
Resource Allocation in Recommender
Systems for Global KPI Improvement

Alessandro Padella(B) and Massimiliano de Leoni

University of Padua, Padua, Italy

alessandro.padella@phd.unipd.it, deleoni@math.unipd.it

Abstract. Process-aware Recommender systems are information sys-
tems designed to monitor the execution of processes, predict their out-
comes, and suggest effective interventions to achieve better results, with
respect to reference KPIs (Key Performance Indicators). Interventions
typically consist of suggesting an activity to be assigned to a certain
resource. State of the art typically proposes interventions for single cases
in isolation. However, since resources are shared among cases, this might
impact the effectiveness of the available interventions for other cases
that would require one. As result, the overall KPI improvement is par-
tially hampered. This paper proposes an approach to assign resources
to needed cases, aiming to improve the overall KPI values for all cases
together, namely the summation of KPI values for all cases. Experiments
conducted on two real-life case studies illustrate that globally consider-
ing all needing cases together allows a better global KPI improvement,
compared with a more greedy approach where interventions are proposed
one after the other.

Keywords: Process Improvement · Process Prescriptive Analytics ·
Recommender Systems · Resource Allocation · Resource Experience

1 Introduction

Process-aware Recommender Systems are a class of information system that aims
to monitor whether executions are predicting to achieve the expected goals,
and, whenever this is not the case, they propose interventions to try to take
those executions back on track. In literature interventions are typically based on
advising what activity to perform as next, possibly paired with a suggestion of
the resource that will carry it out (see Sect. 2).

However, resources are shared among all running process instances, a.k.a.
cases, and typically they can carry on one activity a time. As a result, if the
interventions (activity and resource) are determined for each instance with-
out considering the other instances that also require intervention, the overall
effectiveness, namely for all instances that require interventions, is limited. For
instance, if one process instance P1 is assigned a resource R1, R1 cannot work
a different instance P2 that requires intervention. It might be the case that it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Di Francescomarino et al. (Eds.): BPM 2023 Forum, LNBIP 490, pp. 249–266, 2023.
https://doi.org/10.1007/978-3-031-41623-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41623-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-41623-1_15

250 A. Padella and M. de Leoni

is more beneficial to assign a different resource R2 to P1, because R2 can work
almost as good for P1, and let R1 work on P2, for which no resource exists that
is almost equally good. This consideration illustrates how the decision of the
interventions is a global decision for all running cases.

Section 2 reports how literature does not propose approaches for resource
allocations to cases with the aim of improving the whole set of process instances.
This paper proposes an approach to overtake this limitation. In our paper, the
achievement of the goal is measured through a measurable Key Performance
Indicator (KPI): cases associated with values outside the acceptable range are
considered worth of an intervention. The problem that we tackle is clearly an
optimization problem: given the likely process’ scenario of hundreds of resources
and running cases, an exact solution is practically unfeasible. We thus propose
two greedy approaches, one faster and one slower, that respectively provide a
worse and better approximation.

In a nutshell, the idea is to create an initial resource profile, in which
resources are allocated to cases: each profile is associated with an expected over-
all KPI improvement. The expected overall KPI improvement is computed, using
machine-learning techniques for prescriptive process analytics. Then, this initial
profile is altered, by changing resources allocated to cases, thus obtaining further
profiles. At the end, a number of resource profiles is generated, from which those
with higher expected KPI improvements are retained. The ultimate outcome is
a set of resource profiles, which are deemed valid to improve KPIs. In different
resource profiles, the same resource is assigned to a different case and inter-
vention: resources are thus given a certain degree of freedom on which case to
pick up and work on as next. This is beneficial, because a rigid resource-to-case
imposition is against the principle of resource-aware recommender systems [1],
such as how the problem of task-to-resource assignments is typically tackled in
operation research.

The framework has been assessed on real-life case studies with processes with
hundreds of running cases and resources. This allowed us to perform a stress test
on the practical feasibility. The typical behavior of resources was simulated, on
the basis of behavior patterns observed in human-computer interaction liter-
ature. The results show that our resource-allocation framework enables a sig-
nificantly higher total KPI improvements, i.e. considering all running cases, if
compared with scenarions in which each case is recommended in isolation.

Section 2 discusses related works in the domain of prescriptive process analyt-
ics and resource-aware recommender systems. Section 3 introduces the necessary
background concepts: event logs, KPI definitions, and process prescriptive ana-
lytics that consider single cases in isolation. Section 4 puts forward our approach
for resource allocation for global KPI improvement, Sect. 5 reports on the eval-
uation setup and results, while Sect. 6 concludes the paper, summarizing the
contribution in our paper.

Resource Allocation in Recommender Systems for Global KPI Improvement 251

2 Related Works

Literature has focused on using recommender systems in business processes to
improve the future outcome of process instances. This has often been translated
into being focused on recommending which activities to work on next to improve
the process’ Key Performance Indicators (KPIs) [2–4].

The growing interest in recommender systems for process mining has led the
community to explore how to determine when to intervene with recommenda-
tions [5] and whether an intervention is cost-wise worth [6]. A body of research
has also focused on ensuring that recommendation are well explained to human-
resources [7], using Shapley Values theory [8].

Moreover, several research works have focused on considering which resources
should perform specific activities in various contexts. Cabanillas et al. in [9,
10] propose two approaches to define a language to equip BPMN models with
complex resource-allocation policies, as well as to discover those policies.

A few works focuses on suggesting a resource allocation for a set of activi-
ties that need to be performed, without - though - focusing on recommending
which activity to perform. Zhao et al. in [11] provide a framework based on a
system of convex equations that encode a system of constraints on time and cost.
Huang et al. in [12] leverage on Reinforcement Learning to propose a resource-
allocation algorithm based on a Markov decision process. Park et al. in [13]
integrate offline prediction model construction, using Long Short-Term Memory
models to predict the next activity to perform and, subsequently, employing a
minimum-cost-and-maximum-flow algorithm to allocate resources. Dumas et al.
in [14] focus on recommending resource-activity pair, as we aim here. However,
they recommend for single cases in isolation, which was previously mentioned to
provide a lower degree of overall KPI improvement, namely for the whole set of
running cases.

In conclusion, no previous research works have pursued the goal to provide an
global KPI improvements, while leaving a certain degree of freedom to resources
on which case (and activity) to work on as next.

3 Preliminaries

The starting point for a process mining-based system is an event log. An event
log is a multiset of traces. Each trace is a sequence of events, each describing the
life-cycle of a particular process instance (i.e. a case) in terms of the activities
executed, resources that execute it, and the process attributes manipulated.

Definition 1 (Events). Let A be the set of process activities. Let R be the
set of possible resources. Let V be the set of process attributes. Let WV be a
function that assigns a domain WV(x) to each process attribute x ∈ V. Let
W = ∪x∈VWV(x). An event is a tuple (a, r, v) ∈ A × R × (V �→ W) where a
is the event activity, r the resource that performs it and v is a partial function
assigning values to process attributes with v(x) ∈ WV(x).

252 A. Padella and M. de Leoni

A trace is a sequence of events. The same event can occur in different traces,
namely attributes are given the same assignment in different traces. This means
that the entire same trace can appear multiple times and motivates why an event
log is to be defined as a function which assigns a trace to a given identifier:

Definition 2 (Traces & Event Logs). Let E = A × R × (V � W) be the
universe of events. Let I be the universe of the case identifiers. A trace σ a
sequence of events, i.e. σ ∈ E∗. An event-log L is here modeled as a function
that, given an identifier i of a log trace returns the sequence of events related to
the process instance with the identifier i, i.e. L : I → E∗.1

Given an event e = (a, r, v), the remainder uses the following shortcuts:
activity(e) = a, resource(e) = r and variables(e) = v. Also, given a trace σ =
〈e1, . . . , en〉, prefix(σ) denotes the set of all prefixes of σ, including σ, namely
prefix(σ)={〈〉, 〈e1〉 , 〈e1, e2〉 , . . . , 〈e1, . . . , en〉}.

For building our recommender system, we need to define what we aim to
optimize, i.e. the goal of our recommendation: hereafter, this is named Key
Performance Indicator (KPI) and depends on the specific process domain.

Definition 3 (KPI Function). Let E be the universe of events. A Key Perfor-
mance Indicator (KPI) is a function K : E∗ × N → R such that, given a (prefix
of a) trace σ ∈ E∗ and an integer 1 ≤ i ≤ |σ|,2 K(σ, i) returns the KPI value of
σ after the occurrence of the first i events.

Therefore img(K) is the set of all possible KPI values. With abuse of notation,
we indicate K(σ) = K(σ, |σ|), namely the KPI value after the occurrence of
events in trace σ. Note that our KPI definition is assumed to be computed
a posteriori when the execution is completed and leaves a complete trail as a
certain trace σ. In many cases, the KPI value is updated after the occurrence of
each event, i.e. after each activity execution. We aim to be generic and account
for all relevant domains. Given a trace σ = 〈e1, . . . , en〉 that records a complete
process execution, the followings are examples of two potential KPI definitions:

– Total Time. We opted to consider the task in which the objective is to reduce
the total time. Given a σ’s prefix of i events, Ktotal(σ, i) measures the dif-
ference between the timestamp of the trace’s last future event and the first
event’s timestamp.

– Activity Occurrence. It measures if a certain activity is going to occur in
the future, such as an activity eventually Open Loan in a loan-application
process. The corresponding KPI definition for the occurrence of an activity a
is Koccur a(σ, i), which is equal to 1 if the activity a occurs in 〈ei+1, . . . , en〉,
0 otherwise.

1 The operator * refers to the Kleene star: given a set A, A∗ contains all the possible
finite sequences of elements belonging to A.

2 Given a trace σ, |σ| indicates the number of events in σ.

Resource Allocation in Recommender Systems for Global KPI Improvement 253

Table 1. Example of the output of the Prescriptive Analytics Oracle Function in a
tabular form, for a given trace when the KPI is the total time of a case. It provides
the recommended activity Back-Office Adjustment Requested associated with a set of
pairs of resources and delta in KPI. For instance, if the resource BOCSER executes an
adjustment to the Back-Office, the expected total time of the procedure will decrease
by 195 h.

Activity Resource Δ

Back-Office
Adjustment
Requested

CE UO 208 h

BOCSER 195 h

BOC 112 h

... ...

The goal of the recommender system is to provide recommendations on both
the activities to be performed and the resources best suited to perform them,
with the aim of enhancing the final outcome of running process instances in
terms of the identified KPIs. To achieve this, a Prescriptive Analytics Oracle
Function must be developed. This function will enable the prediction of the
KPIs of the final outcome of a running process instance, and will identify the
best activity to be performed and the most suitable resource to perform it.

Definition 4 (Prescriptive Analytics Oracle Function). Let E be the uni-
verse of events and σ ∈ E∗ a (running) trace belonging to it, A the set of possible
activities, K : E∗×N → R a KPI function and R the set of the possible resources.
A Prescriptive Analytics Oracle Function is a function ψ : E∗ ×K → A×2(R×R)

such that ψ(σ,K) returns (a, {(r1,Δ1), . . . , (rm,Δm)}) with m ≤ |R| to indicate
that activity a is recommended and, if performed by ri, will lead to a Δi improve-
ment of KPI K. Also, ∀i, j ∈ {1, . . . , m} , ri = rj ⇐⇒ i = j, meaning that a
resource can only be recommended once.

Since not all resources can perform the recommended activity a, the number m
of recommended resources does not necessarily coincide with the number |R| of
all resources [15]: also, some resources might not be available at a certain point
for other reasons, e.g. on holidays or on sick leave.

In the example in Table 1, the oracle function ψ takes as input the KPI func-
tion as defined in Definition 3, with K modelling the KPI . For a certain trace,
the recommended activity is Back-office Adjustament Requested. The function
also returns a set of pairs (r,Δ) to indicate that, if the activity is performed by
resource r, the final KPI is predicted to change by Δ. Concretely, if the activity
Back-Office Adjustment Request is performed, e.g., by CE UO, the total time will
reduce by 208hours.

In the remainder, we will make use of a helper function maxψ,K(σ) that for
each (running) trace σ ∈ E∗ returns the maximum achievable improvement.

254 A. Padella and M. de Leoni

Definition 5 (Helper function). Let E be the universe of events. σ ∈ E∗ a
(running) trace belonging to it, and A the set of possible activities. Let ψ(σ,K) =
(a, {(r1,Δ1), . . . , (rm,Δm)}) the Prescriptive Oracle Function. The Helper func-
tion maxψ,K : E∗ → A × R is a function that returns a pair (a,Δ) =
(a,max({Δ1, . . . ,Δm}))

The oracle function can be implemented in multiple ways, using several of the
prescriptive-analytics algorithms in literature (cf. Sect. 2). This paper does not
aim to propose any specific prescriptive-analytics algorithms. However, for the
implementation and testing, we opted to use the prescriptive-analytics proposal
discussed in [7], which has been extended to also return the pairs of resources
and KPI’s deltas.3

4 Global Activity-Resource Allocation

The purpose of this paper is to provide resources with tailored recommendations
regarding which actions to take and to which process instance, while also allowing
for a degree of choice and autonomy. To achieve this goal, it is essential to
establish a framework that can generate interdependent recommendations while
simultaneously accommodating the individual decision-making processes of the
resources involved. It is important to note that the best recommendation for a
case, when viewed from the perspective of optimising a specific KPI, may not
necessarily be the best recommendation for that case in the context of global
optimisation. In the task of our work, the KPI to be optimised is not pointwise:
an individual case may get the best recommendation for him, but this makes
a resource busy and so unavailable for other cases that could improve their
KPI more. Hence, we want to optimise the sum of the KPIs for all resources
and cases on which they act, ensuring the single recommendations provided to
resources interact with each other without conflict. This leads to the definition
of a Profile.

Definition 6 (Profile). Let L : I → E∗ be an event log, A the set of its possible
activities, and R the set of the possible resources. A profile P ⊂ (I ×A×R×R)
is defined as a set of tuples (i, a, r,Δ) where for the (running) case with identifier
i, the activity a is to be assigned to the resource r for improving its expected KPI
of Δ. There is an additional constraints: there cannot be two tuples with the
same case identifier or the same resource.

A profile aims to allocate the set of available resources to a set of cases with the
aim of improving the overall KPI values for all running cases. The generation of
a profile is challenging: it is a combinatorial problem that would require one to
potentially try every combination of case ids, activities, and resources. This is
practically unfeasible. In Sect. 4.1, we illustrate a greedy algorithm to compute
a profile.

3 Code available at https://github.com/Pado123/prescriptive global optimization.

https://github.com/Pado123/prescriptive_global_optimization

Resource Allocation in Recommender Systems for Global KPI Improvement 255

Id Activity Resource

DD-45678 Pending Liquidation Request BOCSER 93434 h

BB-23456 Pending Liquidation Request BOC 21944 h

CC-34567 Back-Office Adjustment Requested CE_UO 10433 h

...

Id Activity

DD-45678 Pending Liquidation Request

CC-34567 Back-Office Adjustment Requested

BB-23456 Pending Liquidation Request

... ...

93434 h

 85014 h

42543 h

...

Fig. 1. The table on the left is an example of tabular form of the ΔRANK sequence:
the columns shows the case ids, the recommended activities for the respective cases,
and the maximum KPI improvement. In this example, the employed KPI is the case
total time. The profile is obtained from ΔRANK by allocating resources to cases (see
the right-hand side table). Since the best resource cannot be assigned to every case,
the assigned resource might cause a drop in the KPI’s improvements.

The creation of a single profile is also poorly applicable in practice because it
would impose activities to resources, without considering external factors. The
novelty of our framework is also linked to providing process actors with some
degree of freedom, while still aiming to improve the overall KPI. This requires
generating several profiles: different profiles assign different resources to a certain
resource. A resource can pick one of the activities available for him/her in any
of the generated profiles.

The resource’s choice naturally filters out profiles that are incompatible with
the choice made. The subsequent resource to choose will then have fewer profiles
according to which to choose. Section 4.2 illustrates how to generate the profiles
additional to the first.

4.1 Generation of the First Profile

To create an initial profile P0, we first create a sequence ΔRANK ⊆ (I ×
A × R)∗. It can be constructed using the Helper function defined in Defini-
tion 5 as follows. First, we build the set of triples (i1, a1,Δ1), . . . , (in, an,Δn) =⋃

i∈dom(L)(i,maxψ,K(L(i)), which later are sorted descending by the third com-
ponent, namely Δ1, . . . ,Δn. An example of ΔRANK is given in the left-hand
side table in Fig. 1.

The first profile P0 is obtained by extending ΔRANK with resources (cf. the
right-hand side table in Fig. 1). To achieve this, we start from the first element
(i1, a1,Δ1) ∈ ΔRANK, i.e. the one with the greatest expected improvement.
Then, we evaluate ψ(L(i1),K) = (a1, {(r11,Δ

1
1), . . . , (r

m
1 ,Δm

1 })), with K be the
KPI function of interest, and we associate resource r11 to (i1, a1,Δ1) the first
pair (r1,Δ1), thus resulting to add (i1, a1, r1,Δ

1
1) to the profile. Resource r1 is

removed from the set R of the resources available.
We then move to the second element (i2, a2,Δ2) ∈ ΔRANK, and evaluate

ψ(L(i2),K) = (a2, {(r12,Δ
1
2), . . . , (r

q
2,Δ

q
2})). If {r12, . . . , r

q
2} ∩ R = ∅, no element

is added to profile P0 for instance i2. Otherwise, we look for the smallest j such

256 A. Padella and M. de Leoni

Fig. 2. A visual representation of the algorithm to perturb profiles. The right table
depicts the original profile, while the left table shows the perturbed profile. A random
element p = (i, a, r, Δ), according to a geometric distribution. The algorithm identifies
the best new resource r′ for the corresponding trace identifier i and activity a, resulting
in a new element p′ = (i, a, r′, Δ′) (indicated in red in the picture). The resource r′

is unassigned from the previous assignment: the element for r′ is thus removed from
the profile (i, a, r′, δ in figure). Resource r is free, and is given a different assignment
(element i′′, a′′, r, Δ′′ in figure). (Color figure online)

Fig. 3. Schematic of how profiles are generated via perturbation. Starting from the
initial profile P0, a number of perturbations are created (three for the example in
figure), namely: P1 0, P1 1 and P1 2. This is then repeated for each of the obtained
profiles, until a certain number of profiles are overall constructed. If a perturbation
generates a profile that has already been created, this is discarded.

that rj
2 ∈ R. Tuple (i2, a2, r

j
2,Δ

j
2) is added to profile P0. Note that Δj

2 might
be lower that Δ2 because the allocated resource might not yield the maximum
improvement: by construction, it is only guaranteed that Δ2 = Δ1

2. Resource rj
2

is removed from R. This procedure is repeated for every tuple in ΔRANK, as
long as set R is not empty (i.e. activities and cases can be allocated to resources).

Resource Allocation in Recommender Systems for Global KPI Improvement 257

4.2 Generation of Additional Profiles

The first profile P0 is certainly the valuable starting point, but it falls short
in two main aspects. It is generated considering the traces in the descending
order of potential improvements: it is in fact a greedy approach, which might
still returned solutions relatively far from the potential, optimal solution. Using
approaches based on local search, solution P0 is perturbed to obtain more solu-
tions of profiles. As discussed, we want to grant freedom to resources on the
choice of which cases (and consequently activities) to work on as next: therefore,
all profiles generated by perturbation are retained.

Figure 2 illustrates how one profile P is perturbed into P ′: elements
are visualized in tabular form. Initially P ′ = P. The elements in P
are sorted by descending values of the KPI improvement (see column
ΔKPI in figure). An element p = (i, a, r,Δ) is randomly selected from
the sorted list according to a geometric distribution with p = 0.06. Let
p = (i, a, r,Δ) the selected element, with oracle function ψ(L(i),K) =
(a, {(r1,Δ1), . . . , (rm,Δm}). Elem p is removed from P ′, while we add a cer-
tain p′ = (i, a, r′,Δ′) such that, if r = r1, then r′ = r2 an Δ′ = Δ2, otherwise
r′ = r1 and Δ′ = Δ1. Since every resource is assigned to the activity of some
case, P contains some element for r′: p = (i, a, r′,Δ) ∈ P. Tuple p is removed
from P ′. Resource r is now free: we pick the top element (i′′, a′′,Δ′′) ∈ ΔRANK
such that r is allowed to execute a′′ and there is no element in the P ′ that refers
to the case with id i′′. Element (i′′, a′′, r,Δ′′) is added to P ′.

In sum, the above procedure is able to perturb a profile and, thus, create a
new one. This is iterated, until a given target of profiles is created. This can be
visualized as in Fig. 3: we started from the initial profile P0. A certain number
of perturbations is created from P0: profiles P1 0, P1 1 and P1 2 in figure with
three perturbations. This is then repeated for each of the obtained profiles. In
general, two subsequent perturbations can result in the original profiles; however,
we discard the perturbed profiles that were already previously obtained. This
motivates why Fig. 3 has a tree-like structure, in place of a graph-like.

4.3 Assign Recommendations

Once we generate the entire set of profiles, we create a Profiles Ranking P,
by sorting them down by global KPI improvements (i.e., summing up the KPI
improvements for all elements in the profiles).

which is used to effectively provide recommendations to resources. In fact, in
organizational reality, they receive the range of choices provided for them based
on the profile’s order in which the Profiles Ranking P has been sorted. At the
end of the assignment procedure, every resource r will have selected an activity
a and a case identifier i, resulting in a final set that, from this point onwards,
we will refer to it as Resource-task Assignment Set S ⊂ (I ×A×R× R)|R|

where R is the set of available profiles.
Once the first resource r has to select its task, the profiles in P are scanned

till 3 different pairs activity-identifier may be assigned to it. This allows the

258 A. Padella and M. de Leoni

system to provide the resource (at most) three different choices. Then r picks
the case with identifier i, and r executes the accordant activity a. At that time,
we remove all profiles in the set P in which the element (i, a, r,Δ) is not present
for some Δ. Then, the other resources can pick activities in order according to
the retained profiles. This procedure, called Exact Assignment (EA), provides
a certain degree of freedom to the first resources, which can go quickly down as
more and more resources pick cases for performance.

To overcome this problem, an alternative framework called Approximate
Assignment (AA) is proposed: the only difference is that no profile is removed
from P. So the resulting Resource-task Assignment Set S may not coincide to
those of any profile in P. On the Approximate Assignment procedure, when
the first resource r makes a choice of case with id i and activity a, no profile is
removed from P. When the second resource makes a choice, (s)he presented the
three best options in P without considering identifiers related to cases previously
selected. Approximate assignment thus provides further freedom of choice, at the
cost of potentially a lower global KPI improvement

5 Evaluation

The evaluation focuses on assessing the overall KPI improvements for two case
studies (see Sect. 5.1). In particular, the comparison is done with respect to
existing approaches, with specific emphasis on the work by Dumas et al. [14]
where the framework exhibits a similar operational approach to that outlined
within this documentation, although lacking the provision of multiple profiles,
thereby terminating at the first greedy solution. We also focus on quantifying
the degree of freedom, specifically assessing the extent to which resources possess
the ability to choose their task, even if limited to a choice between two feasible
options. This freedom’s degree is a novel of our approach if compared with the
state of the art. It indeed allows resources to pick among multiple alternatives.

Section 5.2 details the procedure for partitioning event logs into a training
log and a test log. The training log is used to train the oracle function ψ, which
plays a crucial role in our proposed methodology. Meanwhile, the test log is
employed to evaluate the performance and effectiveness of our approach.

Subsequently, in Sect. 5.3, we discuss the assessment of recommendation qual-
ity and the level of resource autonomy achieved. Furthermore, Sect. 5.4 presents
our evaluation method, which involves comparing the outcomes to a real-world
scenario. Lastly, in Sect. 5.5, we analyze and interpret the results generated by
our methodology.

5.1 Introduction to Use Cases

The validity of our approach was assessed using two different event logs with their
associated use case. The first is so-called Bank Account Closure (BAC), a
log referring to an Italian Bank Institution process that deals with the closures
of bank accounts. From the bank’s information system, we extracted an event

Resource Allocation in Recommender Systems for Global KPI Improvement 259

log containing 212,721 events containing 15 activities, 654 resources and 32,429
completed traces, divided into 14,593 for train and 17,836 for testing. For this log,
we opted to consider the task in which the objective is to reduce the execution
time of the instances, i.e. the KPI function K is equal to Total Time and the
total number of generated profiles is 650,000.

The BPI challenge used the second log in 20134. It is provided by Volvo
Belgium and contains events from an incident and problem management sys-
tem called VINST. We extracted 7,456 completed traces and 64,975 events. It
contains 13 different activities that can be accomplished with 649 resources. In
selecting traces from the log for training and testing, we get a training log of
3,355 traces and a test log of 4,101 traces.

For this case, we aim to avoid the occurrence of the activity Wait-User. The
KPI value can be 1 or 0 if the activity occurs or not, while the Δ values related
to the oracle function are evaluated as the difference by the probability of the
activity occurring (i.e. Δ ∈ [0, 1]). Note that one wants to reduce the activity-
occurrence probability: the activity Wait-User is considered detrimental in terms
of time and customer satisfaction. The total number of generated profiles is
140,000.

5.2 Train-Test Splitting Procedure

The starting point for an evaluation is an event log L. In this section, to lighten
the notation, we refer to dom(L) as L, and so referring to a log not as a function
but as a set of trace identifiers in its domain. We first extract the training
log Lcomp for training the oracle function and, consequently, the recommender
system. Then, we aim at creating the log Lrun used for testing our system. To
extract the training log Lcomp ⊂ L we compute the earliest time tsplit such that
45% of the identifiers related to traces of L are completed. This allows us to
define Lcomp as the set of traces of L completed at time tsplit, and consequently,
define Lrun as L \ Lcomp. The traces of Lrun are then truncated to a set Ltrunc

obtained from Lrun by maintaining only a random percentage of events in each
trace5, this has been done for simulating running instances to which provide
recommendations, using the set Lrun for the evaluation of them.

5.3 Evaluation Metrics

The accuracy of recommending the resource r performs the activity a for the
running case with identifier i′ ∈ dom(Ltrunc) is evaluated as the average KPI of
traces similar to it. Analytically, if L(i′) = σ′ and e such that activity(e) = a
and resource(e) = r:

score(σ′, e) = avgσ∈Sim(σ′,e,Lrun)K(σ) (1)

4 https://www.win.tue.nl/bpi/doku.php?id=2013:challenge.
5 The random percentage p was drawn from a uniform distribution U [25, 75], repeating

the experiment for its stochastic validity.

https://www.win.tue.nl/bpi/doku.php?id=2013:challenge

260 A. Padella and M. de Leoni

where Sim(σ′, e,Lrun) is the set of traces similar to σ′ ⊕ 〈e〉, namely

Sim(〈e′
1, . . . , e

′
m〉, e,Lrun) = {σ ∈ cod(Lrun) : ∃σp = 〈e1, . . . , em+1〉 ∈ prefix(σ),

(activity(em+1), resource(em+1)) = (activity(e), resource(e)),
activity(ei) = activity(e′

i) ∀i ∈ {1, . . . , m}}
The score of the recommended action a to a resource r performing the running

trace σ′ is so the average KPI of traces similar to σ′ for which the activity a has
been performed by the resource r. This procedure is similar to the one used by
de Leoni et al. in [2] and by Padella et al. in [7], adding the constraint about the
recommended resource r to the similarity concept.

Typically, in the machine learning literature, the dimension of the train set
is larger than the dimension of the test set. We chose this split ratio because
using the accuracy evaluation proposed in Eq. 1, we evaluate a mean value on
the output set of the function Sim that embodies the constraints related to the
resource and the activity: this may lead to a small number of items on it, making
the mean value evaluated statistically not significant.

As already mentioned, we also aim to give resources freedom in choosing
which case and, consequently, activity to work on as next. Therefore, in our
experiments, our goal is also to measure the resource freedom, hereafter defined
as the number of resources that have given the freedom to choose the case to
work on within a set that contains at least two cases. On this aim, we introduce
the concept of Freedom Score, that is the ratio between the resources that
had the possibility of choosing between at least two case-activity options in our
assignment procedure (cf. Sect. 4.3) and the number of resources that can act on
more than two running cases of Lrun. Analytically

Freedom Score(Assignment) = |{r∈S : r has chosen in Assignment}|
|{r∈S : r can act on more than one i∈ dom(Lrun)}| (2)

The purpose of this function is to assess the degree of freedom of choice
afforded to the resources by comparing it to the level of choice they typically
have. A Freedom Score of 100% indicates that resources are granted complete
freedom, while a score of 0% corresponds to no freedom.

5.4 Evaluation Methodology

The assessment of the system was carried out by trying to replicate actual orga-
nizational conditions. Therefore, we want to simulate how resources realistically
interact with a recommender system.

1. Not all resource work at the same time, due to various factors such as shifts,
vacations or other circumstances. Therefore, a Bernoulli distribution with a
parameter of p = 0.75 is used to stochastically select a subset of resources:
each individual element in the complete set of resources has a 75% probability
of being designated as active and thus included in the subset.

2. Not all resources pick up a case to work on the same time, then we randomly
shuffled the list of resources obtained at point 1, generating random arrival
orders randomising the order in which resources pick their task.

Resource Allocation in Recommender Systems for Global KPI Improvement 261

Table 2. In the second column, the table presents the time values associated with the
generation of the complete Profiles Ranking P, representing approximately 10% of the
total number of profiles that the framework can generate. The third column displays
the absolute count of the generated profiles.

Case Study Time needed Total number of generated profiles

Total time on BAC 1 h and 40 min 650,000

Wait-User Occurrence on VINST 40 min 140,000

3. Resources are provided with a ranking of cases allowed to work on, ordered
by expected KPI improvement. However, they do not necessarily pick the top
element: research in Human-Computer Interaction has demonstrated a con-
sistent pattern of user behavior when presented with a ranked list of options,
as documented in [16]. In line with this study, we have adopted a stochastic
resource selection behavior: Specifically, the probabilities of selecting the first,
second, and third options are 61%, 24%, and 15%, respectively.

Since the points 1–3 in the list above rely on sampling from distributions (e.g. the
Bernoulli distribution at point 1), the procedure has been repeated: we extracted
10 values from the Bernoulli distribution described at point 1 and, for each of
these values, the random shuffling has been done 10 times. It follows that, in
total, we repeated the evaluation 100 times.

The improvements by our framework has been evaluated by applying the
formula in Eq. 1 to the recommendations provided to the traces relatives to the
identifiers in Ltrunc using the two assignment procedures defined in Sect. 4.3 and
then comparing this scores with the real process executions from Lrun.

5.5 Results Analysis

For each of the 10 subsets of existing resources obtained at point 1 of the eval-
uation methodology (cf. Sect. 5.4), we computed the total number of potential
profiles. However, the time needed to compute them all is practically not fea-
sible and hence we use our framework to only generate up to 10% of them in
experiments, with increments of 1%.

Due to differences in the number of activities, resources, and cases in the
logs, the computational times varied. All the generations were executed on a
workstation equipped with a 16-core AMD Ryzen 7 4700G processor unit and
16 GB RAM, which were divided into 12 different threads. Table 2 shows for each
case study, the time to generate this 10% of profiles. This threshold represents
a justifiable value since the tree procedure described in the Sect. 4.2 follows a
greedy approach: on it, profiles are initially generated in a stochastic manner
and subsequently filtered to eliminate duplicates. As the number of generated
profiles augments, the likelihood of encountering new profiles decreases, leading
to an exponential rise in the time required for generating new profiles.

The experiments’ results in terms of KPI values are shown in Fig. 4, which
illustrates how the improvement is linked to the percentage of profiles that are

262 A. Padella and M. de Leoni

Fig. 4. Results related to the KPI improvement for both case studies and the two
assignment techniques. On the x-axis there is the percentage of the profile used for
running the two algorithms, while in the y-axis the average KPI improvement on the
whole Lrun evaluated as defined in Eq. 2 is shown.

Fig. 5. Results related to the freedom left to the resources for both case studies and
the two assignment techniques. On the x-axis there is the percentage of the profile used
for running the two algorithms, while on the y-axis the Freedom Score as defined in
Eq. 2 is shown.

generated, for the BAC and VINST case studies, and using our two approaches
to compute the set of profiles. The results show that it is sufficient to generate
few profiles to obtain significant KPI improvements. For the case study of reduc-
ing total execution time on BAC, there is no significant variation in outcomes
between the Exact and Approximate assignment techniques. In the conducted
case study focusing on optimizing process performance in the BAC system, we
achieved an improvement of 58%. This improvement translates to a reduction in
the total execution time of all active traces from 179, 430 h to 76,873 h. We suc-
cessfully minimized the overall processing time by implementing the proposed

Resource Allocation in Recommender Systems for Global KPI Improvement 263

measures, leading to significant efficiency gains. Furthermore, our investigation
targeted the reduction of the Wait-User activity occurrences within the VINST
dataset. The initial analysis identified 631 traces in which this activity took
place. Through the implementation of optimized strategies, the occurrence of
Wait-User decreased to 486 traces. This reduction highlights the effectiveness
of the proposed approach in streamlining the process and minimizing potential
bottlenecks associated with this specific activity of 12%.

A larger number of profile generation may still remain relevant to allow
resources a larger degree of freedom to choose the case, and hence the inter-
vention, to work on. Figure 5 shows how the Freedom Score increases with larger
number of profiles that are generated. The algorithm for approximate assign-
ments seem to consistently allow larger freedom. It even achieves a Freedom
Score of 90% after generating only 1% of the profiles for the BAC case study.

The Approximate Assignment method was indeed designed to provide
resources with more freedom of choice, a goal successfully achieved in both case
studies. The approximate assignment was also able to achieve the same amount
of KPI improvement as the exact assignment: therefore, the Approximate-
Assignment algorithm is certainly preferable for the BAC case study. For the
VINST case study, the Exact-Assignment method provides results that are
around 10% better than the Approximate-Assignment method, which suggests
the Exact Assignment method is preferable.

It follows that opting for the Exact-Assignment or for the Approximate-
Assignment method may depend on the case study. Therefore, the choice requires
to conduct a prior assessment based on training and testing phases, as conducted
in the experiments discussed in this paper.

Last but not least, we aim to compare our results with those obtained by
the latest advantages in prescriptive process analytics, and we have carried on a
comparison with respect to the approach by Dumas et al. [14]. The approach by
Dumas et al. corresponds to the scenario in which only the first profile is gen-
erated, analogously to what discussed in Sect. 4.1. The conducted experiments
have shown that the creation of multiple profiles and their ranking provides a
further improvement by 6.2% and 1.9% for the VINST and BAC case stud-
ies, respectively. It is worthwhile noting here that Dumas et al. use a different
prescriptive-analytics oracle function. However, a fair comparison requires to use
the same oracle function, to put aside any difference due to the choice of the
oracle function. This motivates why we use our oracle function in both of sce-
narios, namely only using the first profile, or conversely leveraging on the profile
ranking.

6 Conclusions

Process-aware Recommendation systems are a class of information systems that
provide support to process stakeholders to achieve better results for the running
cases. The module that suggests effective interventions is obviously the core
module in this class of systems. The intervention for a running case typically

264 A. Padella and M. de Leoni

consists in suggesting a certain activity to be performed as next, as well as
the resource to which this activity should be given for performance. Existing
techniques propose interventions to single running cases in isolation, making the
choice of interventions local to single cases. However, resources are shared among
cases, and hence an allocation of resources and interventions should be deal with
as a global optimization problem, where all cases requiring interventions are
considered altogether.

This paper has put forward a framework that tackles the global optimization
problem. It is clear that the complexity of the problem is NP-hard, and hence
finding an optimal solution is intractable when hundreds of cases are running at
the same time, and also hundreds of resources are involved. We thus propose two
approximated algorithms that aim to find sub-optimal solutions. The algorithm
returns a number of alternative user profiles, each of which consists in a set of
assignments of activities to resources, with the constraint that a resource can
only work on with a case within a profile. These profiles are then ranked with
the expected outcome improvement, measured in terms of KPIs. Each resource
is then offered the interventions ordered by descending ranking of the profile of
which those interventions are part.

Among the advantages of our proposal, it is worthwhile mentioning that,
while most of existing approaches impose an assignment of cases and activities
to resources, we provide process actors with a certain degree of freedom in choos-
ing what to work on. This freedom is clearly very beneficial in the context of
recommender systems: vice versa, imposing an assignment may potentially incur
in the risk of having resources to act on cases independently and regardless of
the recommendations.

Experiments were conducted with two real-life case studies, emulating how
humans would pick offered interventions in an order list. This emulation was
based on behavioral models described in the human-computer interaction litera-
ture [16]. The results illustrate a significant improvement with respect to frame-
works that aim to improve the outcome of running cases in isolation. So did we
compare with the approach by Dumas et al. [14], which is the only approach
that we found that is able to provide a global KPI improvement: our framework
provides a further improvement by 6.2 and 1.9% for the two case studies.

Acknowledgement. The PhD. scholarship of Mr. Padella is partly funded by IBM
Italy, and by the BMCS Doctoral Program, University of Padua. This research is also
supported by the Department of Mathematics, University of Padua, through the BIRD
project “Data-driven Business Process Improvement” (code BIRD215924/21).

Resource Allocation in Recommender Systems for Global KPI Improvement 265

References

1. Comuzzi, M.: Ant-colony optimisation for path recommendation in business process
execution. J. Data Semantics 8(2), 113–128 (2019)

2. de Leoni, M., Dees, M., Reulink, L.: Design and evaluation of a process-aware
recommender system based on prescriptive analytics. In: 2020 2nd International
Conference on Process Mining (ICPM) (2020)

3. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process
monitoring for recommending next best actions. In: Business Process Management
Forum (2020)

4. Metzger, A., Kley, T., Palm, A.: Triggering proactive business process adaptations
via online reinforcement learning. In: Fahland, D., Ghidini, C., Becker, J., Dumas,
M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 273–290. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58666-9 16

5. Fahrenkrog-Petersen, S., Tax, N., Teinemaa, I., Dumas, M., de Leoni, M., Maggi,
F., Weidlich, M.: Fire now, fire later: alarm-based systems for prescriptive process
monitoring. Knowl. Inf. Syst. 64, 02 (2022)

6. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive
process monitoring for cost-aware cycle time reduction. In: 2021 3rd International
Conference on Process Mining (ICPM) (2021)

7. Padella, A., de Leoni, M., Dogan, O., Galanti, R.: Explainable process prescriptive
analytics. In: 2022 4th International Conference on Process Mining (ICPM), pp.
16–23 (2022)

8. Shapley, L.S.: A value for n-person games. RAND Corporation, no. 28 (1953)
9. Cabanillas, C., Schönig, S., Sturm, C., Mendling, J.: Mining expressive

and executable resource-aware imperative process models. In: Gulden, J.,
Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.)
BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 3–18. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91704-7 1

10. Havur, G., Cabanillas, C.: History-aware dynamic process fragmentation for risk-
aware resource allocation. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D.,
Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp. 533–551.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4 33

11. Zhao, W., Yang, L., Liu, H., Wu, R.: The optimization of resource allocation based
on process mining. In: Huang, D.-S., Han, K. (eds.) ICIC 2015. LNCS (LNAI),
vol. 9227, pp. 341–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22053-6 38

12. Huang, Z., van der Aalst, W., Lu, X., Duan, H.: Reinforcement learn-
ing based resource allocation in business process management. Data Knowl.
Eng. 70(1), 127–145 (2011). https://www.sciencedirect.com/science/article/pii/
S0169023X1000114X

13. Park, G., Song, M.: Prediction-based resource allocation using LSTM and mini-
mum cost and maximum flow algorithm. In: International Conference on Process
Mining (ICPM) 2019, pp. 121–128 (2019)

14. Shoush, M., Dumas, M.: When to intervene? prescriptive process monitoring under
uncertainty and resource constraints. In: Di Ciccio, C., Dijkman, R., del Ŕıo
Ortega, A., Rinderle-Ma, S. (eds.) Business Process Management Forum, pp. 207–
223 Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16171-1 13

https://doi.org/10.1007/978-3-030-58666-9_16
https://doi.org/10.1007/978-3-319-91704-7_1
https://doi.org/10.1007/978-3-030-33246-4_33
https://doi.org/10.1007/978-3-319-22053-6_38
https://doi.org/10.1007/978-3-319-22053-6_38
https://www.sciencedirect.com/science/article/pii/S0169023X1000114X
https://www.sciencedirect.com/science/article/pii/S0169023X1000114X
https://doi.org/10.1007/978-3-031-16171-1_13

266 A. Padella and M. de Leoni

15. de Leoni, M.: Foundations of Process Enhancement, pp. 243–273. Springer, Cham
(2022)

16. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting
clickthrough data as implicit feedback. In: Proceedings of the 28th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR 2005, pp. 154–161. Association for Computing Machinery,
New York (2005)

	Resource Allocation in Recommender Systems for Global KPI Improvement
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Global Activity-Resource Allocation
	4.1 Generation of the First Profile
	4.2 Generation of Additional Profiles
	4.3 Assign Recommendations

	5 Evaluation
	5.1 Introduction to Use Cases
	5.2 Train-Test Splitting Procedure
	5.3 Evaluation Metrics
	5.4 Evaluation Methodology
	5.5 Results Analysis

	6 Conclusions
	References

