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Abstract. Interaction models, such as BPMN choreography diagrams,
enable the coordination of interactions between organizations within a
process choreography. Since choreography participants typically do not
share a central data store, data flow must be considered during design to
ensure that each participant has sufficient data to continue a conversa-
tion. However, current choreography modeling languages lack a concise
notation and execution semantics for data exchange. This paper refines
the data flow specifications of choreography diagrams using supplemen-
tal models. Furthermore, the execution semantics for data exchange is
formally defined by data-enhanced interaction Petri nets. The extended
semantics enable the analysis of data awareness and data consistency at
design time.
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1 Introduction

In a networked economy, the exchange of goods and services between organi-
zations is key to success. To ensure effective collaboration, the interactions of
the organizations’ internal processes must be carefully designed, e.g., in process
choreographies. Since choreography participants typically do not share a central
data store, interorganizational data flow must be considered to ensure that each
participant has sufficient data to advance the conversation. While interaction
models such as BPMN choreography diagrams [15] allow us to define interaction
behavior from a global perspective, current choreography modeling languages
lack concise notation and execution semantics for data exchange. As a result,
it is not possible to verify at design time that message senders are aware of
the required data and that participants affected by global decisions have a con-
sistent view of the data driving those decisions. This paper aims to improve
data modeling support for process choreographies by refining the specification
of exchanged data for choreography diagrams. A formal execution semantics for
data exchange is provided by mapping supplemented choreography diagrams to
interaction Petri nets extended with a data perspective. The mapping provides
a foundation for a data-aware formal analysis and verification of choreographies
at design time.
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The remainder of the paper is organized as follows: Sect. 2 outlines the fun-
damentals of process choreographies and interaction Petri nets, followed by a
motivating example in Sect. 3. Section 4 introduces the refined data flow specifi-
cations and formal execution semantics for data exchange as the main contribu-
tions of this paper. Next, Sect. 5 discusses the presented approach, and Sect. 6
gives a brief overview of related work. Finally, Sect. 7 summarizes the results of
this work.

2 Preliminaries

As a foundation for this work, this section outlines the basic concepts and formal
principles of process choreographies in Sect. 2.1 and interaction Petri nets in
Sect. 2.2.

2.1 Process Choreographies

Process choreographies define the possible interaction sequences between busi-
ness actors (i.e., choreography participants) that collaborate to achieve a goal [5].
Each choreography participant is associated with a role. An execution of a chore-
ography is referred to as a conversation. Definition 1 specifies the main concepts
of process choreographies.

Definition 1. (Process Choreography). A process choreography is defined by a
tuple C = (N,SF,R,M,G, grd, init, resp,msg), where:

– N ⊆ T × G × E is a finite, non-empty set of nodes including choreography
tasks T , gateways G, and events E,

– E can be partitioned into disjoint sets of start events Es and end events Ee,
– G can be partitioned into disjoint sets of event-based gateway splits Gs

e, exclu-
sive gateway splits Gs

×, exclusive gateway joins Gj
×, parallel gateway splits

Gs
+, and parallel gateway joins Gj

+,
– SF ⊆ N × N is a finite, non-empty set of sequence flows,
– R is a finite, non-empty set of participant roles,
– M is a finite set of messages,
– G is a finite set of guards,
– grd : Gs

× × N → G assigns a guard to a sequence flow,
– init : T → R assigns the initiating role to a choreography task,
– resp : T → R assigns the respondent role to a choreography task, and
– msg : T → (M × M) ∪ M ∪ {∅} assigns messages to a choreography task.

BPMN 2.0 introduces choreography diagrams as an interaction modeling lan-
guage for process choreographies [15]. Unlike BPMN collaboration diagrams,
choreography diagrams abstract from process-internal details and focus only on
interorganizational behavior. Choreography diagrams represent interactions as
choreography tasks, hereafter referred to as tasks. Each task is associated with
an initiator (white badge) and a respondent (gray badge). Optionally, an ini-
tial message (white envelope) and a response message (gray envelope) can be
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specified. A task with a response message is considered a two-way interaction
involving a request from the initiator and a response from the respondent.

Similar to BPMN collaboration diagrams, sequence flow arcs specify order
dependencies between tasks. In addition, gateways allow the specification of
exclusive and parallel behavior. Sequence flow arcs originating from an exclusive
gateway can be associated with a guard that specifies the condition for continuing
along that path. Note that all participants affected by the decision must have
the same view of the data on which the decision is based [15]. In contrast to
process orchestrations, choreographies do not assume a central data store, as
each participant typically maintains its data locally. Data can only be exchanged
via messages [12]. An example of a choreography diagram is depicted in Fig. 1.

2.2 Interaction Petri Nets

Models facilitate development and the exchange of ideas among experts, yet
precise semantics are essential for their implementation and analysis. In busi-
ness process modeling, Petri nets are widely used to provide concise execution
semantics [7]. Petri nets consist of places and transitions connected by directed
arcs. Places may contain tokens. If all places connected with an incoming arc
contain tokens, a transition can be fired to consume tokens from the incoming
places and produce tokens in the outgoing places. A distribution of tokens to
places is referred to as a marking [1]. Decker et al. introduce Interaction Petri
Nets (IPN) as an extension of Petri nets for describing interaction models [5].
IPNs represent each interaction by a single transition labeled with the initiator,
the respondent, and a description of the message. The additional information
allows reasoning about enforceability aspects of an interaction model [4]. A fir-
ing sequence of transitions represents a conversation. Based on definitions from
the literature [5,10], we define interaction Petri nets as follows:

Definition 2. (Interaction Petri net). An interaction Petri net is defined by a
tuple I = (P, T, F,R, init, resp,m0), where

– P is a finite set of places,
– T is a finite set of transitions, which can be partitioned into disjoint sets of

interactions TI , events TE, and silent transitions TS,
– F ⊆ (P × T ) ∪ (T × P ) is a finite set of arcs,
– R is a finite set of roles,
– init : TI → R assigns an initiating role to an interaction transition,
– resp : TI → R assigns a respondent to an interaction transition, and
– m0 : P → N assigns the initial number of tokens to each place, thus specifying

an initial marking for the net.

3 Motivating Example

To illustrate the need for concise data semantics for choreographies, in this
section we present an example choreography inspired by the shipment of goods
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Fig. 1. Choreography diagram describing the international transport of goods by ship
between a consignee and a supplier, considering customs.

by sea to a European Union member state. The choreography diagram shown
in Fig. 1 illustrates the key steps, including the consignee ordering goods from a
supplier, the supplier sending the container of goods to the destination port via
a carrier, and customs inspecting the import of the goods. For each order, the
supplier requests the import permit from the consignee, which must be issued
by customs before the container is handed over to the carrier. Upon arrival, the
consignee can access the container using the bill of lading issued by the carrier.
If the import permit requires further checks, the consignee must first apply for
customs clearance. If customs rejects the import, the container must be returned.
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When data is not considered, the choreography diagram meets the local
enforceability requirements [4]. However, considering data exchange raises
enforceability concerns. In particular, after the order is confirmed by the sup-
plier, the subsequent steps require the supplier to forward the bill of lading
and the consignee to provide the import permit. Both documents, however, are
issued by the carrier or customs respectively and are sent only in subsequent
tasks, resulting in a deadlock. In addition, the BPMN 2.0 standard requires that
participants affected by an exclusive gateway must share the same view of the
data on which the decision is based on [15]. After the container arrived, the port
has not received the import permit and therefore is unaware of whether a return
shipment must be expected. Therefore, the design of the choreography raises
concerns about data exchange regarding:

– Data awareness: Is the sender of a message aware of the required data?
– Data consistency: Do participants have the same view of the exchanged data?
– Data dependencies: What dependencies exist between the exchanged data?

Since erroneous data flow may not be obvious in complex choreographies,
precise specifications and semantics for interorganizational data exchange are
required to enable the analysis of process choreographies with data at design
time.

4 Execution Semantics for Choreographies with Data

Specifying and analyzing interorganizational data flow requires extending the
execution semantics and refining the notion of choreography diagrams. In the fol-
lowing, Sect. 4.1 introduces supplementary models for specifying data exchange
in choreography diagrams. In addition, Sect. 4.2 presents data-enhanced inter-
action Petri nets as a formal basis for defining execution semantics for data
exchange. Finally, Sect. 4.3 proposes a mapping of supplemented choreography
diagrams to data-enhanced interaction Petri nets to define execution semantics
for choreography diagrams with data specifications.

4.1 Data Exchange Specifications for Choreography Diagrams

Choreography diagrams allow only limited specification of data exchange. Mes-
sage elements can be assigned labels to describe the content of the message, but
no clear semantics are provided for the labels, which can lead to different inter-
pretations of the behavior. In this section, we refine choreography diagrams by
introducing more concise data exchange specifications for message elements. To
remain compliant with the BPMN standard, the notation of the choreography
diagrams is not adapted, which facilitates modeling with existing tools. Instead,
the specification is composed of supplemental models that, in addition to the
choreography diagram, define the behavior and relations between the exchanged
data. The additional models consist of a shared data model and distributed object
lifecycle models. Both types of models and their relationship to choreography
diagrams are described below.
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Fig. 2. A shared data model defining the message types and their relations for messages
exchanged in the exemplary shipping choreography.

Shared Data Model. A shared data model is used to globally specify the types
of messages exchanged in a choreography. Each class represents one message
type. An instance of a class, referred to as a message object, is considered a unit
of data, such as a document, that can be exchanged via a message associated with
the corresponding class. While messages can also refer to physical items, such
as a container or cargo, message objects refer only to a virtual representation
of these items. Consequently, when a message is sent, the message object is not
lost to the sender, but both the sender and receiver are aware of the message
object.

Definition 3. (Shared Data Model). A shared data model is defined by a tuple
D = (C,R,mult), where:

– C is a non-empty, finite set of classes,
– R ⊆ {(c1, c2) | c1, c2 ∈ C ∧ c1 �= c2} is a symmetric relation of classes,
– mult : R → {(1, 1), (1, n), (n, 1), (n,m)} assigns a multiplicity to a relation.

Similar to the approach proposed by Meyer et al. [12], the data model is
shared by all participants so that each participant has the same understanding
of the types of messages that can be exchanged. Figure 2 illustrates a shared data
model for the exemplary shipping choreography. To reference the message types
in the choreography diagram, the message elements of tasks can be annotated
with the label of the class, as illustrated in Fig. 1.

As stated in Definition 3, the shared data model also defines relations with
multiplicities between classes. To limit complexity, we consider only one-to-
one (1, 1), many-to-one (n, 1), and many-to-many (n,m) relations, where it is
expected that m and n can be zero. Relations can constrain the creation of
message objects by implying dependencies. For example, according to Fig. 2, an
‘Import Permit’ cannot exist without an existing ‘Order’ due to their many-
to-one relation: mult((ImportPermit,Order)) = (n, 1). Therefore, an ‘Import
Permit’ object can only be instantiated if an ‘Order’ object already exists, which
limits the possible behavior of the choreography. Accordingly, ‘Container’ and
‘Bill of Lading’ message objects must be created simultaneously to ensure the
one-to-one relation. Many-to-many relations do not affect the creation of mes-
sage objects, since it is expected that the objects can exist individually, given
the assumption that n and m can be zero.
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Distributed Object Lifecycle. During a conversation, message objects can
be created or their contents changed. Similar to data states of data objects in
BPMN process diagrams [15], we use message states, hereinafter referred to as
states, to reflect the content of a message object. A state provides an abstract
view of the content of a message object that is relevant to the business case
under consideration. For example, an ‘Order’ message object can be in the states
‘created’, ‘confirmed’, ‘completed’, or ‘canceled’. The mapping between states
and actual attribute values is beyond the scope of this paper. Given a class
c ∈ C, Sc denotes the set of possible states that a message object of c can be in.
We refer to a message object of class c ∈ C in a particular state s ∈ Sc by the
notion c[s]. Each class is considered to have at least one state.

To describe the possible states and allowed state transitions for a class in a
choreography, we introduce distributed object lifecycles. As stated in Definition 4,
distributed object lifecycles extend object lifecycles by specifying which role can
perform which state transitions, since in choreographies message objects may be
manipulated by different participants. For example, a consignee can create an
‘Order’ message object in the state ‘created’ but only the supplier can change
the state to ‘confirmed’ as illustrated in Fig. 3. Each state is represented by a
label in a circle, and allowed state transitions are represented by directed arcs
associated with roles that can perform the transition. In addition to defining state
transitions, distributed object lifecycles also constrain message object creation,
since objects can only be created in initial states associated with an ingoing arc
without an originating state. Furthermore, only roles associated with an initial
state can create new message objects in the corresponding state. Similar to the
shared data model, distributed object lifecycles are available to all participants.

Definition 4. (Distributed Object Lifecycle). Let S be the universe of all possi-
ble states, a distributed object lifecycle of a class c ∈ C is a finite state machine
defined by a tuple Lc = (Sc, S

i
c, δc, R, role), where:

– Sc ⊆ S is a non-empty, finite set of states associated with c,
– Si

c ⊆ Sc is a non-empty, finite set of initial states,
– δc ⊆ Sc × Sc is a finite set of state transitions,
– R is a non-empty, finite set of roles, and
– role : Si

c ∪ δc → R assigns a role to an initial state or a state transition.

A message object can only be in one state for one participant at a time. It is
assumed that if multiple participants are aware of a message object in the same
state, these participants have the same view of its content. However, it should
be noted that creating or modifying message objects is a local operation. Only
when a message object is sent via a task, the respondent will receive the message
object in the corresponding state. As a result, participants may have different
views of a message object during a conversation.

States can also serve as constraints on interactions, since some interactions
may require a message object to be sent in a particular state. To incorporate
the constraints into choreography diagrams, states can be added to the class
specifications of the messages using the notion c[s] mentioned above. If a task
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Fig. 3. A distributed object lifecycle that describes the allowed state transitions for
message objects of the ‘Order’ class during a conversation. Annotations on arcs specify
the roles that can perform the transitions.

accepts a message object in multiple states, all allowed states can be listed
following the notion c[s1|...|sn]. Therefore, considering Fig. 1, the response of
the task ‘register import of goods’ allows the sending of an ‘Import Permit’
message object in the state ‘accepted’ or ‘check required’. The constraint implies
further that the sender of the message must be aware of the message object in
a corresponding state. If no state is specified, all possible states are accepted.

Furthermore, states can be used as guards for paths that follow exclusive
gateways, as shown in Fig. 1. Thus, given a choreography C, a guard is expected
to specify a message object in an appropriate state required to continue with
the associated path: G ⊆ C × S. For exclusive gateways, it is essential that all
participants affected by the gateway have the same view of the data on which
the decision is based. The identification of affected participants is discussed in
more detail in Sect. 4.3.

The supplemental models introduced in this section can be used to specify
exchanged data and data dependencies. However, to ensure that a choreography
maintains data awareness and data consistency at design time, concise execution
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Fig. 4. Data-enhanced interaction Petri net depicting an excerpt of the shipping chore-
ography including the start event and a two-way choreography task.
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semantics are required. The next section introduces an extension to interaction
Petri nets, providing a formal basis to define execution semantics for the data
exchange specifications.

4.2 Data-Enhanced Interaction Petri Nets

The formal representation of data exchange in choreographies requires the exten-
sion of IPNs with additional elements. The extended net, referred to as data-
enhanced interaction Petri net, is defined as follows:

Definition 5. (Data-enhanced Interaction Petri Net). A data-enhanced inter-
action Petri net is defined by a tuple I ′ = (P ′, T ′, F ′, RF,R, init, resp,m0),
where

– P ′ is a finite set of places that can be partitioned into disjoint sets of control
flow places P , message places PM , and message initialization places PMI ,

– T ′ is a finite set of transitions that can be partitioned into disjoint sets of inter-
actions TI , events TE, silent control flow transitions TS, and silent message
modification transitions TM ,

– F ′ ⊆ (P ′ × T ′) ∪ (T ′ × P ′) is a finite set of arcs that can be partitioned into
sequence flow arcs F and message flow arcs FM ,

– RF ⊆ PM × TI is a finite set of reset arcs, and
– (P, TI ∪ TE ∪ TS , F,R, init, resp,m0) is an interaction Petri net.

The extension supports the representation of message objects using addi-
tional message places PM . Each message place is dedicated to a participant
and a message object in a particular state. A token in a message object place
indicates that the corresponding participant is aware of the message object. To
limit the creation of message objects, initialization places PMI are introduced.
Additional silent transitions TM allow local creation and modification of mes-
sage objects according to the message flow arcs FM . Message flow arcs can also
connect message places with interaction transitions to specify data exchange.

In addition, reset arcs RF are introduced, which set the number of tokens at
all associated places to zero once the corresponding transition fires. Reset arcs
do not constrain the firing of transitions. Thus, transitions can be fired even if
they are connected to an empty place by a reset arc [1]. In the model, reset arcs
are depicted with double arrowheads.

An example of a data-enhanced IPN is shown in Fig. 4. Similar to [10], the
notion of interaction transitions is adapted to the contemporary notion of chore-
ography tasks. The initiator of a task is indicated by a white badge and the
respondent by a gray badge.

4.3 From Choreographies to Data-Enhanced Interaction Petri Nets

To define the execution semantics for data exchange in choreographies, we map
choreography diagrams, supplemented with a shared data model and distributed
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data object lifecycles, to data-enhanced interaction Petri nets. The mapping
requires preprocessing the choreography diagram so that each task containing
a response message is split into two tasks connected by a sequence flow arc.
The result is semantically equivalent, with the first task representing the ini-
tial message and the second task representing the response. Consequently, after
preprocessing, each task is associated with only one or zero message elements.
We define the auxiliary function obj : T → 2(C×S) to map each task to the
corresponding class and states of the allowed message objects, as specified by
the message element labels.

Hence, given a process choreography C = (N,SF,R,M,G, grd,
init, resp,msg), a shared data model D = (C,R,mult), and a distributed object
lifecycle Lc = (Sc, S

i
c, δc, R, role) for each class c ∈ C, the models can be mapped

to a data-enhanced interaction Petri net I ′ = (P ′, T ′, F ′, RF,R, init, resp,m0)
to represent the execution semantics as follows:

The set of roles R is taken from the choreography diagram. Correspondingly,
the functions init and resp map the same roles for an interaction transition
TI as for the corresponding interaction T in the choreography. The mapping
of the control flow semantics essentially follows the mappings provided in [5,
10]. However, unlike their mappings, multiple transitions are created for tasks
that allow sending message objects in different states, since each transition is
intended to transfer only one message object in one state, as depicted in Fig. 5.
Since the additional transitions represent alternative executions of the same
task with the same initiator and respondent, the extension does not affect local
enforceability constraints. The set of silent transitions TS is divided into disjoint
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Fig. 5. Excerpt from a data-enhanced interaction Petri net representing the shipping
example, illustrating the creation and sending of an ‘Import Permit’ message object in
one of the allowed states using a predefined marking.
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sets of exclusive gateways T× and parallel gateways T+. The mapping of the
control flow to transitions and places is defined as follows:

P = {psource, psink} ∪ {p(n1,n2) | (n1, n2) ∈ SF ∧ n1 /∈ Gs
e}

TE = {te | e ∈ E}
TI = {ti | i ∈ T ∧ obj(i) = ∅} ∪ {t(i,c,s) | i ∈ T ∧ (c, s) ∈ obj(i)}
T× = {t(g,n) | g ∈ Gs

× ∧ (g, n) ∈ SF} ∪ {t(n,g) | g ∈ Gj
× ∧ (n, g) ∈ SF}

T+ = {tg | g ∈ Gs
+ ∪ Gj

+}
m0 = {[psource]}

The mapping adds a source and a sink place that represent the start and end
of a conversation. Only the source place contains a token in the initial marking.
In addition, transitions and places are connected by arcs, enforcing the semantics
of sequence flows and gateways:

F = {(psource, te) | e ∈ Es} ∪ {(te, psink) | e ∈ Ee} ∪
{(p(n1,n2), tn2) | (n1, n2) ∈ SF ∧ n1 /∈ Gs

e ∧
(n2 ∈ (Ee ∪ Gs

+ ∪ Gj
+) ∨ (n2 ∈ T ∧ obj(n2) = ∅))} ∪

{(p(n,i), t(i,c,s)) | (n, i) ∈ SF ∧ n /∈ Gs
e ∧ i ∈ T ∧ (c, s) ∈ obj(i)} ∪

{(tn1 , p(n1,n2)) | (n1, n2) ∈ SF ∧ (n1 ∈ (Es ∪ Gs
+ ∪ Gj

+) ∨
(n1 ∈ T ∧ obj(n1) = ∅))} ∪

{(t(i,c,s), p(i,n)) | (i, n) ∈ SF ∧ i ∈ T ∧ (c, s) ∈ obj(i)} ∪
{(p(n1,g), t(g,n2)) | (n1, g) ∈ SF ∧ (g, n2) ∈ SF ∧ g ∈ Gs

×} ∪
{(t(g,n), p(g,n)) | (g, n) ∈ SF ∧ g ∈ Gs

×} ∪
{(p(n,g), t(n,g)) | (n, g) ∈ SF ∧ g ∈ Gj

×} ∪
{(t(n1,g), p(g,n2)) | (n1, g) ∈ SF ∧ (g, n2) ∈ SF ∧ g ∈ Gj

×} ∪
{(p(n1,g), tn2) | (n1, g) ∈ SF ∧ (g, n2) ∈ SF ∧ g ∈ Gs

e}

In the following, the mapping is extended with message places to incorporate
data semantics. For each class in the shared data model, an initialization place
PMI is added to ensure that only one instance of a message object is created
during conversation. In addition, message places are introduced for each class
and state combination for each participant:

PMI = {pc | c ∈ C}
PM = {p(r,c,s) | r ∈ R ∧ c ∈ C ∧ s ∈ Sc}

Silent transitions are introduced to create and modify message objects and
their state. The creation of message objects may be subject to constraints due to
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Fig. 6. Creation of message objects in data-enhanced interaction Petri nets considering
different multiplicity constraints.

relations as specified in Sect. 4.1. Hence, the mapping enforces these constraints
by following the rules depicted in Fig. 6. The rules ensure that for one-to-one
relations, the message objects are created at the same time, and for many-to-
one relations, the related message object must exist for creation, as illustrated in
Fig. 5 for the creation of an ‘Import Permit’ message object. For this purpose, two
auxiliary functions are introduced. rel(1,1) : C → 2C associates each class with
a set of classes that have one-to-one relations to the given class, including the
given class itself, while also considering transitive relations. Correspondingly, we
define a function rel(n,1) : C → 2C which returns a set of classes having a many-
to-one relation to the given class, so that ∀c1, c2 ∈ C : c1 ∈ rel(n,1)(c2) ⇐⇒
mult((c1, c2)) = (n, 1).

Classes with a one-to-many relation to the given class may have multiple
states. Hence, multiple transitions are required to create a message object. Given
a class c ∈ C, we define the set of all class and state combinations having a many-
to-one relation to c or to a class having a one-to-one relation with c as follows:

CS(n,1)
c = {(c′, s) | ∃c′′ ∈ rel(1,1)(c) : c′ ∈ rel(n,1)(c′′) ∧ s ∈ Sc′}

Since a class can only be in a single state for a participant, we define the set of
relation dependencies including sets of all possible combinations of classes and
states having a corresponding many-to-one relation to c as follows:

RDc = {CS | CS ⊆ CS(n,1)
c ∧ ∀(c′, s′) ∈ CS(n,1)

c : ∃!s ∈ Sc′ : (c′, s) ∈ CS}

Hence, the manipulation of message objects is represented by a set of silent
message modification transitions TM :

TM = {t(r,C′,RD,s) | c ∈ C ∧ C′ = rel(1,1)(c) ∧ RD ∈ RDc ∧ s ∈ Si
c ∧ r = role(s)} ∪

{t(r,c,s1,s2) | c ∈ C ∧ (s1, s2) ∈ δc ∧ r = role((s1, s2))}

The additional nodes need to be connected with arcs to represent the respec-
tive creation and state change behaviors. The set of message flow arcs FM can
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be partitioned into disjoint sets of message object manipulation arcs FO
M , inter-

action dependency arcs F I
M , and exclusive gateway dependency arcs F×

M . The
set of message object manipulation arcs FO

M connects message places PM and
initialization places PMI with message modification transitions TM according to
the shared data model and distributed object lifecycles:

FO
M = {(te, pc) | e ∈ Es ∧ c ∈ C} ∪

{(pc, t(r,C′,RD,s)) | c ∈ C ∧ C′ = rel(1,1)(c) ∧ RD ∈ RDc ∧ s ∈ Si
c

∧ r = role(s)} ∪
{(t(r,C′,RD,s), p(r,c,s)) | c ∈ C ∧ C′ = rel(1,1)(c) ∧ RD ∈ RDc ∧ s ∈ Si

c ∧
r = role(s)} ∪

{(p(r,c,s), t(r,C′,RD,s′)) | RD ∈ RDc ∧ c, c′ ∈ C ∧ C′ = rel(1,1)(c
′) ∧ c /∈ C′ ∧

(c, s) ∈ RD ∧ s′ ∈ Si
c′ ∧ r = role(s′)} ∪

{(t(r,C′,RD,s′), p(r,c,s)) | RD ∈ RCc ∧ c, c′ ∈ C ∧ C′ = rel(1,1)(c
′) ∧ c /∈ C′ ∧

(c, s) ∈ RD ∧ s′ ∈ Si
c′ ∧ r = role(s′)} ∪

{(p(r,c,s1), t(r,c,s1,s2)) | c ∈ C ∧ (s1, s2) ∈ δc ∧ r = role((s1, s2))} ∪
{(t(r,c,s1,s2), p(r,c,s2)) | c ∈ C ∧ (s1, s2) ∈ δc ∧ r = role((s1, s2))}

Furthermore, message places are associated with interaction transitions to
represent the data transfer. For this purpose, each interaction transition must
read (i.e., consume and produce) the token from a message place of the task
initiator with the appropriate class and state to ensure that the initiator is aware
of the data to be sent as defined in F I

M . Thus, if a message sender is unaware of
the required data during a conversation, the transition cannot fire. In the other
case, when the transition is fired, a token is produced in the appropriate message
place of the receiver. In addition, reset arcs RF are added to reset any message
place of the same class as the exchanged message object on the receiver side to
prevent participants from having message objects of the same class in multiple
states, as depicted in Fig. 4 and Fig. 5.

F I
M = {(p(r,c,s), t(i,c,s)) | i ∈ T ∧ r = init(i) ∧ (c, s) ∈ obj(i)} ∪

{(t(i,c,s), p(r,c,s)) | i ∈ T ∧ r ∈ {init(i), resp(i)} ∧ (c, s) ∈ obj(i)}
RF = {(p(r,c,s), t(i,c,s′)) | i ∈ T ∧ r = resp(i) ∧ (c, s′) ∈ obj(i) ∧ s ∈ Sc}

Finally, according to the semantics of exclusive gateways, it must be ensured
that all affected participants have the same view of the data on which the deci-
sion is based [15]. To enforce semantics in a data-enhanced IPN, silent transitions
representing the decision are required to read the appropriate message places of
all affected participants, as illustrated in Fig. 7. Inconsistencies in the partici-
pants’ data would result in transitions associated with the gateway not being
able to fire, thus ensuring data consistency for a firing sequence.
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(a) Choreography diagram (b) Data-enhanced interaction Petri net
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Fig. 7. Exclusive gateway deciding on subsequent path based on state of the import
permit (I.P.) represented as choreography diagram (a) and data-enhanced interaction
Petri net (b).

To narrow down the affected participants for a decision, we refer to the
concept of single-entry single-exit (SESE) regions [8]. A SESE region includes
all elements on a path between an exclusive gateway split and an exclusive
gateway join or end event, with all paths originating from the split leading to
either a join or end events. In the case of a loop, all paths but one may lead
back to the initial split. Hence, given the example in Fig. 1, since not all paths
originating from the exclusive gateway split lead to an exclusive gateway join,
the SESE region extends until the end of the choreography. We argue that all
participants involved in tasks in a SESE region started by an exclusive split can
be considered affected, since execution within the region depends on the initial
decision. The behavior after the SESE region is independent of the decision and
can be neglected. Therefore, we define the auxiliary function sese× : Gs

× → 2R,
which returns the set of participants involved in tasks in a SESE region started
by a given exclusive split.

F ×
M ={(p(r,c,s), t(g,n)) | g ∈ Gs

× ∧ (g, n) ∈ SF ∧ r ∈ sese×(g) ∧ (c, s) = grd((g, n))} ∪
{(t(g,n), p(r,c,s)) | g ∈ Gs

× ∧ (g, n) ∈ SF ∧ r ∈ sese×(g) ∧ (c, s) = grd((g, n))}

Consequently, the mapping inherently enforces that each sender must be
aware of the message objects to be sent and that decisions can only be made if
the affected participants are aware of the corresponding message object in a con-
sistent state. In addition, dependencies within and between message objects are
reflected according to the specifications of the shared data model and distributed
object lifecycles. Thus, the approach provides a foundation for specifying and
analyzing data exchange in process choreographies.
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5 Discussion

In the following, the limitations of the presented extension are discussed. First,
message objects and states provide only an abstract view of the exchanged data
to focus on the aspects relevant to the business case. While this allows a con-
ceptual design of the data exchange, the mapping between states and actual
attribute values requires further research. Furthermore, while the supplementary
models allow the definition of dependencies for data specified in choreography
diagrams, the approach relies on the consistency between all involved models.
Therefore, the development of techniques to automatically verify the consistency
between these models can facilitate the design. In addition, the extension does
not support multi-instance tasks, messages, or participants. The impact of multi-
instance behavior on the semantics of data exchange remains to be explored.
Although intermediate events are not supported, their inclusion requires only
minor extensions, which are not considered due to space limitations.

The presented extension serves as a foundation for the analysis of data
exchange in choreographies. Although the detection and classification of data
exchange errors is beyond the scope of this work, potential errors may already
be revealed by detecting deadlocks in the possible firing sequences [2]. Since the
execution semantics require the initiator of a task to be aware of the message
object to be sent, data awareness can be addressed in this way. Correspondingly,
exclusive gateway splits can only be executed if the participants have a consis-
tent view of the data, which addresses the data consistency concern. However,
since message places may still contain tokens after a conversation terminated,
a classical soundness analysis is not applicable to the presented approach [1].
Nevertheless, the extension provides a more concise specification of the data
exchange in choreographies, allowing a more in-depth analysis of the message
flow.

6 Related Work

While formal execution semantics for interaction models already exist in the liter-
ature, most work focuses on the ordering of interactions. Decker et al. defines the
execution semantics for the interaction-centric modeling language Let’s Dance
using π-calculus [6]. In addition, interaction Petri nets, introduced in [5], describe
the behavior of iBPMN choreographies. Najem et al. provide a mapping of chore-
ography diagrams to colored Petri nets, which allows detecting deadlocks in the
control flow of choreographies [13]. Furthermore, Corradini et al. use a Backus
Normal Form syntax to check the conformance between BPMN 2.0 choreogra-
phy and collaboration diagrams [3]. However, these works neglect the role of
data. Based on interaction Petri nets, our work aims to extend the execution
semantics of choreographies with a data perspective.

The data exchange between processes in a choreography is investigated by
Meyer et al. [12]. The authors introduce a model-driven approach to enable an
automated data exchange in choreographies using a global data model. While
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a mapping between local and global data allows reasoning about data depen-
dencies, data awareness is not addressed. Knuplesch et al. extend the notion of
BPMN choreography diagrams with virtual data objects as variables for routing
conditions [10]. The authors combine interaction Petri nets and workflow nets
with data. However, data dependencies are not considered. Furthermore, Nikaj
et al. propose a RESTful representation for choreography diagrams [14]. Since
participants must be aware of URLs to invoke them, the approach takes data
awareness into account. Nevertheless, data dependencies are neglected.

The decoupling of message and data flow is discussed by Hahn et al. [9]. The
authors introduce a middleware to coordinate the propagation of changes to
shared data objects used in the local processes of collaborating participants. In
contrast to our work, the approach relies on interconnection models and requires
insight into the local data flow of the participants. Finally, Köpke et al. propose
an approach to model the data flow of interorganizational process models start-
ing from a global process model assuming a central data store [11]. In a second
step, the data flow is then distributed among the participants. Due to the ini-
tial holistic view, the correctness of the data flow can be ensured with existing
techniques. However, unlike our work, the approach requires detailed insight into
the organization-internal process behavior of participants, which may complicate
collaboration with untrusted organizations.

7 Conclusion

This paper proposes a novel way to describe data exchange in BPMN choreog-
raphy diagrams by using a shared data model and distributed object lifecycles
as supplemental models to define data relations and behavior. In addition, we
extended interaction Petri nets with a data perspective to provide a formal
basis for defining the execution semantics of data exchange in choreographies.
Finally, a mapping of supplemented choreography diagrams to data-enhanced
interaction Petri nets is provided, allowing the analysis of the data flow of chore-
ography diagrams. The approach addresses the need for more concise semantics
for data exchange to identify data-related flaws in interaction behavior at design
time.

For future research, we plan to develop tools to facilitate the modeling and
analysis of data exchange in choreographies, as well as a method for verifying
the consistency of local and global data flow given a local process model. In
addition, we plan to extend our mapping to support multi-instance behavior
and more complex relations among message objects, and aim to uncover pat-
terns and antipatterns in interorganizational data exchange. Despite the poten-
tial extensions, our proposal already allows for a more precise specification of
data exchange for choreographies.
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phies. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 163–177. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197 11

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008). https://doi.org/
10.1016/j.infsof.2008.02.006
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