
Foundations of Collaborative DECLARE

Luca Geatti1, Marco Montali2, and Andrey Rivkin3(B)

1 University of Udine, Udine, Italy
luca.geatti@uniud.it

2 Free University of Bozen-Bolzano, Bolzano, Italy
montali@inf.unibz.it

3 Technical University of Denmark, Kgs. Lyngby, Denmark
ariv@dtu.dk

Abstract. Collaborative work processes are widespread, and call for
sophisticated modelling techniques to guarantee that the in-focus process
is able to suitably handle all the relevant ways in which external, uncon-
trollable participants can influence the overall behaviour. In the presence
of external actors, one needs to distinguish the internal, controllable non-
determinism of the in-focus process from the uncontrollable nondeter-
minism of external participants. While collaborative processes have been
previously studied in the context of declarative processes, where speci-
fications distinguish how different sources of control interact, no study
along this line exists in the context of the DECLARE declarative process
modeling framework. To this end, we introduce “collaborative DECLARE”
(coDECLARE), where activities are assigned to the internal orchestrator
or to external participants, and constraints are partitioned into condi-
tions on how the external participants can interact with the in-focus
process, and conditions that must be guaranteed by the in-focus process
itself, framing the resulting specifications in style of assume-guarantee
(behavioral) contracts. We discuss the conceptual and explain how cen-
tral tasks such as that of DECLARE consistency and enactment have to
be revised for coDECLARE. Moreover, we show how the resulting tasks
can be encoded into corresponding realisability and reactive synthesis
tasks for LTL specifications on finite traces.

Keywords: declarative process modelling · collaborative processes ·
model analysis · reactive synthesis · LTL on finite traces

1 Introduction

If we consider the very core definition of what a business or work process is, we
see that collaboration is an essential aspect. In [22], a process is defined as:

“a collection of inter-related events, activities and decision points that
involve a number of actors and objects, and that collectively lead to an
outcome that is of value to at least one customer”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Di Francescomarino et al. (Eds.): BPM 2023 Forum, LNBIP 490, pp. 55–72, 2023.
https://doi.org/10.1007/978-3-031-41623-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41623-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-41623-1_4

56 L. Geatti et al.

The definition highlights, in fact, that a process involves a number of actors, of
which at least one is external to the organization. This generalizes to multiple
external actors that may be involved in the process execution: from providers
furnishing input material, resources, and/or services to the organization, to cus-
tomers and other external stakeholders that are interested in the value produced
through the process.

Collaborative work processes are hence widespread. In this work, we consider
how collaboration is handled by taking the subjective perspective of one of inter-
acting parties, singling out the process orchestrated by the in-focus party and
how it relates to the behavior of other parties. Other approaches are obviously
possible: for example, collaboration can be globally captured in a choreography
model, from which local processes can be derived.

In the context of service interaction and execution, these aspects have been
tackled when formalizing and analyzing collaborative processes [1,5,46], and in
the context of realizability for multi-party choreographic processes, considering
that they must be enacted in a decentralized way through interaction of the
parties, which in turn call for ensuring that they locally have enough visibility
of the current state of affairs when required to perform some task [20,36]. More
recently, similar notions have been applied to BPMN collaborative processes,
sometimes indeed reflecting the two sources of nondeterminism [13], and some-
times instead blurring them [33]. Such a blurring can be distinctively seen in
widely employed Petri net encodings of BPMN [21,37], where radically differ-
ent constructs such as internal decisions, event-based gateways, and boundary
events are all captured as free choices in the Petri nets.

A flourishing line of research on this matter exists also for declarative pro-
cesses. Several approaches have brought forward formal models for collabora-
tive/distributed process specifications, with two main lines respectively focused
on Dynamic Condition Response (DCR) Graphs [31,32] and artifact-centric for-
malisms [4,23]. The common theme of these works is to ensure the overall correct
design and executability of distributed, collaborative processes that emerge from
the composition of local declarative components. Local processes are typically
composed under a cooperative assumption, where their internal non-determinism
related to the choices they take is aligned with that of the others.

In our approach, we consider a different setting, where collaboration is in a
way approached “cautiously”, considering that when the process of an in-focus
party interacts with external participants, those external participants enact their
own, at least not fully controllable independent processes. This interpretation
dates back to seminal contributions on open, reactive systems [30,42], where two
sources of non-determinism have to be considered. On the one hand, there is non-
determinism resolved by the choices internally taken by the in-focus process; on
the other hand, there is non-determinism arising from the external choices picked
by the other parties. While the first is within the scope of the local orchestration,
and hence can be resolved existentially, the second is uncontrollable, and thus
all possibilities have to be taken into account by the process.

Foundations of Collaborative DECLARE 57

This delicate interplay is apparent by looking into de-facto process modelling
notations, such as BPMN. There, internal control-flow structures are paired with
corresponding structures dealing with external actors and events, leading to con-
structs such as message exchange, different types of unsolicited events, boundary
events attached to exception flows, and event-driven gateways. All such struc-
tures are used to indicate routes that are taken by the process not due to internal
decisions of its orchestrator, but based on which of the external events (from the
set of o available ones) occurs first.

Surprisingly, collaborative processes have never been studied in the con-
text of DECLARE, where constraints are in fact all combined together with-
out distinguishing how they interact with the different sources of control. In
fact, DECLARE [40,41] simply defines a process as a monolithic set of activities
equipped with a set of constraints composed in a conjunction. No distinction is
given based on which parties (or agents) control which actions. Similarly, con-
straints are not differentiated among those that define the context of execution
(e.g., indicating under which conditions external partners can interact with the
process), and those that capture the expected behavior of the in-focus process
(e.g., expressing what the process should do in response to external stimuli).

In this work, we close this gap by introducing collaborative DECLARE
(coDECLARE), where activities are assigned to the internal orchestrator or to
external participants, and constraints are partitioned into conditions capturing
assumptions on how the external participants can interact with the in-focus pro-
cess, and conditions that express guarantees provided by the in-focus process.
This reflects a peculiar characteristics when dealing with work processes or, more
in general, information systems, which makes them different from general reac-
tive systems where the environment is often assumed to be completely uncon-
trollable. In fact, when external stakeholders interact with a process enacted by a
single party, they freely decide which task to select next among the possible ones
made available to them. In this sense, the presence of external actors requires
the process to define the context of interaction, and then to suitably react to all
possible interactions within this context. On the one hand, the process defines the
assumptions under which its external parties can send messages/generate events
that have to be handled. On the other hand, external actors are uncontrollable,
thus calling the in-focus process to be able to guarantee a suitable management
of all possible situations within the space of possibilities defined by the context.

To handle these features, we resort to the long-standing literature on realiz-
ability and synthesis for temporal specifications, widely studied in AI and formal
methods, and we show how to lift it for defining coDECLARE and solve key tasks
related to correctness and enactment. Our main contributions are as follows:

1. We discuss why it is essential in this collaborative setting to distinguish
responsibility over activities and separate constraints into assumption and
guarantee constraints.

2. We define coDECLARE and discuss how central tasks such as that of DECLARE
consistency and enactment have to be redefined in the light of collaborative,
declarative processes.

58 L. Geatti et al.

3. We show how consistency and enactment of coDECLARE specifications can
be reduced to realizability and synthesis for Linear Temporal Logic over finite
traces (LTLf) , for which very mature implementations exist [6,10,27,29,48,
50].

The paper is organized as follows. In Sect. 2 we review the necessary back-
ground. In Sect. 3 we introduce the framework of collaborative DECLARE.
Section 4 formally defines the consistency and enactment for coDECLARE,
whereas Sect. 5 shows how those can be effectively checked and computed using
the existing reactive synthesis techniques. Conclusions and future directions fol-
low.

2 A Bird-Eye-View on LTLf and DECLARE

We recall the necessary background on LTL on finite traces (LTLf), and how it
is used to formalize the DECLARE language.

2.1 LTLf

LTLf is a temporal logic to express properties of finite traces.

Definition 1 (Syntax of LTLf). Given a set Σ of proposition letters, a for-
mula φ of LTLf is defined as follows [18]:

φ := p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | ˜Xφ | φUφ

where p ∈ Σ. Formulas of LTLf over the alphabet Σ are interpreted over finite
traces (or state sequences, or words), i.e., sequences in the set (2Σ)+. �

Intuitively, Xφ indicates strong next, postulating that there must exist a
next state in the trace, and φ must hold therein. Instead, ˜Xφ indicates weak
next, capturing that if a next state exists, then φ must hold therein. Hence, Xφ
evaluates to false in the last state of the trace, while ˜Xφ evaluates to true, both
regardless of φ. Formula φ1Uφ2 indicates instead until, capturing that later in
the trace (obviously, before the end of the trace) φ2 must hold, and in all the
states between the current one and the one where φ2 holds, φ1 must hold.

In the following, we will write general finite trace semantics to denote the
interpretation under these structures. Let σ = 〈σ0, . . . , σn−1〉 ∈ (2Σ)+ be a finite
trace. We define the length of σ as |σ| = n. With σ[i,j] (for some 0 ≤ i ≤ j < |σ|)
we denote the subinterval 〈σi, . . . , σj〉 of σ.

Definition 2 (LTLf satisfaction relation, model, language, equiva-
lence). Given an LTLf formula φ over Σ, the satisfaction relation of Σ by trace
σ ∈ (2Σ)+ at time 0 ≤ i < |σ|, denoted by σ, i |= φ, is inductively defined as:

• σ, i |= p iff p ∈ σi;
• σ, i |= ¬p iff p �∈ σi;

Foundations of Collaborative DECLARE 59

• σ, i |= φ1 ∨ φ2 iff σ, i |= φ1 or σ, i |= φ2;
• σ, i |= φ1 ∧ φ2 iff σ, i |= φ1 and σ, i |= φ2;
• σ, i |= Xφ iff i + 1 < |σ| and σ, i + 1 |= φ;
• σ, i |= ˜Xφ iff either i + 1 = |σ| or σ, i + 1 |= φ;
• σ, i |= φ1Uφ2 iff there exists i ≤ j < |σ| such that σ, j |= φ2, and σ, k |= φ1 for

all k, with i ≤ k < j.

Table 1. DECLARE patterns together with their LTLf formalization

Pattern LTLf formalization

existence(p) F(p)

coexistence(p, q) F(p) ↔ F(q)

resp-existence(p, q) F(p) → F(q)

not-coexistence(p, q) ¬(F(p) ∧ F(q))

absence2(p) ¬F(p ∧ XF(p))

response(p, q1, . . . , qn) G(p → F(
n∨

i=1
qi))

alt-response(p, q) G(p → X((¬p)Uq))

chain-response(p, q) G(p → X(q))

precedence(p, q) (¬q)W (p)

alt-precedence(p, q) ((¬q)Wp) ∧ G(q → X̃((¬q)Wp))

chain-precedence(p, q) G(X(q) → p)

succession(p, q) G(p → F(q)) ∧ (¬q)W (p)

alt-succession(p, q) G(p → X((¬p)Uq)) ∧ ((¬q)Wp) ∧ G(q → X̃((¬q)Wp))

chain-succession(p, q) G(p ↔ X(q))

neg-succession(p, q) G(p → ¬F(q))

neg-chain-succession(p, q) G(p → X̃(¬q)) ∧ G(q → X̃(¬p))

choice(p, q) F(p)|F(q)
exc-choice(p, q) (F(p)|F(q)) ∧ ¬(F(p) ∧ F(q))

We say that σ is a model of φ (written as σ |= φ) iff σ, 0 |= φ. The language
(over finite trace) of φ, denoted by L(φ), is the set of traces σ ∈ (2Σ)+ such that
σ |= φ. We say that two formulas φ, ψ ∈ LTLf are equivalent iff L(φ) = L(ψ). �

As customary, we define the following abbreviations: Fφ = 	Uφ (eventually)
captures that φ holds at some moment in the future, Gφ = ¬F¬φ (globally)
captures that φ holds from the current state to the end of the trace, and φ1Wφ2 =
φ1Uφ2∨G¬φ2 weakens U by not necessarily requiring that φ2 becomes true. Also
notice that ˜Xφ = ¬X¬φ.

2.2 DECLARE

DECLARE is a framework [41] and a language [40] for the declarative specification
of processes, enjoying flexibility by design [44]. We refer to [39] for a thorough
treatment of declarative processes.

A DECLARE specification consists of a finite set of patterns used for con-
straining the allowed execution traces of the process. Each pattern is defined
over a set of (atomic) actions, and has a semantics based on LTLf. Table 1 recalls
the typical DECLARE patterns and their LTLf formalization.

60 L. Geatti et al.

In the context of this work, we actually support arbitrary patterns in LTLf,
going beyond the patterns of Table 1. We therefore directly use LTLf formulas in
place of constraint patterns.

Definition 3 (DECLARE specification). A DECLARE specification is a pair
〈A, C〉, where A is a finite set of activities, and C is a finite set of LTLf formulas
over A, called constraints. �

DECLARE also comes with a graphical notation. We illustrate next a
DECLARE specification, which will be used throughout the entire paper.

Example 1. Consider the DECLARE specification from Fig. 1(a), shown in the
standard graphical notation associated to DECLARE. The specification is a frag-
ment of an order-to-cash process. The specification dictates that an order can be
paid or canceled at most once (constraint 0..1 on cancel and pay). Whenever
an order is paid, then the customer address has to be set at least once, wither
before or after the payment (resp-existence(pay,set)). Upon payment either ship-
ment or refund should eventually occur (response(pay,ship∨ refund)). In turn,
shipment and refund can only occur after payment (precedence(pay,ship) and
precedence(pay,refund)). Shipment is only possible if the address has been set
(precedence(pay,ship)), and the address cannot be updated anymore once ship-
ment occurs (neg-response(ship,set)). Finally, shipment and cancelation are
mutually exclusive (not-coexistence(cancel,ship)). �

Differently from arbitrary LTLf formulas, DECLARE assumes that every state
corresponds to the execution of one and only one activity, that is, that exactly
one proposition is true therein [16,25]. This leads to a semantics based on so-
called simple finite traces.

Definition 4 (Simple finite trace). A simple finite trace over A is a finite
trace σ = 〈σ0, . . . , σn〉 ∈ A+, such that for every i ∈ {0, . . . , |σ − 1|}, we have
|σi| = 1. �

Definition 5 (DECLAREmodel trace). Given a DECLARE specification D =
〈A, C〉, a simple trace σ over A is a model trace of D if σ |= ∧

ϕi∈C ϕi. �

We close by recalling that, without loss of generality, one can redefine the
notion of model trace by taking as input an arbitrary LTLf trace, proviso alter-
ing the DECLARE specification with an additional special formula forcing the
arbitrary trace to be simple.

Remark 1 ([24,39]). Given a DECLARE specification D = 〈A, C〉, to check
wether an arbitrary model trace σ over A is indeed a model trace of D we check
whether σ |= ψsimple(A)

∧

ϕi∈C ϕi, where for a set S of propositions we define
ψsimple(S) := G(

∨

p∈S p ∧ ∧

p�=q∈S ¬(p ∧ q)). �

3 Collaborative DECLARE

We now critically assess the notion of simple traces (Definition 4), and that of
DECLARE specifications (Definition 3), in the light of collaborative processes,
such as actually the one introduced in Example 1.

Foundations of Collaborative DECLARE 61

Fig. 1. A graphical representation of an order handling process in DECLARE (a), then
refined in (b) as a coDECLARE specification. Rectangles denote actions, connectors
constraints. Customer action s/constraints are in orange, those of the seller in blue.
(Color figure online)

3.1 Executing a Collaborative Process

By inspecting Example 1, it is clear that the activities contained in the specifi-
cation cannot be all ascribed to a single locus of execution. Instead, the process
brings together two parties: a seller - responsible for orchestrating the order-to-
cash process, and a customer, representing the external participant. In this light,
the first important change we need to apply to the specification, is to actually
assign the different activities to one of the two parties.

Example 2. In the order-to-cash process of Fig. 1, activities set address and
pay are controlled by the customer, while cancel, ship, refund are controlled
by the seller. �

In case of multiple external parties, for the purpose of this paper we can
all model them as a single, external party, as it is typically done in the litera-
ture [34,43]. In fact, what matters is distinguishing the two different sources of
nondeterminism when choosing which activity to execute: the one of the orches-
trator, or that of external, uncontrollable actors. From now on, we refer to the
orchestrator as controller, and to the external parties as environment.

Since the environment is uncontrollable, capturing a process execution as
a simple trace (in the sense of Definition 4) is overly restrictive. Conceptually
speaking, in fact, the process specification is given to controller, and therefore
it is in the interest of controller to ensure that the resulting trace satisfies the
specification.

In fact, controller has to observe what environment has done so far, so as to
suitably react. For example, the seller may decide to behave differently depending
on whether the customer has paid and later cancelled or not. This calls for
moving from the notion of simple trace to that of process strategy for controller.

Definition 6 (Process strategy). Let AE and AC be two disjoint sets of
activities, respectively denoting the environment and the controller activities.
A process strategy is a function s : (E)+ → P that for every finite sequence
e = 〈e0, . . . , en〉 of activities chosen by the environment, determines the next
activity Pn = s(e) executed by the controller. �

62 L. Geatti et al.

Notice that a process strategy respects the original DECLARE semantics of simple
traces, as it enables only one activity to be executed per state.

One may wonder why the process strategy does not use the whole partial
trace accumulated so far, including the activities of both the environment and
the controller, but instead merely focuses on previous activities executed by
environment. As we will see, more sophisticated notions of process strategies
will not be needed to solve the key tasks of collaborative processes.

3.2 Satisfying the Constraints of a Collaborative Process

Now that we have a notion of process strategy, we can imagine that the orches-
trator uses it to guarantee that the constraints of the DECLARE specification of
interest are indeed all satisfied when concluding the execution (that is, the strat-
egy yields, at completion time, a model trace). However, considering that the
environment is uncontrollable, it turns out that this is impossible even for very
trivial DECLARE specifications that assign at least one activity to environment.

Example 3. Consider the DECLARE specification of Fig. 1(a), with the activity
partitioning from Example 2. The seller cannot define a process strategy that
guarantees the satisfaction of all constraints, since the customer controls activ-
ities that are subject to unary constraints (0..1 on cancel and pay) or binary
constraints all related to the customer (resp-existence(pay,set)). Since the cus-
tomer is uncontrollable, they may issue two payments, or two cancelations, or
may pay without ever setting an address. �

Example 3 witnesses that we cannot monolithically consider all specification
constraints as being under the responsibility of the controller, while leaving envi-
ronment free to generate an arbitrary sequence of activities under their respon-
sibility. In fact, as stated in the introduction, external parties need to come with
some context on their freedom of choice. This is concretely reflected inside BPM
systems, which expose executable activities to the external parties, and define
how to handle external events, only under certain circumstances.

To reflect this requirement in our declarative setting, we give constrained
freedom to the environment, by partitioning the constraints into those that must
be respected by the environment to properly interact with the process, and those
that the controller has to satisfy. This reflects the paradigm of assume-guarantee
contracts [7]: under the assumption that the environment behaves in such a way
that their constraints are satisfied, the orchestrator is bound to guarantee the
satisfaction of their own constraints.

With this intuition in mind, we define collaborative DECLARE specifications.

Definition 7 (coDECLARE specification). A collaborative DECLARE
(coDECLARE) specification is a tuple D = 〈AE ,AC , CE , CC〉, where:

• AE is a finite set of environment activities;
• AC is a finite set of controller activities, with AE ∩ AC = ∅;

Foundations of Collaborative DECLARE 63

• CE is a set of LTLf constraints over AE ∪ AC representing the environment
constraints;

• CC is a set of LTLf constraints over AE ∪ AC representing the controller
constraints;

We respectively call Da = 〈AE ∪AC , CE〉 and Dg = 〈AE ∪AC , CC〉 the assump-
tion and guarantee specifications of D. �

Example 4. We refine the DECLARE specification of Fig. 1(a), considering the
activity partitioning from Example 2, into the coDECLARE specification Dorder

of Fig. 1(b). The partitioning is done according to the following idea. To partic-
ipate to the order handling process, the customer has to commit to: (i) paying
and cancelling at most once, (ii) ensuring that an address is set upon pay-
ment, (iii) not updating the address nor cancelling once the seller has shipped
the order. At the same time, the seller commits to: (i) shipping only if the
customer sets an address and pays, (ii) refunding only if a previous customer
payment exists, (iii) ensuring that shipment or refund occur whenever the cus-
tomer pays, (iv) not shipping if the customer cancels the order. One can see
that the vast majority of constraints present in the original DECLARE specifica-
tions have been maintained and assigned either to the environment (customer)
or the controller (seller). The only exception is the not coexistence constraint
relating cancelation and shipment, which is now refined into two time-oriented
constraints, one assuming that the customer does not cancel after a seller’s ship-
ment (neg-response(ship, cancel)), and the other guaranteeing that the seller
does not ship after a customer’s cancelation ((neg-response(cancel, ship)). �

We can directly lift the notion of model trace (as per Definition 5) to the
case of coDECLARE. To do so, we formalize the intuition given so far: the trace
must be such that whenever it satisfies the assumption on the environment,
then it must satisfy the guarantee on the orchestrator. This implicitly means
that executions violating the assumption on the environment are all considered
model traces, as these are traces over which the environment cannot claim any
guarantee. This is in line with the notion of assume-guarantee contract [7], and
that of assume-guarantee synthesis [8,11,38].

Definition 8 (coDECLARE model trace). Given a coDECLARE specification
D = 〈AE ,AC , CE , CC〉, a simple trace σ over AE ∪ AC is a model trace of D if,
whenever it is a model trace for Da (in the sense of Definition 5), then it is also
a model trace for Dg (again in the sense of Definition 5). �

Example 5. Consider the coDECLARE specification Dorder of Fig. 1(b).
Four model traces for Dorder are 〈set, pay, ship〉, 〈pay, set, refund〉,
〈pay, set cancel refund〉, and 〈pay set ship cancel〉. They respectively denote
a good execution where the order is shipped, an execution where the seller decides
to refund for an internal problem, and an execution where the seller refunds due
to a customer cancellation, and one where no refund is given in spite of cancel-
lation since the order has been already shipped. The trace 〈pay set cancel〉 is
instead not a model trace, as the seller should refund. �

64 L. Geatti et al.

The main open question now is: how can the orchestrator ensure that an
ongoing execution for a coDECLARE model eventually leads to a proper, model
trace? The challenge here is that, even if the environment is constrained by their
assumption specification, it still has a (constrained) freedom to decide which
environment activities are executed, and in which order. Hence, to be able to
properly execute the specification, the orchestrator must have a strategy (in the
sense of Definition 6) to guarantee that no matter how the environment behaves
within the space given by the assumption specification, then the execution is
progressed and finally stopped by satisfying the guarantee specification. This is
tackled in the next section.

4 Consistency and Enactment of coDECLARE

To tackle the problem of enactment of coDECLARE specifications, we start point-
ing out the striking similarity with the long-standing problem of synthesis from
declarative specification, which dates back to Church [12]. In summary, given a
declarative specification, one can define two distinct problems. The first concerns
verification, and is about checking the correctness of the specification, namely
whether the specification has a satisfying assignment (which, in the case of linear
temporal specifications, means a trace). A different problem is that of synthesis,
which deals with deriving a correct-by-construction program (in the shape, e.g.,
of a Mealy or Moore machine, I/O-transducer, or circuit) that realizes the specifi-
cation and makes it possible to execute it. Extensive research has been conducted
on different synthesis settings, considering in particular closed and open (also
called reactive) systems, starting from the seminal contributions by Harel, Pnueli
and Rosner [30,42]. In the reactive setting, using the same terminology adopted
here, the system (referred to as controller) interacts with an uncontrollable envi-
ronment, which, in turn, can affect the behavior of the controller. Reactive syn-
thesis is hence modeled as a two-player game between Controller, whose aim is
to satisfy the formula, and Environment, who tries to violate it. The objective of
the synthesis task is then to synthesize a program for Controller indicating which
actions the Controller should take to guarantee the satisfaction of the declarative
specification of interest, no matter what are the actions taken by Environment.
This problem was originally studied in [12] and solved in [9], and for LTL speci-
fications in particular it was shown to be 2EXPTIME-complete [43,45]. The high
theoretical complexity and practical infeasibility of the original approach, led to
a plethora of studies focused on settings more amenable to effective synthesis
algorithms, one of the most important being synthesis for LTLf- thus considering
finite traces [28].

In this section, we connect such long-standing literature with coDECLARE, in
particular defining consistency and (automatic) enactment for coDECLARE by
adapting to our setting the well-established notions of realizability and synthesis
from declarative specifications.

Foundations of Collaborative DECLARE 65

4.1 Realizability over Simple Traces

We start by considering the realizability task [43] for LTLf formulas, in the setting
where executions correspond to simple traces (cf. Definition 4). Intuitively, given
an LTLf formula φ over two sets of controllable C and uncontrollable U variables
(s.t. C∩U = ∅), we have that φ is realizable if there exists a strategy for controller
that, no matter the choices made by the environment regarding the variables in
U to set true, chooses truth assignments to variables in C so that φ is satisfied.
Hereinafter, we talk about variables in the context of general definitions, and
activities in the context of coDECLARE and processes, and use AE and AC as
uncontrollable and controllable variables, respectively.

To adapt realizability to our setting, we use process strategies from Defi-
nition 6. Since realizability is usually tested using a two-player game between
the controller and environment, we postulate that such strategies are applied in
the strictly alternating way, and that the environment always starts first. These
assumptions will be clarified later.

Definition 9 (Realizability over simple traces). Let φ be an LTLf formula
over A. φ is realizable over simple finite traces iff there exists a process strategy s :
(U)+ → C such that, for any infinite sequence U = 〈U0,U1, . . .〉 ∈ (U)ω of actions
chosen by the environment, there exists k ∈ N such that simres(s,U)[0,k] |= φ.1
�

First and foremost, notice that the way the process strategy starts and com-
pletes is perfectly compatible with the notion of a business process. On the one
hand, every process instance starts because of an activity triggered by the envi-
ronment. On the other hand, the power to decide when an execution should be
stopped is of the controller: it is in fact the internal orchestration mechanism
that defines when a process instance reaches a final state. We now comment on
strict alternation. First, the fact that every step comes with just a single chosen
activity is in line with the notion of simple trace. Second, imposing alternation
does not incur in any loss of generality, as we can equip both actors with a no-op
activity whose purpose is simply to relinquish control back to the other actor.
In our running example (cf. 1(b)), this is for example useful for controller to
wait that the customer sets their address when the customer indeed triggers a
payment without a prior execution of set.

4.2 Consistency and Orchestration

To ensure that a coDECLARE specification is consistent, we need to ensure that
controller can define a strategy that yields a model trace – as per Definition 8.
Considering Definition 10, we thus get the following.

1 Here, simres(s,U) = 〈U0, s(〈U0〉),U1, s(〈U0,U1〉), . . .〉 is the state sequence resulting
from the strict alternation between the choices made by the environment and those
made by the strategy s.

66 L. Geatti et al.

Definition 10 (Consistency).
A coDECLARE specification D = 〈AE ,AC , CE , CC〉 is consistent if the LTLf

formula
∧

ϕi∈CE ϕi → ∧

ψj∈CC ψj is realizable over simple finite traces. �

A process strategy witnessing consistency can be effectively seen as an orches-
tration mechanism for controller: it defines a specific behaviour for controller
ensuring that, whenever environment behaves in accordance to the assumption
specification, the resulting reactions yield a simple trace satisfying the guaran-
tee specification. Obviously, for a consistent specification, many different process
strategyes may exist, resulting in different orchestration mechanisms for the con-
troller. We show this in our running example.

Example 6. Consider the coDECLARE specification Dorder from Fig. 1(b). Mul-
tiple process strategies exist for the seller. We show two. The first is an always
refund strategy:

• The seller simply generates a no-op, unless the customer pays.
• As soon as the customer pays, the seller immediately reacts by refunding.

The second is a ship as soon as possible strategy:

• The seller simply generates a no-op, unless the customer pays.
• If the customer pays, the seller checks whether the customer has already set

an address. If so, then the seller immediately ships. If not, then the seller waits
for further activities executed by the seller. In particular, since the customer
operates under the assumption that an address must eventually be set:

– if the customer sets the address, the seller immediately ships afterwards;
– if the customer cancels and only later sets the address, the seller reacts

to the cancelation by refunding.

Obviously, many other process strategies exist. For example, ship as soon as pos-
sible may be turned into a more cautious strategy where, instead of immediately
shipping whenever there are the conditions for doing so, seller waits for a while
to see whether customer intends to cancel. �

Example 6 may show that some of the process strategies for the controller
(such as the always refund strategy) are unintended. This should not be seen
as a technical limitation of our approach, but rather as the same issue of typ-
ical under-specification problems arising in standard DECLARE, a well-known
problem that actually pervades declarative modelling languages in general. In
fact, additional constraints could be added to cut off some unintended process
strategies for the controller, as discussed next.

Example 7. Consider Example 6. We may want to ensure that the seller can-
not use always refund as an orchestration mechanism. A possible way to do
so would be to constrain that the seller only refunds upon an explicit cance-
lation of the customer, in particular when this is triggered after a payment.
This could be done by adding to the guarantee specification a further constraint

Foundations of Collaborative DECLARE 67

resp-existence(refund, cancel). Interestingly, in every possible execution strat-
egy for seller, this constraint will be interpreted as the more restrictive constraint
precedence(cancel, refund); in fact, since cancel is under the control of the cus-
tomer, the seller can only guarantee to satisfy resp-existence(refund, cancel) by
first waiting that the customer indeed cancels, as refunding before a cancellation
may lead to a violation of the constraint (if the customer decides not to cancel,
which they can legitimately do). �

5 Encoding into LTLf Realizability

In this section, we show how coDECLARE consistency can be checked using the
standard decision procedure from the literature on LTLf realizability [19], also
using the same technique to extract actual process strategies for orchestration.

To do so, we have to resolve a mismatch between the definition of realizability
over simple traces (in the sense of Definition 10), and the general notion of LTLf
realizability. The mismatches are that in LTLf realizability: a there is no simple
trace semantics, and thus strategies are deciding on sequences of sets of actions;
b strict alternation is not required and there is no need to secure exclusive control
of only one player over a state in the game runs.

Definition 11 (LTLf strategy, realizability [19]). Given sets C and U as in
the previous section, a strategy is a function s : (2U)+ → 2C . An LTLf formula
φ over U ∪ C is realizable if there is a strategy s s.t. for every infinite sequence
U = 〈U0,U1, . . .〉 ∈ (2U)ω, there exists k ∈ N s.t. res(s,U)[0,k] |= φ, where
res(s,U) = 〈U0∪s(〈U0〉),U1∪s(〈U0,U1〉), . . .〉 is the trace resulting from reacting
to U according to s. �

Given an LTLf formula φ, the decision procedure for checking realizability
of φ performs the following steps [19]. First, build a non-deterministic finite
automaton § for φ and determinise it. Then, play a reachability game using §
as the arena so as to check whether the process can reach a final state of the
automaton (see [34] for more details on the actual procedure for this step). If
this is the case, then φ is realizable, otherwise it is not.

Notice that the first step, in the worst case, takes double exponential time: §
has at most exponentially many states [19] and the standard subset construction
algorithm for determinization of § will require potentially lead to exponential
blow-up in the number of states of the resulting deterministic automaton. The
reachability game can be solved in polynomial time in the size of automaton [14]
and thus does not affect the overall complexity. Notice also that if φ is shown to
be realizable, then a strategy s can be extracted [34]. In practice, using various
heuristics, the first step can be computed efficiently for DECLARE [15,47].

An important step towards reducing the consistency check (and in turn syn-
thesis of process strategies for orchestration) to realizability (and synthesis) of
LTLf over finite traces is in enforcing the assumptions made in Sect. 4 on the
two-player game used for realizability checking. To this end, we define the fol-
lowing auxiliary LTLf formulas, making sure that (i) the game of the play is a

68 L. Geatti et al.

simple trace; (ii) the environment plays at all even states; (iii) the controller
plays at all odd states. The formulas are as follows:

ψenv(U) :=
∨

u∈U
u ∧ G(

∨

u∈U
u → (

∧

u�=u′∈U
¬(u ∧ u′) ∧ ˜X(

∧

u∈U
¬u ∧ ˜X

∨

u∈U
u)))

ψcon(C) :=
∧

c∈C
¬c ∧ G(

∧

c∈C
¬c → ˜X(

∨

c∈C
c ∧

∧

c �=c′∈C
¬(c ∧ c′) ∧ ˜X

∧

c∈C
¬c)))

We use here the weak next (i.e., ˜X) operator to ensure that the two-player game
used for checking the realizability of these formulas can stop at any iteration.

The following theorem from [26] shows how we can recast the realizability
technique discussed above to the case if coDECLARE specifications.

Theorem 1 ([26]). Let D = 〈AE ,AC , CE , CC〉 be a coDECLARE specification.
It holds that D is consistent iff the LTLf formula ψsimple(AE ∪AC)∧ψcon(AC)∧
((ψenv(AE) ∧ CE) → CC) is realizable. �

Tool Support. The formula from Theorem 1 can be given as input to the realiz-
ability algorithm discussed above. This makes it possible to use any off-the-shelf
tool for LTLf synthesis for the purpose of coDECLARE consistency and orches-
tration. This paves the way towards a direct implementation of our approach. In
fact, since the introduction of the LTLf reactive synthesis problem [19], several
optimized tools have been developed for solving this problem. Among all, we
mention the Syft [51] and the Cynthia tools [17]. LTLf reactive synthesis is an
active area of research: this is witnessed also by the organization of an annual
competition (SYNTCOMP [34,35]). We thus expect that the practical efficiency
of LTLf synthesis tools reflect also to coDECLARE enactment.

6 Conclusions

We have introduced a novel framework to capture collaborative, declarative pro-
cesses specified in DECLARE, where the process orchestrator (i.e., the controller)
must be able to suitably handle the interaction with uncontrollable external
parties (i.e., the environment). We have described how this framework, called
coDECLARE, can be naturally framed in an assume-guarantee style, where the
following behavioral contract is stipulated by the controller and environment:
under the assumption that the environment behaves according to an assumption
DECLARE specification, the controller ensures to react by satisfying a guarantee
DECLARE specification. We have shown, both foundationally and in terms of
algorithmic support, how this framework can be connected to the well-studied
framework of realizability and synthesis for LTLf specifications.

The natural, next step is to leverage this connection and provide a proof-
of-concept implementation for consistency checking and process strategy gen-
eration for orchestration in coDECLARE, calling different back-end LTLf real-
izability/synthesis tools. We are also studying that when the LTLf formulas of

Foundations of Collaborative DECLARE 69

interest have the shape of DECLARE patterns, better complexity bounds for
solving these problems can be obtained [26]. We also foresee three interesting
foundational lines of research starting from the basis provided here. The first
concerns the definition of variants of consistency/orchestration for coDECLARE,
in the case where the overall specification turns out to be unrealizeable. To this
end, so-called best-effort strategies have been introduced [2]. However, while in
our setting assume-guarantee specifications can be treated by constructing an
implication formula, this is not true anymore in the case of best-effort strategies,
and more sophisticated notions of synthesis under assumption have to be stud-
ied [3]. The second line concerns the actual process strategies generated from
a coDECLARE specification. As discussed in the paper, each strategy defines a
particular way for controller to ensure that whenever the environment behaves
according to the assumption specification, then the guarantee specification is
satisfied. In a BPM context, it would be definitely of interest to lift synthesis to
a more general orchestration mechanism, where all possible strategies are com-
bined, allowing the controller to decide at runtime, step-by-step, which specific
strategy to follow. This is akin to maximally permissive strategies [49], but novel
research is needed to represent them by natively dealing with concurrency and
other typical control-flow patterns. A last line is to consider different notions
of collaboration when dealing with DECLARE specifications. A significant set-
ting, which departs from the one tackled here, is that where collaboration is
approached in a choreographic way, observing interaction from an external point
of view, and considering all the interacting parties are equally standing. This was
partly studied in some seminal works [39, Chapter 8], [40], but not further devel-
oped so far.

Acknowledgements. This research has been partially supported by the UNIBZ
project ADAPTERS and PRIN MIUR project PINPOINT Prot. 2020FNEB27.

References

1. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: agreeing and implementing interorganizational processes. Comput. J.
53(1), 90–106 (2010)

2. Aminof, B., De Giacomo, G., Rubin, S.: Best-effort synthesis: doing your best is
not harder than giving up. In: Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1766–1772. ijcai.org (2021)

3. Aminof, B., Giacomo, G.D., Murano, A., Rubin, S.: Planning under LTL environ-
ment specifications. In: Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling (ICAPS), pp. 31–39. AAAI Press (2019)

4. Badouel, É., Hélouët, L., Kouamou, G.E., Morvan, C.: A grammatical approach
to data-centric case management in a distributed collaborative environment. In:
Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.) Proceedings of SAC
2015, pp. 1834–1839. ACM (2015)

5. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Dan, A., Lamersdorf,

70 L. Geatti et al.

W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 339–351. Springer, Heidelberg (2006).
https://doi.org/10.1007/11948148_28

6. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning for
reactive synthesis from finite-horizon specifications. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pp. 9766–9774. AAAI Press (2020)

7. Benveniste, A., et al.: Contracts for System Design. Now Foundations and Trends
(2018)

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive
(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

9. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. In: Mac Lane, S., Siefkes, D. (eds) The Collected Works of J. Richard Büchi.
Springer, New York (1990). https://doi.org/10.1007/978-1-4613-8928-6_29

10. Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as
planning. In: Twenty-Eighth International Conference on Automated Planning and
Scheduling (ICAPS 2018), pp. 29–38. AAAI Press (2018)

11. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1_21

12. Church, A.: Logic, arithmetic, and automata. In: Proceedings of International
Congress of Mathematicians. vol. 1962, pp. 23–35 (1962)

13. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: A formal
approach for the analysis of BPMN collaboration models. J. Syst. Softw. 180,
111007 (2021)

14. De Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games.
Theor. Comput. Sci. 386(3), 188–217 (2007)

15. De Giacomo, G., De Masellis, R., Maggi, F.M., Montali, M.: Monitoring constraints
and metaconstraints with temporal logics on finite traces. ACM Trans. Soft. Eng.
and Method. 31(4), 1–44 (2022)

16. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 1027–1033. AAAI Press (2014)

17. De Giacomo, G., Favorito, M., Li, J., Vardi, M.Y., Xiao, S., Zhu, S.: LTLF syn-
thesis as and-or graph search: Knowledge compilation at work. In: Thirty-First
International Joint Conference on Artificial Intelligence (IJCAI) (2022)

18. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence. Association for Computing Machinery IJCAI 2013, pp.
854–860. IJCAI/AAAI (2013)

19. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence (AAAI), pp. 1558–1564. AAAI Press (2015)

20. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_22

21. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

22. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, Second Edition. Springer (2018). https://doi.org/10.1007/
978-3-662-56509-4

https://doi.org/10.1007/11948148_28
https://doi.org/10.1007/978-1-4613-8928-6_29
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-540-75183-0_22
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4

Foundations of Collaborative DECLARE 71

23. Eshuis, R., Hull, R., Sun, Y., Vaculín, R.: Splitting GSM schemas: a framework
for outsourcing of declarative artifact systems. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 259–274. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40176-3_22

24. Fionda, V., Greco, G.: LTL on finite and process traces: complexity results and a
practical reasoner. J. Artif. Intell. Res. 63, 557–623 (2018)

25. Fionda, V., Guzzo, A.: Control-flow modeling with declare: behavioral properties,
computational complexity, and tools. IEEE Trans. Knowl. Data Eng. 32(5), 898–
911 (2019)

26. Geatti, L., Montali, M., Rivkin, A.: Reactive synthesis for DECLARE via symbolic
automata. CoRR abs/2212.10875 (2022)

27. Giacomo, G.D., Favorito, M., Li, J., Vardi, M.Y., Xiao, S., Zhu, S.: LTLF synthesis
as AND-OR graph search: Knowledge compilation at work. In: Thirty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2022), pp. 2591–2598.
ijcai.org (2022)

28. Giacomo, G.D., Masellis, R.D., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, pp. 1027–1033. AAAI Press (2014)

29. Giacomo, G.D., Stasio, A.D., Vardi, M.Y., Zhu, S.: Two-stage technique for LTLf
synthesis under LTL assumptions. In: Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning (KR 2020), pp. 304–314
(2020)

30. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R.
(eds) Logics and Models of Concurrent Systems. NATO ASI Series, vol 13, pp.
477–498. Springer, Berlin, Heidelberg (1985). https://doi.org/10.1007/978-3-642-
82453-1_17

31. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Designing a cross-organizational
case management system using dynamic condition response graphs. In: 2011 IEEE
15th International Enterprise Distributed Object Computing Conference (EDOC
2011), pp. 161–170. IEEE Computer Society (2011)

32. Hildebrandt, T.T., Slaats, T., López, H.A., Debois, S., Carbone, M.: Declara-
tive choreographies and liveness. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019.
LNCS, vol. 11535, pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21759-4_8

33. Houhou, S., Baarir, S., Poizat, P., Quéinnec, P.: A first-order logic semantics for
communication-parametric BPMN collaborations. In: Hildebrandt, T., van Don-
gen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp.
52–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_6

34. Jacobs, S., et al.: The first reactive synthesis competition. Int. J. Soft. Tools for
Tech. Transf. 19(3), 367–390 (2017)

35. Jacobs, S., et al.: The reactive synthesis competition (syntcomp): 2018–2021. arXiv
preprint arXiv:2206.00251 (2022)

36. Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C., Su, J. (eds.)
WS-FM 2009. LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14458-5_7

37. Lomidze, G., Schuster, D., Li, CY., van Zelst, S.J.: Enhanced transformation of
bpmn models with cancellation features. In: Almeida, J.P.A., Karastoyanova, D.,
Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design,
Operations, and Computing. EDOC 2022. Lecture Notes in Computer Science. vol
13585, pp. 128–144. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
17604-3_8

https://doi.org/10.1007/978-3-642-40176-3_22
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-030-21759-4_8
https://doi.org/10.1007/978-3-030-21759-4_8
https://doi.org/10.1007/978-3-030-26619-6_6
http://arxiv.org/abs/2206.00251
https://doi.org/10.1007/978-3-642-14458-5_7
https://doi.org/10.1007/978-3-642-14458-5_7
https://doi.org/10.1007/978-3-031-17604-3_8
https://doi.org/10.1007/978-3-031-17604-3_8

72 L. Geatti et al.

38. Maoz, S., Sa’ar, Y.: Assume-guarantee scenarios: semantics and synthesis. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 335–351. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9_22

39. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14538-4

40. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans.
Web 4(1), 1–62 (2010)

41. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), pp. 287–300. IEEE Computer Society
(2007)

42. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 179–190. ACM Press (1989)

43. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

44. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods. Springer, Technologies (2012)

45. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, PhD thesis, Weiz-
mann Institute of Science (1992)

46. Stahl, C., Wolf, K.: Deciding service composition and substitutability using
extended operating guidelines. Data Knowl. Eng. 68(9), 819–833 (2009)

47. Westergaard, M.: Better algorithms for analyzing and enacting declarative work-
flow languages using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23059-2_10

48. Xiao, S., Li, J., Zhu, S., Shi, Y., Pu, G., Vardi, M.Y.: On-the-fly synthesis for LTL
over finite traces. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 6530–6537. AAAI Press (2021)

49. Zhu, S., De Giacomo, G.: Synthesis of maximally permissive strategies for ltlf spec-
ifications. In: Thirty-First International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2783–2789. ijcai.org (2022)

50. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety LTL synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147–162. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70389-3_10

51. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis.
arXiv preprint arXiv:1705.08426 (2017)

https://doi.org/10.1007/978-3-642-33666-9_22
https://doi.org/10.1007/978-3-642-33666-9_22
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/978-3-642-23059-2_10
https://doi.org/10.1007/978-3-642-23059-2_10
https://doi.org/10.1007/978-3-319-70389-3_10
http://arxiv.org/abs/1705.08426

	Foundations of Collaborative DECLARE
	1 Introduction
	2 A Bird-Eye-View on LTLf and DECLARE
	2.1 LTLf
	2.2 DECLARE

	3 Collaborative DECLARE
	3.1 Executing a Collaborative Process
	3.2 Satisfying the Constraints of a Collaborative Process

	4 Consistency and Enactment of coDECLARE
	4.1 Realizability over Simple Traces
	4.2 Consistency and Orchestration

	5 Encoding into LTLf Realizability
	6 Conclusions
	References

