
Predicting Unseen Process Behavior Based
on Context Information from Compliance

Constraints

Qian Chen1(B), Karolin Winter2, and Stefanie Rinderle-Ma1

1 Technical University of Munich, TUM School of Computation,
Information and Technology, Garching, Germany
{qian.chen,stefanie.rinderle-ma}@tum.de

2 Eindhoven University of Technology, Department of Industrial Engineering and
Innovation Sciences, Eindhoven, The Netherlands

k.m.winter@tue.nl

Abstract. Predictive process monitoring (PPM) offers multiple benefits
for enterprises, e.g., the early planning of resources. The success of PPM-
based actions depends on the prediction quality and the explainability of
the prediction results. Both, prediction quality and explainability, can be
influenced by unseen behavior, i.e., events that have not been observed
in the training data so far. Unseen behavior can be caused by, for exam-
ple, concept drift. Existing approaches are concerned with strategies on
how to update the prediction model if unseen behavior occurs. What has
not been investigated so far, is the question how unseen behavior itself
can be predicted, comparable to approaches from machine learning such
as zero-shot learning. Zero-shot learning predicts new classes in case of
unavailable training data by exploiting context information. This work
follows this idea and proposes an approach to predict unseen process
behavior, i.e., unseen event labels, based on process event streams by
exploiting compliance constraints as context information. This is reason-
able as compliance constraints change frequently and are often the cause
for concept drift. The approach employs state transition systems as pre-
diction models in order to explain the effects of predicting unseen behav-
ior. The approach also provides update strategies as the event stream
evolves. All algorithms are prototypically implemented and tested on an
artificial as well as real-world data set.

Keywords: Predictive Process Monitoring · Unseen Behavior ·
Context Information · Compliance Constraints

1 Introduction

Predictive Process Monitoring (PPM) aims at predicting relevant target values
based on an event log such as the next event label to occur [16] as well as the
remaining time [24] or the outcome [23] of process instances. In general, PPM
provides great prospects for decision support in almost any application domain.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Di Francescomarino et al. (Eds.): BPM 2023 Forum, LNBIP 490, pp. 127–144, 2023.
https://doi.org/10.1007/978-3-031-41623-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41623-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-41623-1_8


128 Q. Chen et al.

Especially in advanced application domains such as manufacturing, logistics,
and healthcare, PPM is confronted with the problem of unseen behavior, i.e.,
behavior that has not been observed in the event log so far and hence is not
available for the training phase of PPM. Unseen behavior might be caused by
concept drift as well as by incomplete or infrequent process executions [13,14,20].
Unseen behavior in PPM results in two challenges: i) when and how to update the
prediction model at the presence of unseen behavior [4,14,18,20], and ii) how to
predict unseen behavior. ii) can be compared to zero-shot learning in Machine
Learning (cf. [27]) where classes can be predicted also in case of unavailable
training data by exploiting context information.

In this work, we follow up on the idea of zero-shot learning for unseen behav-
ior in PPM, i.e., we investigate how context data can be exploited to enable the
prediction of unseen behavior, i.e., unseen next event labels. The exploitation
of context information for improving the prediction quality and the explain-
ability of the prediction results has been investigated for different sources of
context data such as text [25], expert feedback [5], and sensor data [21]. How-
ever, none of the existing approaches has exploited context data for predicting
unseen behavior. The idea of exploiting context data is somehow similar to the
idea of using a-priori knowledge to be “leveraged for improving the predictive
power of a predictive process monitoring technique” [8]. The difference is that a-
priori knowledge can be considered context data, but not necessarily vice versa.
More precisely, context data is not necessarily available in an a-priori way, but
emerges and changes during runtime.

In this work, we opt for exploiting one source of context data as a starting
point, i.e., compliance constraints. The reason is that compliance constraints
are prevalent in almost any application domain and are often themselves the
cause for concept drift which, in turn, constitutes a source for unseen behavior.
Compliance constraints usually emerge from regulatory documents and can be
subject to frequent changes [10], i.e., have to be constantly monitored them-
selves. Consider a process for the transportation of delicate foods which needs
to obey to multiple regulations. If a change in one of those regulations happens,
new compliance constraints can come into effect, e.g., If the temperature in the
container exceeds 10◦ during transportation, these goods must be destroyed.
Since this is a newly imposed constraint, the associated event(s) corresponding
to the destruction of goods have not been observed in the underlying event log
and are hence not included in the training phase, causing unseen behavior in the
test phase. The idea is to integrate information from the compliance constraint
into the prediction model. This way we do not have to wait until we observe the
new process behaviour caused by this constraint, e.g., the event(s) reflecting an
activity related to goods destruction. Compliance constraints can therefore be
seen as “promising” context to enable the prediction of unseen behavior, resulting
in the overarching research question of this work:

How to exploit context information on compliance constraints to predict
unseen process behavior, i.e., unseen next event labels?

The input of the approach comprises a process event log and a set of compli-
ance constraints that apply to the underlying process. Furthermore, we consider



Predicting Unseen Process Behavior 129

that the process event log can be incomplete in terms of observations, i.e., not
every event label that is conceivable based on the set of constraints has been
observed so far. This corresponds to epistemic uncertainty as typically referenced
in the machine learning community, cf., e.g., [11,26]. By incorporating knowledge
on compliance constraints we do not have to wait until we observe the behavior
enforced by them and update the prediction model when we have observed it.
We can already anticipate unseen behavior based on, e.g., data attributes, e.g.,
in the food transportation example the temperature exceeding 10 degrees. After
the unseen behavior has been observed our approach uses appropriate update
strategies to further enhance the prediction quality.

The presented approach comprises an offline component that augments a
state transition system with contextual information from compliance constraints.
The augmented transition system is then used for prediction with an event
stream in the online component. The approach is evaluated based on synthetic
and real-world event logs without and with existing update strategies. More-
over, the augmented transition system is compared to deep learning methods
with either a single LSTM layer [14] or a Process Transformer [3].

The remainder of this paper is structured as follows. Section 2 outlines the
problem statement, Sect. 3 presents the next event label prediction approach
using constraint context information. The approach is evaluated in Sect. 4,
related work is discussed in Sect. 5 before the paper concludes in Sect. 6.

2 Problem Statement and Preliminaries

Next event label prediction takes an event log (training data) and an event
stream (test data) as input and predicts based on the event log the next event
label for the ongoing process instance observed in the event stream. The event
log contains events which origin from different cases, each case represented by a
trace. An event can have multiple attributes, e.g., an event label, a timestamp,
a life cycle transition, data values, or resources that were involved during the
execution. In the following running example, we abstract from this representa-
tion by just depicting a trace as sequence of event labels and their number of
occurrences.

Example: Assume a scenario with event log L = [< A,B,E >100, < A,C >100]
as training data where the number in the superscript denotes the frequency of the
trace occurrence, and event stream S as test data, i.e., S =< A1, A2, B1, C2 >
where the subscript reflects the case id. For S, existing prediction models would
result in predicting E for case 1 and no prediction for case 2.

In this paper we aim to predict the next event label for an evolving event
stream based on an event log and a set of compliance constraints as additional
context information. A compliance constraint c is defined as a triplet (p, s, r)
consisting of a non-empty predecessor event p, a possibly empty successor event
s and r specifying the relation between p and s. This definition is deliberately
kept independent from any formalism such as linear temporal logic, in order to
show the general applicability of the approach.



130 Q. Chen et al.

Example (ctd.): Assume that in the scenario described above, the following
two constraints are imposed on the process execution due to, e.g., newly arising
or updated regulations:

c1 : “D directly follows C”
c2 : “Y eventually follows B”

Constraints c1 and c2 can be formalized as c1 = ({C}, {D},
{directly follows}) and c2 = ({B}, {Y }, {eventually follows}). The directly fol-
lows relation means that whenever C occurs, D must occur next without other
events in between. The eventually follows relation implies that whenever B occurs,
Y must occur afterwards [12].

For the running example, existing next event label prediction without con-
sidering the constraint information, cannot predict events D and Y since they
have not been observed in L. Only approaches considering updates can incorpo-
rate this information if at some time it is observed in the stream. By integrating
compliance constraints c1 and c2 into the prediction model, we gain knowledge
about those additional events in advance allowing for their prediction.

Example (ctd.): Including the additional knowledge contributed by constraints
c1 and c2 into next event label prediction, we envision the prediction of E or Y
for case 1 and the prediction of D for case 2.

The presented approach will be capable of predicting unseen events that stem
from constraints without requiring updating the prediction model. However, as
soon as unseen behavior emerging from sources other than constraints is observed
in the stream, this information is included via updates, as well.

Example (ctd.): Assume that event stream S evolves in the following steps.
Then existing approaches and the envisioned approach including constraints
yield the prediction results summarized in Table 1 without updating the predic-
tion models. We can see that existing approaches do not yield any predictions if
the trace length exceeds the longest observed trace which is the case for any of
the streams in Table 1. This might give the prediction with constraint informa-
tion an edge, at least until prediction models are updated. We will investigate
the “sweet spot” between the effort and gain of including constraint information
into the prediction, in connection with update strategies, in Sect. 4.

Table 1. Prediction results with evolving event stream; –: no prediction

Event stream Existing approaches Including constraints

S =< A1, A2, B1, C2, E1 > case 1: – ; case 2: – case 1: Y ; case 2: D
S =< A1, A2, B1, C2, E1, D2 > case 1: – ; case 2: – case 1: Y ; case 2: –
S =< A1, A2, B1, C2, E1, D2, Y1 > case 1: – ; case 2: – case 1: – ; case 2: –



Predicting Unseen Process Behavior 131

In order to consider that unseen behavior is predicted, we aim at predicting
not only the next event labels, but also how certain we are for the upcoming
event label.

In the paper, we assume that we are in a violation free setting, meaning
that the event log L never violated the set of compliance constraints C we con-
sider with unseen behavior, but violations of other compliance constraints are
in principle possible. In the case of the event stream, we only include cases that
do not contain violations of compliance constraints when updating the predic-
tion model. Moreover, we consider that we have observed the predecessor of a
constraint. That in turn means that a chaining of constraints, i.e., “B follows
A” and “C follows B”, may not occur as we would lack the predecessor event
B. Furthermore, the assumption is made that there are no overlaps in control-
flow constraints, i.e., “B directly/eventually follows A” and at the same time “X
directly/eventually follows A” cannot occur without further knowledge. Further
knowledge means in this case that certain conditions on data attributes need
to hold, e.g., “If the credit amount is greater than 10.000e, “perform detailed
check” must happen after “request received”, otherwise “perform normal check”
must happen after “request received”. In this work, we only consider control-flow
constraints without any further information (e.g., data attributes), but it will
be taken into account in future work.

3 Next Event Label Prediction Approach

In order to address the problem as outlined in Sect. 2, we follow the basic idea
of predictive process monitoring approaches by initially training a prediction
model in an offline component and carrying out the prediction and update of
the prediction model in an online component. For the offline component the input
consists of an event log L and a set of compliance constraints C. The output
is a prediction model trained based on information from L combined with the
external knowledge based on C. The online component takes an event stream S
and the set of compliance constraints C as input and delivers the prediction of the
next event label with corresponding probability. In order to foster explainability
the user is informed whether the prediction was made solely based on L or
based on which compliance constraint in C. Moreover, several update strategies
allowing to cope with concept drifts induced by changes in the underlying process
models are integrated into the online component.

As prediction model we opt for transition systems as introduced in [1,19].
Both papers focus on remaining time prediction and the latter incorporates
regression models based on data attributes and allows for activity sequence
prediction as well. Transition systems are selected because we are facing the
challenges of i) frequent changes causing unseen behavior and ii) explainability.
Considering i) compared to, e.g., deep-learning models, transition systems with
appropriate abstractions can be constructed at low computational costs allowing
for incorporating changes as soon as they occur without waiting hours or days
for retraining the prediction model. For ii) transition systems are a white box



132 Q. Chen et al.

model and allow for different explainability options, i.e., we can easily convey
prediction results to users and, e.g., distinguish between predictions that are
made solely based on the given event log or predictions that were made based
on a particular constraint in combination with the probabilities attached to the
prediction result.

3.1 Creating the Prediction Model – Offline Component

For the offline component, at first, an annotated transition system based on event
log L is constructed analogously to [1,19] and later on augmented with constraint
information. A transition system TS constructed based on event log L consists
of a set of states S, a set of event labels E and a set of transitions T . A transition
t is a triplet (s1, e, s2) determining how one state s1 is conveyed into another
state s2 via an event e. Events and states can be represented through different
representation functions. An example for an event representation function is
the function that maps an event onto its event label. An example for a state
representation function is the function that maps a partial trace onto its sequence
of event labels.

Figure 1 depicts the transition system TS for the running example as intro-
duced in Sect. 2 where the parts of TS generated based on the event log L
are depicted in black. The partial traces created from the traces in L are
< A >,< A,B >,< A,B,E >,< A,C >. As illustrated in Fig. 1 in the case of
i) representing states as sequences of partial traces, i.e., mapping each partial
trace onto the event labels while taking the order into account, the set of states
S consists of exactly those traces. In the case of ii) representation as last event,
i.e., mapping each partial trace onto the label of the last event, the states are
given as A,B,C and E. Note that artificial empty start states <> and ().

Fig. 1. Augmented Annotated Transition Systems for the Running Example

States can be further annotated with all possible next states, and each of them
is associated with a probability from the prior state to them. The probability of
each outgoing state is calculated using a measurement function. An annotated



Predicting Unseen Process Behavior 133

transition system ATS is then a transition system TS together with an event
and state representation as well as a measurement function [1]. As measurement
function for the TS constructed based on event log L we consider the function
calculating the probability based on relative occurrences of the transitions within
the log file. For instance, the probability from state < A > to state < A,B > in
the running example in Fig. 1 is the quotient of the number of visits from < A >
to < A,B > and the number of total visits from state < A > to its all possible
next states. So in this case, the probability from state < A > to state < A,B >
is 0.5, as < A,B > has been observed 100 times in the event log and < A,C >
occurs in 100 cases.

For further details on transition systems, state and event representations, as
well as measurement functions, we refer the reader to [1,19].

In order to incorporate constraint information, the basic annotated transition
system ATS calculated based on event log L is augmented based on information
from the set of compliance constraints C. The result is denoted as Augmented
Annotated Transition System AATS and is constructed based on Algorithm 1.
The algorithm works independently from the chosen state and event representa-
tions.

Algorithm 1. Annotated Transition System Augmentation Algorithm
Input: ATS = annotated transition system based on an event log, C = set of constraints, one

constraint c corresponds to a triple (predecessor, successor, relation)
Output: AATS = augmented annotated transition system

1: for each eventually follows constraint c in C do
2: if c.predecessor and c.successor have been observed in ATS then c was already observed,

do no augmentation for constraint
3: end if
4: if only c.predecessor has been observed in ATS then add c.successor to every state which

contains c.predecessor; extend beyond constraints if the state with further events
5: end if
6: if c.predecessor has not been observed but c.successor has been observed in ATS then there

must be an error or violation in the log for constraint
7: end if
8: end for
9: for each directly follows constraint c in C do

10: if c.predecessor and c.successor have been observed in ATS then c was already observed,
do no augmentation for constraint

11: end if
12: if only c.predecessor has been observed in ATS then add c.successor to every state which

ends with c.predecessor; extend beyond constraints if the state with further events
13: end if
14: if c.predecessor has not been observed but c.successor has been observed in ATS then there

must be an error or violation in the log for constraint
15: end if
16: end for

In Algorithm 1, we take as input the basic annotated transition system ATS
and a set of compliance constraints C. In order to avoid violation after aug-
mentation, the basic ATS is augmented with eventually follows constraints first
(see line 1). For example, if an additional constraint c3 : “F directly follows E”
is introduced for the running example in Sect. 2, then < A,B,E > is extended



134 Q. Chen et al.

with F . However, the eventually follows constraint c2 : “Y eventually follows B”
will generate a violated trace < A,B,E, Y, F > on top of < A,B,E, F >. Next,
the basic ATS is augmented with the eventually follows constraint based on
three scenarios. For scenario 1 (line 2 and line 3), if both events are observed in
ATS then no augmentation is conducted. The main scenario this paper focuses
on is described from line 4 to line 5, in which the predecessor has been observed
in ATS while the successor is unseen at the moment. For eventually follows
augmentation, the successor should be added to the end of each state in which
the predecessor is included. We represent this augmented state as a constraint
state as it is directly constructed from a constraint. When an additional state is
added to the basic transition system, the count of the corresponding transition
from the initial state to the additional state is increased by 1. If the initial state
which contains the predecessor of the constraint has further events, then those
events need to be added after the constraint state. Line 6 and line 7 indicate
a violation scenario if the successor is observed before the predecessor in the
log. The augmentation process for directly follows constraints is similar to the
eventually follows one except for the second scenario from line 12 to line 13. In
this case, only states which end up with the predecessor of the constraint are
augmented with the successor of the constraint. We again extend the constraint
state with following events if the initial state has further events.

After constraint augmentation as described in Algorithm 1, additional states
and transitions are appended on top of the basic ATS. This leads to an update of
annotations constructed in ATS before. Here we use the same measurement func-
tion as for ATS to calculate the probability of relative occurrences for states from
the basic transition system and additional states from the augmented transition
system. For example, the probability from state < A,C > to state < A,C,D >
in the running example as depicted in Fig. 1 is 1 since there is only one transition
from < A,C > to < A,C,D > which is augmented from the constraint.

In Fig. 1, the transitions and states that are inserted based on constraint
information are depicted in green and orange depending on which constraint
was used to create the state.

3.2 Next Event Label Prediction – Online Component

The online component serves two purposes, i.e., predicting the next event label
and constantly updating and improving the existing prediction model based on
event stream S. In the phase of online prediction, the AATS constructed from
the offline phase is applied to incoming traces from the event stream to predict
the next event labels with their associated probabilities. The next event label
with the highest probability is selected from the set of possible events. Note
here, if the next event label is predicted based on information from compliance
constraints, then the corresponding constraint information is provided, as well.
This enables our approach to explain whether the prediction is based on the
event log or the set of constraints. There could also be multiple next event labels
possible for a partial trace with the same probability. In this case, the AATS will



Predicting Unseen Process Behavior 135

predict all possible next event labels with again the probabilities and constraints
if available.

As we use occurrence frequencies as measurement function for calculating
probabilities from one state to another, consequently, updating the prediction
model constantly as event stream evolves is needed. Here, the updating mecha-
nism can be either triggered based on i) the event stream S or by ii) changes in
the constraint set C. For i), the following scenarios are possible: a) only labels
that were already observed in the log and constraint set are in the stream, i.e., no
new/additional states and transitions need to be created and only the probabil-
ities need to be recalculated; b) new labels are observed resulting in the need for
a full retraining of the model, i.e., both ATS creation and constraint augmenta-
tion need to be conducted again. That means the initial ATS is updated based
on new states and transitions, then the constraint augmentation according to
Algorithm 1 is applied to the updated ATS. For ii) we need to recalculate only
the augmentation part based on the initial ATS that is constructed from the
event log L, i.e., perform Algorithm1 with the newly updated set of compliance
constraints. Combinations of i) and ii) are also conceivable.

4 Evaluation

The approach is prototypically implemented and available at https://www.cs.
cit.tum.de/bpm/software/. To evaluate the approach a synthetic event log1 gen-
erated using the Cloud Process Execution Engine2 (CPEE) [15] and a well-
established real-life event log, the Helpdesk event log3, are used. As to the best
of our knowledge, this approach is the first to aim at predicting unseen behavior
resulting from constraints, we consider the following four comparisons, i) ATS
vs. AATS without updates, ii) ATS vs. AATS with updates, iii) AATS vs. a
deep-learning model without updates, and iv) AATS vs. a deep-learning model
with updates. The first comparison aims at illustrating the advantage of taking
constraint information into account. The second comparison shall demonstrate
that the updating strategy for the AATS was chosen correctly, and the third
comparison shall provide insights on how well a basic technique like the AATS
performs against sophisticated prediction models. The last comparison seeks to
highlight the benefits of our proposed approach against existing approaches in
dealing with unseen behavior, i.e., updating prediction models when considering
unseen event labels or new sequences. Given that the prediction of the next event
label is a multi-class classification problem, we choose accuracy, precision, recall,
and the f1-score as metrics. The accuracy measures the proportion of correct
predictions to the total number of predictions made. The f1-score is the har-
monic mean of precision (or positive predictive value) and recall (or sensitivity),
where precision determines the exactness of the model, and recall measures the
model’s completeness [3].
1 https://www.cs.cit.tum.de/bpm/data/.
2 https://cpee.org, last access: 2023-03-21.
3 https://data.4tu.nl/articles/_/12675977/1.

https://www.cs.cit.tum.de/bpm/software/
https://www.cs.cit.tum.de/bpm/software/
https://www.cs.cit.tum.de/bpm/data/
https://cpee.org
https://data.4tu.nl/articles/_/12675977/1


136 Q. Chen et al.

4.1 Data Sets

All data sets consist of an event log L containing only the predecessor events
of the compliance constraints, i.e., the successor events are still unseen, the set
of compliance constraints C and a test set representing the event stream S.
The latter contains full information, i.e., also the unseen event labels for the
constraints in set C.

Synthetic Data. In order to meet our violation-free assumption (cf. Sect. 2),
we generate a process model with decision and parallel gateways as shown
in Fig. 2. The training set contains 200 cases among which 4 different activ-
ities A,B,C,D are executed. Then one directly follows constraint: c1 =
({D}, {E}, {directly follows}) and two eventually follows constraints: c2 =
({B}, {X}, {eventually follows}), c3 = ({C}, {Y }, {eventually follows}) are
imposed on the process model. This is reasonable since constraints might change
over time and these changes should be integrated into the process model as soon
as possible. As our paper aims to address partially seen cases, thus, all prede-
cessors of constraints (i.e., B,C,D) are already observed in the training set,
while the successors of them (denoted in green and orange boxes in Fig. 2) (i.e.,
E,X, Y ) remain unseen in the historic event log. However, those unseen activ-
ities from the set of constraints could occur in stream data as time goes by.
Therefore, the test set with 200 cases is generated based on the whole process
model with unseen activities E,X, Y additionally.

Fig. 2. Process model for synthetic data set

Helpdesk Dataset. The Helpdesk event log reflects a process to resolve tickets
that are raised by users. The data set contains 21348 events with 14 distinct
activities distributed among 4580 cases. The average case length of all process
instances is 4.66, while the maximal value is up to 15. In addition to the event log,
a set of constraints is needed. As this data set does not include any information
about compliance constraints, we artificially create a directly follows constraint



Predicting Unseen Process Behavior 137

c1 = ({Resolve ticket}, {Closed}, {directly follows}) based on the analysis of
the log file. To align with our assumption, all events with event label “Closed”
are removed from the log file to keep the successor of the constraint unseen. The
training set consists of all events without “Closed”, while the test set is the same
as the original log file with “Closed”.

4.2 ATS vs. AATS Without Updates

To demonstrate the benefits of leveraging additional information from compli-
ance constraints, we compare experimental results between traditional ATS and
our envisioned approach without updates. The test results based on the Syn-
thetic and Helpdesk data set are provided in Table 2.

In general, our approach performs better than ATS in terms of all metrics in
both data sets. In particular, a significant improvement can be observed for the
synthetic data set. This is because the prediction model for ATS is solely trained
based on the historic event log in which unseen activities like E,X, Y have never
been observed. Thus, the prediction model is unable to deal with these unknown
situations in online prediction without updating accordingly. However, our app-
roach has considered unseen process behavior originated from the constraint set
in the training phase already. This enables AATS to cope with unseen cases even
without updating strategies. For the Helpdesk data set, the overall predictive
quality for both approaches is not as expected. Considering that the compliance
constraint c1 = ({Resolve ticket}, {Closed}, {directly follows}) is artificially
created to test the presented approach. There are many violated cases against
constraint c1 in the test set. In this case, without updating the model during
predictions hinders the possibility for both two models to capture those “vio-
lated” cases caused by the introduction of the artificially generated constraint.
The slight improvement for AATS compared to ATS in this data set can be
attributed to the limited information (i.e., only one directly follows constraint
with “Closed” as an unseen event label) we can obtain from constraints.

Table 2. Results ATS vs. AATS (no updates)

Data set Approach Accuracy F1-score Precision Recall

Synthetic ATS 0.250 0.249 0.313 0.250
AATS 0.815 0.810 0.897 0.815

Helpdesk ATS 0.432 0.345 0.363 0.432
AATS 0.450 0.344 0.567 0.450

4.3 ATS vs. AATS with Updates

We assume that both approaches are capable of updating the prediction models
if unseen behavior is observed in the event stream (cf. results in Table 3).



138 Q. Chen et al.

Compared to Sect. 4.2, if ATS is embedded with updating strategies during
prediction, it outperforms our approach especially for the Synthetic data set.
This is explainable since our approach strives to cover all possible variants of
enriching the event log with additional information from constraints. Given that
we use the probability of relative occurrences as the measurement function, the
increase in the total amount of possible transitions for one state to another
results in a decrease in the probability of the appropriate transition. Moreover,
AATS does not undergo updates as ATS did because the test set lacks unseen
event labels for AATS to update after the augmentation of constraints. Instead,
it only updates the probability for each transition of the evolving stream. For the
Helpdesk data set, the performances of both approaches with updating strategies
are significantly improved compared to the results in Table 2. Since the test set
contains lots of violated cases and unseen behavior (i.e., “Closed”) for ATS, it is
hard to tell the source of it’s improvement. By contrast, the better performance
of AATS is owing to updating on those violations as we have incorporated the
unseen event label into model training.

Table 3. Results ATS vs. AATS (with updates)

Data set Approach Accuracy F1-score Precision Recall

Synthetic ATS 0.865 0.867 0.934 0.865
AATS 0.816 0.812 0.898 0.816

Helpdesk ATS 0.705 0.670 0.748 0.705
AATS 0.705 0.670 0.745 0.705

4.4 AATS vs. Deep-Learning Model Without Updates

Approaches using transition systems and deep-learning-based models without
updating mechanisms are compared to provide insights into model selections in
predictive process monitoring. Here we adopt Process Transformer proposed by
[3] as the prediction model. The reason is that the Process Transformer uses the
self-attention mechanism to reason over long-range dependencies and is able to
process inputs in parallel [3]. We use the default hyperparameter configurations
and enrich the training set with unseen event labels from the set of constraints.
Then the prediction model (i.e., Process Transformer) is trained based on the
enriched data set with all possible variations regarding constraints we considered.
The test results are provided in Table 4.

For Synthetic data set, AATS performs better than the deep-learning-based
approach. However, the latter outperforms AATS considerably on Helpdesk data
set. This could be attributed to the type of constraints we considered. Two even-
tually follows constraints imposed on the Synthetic data set result in an enriched
training set with plenty of variations, e.g., < A,C, Y,B,X >, while most of the
augmented samples are incorrect cases that will not occur in the event stream



Predicting Unseen Process Behavior 139

(i.e., the test set only contains traces < A,B,C,X, Y > and < A,C,B,X, Y >).
Note that AATS covers all these variations as well, but with the count of 1 for
each variation regardless of the data size, whereas the deep-learning-based app-
roach does augmentations for each individual trace if the partially seen criteria
is satisfied. Thus, there are lots of incorrectly enriched cases in the training set.
Conversely, the Helpdesk data set only considers one directly follows constraint,
thus, no misleading samples are generated based on this constraint.

Table 4. Results DL vs. AATS (no updates)

Data set Approach Accuracy F1-score Precision Recall

Synthetic DL 0.732 0.714 0.729 0.732
AATS 0.815 0.810 0.897 0.815

Helpdesk DL 0.844 0.812 0.796 0.844
AATS 0.450 0.344 0.567 0.450

4.5 AATS vs. Deep-Learning Model with Updates

To shed light on the effectiveness of the proposed approach, we conduct experi-
ments comparing AATS and existing approaches in dealing with unseen process
behavior, i.e., updating deep-learning models on demand. We choose the most
comparable deep-learning-based approach proposed in [14] with a single LSTM
layer. Following the experimental settings as stated in [14], we expand the Syn-
thetic data set to include 1000 cases, of which 10% are allocated as a training
set, and the remaining 90% are assigned to the test set. This means 100 cases
are selected from the training set as we described in Sect. 4.1, and 900 cases are
generated based on the process model with compliance constraints. The same
training-test splitting is applied to Helpdesk data set as well. Moreover, the
timestamp in the test set of the Synthetic data needs to be adapted to simu-
late an online setting as mentioned in [14], i.e., daily prediction. Experimental
results are summarized in Table 5. Different update strategies provided in [14]
are denoted as S0 (do not update), S1 (update on new activities), S2 (update on
new sequences) and S3 (update every day). Time spent for each update strategy
is represented as hours:minutes:seconds.

For both two data sets, AATS underperforms the deep-learning approach
with updating strategies like S3 (update every day). By contrast, in terms of
computational time, deep-learning approaches with updating mechanisms can
take hours and even days to update prediction models when coping with rela-
tively large data sets (e.g., Helpdesk data set).

Findings: To sum up, AATS performs better than ATS if no updates are
conducted during online prediction. When considering updates, ATS can learn
from the proper incoming traces under the violation-free assumption directly.
This leads to a better predictive performance than AATS as it cannot handle



140 Q. Chen et al.

Table 5. Results DL vs. AATS (with updates)

Data set Approach Accuracy F1-score Precision Recall Time

Synthetic S0 0.403 0.401 0.498 0.403 00:00:01
S1 0.688 0.638 0.697 0.688 00:00:02
S2 0.403 0.401 0.498 0.403 00:00:01
S3 0.829 0.828 0.899 0.829 00:00:47
AATS 0.813 0.809 0.896 0.813 00:00:02

Helpdesk S0 0.275 0.274 0.460 0.275 00:00:20
S1 0.657 0.652 0.659 0.657 00:04:46
S2 0.778 0.756 0.741 0.778 09:36:10
S3 0.776 0.755 0.742 0.776 28:42:32
AATS 0.703 0.671 0.735 0.703 00:06:53

the reduction of the augmented transition system appropriately. In light of pre-
diction model selections, deep-learning models demonstrate superior prediction
quality compared to transition systems if eventually follows constraints are aug-
mented properly. Nevertheless, it is computationally expensive for deep-learning-
based approaches when considering update mechanisms. We discuss options for
improvement in Sect. 6.

5 Related Work

This paper addresses research questions at the intersection of the i) exploitation
of (external) context information and ii) handling of unseen behavior in predic-
tive process monitoring. For i) [2,6,17] present a taxonomy for process context
information, differentiating its origin into internal/intrinsic (within the log) and
external (outside the log) context data. [25] distinguish between structured and
unstructured context information, stating that “the majority of the works on
context-aware predictive business process monitoring relies on structured context
data created by the information system itself like process performance metrics.” .
[7] discover context-aware prediction models based on internal context data. [22]
include internal, textual data as unstructured context data to predict the out-
come of a running case. By contrast, [28] provide an approach for remaining time
prediction by considering sentiments triggered by news (external context data).
[5] propose an approach to identify context information for performance indi-
cator prediction based on expert and domain knowledge. [21] exploit (external)
sensor streams for predicting and explaining concept drift. The only approach
exploiting information on compliance constraints in predictive process monitor-
ing is [8] by ranking predictions based on their compliance with imposed con-
straints. However, the predictions are still based on observed behavior, i.e., they
do not consider unseen behavior yet. Only few approaches envision strategies to
cope with unseen behavior (ii). [4,20] elaborate update strategies for prediction



Predicting Unseen Process Behavior 141

models. Incremental learning for predicting the outcome of a process instance
has been applied by [9,13]. [18] use incremental learning for predicting the next
activity. In [14], we conclude that an “ “update on demand” strategy yields the
best results in terms of balancing prediction quality and performance.” . These
approaches do not predict unseen behavior themselves as advocated in this work,
but can be combined in order to deal with the evolving event stream.

6 Conclusion

This paper provides an approach to exploit contextual information from a set
of compliance constraints C for predicting unseen behavior in the training data,
i.e., in the event logs. For this, we augment state transition systems with the con-
straint information and use them as prediction model. A first insight is that for
violation-free logs, i.e., logs that respect the compliance constraints we consid-
ered, the prediction quality is higher for the prediction with context information.
When updating the models without context information with unseen behavior,
the prediction quality converges to similar values. An interesting insight is that
we drop the assumption of violation-free event logs, the prediction quality of
the augmented prediction model might not exceed the quality of the prediction
models without augmentation. Conversely, an unexpectedly low prediction qual-
ity of the approach with compliance constraint information can be interpreted
as an indicator that the underlying logs contain violations, contributed by, for
example, interleaving. Interleaving occurs if the directly follows semantic of a
constraint is “broken” by executing an activity from another parallel branch. In
these situations, the approach can also be used as a mechanism to detect possible
compliance violations.

Discussion: We can understand the assumptions made in Sect. 2 as current
limitations of the approach. At first, we only consider directly follows and even-
tually follows semantics of the constraints. However, compliance constraints can
be more expressive, e.g., restricting the resource perspective via a separation of
duty constraint. Second, we assume violation-free logs which might not be the
case for real-world logs. In this case, prediction quality lower than expected can
indicate compliance violations. Another limitation refers to the measurement
function that is used for calculating the probabilities in the augmented state
transition system. In this work, it uses occurrence frequencies. In future work,
additional information can be exploited such as remaining time or data values
from the event log to weigh probabilities differently. Third, we do not explicitly
consider changes in constraint set C, though the presented approach is able to
deal with such changes if they are under the partially seen scenario by re-running
the augmentation algorithm.

Future work aims at exploiting compliance constraints referring to process
perspectives, e.g., data attributes, beyond control flow when predicting next
event labels. We will also test different abstraction functions, cf. [1]. Moreover,
prediction goals such as remaining time will be added to the approach. Future
work will also feature experiments with different update strategies in case of
constraint set updates.



142 Q. Chen et al.

Acknowledgements. This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – project number 277991500.

References

1. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011). https://doi.org/10.1016/j.is.2010.
09.001

2. Brunk, J., Stierle, M., Papke, L., Revoredo, K., Matzner, M., Becker, J.: Cause vs.
effect in context-sensitive prediction of business process instances. Inf. Syst. 95,
101635 (2021). https://doi.org/10.1016/j.is.2020.101635

3. Bukhsh, Z.A., Saeed, A., Dijkman, R.M.: Processtransformer: predictive busi-
ness process monitoring with transformer network. CoRR abs/2104.00721 (2021).
https://arxiv.org/abs/2104.00721

4. Chamorro, A.E.M., Nepomuceno-Chamorro, I.A., Resinas, M., Ruiz-Cortés, A.:
Updating prediction models for predictive process monitoring. In: Advanced Infor-
mation Systems Engineering, pp. 304–318 (2022). https://doi.org/10.1007/978-3-
031-07472-1_18

5. Chamorro, A.E.M., Revoredo, K., Resinas, M., del-Río-Ortega, A., Santoro, F.M.,
Ruiz-Cortés, A.: Context-aware process performance indicator prediction. IEEE
Access 8, 222050–222063 (2020). https://doi.org/10.1109/ACCESS.2020.3044670

6. Ehrendorfer, M., Mangler, J., Rinderle-Ma, S.: Assessing the impact of context
data on process outcomes during runtime. In: Hacid, H., Kao, O., Mecella, M.,
Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 3–18. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-91431-8_1

7. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012.
LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33606-5_18

8. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.:
An eye into the future: leveraging a-priori knowledge in predictive business process
monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol.
10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65000-5_15

9. Francescomarino, C.D., Ghidini, C., Maggi, F.M., Rizzi, W., Persia, C.D.: Incre-
mental predictive process monitoring: How to deal with the variability of real
environments. CoRR abs/1804.03967 (2018). http://arxiv.org/abs/1804.03967

10. Hashmi, M., Governatori, G., Lam, H.-P., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

11. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506
(2021). https://doi.org/10.1007/s10994-021-05946-3

12. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.:
Compliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015). https://doi.org/10.1016/j.is.2015.02.007

13. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process mon-
itoring. In: IEEE International Conference on Services Computing, pp. 1–8 (2017).
https://doi.org/10.1109/SCC.2017.10

https://doi.org/10.1016/j.is.2010.09.001
https://doi.org/10.1016/j.is.2010.09.001
https://doi.org/10.1016/j.is.2020.101635
https://arxiv.org/abs/2104.00721
https://doi.org/10.1007/978-3-031-07472-1_18
https://doi.org/10.1007/978-3-031-07472-1_18
https://doi.org/10.1109/ACCESS.2020.3044670
https://doi.org/10.1007/978-3-030-91431-8_1
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-319-65000-5_15
https://doi.org/10.1007/978-3-319-65000-5_15
http://arxiv.org/abs/1804.03967
https://doi.org/10.1007/s10115-017-1142-1
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1016/j.is.2015.02.007
https://doi.org/10.1109/SCC.2017.10


Predicting Unseen Process Behavior 143

14. Mangat, A.S., Rinderle-Ma, S.: Next-activity prediction for non-stationary pro-
cesses with unseen data variability. In: Almeida, J.P.A., Karastoyanova, D., Guiz-
zardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol.
13585, pp. 145–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
17604-3_9

15. Mangler, J., Rinderle-Ma, S.: Cloud process execution engine: architecture and
interfaces (2022). https://doi.org/10.48550/ARXIV.2208.12214

16. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of
business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018).
https://doi.org/10.1109/TSC.2017.2772256

17. Park, G., Benzin, J., van der Aalst, W.M.P.: Detecting context-aware deviations
in process executions. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-
Ma, S. (eds.) BPM 2022. LNBIP, pp. 190–206. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-16171-1_12

18. Pauwels, S., Calders, T.: Incremental predictive process monitoring: the next activ-
ity case. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM
2021. LNCS, vol. 12875, pp. 123–140. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85469-0_10

19. Polato, M., Sperduti, A., Burattin, A., Leoni, M.: Time and activity sequence
prediction of business process instances. Computing 100(9), 1005–1031 (2018).
https://doi.org/10.1007/s00607-018-0593-x

20. Rizzi, W., Di Francescomarino, C., Ghidini, C., Maggi, F.M.: How do I update
my model? On the resilience of Predictive Process Monitoring models to change.
Knowl. Inf. Syst. (9), 1–32 (2022). https://doi.org/10.1007/s10115-022-01666-9

21. Stertz, F., Rinderle-Ma, S., Mangler, J.: Analyzing process concept drifts based
on sensor event streams during runtime. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 202–219. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58666-9_12

22. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business
process monitoring with structured and unstructured data. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45348-4_23

23. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive
process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data
13(2), 17:1-17:57 (2019). https://doi.org/10.1145/3301300

24. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-
benchmark comparison of remaining time prediction methods in business process
monitoring. ACM Trans. Intell. Syst. Technol. 10(4), 34:1-34:34 (2019). https://
doi.org/10.1145/3331449

25. Weinzierl, S., Revoredo, K.C., Matzner, M.: Predictive business process monitor-
ingwith context information from documents. In: 27th European Conference on
Information Systems - Information Systems for a Sharing Society, ECIS 2019,
Stockholm and Uppsala, Sweden, June 8–14, 2019 (2019). https://aisel.aisnet.org/
ecis2019_rip/59

26. Weytjens, H., Weerdt, J.D.: Learning uncertainty with artificial neural networks
for predictive process monitoring. Appl. Soft Comput. 109134 (2022). https://doi.
org/10.1016/j.asoc.2022.109134

https://doi.org/10.1007/978-3-031-17604-3_9
https://doi.org/10.1007/978-3-031-17604-3_9
https://doi.org/10.48550/ARXIV.2208.12214
https://doi.org/10.1109/TSC.2017.2772256
https://doi.org/10.1007/978-3-031-16171-1_12
https://doi.org/10.1007/978-3-031-16171-1_12
https://doi.org/10.1007/978-3-030-85469-0_10
https://doi.org/10.1007/978-3-030-85469-0_10
https://doi.org/10.1007/s00607-018-0593-x
https://doi.org/10.1007/s10115-022-01666-9
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1007/978-3-319-45348-4_23
https://doi.org/10.1145/3301300
https://doi.org/10.1145/3331449
https://doi.org/10.1145/3331449
https://aisel.aisnet.org/ecis2019_rip/59
https://aisel.aisnet.org/ecis2019_rip/59
https://doi.org/10.1016/j.asoc.2022.109134
https://doi.org/10.1016/j.asoc.2022.109134


144 Q. Chen et al.

27. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehen-
sive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach.
Intell. 41(9), 2251–2265 (2019). https://doi.org/10.1109/TPAMI.2018.2857768

28. Yeshchenko, A., Durier, F., Revoredo, K., Mendling, J., Santoro, F.: Context-
aware predictive process monitoring: the impact of news sentiment. In: Panetto,
H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.)
OTM 2018. LNCS, vol. 11229, pp. 586–603. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02610-3_33

https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1007/978-3-030-02610-3_33
https://doi.org/10.1007/978-3-030-02610-3_33

	Predicting Unseen Process Behavior Based on Context Information from Compliance Constraints
	1 Introduction
	2 Problem Statement and Preliminaries
	3 Next Event Label Prediction Approach
	3.1 Creating the Prediction Model – Offline Component
	3.2 Next Event Label Prediction – Online Component

	4 Evaluation
	4.1 Data Sets
	4.2 ATS vs. AATS Without Updates
	4.3 ATS vs. AATS with Updates
	4.4 AATS vs. Deep-Learning Model Without Updates
	4.5 AATS vs. Deep-Learning Model with Updates

	5 Related Work
	6 Conclusion
	References




