
their execution, i.e., each data transfer occurs only between the executions of
the corresponding parent and child tasks.

The tasks are executed in a system represented by a set of machines M
connected via a network. Each machine mk has Ck CPU cores with identical
performance and Rk amount of memory. In a homogeneous system all machines
have the same resource capacities and performance, while in a heterogeneous
system machines’ characteristics vary. Each task ti requires for its execution ci
CPU cores and ri amount of memory. Each task must be executed entirely on
a single machine. The task execution is non-preemptive and can be overlapped
with data transfers between the machines. The total amounts of resources (cores
and memory) consumed by the tasks executed by the machine at each time
moment must not exceed the machine’s capacities (Ck and Rk). The execution
time ET (ti,mk) of each task ti on each machine mk can be given explicitly or as
follows. Each task has a weight wi equal to the required amount of computations
and each machine has a CPU core performance pk. Then the task execution time



182 O. Sukhoroslov

is derived as ET (ti,mk) = wi/cipk. We use this approach in the paper by using
the number of floating point operations as a task weight and the floating point
operations per second as a CPU core performance. The performance degradation
due to resource contention between the tasks executing in parallel on the same
machine is not modeled.

Before a task t can begin its execution on machine m, its input data (produced
by the parents of t) must be transferred to m. When the task is completed its
output data is stored on m. When the parent and child tasks are executed on the
same machine, the parent’s output is available immediately. Otherwise the data
must be transferred via the network from the machine that executed the parent
task. The time needed to transfer the data between tasks ti and tj executed
on different machines is computed as DTT (ti, tj) = L + dij/B, where L is the
network latency and B is the network bandwidth. It is assumed that each data
transfer receives the full bandwidth, i.e. there is no contention.

Given the described application and system models, the considered work-
flow scheduling problem is to find the assignment of tasks to machines which
minimizes the workflow execution time or makespan.

3.2 Baseline Algorithms

As a baseline in this work we use several well-known static DAG scheduling
algorithms. These algorithms have been applied to workflow scheduling and are
also similar to other proposed workflow scheduling algorithms. First, these algo-
rithms are designed for a problem setting with a simple resource allocation model
ignoring task resource requirements. Second, all these algorithms are aimed at
prioritizing the tasks along the critical path and follow the common iterative
list-scheduling technique consisting of two steps. During the task selection step
the algorithm selects the next task for scheduling by using some ranking func-
tion or criterion. During the resource selection step the algorithm assigns the
previously selected task to resource also chosen by using some criterion. These
steps are repeated until no further tasks can be scheduled.

Dynamic-level Scheduling (DLS): An algorithm that uses the following
dynamic level metric computed for each task-machine pair [35]:

DL(ti,mj) = SL(ti) + Δ(ti,mj) − EST (ti,mj) ,

where SL(ti) is the static level of task ti defined as the largest sum of median
execution times of tasks along any directed path from ti to exit task, Δ(ti, nj) is
the difference between the median of execution times of task ti on all machines
and wi,j , EST (ti,mj) is the earliest start time of task ti on machine mj . On each
iteration the algorithm considers all ready tasks and selects a task-machine pair
with the maximum DL value, updates the list of ready tasks and recomputes
the DL values.

Heterogeneous Earliest Finish Time (HEFT): A low-complexity
heuristic [41] which has demonstrated high efficiency for DAG scheduling and



Scheduling of Workflows with Task Resource Requirements 183

workflow scheduling in particular [39]. The tasks are scheduled in descending
order of their rank computed as

rank(ti) = wi + max
tj∈children(ti)

(
DTT (ti, tj) + rank(tj)

)
,

where wi is the average execution time of task ti across all machines and ci,j
is the average data transfer time between tasks ti and tj across all pairs of
machines. Each task is scheduled to machine with the earliest task finish time.
The rank function defines a valid topological order, therefore, similar to DLS, a
task is scheduled after its parents and the required earliest start time estimates
can be computed.

Lookahead (LA): A static algorithm that can be considered as an extension
of HEFT [6]. It uses the same ranking function for task selection, but resource
selection is based on scheduling the subsequent tasks using HEFT and selecting
machine which minimizes the maximum task finish time. Hence a task completion
can be delayed if this reduces the overall makespan, making the algorithm less
greedy. The examined subsequent tasks can include only immediate children of a
task, recursive children up to some depth, or all remaining tasks. In this work we
use the latter variant which has the best performance, but also has the highest
computational complexity.

Predict Earliest Finish Time (PEFT): A static algorithm that attempts
to achieve the benefits of Lookahead while keeping the computational complexity
low [3]. To do this it precomputes the values of Optimistic Cost Table (OCT)
for each task-machine pair as follows:

OCT (ti,mk) = max
tj∈children(ti)

min
mn∈M

(OCT (tj ,mn) + ET (tj ,mn) +DTT (ti, tj ,mk,mn)) .

The idea behind this criterion is to estimate the remaining execution time
disregarding the machine availability. The tasks are scheduled in decreasing order
of the mean OCT value across all machines. A task is assigned to a node that
minimizes the sum of task finish time and OCT .

3.3 Accounting for Task Resource Requirements

The described baseline algorithms can be easily adapted to account for task
resource requirements and support execution of multiple tasks per machine.
Indeed, only the procedure used in machine selection step to find the earliest
start time for execution of a task on a given machine should be modified to
respect the resource capacity constraints, while the main algorithm logic is not
changed.

However, such algorithms can make bad decisions in a setting with varying
resource requirements and machine capacities as illustrated on the Fig. 1. The
workflow in this example contains four tasks requiring a single CPU core but with
different amounts of memory. The system includes two machines with different
processing speeds and resource capacities. The schedule produced by HEFT (also
by DLS) is depicted on the upper right corner. Task B is scheduled before C and



184 O. Sukhoroslov

D, and is assigned to the fastest machine, leaving no possibility for simultaneous
execution of D due to the memory fragmentation. The optimal schedule depicted
on the bottom right corner places B on the slower machine thereby allowing the
simultaneous execution of all three tasks.

Fig. 1. Suboptimal scheduling of tasks with resource requirements by HEFT.

This example illustrates the motivation behind this work. HEFT and other
baseline algorithms are aimed at optimizing the execution of tasks along the
critical path. But in the presence of shared resources such as CPU cores and
memory an uncareful task assignment can lead to resource fragmentation that
can block the execution of subsequent tasks. This results in reduced system
utilization and increased workflow execution time. In this particular example,
Lookahead and PEFT manage to produce the optimal schedule. However, simi-
lar “bad” examples can be provided for these algorithms as well. Also note that
the presented example showed the case of only a single resource (memory) frag-
mentation. When the tasks have different CPU cores requirements the situation
becomes more complex since both resources can be fragmented.

3.4 Heuristics Portfolio

To improve the workflow scheduling in a setting with varying resource require-
ments and machine capacities we propose to leverage the multidimensional
bin packing heuristics. Such heuristics has been previously applied to improve
resource utilization and avoid fragmentation in the context of cluster schedul-
ing [16] and virtual machine placement [29]. Inspired by the classic bin packing
heuristics such as BestFit, such algorithms assign a task to machine that max-
imizes some packing score. For example, in [16] the best packing efficiency was
obtained by using as such score the dot product between the vector of task
resource requirements and the vector of available resources on the machine.

Instead of relying on a single heuristic we propose to use a set of heuristics
that seeks to strike a balance between the efficient task packing and prioritizing
the critical tasks. These heuristics are based on two list scheduling variants and
use different task and machine selection criteria. The schedule is build dynam-
ically in runtime by considering only ready tasks and idle resources, though a
similar approach can also be applied as a static algorithm.



Scheduling of Workflows with Task Resource Requirements 185

The first list scheduling variant is the same as in the baseline algorithms – the
task selection step is followed by the machine selection step. The task selection
step considers only ready tasks (i.e. tasks which parents are already completed)
and uses one of the following criteria (ties are broken by preferring the task with
maximum flops):

1. Pick the task with the largest amount of computations (flops),
2. Pick the task with the largest required CPU cores,
3. Pick the task with the largest required memory,
4. Pick the task with the largest sum of normalized CPU cores and memory,
5. Pick the task with the largest product of normalized CPU cores and memory,
6. Pick the task with the largest product of normalized CPU cores and flops,
7. Pick the task with the largest product of normalized memory and flops,
8. Pick the task with the largest product of flops and the sum of normalized

CPU cores and memory,
9. Pick the task with the largest rank as computed in HEFT,

10. Pick the task with the largest amount of input and output data,
11. Pick the task with the largest number of children tasks.

The machine selection step considers only machines with enough idle resources
and uses one of the following criteria (ties are broken by preferring the machine
with the highest speed):

1. Pick the machine with the highest speed,
2. Pick the machine with the most available CPU cores,
3. Pick the machine with the most available memory,
4. Pick the machine with the least available CPU cores,
5. Pick the machine with the least available memory,
6. Pick the machine with the largest dot product between task requirements and

available resources (normalized to range from 0 to 1),
7. Pick the machine with the highest sum of dot product (see above) and nor-

malized machine speed,
8. Pick the machine that stores the largest amount of task input data.

The second list scheduling variant reverses the steps – the machine selection
step is followed by the task selection step. The idea is to pick the most suitable
task to pack into the given machine. The machine selection step currently uses
a single criterion – pick the machine with the fastest speed among the machines
with available resources (ties are broken by preferring the machine with the most
available CPU cores). The task selection step considers only ready tasks and uses
one of the following criteria (ties are broken by preferring the task with highest
flops):

1. Pick the task with the largest task rank as computed in HEFT,
2. Pick the task with the largest dot product between task requirements and

available resources,



186 O. Sukhoroslov

3. Pick the task with the largest weighted sum of normalized task rank and dot
product (as above): score(ti,mk) = αrank(ti) + (1− α)dot_product(ti,mk),
where α regulates the priority of critical path scheduling in comparison to
efficient task packing (values 0.25, 0.5 and 0.75 were used in experiments),

4. Pick the task with the largest product of task rank and dot product,
5. Pick the task with the largest dot product among the top N tasks by rank

(N=10 was used in experiments).

This results in 95 heuristics in total implementing different list scheduling
variants and criteria combinations. We combine these heuristics in a single port-
folio algorithm which takes the best schedule found by the heuristics.

4 Evaluation Setup

4.1 Workflow Instances

In this work we use 150 real-world scientific workflow instances corresponding to
9 applications from different domains such as bioinformatics, seismology, astron-
omy, etc. These instances, derived from the logs of actual workflow executions,
are provided by the WfCommons project [9]. Each workflow instance is provided
as a JSON file conforming to the WfCommons JSON Schema. It includes the
information about the execution environment (machines, their speed and num-
ber of cores) and the executed workflow tasks (task name, task runtime, input
and output files with their sizes, machine executed the task). This information
allows to recover the DAG structure and the weights of its vertices and edges
according to the previously described model.

Table 1. Characteristics of workflow instances

Workflow # Tasks Depth Width Parallelism CCR Max work/data

1000Genome 22 52–902 3 28–572 13–152 47–487 2.14/75.62
BLAST 15 43–303 3 40–300 34–269 0.02–6.5e5 42.87/5119
BWA 15 104–1004 3 100–1000 4–26 32–105 3.78/57
Cycles 16 67–1091 4 32–540 5–62 2265–7741 0.9/7.77
Epigenomics 26 41–1695 9 9–420 5–97 684–2373 1.17/12.7
Montage 11 58–1312 8 18–936 10–79 234–1055 3.08/17.42
Seismology 10 101–1001 2 100–1000 27–116 36694–78748 0.02/0.02
SoyKB 10 96–676 11 50–500 2.5–7.8 62–174 6.03/2.88
SRA Search 25 22–104 3–4 11–51 5–24 775–3092 5.64/78.87

Table 1 summarizes the characteristics of the used workflow instances. The
small DAG depths and large widths indicate that these workflows have high
potential for parallel execution. The parallelism degree is evaluated based on
the ratio of the total amount of computations (task sizes) and the critical path



Scheduling of Workflows with Task Resource Requirements 187

length (omitting the data transfers). The computation-to-communication ratio
(CCR), defined as the ratio of the total amount of computations (in Gflops) and
the total size of data transfers (in GBytes), allows to estimate the impact of data
transfers and identify data intensive workflows. Finally we report the maximum
values of work (hours of execution on 10 Gflop/s machine) and total files size in
GB for each workflow type.

Unfortunately, the CPU cores and memory used by tasks are provided only
for BLAST and BWA workflows. Therefore in this work we use randomly gener-
ated task requirements. The three versions of each workflow are created which
correspond to different scenarios with increasing task packing difficulty:

– Simple: each task requires a single CPU core and has no memory requirements.
– Regular : all tasks of the same type (inferred by the task name prefix) have the

same randomly generated CPU and memory requirements.
– Irregular : each task has individual randomly generated CPU and memory

requirements.

The CPU cores requirements are generated in the range [1,mink(Ck)], while
the memory requirements are generated in the range [2,mink(Rk)] GBytes. Only
integer values were used for both requirements.

4.2 System Configurations

The scientific workflows are frequently executed on clusters consisting of mul-
ticore machines connected with Ethernet network. To provide a diverse set of
scenarios for experiments we used 8 cluster configurations listed in Table 2. These
configurations differ by their size, heterogeneity and performance. Each machine
has from 4 to 24 cores with performance ranging from 2 to 6 Gflop/s (this is not
a theoretical peak performance but the actual performance achieved for executed
tasks). The machines are connected with 100GbE network.

Table 2. System configurations

System Machines Cores per Machine Memory per Machine

cluster-hom-4-32 4 8 16
cluster-hom-4-64 4 16 32
cluster-hom-8-64 8 8 16
cluster-hom-8-128 8 16 32
cluster-het-4-32 4 4,8,16 8,16,32
cluster-het-4-64 4 8,12,20,24 16,24,40,48
cluster-het-8-64 8 4,8,16 8,16,32
cluster-het-8-128 8 8,16,24 16,32,48



188 O. Sukhoroslov

4.3 Performance Metrics

The following metrics are used for comparison of scheduling algorithms.
The main performance measure of a scheduling algorithm s on a particular

problem instance p = (workflow, system) is makespans,p - the workflow execu-
tion time under the schedule produced by the algorithm. However, since a large
set of workflow instances with diverse properties (e.g. critical path length) is
used, it is necessary to normalize the makespan to meaningfully compare and
aggregate the results across all instances. For this purpose we use the Degra-
dation from Best (DFB) metric [8] which is the relative difference between the
algorithm’s makespan and that achieved by the best algorithm for this problem
instance:

DFB(s, p) =
makespans,p − min{makespans,p : s ∈ S}

min{makespans,p : s ∈ S} .

An alternative way to compare the results of multiple algorithms across a
diverse set of problem instances relies on performance profiles [12]. Originally
introduced to assess the performance of optimization software, performance pro-
files provide a general method to aggregate and visualize the benchmark results.
Algorithm’s performance profile is the cumulative distribution function for the
performance ratio

ρs(τ) =
1
np

size{p ∈ P : rp,s ≤ τ},

where np = |P | is the number of problem instances, rp,s is the performance ratio
of algorithm s on problem instance p:

rp,s =
makespans,p

min{makespans,p : s ∈ S} .

We also measure and report the running time of an algorithm, i.e. its exe-
cution time for computing the schedule for a given workflow. This metric corre-
sponds to the cost of using the algorithm.

4.4 Simulation Framework

The evaluation of scheduling algorithms on the used workflow instances is per-
formed by means of simulation. For each (workflow, system, algorithm) triple
we simulate the execution of the workflow in the system using the schedule pro-
duced by the algorithm. As a result, we obtain the achieved makespan, i.e. the
duration of workflow execution. It is assumed that the task execution and data
transfer times used by the algorithms are accurate, i.e. they are not changed
during the simulation. Therefore the obtained makespan should be equal to the
makespan expected by the algorithm.

For simulation purposes we use DSLab DAG1, a library for studying the DAG
scheduling algorithms. It allows to describe a DAG and simulate its execution
1 https://github.com/osukhoroslov/dslab/tree/main/crates/dslab-dag.

https://github.com/osukhoroslov/dslab/tree/main/crates/dslab-dag


Scheduling of Workflows with Task Resource Requirements 189

in a given distributed system using the specified scheduling algorithm, including
the user-defined one. The library includes the implementations of the considered
scheduling algorithms.

5 Evaluation Results

Using DSLab DAG we have performed 118800 simulations (99 algorithms × 150
workflow instances × 8 systems) for each considered scenario.

5.1 Simple Scenario

In this scenario we consider workflow instances where each task requires a single
CPU core and has no memory requirements. This is the most simple case in
terms of task packing which sets the baseline for further scenarios.

The aggregated results for each algorithm are presented in Table 3. We report
the number of times the algorithm produced the best makespan and the average
values of DFB and running time (80th percentile values are also provided in
brackets). The corresponding performance profiles are presented on Fig. 2 (left).
As it can be seen, all baseline algorithms except PEFT clearly outperform Port-
folio. Lookahead performs the best but with significantly higher running time,
while HEFT and DLS have a similar performance in terms of makespan.

Among the Portfolio algorithms the best results are achieved by the following
heuristics that outperform PEFT:

– Pick the task with the largest HEFT rank, schedule the task to machine with
the highest sum of normalized dot product and machine speed,

– Pick the machine with the fastest speed, schedule to it the task chosen using
one of criteria combining dot product and HEFT rank,

– Pick the task with the largest HEFT rank, schedule the task to machine with
the fastest speed.

The result of the best heuristic is also presented in the Table 3. From there
it can be seen that the combination of multiple heuristics into Portfolio indeed
allows to significantly improve the performance since different heuristics con-
tribute best results for different cases.

5.2 Regular Scenario

In this scenario we consider workflow instances where all tasks of the same type
(inferred by the task name) have the same randomly generated CPU and memory
requirements. This is a reasonable assumption if the tasks of the same type
comprise a single workflow stage and process the similarly sized inputs. Since
the used workflow instances have small depths and large widths (see Table 1),
this scenario produces many identical tasks with only a small variation of their
“sizes”.



190 O. Sukhoroslov

Table 3. Results for simple scenario.

Algorithm Best DFB, % Running time

Lookahead 1104 0.04 (0) 365 (330)
HEFT 541 0.61 (1.15) 0.07 (0.10)
DLS 555 0.80 (1.41) 8.37 (6.85)
PEFT 273 8.68 (15.58) 0.08 (0.11)
Portfolio 46 3.77 (4.87) 10.64 (14.11)
Best from Portfolio 11 6.76 (8.38) 3.84 (1.73)

The aggregated results for each algorithm are presented in Table 4. The per-
formance profiles are presented on Fig. 2 (right). It can be seen that the rela-
tive performance of the algorithms has noticeably changed. While Lookahead
and HEFT still have the best performance, the gap between them and Portfo-
lio has significantly decreased. At the same time DLS performance is degraded
and became close to PEFT. This demonstrates that the task resource require-
ments indeed impact the performance of baseline algorithms, while Portfolio
takes advantage from using the packing heuristics. It outperforms Lookahead by
more than 10% in 1.8% of cases, with the largest relative gap of 34%.

The best results within Portfolio are indeed achieved by heuristics using the
second list scheduling variant and combining the dot product with HEFT ranks.
The best heuristic contributes only about 17% of the best Portfolio results which
again confirms the advantage of combining multiple heuristics.

Table 4. Results for regular scenario.

Algorithm Best DFB, % Running time

Lookahead 962 0.70 (0) 801 (706)
HEFT 81 1.66 (2.50) 0.09 (0.13)
DLS 58 5.88 (7.74) 8.83 (9.95)
PEFT 30 6.54 (10.53) 0.09 (0.13)
Portfolio 187 2.76 (2.87) 14.42 (17.91)
Best from Portfolio 31 9.27 (11.27) 0.60 (0.18)

5.3 Irregular Scenario

In this scenario we consider workflow instances where each task has individual
randomly generated CPU and memory requirements. This is the most challeng-
ing scenario in terms of the task packing since the produced task “sizes” are
highly irregular. This may correspond to a situation when the input data sizes
vary between the tasks of the single type.



Scheduling of Workflows with Task Resource Requirements 191

Fig. 2. Performance profiles for simple (left) and regular (right) scenarios.

The aggregated results for all algorithms are presented in Table 5. The per-
formance profiles are presented on Fig. 3 (left). As expected, the increase of task
requirements heterogeneity leads to further degradation of the baseline algo-
rithms due to inefficient task packing and resource fragmentation. Portfolio is
the clear leader in this scenario in terms of the average and 80th percentile per-
formance. It outperforms Lookahead by more than 10% in 14% of cases, with
the largest relative gap of 46%. On the other hand, in 8.7% of cases Portfolio
is outperformed by the baseline algorithms by more than 10%, with the largest
relative gap of 85%. These observations are aligned with the relative positions of
the performance profile curves. Note also the prohibitively high running times
of Lookahead that are further increased in this scenario.

Table 5. Results for irregular scenario.

Algorithm Best DFB, % Running time

Lookahead 280 4.88 (8.37) 1065 (908)
HEFT 44 8.42 (12.89) 0.09 (0.14)
DLS 37 9.97 (14.00) 10.06 (11.33)
PEFT 29 12.11 (17.70) 0.09 (0.15)
Portfolio 858 3.15 (1.18) 13.80 (16.06)
Best from Portfolio 47 21.29 (37.39) 0.77 (0.18)



192 O. Sukhoroslov

Fig. 3. Performance profiles for irregular scenario (left - all applications, right - without
1000Genome and BLAST).

The best results within Portfolio are again achieved by heuristics using the
second list scheduling variant and combining the dot product with HEFT ranks.
However now the best heuristic contributes only about 5% of the best Portfolio
results, so it strengthens the argument for using the portfolio approach.

The performance profiles for irregular scenario per each workflow application
are presented on Fig. 4. For the most of applications, except 1000Genome and
BLAST, there is consistent advantage of Portfolio, while the gap varies from
application to application. The performance profiles after excluding these two
applications are presented on Fig. 3 (right). The least advantage of Portfolio is
observed for 1000Genome, where it is outperformed by the baseline algorithms
by more than 10% in 20% of cases. As for BLAST, Portfolio achieves the best
average DFB but in some cases its makespan is significantly larger than Looka-
head’s one up to 85%. This clearly shows a room for improvement of the proposed
approach which will be investigated in the future work.



Scheduling of Workflows with Task Resource Requirements 193

Fig. 4. Performance profiles for irregular scenario per application.

6 Conclusion and Future Work

In this paper we have investigated the impact of task resource requirements and
related constraints on the performance of workflow scheduling algorithms in clus-
ter environments with multicore machines capable of executing multiple tasks
simultaneously. By means of simulated execution of real scientific workflows on a
diverse set of cluster configurations we have demonstrated that the performance
of existing algorithms degrades in the setting with varying resource requirements
and machine capacities. This can be explained by the fact that such algorithms,
aimed at prioritizing the tasks along the critical path, can make poor allocation
decisions leading to resource fragmentation and reducing the opportunities for
the execution of subsequent tasks. To improve the scheduling performance in
such settings we have proposed the portfolio of heuristics that seeks to strike a
balance between the efficient task packing and prioritizing the critical tasks. The



194 O. Sukhoroslov

proposed approach outperforms the existing algorithms for workflows with irreg-
ular task requirements. The evaluation setup and instructions for reproducing
this research are published on GitHub2.

Future work will focus on further analysis of the arising trade-offs, improve-
ment of the presented approach and experiments on other DAG instances.

Acknowledgements. This work is supported by the Russian Science Foundation
(project 22-21-00812).

References

1. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput.
Syst. 29(1), 158–169 (2013)

2. Adhikari, M., Amgoth, T., Srirama, S.N.: A survey on scheduling strategies for
workflows in cloud environment and emerging trends. ACM Comput. Surv. (CSUR)
52(4), 1–36 (2019)

3. Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems
by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694
(2014)

4. Arya, L.K., Verma, A.: Workflow scheduling algorithms in cloud environment-
a survey. In: 2014 Recent Advances in Engineering and Computational Sciences
(RAECS), pp. 1–4 (2014)

5. Badia Sala, R.M., Ayguadé Parra, E., Labarta Mancho, J.J.: Workflows for science:
a challenge when facing the convergence of HPC and big data. Supercomput. Front.
Innov. 4(1), 27–47 (2017)

6. Bittencourt, L.F., Sakellariou, R., Madeira, E.R.M.: Dag scheduling using a looka-
head variant of the heterogeneous earliest finish time algorithm. In: 2010 18th
Euromicro Conference on Parallel, Distributed and Network-based Processing, pp.
27–34 (Feb 2010). https://doi.org/10.1109/PDP.2010.56

7. Blythe, J., et al.: Task scheduling strategies for workflow-based applications in
grids. In: CCGrid 2005 IEEE International Symposium on Cluster Computing and
the Grid, 2005. vol. 2, pp. 759–767. IEEE (2005)

8. Casanova, H., Wong, Y.C., Pottier, L., da Silva, R.F.: On the feasibility of
simulation-driven portfolio scheduling for cyberinfrastructure runtime systems. In:
Job Scheduling Strategies for Parallel Processing (2022)

9. Coleman, T., Casanova, H., Pottier, L., Kaushik, M., Deelman, E., da Silva, R.F.:
WfCommons: a framework for enabling scientific workflow research and develop-
ment. Future Gener. Comput. Syst. 128, 16–27 (2022)

10. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: an
overview of workflow system features and capabilities. Future Gener. Comput.
Syst. 25(5), 528–540 (2009)

11. Deelman, E., et al.: Pegasus, a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17–35 (2015)

12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. programm. 91, 201–213 (2002)

2 https://github.com/osukhoroslov/pact2023-experiments.

https://doi.org/10.1109/PDP.2010.56
https://github.com/osukhoroslov/pact2023-experiments


Scheduling of Workflows with Task Resource Requirements 195

13. Durillo, J.J., Nae, V., Prodan, R.: Multi-objective energy-efficient workflow
scheduling using list-based heuristics. Future Gener. Comput. Syst. 36, 221–236
(2014)

14. Esteves, S., Veiga, L.: WaaS: workflow-as-a-service for the cloud with scheduling
of continuous and data-intensive workflows. Comput. J. 59(3), 371–383 (2016)

15. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San
Francisco (1979)

16. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. ACM SIGCOMM Comput. Commun. Rev. 44(4),
455–466 (2014)

17. Grandl, R., Kandula, S., Rao, S., Akella, A., Kulkarni, J.: Graphene: packing and
dependency-aware scheduling for data-parallel clusters. In: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, pp. 81–97.
OSDI’16, USENIX Association, USA (2016)

18. Gupta, A., Garg, R.: Workflow scheduling in heterogeneous computing systems:
A survey. In: 2017 International Conference on Computing and Communication
Technologies for Smart Nation (IC3TSN), pp. 319–326. IEEE (2017)

19. Hadary, O., et al.: Protean: VM allocation service at scale. In: Proceedings of the
14th USENIX Conference on Operating Systems Design and Implementation, pp.
845–861 (2020)

20. Hilman, M.H., Rodriguez, M.A., Buyya, R.: Multiple workflows scheduling in
multi-tenant distributed systems: a taxonomy and future directions. ACM Com-
put. Surv. (CSUR) 53(1), 1–39 (2020)

21. Hu, Y., de Laat, C., Zhao, Z.: Learning workflow scheduling on multi-resource
clusters. In: 2019 IEEE International Conference on Networking, Architecture and
Storage (NAS), pp. 1–8. IEEE (2019)

22. Kwok, Y.K., Ahmad, I.: Benchmarking the task graph scheduling algorithms. In:
Proceedings of the first merged international parallel processing symposium and
symposium on parallel and distributed processing, pp. 531–537. IEEE (1998)

23. Kwok, Y.K., Ahmad, I.: Dynamic critical-path scheduling: an effective technique
for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst.
7(5), 506–521 (1996)

24. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. J. Grid Comput. 13, 457–493 (2015)

25. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds.
Future Gener. Comput. Syst. 48, 1–18 (2015)

26. Mandal, A., et al.: Scheduling strategies for mapping application workflows onto
the grid. In: HPDC-14. Proceedings. 14th IEEE International Symposium on High
Performance Distributed Computing, 2005, pp. 125–134. IEEE (2005)

27. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2011)

28. N’takpé, T., Suter, F., Casanova, H.: A comparison of scheduling approaches for
mixed-parallel applications on heterogeneous platforms. In: Sixth International
Symposium on Parallel and Distributed Computing (ISPDC’07), pp. 35–35. IEEE
(2007)

29. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing.
http://research.microsoft.com (2011)

http://research.microsoft.com


196 O. Sukhoroslov

30. Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant sci-
entific workflow as a service platforms. Future Gener. Comput. Syst. 79, 739–750
(2018)

31. Rodriguez, M.A., Buyya, R.: A taxonomy and survey on scheduling algorithms for
scientific workflows in IaaS cloud computing environments. Concurrency Comput.:
Pract. Experience 29(8), e4041 (2017)

32. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows
with budget constraints. In: Integrated Research in GRID Computing: CoreGRID
Integration Workshop 2005 (Selected Papers) November 28–30, Pisa, Italy, pp.
189–202. Springer (2007). https://doi.org/10.1007/978-0-387-47658-2_14

33. Shi, Z., Dongarra, J.J.: Scheduling workflow applications on processors with dif-
ferent capabilities. Future Gener. Comput. Syst. 22(6), 665–675 (2006)

34. Shrestha, H., et al.: Scheduling workflows on a cluster of memory managed multi-
core machines. In: Arabnia, H.R. (ed.) Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA 2009,
Las Vegas, Nevada, USA, July 13–17, 2009, vol. 2 , pp. 631–637. CSREA Press
(2009)

35. Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib.
Syst. 4(2), 175–187 (1993)

36. Sinnen, O.: Task scheduling for parallel systems. John Wiley & Sons (2007)
37. Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., Wang, J.: Cost-efficient task

scheduling for executing large programs in the cloud. Parallel Comput. 39(4–5),
177–188 (2013)

38. Sukhoroslov, O.: Toward efficient execution of data-intensive workflows. J. Super-
comput. 77(8), 7989–8012 (2021). https://doi.org/10.1007/s11227-020-03612-4

39. Sukhoroslov, O., Nazarenko, A., Aleksandrov, R.: An experimental study of
scheduling algorithms for many-task applications. J. Supercomput. 75, 7857–7871
(2019)

40. Szabo, C., Kroeger, T.: Evolving multi-objective strategies for task allocation of
scientific workflows on public clouds. In: 2012 IEEE Congress on Evolutionary
Computation, pp. 1–8. IEEE (2012)

41. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002). https://doi.org/10.1109/71.993206

42. Verma, A., Korupolu, M., Wilkes, J.: Evaluating job packing in warehouse-scale
computing. In: 2014 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 48–56. IEEE (2014)

43. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth
European Conference on Computer Systems, pp. 1–17 (2015)

44. Wang, J., Korambath, P., Altintas, I., Davis, J., Crawl, D.: Workflow as a service
in the cloud: architecture and scheduling algorithms. Procedia Comput. Sci. 29,
546–556 (2014)

45. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow appli-
cations on utility grids. In: First International Conference on e-Science and Grid
Computing (e-Science’05), p. 8. IEEE (2005)

46. Zhou, A.C., He, B., Liu, C.: Monetary cost optimizations for hosting workflow-as-
a-service in IaaS clouds. IEEE Trans. Cloud Comput. 4(1), 34–48 (2015)

47. Zhu, Z., Tang, X.: Deadline-constrained workflow scheduling in IaaS clouds with
multi-resource packing. Future Gener. Comput. Syst. 101, 880–893 (2019)

https://doi.org/10.1007/978-0-387-47658-2_14
https://doi.org/10.1007/s11227-020-03612-4
https://doi.org/10.1109/71.993206


Verifying the Correctness of HPC
Performance Monitoring Data

Danil Kashin1 and Vadim Voevodin2(B)

1 Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow 119234, Russia

2 Research Computing Center, Lomonosov Moscow State University,
Moscow 119234, Russia
vadim@parallel.ru

Abstract. Administration and maintenance of modern supercomput-
ers requires monitoring not only the correctness of their work, but also
the efficiency of their functioning. For these purposes, monitoring sys-
tems are used that constantly run on supercomputer nodes and collect
information about how actively and efficiently these nodes are used. The
analysis of such information allows you, for example, to investigate the
performance of individual jobs or users, study the efficiency of applica-
tion packages usage, analyze the utilization of service nodes, or compare
the job behavior in different partitions. However, for this to be possi-
ble, it is necessary to be sure that the performance data collected by
the monitoring system is correct. One way to check the correctness of
such data is to use a set of external tests. Each test, when executed on
a supercomputer, gives the expected value for some performance char-
acteristic like CPU user load, I/O read speed or the frequency of L1
cache misses, which is also being collected by the monitoring system.
The matching of the value expected by such test and the value collected
by the monitoring system indicates that the general process of handling
this performance data is implemented correctly. This paper provides a
description of such open-source test suite developed at the Lomonosov
Moscow State University.

Keywords: Supercomputing · Performance monitoring · Monitoring
data · Performance analysis · Test suite · Correctness

1 Introduction

Modern supercomputers consist of a huge number of various software and hard-
ware components, each of which can start working incorrectly or even fail. There-
fore, it is necessary to constantly monitor the current state of the supercomputer
and its components in order to be able to quickly identify and eliminate such
cases of malfunction. However, it is important to constantly monitor not only
the availability and correct operation of the equipment, but also the efficiency
of its usage. For these purposes, administrators of supercomputing centers use
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, pp. 197–208, 2023.
https://doi.org/10.1007/978-3-031-41673-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41673-6_15&domain=pdf
http://orcid.org/0000-0003-1897-1828
https://doi.org/10.1007/978-3-031-41673-6_15


198 D. Kashin and V. Voevodin

a performance monitoring system – a type of monitoring system that is capa-
ble of or even mainly focused on collecting performance data describing CPU
load, GPU memory usage or frequency of memory load operations, etc. Such
systems usually have individual agents running on compute and service nodes
of the supercomputer, which constantly collect various information about node
utilization and then transfer it to the system servers for aggregation and storage.
This allows jointly analyzing all the collected performance-related information
about the supercomputer using, for example, specific analytical systems like
XDMoD [17], OMNI [9] or TASC [18].

At any stage of processing performance monitoring data (collection, transfer,
transformation, aggregation, storing), a mistake can be made, which can lead to
incorrect output data. And such mistake can occur both within the performance
monitoring system itself and outside of it, for example, within the analytical
system or during data output (see examples in Sect. 3). At the same time, it
is often difficult for supercomputer administrators to understand whether the
performance data provided is adequate. For example, according to the collected
data, it is shown that during the execution of a certain job, the average L1
cache miss rate was equal to 10 million misses per second. Is this value correct?
External verification tests can help answer such questions, and their development
was the main goal of this work.

The main contribution of this paper is the proposal of the software test suite1
that is designed to check the correctness of the output monitoring data used for
performance analysis of supercomputer functioning. Each test in this suite is
executed on a supercomputer in a usual user mode, using the queuing system.
After its completion, it produces the expected value for some performance char-
acteristic on one compute node, which can then be compared with the value
collected by the monitoring system itself (and optionally further processed, e.g.
by the analytical system). If the values match, then the monitoring process is
configured correctly in general; if the values differ notably, this indicates the
presence of an error at one of the data processing stages. Current version of this
suite include tests for 10 commonly used performance characteristics describing
CPU and GPU load, MPI usage, cache miss frequency and amount of free mem-
ory. More tests can be easily added using the provided mechanisms, which is
planned to be done in the future.

The usage of this solution is of the greatest interest during the initial setup
and launch of the system software needed for supercomputer performance analy-
sis – monitoring, analytical and data visualization systems. However, during the
operation of the supercomputer, modifications are also sometimes made in the
process of working with performance monitoring data, and then such a check
should also be performed. Moreover, it is useful, in our opinion, to periodically
run such checks to make sure that nothing accidentally has happened to the data
handling process.

1 Available at https://github.com/KashinDanil/JDC.

https://github.com/KashinDanil/JDC


Verifying the Correctness of HPC Performance Monitoring Data 199

The rest of the paper is organized as follows. Section 2 describes existing
works related to the topic of this paper. Section 3 explains why performance
data verification if important and relevant. Section 4 describes the proposed test
suite itself, while Sect. 5 is devoted to the evaluation of the test suite on two
modern supercomputers. Conclusions and future plans are described in Sect. 6.

2 Related Work

The topic discussed in this paper primarily relates to the task of supercomputer
performance monitoring. Therefore, we studied different existing systems for
monitoring and collecting supercomputer data to find out if they provide mech-
anisms (test suites or similar) to check the correctness of the data collected.
We have considered such well-known general monitoring systems as Zabbix [16],
Nagios [8] and Ganglia [14]; performance monitoring systems SuperMon [19],
OVIS-2 [10], TACC Stats [11], Dataheap [13] and Distributed Modular Moni-
toring [20]; and LIKWID performance tool suite [12].

Among these solutions, not a single one was found that somehow solve this
task. In our opinion, this may be due to the following reasons. Firstly, developers
of monitoring systems are primarily interested in ensuring that their particular
system works correctly, and such checks can be largely carried out at the devel-
opment stage. While we want to create a universal solution that works with
different system software and to verify the data not only at the output of the
monitoring system, but also after subsequent data processing or after the work
of analytical systems. Secondly, monitoring systems are usually focused on col-
lecting data on the availability and operability of supercomputers, and this data,
unlike performance data, is often notably easier to verify.

As mentioned earlier, each of the proposed tests within the test suite is
designed to verify the correctness of the monitoring data collected for particular
performance characteristic like CPU load or frequency of L1 cache misses. In
this case, individual tests can be developed independently. And although we
did not find ready-made solutions that solve the stated task, we found existing
benchmarks and tests, designed for other purposes, that can be used in some of
the proposed tests.

The first such solution is HPAS (HPC Performance Anomaly Suite) [7].
This is a software tool designed to generate performance anomalies to check
the impact of such anomalies on the behavior of parallel programs and the sys-
tem as a whole. The tool includes various types of anomalies, such as CPU load,
network delays, usage of RAM and I/O, and others. Another solution that we
used is the OSU Micro-benchmarks test suite [3], designed to evaluate the per-
formance of various MPI operations (not only MPI in the latest versions) on a
computational system. The set contains many different tests that can be used to
evaluate data and packet transfer rates as well as latency, when using collective,
point-to-point and one-sided MPI operations. In Sect. 4, it will be shown how
these solutions were applied.



200 D. Kashin and V. Voevodin

3 Motivation for Performance Data Verification

In this section, we will explain why it is important to check the correctness
of performance monitoring data collected on the supercomputer. We will dis-
cuss two related questions – why validation of performance data requires special
attention, and also why such data can be incorrect in practice.

Performance data, unlike most data on the correctness and availability of
supercomputer components (which is mainly collected in practice using mon-
itoring systems), is very difficult to verify without specific verification tools.
Sometimes it is even difficult to determine whether the order of magnitude is
correct. For example, it is shown that the average number of performed instruc-
tions is 3 billions per second, or the amount of data transferred over the MPI
network is 300 MB per second. How to be sure that these values are correct?
Even knowing which program is being executed, it is often difficult to answer
this question. And without focused checks on the correctness of such data, a
noticeable time can pass before errors in this data are discovered. At the same
time, the price of such errors is high, since incorrect data can easily lead to
completely wrong conclusions about the performance of user applications or the
supercomputer in general. Therefore, in our opinion, it is necessary to pay special
attention to the verification of performance data.

Now, let us explain why errors in performance monitoring data can occur in
practice. Speaking in general, there are several points worth noting. Monitoring
systems can be configured in different ways that can sometimes impact the data
correctness. Moreover, it is required after data collection to organize its transfer
and storage, as well as pre-processing and aggregation in some cases. And these
stages are often performed not by the monitoring system, but by external tools
like analytical systems or data visualization tools, which increases the likelihood
of inaccuracies in the overall process of data handling.

Let us consider several real-life cases that we encountered in our practice,
when there was a need for performance data verification. The presence of these
cases inspired us to develop the proposed test suite, in order to make their
detection and elimination a much easier task in future.

Processors sometimes have errors in their design. For example, in some pro-
cessors of the Intel Haswell and Ivy Bridge series, correct data collection from dif-
ferent hardware memory-related counters is not guaranteed when using Simulta-
neous Multithreading, or SMT (for example, see errata HSW29 [6] or CA93 [5]).
This includes counters that can be useful in performance analysis, such as those
that estimate the number of memory read and write operations or the number
of LLC (last-level cache) misses. However, the counters are available and con-
tinue to produce values, moreover the same counters on other processors work
correctly, so the user of the monitoring system may not even understand that
incorrect data will be output in this case. Without the data correctness verifica-
tion, it can be very difficult to detect such issues.

On Lomonosov-2 supercomputer [21], we use the DiMMon monitoring sys-
tem. And we want to get information on the activity of data transfer over the
MPI network using this system. To do so, we collect the amount of received



Verifying the Correctness of HPC Performance Monitoring Data 201

and transmitted data from the Infiniband network card on each compute node.
According to the Infiniband standard [4], such data is stored in units of 32 bits,
i.e. 4 bytes. Thus, it was necessary to multiply the raw monitoring data in this
case by 4 in order to obtain values in the conventional units of bytes/sec. How-
ever, a mistake was made at this stage, and multiplication by the wrong constant
was performed. In this case, checking the data correctness, for example using the
proposed tests, would immediately show that the results obtained are incorrect.

In some cases, during monitoring system setup, it is not always obvious which
of the available performance monitoring counters will best reflect the desired per-
formance characteristic. For example, when setting up the DiMMon monitoring
system on Lomonosov-2 supercomputer, it was not possible to directly collect
information on the number of L1 cache misses (since there was no such hard-
ware counter available on Haswell processors used in Lomonosov-2, unlike the
case of last-level cache). But the L1D:REPLACEMENT counter was available,
which “counts the number of lines brought into the L1 data cache”. Based on
this description, there was no complete certainty that this counter fully corre-
sponds to our needs, i.e. that it will accurately reflect the number of L1 cache
misses, maybe due to the prefetcher or other peculiarities of memory subsystem.
We know that this counter is used in PAPI for collecting the number of cache
misses, but we would like to be sure that it is accurate in our particular case.
Verification is also well suited for this purpose.

In performance analysis, it is often necessary to perform different transforma-
tions on the raw monitoring data. Let us consider one of the basic performance
characteristics of HPC applications – CPI (Clockticks per Instructions) [1]. To
calculate it, you need to collect two types of raw data – the number of unhalted
processor cycles (clockticks) and the number of instructions retired, and then
divide one by the other. And if, for example, we are interested in analyzing the
state of the supercomputer for the last month, only one average IPC value needs
to be calculated for each executed application. This means that for each appli-
cation, the collected IPC data needs to be aggregated both by time (monitoring
data is collected at a certain frequency, e.g. once a minute) and by compute
nodes. Note that these transformations are usually performed outside of the
monitoring system. In this case, errors can be made both when performing the
transformations themselves, and when choosing the order in which they should
be performed. The same is true for other collected performance characteristics
as well. Data verification can be helpful in this case.

Therefore, in our opinion, it is useful to check the correctness of the moni-
toring data obtained for the HPC performance analysis.

4 Description of the Test Suite

The architecture of the proposed software solution is as follows. Each test is
implemented as a separate C or Python module and is called independently.
Separately, a wrapper was developed that allows you to set up and run all the
needed tests using one command. It is possible to run tests directly or using



202 D. Kashin and V. Voevodin

Slurm resource manager (via sbatch command). Using this wrapper, the input
parameters for each test can be specified if necessary. For example, it is possible
to specify the time of test execution or utilization level for some tests. Also, this
wrapper allows, after the completion of all test launches, to automatically parse
the output of all tests and provide a single small output file with all the results
of interest.

The tests are run on one compute node (two nodes in the case of MPI tests)
and check the data from that node only. There are two remarks worth noting
here. Firstly, this set of tests can be run multiple times, which allow checking
the correctness of data from different nodes. Secondly, the agents on different
compute nodes are most often absolutely similar, and therefore checking one of
them will most likely show whether the data collection is generally correct, at
least within one partition.

A total of 10 tests have been implemented so far, which allow checking the
following performance characteristics (collected for the entire compute node, not
just one core):

– CPU user load, load average;
– I/O read and write rate;
– GPU load;
– frequency of L1 and LL (last-level) cache misses;
– amount of free RAM memory;
– data and packets transfer rate over MPI network.

It is important to note that all tests in the test suite verify the values of
performance characteristics at the software level. So, they do not impose any
restrictions on how exactly the performance monitoring data is collected, i.e.
what monitoring system is used and data from which system sensors it obtains.

Four of the aforementioned tests were implemented using existing solutions.
To assess CPU user load and load average, we use cpuoccupy anomaly test from
HPAS suite. This anomaly performs arithmetic operations on random numbers in
a loop and then sleeps for the specified percentage of the time, thereby generating
the required utilization level. Since in our case we are interested in loading
the entire compute node, we run this test on each of the available cores. The
amount of free RAM memory is checked using the memleak HPAS anomaly that
generates controlled memory leak. Running this anomaly for a certain time,
we can estimate the difference between free memory at the start and end of
this test, thereby we can check if this difference is the same as shown by the
monitoring system. MPI data transfer rate is assessed using osu_bw benchmark
from OSU Micro-benchmarks test suite. It works on two nodes, with the sender
node sending out a fixed number of MPI messages to the receiver and then
waiting for a reply from the receiver.

Other tests were developed within the framework of this work. Next, we will
describe how several of them are implemented.



Verifying the Correctness of HPC Performance Monitoring Data 203

4.1 Frequency of Cache Misses

Here, we describe two tests aimed to check L1 and LL cache miss rates. These
performance characteristics are usually collected by monitoring systems using
performance monitoring counters (e.g. via PAPI) and are needed to assess the
memory usage efficiency.

The tests work in the following way. First, the length of the cache line and
the total cache size of the desired level are automatically determined using sys-
tem constants, for example, _SC_LEVEL1_DCACHE_SIZE to get the size of
L1 cache. Next, three arrays are created that are much larger than the cache
size. Further, in the main loop, the operation A[i] = B[i]*C[i] is constantly
performed, where i is corresponds to the following order of array elements: the
first element is randomly selected in the range from 0 to the length of one cache
line, and each subsequent element is taken randomly in the range from one to
two cache line lengths from the previous position (see Fig. 1). If the program
reaches the end of the array, the actions start from the beginning. Since the size
of the array greatly exceeds the size of the cache of the desired level, this means
that the beginning of the array has already been evicted from the cache and
another miss will occur.

Fig. 1. The scheme of selecting next array element in cache miss tests

Accessing array elements in such a way results in a constant cache miss.
Therefore, the cache miss rate in this case is defined as the total number of
accesses to the array elements divided by the test execution time. These tests
do not depend on manually defined constants and can be applied without mod-
ifications on different modern processors.

4.2 I/O Read and Write Speed

In this section, we describe two more tests that check the speed of reading and
writing from files.

In modern supercomputers, there are often no local disks on compute nodes,
so all work with files is done using a distributed file system and requires data
to be transferred over the communication network. For example, Lomonosov-2
uses the Lustre file system, and a separate network is used to work with it. At
the same time, we note that the proposed tests do not impose restrictions on
how exactly the work with the file system is organized and will work correctly
even if local disks are available.



204 D. Kashin and V. Voevodin

The I/O read test is written in Python and works as follows. At the beginning
of its execution, the current time is measured, then 1 GB of data is written to
a temporary file. Then, this file is read in a loop, and the total amount of
bytes read is stored. This continues until the program execution time specified
at startup expires. When the specified time is reached, the total number of
bytes read is divided by the number of seconds elapsed, so we get the average
read speed, in bytes/sec. It is worth noting that the number of seconds elapsed
includes the time spent writing data to a temporary file. This is necessary because
monitoring systems provide information on the entire job, i.e. they include the
entire duration of the test, including the preliminary stage of creating the file.

This test allows changing the execution time and the location of the tempo-
rary file. By default, the program execution time is 10min, and the file storage
folder is the current folder.

The write test is similar. In a loop, the data is written to a temporary file of
512 MB or more (calculated automatically, depending on the write speed). When
the specified test execution time is reached, the total number of bytes written
is divided by the loop execution time, which gives us the average write speed in
bytes/sec. The launch parameters for this test are similar to the reading test.

4.3 Packets Transfer Rate over MPI Network

This test evaluates the frequency of MPI packets transmitted over the com-
munication network. An important clarification needs to be made here. HPC
monitoring system usually collects data on network operation from a network
card on a compute node. This means that it evaluates not the number of MPI
calls in a program, but the number of network packets in terms of the under-
lying communication network (usually Infiniband or Ethernet in case of HPC
systems). For example, if the program includes MPI_Send call which sends 100
MB of data, this data will be split on the network level and sent using several
network packets. And the monitoring system will take into account exactly this
number of network packets.

Therefore, we had to write an MPI test in such a way that we could accurately
estimate the number of network packets. The easiest way to achieve this is to
make sure that there is exactly one network packet per MPI call. To do this, you
need to make sure that: 1) the data used in one MPI call is not split between
several network packets; 2) there is no delay, i.e. the data is sent right after the
MPI call was made; 3) data from several MPI calls is not combined for sending
within one network packet. The first condition is fulfilled if we send one byte in
each MPI call. To fulfill the second and third conditions, we need to organize
a synchronous data transmission and be sure that the data sent by one process
was received by another process before starting the next MPI send operation.

With this in mind, a C+MPI test was written in which two MPI processes
sequentially transfer one byte of data to each other, using MPI_Ssend opera-
tions. The operation scheme of this test is shown in Fig. 2.



Verifying the Correctness of HPC Performance Monitoring Data 205

Fig. 2. The scheme of data transfer between processes

When completed, this test measures the execution time and the number of
MPI send operations performed, which gives an estimate of the average number
of packets transmitted per second.

5 Evaluation of the Proposed Solution

The developed test suite was firstly approbated on the laptop (its character-
istics are shown in Table 1), in order to check that the tests themselves work
properly. We checked everything except MPI tests, since the laptop has only
one CPU. All test results were manually compared with the values collected
directly from system sensors in real time. htop command was used to check
CPU load, load average and free memory tests, dd for I/O tests, nvidia-smi for
GPU load test and PAPI library for cache miss tests. Each test was executed
in a usual user mode, experiments were repeated several times in order to be
sure that the results are stable. For each test (i.e. for each performance char-
acteristic), we calculated the difference between expected and observed values
as |monitoring_value*100/expected_value - 100|, where expected_value
is the value provided by the test, and monitoring_value is the value obtained
directly from system sensors. This approbation showed that the average differ-
ence for each test is less than 2%, which confirmed that all tests work correctly
(such accuracy is suitable in our case, see below).

After that, the proposed test suite was evaluated on two supercomputers
installed in the Lomonosov Moscow State University — Lomonosov-2 and IBM
Polus [2]. The characteristics of its compute nodes used for evaluation are shown
in Table 1.

In case of Lomonosov-2, the evaluation was carried out the following way. Test
suite was launched in the usual user mode, using the Slurm resource manager.
Several runs were made to ensure the repeatability of the results. To obtain data
from the monitoring system, the report generation system called JobDigest [15]
was used. This system, which is used by Lomonosov-2 system administrators
on an ongoing basis, allows you to automatically build reports on the perfor-
mance and behavior of any executed job. JobDigest report provides a variety
of data about the job operation, including all the monitoring data that can be



206 D. Kashin and V. Voevodin

verified using the proposed test suite. When using JobDigest, the monitoring
data goes through the entire processing cycle (collection using monitoring sys-
tem, aggregation, transfer, storage in a database, processing before displaying on
the JobDigest web page), which means that the verification of this data allows
checking all these stages.

Table 1. Description of systems used for evaluation

Lomonosov-2 node Polus node Laptop

CPU 1x Intel Xeon E5-2697 v3 2x IBM POWER8 1x Intel i5-10210U
GPU 1x NVIDIA Tesla K40s 2x NVIDIA Tesla P100 1x NVidia GeForce MX350
RAM 64 GB 256 GB 8 GB
OS CentOS 7 Red Hat 7.5 Ubuntu 20.04

To check the data, a manual comparison was made between the expected
values (given by the tests after execution on the supercomputer) and the real-
life values (given by the JobDigest). The achieved difference is shown in Table 2.

Table 2. Difference between expected values and monitoring data values

Performance characteristic Difference (%)

CPU user load 0.01
Load average 0.30
Speed of I/O read 0.04
Speed of I/O write 0.14
GPU load 1.22
Frequency of L1 cache misses 0.28
Frequency of LLC misses 1.12
Amount of free RAM memory 0.39
Data transfer rate over MPI network, bytes 1.62
Data transfer rate over MPI network, packets 1.11

In all cases, the difference turned out to be less than 1.7%, which indicates the
correctness of the data provided by the monitoring system. This is not surprising,
since performance analysis on this system has been being performed for many
years, and previously discovered issues (see Sect. 3) have been already fixed. Such
difference can be considered insignificant, since the monitoring data collection
process depends on many factors, such as the activity of the supercomputer
system software running in parallel, jobs of other users performed simultaneously,
etc. Therefore, identical runs of the same job may show slight differences in
performance data due to the above factors.



Verifying the Correctness of HPC Performance Monitoring Data 207

In case of IBM Polus, there was no monitoring data available. Since the
main purpose of the test suite is to check the correctness of the data collected
for the performance analysis using the monitoring system, which is not present in
this case, this evaluation was performed rather to additionally verify the correct
operation of the test suite itself, as in case of laptop evaluation. All test results
were again manually compared with the values provided by the operating system
and system libraries in real time, using the same methods as in laptop case, plus
PAPI was used for checking packet transfer rate over MPI network. We were not
able to run GPU load test and test for MPI data transfer rate in bytes due to
technical issues. In all tests performed, the difference in values was not higher
than in the case of Lomonosov-2.

6 Conclusions and Future Plans

In this paper, we present a test suite that allows checking the correctness of the
performance data collected on supercomputer nodes by the monitoring system.
To do this, each test, when executed on the target system, produces expected
values for a specific performance characteristic, which can then be compared
with the real-life monitoring data. This solution can be easily ported to other
systems and expanded with new tests (10 tests for commonly used performance
characteristics are currently implemented), so we hope it can be useful for admin-
istrators of different supercomputer centers.

In the future, we plan to expand the functionality of the developed software.
We are going to add new tests to verify more performance characteristics, as
well as develop methods for automated verification, i.e. comparison between
expected values provided by the test suite and observed values obtained using
the monitoring system.

Acknowledgement. The results described in this paper were achieved at Lomonosov
Moscow State University with the financial support of the Russian Science Foundation,
agreement No. 21-71-30003. The research is carried out using the equipment of shared
research facilities of HPC computing resources at Lomonosov Moscow State University.

References

1. CPI description. https://www.intel.com/content/www/us/en/develop/documentation/
vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_
CLOCKTICKS-PER-INSTRUCTIONS-RETIRED-CPI

2. Description of IBM Polus supercomputer (in Russian). https://hpc.cmc.msu.ru/
polus

3. OSU Micro-benchmarks. https://mvapich.cse.ohio-state.edu/benchmarks/
4. InfiniBand Architecture specification, volume 1, release 1.3 (2015)
5. Intel Xeon Processor E5 v2 Product Family. Specification Update. September 2015.

Tech. rep. (2015). https://www.intel.com/design/literature.htm
6. Intel Xeon Processor E3–1200 v3 Product Family. Specification Update. October

2016, Revision 016. Tech. rep. (2016). https://www.intel.com/design/literature.
htm

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLOCKTICKS-PER-INSTRUCTIONS-RETIRED-CPI
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLOCKTICKS-PER-INSTRUCTIONS-RETIRED-CPI
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_CLOCKTICKS-PER-INSTRUCTIONS-RETIRED-CPI
https://hpc.cmc.msu.ru/polus
https://hpc.cmc.msu.ru/polus
https://mvapich.cse.ohio-state.edu/benchmarks/
https://www.intel.com/design/literature.htm
https://www.intel.com/design/literature.htm
https://www.intel.com/design/literature.htm


208 D. Kashin and V. Voevodin

7. Ates, E., et al.: HPAS: An HPC performance anomaly suite for reproducing perfor-
mance variations. In: Proceedings of the 48th International Conference on Parallel
Processing, pp. 1–10 (2019)

8. Barth, W.: Nagios: System and network monitoring. No Starch Press (2008)
9. Bautista, E., Romanus, M., Davis, T., Whitney, C., Kubaska, T.: Collecting,

monitoring, and analyzing facility and systems data at the National Energy
Research Scientific Computing Center. In: ACM International Conference Pro-
ceeding Series. Association for Computing Machinery (aug 2019). https://doi.org/
10.1145/3339186.3339213

10. Brandt, J.M., et al.: Ovis-2: A robust distributed architecture for scalable ras. In:
2008 IEEE International Symposium on Parallel and Distributed Processing, pp.
1–8. IEEE (2008)

11. Evans, T., et al.: Comprehensive resource use monitoring for hpc systems with
tacc stats. In: 2014 First International Workshop on HPC User Support Tools, pp.
13–21. IEEE (2014)

12. Gruber, T., Eitzinger, J., Hager, G., Wellein, G.: LIKWID 5: Lightweight Perfor-
mance Tools (2019)

13. Kluge, M., Hackenberg, D., Nagel, W.E.: Collecting distributed performance data
with dataheap: generating and exploiting a holistic system view. Proc. Comput.
Sci. 9, 1969–1978 (2012)

14. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

15. Nikitenko, D., et al.: JobDigest - Detailed System Monitoring-Based Supercom-
puter Application Behavior Analysis. In: Supercomputing. Third Russian Super-
computing Days, RuSCDays 2017, Moscow, Russia, September 25–26, 2017,
Revised Selected Papers. pp. 516–529. Springer, Cham (sep 2017). https://doi.
org/10.1007/978-3-319-71255-0_42

16. Olups, R.: Zabbix Network Monitoring. Packt Publishing Ltd (2016)
17. Palmer, J.T., et al.: Others: open XDMoD: atool for the comprehensive manage-

ment of high-performance computing resources. Comput. Sci. Eng. 17(4), 52–62
(2015). https://doi.org/10.1109/MCSE.2015.68

18. Shvets, P.A., Voevodin, V.V.: “Endless” workload analysis of large-scale supercom-
puters. Lobachevskii J. Math. 42(1), 184–194 (2021)

19. Sottile, M.J., Minnich, R.G.: Supermon: A high-speed cluster monitoring system.
In: Proceedings of IEEE International Conference on Cluster Computing, pp. 39–
46. IEEE (2002)

20. Stefanov, K., Voevodin, V., Zhumatiy, S., Voevodin, V.: Dynamically reconfig-
urable distributed modular monitoring system for supercomputers (DiMMon).
Proc. Comput. Sci. 66, 625–634 (2015). https://doi.org/10.1016/j.procs.2015.11.
071

21. Voevodin, V., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring
and fine analytics for the user community. Supercomput. Front. Innov. 6(2) (2019).
https://doi.org/10.14529/js190201

https://doi.org/10.1145/3339186.3339213
https://doi.org/10.1145/3339186.3339213
https://doi.org/10.1007/978-3-319-71255-0_42
https://doi.org/10.1007/978-3-319-71255-0_42
https://doi.org/10.1109/MCSE.2015.68
https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/10.14529/js190201


Author Index

A
Aksenov, Vitaly 109
Astafiev, Sergey 69

B
Bagliy, A. P. 18
Bakhtin, Vladimir 3
Barinov, Arseniy 166
Blanzieri, Enrico 69
Bulkhak, Artem 151

C
Cavecchia, Valter 69

D
Dolgaleva, Diana 69

I
Ivashko, Evgeny 83

K
Kashin, Danil 197
Kataev, Nikita 3
Kireev, Sergey 93, 126
Klimenko, Anna 166
Kokorin, Ilya 109
Kolganov, Alexander 3
Kozinov, Evgeny 51
Kustikova, Valentina 51

L
Liniov, Alexey 51
Lyamin, Artem 42

M
Malyshkin, Victor 30, 42
Mansurova, Madina 136
Martsenyuk, Alena 109

Medvedev, Yuri 93
Metelitsa, E. A. 18
Meyerov, Iosif 51
Monakhov, Oleg 126
Monakhova, Emilia 126

N
Nikitina, Natalia 83

P
Pelagalli, Camilla 69
Perepelkin, Vladislav 42
Pilati, Stefania 69

R
Rumyantsev, Alexander 69

S
Schukin, Georgy 30
Steinberg, B. Ya. 18
Sukhoroslov, Oleg 177

T
Toporkov, Victor 151
Trubitsyna, Yulia 93

V
Voevodin, Vadim 197
Volokitin, Valentin 51
Vyazigin, Stepan 136

Y
Yakobovskiy, Mikhail 3
Yemelyanov, Dmitry 151

Z
Zakharov, Dmitry 3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
V. Malyshkin (Ed.): PaCT 2023, LNCS 14098, p. 209, 2023.
https://doi.org/10.1007/978-3-031-41673-6

https://doi.org/10.1007/978-3-031-41673-6

	 Preface
	 Organization
	 Contents
	Automatic Programming and Program Tuning
	Automation of Programming for Promising High-Performance Computing Systems
	1 Introduction
	2 Architecture of SAPFOR
	3 Development of a Parallel Program
	3.1 Original Program Profiling
	3.2 Original Program Analysis
	3.3 Original Program Transformation
	3.4 Dynamic Analysis
	3.5 Parallelization for Shared Memory
	3.6 Parallelization for Distributed Memory
	3.7 Parallel Program Optimization

	4 Parallel Program Performance Evaluation
	5 Related Works
	6 Conclusion
	References

	Automatic Parallelization of Iterative Loops Nests on Distributed Memory Computing Systems
	1 Introduction
	2 Nests of Loops of Iterative Type
	3 Benchmark Results
	4 Automation of Mapping Programs onto DMCS
	5 Conclusions
	References

	Didal: Distributed Data Library for Development of Parallel Fragmented Programs
	1 Introduction
	2 Related Works
	3 Fragmented Programming Technology
	4 Didal: Distributed Data Library
	4.1 Library's Structure
	4.2 Distributed Data Types and Algorithms
	4.3 Distributed Collections
	4.4 Asynchronous Remote Function Call
	4.5 Synchronization
	4.6 Serialization and Communication

	5 Program Example: Particle-In-Cell (PIC) Method
	6 Experiments
	6.1 Results

	7 Conclusion
	References

	Trace Balancing Technique for Trace Playback in LuNA System
	1 Introduction
	2 LuNA Computational Model and Trace Playback Technique
	3 Trace Balancing Technique
	4 Experimental Study
	5 Conclusion
	References

	Case Study for Running Memory-Bound Kernels on RISC-V CPUs
	1 Introduction
	2 RISC-V Architecture
	3 Benchmarking Methodology
	3.1 Infrastructure
	3.2 Benchmarks
	3.3 Performance Metrics

	4 Numerical Results
	4.1 STREAM Benchmark
	4.2 In-Place Dense Matrix Transposition Algorithm
	4.3 Gaussian Blur Algorithm

	5 Conclusion
	References

	Frameworks and Services
	Pair of Genes: Technical Validation of Distributed Causal Role Attribution to Gene Network Expansion
	1 Introduction
	1.1 Related Literature

	2 Cloud Application for Causal Role Attribution
	2.1 Shiny Web Application
	2.2 Distributed Computing Backend
	2.3 Causal Attribution Algorithm
	2.4 Data Sources for Gene Network Expansion Problem: A Case Study

	3 Technical Validation Results
	4 Conclusion
	References

	HiTViSc: High-Throughput Virtual Screening as a Service
	1 Introduction
	2 Related Work
	3 High-Throughput Virtual Screening as a Service
	3.1 Logical View
	3.2 Workflows
	3.3 Multi-user Access

	4 System Setup
	5 Conclusion
	References

	Expanding the Cellular Automata Topologies Library for Parallel Implementation of Synchronous Cellular Automata
	1 Introduction
	2 Overview
	3 The Cellular Automata Topologies Library
	4 Parallel Implementation
	5 Domino Cellular Automaton
	6 Performance Evaluation
	7 Conclusion
	References

	Algorithms
	Parallel-Batched Interpolation Search Tree
	1 Introduction
	2 Preliminaries
	2.1 Parallel-Batched Data Structures
	2.2 Time Complexity Model
	2.3 Standard Parallel Primitives

	3 Interpolation Search Tree
	3.1 Interpolation Search Tree Definition
	3.2 Interpolation Search and the Lightweight Index
	3.3 Search in IST
	3.4 Executing Update Operations and Maintaining Balance
	3.5 Time and Space Complexity

	4 Parallel-Batched Contains
	4.1 BatchedTraverse in a Leaf Node
	4.2 BatchedTraverse in an Inner Node

	5 Parallel-Batched Insert
	6 Parallel-Batched Remove
	7 Parallel Tree Rebuilding
	7.1 Rebuilding Principle
	7.2 Flattening an IST into an Array in Parallel
	7.3 Building an Ideal IST in Parallel

	8 Theoretical Results
	9 Experiments
	10 Conclusion
	References

	Parallel Generation and Analysis of Optimal Chordal Ring Networks Using Python Tools on Kunpeng Processors
	1 Introduction
	2 Parallel Algorithms for Building a Dataset of Optimal Chordal Networks
	3 Experimental Results with Parallel Algorithms
	4 Analysis of the Dataset of Optimal Chordal Networks
	5 Conclusion
	References

	Combinatorial Aspect of Code Restructuring for Virtual Memory Computer Systems Under WS Swapping Strategy
	1 Introduction
	2 Conceptual Level. The Initial Statement of the Main Problem of Program (Code) Optimization
	3 Control State of the Program. Working Set Generated by Control State q and Matrix x=(xri)pn. The Set of Control States Q
	3.1 Reference Strings to Pages and Blocks. Control State qt. Working Set R(qt,x)
	3.2 Correlations Between c.s. qt and c.s. qt+1
	3.3 Final Notices to Determine the Set of Control States Q

	4 Random Variables. Describing Functionals and Constrains of the Main and Auxiliary Problems
	4.1 Random Variable qi and the Function qi(x), Where q Q, i=1,2,,n
	4.2 Functionals F0(x) and F(h)(x) and Constraints for x X

	5 Conclusion
	References

	Distributed Systems Management
	Probabilistic Resources Allocation with Group Dependencies in Distributed Computing
	1 Introduction and Related Works
	2 Resource Selection Algorithm
	2.1 Probabilistic Model for Resource Utilization
	2.2 Parallel Job Scheduling and Group Dependencies
	2.3 Direct Solutions of the Resources Allocation Problem
	2.4 Resources Allocation Algorithms with Group Dependencies

	3 Simulation Study
	3.1 Considered Algorithm Implementation
	3.2 Proof of Optimization Efficiency
	3.3 Practical Optimization Efficiency Study

	4 Conclusion and Future Work
	References

	Multicriteria Task Distribution Problem for Resource-Saving Data Processing
	1 Introduction
	2 Previous Work
	3 Task Distribution Problem for Resource-Saving Data Processing
	4 Experimental Results
	5 Conclusions
	References

	Scheduling of Workflows with Task Resource Requirements in Cluster Environments
	1 Introduction
	2 Related Work
	3 Workflow Scheduling
	3.1 Problem Statement
	3.2 Baseline Algorithms
	3.3 Accounting for Task Resource Requirements
	3.4 Heuristics Portfolio

	4 Evaluation Setup
	4.1 Workflow Instances
	4.2 System Configurations
	4.3 Performance Metrics
	4.4 Simulation Framework

	5 Evaluation Results
	5.1 Simple Scenario
	5.2 Regular Scenario
	5.3 Irregular Scenario

	6 Conclusion and Future Work
	References

	Verifying the Correctness of HPC Performance Monitoring Data
	1 Introduction
	2 Related Work
	3 Motivation for Performance Data Verification
	4 Description of the Test Suite
	4.1 Frequency of Cache Misses
	4.2 I/O Read and Write Speed
	4.3 Packets Transfer Rate over MPI Network

	5 Evaluation of the Proposed Solution
	6 Conclusions and Future Plans
	References

	Author Index

