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Abstract. IoT-enhanced business processes (BPs) are processes sup-
ported by Internet of Things (IoT) technology, such as sensors capable
of monitoring the physical environment where processes are executed.
Although the execution of BPs is typically recorded in event logs, IoT-
enhanced BPs also generate IoT data that contain vital contextual infor-
mation. Such BPs are typically found in manufacturing contexts, where,
for instance, temperature sensors can provide valuable insights into the
storage conditions of sensitive raw materials. However, the potential of
this IoT-enhanced process mining (PM) has not been fully explored. In
this paper, we propose TROPIC, an approach for multi-perspective trace
clustering that considers three key perspectives: the control-flow perspec-
tive, the trace attribute data perspective and the time series sensor data
perspective. We demonstrate the efficacy of our approach in a real-world
manufacturing use case. The evaluation of the resulting clusters revealed
that integrating the three different perspectives enabled the detection of
process variants and anomalous instances that would have been missed
using any one of the perspectives in isolation.

Keywords: Process mining · Internet of Things · Trace clustering ·
IoT-enhanced process mining

1 Introduction

Currently, the use of Internet of Things (IoT) devices in organisations is becom-
ing increasingly common, providing support to their business processes (BPs),
known as IoT-enhanced BPs [16,36]. The execution of BP activities is usually
recorded in event logs, which can be analysed to gain insights into the BP and
identify opportunities for improvement. When BPs are augmented with IoT
devices, these devices can also provide critical contextual information. One of
the main domains where IoT-enhanced BPs are found is smart manufacturing.
In these BPs, sensors can track time series (TS) data on various process param-
eters, such as, for example, flow, temperature, and pressure, which can aid in
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predicting process outcomes and automating tasks. However, due to the unique
characteristics of IoT data, such as granularity and storage independent of the
process system [4], it is necessary to develop new PM techniques designed specif-
ically for them. This emerging field of IoT-enhanced process mining (PM) is still
in its early stages [4], with only limited research being already done, focusing
primarily on decision mining using IoT data [2,32].

In this paper, we propose TROPIC (TRace attributes, cOntrol-flow Plus Iot
Clustering), a novel approach for multiperspective trace clustering that is capa-
ble of integrating the TS sensor data perspective, in addition to the control-flow
and trace attribute data perspectives. By integrating these different perspec-
tives, multi-perspective trace clustering can effectively identify process variants
and anomalous process executions in smart manufacturing that may not be
apparent from analysing the control-flow or another single perspective alone.
Knowing these variants can, in turn, help organisations identify and propagate
best practises to enhance process efficiency and increase the likelihood of positive
process outcomes. To demonstrate the effectiveness of our approach, we apply
it to a real-life manufacturing process and provide a detailed evaluation of the
results. This case study highlights the potential of our approach to analyse and
improve IoT-enhanced BPs.

The remainder of the paper is organised as follows. First, Sect. 2 provides
an overview of previous research in multi-perspective PM, IoT-enhanced PM,
and trace clustering. In Sect. 3, we present TROPIC, our two-level approach for
multi-perspective trace clustering, and apply it to the manufacturing process
in question in Sect. 4. The experimental results are discussed in Sect. 5, before
concluding the paper in Sect. 6 with final remarks and suggestions for future
work.

2 Background

2.1 Trace Clustering

Trace clustering is a technique used to group similar process instances, for
instance, based on their shared sequential activity patterns. Traditionally, trace
clustering has been used to improve process discovery by splitting the event log
into sublogs consisting of instances that share comparable activity sequences,
and mining a model of each sublog separately. This approach produces simpler
and better fitting models that describe different process variants [5,9,13]. How-
ever, more recently, trace clustering has been applied to other goals, such as
concept drift detection and process evolution analysis [19] and outlier detection
[11]. Although improving process discovery results can typically rely only on the
control-flow perspective, other objectives can greatly benefit from incorporating
context information in clustering.

According to [8], three main categories of trace clustering approaches have
been proposed: distance-based, feature-based, and model-based. Distance-based
approaches directly cluster traces based on the distances between traces as
sequences of activities, using distance metrics such as the Hamming distance,
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Levenshtein distance, Damerau-Levenshtein distance, and geodesic distance.
Feature-based techniques, on the other hand, derive features from the traces,
such as scalars, graphs and embeddings and cluster based on the feature values.
Finally, model-based techniques aim to create clusters of traces that produce the
best process models [9], optimising criteria such as model fitness. These three
approaches have their advantages and disadvantages depending on the nature
of the data and the intended application. Choosing the appropriate approach is
critical to the effectiveness of the trace clustering process.

2.2 Multi-perspective Process Mining

Multi-perspective PM refers to process analysis techniques that take more than
one process perspective into account, e.g., the control-flow and data attributes.
The following perspectives are listed in [22] lists the following perspectives:

– Control-flow perspective: Activity ordering in each process instance;
– Resource perspective: Human and non-human resources executing tasks;
– Data perspective: Trace and event attributes;
– Time perspective: Activity duration, throughput time, business rules, etc.;
– Function: Granularity of the activities of the process.

Multi-perspective techniques have been proposed for various types of PMs,
such as multi-perspective process discovery [18,24] and multi-perspective con-
formance checking [14,23]. In trace clustering, a multi-perspective approach is
proposed in [15], where a distance metric is presented to compare traces based
on the control-flow perspective, the resource perspective, and the data perspec-
tive. The (possibly weighted) average of these metrics is computed and used as a
pairwise multi-perspective distance measure to perform hierarchical clustering.

However, extending such a technique to TS data can be challenging, as TS
typically need to be characterised by many features. For example, [12] reviewed
the proposed TS characteristics in the literature and identified a list of approxi-
mately 7,700 characteristics to fully represent the TS data. Therefore, proceeding
in one step, inputting TS features in a feature vector or including them in an
average as in [15], would likely result in either TS features dominating over
other perspectives or require very carefully selecting TS features beforehand.
This problem grows dramatically when considering multivariate TS, which are
very common in manufacturing. To address this issue, we propose a two-step
approach that is more versatile than the simple average of distances computed
over multiple perspectives.

2.3 IoT-Enhanced PM

Event Log Derivation. The existing literature on IoT-enhanced PM has pri-
marily focused on deriving high-level events of the process from low-level IoT
data to create event logs. Subsequently, traditional PM techniques have been
employed to analyse these event logs and discover control-flow models of the
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processes. Several techniques have been proposed specifically for manufacturing
processes. In [35], a four-step framework is presented to generate event logs from
industrial IoT data, including data preprocessing, clustering of low-level data,
classification to derive events from clusters, and creation of the final event log.
Also, focussing on industrial applications, [34] propose to transform raw IoT data
into an XES event log using complex event processing and event detection and
refinement techniques. The authors present another approach in [33] to detect
activities interactively from sensor data based on visualisation and exploratory
analysis. In [37], a domain-specific language is developed to extract event logs
from IoT data by specifying the case and activity identifiers.

Process Contextualisation. Next to event log derivation, some context-aware
techniques have also been investigated, e.g., IoT data-aware process discovery
[2,20], sensor TS-aware decision mining [32], and IoT-aware conformance check-
ing [28]. In a manufacturing context, [32] outlines an approach to derive deci-
sion rule patterns from TS sensor data by automatically featurising the sen-
sor data and training a decision tree to learn the rules. A different problem is
addressed by [28], who present an approach for IoT-enhanced deviation detec-
tion. In their paper, they argue that traditional conformance checking cannot
take into account data that changes over time independently of the events of the
process (i.e., TS data). They subsequently proposed a method to detect patterns
in the TS data directly.

3 Methodology

TROPIC involves a two-step clustering process (see Fig. 1) currently tailored to
the setting of smart manufacturing, typically characterised by highly structured
processes around which sensor data are collected in the form of TS. Indeed, in
such manufacturing BPs, sensor data and process activities are usually corre-
lated, with process activities leaving recognisable patterns in the sensor data and
certain sensor data values triggering the execution of certain process activities. In
the clustering process of TROPIC, process instances are first clustered separately
according to three perspectives: the control-flow, trace attribute data and TS sen-
sor data perspectives. In this step, each perspective is considered independently,
providing a detailed view of each aspect of the process. Then, the distances to
each centroid in each clustering are computed and used as features for a sec-
ond clustering step, which takes into account all three perspectives together.
This results in a multi-perspective clustering that groups instances based on
their unique combinations of control-flow, trace attributes and TS sensor data,
providing a comprehensive view on the process.

Next, we explain the approach applied for each single-perspective clustering,
followed by the multi-perspective clustering.
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Fig. 1. Overview of TROPIC, our proposed approach.

3.1 Control-Flow Perspective

As mentioned in Sect. 2, three main categories of trace clustering have
been proposed: distance-based, feature-based, and model-based approaches.
Our approach follows the former by using the Damerau-Levenshtein (DL) dis-
tance. The DL distance is a string metric used to compute the edit distance
between two strings, which is the minimum number of single-character edits (i.e.,
insertions, deletions, substitutions, and transpositions) required to transform
one string into the other. It extends the Levenshtein distance by also including
transpositions of characters. The DL distance between strings A and B, denoted
DL(A,B), is computed as follows:

DL(A,B) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max(|A|, |B|) if min(|A|, |B|) = 0

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DL(A1..i−1, B) + 1
DL(A,B1..j−1) + 1
DL(A1..i−1, B1..j−1) + δai,bj

DL(A1..i−2bi, A1..j−2aj) + 1

otherwise (1)

where |A| denotes the length of string A, ai denotes the i-th character of string
A, and δai,bj is the Kronecker delta function, which is equal to 1 if ai = bj , and 0
otherwise. The last term in the minimum function corresponds to transposition,
and is only included if i, j > 1 and ai−1 = bj and bj−1 = ai.

Due to the strictly ordered nature of control-flow data in many manufacturing
processes, other trace clustering paradigms are usually less suitable. Additionally,
activities are often logged at a fairly low level of granularity, making model-based
techniques less appropriate. It is worth noting that manufacturing processes tend
to be more structured in nature, and thus may not require more complex trace
clustering techniques designed for less structured processes.
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3.2 Trace Attribute Data Perspective

Trace attributes are usually numerical, categorical, or ordinal features that can
be clustered using traditional clustering techniques. Common clustering tech-
niques include hierarchical techniques [38], distance-based techniques, such as
K-means [21] or K-medoids [27], model-based techniques, such as self-organising
maps [17]; and density-based techniques such as DBSCAN [10]. TROPIC uses
K-means, as a generic technique for mixed-type input features, which is most
often the case in smart manufacturing. Moreover, its simplicity makes it eas-
ily understandable for non-experts. However, depending on the specific process,
other techniques could be applied as well; for a general discussion of clustering
techniques, see [31].

3.3 Time Series Sensor Data Perspective

In TS analysis, [1] distinguishes three categories of techniques to cluster whole
TS: distance-based features, using measures such as Euclidean or dynamic time
warping (DTW) distance [30]; structure-based features, which characterise the
whole TS; and shape-based features, created by searching for common motifs.

We use DTW distance, which allows a direct comparison of whole TS and
is suitable for TS that are expected to share a common general structure as
is the case in most manufacturing processes but can differ in length and speed
(i.e. certain subsequences can last longer in one TS than in the other). Intu-
itively, it corresponds to the distance remaining between two series after elimi-
nating timing differences, i.e., correcting for varying activity duration. It relies
on the computation of a warping function mapping time points from two series
together to minimise the distance between the two series. More specifically,
given two series A = a1, a2, ..., ai, ..., an and B = b1, b2, ..., bj , ..., bm, with dis-
tance di,j = ||ai − bj ||, DTW aims at finding an optimal mapping function
F = c1, c2, ..., ck, ..., cl such that the total distance E(F ) =

∑l
k=1 d(c(k)) · w(k)

is minimised:

DTW (A,B) = min
F

[∑l
k=1 d(c(k)) · w(k)

∑l
k=1 w(k)

]

(2)

where w(k) is a weight coefficient for the elements of the mapping function.
Applying this for each pair of batches yields a distance matrix which can be

used as input for clustering techniques like K-medoids or hierarchical clustering.

3.4 Multi-perspective Clustering

Once process instances are clustered separately in each perspective, the results
are combined by clustering them together. Single-perspective clusters can be
represented in different ways, such as using their labels as categorical features
or computing distances to the centroids. We follow the latter approach, which
retains more information for multi-perspective clustering.
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Moreover, perspectives can be weighted to adjust their contribution to the
multi-perspective clustering. For example, control-flow can be given more weight
to ensure it has sufficient influence on the final clustering. Weights can also be
used to account for differences in the number of clusters generated by each per-
spective, where more clusters may result in more features and a greater impact
on the final clustering.

4 A Case Study in Smart Manufacturing

4.1 Use Case

Process Description. We applied TROPIC to a real use case at a partner
company active in the production of chemical products. Their production process
can be summarised in four main steps:

1. Preparing raw material and loading the tank;
2. Mixing the raw material in the tank;
3. Circulating the product through filters to remove impurities;
4. Bottling and packing the finished product.

Sometimes, the quality of the product is not high enough after filtering, i.e.,
some characteristics of the product do not meet the specifications. In this case,
an adjustment is applied by loading additional raw materials into the tank and
repeating steps two and three, resulting in the high-level production process
depicted in Fig. 2.

Fig. 2. High-level model of the process analysed in the experiment.

This seemingly simple process has to be executed with extreme precision and
care as the slightest presence of impurities in the finished product greatly dimin-
ishes its quality. This is why the company is interested in analysing production
logs and TS sensor data together to find out variation in process execution.

Data. Two main data sources are used in this use case: 1) logs from the produc-
tion system, which contain the sequences of activities executed for each process
instance and trace attributes and 2) TS data from sensors tracking the flow of
the product in the four tanks and in the pipes leading through the filters every
second. The data span a period from October 2020 to April 2022, representing
161 complete process instances and 199.4 million rows of sensor data.
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Data Preprocessing. First, relevant TS pump circulation flow data was
extracted for each batch. The data were resampled to one measurement per
minute for smoothing and to reduce their length (the raw TS for the longest
batch counted more than one million measurements before resampling), and
some missing values due to the storage format were imputed. Finally, all data
were normalised.

4.2 Clustering and Evaluation Approach

Multi-perspective Trace Clustering. We applied our two-step multi-
perspective trace clustering approach to the obtained data. For the control-flow
perspective, we followed a distance-based approach by computing the DL dis-
tance between the event sequences for each pair of batches and using the result-
ing distance matrix as input for the K-medoids. The number of clusters was set
to five by plotting inertia and following the elbow method. The clusters con-
tained 28, 23, 52, 22 and 36 instances, respectively. Secondly, regarding the trace
attributes perspective, we applied the K-means algorithm with K = 5 (based on
the elbow method). This yielded clusters of 23, 48, 41, 25 and 24 instances. Note
that the attributes “tank open time” and “time in tank” are considered trace
attributes as they measure batch quality and not timeliness. Third, we applied a
distance-based TS clustering approach for the TS sensor data perspective, com-
puting the DTW distance between the TS of each pair of batches to obtain a
TS distance matrix used as input for K-medoids, with K = 6 (based on the
elbow method), which formed clusters of sizes 9, 44, 59, 20, 21 and 8. Finally, to
perform multi-perspective clustering, we computed the distances to centroids for
each single-perspective clustering. Then we weighed the clusterings to take into
account the different values of K in each clustering and applied K-means to all
distances to centroids together, with K = 4 based on the elbow method. When
K-means were applied, centroids initialisation was optimised to speed up conver-
gence of the clustering by sampling centroids based on marginal inertia decrease,
while when K-medoids were applied, medoids were randomly initialised.

Clustering Evaluation. The evaluation of clustering results is a challenging
task that often depends on the specific domain and task at hand. A range of
metrics are available to score clusterings based on intrinsic properties, such as
the Davies-Bouldin (DB) score [6], which measures the similarity of clusters to
their respective most similar cluster (lower value is better), or the Silhouette
index [29], which compares the similarity between an instance and instances
in its cluster with the similarity between this instance and instances in other
clusters (higher value is better). Other metrics compare clusterings with known
classes in the data or other clusterings, such as the Rand index [26], entropy, or
purity. However, it is worth noting that better-formed clusters may not necessar-
ily be more useful in practise, hence obtaining external validation from experts
is critical to evaluate clustering results.

In our case study, we compared the clusters obtained from the multi-
perspective approach with those derived from single-perspective clustering, using
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Fig. 3. Visualisation of multi-perspective clustering with t-SNE (cluster 1 = purple,
cluster 2 = blue, cluster 3 = green, cluster 4 = yellow). (Color figure online)

both metrics and expert feedback. We computed silhouette indexes and DB
scores for each clustering to assess the quality of the clusters in each approach.
We also computed adjusted Rand indexes (ARI; where a higher value indicates
higher similarity) and entropy scores (where a lower value indicates higher sim-
ilarity) to determine the degree of similarity between the clusterings and to
identify which perspective has the most influence on multi-perspective cluster-
ing. To validate our clustering results, we presented them to a senior process
engineer at our partner company. Specifically, we showed the engineer the cen-
troids of each multi-perspective cluster, as well as an overview of each cluster,
including a directly-follows graph (DFG) for the control-flow, the mean or mode
of trace attributes, and the DTW barrycenter average (DBA) [25] for the TS
perspective, which is a method to compute the average of several TS taking into
account potential time shifts.

4.3 Results

Multi-perspective clustering with K = 4 resulted in clusters of sizes 18, 53, 69,
and 21 (see Fig. 3). In the remainder of this section, we provide visualisations
of the clusters and report the values of the metrics and the interpretation and
evaluation of the clusters by the process expert for each perspective.

Clustering Quality Assessment and Visualisation. The Silhouette score
and the DB index are reported in Table 1. As can be seen, multi-perspective clus-
tering has better scores than other clusterings for both metrics. Trace attributes
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clustering has the worst scores, while control-flow and TS clusterings have similar
values.

Table 1. Internal validation metrics for each clustering.

Metric Multi-perspective Control-flow Trace attributes Time series

Silhouette index 0.2516 0.0331 -0.0168 0.0284

DB score 1.3845 3.0526 4.5942 3.2061

Table 2 reports the cluster similarity metrics. Both entropy and ARI show
that multi-perspective and control-flow clusterings have the highest similarity,
i.e., they most often group the same instances together. On the other hand, trace
attribute data clustering has high entropy and low ARI for all other clusterings,
indicating that it forms very different clusters than the other perspectives.

We visualised the multi-perspective clusters by modelling the DFGs of their
control-flows (see Figs. 4–5, where high-level steps from Fig. 2 are highlighted),
computing the mean and the mode of their attributes (see Table 3) and plotting
the DBAs of their TS data (see Figs. 6–7). DFGs and DBAs were used and are put
forward in this paper as they can provide intuitive visualisations of the control-
flow and the TS data of many instances of a process at once, enabling business
experts to quickly understand and analyse whole clusters. Note that while all the
results of the multi-perspective clustering are shown, only particularly interesting
results are displayed for the other clusterings, and that activity labels as well as
some trace attribute values were anonymised on request of the company.

Expert-Based Validation. When showing the multi-perspective clusters, the
process expert categorised them as follows. Cluster 3, the largest cluster and the
ones with the fewest distinctive characteristics, was identified as representing the
standard execution of the process. Cluster 2 typically included traces with fewer
adjustment activities and a lower material adjustments attribute than those in
the other clusters, as shown in Fig. 4b and Table 3. In contrast, cluster 1 repre-
sented batches that required more adjustment activities and have a higher value
for the material adjustments attribute (see Fig. 4a and Table 3) than batches
in the other clusters. Having more adjustments also caused the filtering step to
last longer, which can also be seen in the TS data by comparing Figs. 6a and 6b
(filtering being characterised by long periods with a stable flow). Finally, cluster
4 included traces with missing activities that were necessary for proper pro-
cess execution. These instances were identified as anomalies caused by improper
logging of these activities.

4.4 Comparison of the Clusterings

In general, single-perspective clusters are more difficult to interpret than multi-
perspective clusters. While control-flow clustering also groups together batches
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Table 2. Pairwise similarity metrics values.

Multi-perspective Control-flow Trace attributes Time series

Multi-perspective entropy 0 0.8661 1.1585 0.9749

Multi-perspective ARI 1 0.2552 0.0301 0.0886

Control-flow entropy 1.1806 0 1.4154 1.3783

Control-flow ARI 0.2552 1 0.0340 0.0359

Trace attributes entropy 1.4790 1.4213 0 1.4663

Trace attributes ARI 0.0301 0.0340 1 0.0141

Time series entropy 1.2930 1.3817 1.4638 0

Time series ARI 0.0886 0.0359 0.0141 1

that required more adjustments, no cluster groups instances with fewer adjust-
ments as neatly as multi-perspective cluster 2 (see Figs. 5a–5b). It is particularly
difficult to recognise consistent patterns across perspectives in data clusters,
while TS clusters succeed to some extent in grouping together instances with
similar control-flows. Next to this, the most difficult perspective to interpret
in all clusterings seems to be the TS perspective, where DBAs have difficulty
capturing typical TS shapes, partly due to the presence of batches with miss-
ing data. This being said, DBAs based on TS clustering (see Fig. 7) seem more
distinct and more easily interpretable.

5 Discussion

TROPIC successfully integrates TS sensor data in multi-perspective trace clus-
tering, resulting in clusters that consider different process perspectives. The two-
step structure makes it easy to disentangle the different perspectives, adjust
their importance, and compare them. In our manufacturing use case, compar-
ing multi-perspective trace clustering with single-perspective clustering showed
that by leveraging underlying relationships between different perspectives, multi-
perspective trace clustering could outperform single-perspective clustering even
in their own perspective. For instance, multi-perspective trace clustering grouped
instances with few adjustments better than control-flow clustering, as other per-
spectives helped recognise these instances.

In addition, the process expert found multi-perspective clusters more mean-
ingful from a business point of view, as they identified variants and anomalies.
This insight could help the company investigate the differences between clusters
1 and 2 to reduce the number of necessary adjustments in the future.

Furthermore, some anomalous process instances were detected in the use case,
although we did not apply any anomaly detection technique. This observation
highlights the potential of multi-perspective anomaly detection using TROPIC
by applying outlier detection to the distances to centroids.

In addition, the choice of K for K-means and K-medoids clustering could
have a great impact on the results of clustering at both stages. In this paper,
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Table 3. Mean or mode of the trace attributes for each cluster of all clusterings
(standard deviations between brackets).

Cluster Materials Adj. materials Tank open time Solvent Time in tank Tank

Multi 5.7222 3.8889 6392.9444 A 381671.8889 T3

perspective 1 (5.3776) (3.2519) (4161.9357) / (223893.4571) /

Multi 7.2453 0.0755 7552.4151 B 261959.6038 T4

perspective 2 (2.0466) (0.3848) (2760.7288) / (60081.1298) /

Multi 7.0 2.7681 8689.6377 B 298360.3478 T1

perspective 3 (1.4349) (1.5449) (2785.0268) / (84948.1399) /

Multi 7.2381 2.8095 10599.1429 B 260751.6667 T4

perspective 4 (1.9211) (1.4703) (2919.2145) / (97850.3688) /

Control-flow 1 7.8929 1.1071 7877.0 B 270904.6786 T4

(3.6952) (2.3308) (1878.0679) / (69923.7843) /

Control-flow 2 6.2609 3.9565 8857.0 A 325021.1739 T1

(2.4349) (2.5132) (3929.4461) / (118121.8841) /

Control-flow 3 7.1538 2.0769 8587.3077 B 301473.25 T4

(1.9742) (1.4799) (3264.1794) / (108380.1455) /

Control-flow 4 5.8636 2.2273 9019.5909 A 283188.4545 T4

(2.1447) (1.3778) (3878.9293) / (118979.1435) /

Control-flow 5 7.1111 1.25 7452.2222 A 273584.1389 T1

(1.6695) (1.9911) (2711.0095) / (124958.7138) /

Trace attributes 1 8.4348 4.6957 9494.7391 B 291919.2609 T4

(3.4089) (2.6187) (3112.0703) / (94352.3756) /

Trace attributes 2 7.2083 1.1667 8225.375 B 257210.7083 T4

(1.688) (1.3262) (2075.6587) / (65348.9021) /

Trace attributes 3 6.7317 1.3415 7048.2683 A 282512.2683 T1

(2.3667) (1.5266) (3339.7471) / (73998.1907) /

Trace attributes 4 5.84 2.52 7396.36 A 354616.76 T3

(2.5113) (1.8735) (3202.4594) / (180006.1447) /

Trace attributes 5 6.6667 1.75 10434.7083 B 304496.7917 T4

(2.1196) (1.7508) (3427.8528) / (128730.3709) /

TS 1 5.6667 2.2222 9548.1111 Other 217580.6667 T4

(2.2913) (1.8559) (4358.0709) / (38620.8273) /

TS 2 6.6136 1.75 7262.3182 A 355988.5455 T3

(2.4133) (1.6999) (2992.4131) / (123518.9904) /

TS 3 7.1356 2.0169 8272.678 B 260759.0508 T4

(2.5492) (2.4878) (2755.9548) / (97720.4561) /

TS 4 7.7 1.9 9000.9 B 267001.65 T4

(1.8382) (1.8035) (2929.1435) / (68154.5069) /

TS 5 6.7143 2.5714 9366.0 B 312286.619 T2

(2.1941) (2.0874) (4099.0399) / (120953.309) /

TS 6 8.0 2.0 8406.375 B 239005.5 T4

(3.4641) (2.3299) (2185.4744) / (24086.8173) /
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(a) DFG for cluster 1. (b) DFG for cluster 2.

(c) DFG for cluster 3. (d) DFG for cluster 4.

Fig. 4. DFGs for each cluster of the multi-perspective clustering.

the popular elbow method was used and yielded good results, as the clusters
formed were insightful from a business perspective. Future work could investigate
more complex methods to determine the value of K, e.g., based on stability or
separation as in [7].
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(a) DFG for cluster 1. (b) DFG for cluster 5.

Fig. 5. DFGs for clusters 1 and 5 of the control-flow clustering.

However, ARI and entropy indicated that the control-flow perspective pro-
duced a clustering more similar to the other perspectives. This result suggests
that the control-flow perspective might be more important than other perspec-
tives in the multi-perspective trace clustering. Weighting the perspectives could
rebalance their contributions, but as all perspectives are correlated, weighting
may not fundamentally change the clustering in the use case.

Finally, although we focused on three specific perspectives in this paper,
we believe our approach could be extended to consider other perspectives. For
example, a similar approach to that applied to the TS data obtained from IoT
sensors could be applied to other processes that evolve over time, such as process
performance. Such a different perspective could serve as a substitute for one of
the current three dimensions, or the approach could easily be adapted to a higher
dimensionality, allowing for several other perspectives to be included, such as the
resource perspective.
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(a) DBA for cluster 1. (b) DBA for cluster 2.

(c) DBA for cluster 3. (d) DBA for cluster 4.

Fig. 6. DBAs for each cluster of the multi-perspective clustering.

(a) DBA for cluster 1. (b) DBA for cluster 5.

Fig. 7. DBAs for clusters 1 and 5 of the TS clustering.

6 Conclusion

In this paper, we presented a novel approach for multi-perspective trace cluster-
ing of manufacturing processes that considers three perspectives: control-flow,
trace attributes, and TS sensor data. This approach can reveal process variants
that are homogeneous across all three perspectives simultaneously. We evaluated
the approach in a real-life use case of a smart manufacturing process, where it
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revealed meaningful clusters and anomalous instances for a specific IoT-enhanced
BP, both actionable insights to improve process design and execution.

In future work, we plan to extend this approach in various ways. One possibil-
ity is to propose a generalisation to n arbitrary perspectives. We could also con-
sider including event attributes and incorporating TS data at the event level. Fur-
thermore, we could explore other clustering techniques for the multi-perspective
clustering if our approach were to be used for more flexible types of processes,
such as ensemble clustering methods or soft clustering techniques. Finally, we
find that integrating contextual information in the log in the form of events, as
suggested in [3], is an interesting alternative approach.
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