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Preface

This volume comprises all papers presented at the 21st International Conference on
Business Process Management (BPM), held during September 11–15, 2023 in Utrecht,
the Netherlands. Emerging from the pandemic and returning to the normalcy absent
since BPM 2019 in Vienna, the BPM community has continued as a determined and
flexible community, evident from the following excellent conference program.

BPM 2022 in Münster, Germany marked the cautious and successful return to a full
in-person conference. In light of BPM 2023’s submission and attendance numbers, the
appreciation and importance of BPM as a physical venue for the BPM community
stands unquestioned. The conference was flanked by a multitude of events, such as the
Blockchain, Educators, and RPA Fora, 11 workshops, tutorials, a doctoral consortium,
and wonderful social events, which gave rise to the opportunity for networking and
exchanging the latest research ideas.

BPM 2023 followed the history and philosophy of previous editions with respect to
the three main research tracks, Foundations (Track I), Engineering (Track II), and
Management (Track III), reflecting the different communities of the conference series.
Track I (chaired by Chiara Di Francescomarino) addressed computer science research
methods for researching the underlying principles of BPM, computational theories,
algorithms, semantics, conceptual models, identification of novel problems, languages,
and architectures. Track II (chaired by Andrea Burattin) dealt with engineering aspects
of information systems research, including business process intelligence, process
mining, process modelling, and process enactment, and employed rigorous and
repeatable empirical evaluations. Track III (chaired by Christian Janiesch) aimed at
advancing the understanding of socio-technical, cognitive or psychological aspects of
BPM techniques, tools, and methods as well as managerial aspects of BPM in and
across organisations. Shazia Sadiq served as the Consolidation Chair.

This year, the conference received a total of 167 submissions, out of which 151
entered the review phase for full papers. Out of these 151 full paper submissions, 40
were submitted to Track I, 62 to Track II, and 49 to Track III. The review process
followed the high-quality standards of the BPM conference series. Each paper was
reviewed by at least three Program Committee members of the respective track;
reviews were single blind. Then, an extensive discussion phase between the reviewers
and a Senior Program Committee member followed. As a result, the discussion was
summarised in a meta-review by the Senior Program Committee member who also
offered their recommendation to the Track Chairs. This thorough review process
resulted in 7 accepted papers for Track I, 11 accepted papers for Track II, and 9
accepted papers for Track III, totalling 27 contributions included in the main research
track (16.17% overall acceptance rate). Moreover, the review process resulted in the
inclusion of 23 papers in the BPM Forum program, published in a separate volume
of the Springer LNBIP series. These papers aim at presenting highly innovative
research and ideas.



The program also included three invited keynote talks about timely topics in BPM:
Marta Kwiatkowska, Professor of Computing Systems and Fellow at Trinity College,
University of Oxford, delved into the ways in which formal methods and robust
machine learning can be applied in the context of BPM; Matthias Weidlich, Professor
with the Department of Computer Science at Humboldt-Universität zu Berlin, focused
on the link between database systems and BPM and its opportunities; and Marc
Kaptein, Medical Director at Pfizer, talked about his instrumental role in the roll-out
process of Pfizer/BioNTech’s corona vaccine. In addition to keynote abstracts, this
volume features abstracts accompanying the tutorials.

The research presented in this volume shows the wide variety of topics and methods
that characterise the BPM community across the three tracks. These proceedings report
on diverse insights obtained via behavioural-science thinking (e.g., case studies) and
design-science research (e.g., method development). Topics range from process
modelling and mining, over conformance checking, to stakeholder engagement and
digital process innovation. The main topics of this volume are reflected in the session
themes, including among others design patterns and languages, resource and task
management, cognitive aspects of BPM, and real-world applications as well as the
process-mining-related topics of anomaly detection, conformance and alignment, event
log manipulation, performance metrics, process discovery, and simulation.

Open Science continued to be a major principle for the BPM community, aiming at
reproducibility and replicability of the research results. Following the tradition started
in 2020, the authors were explicitly requested to link one or more repositories with
additional artefacts such as data sets, prototypes, and interview protocols alongside
implemented prototypes to their papers. Furthermore, Shazia Sadiq, Jens Gulden, and
Adela del Río Ortega acted as inaugural Diversity & Inclusion Chairs and encouraged
all participants to consider diversity, equity, and inclusion (DEI) in their writing,
reviews, presentations, and all other interactions related to the BPM conference.

We would like to thank all authors, both regular and senior members of the Program
Committees, and the external reviewers of the three tracks: foundations, engineering,
and management. They made a rigorous, extensive, and timely review procedure
possible and enabled the high-quality research output reflected by the papers in this
volume. In addition to the committees of the BPM 2023 main track and BPM 2023
Forum, committees for the workshops, the tutorials, the RPA Forum, the Educators
Forum, the Blockchain Forum, the Industry Day, the Demonstration and Resources
Track, the Doctoral Consortium, the BPM Dissertation Award, and the Journal-First
Track did an outstanding job in reviewing and selecting high-quality contributions to
the different tracks and fora.

We acknowledge our sponsors for their support in making BPM 2023 happen:
Celonis and Software AG as platinum sponsors; BPM Consult as bronze sponsor; and
Hogeschool Utrecht, the Netherlands Research School for Information and Knowledge
Systems, Springer, and Utrecht University as academic sponsors. We also appreciated
the use of EasyChair for streamlining an intensive reviewing process and CEUR
Workshop Proceedings for supporting the publication of all other formats as well as all
other sponsors.

Finally, we would like to express our special thanks to Hajo Reijers as the General
Chair of BPM 2023, together with the Organizing Committee Chairs Inge van de
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Weerd, Jan Martijn van der Werf, and Pascal Ravesteijn, and their staff. The Utrecht
team did an impeccable job in planning and organising an unforgettable conference.

Last but not least, we thank you as the readers of this volume and wish you a great
experience in examining the latest in BPM research.

September 2023 Chiara Di Francescomarino
Andrea Burattin

Christian Janiesch
Shazia Sadiq
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Database Systems and Process Management –
A Call for a Closer Look

Matthias Weidlich

Humboldt-Universität zu Berlin, Berlin, Germany
matthias.weidlich@hu-berlin.de

In many application scenarios, the handling of data and the execution of processes is
inherently intertwined. Data may trigger the instantiation of business processes and
potentially influences their behaviour in terms of branching and performance charac-
teristics. At the same time, the effects of process execution typically materialize in the
form of data being created or updated. As such, it is just natural that database systems
play a fundamental role in the automation and analysis of processes and a plethora of
supporting mechanisms have been developed. Those reach from models for data
handling in processes, through connectors between database systems and process
engines, to querying mechanisms that facilitate process mining.

In this talk, however, I argue for a closer look at the intersection of database
systems and process management, which reveals opportunities to improve the interplay
of data and processes that may not be obvious at first glance. Insights on processes are
valuable for the design and operation of database systems, for instance in the area of
transaction management. The automation and analysis of processes, in turn, may
benefit from models and algorithms that have been developed for database systems,
including notification mechanisms, query models for pattern detection, and indexing
structures. Drawing on existing work in the area, I will point to several promising
directions for future research.
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Robust Decision Pipelines: Opportunities
and Challenges for AI in Business Process

Modelling

Marta Kwiatkowska

Department of Computer Science, University of Oxford, UK
marta.kwiatkowska@cs.ox.ac.uk

Keywords: Modelling and verification � Adversarial robustness � Optimality
guarantees

1 Extended Abstract

Traditional business process modelling techniques, which leverage handcrafted
pipelines and expert knowledge, are being revolutionised by artificial intelligence (AI).
Deep learning (DL), in particular, has been successfully employed in process mining
and discovery to build predictive process models from event logs [1], and reinforce-
ment learning (RL) can be utilised for policy synthesis. Data-driven decision pipelines
are now commonly deployed in application domains such as financial services, and
rigorous modelling of the associated processes can aid in their stress testing, optimi-
sation and ‘what if’ analysis.

However, a known concern about DL is that it lacks robustness; more specifically,
DL systems such as neural networks are susceptible to so called adversarial attacks, i.e.,
minor modifications to inputs, often imperceptible, which can catastrophically change
the decision of the network. Before they can be deployed within decision pipelines, DL
components require certifiable guarantees not just for accuracy and performance, but
also properties such as safety and robustness [2].

Fortunately, much progress has been made in formal modelling and verification
techniques, especially model checking, with which rigorous models of software sys-
tems can be built and automatically checked against specifications expressed in tem-
poral logic [3]. Building on existing verification technologies, a fast growing research
effort is tackling the problem of computing robustness guarantees for deep learning;
examples include search-based safety verification using SMT (Satisfiability Modulo
Theory) [2] for DL, guaranteed robust explanations for DL [4], provable robustness to

Supported by the EPSRC Prosperity Partnership FAIR (grant number EP/V056883/1). MK receives
funding from the ERC under the European Union’s Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No. 834115).
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causal interventions for DL decisions [6], and optimality guarantees for RL policies
from temporal logic specifications [5].

However, while data-rich scenarios and deep learning enable ease of automation for
business processes, they also present significant new challenges due to their com-
plexity, as well as their black-box and adaptive nature. Achieving robust decision
pipelines will require concerted effort to develop integrated methods for certifiable
training, robust explainability, certification guarantees, robustness to distribution shift
and interventions, optimal policy synthesis and real-time monitoring.
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Task Support for Process Mining: From
Formulating Questions to Evaluating Results

Iris Beerepoot1, Francesca Zerbato2, Barbara Weber2

and Pnina Soffer3

1 Utrecht University, Utrecht, The Netherlands
i.m.beerepoot@uu.nl

2 University of St. Gallen, St. Gallen, Switzerland
3 University of Haifa, Mount Carmel, 3498838 Haifa, Israel

Abstract. Despite the rising popularity of process mining in practice, executing
a process mining project is a daunting task that requires significant expertise. As
such, there is a pressing need to provide comprehensive support for process
analysts. This tutorial aims to provide participants with an overview of
state-of-the-art practices followed by process analysts at each stage of a typical
process mining project, from defining questions to evaluating results. Based on
empirical evidence and experience from several projects, we go over concrete
strategies to support analysts, with a focus on specific tasks and areas that
require extra attention. This sets the stage for further research in developing
support for process analysts and allows identifying blind spots that future
research might address.

Tutorial Content. This tutorial aims at providing participants with an overview of
state-of-the-art practices followed by process analysts throughout a process mining
(PM) project. The tutorial is organized as follows.
Part 1: Introduction. The tutorial starts by setting the scene and providing an overview
of the objectives. Then, we specify the perspective that we will take: Rather than the
enterprise level, we specifically focus on the individual and team levels. In particular,
we choose to look at PM projects from the eyes of process analysts since individual
support for process mining analysts is still lacking [5]. Therefore, we leave organiza-
tional activities such as obtaining project support and change management out of scope.
We conclude this part with an agenda.
Part 2: Four Stages of Process Mining Projects. During the core part of the tutorial, we
systematically walk through the different stages of a PM project. Existing PM
methodologies focus on providing high-level guidance, often not dwelling on
task-specific support. We use existing methodologies as a skeleton and enhance them
with evidence gathered from practice to help make the guidance within high-level
stages more tangible and relatable for the participants. Here, we build on our experi-
ence from interview, think-aloud and action research studies conducted in several
research and applied projects. For each of the following stages, we discuss key tasks
and areas where support might be needed using a running example based on a real
project conducted in Dutch hospitals and give pointers on where to find more.



1. Define questions: How to develop questions for process mining? We draw on
interviews with PM experts and present concrete examples of how process analysts
develop questions, closing with recommendations for question formulation and
refinement [4].

2. Data collection and preparation: How to decrease the effort of event log extraction?
We draw on a structured literature review of process mining case studies to present
a taxonomy of human tasks in event log extraction [2] and illustrate how tasks can
be automated through matching [3].

3. Mining and analysis: What strategies to adopt when analysing the data? From
interviews with process analysts, we discuss strategies to structure a PM analysis
and factors that influence their practical application [5].

4. Results: How should insights from the analysis be evaluated to be translated into
concrete improvements? We draw on a structured literature review and action
research to describe how artefacts and insights are currently evaluated with domain
experts and outline concrete validation strategies [1].

Closing. We end by discussing takeaways and limitations before collecting additional
suggestions for supporting process analysts from the audience.

Intended Audience. We invite academics and practitioners with some basic knowl-
edge of process mining, such as: (1) researchers interested in state-of-the-art process
mining practices, with a particular focus on developing support for process analysts,
(2) students aiming to get an overview of strategies that process analysts apply in
practice or understand where support for process analysts is lacking, and (3) practi-
tioners wishing to gain knowledge in existing support for individuals involved in
process mining projects.
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Abstract. Large language models, such as ChatGPT, provide ample opportu-
nities for organizational work. These models are capable of collecting, inte-
grating, and generating information with no or little human supervision [1].
Despite their wide and rapid uptake, we lack systematic knowledge about how
large language models can be used in business processes. Our tutorial sheds
light on the organizational, managerial and design-related implications of using
large language models in business processes. We present a theoretical frame-
work that integrates and synthesizes research from relevant streams, including
task complexity [2], task automation [5], and human-AI delegation [1]. We
specify potential opportunities and threats in relation to various forms of tasks,
such as decision tasks and judgment tasks. Along these lines, we also explore
how the use of large language models may affect the overall outcome of a
process, for example, by providing new value propositions. We use, reflect, and
discuss the implications of our framework based on real-world examples. Our
conceptual framework is relevant to guide future research [e.g. 1] but also
inform managerial decisions in organizations [e.g. 3].

Keywords: Large language models � BPM � ChatGPT
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1 Aims and Contents of the Tutorial

Our tutorial will entail two parts. In the first part, we present a theoretical perspective to
explore how large language models can be used in business process. We draw from
relevant research streams, such as task complexity [2], task automation [4] and
human-AI delegation [1], to specify opportunities and potential threats of using large
language models on the levels of specific tasks and the levels of process outcomes. We
also consider implications that arise with regards to process outcomes. We present a
conceptual framework that is relevant both for future research [e.g. 1] as well as
managerial decision-making in organizations [e.g. 3]. In the second part, we will
conduct an interactive session where participants will learn about real-world examples
before they gather in smaller groups to use our conceptual framework for
business-process related tasks. Subsequently, we will have a joint discussion to reflect
on the strengths and weaknesses of using large language models in business processes,
as well as their implications for BPM in more general terms. To this end, we will
discuss implications that arise with regard to the analysis, design and implementation of
business processes [4].

2 Intended Audience

Our tutorial focuses on managerial and organizational implications of using large
language models in business processes. In that regard, we discuss various aspects that
pertain to the analysis, design and performance of certain process-related tasks. Fur-
thermore, we shed light on implications that arise on the level of the overall business
process. Against this backdrop, our tutorial addresses researchers who are studying, or
planning to study, the role of large language models in business processes. The tutorial
speaks to practitioners who are dealing with large language models, and want to know
more about their applications, threats and opportunities. A technical focus or back-
ground is not required.
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Abstract. Natural Language Processing (NLP) has become an essential tool for
many organizations aiming to analyze and understand the vast amounts of text
data they generate. The latest developments related to language models have
significantly boosted the analytical capabilities of NLP tools and have created
completely new use cases. In this tutorial, we will focus on the intersection of
NLP and Business Process Management (BPM) and explore how NLP can
support various BPM analysis tasks. We first introduce fundamentals of NLP
and explore how language models work. Then, we focus on the automated
analysis of textual descriptions, after which we turn to the analysis of
process-oriented artifacts, where we show how NLP can be used to obtain novel
insights from process models and event logs. These parts are followed by a
hands-on exercise session, in which participants will learn how to use general
and process-specific NLP libraries and techniques. Finally, we conclude the
tutorial with a discussion of future directions.
After the tutorial, participants will have learned about the fundamentals of

NLP, the potential of using NLP in the context of BPM, and how to apply NLP
to their own BPM research and analyses.

1 Content Outline

The content of this tutorial will consist of the following parts:

Introduction to NLP and Language Models. (15 minutes)
In this part of the tutorial, we will provide the audience with the prerequisite
knowledge necessary to understand state-of-the-art NLP tools. Besides introducing
basic concepts, such as word embeddings, we will provide a gentle introduction to
language models. Afterwards, we explain the core idea behind the transformer
architecture and show they can be easily integrated using Python.
Extracting Process Information from Texts. (15 minutes)
This part of the tutorial will focus on the extraction of process information from
textual process descriptions. We will show the challenges involved in this task, such
as the large degree of variety, describe how this task has so far been tackled, and



briefly demonstrate how the extracted information can be used for downstream tasks
such as process model extraction [3] and conformance checking [1].
Using NLP on Process-oriented Data. (15 minutes)
Next, we turn to the use of NLP for the analysis of process-oriented artifacts, focusing
on process models and event logs. We will show how NLP can be used to extract
semantic information from these artifacts, such as the actions and business objects
contained in them. Subsequently, we will show how this extracted information can be
used for purposes such as anomaly detection [2] and event abstraction [4], bringing a
new layer of insight to process mining and analysis.
Hands-on Session. (30 minutes)
In this part, we will provide the attendees with practical demonstrations and exercises
to extract and analyze process information from both textual descriptions and
real-world event logs. To support this part, we will establish dedicated Jupyter
notebooks that guide the attendees through the different steps, so that they can quickly
gain insights. The notebooks will be designed to encourage audience members to try
out different prompts (for ChatGPT) and also apply them on their own examples.
During the exercises, we will provide guidance and answer any questions that may
arise. To participate, audience members just need a laptop with Python, for which we
will provide installation instructions.
Future of NLP Applications in BPM. (15 minutes)
In the final part of the tutorial, we will discuss how we expect that the role of NLP will
further develop in the context of BPM in the future and engage the audience in a
discussion on this matter.

2 Intended Audience

Our tutorial targets academics, practitioners, and students who are interested in learning
about the application and potential of NLP for BPM and process mining. Audience
members are not expected to have any prior experience with NLP. However we do
expect them to be familiar with the fundamentals of BPM and process mining.

References

1. Van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance against
natural language specifications using behavioral spaces. Inf. Syst. 78, 83–95 (2018)

2. Van der Aa, H., Rebmann, A., Leopold, H.: Natural language-based detection of
semantic execution anomalies in event logs. Inf. Syst. 102, 101824 (2021)

3. Bellan, P., Dragoni, M., Ghidini, C.: Process extraction from text: state of the art
and challenges for the future. arXiv preprint arXiv:2110.03754 (2021)

4. Rebmann, A., van der Aa, H.: Enabling semantics-aware process mining through
the automatic annotation of event logs. Inf. Syst. 110, 102111 (2022)

xxxiv Natural Language Processing for Business Process Analysis

https://arxiv.org/abs/2110.03754


Contents

Foundations

Efficient Optimal Alignment Between Dynamic Condition Response
Graphs and Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Axel Kjeld Fjelrad Christfort and Tijs Slaats

Can I Trust My Simulation Model? Measuring the Quality of Business
Process Simulation Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

David Chapela-Campa, Ismail Benchekroun, Opher Baron,
Marlon Dumas, Dmitry Krass, and Arik Senderovich

Event Abstraction for Partial Order Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 38
Chiao-Yun Li, Sebastiaan J. van Zelst, and Wil M. P. van der Aalst

Incremental Discovery of Process Models Using Trace Fragments. . . . . . . . . . 55
Daniel Schuster, Niklas Föcking, Sebastiaan J. van Zelst,
and Wil M. P. van der Aalst

Approximating Multi-perspective Trace Alignment Using
Trace Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Alessandro Gianola, Jonghyeon Ko, Fabrizio Maria Maggi,
Marco Montali, and Sarah Winkler

POWL: Partially Ordered Workflow Language . . . . . . . . . . . . . . . . . . . . . . . 92
Humam Kourani and Sebastiaan J. van Zelst

Polynomial-Time Conformance Checking for Process Trees . . . . . . . . . . . . . . 109
Eduardo Goulart Rocha and Wil M. P. van der Aalst

Engineering

Investigating the Influence of Data-Aware Process States on Activity
Probabilities in Simulation Models: Does Accuracy Improve?. . . . . . . . . . . . . 129

Massimiliano de Leoni, Francesco Vinci, Sander J. J. Leemans,
and Felix Mannhardt

DyLoPro: Profiling the Dynamics of Event Logs . . . . . . . . . . . . . . . . . . . . . 146
Brecht Wuyts, Hans Weytjens, Seppe vanden Broucke,
and Jochen De Weerdt



Does This Make Sense? Machine Learning-Based Detection of Semantic
Anomalies in Business Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Julian Caspary, Adrian Rebmann, and Han van der Aa

Inferring Missing Entity Identifiers from Context Using Event Knowledge
Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Ava Swevels, Remco Dijkman, and Dirk Fahland

Process Channels: A New Layer for Process Enactment Based on
Blockchain State Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Fabian Stiehle and Ingo Weber

Action-Evolution Petri Nets: A Framework for Modeling and Solving
Dynamic Task Assignment Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Riccardo Lo Bianco, Remco Dijkman, Wim Nuijten,
and Willem van Jaarsveld

Context-Based Activity Label-Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Sebastiaan J. van Zelst, Jonas Tai, Moritz Langenberg, and Xixi Lu

Verifying Resource Compliance Requirements from Natural Language Text
over Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Henryk Mustroph, Marisol Barrientos, Karolin Winter,
and Stefanie Rinderle-Ma

From Text to Performance Measurement: Automatically Computing
Process Performance Using Textual Descriptions and Event Logs . . . . . . . . . . 266

Manuel Resinas, Adela del-Río-Ortega, and Han van der Aa

Agent Miner: An Algorithm for Discovering Agent Systems from
Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Andrei Tour, Artem Polyvyanyy, Anna Kalenkova, and Arik Senderovich

Interactive Multi-interest Process Pattern Discovery . . . . . . . . . . . . . . . . . . . . 303
Mozhgan Vazifehdoostirani, Laura Genga, Xixi Lu, Rob Verhoeven,
Hanneke van Laarhoven, and Remco Dijkman

Management

Increasing RPA Adoption: An Experiment on Countermeasures for Status
Quo Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Marie-E. Godefroid, Ralf Plattfaut, and Björn Niehaves

xxxvi Contents



Stochastic-Aware Comparative Process Mining in Healthcare . . . . . . . . . . . . . 341
Tabib Ibne Mazhar, Asad Tariq, Sander J. J. Leemans, Kanika Goel,
Moe T. Wynn, and Andrew Staib

On the Cognitive Effects of Abstraction and Fragmentation in Modularized
Process Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Clemens Schreiber, Amine Abbad-Andaloussi, and Barbara Weber

Not Here, But There: Human Resource Allocation Patterns . . . . . . . . . . . . . . 377
Kanika Goel, Tobias Fehrer, Maximilian Röglinger, and Moe T. Wynn

A Novel Multi-perspective Trace Clustering Technique for IoT-Enhanced
Processes: A Case Study in Smart Manufacturing . . . . . . . . . . . . . . . . . . . . . 395

Yannis Bertrand, Jochen De Weerdt, and Estefanía Serral

The Impact of Process Complexity on Process Performance:
A Study Using Event Log Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Maxim Vidgof, Bastian Wurm, and Jan Mendling

Deviation from Standards and Performance in Knowledge-Intensive
Processes: Evidence from the Process of Selling Customized IT Solutions . . . . 430

Mikhail Monashev, Michal Krčál, and Jan Mendling

Benevolent Business Processes - Design Guidelines Beyond Transactional
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Michael Rosemann, Nadine Ostern, Marleen Voss, and Wasana
Bandara

PEM4PPM: A Cognitive Perspective on the Process of Process Mining . . . . . . 465
Elizaveta Sorokina, Pnina Soffer, Irit Hadar, Uri Leron,
Francesca Zerbato, and Barbara Weber

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Contents xxxvii

http://dx.doi.org/10.1007/978-3-031-41620-0_27


Foundations



Efficient Optimal Alignment Between
Dynamic Condition Response Graphs

and Traces

Axel Kjeld Fjelrad Christfort(B) and Tijs Slaats

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
{axel,slaats}@di.ku.dk

Abstract. Dynamic Condition Response (DCR) Graphs is a popular
declarative process modelling notation which is supported by commercial
modelling tools and has seen significant industrial adoption. The problem
of aligning traces with DCR Graphs, with it’s multitude of applications
such as conformance checking and log repair, has surprisingly not been
solved yet. In this paper we address this open gap in the research by
developing an algorithm for efficiently computing the optimal alignment
of a DCR Graph and a trace. We evaluate the algorithm on the PDC
2022 dataset, showing that even for large models and traces alignment
problems can be solved within milliseconds, and present a case study
based on test-driven modelling.

Keywords: Trace alignment · DCR graphs · Conformance checking ·
Declarative process models · Test-driven Modelling

1 Introduction

Traditionally processes have been modelled using flow-based, imperative nota-
tions. The key property of these notations is that the edges, usually arrows, in a
model capture the flow of the process. For example, an arrow between two activ-
ities may indicate that after executing the first, one moves on to executing the
second. Constraint-based declarative notations [1] on the other hand forego this
notion of flow. Edges in declarative models capture the logical relation between
activities. For example, an arrow between two activities may capture that they
are mutually exclusive and can never occur together in the same process instance.
Whereas imperative notations are well-suited to capture straightforward struc-
tured processes with few variations, declarative notations have been argued to
be better suited to capturing flexible knowledge-intensive processes, which allow
for many different variants of the same process [20].

The last twenty years have seen the development of a multitude of declara-
tive notations. In this paper we focus on Dynamic Condition Response (DCR)
Graphs [13], which have seen significant industrial adoption, in particular in
Denmark. This includes a commercial online modelling tool, the integration of a
DCR process engine in commercial case management and workflow tools already

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Di Francescomarino et al. (Eds.): BPM 2023, LNCS 14159, pp. 3–19, 2023.
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used widely in local and central government institutions in Denmark, and a wide
array of published use cases in various domains such as health care, governmental
processes, and financial services.

Alignment algorithms compare a process trace and process model to deter-
mine to what degree they deviate from each other. Instead of making the binary
distinction of whether a trace is a valid run of the model or not, they compute
minimal changes, based on some cost function, that can be made to the trace
so that it becomes a valid run. This approach has many applications within the
fields of process modelling and mining. In conformance checking [6] alignment is
used to provide a fine-grained measure for the degree to which a trace conforms
to a model. In noise-filtering alignment can be used both to filter only the worst
non-aligning traces out of a log, but also to inspect in more detail why traces
misalign with a (potentially discovered) model.

Interestingly, even though there are many potential applications of computing
(optimal) alignments between traces and DCR Graphs, this problem has yet to
be solved. This leads us to the primary contributions of this paper:

(1) We develop an algorithm for computing the optimal alignment of a DCR
Graph and a trace.

(2) We develop a method for reducing the search space of the algorithm, impor-
tant for making the computation feasible in time-sensitive applications, and
include a mechanically checked proof of correctness for the search space
reduction.

(3) We evaluate the algorithm on the dataset from the Process Discovery Con-
test at ICPM 2022 (PDC2022).

(4) We present a case study based on checking open tests [23,26] for the real-life
process model of the Dreyers Foundation [9,10].

In the remainder of this paper we first discuss related work (Sect. 2) and
follow by recalling the formal definitions of DCR Graphs (Sect. 3). We then
introduce alignment for DCR Graphs (Sect. 4), our algorithm for finding an
optimal alignment (Sect. 5) and show how we can significantly reduce the search
space of the algorithm in order to improve its efficiency (Sect. 6). Afterwards we
evaluate the performance of the algorithm (Sect. 7) and as a case study show
how it can be applied to test-driven modelling (Sect. 8).

2 Related Work

The term trace alignment was originally coined in [14] and introduced as a pre-
processing step to other process mining techniques, where traces where aligned
against one another in order to distinguish common from exceptional behaviour.

Since then, trace alignment has been extended to not only cover the alignment
of traces against traces, but the alignment of traces against model behaviour and
has become a cornerstone of conformance checking [6]. It is covered comprehen-
sibly in [2], which includes defining alignments between traces and models, com-
puting trace alignment for petri nets, and showing general applications, namely
regarding conformance checking and process enhancement.
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Trace alignment is, however, a computationally expensive task and as such,
much work has been done on improving the performance of these computations.
Lee et al. [16] recomposes conformance results of sub-problems and present a
divide-and-conquer based alignment framework and Reißner et al. [21] propose
a method of computing an combining the automatons corresponding to both
log and model. Multiple approaches have also been suggested for approximat-
ing alignments, i.e. using simulation [22], using subset selection and edit dis-
tance [11], and using Trie data structures [3].

Other efforts have been made in extending alignments, namely computing
online alignments of event streams [25], defining partial alignments over partial
traces [19], and computing alignments of data aware processes by decomposi-
tion [18] and SMT-encoding respectively [12].

Finally, efficient computation of these conformance checking artefacts has
been addressed in [5] by optimized SAT-encodings.

Trace alignment of models has since been extended to cover many pro-
cess notations, including hybrid [24] and declarative notations. Namely two
approaches have been suggested for computing trace alignments for declare mod-
els. De Leoni et al. [8,17] defines trace alignment for declare models, shows a
mapping to the A∗ algorithm, elaborates on conformance checking using align-
ments, before showing applications regarding log repair and -cleaning. De Gia-
como et al. [7] extends this work by showing another mapping from alignment
of declare models to a planning problem.

In this paper we extend the previous work by defining alignments for DCR
graphs, providing a novel algorithm for computing these that is efficient in time
and space, before showing applications of alignments as not just tools of confor-
mance checking, but also tools of model checking.

3 Dynamic Condition Response Graphs

We first recall the basic syntax and semantics of DCR graphs [4]. The executable
nodes of DCR Graphs are known as events. These DCR events can be repeatedly
executed, unlike the concept of events in event logs, that represent a particular
instance of the execution of an activity in time. Events have a marking, a boolean
triple, indicating if the event has been executed (at least once) in the past, if the
event is currently pending (and therefore must either be executed or excluded
for the process to be finished successfully), and if the event is currently included.
Events are labelled with the activities that they represent, and multiple events
may have the same label. The edges between the events are known as relations, of
which there are 5 types: the condition relation (→•) captures that, as long as the
source event is included, it must be executed at least once before the target event
can be executed, the milestone relation (→�) captures that, as long as the source
event is included and pending, it blocks the target event from executing, the
response relation (•→) captures that the source event makes the target pending,
and the exclusion (→%) and inclusion (→+) relations respectively remove events
from and add them back into the current graph.
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Definition 1. A DCR graph is a tuple (E,M,Σ, �,→•, •→,→�,→+,→%),
where

– E is the set of events
– M = (Ex,Re, In) ∈ P(E) × P(E) × P(E) is the marking of the graph
– Σ is the set of activities
– � : E → Σ is the labelling function, assigning activities to events
– →⊆ E × E for →∈ {→•, •→,→�,→+,→%} are respectively the condition,

milestone, response, inclusion and exclusion relations between events

Fig. 1. A DCR graph for a simple paper submission process. Events are named as
follows: “Label (EventID)”.

For a DCR graph G with events E and an event e ∈ E, and for →∈ {→•, •→,
→�,→+,→%}, we write (→e) for the set {e′ ∈ E | e′ → e} and (e→) for the set
{e′ ∈ E | e → e′}. We write �−1 : Σ → P(E) for the inverse labelling function,
returning for each activity the set of events to which it is assigned.

Example 1. In Fig. 1 we show an example of a DCR graph modelling a simple
paper submission system. When a paper is submitted, a notification is eventually
required (modelled through a response relation). Any number of reviews can be
written, but to send a notification we need at least two. To model this counting
of the reviews we’ve created three separate review events, the first is a condition
for the second and excludes itself, similarly the second excludes itself and is a
condition for the third event, which is otherwise unconstrained. The first two
review events are conditions for sending a notification. A paper can also be desk
rejected, this removes the first and second review event of the process, thereby
allowing a notification to be send immediately after. If desired, reviews can still
be added under a desk reject through the third review event.
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Now that we have defined the syntax of DCR Graphs, we consider their
semantics. First of all, we define that an event of a DCR graph is enabled, when
it is included, all included events that are a condition for it have been executed,
and all included events that are a milestone to it are not pending.

Definition 2 (Enabled events). Let G = (E,M,L, �,→•, •→,→�,→+,→%)
be a DCR graph, with marking M = (Ex,Re, In). An event e ∈ E is enabled,
written e ∈ enabled(G), iff (a) e ∈ In, (b) In∩ (→•e) ⊆ Ex, and (c) In∩ (→�e) ⊆
E \ Re .

If an event e is enabled in a graph with marking (Ex,Re, In), then it can be
executed. Executing e will (a) add it to the set of executed events, (b) set all
events in (e•→) to pending, and (c) include and exclude all events from (e→+)
and (e→%) respectively.

Definition 3 (Execution). Let G = (E,M,L, �,→•, •→,→�,→+,→%) be a
DCR graph, with marking M = (Ex,Re, In). When e ∈ enabled(G), the result of
executing e, written execute(G, e) is a new DCR graph G′ with the same events,
labels, labelling function and relations, but a new marking M ′ = (Ex′,Re′, In′),
where (a) Ex′ = Ex∪{e} (b) Re′ = (Re\{e})∪(e•→), and (c) In′ = (In\(e→%))∪
(e→+).

We say that a graph is accepting if there are no included pending events.

Definition 4 (Accepting). Let G be a DCR graph, with marking M =
(Ex,Re, In). We say that G is accepting, written accepting(G), iff In ∩ Re = {}.
Example 2. In the DCR graph of Fig. 1 only the event Submit Paper is ini-
tially enabled, all other events are blocked by conditions. Executing this event
enables Desk Reject and the first Review Event. Send Notification also becomes
pending, which makes the graph no longer accepting. We can now execute the
first Review event (R1), which removes itself from the workflow, after which the
second Review event (R2) becomes enabled. Doing another review excludes the
second Review event and enables the third Review event (R3) and Send Notifi-
cation. The third Review event can be repeated an unbounded number of times
to add additional reviews to the paper. Executing Send Notification removes the
pending response on this activity and makes the graph accepting again.

Finally we define the (accepting) runs and traces of a DCR Graph. We write
G →e G′ if e ∈ enabled(G) and G′ = execute(G, e).

Definition 5 (Runs). A sequence of events φ = 〈e1...en〉 is a run of a DCR
Graph iff G →e1 ... →en

G′. It is an accepting run iff accepting(G′).

Definition 6 (Traces). Let φ = 〈e1...en〉 be a run of a DCR Graph G. Then
σ = 〈�(e1)...�(en)〉 is a trace of G. It is an accepting trace iff φ is an accepting
run.
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4 Trace Alignment for DCR Graphs

In order to quantify the misalignment between a log and a DCR graph, we can
compute alignments which relate moves in a trace to moves in a model. In order
to define such alignments we follow the style of [8] and introduce the symbol 
,
denoting ‘no move’, and the notation S� = S ∪ {
} for S ∈ {E,Σ}.

Definition 7 (Alignment and complete alignment). Let Σ be a set of
activity names, σ ∈ Σ∗ a trace, and G = (E,M,Σ, �,→•, •→,→�,→+,→%) a
DCR graph.

A pair (l, e) ∈ (Σ� × E�) \ {
,
} is

• a move in log if l ∈ Σ and e =
;
• a move in model if l =
 and e ∈ E;
• a move in both log and model if l ∈ Σ, e ∈ E and l = �(e).

Let ΣA = (Σ� × E�) \ {
,
} be the set of legal moves. The alignment
of a trace σ′ and run φ ∈ E∗ is a sequence γ = 〈(l1, e1)...(ln, en)〉 ∈ Σ∗

A, s.t.
σ′ = 〈l1...ln〉 and φ = 〈e1...en〉 (ignoring 
). We say that γ is a complete
alignment of σ and G iff σ′ = σ and φ is an accepting run of G.

As some moves may be more costly than others from a conformance point of
view, we will need to introduce a cost function K : ΣA → R

+
0 . Using K, we can

now define an optimal alignment between a trace and a model.

Definition 8 (Optimal alignment). Let σ be a trace and G a DCR graph.
Let Γ(σ,G) be the set of all complete alignments of σ and G. Given a cost function
K, we now define an alignment γ ∈ Γ(σ,G) to be optimal, iff ∀γ′ ∈ Γ(σ,G).K(γ) ≤
K(γ′).

Example 3. Consider the DCR graph in Fig. 1, the trace σ =
〈SubmitPaper,Review, SendNotification〉, and the alignment:

γ1 =
σ′ : SubmitPaper Review 
 Send Notification
φ : SP R1 R2 SN

γ1 is a complete alignment that is optimal with a uniform cost function that
assigns cost 0 to synchronous moves and 1 to all log and model moves. It leads
to an accepting trace by inserting a second review. Note that another optimal
alignment could be found by inserting a desk reject instead.

5 Computing an Optimal Alignment for DCR Graphs

There are several ways to compute an optimal alignment for DCR Graphs. The
most straightforward would be to build the underlying automaton or transition
system of the DCR Graph and apply out-of-the-box alignment methods. How-
ever, such an approach is hampered by the fact that the state space of DCR
Graphs grows exponentially in the number of events. To be precise, the states
of the automaton are the reachable markings of the graph and in the worst case
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Algorithm 1. Align(G, σ, cost default 0)
global min = ∞.

1: if cost ≥ min then
2: return ∞
3: end if
4: if accepting(G) ∧ |σ| = 0 then
5: return cost

6: end if
7: if |σ| > 0 then
8: l:σ′ = σ

// Synchronous move
9: for e ∈ �−1(l) do

10: if e ∈ enabled(G) then
11: G′ = execute(e, G)

12: cost’ = Align(G′, σ′, cost + K(l, e))
13: if cost’ < min then
14: min = cost’

15: end if
16: end if
17: end for

// Log move
18: cost’ = Align(G, σ′, cost + K(l, �))
19: if cost’ < min then
20: min = cost’

21: end if
22: end if

// Model move
23: for e ∈ enabled(G) do
24: G′ = execute(e, G)

25: cost’ = Align(G′, σ, cost + K(�, e)))
26: if cost’ < min then
27: min = cost’

28: end if
29: end for
30: return min

a DCR Graph may have 23|E| reachable markings. While not all markings are
reachable, and similar optimizations as we discuss below can be directly applied
to the state space, real-life DCR models usually contain enough reachable mark-
ings that one will quickly run into memory allocation problems. Similarly a
breadth-first approach tends to reach a deep enough depth in real-world appli-
cations that the exponential space complexity becomes a practical limitation.

A more efficient approach builds only the parts of the automaton that
is needed for solving the alignment computation and keeps only the strictly
required parts in memory at any point in time. Therefore we propose a sim-
ple depth first search of the alignment state space, which bounds the search
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efficiently enough for DCR graphs to not severely affect performance and also is
fairly intuitive to implement and extend.

The algorithm, as seen in Fig. 1, simply performs synchronous-, log- and
model-moves until an alignment is found. Once an alignment is found, it checks
each node in the search-space that has a lesser cost, updating the optimal align-
ment cost if necessary.

As this is a depth first algorithm, the order in which it performs the moves
matter, since reaching a more optimal solution earlier, will allow it to bound the
search-space more efficiently. We believe that for most practical uses, an optimal
alignment will be dominated by synchronous moves, which is therefore the path
explored first. Starting with synchronous moves also gives the benefit of running
in linear time for accepting traces. Next, log-moves are explored when possible,
leaving the highly exponential model-moves until absolutely necessary.

Before computing an alignment, we can, however, pre-compute a trivial align-
ment that often results in a quite effective bound. In Fig. 1 we note that the
graph is already accepting until a paper is submitted, meaning an empty run will
be accepting. Having the empty run be accepting is the case for many modelled
DCR processes, and is in particular the case for any model discovered with the
DisCoveR algorithm [4]. Even if that is not the case, the state-space for a DCR
graph will necessarily be simpler than that of a full alignment. We therefore
propose the trivial alignment composed of only log and model moves, resulting
in the bound of ∑

l∈σ

K(l,
) + Align(G, 〈〉)

We note that as the alignment is of the empty trace and G, if G is accepting,
the alignment will finish in constant time. As we have no initial bound for this
alignment, we instead incrementally increase the bound from 0 in an iteratively
deepening depth first search. This approach once again avoids exponential space
complexity while yielding comparable performance to a breadth-first search [15].

6 Search Space Reduction

From Definition 3, it should be apparent that if an event has been executed and
is still enabled afterwards, any immediately repeated executions will not further
alter the marking. Thus execution of events that leave themselves enabled is
idempotent, and any such idempotent model-moves will necessarily result in an
overlapping sub-problem. However, a cache along all three parameter dimensions
of the algorithm can be employed to avoid visiting duplicate nodes in the search
space. The remainder of this section will thus focus on reducing two out of three
of these dimensions.

One of these dimensions is the currently accumulated cost of aligning the
prefix of the trace. Since the algorithm is clearly deterministic, we know that if
two recursive calls have the same marking and the same trace suffix, they must
necessarily find the same alignment. As the cost of aligning the suffix is simply
added to the cost of aligning the prefix, we know that given these two traces with
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the same marking and trace suffix, only the one with the lowest accumulated
alignment cost can yield an optimal alignment.

The other, more involved, dimension is the state, or marking, of the DCR
graph. As this marking consists of three sets, each of which can potentially
contain any permutation of events, a bound for the complexity of the state-
space could be as high as O(23|E|). However, if we observe Definition 3, we
notice that for a marking M = (Ex,Re, In), neither Re nor In can be freely
permuted. Both of these sets have limited states they can occur in based on the
response and exclude/include relations respectively. Ex can, however, occur in
significantly more permutations, as these will only be bounded by which events
can be executed at any given time.

We therefore wish to reason about which permutations of Ex, and thus which
markings, will behave the same during execution and therefore alignment. We
call these markings execution equivalent with the formal definition given below.

Definition 9 (Execution equivalent markings). Let G = (E,M,L, �,
→•, •→,→+,→%) be a DCR graph, with marking M = (Ex,Re, In). Let M ′ =
(Ex′,Re′, In′) be another possible marking of G. We say that M and M ′ are
execution equivalent within G, if we have (1) Re = Re′, (2) In = In′, and (3)
∀e ∈ E.Ex ∩ (→•e) = Ex′ ∩ (→•e).

Example 4 (Execution equivalent markings). Consider graph G with
marking M = (Ex,Re, In) from Fig. 1. As only R1 and R2 can be excluded (→%)
and the ordering of their execution is fixed, there are only 2 permutations of In.
Likewise, as there is only one response relation (•→), the only two permutations
of Re will be the one where no event is pending, or where only SN is pending.

Now consider the number of permutations of Ex. The permutations are
already slightly limited, since SP, R1, R2, R3 is a linear chain of conditions,
meaning Ex over these events can’t permute freely, but only increase linearly.
When we also consider SN and DR, these can be intertwined much more freely,
with executing DR leaving R3 enabled, yielding even more permutations.

However, since neither DR nor SO condition for any event, the markings
that have these in Ex will be execution equivalent to the markings that do not.
Therefore, if ignoring execution equivalent markings, the only permutations of
Ex left are ∅, {SP}, {SP,R1}, and {SP,R1, R2}.

In order to safely ignore execution equivalent markings during alignment,
we must ensure that the set of accepting runs will be identical between two
equivalent markings within a graph, thus ensuring the same optimal alignments
will be found. First we will prove that enabledness will be identical between
execution equivalent markings within the same graph.

Lemma 1. Let G be a graph with marking M and have that M and M ′ are
execution equivalent within G. Let G′ be G with M ′ substituted for M . For any
event e, given e ∈ enabled(G) we also have e ∈ enabled(G′).
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Proof. Looking at Definition 2, in order to have e ∈ enabled(G′), we must show
that (a) e ∈ In′, (b) In′ ∩ (→•e) ⊆ Ex′, and (c) In′ ∩ (→�e) ⊆ E \ Re′.

As M and M ′ are execution equivalent within G we have (1) In = In′, (2)
Re = Re′, as well as (3) Ex ∩ (→•e) = Ex′ ∩ (→•e).

As e ∈ enabled(G) we have (a) and (c) by trivial substitution with (1) and (2).
Furthermore we have In ∩ (→•e) ⊆ Ex which by set algebra and substitutions
using (1) and (3) gives (b):

In ∩ (→•e) ⊆ Ex =⇒
In ∩ (→•e) ∩ (→•e) ⊆ Ex ∩ (→•e) =⇒
In ∩ (→•e) ⊆ Ex ∩ (→•e) =⇒
In′ ∩ (→•e) ⊆ Ex′ ∩ (→•e) =⇒
In′ ∩ (→•e) ⊆ Ex′

Thus showing e ∈ enabled(G′). �

Next, we must also reason that execution equivalence persists during event
execution.

Lemma 2. Let G be a graph with marking M and have that M and M ′ are
execution equivalent markings within G. Let G′ be G with M ′ substituted for M .
For any event e with execute(e,G) = Ge and execute(e,G′) = G′

e, we have that
the markings Me of Ge and M ′

e of G′
e are execution equivalent withing Ge.

Proof. As M and M ′ are execution equivalent within G we have (1) In = In′, (2)
Re = Re′ and (3) Ex ∩ (→•e) = Ex′ ∩ (→•e).

Looking at Definition 3, we must trivially have Ine = In′
e and Ree = Re′

e by
(1) and (2).

From (3) we must have (Ex∪ {e}) ∩ (→•e) = (Ex′ ∪ {e}) ∩ (→•e), as adding
the same element to both executed sets can never alter the equivalence.

By definition of execution we have Exe = Ex ∪ {e} and Ex′
e = Ex′ ∪ {e},

hence Exe ∩ (→•e) = Ex′
e ∩ (→•e), thus giving us that Me and M ′

e are execution
equivalent within Ge. �

For our final lemma, we must prove that acceptance is also identical between
execution equivalent markings within the same graph.

Lemma 3. Let G be a graph with marking M and have that M and M ′ are
execution equivalent markings within G. Let G′ be G with M ′ substituted for M .
Given accepting(G), we have accepting(G′).

Proof. As M and M ′ are execution equivalent within G we have In = In′,
Re = Re′. If accepting(G), we have In ∩ Re = ∅, thus In′ ∩ Re′ = ∅, giving
accepting(G′). �

Now we can state and prove our theorem, allowing us to disregard markings
that are execution equivalent to any already visited marking.
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Table 1. Results from doing the 960000 trace alignments for the PDC2022 dataset.
All results shown in ms.

Avg. time Avg. time (cost 0) Avg. time (rest) Min time Max time

0.5985 0.1013 1.3244 0.0078 268.7772

Theorem 1. Let G be a graph with marking M and have that M and M ′ are
execution equivalent markings within G. Let G′ be G with M ′ substituted for M .
Any run φ will be accepting in G if and only if it is accepting in G′.

Proof. By recursion over φ in direction G to G′. The proof for direction G′ to G
is identical.

By Definition 6 we have that e1 ∈ enabled(G) and for G →e1 G1, the run
suffix 〈e2...en〉 will be an accepting run of G1. Using Lemma 1 we have e1 ∈
enabled(G′), and using Lemma 2 we have that for G′ →e1 G′

1, the markings of
G1 and G′

1 are execution equivalent withing G1.
Applying these lemmas recursively, we get G → ... → Gn and G′ → ... → G′

n

with the markings of Gn and G′
n being execution equivalent within Gn. As φ

is an accepting run of G we have accepting(Gn), allowing us to apply Lemma
3 yielding accepting(G′

n), thus showing that φ must also be an accepting run of
G′. �

Definition 9, Lemmas 1, 2 & 3 as well as Theorem 1 have been defined
and proven using the proof assistant Isabelle and can be found online1.

7 Evaluation of Run-Time Performance

The algorithm and all optimizations as described in Sect. 6 has been implemented
in Typescript2 and benchmarked on the dataset from the Process Discovery
Contest at ICPM 2022 (PDC2022). All experiments have been run on an Intel(R)
Core(TM) i7-10700 CPU @ 2.90 GHz.

This dataset consists of 480 training logs generated from 96 underlying mod-
els with either no noise or 4 varying degrees of noise added. For each of these
training logs there were given a test log and a base log to use for classification,
each with 1000 traces.

For our experiments we mined a model from each training log and performed
alignment of the mined model and each trace of the corresponding test and base
logs. In total this yielded 960000 alignments across 480 models with varying
model size and degree of non-conformance. We have defined model size as the
number of constraints in the DCR graph, and degree of non-conformance as the
resulting cost of the found optimal alignment. The aggregated results of these
runs can be seen in Table 1. Notably, we can present an average alignment time
of 0.6 ms, which only increases to 1.3ms if we disregard perfectly fitting traces.
1 https://www.isa-afp.org/entries/DCR-ExecutionEquivalence.html.
2 https://github.com/Axel0087/DCR-Alignment.

https://www.isa-afp.org/entries/DCR-ExecutionEquivalence.html
https://github.com/Axel0087/DCR-Alignment
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Fig. 2. A heatmap showing alignment time in ms as a function of alignment cost and
model size measured in number of constraints. Shown on a logarithmic scale, due to
outliers as seen in Fig. 3

Fig. 3. Alignment times shown in ms as functions of alignment cost and model size
measured in number of constraints. The average values are plotted as red lines. (Color
figure online)
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The full results can be seen in Fig. 2, where the timing of each run has been
plotted as a function of model size and alignment cost respectively. From this
figure we can draw a few key points: (1) it seems that the running time is more
dependent on the degree of non-conformance than on model size. (2) even though
the alignment cost seems to be the main factor in determining the running time
of the algorithm, we still see quite some variance. Notably, this variance seems
to manifest in vertical stripes, indicating that some models are much faster to
align, independently of their size. From this we can draw that the composition
of the particular model may say more than purely model size.

We can further inspect the effect of these parameters by examining Fig. 3.
We see that it does indeed appear that there is a clear linear tendency between
alignment cost and running time. We can, however, note that while there is this
linear tendency, there is an extreme variance that increases with alignment cost.
Looking at model-size, we once again see this tendency of streaks appearing. For
any model size, however, the average running time remains low, confirming that
model size in itself is not a determining factor of the running time of alignment
computation, but that some model compositions may lead to higher variance in
alignment running times.

8 Applying Alignment to Test Driven Modeling
for the Dreyers Foundation Application Process

In this section we present a case study demonstrating the application of the align-
ment algorithm to a large DCR Graph in use as the executable process model
in a real-life electronic case management system. We focus on solving the com-
putational problem of checking open tests in test driven modelling, mapped to
an alignment problem. This allows us to show how the algorithm performs when
confronted with unusual cost functions that significantly increase the difficulty
of the search. We start by introducing the case and model, continue by giving
an informal introduction to open tests, and finish by presenting and discussing
the results of checking open tests on the model.

8.1 The Dreyers Foundation Application Process

The Dreyers Foundation is a Danish funding agency specializing in grants for
projects and activities promoting the development of the lawyer and architect
professions3, and their interaction with society. As of 2023 the foundation aims
to award an approximate yearly total of 50M Danish kroner (6.71M euros).

As part of an IT overhaul in 2013 their internal processes regarding both
application assessment, rejections, grants and payouts were modelled as DCR
Graphs [9,10]. In broad terms, applications are accepted in rounds. In each round
a caseworker first pre-screens applications. The remaining applications are inde-
pendently reviewed by 2–4 reviewers, at least one of which must be an architect or

3 https://dreyersfond.dk/fonden/oekonomi/.

https://dreyersfond.dk/fonden/oekonomi/
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a lawyer, depending on the type of application. Once all reviews are in, the Foun-
dation’s board decides on which applications to accept during a board meeting.
Payouts can happen as a single payment or in several tranches, until the grant
period expires and an end-report is produced. In practice, board members and
reviewers overlap, and reviews might happen or be amended at the board meet-
ing. Figure 4 shows the DCR Graph modelling their main application process.

Fig. 4. Original DCR Graph modelling the application process of the Dreyers Foun-
dation. Time- and data-perspectives have been removed by the authors.

8.2 Test Driven Modelling

Test driven modelling deals with the complexity of declarative modelling nota-
tions by first asking the modeller to define a number of (desired) or negative
(undesired) example runs (tests) of a process. During the modelling of the pro-
cess these tests are checked against the evolving model, showing if they pass
or fail. When all positive tests pass and all negative tests fail, the model can
be seen as satisfying the tests. Allowing the modeller to think in terms of sim-
ple traces and checking these automatically against the model helps untangle
complex interactions between the constraints.

Traditional test driven modelling [26] defines tests as full runs of the process,
thereby acting as a kind of system tests. Open tests [23] on the other hand are
essentially unit tests for process models. They allow the tester to define a partial
trace of the system and the context of relevant activities for that trace.
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Checking if a system passes an open test is a model checking problem. For
a positive test we check if there exists a trace in the whole system which cor-
responds to the test case when projected over the context. For negative tests
we check that no such trace exists. This model checking task maps neatly to an
alignment checking problem when using the cost function that assigns cost ∞ to
log-moves and model-moves inside the context, and cost 0 to synchronous-moves
and model-moves outside the context. This cost function effectively implements
the projection of the context, and fully disallows deviations from the model.

8.3 Results and Discussion

To evaluate the practical applicability of our alignment algorithm to checking
open tests, we defined a set of 20 tests (10 positive and 10 negative). We checked
alignment for each test twice: once with no depth limit (exploring the entire
state space if no alignment was found) and once with the depth limit set to 100.
Both settings yielded the same outcome for each test. Table 2 shows an example
of one of these tests and which alignment was returned by the algorithm. This
was the fastest test to complete, rounding to 0 ms. For the details of all tests we
refer to the GitHub repo4.

Table 2. A test case and it’s alignment, with the activity abbreviations: Reject appli-
cation, Ansøger informeret, Fill out application, Approved - to board, Lawyer Review,
Register Decision, Change phase to Abort, Anonymiser data.

trace: 〈Re, Ai〉
context: {Ap, Re, Ai}

alignment:
σ′: � � � � Re Ai � �
φ: Foa Ap LR RD Re Ai CA An

Table 3. Aggregated results for running all open tests

Outcome Count Time for depth: 100 (s) Time for depth: inf (s)

Alignment found 8 0.005 0.003

No alignment found 12 3.946 106.163

The aggregated results are shown in Table 3. Tests are grouped based on if
an alignment was found or not. For each group we show the number of tests in
the group and the average running time in seconds for both runs. Tests that did
find an alignment completed on average in 5 and 3 ms. Tests that did not find an
alignment were significantly slower: 4 s on average when limited in depth, 106 s
on average when forced to explore the entire state space. It is notable however
that the depth-limited search completed in a reasonable time and resulted in
the correct answer for each test. While in general bounding the search means
4 https://github.com/Axel0087/DCR-Alignment/blob/main/runDreyers.ts.

https://github.com/Axel0087/DCR-Alignment/blob/main/runDreyers.ts
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sacrificing the guarantee of soundness of a true negative or false positive result,
we posit that in most cases it is unlikely that the only counter examples are
significantly longer than the total number of activities in the model. In practice
this means that a modelling tool can check tests up-to a configurable level of
confidence (given as max depth) in real-time and be prompted to do complete
checks by the user when convenient.

9 Conclusion

We introduced an algorithm for computing the optimal alignment between a
DCR Graph and a trace. The provided algorithm has been implemented in Type-
script and evaluated on the dataset for the process discovery contest at ICPM
2022 consisting of 480 logs. The experiment showed that the algorithm is highly
efficient, making it a useful tool for the conformance checking and noise filtering
of declarative process models. We also presented a case study where we used
alignment to check open tests on the Dreyers Foundation case. In future work
we expect to further pursue this angle and explore the development of improved
alignment algorithms for DCR Graphs that can handle unusual cost functions.
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Abstract. Business Process Simulation (BPS) is an approach to ana-
lyze the performance of business processes under different scenarios. For
example, BPS allows us to estimate what would be the cycle time of a
process if one or more resources became unavailable. The starting point
of BPS is a process model annotated with simulation parameters (a BPS
model). BPS models may be manually designed, based on information
collected from stakeholders and empirical observations, or automatically
discovered from execution data. Regardless of its origin, a key question
when using a BPS model is how to assess its quality. In this paper, we
propose a collection of measures to evaluate the quality of a BPS model
w.r.t. its ability to replicate the observed behavior of the process. We
advocate an approach whereby different measures tackle different pro-
cess perspectives. We evaluate the ability of the proposed measures to
discern the impact of modifications to a BPS model, and their ability to
uncover the relative strengths and weaknesses of two approaches for auto-
mated discovery of BPS models. The evaluation shows that the measures
not only capture how close a BPS model is to the observed behavior, but
they also help us to identify sources of discrepancies.

Keywords: Business process simulation · Process mining

1 Introduction

Business Process Simulation (BPS) is a technique for estimating the perfor-
mance of business processes under different scenarios [9]. BPS enables analysts
to address questions such as “what would be the cycle time of a process if
one or more resources became unavailable?” or “what would be the impact of
automating an activity on the waiting times of other activities in the process?”.
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The starting point of BPS is a process model, e.g. in the Business Process Model
and Notation (BPMN)1, enhanced with simulation parameters [21] (herein, a
BPS model). These simulation parameters capture, for example, the processing
times of each activity or the rate at which new process instances (cases) are
created.

BPS models may be manually created based on information collected via
interviews or empirical observations, or they may be automatically discov-
ered from execution data recorded in process-aware information systems (event
logs) [6,7,17,22]. Regardless of the origin, a key question when using a BPS
model is how to assess its quality. This question is particularly relevant when
tuning the simulation parameters. Several approaches have been proposed to
address this problem. However, these approaches are either manual and qualita-
tive [22] or they produce a single number that does not allow one to identify the
source(s) of deviations between the BPS model and the observed reality [6,10].

In this paper, we study the problem of automatically measuring the quality
of a BPS model w.r.t. its ability to replicate the observed behavior of a pro-
cess as recorded in an event log. We advocate a multi-perspective approach to
this problem, thus proposing a set of quality measures that address different per-
spectives of process performance. The starting point is the idea that a good BPS
model is one that generates traces consisting of events similar to the observed
data. Accordingly, the proposed approach maps an event log produced by the
BPS model and an event log recording the observed behavior into histograms
or time series capturing a given perspective, and then compares the resulting
histograms or time series using a distance metrics.

We conduct a two-fold evaluation of the measures using synthetic and real-
life datasets. In the synthetic evaluation, we study the ability of the proposed
measures to discern the impact of modifications to a BPS model, whereas in
the real-life evaluation, we analyze their ability to uncover the relative strengths
and weaknesses of two approaches for automated discovery of BPS models. Our
results show that the measures not only capture how close a BPS model is to
the observed behavior, but also help us identify sources of discrepancies.

The rest of the paper is structured as follows. Section 2 gives an overview of
prior research related to the discovery and evaluation of BPS models. Section 3
introduces relevant process mining concepts and distance measures. Section 4
analyzes the problem and proposes a set of measures of quality of BPS models.
Section 5 discusses the empirical evaluation, and Sect. 6 draws conclusions and
sketches future work.

2 Background

2.1 Business Process Simulation Models

A BPS model consists of i) a stochastic control-flow model, ii) an activity per-
formance model, and iii) an arrival and congestion model. The stochastic model

1 https://www.bpmn.org/.

https://www.bpmn.org/
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is composed of a process model (e.g., a BPMN model or a Petri net) and a
stochastic component capturing the probability of occurrence of each path in
the model (branching probabilities). In a BPS model, the stochastic model is
enhanced by adding an activity performance model, which determines the dura-
tion of the activity instances (e.g., by associating a parametric distribution to
each activity in the model). Finally, in a BPS model, an arrival and congestion
model determines when new cases arrive in the system, and when the execution
of each enabled activity instance starts, given the available resource capacity.

Traditionally, BPS models are constructed manually by experts. Recent
approaches advocate for the automated discovery of BPS models from event
logs. Below, we consider two such approaches. The first one, namely SIMOD [6],
starts by constructing a stochastic process model by applying the SplitMiner
algorithm [3] to discover a BPMN model from the input log, and replaying the
traces of the log to calculate the branching probabilities. Next, SIMOD discovers
the activity performance model (activity duration distributions) and a conges-
tion model consisting of: i) a case inter-arrival time distribution; ii) a set of
resources, their availability timetables, and the activities they perform; and iii)
the distribution of extraneous waiting times between activities (i.e. waiting times
not attributable to congestion) [8]. Once a BPS model is discovered, its param-
eters are tuned to fit the data using a Bayesian hyper-parameter optimizer.

The second BPS model discovery technique we consider is ServiceMiner c©.
ServiceMiner operates in three steps: i) data preprocessing, where techniques for
data cleaning and categorical feature encoding are applied; ii) data enhancement,
where new data attributes that capture trend, seasonality, and system congestion
are created using methods described in [23]; and iii) model learning, where the
BPS model is created by combining process discovery, queue mining (learning of
queueing building blocks from data), and machine learning (to boost the accu-
racy of arrival and activity time generation). For process discovery, ServiceMiner
mines a Markov chain, estimating the case routing probabilities between con-
secutive activity pairs. An abstraction mechanism allows for filtering out rare
activities, paths, and transitions. Next, using queue mining, the various queueing
building blocks are fitted from data, by using techniques described in [24]. Lastly,
ServiceMiner applies a machine learning technique that uses congestion features
that come from queueing theory, which, via cross-validation, leads to accuracy
improvements when generating inter-arrival times and activity durations.

While the evaluation reported below focuses on BPS models discovered by
SIMOD and ServiceMiner, the proposed measures can be used to assess the
quality of any model that generates event logs. For example, the proposal can
also be used to evaluate generative deep learning models of business processes [7].
On the other hand, it cannot be used to assess coarse-grained BPS models, e.g.
based on system dynamics [20], unless these are refined to generate event logs.

2.2 Quality Measures for Business Process Simulation Models

Leemans et al. [12,13] and Burke et al. [5] studied the evaluation of stochastic
models using, among other measures, Earth Movers’ Distance. However, they
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focus solely on the control-flow perspective, and their purpose is mainly confor-
mance checking. In this paper, we focus on the assessment of BPS model quality
considering both temporal and control-flow dimensions.

Prior studies have considered the evaluation of BPS models. Rozinat et
al. [22] perform an evaluation of BPS models following manual comparisons.
However, they do not propose concrete and automatable evaluation measures.
Camargo et al. [7] study the performance of data-driven simulation and deep
learning techniques, proposing measures that combine the control-flow and the
temporal perspectives. The latter measures are not scalable, and they do not
identify the sources of discrepancies between BPS models. To overcome these
shortcomings, we propose an approach that views the process from different per-
spectives and provides a separation of concerns between the three BPS model
components (the stochastic model, the activity performance model, and the con-
gestion model). We then propose efficient measures for each component.

3 Preliminaries

3.1 Event Logs

Modern enterprise systems maintain records of business process executions,
which can be used to extract event logs: sets of timestamped events captur-
ing the execution of the activities in a process [9]. We assume that each event
record in the log relates to a case, an activity, and an activity start and end
timestamp (as in Table 1). However, the proposal of this paper can be general-
ized to include other life-cycle events (e.g., activity enablement or cancellation).
We shall refer to events and activity instances interchangeably, even though they
could mean different things in other contexts. Let E be the universe of events,
C be the universe of case identifiers, A be the set of possible activity labels, and
T be the time domain.

Definition 1 (Event Log). An event log (denoted by L) is a set of exe-
cuted activity instances, E ⊆ E , with each event having a schema σE =
{ξ, α, τstart, τend}, that assigns the following attribute values to events:

– ξ : E → C assigns a case identifier,
– α : E → A assigns an activity label,
– τstart : E → T assigns the start timestamp of the executed activity, and,
– τend : E → T assigns the end timestamp of the executed activity.

Note that the transformation from a traditional event log that contains only a
single timestamp to our notion of an event log is straightforward (see [18]).

3.2 Measures for Time-Series and Histogram Comparison

To analyze the temporal performance of a process, an event log can be mapped
to a variety of time series (e.g. activity starts, activity ends). Accordingly, we
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Table 1. Example of 6 events of an event log from a Procure-to-Pay Process

Case Activity Start End Case Activity Start End

111 CreatePO 7:12:00 7:20:00 222 CreatePO 10:12:00 10:47:00

111 ApprovePO 9:30:00 10:12:00 222 PO Rejected 10:47:00 11:26:00

111 GoodsReceived 10:12:00 10:44:00 333 CreatePO 9:26:00 10:32:00

consider the use of techniques to quantify the distance between two time series,
x = (x1, . . . , xn), and y = (y1, . . . , ym), of (potentially different) lengths n and
m, respectively. To this end, one may employ various measures, such as comput-
ing ||x−y||l in any of the standard norms (i.e., l = 1, 2,∞).2 These comparisons
would only be possible after padding the shorter time series. In addition, stan-
dard norms do not capture the temporal differences between the two time series.
For example, a temporal shift in x vs y may produce l1 or l2 norm, but repre-
sents a significant failure in the model to capture time-series patterns properly.
To overcome the two limitations, namely the need for padding, and ignoring
temporal differences, a natural measure is the Wasserstein Distance (WD) [19];
in this work, we consider two variations of WD.

– Earth Mover’s Distance (EMD) [13] computes the effort it takes to balance
two vectors x and y of different lengths, treating each entry xi, yj as ‘masses’
to move from location to location until the two time series are equal. EMD
does not assume that

∑
i xi =

∑
j yj , i.e., the sum of the ‘earth mass’ to be

moved can be different; in such cases, we add a penalty for creating redundant
mass to fill in gaps. Herein, we consider the EMD problem with absolute
distance measure [14].

– 1st Wasserstein Distance (1WD) [14] is a computationally efficient variation
of the EMD. It introduces the constraint that the sum of masses must be
the same in x and y (i.e., the constraint

∑
i xi =

∑
j yj is enforced). 1WD

is suitable for comparing empirical distribution functions (histograms), since
the sum of the mass in each is 1.

When comparing two histograms, we let f = (f1, . . . , fn) be the n normal-
ized frequency values of the first histogram, and let g = (g1, . . . , gm) be the m
normalized frequencies of the second histogram. We treat the two histograms f
and g similarly to the two time series x and y, and employ 1WD distance, since
the sum of masses is 1 (EMD and 1WD lead to the same results).

4 Framework for Measuring BPS Model Quality

In this part, we develop an approach for measuring the quality of BPS mod-
els. There are two main reasons why directly evaluating a BPS model would be
impractical: i) typically, the ‘true’ BPS model of the process is not available (and

2 See Sect. 2.2 in [15] for a survey on time-series comparison measures.



Measuring the Quality of Business Process Simulation Models 25

often does not exist), thus, we cannot perform a model-to-model comparison; ii)
different simulation engines (e.g., BIMP [1], Prosimos [16]) support different
BPS model formats, hindering a generic comparison of BPS models. Therefore,
we propose to generate a collection of logs simulated with the BPS model under
evaluation, and compare them to event logs of the actual system (i.e., the sys-
tem that the model aims to mimic). Consequently, one can apply a ‘transitive
argument’: the ‘closer’ the simulated logs are to the actual data, the better is
the model. In other words, we treat the (test) data as our ‘ground truth’, since
useful models are supposed to be faithful generators of ‘reality’.

Two challenges arise when measuring the quality of a BPS model: i) a model
can be very close to the data in one aspect (e.g., control-flow), yet very different
in another (e.g., in inter-arrival times), and, ii) a model can generate many
realities as it is probabilistic in nature (durations and routing are stochastic),
while the data consists of a single realization. To overcome the first limitation,
we propose a collection of measures to quantify the distance across multiple
process perspectives. Specifically, we shall consider control-flow, temporal, and
congestion distance measures. As for the second limitation, our approach is to
generate multiple event logs simulating the ‘ground-truth’ event log (i.e., with
the same number of cases, and starting from the same instant in time), and use
the generated logs to construct confidence intervals for each of our measures.

For all measures, we consider a collection of K generated logs (GLogs) that
came from K simulation runs, and compare these K GLogs to the actual test
event log (ALog) that, importantly, was not used to construct the BPS model.
Below, we outline control-flow, temporal, and congestion, discuss their rationale,
and briefly provide their computation by comparing GLogs and an ALog.3

4.1 Control-Flow Measures

To evaluate the quality w.r.t. the control-flow perspective (i.e., the capability
of the model to represent the event sequences in the actual event log), we pro-
pose two measures. The first one, namely control-flow log distance (CFLD), is
a variation of a measure introduced by Camargo et al. in [7]. CFLD precisely
penalizes the differences in the control-flow by pairing each case in GLog to the
case in the ALog that minimizes the sum of their distances. However, due to its
steep computational complexity, we propose an additional measure, the n-gram
distance (NGD), that approaches the problem in a more efficient way.

Control-Flow Log Distance (CFLD). Given two logs L1 and L2 with the
same number of cases, we compute the average distance to transform each case
in L1 to another case in L2 (see [7] for a description of a similarity version of
this measure). To compute this measure, we first transform each process case of
L1 and L2 to their corresponding activity sequences, abstracting from temporal
information. Then, we compute the Damerau-Levenshtein (DL) distance [26]
between each pair of cases i, j belonging to L1 and L2, respectively, normalizing
3 For clarity, each measure is described as a distance between two event logs. However,

we propose to report the average of K individual comparisons (GLog against ALog).
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them by the maximum of their lengths (obtaining a value in [0, 1]). Subsequently,
we compute the matching between the cases of both logs (such that each i is
matched to a different j, and vice versa) minimizing the sum of distances using
the Hungarian algorithm for optimal alignment. The CFLD is the average of the
normalized distance values.

CFLD requires pairing each case in the simulated log with a case in the origi-
nal log, minimizing the total sum of distances. The computational complexity of
computing the DL-distance for all possible pairings is O(N2 × MTL3) where N
is the number of traces in the logs (assuming both logs have an equal number of
cases, which holds in our setting) and MTL is the maximum trace length. Since
all pairings are put into a matrix to compute the optimal alignment of cases (the
one that minimizes the total sum of distances), CFLD’s memory complexity is
quadratic on the number of cases. The optimal alignment of traces using the
Hungarian algorithm has a cubic complexity on the number of cases.

N-Gram Distance (NGD). Leemans et al. [13] measure the quality of a
stochastic process model by mapping the model and a log to their Directly-
Follows Graph (DFG), viewing each DFG as a histogram, and measuring the
distance between these histograms. We note that the histogram of 2-grams of a
log is equal to the histogram of its DFG.4 Given this observation, we general-
ize the approach of [13] to n-grams, noting that the histogram of n-grams of a
log is equal to the (n-1)th-Markovian abstraction of the log [2]. In other words,
the histogram of 2-grams is the 1st-order Markovian abstraction (the DFG), the
histogram of 3-grams is the 2nd-order Markovian abstraction, and so on.

Given two logs L1 and L2, and a positive integer n, we compute the difference
in the frequencies of the n-grams observed in L1

⋃L2. To compute this measure,
we transform each case of L1 and L2 to its corresponding activity sequences,
abstracting temporal information, and adding n − 1 dummy activities to both
start and end of the case (e.g., 0-A-B-C-0 for case A-B-C and n = 2). Then, we
compute all sequences of n activities (n-grams) observed in each log, and measure
their frequency. Finally, we compute the sum of absolute differences between the
frequencies of each computed n-gram, and normalize the total distance by the
sum of frequencies of all n-grams in both logs (obtaining a value in [0, 1]).

For example, consider L1 having three cases A-B-C-D, and L2 having three
cases A-B-E-D. Given n = 2, the observed n-grams are 0-A, A-B, B-C, C-D, and
D-0 in L1; and 0-A, A-B, B-E, E-D, and D-0 in L2 (each one with a frequency
of three). The n-grams B-C, C-D, B-E, and E-D have a frequency of 3 in one log,
and 0 in the other, thus, the NGD between L1 and L2 is 0.4 (12 divided by 30).
By adding dummy activities, all activity instances have the same weight in the
measure, as each of them is present in n n-grams. Otherwise, the first and last
activity instances of each trace would be present only in one n-gram. Note that
we do not use the EMD to compute the NGD, because the order of the n-grams
in the histogram is irrelevant and EMD would take this order into account.

4 An n-gram is a vector of n consecutive activities in a trace of a log. A 2-gram is a
pair of consecutive activities in a log. Every arc in the DFG of a log is a 2-gram of
the log and vice-versa.
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NGD is considerably more efficient than CFLD, as the construction of the
histogram of n-grams is linear on the number of events in the log, and the same
goes for computing the differences between the n-gram histograms.

4.2 Temporal Measures

We propose three measures that assess the ability of a BPS model to capture
the temporal performance perspective, based on the idea that the time series of
events generated by a BPS model should be similar to the time series of the test
data, with respect to seasonality, trend, and time-to-event.

The first two measures come from time-series analysis, where most
approaches in the literature (e.g., SARIMA) decompose the time series into com-
ponents of trend, seasonality, and noise [4]. We follow a similar path by analyzing
the trend (comparing the absolute distribution of events), and the seasonality
(comparing the circadian distribution of events). The third measure comes from
time-to-event (or survival) analysis [11], a field in statistics that analyzes the
behavior of individuals from some point in time until an event of interest occurs.
Specifically, we are interested in analyzing the capability of the simulator to
correctly reconstruct the occurrence of events (and their timestamps) from the
beginning of the corresponding case to its end. Below, we provide the details of
the three aforementioned measures.

Absolute Event Distribution (AED). Given two event logs L1 and L2, we
transform the events into a time series by binning the timestamps in the event log
(both start and end timestamps) by date and hour of the day (e.g., timestamps
between ‘02/05/2022 10:00:00’ and ‘02/05/2022 10:59:59’ will be placed into the
same bin). Let i = 1, . . . , B be the hours from the first until the last timestamp
in L1

⋃ L2 (i.e., the timeline of both logs), and dh(τ(e)) a function returning
the i corresponding to the date and hour of the day of a timestamp of event e
(for brevity, we refer to both τstart and τend as τ), the binning procedure is as
follows,

xi = |{e ∈ L1 | dh(τ(e)) = i}|, yi = |{e ∈ L2 | dh(τ(e)) = i}| (1)

Finally, the AED distance between L1 and L2 corresponds to the EMD between
x1, . . . , xB and y1, . . . , yB .

Circadian Event Distribution (CED). Given two event logs L1 and L2, we
partition each log into sub-logs by the day of the week (Mon-Sun). Let wd(τ(e))
be a function that returns the day of the week for timestamp τ(e). Then, for
i = 1, . . . , 7, we obtain the corresponding sub-logs as follows,

L1,i = {e ∈ L1 | wd(τ(e)) = i}, L2,i = {e ∈ L2 | wd(τ(e)) = i} (2)

Subsequently, we bin each sub-log into hours with Eq. (1) using h(τ(e)), a func-
tion returning the hour of the day of a timestamp of event e, instead of dh(τ(e)).
In this way, all the timestamps recorded on any Monday between ‘10:00:00’
and ‘10:59:59’ will be placed in the same bin), obtaining x1,d, . . . , xB,d and
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y1,d, . . . , yB,d with d ∈ {1, . . . , 7}. Finally, the CED distance between L1 and L2

corresponds to the average of the EMD between x1,d, . . . , xB,d and y1,d, . . . , yB,d

with d ∈ {1, . . . , 7}.

Relative Event Distribution (RED). Here, we wish to analyze the ability of
the simulator to mimic the temporal distribution of events w.r.t. the origin of the
case (i.e., the case arrival). To this end, given two event logs L1 and L2, we offset
all log timestamps from their corresponding case arrival time (the first timestamp
in a case is set to time 0, the second one is set to the inter-event time from the
first, etc.). Formally, let a(ξ(e)) = mint′{t′ | t′ = τstart(e′)∧e′ ∈ L∧ξ(e′) = ξ(e)}
be the arrival time of a case associated with an event in the log. Then, the relative
event times ρ(e) are defined as,

ρ(e) = τ(e) − a(ξ(e)), (3)

with τ(e) being τstart(e) for start times, and τend(e) denoting end times. We
apply Eq. (3) to the timestamps in L1 and L2 and, for each log, discretize the
resulting ρ(e) into hourly bins (e.g., those durations between 0 and 3,599 s go to
the same bin). Finally, the RED distance between L1 and L2 corresponds to the
EMD between the discretized ρ(e) of each log.

4.3 Congestion Measures

To measure the capability of a model to represent congestion, we rely on queue-
ing theory, a field in applied probability that studies the behavior of congested
systems [25]. The workload in a queueing system is dominated by two factors:
the arrival rate of cases over time, and the cycle time, which is the length-of-stay
of a case in the system. Below, we propose two measures to compare the two
workload components over pairs of event logs by comparing the time series of
the arrivals, and the distribution of the cycle times (assuming that its variability
is captured by the arrivals time-series comparison).

Case Arrival Rate (CAR). This measure compares case arrival patterns
(shape) and counts (number of arrival per bin). Given two event logs L1 and L2,
we use the function a(c), c ∈ C to obtain the sets of arrival timestamps of each
log. Subsequently, we bin them using Eq. (1) (timestamps between ‘02/05/2022
10:00:00’ and ‘02/05/2022 10:59:59’ are placed in the same bin), obtaining two
vectors x1, . . . , xB and y1, . . . , yB corresponding to the binned arrival times-
tamps of L1 and L2, respectively. Finally, the CAR distance between L1 and L2

corresponds to the EMD between x1, . . . , xB and y1, . . . , yB .

Cycle Time Distribution (CTD). Here, we seek to measure the ability of
the BPS model to capture the end-to-end cycle time of the process. Given two
event logs L1 and L2, we collect all cycle times into a single histogram per log,
which depicts their empirical probability distribution functions (PDF). The CTD
distance between L1 and L2 corresponds to the 1WD between both histograms.5

5 Since we are comparing two distributions, 1WD and EMD yield the same result.
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5 Evaluation

We report on a two-fold experimental evaluation. The first part aims to validate
the applicability of the proposed measures by testing the following evaluation
question: are the proposed measures able to discern the impact of different known
modifications to a BPS model? (EQ1). Given the potential efficiency issues of
CFLD, the first part of the evaluation also aims to answer the question: is the
N-Gram Distance’s performance significantly different from the CFLD’s perfor-
mance? (EQ2). The second part of the evaluation is designed to test if: given two
BPS models discovered by existing automated BPS model discovery techniques in
real-life scenarios, are the proposed measures able to identify the strengths and
weaknesses of each technique? (EQ3). Given the complexity of the EMD (cf.
Sect. 3), the second part of this evaluation also focuses on answering: does the
1-WD report the same insights in real-life scenarios as the EMD? (EQ4).

In the case of the NGD, we report on this measure for a size N = 2.6

The distance computed by the EMD is not directly interpretable, as it is an
absolute number on a scale that depends on the range of values of the input
time series. Accordingly, we divide the raw EMD by the number of observations
in the original log. In this way, we can interpret the resulting scaled-down EMD
as the average number of bins that each observation of the original log must be
moved to transform it into the simulated log. For example, a value of 10 implies
that, on average, each observation had to be moved 10 bins.

5.1 Synthetic Evaluation

Datasets. To assess EQ1 and EQ2, we manually created the BPS model of a loan
application process based on the examples from [9, Chapter 10.8]. The process
comprises 12 activities (with one loop, a 3-branch parallel structure, 3 exclusive
split gateways, and 3 possible endings) and 6 different resource types (performing
different activities with a working schedule from Monday to Friday, from 9am
to 5pm). We simulated a log of 1,000 cases as the log recording the process (i.e.,
the ALog). We created 7 modifications of the original BPS model: i) altering
the control-flow by arranging the parallel activities as a sequence (LoanSEQ);
ii) altering, on top of the previous modification, the branching probabilities
(LoanS-G); iii) modifying the rate of case arrivals (LoanARR); iv) increasing
the duration of the activities of the process (LoanDUR); v) halving the avail-
able resources to create resource contention (LoanRC); vi) changing the resource
working schedules from 9 am–5 pm to 2 pm–10 pm (LoanCAL); and vii) adding
timer events to simulate extraneous waiting time [8] delaying the start of 4 of
the activities (LoanEXT ).

We simulated K = 10 logs (as the GLogs) with 1,000 cases for each altered
BPS model. Table 2 shows the results of the proposed measures for each modified
scenario, and for the original BPS model as ground truth (LoanGT ) to measure
the distance associated with the stochastic nature of the simulation.
6 Augusto et al. [2] found that, for models with no duplicate activities, the size of N = 2

captures enough information to compare processes from a control-flow perspective.
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Table 2. Results (average and 95% confidence interval) of the proposed measures for
the original and modified BPS models of a loan application process.

NGD CFLD AED CED

LoanGT 0.02 (±0.00) 0.02 (±0.00) 2.39 (± 0.51) 0.05 (±0.01)

LoanSEQ 0.34 (±0.00) 0.20 (±0.00) 2.58 (± 0.34) 0.05 (±0.01)

LoanS−G 0.46 (±0.00) 0.32 (±0.00) 44.17 (± 9.59) 0.24 (±0.01)

LoanARR 0.04 (±0.01) 0.03 (±0.00) 35.66 (±14.46) 0.08 (±0.01)

LoanDUR 0.03 (±0.01) 0.02 (±0.00) 4.29 (± 1.34) 0.05 (±0.01)

LoanRC 0.23 (±0.03) 0.15 (±0.01) 23.67 (± 8.81) 0.06 (±0.01)

LoanCAL 0.02 (±0.00) 0.02 (±0.00) 6.27 (± 0.37) 3.51 (±0.02)

LoanEXT 0.02 (±0.01) 0.02 (±0.00) 5.43 (± 1.64) 0.09 (±0.01)

RED CAR CTD

LoanGT 0.22 (± 0.05) 0.00 (± 0.00) 7.06 (± 1.41)

LoanSEQ 1.91 (± 0.26) 0.00 (± 0.00) 42.38 (± 3.83)

LoanS−G 235.36 (±12.93) 0.00 (± 0.00) 7,667.13 (±443.38)

LoanARR 0.62 (± 0.16) 42.39 (±14.12) 11.89 (± 2.42)

LoanDUR 7.09 (± 0.51) 0.09 (± 0.04) 200.53 (± 15.66)

LoanRC 31.66 (± 8.62) 0.03 (± 0.02) 759.45 (±210.93)

LoanCAL 0.26 (± 0.06) 6.24 (± 0.00) 7.51 (± 1.94)

LoanEXT 8.02 (± 0.18) 0.00 (± 0.00) 262.30 (± 6.19)

Results and Discussion. Regarding EQ1, Table 2 shows how the proposed
measures appropriately penalize the BPS models for the modifications affecting
their corresponding perspectives. In the control-flow measures, the BPS models
showing significant differences w.r.t. the ground truth are those with control-
flow modifications. The distances of LoanRC and LoanSEQ are explained by the
parallel activities being executed more frequently in a specific order. In the first
BPS model, due to resource contention, which delays the execution of one of
the parallel activities in some cases. In the second one, due to the control-flow
modification. Finally, LoanS-G reports the highest distance as, in addition to the
modification in LoanSEQ, it also alters the frequency of each process variant.

For temporal measures, the AED distance captures the difference in the dis-
tribution of events along the entire process. However, to identify the sources of
these differences. We require a combination of the penalties incurred by CED,
RED, and CAR. Thus, we must analyze them to find the root-causes for the dis-
crepancies in AED. Starting from the seasonal aspects captured by CED, only
LoanS-G and LoanCAL report significant differences, being the latter the only
BPS model altering seasonal aspects. LoanS-G’s distance is due to the change in
the gateway probabilities, which in turns impacts the overall distribution of exe-
cuted events. As expected, LoanCAL presents the highest CED distance due to
the change in schedules that displaces executed events from morning to evening.

Moving to RED, which reports the distance in the distribution of events over
time within each case, we observe that all modifications except LoanCAL should
affect this perspective. The slightly higher penalization of LoanARR is due to
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the higher case arrival rates, which delay the start activities due to resource
contention. LoanSEQ presents a higher distance (close to a displacement of 2 h
per event) as the three parallel activities are executed as a sequence, delaying
subsequent activities. Similarly, in LoanDUR, LoanEXT , and LoanRC , activity
delays are caused by longer durations, extraneous delays, and resource contention
waiting times, respectively. Finally, LoanS-G presents the highest RED distance
due to the high-frequency differences in each process variant.

Switching to CAR, we do not observe significant differences in BPS models
that exhibit the same arrival rate, except for LoanCAL. The latter is explained
by the change in schedules, as cases cannot start until the resources start their
working period (which skews effective start times). Unsurprisingly, for LoanARR,
the difference in CAR is due to the change in the arrival model.

Finally, the last proposed measure is CTD, which reports the distance in case
duration among all the cases. The results of CTD follow a similar to RED (yet,
with different values), since cycle times correspond to the time distance between
the first and last events of the case. However, this correlation might not hold
across all scenarios. Specifically, if the distribution of executed activities in the
middle of each case is different, but the last event does not change, RED would
detect discrepancies that CTD would not (as the cycle time would remain the
same). Thus, CTD is most relevant when the analysis revolves around total cycle
times, while disregarding the temporal distribution of events within the case.

To answer EQ2, we computed the Kendall rank correlation coefficient
between NGD and CFLD, and we obtained a correlation of 1.0. Thus, in light
of the complexity of CFLD (cf. Sect. 4), we recommend using NGD to assess the
quality of a BPS model from the control-flow perspective.

5.2 Real-Life Evaluation

Datasets. To evaluate EQ3 and EQ4, we selected four real-life logs of differ-
ent complexities: i) a log from an academic credentials’ management process
(AC CRE), containing a high number of resources exhibiting low participation
in the process. ii) a log of a loan application process from the Business Process
Intelligence Challenge (BPIC) of 20127 – we preprocessed this log by retaining
only the events corresponding to activities performed by human resources (i.e.,
only activity instances that have a duration). iii) the log from the BPIC of 20178

– we pre-processed this log by following the recommendations reported by the
winning teams participating in the competition.9 And iv) a log from a call cen-
tre process (CALL) containing numerous cases of short duration – on average,
two activities per case. To avoid data leakage, we split the log of each dataset
into two sets (training and testing). These datasets correspond to disjoint (non-
overlapping) intervals in time with similar case and event intensity. The training
dataset contains cases that are fully contained in the training period, and same

7 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
8 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.
9 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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Table 3. Characteristics of the real-life logs used in the evaluation.

Event log Cases Activity instances Variants Activities Resources

AC CRE TR 398 1,945 54 16 306

AC CRE TE 398 1,788 35 16 281

BPIC12 TR 3,030 16,338 735 6 47

BPIC12 TE 2,976 18,568 868 6 53

BPIC17 TR 7,402 53,332 1,843 7 105

BPIC17 TE 7,376 52,010 1,830 7 113

CALL TR 260,889 445,567 1,689 19 2,712

CALL TE 260,890 454,807 1,573 19 2,711

Table 4. Distance measures for the BPS models discovered by SIMOD and ServiceM-
iner on the logs in Table 3. The CFLD ran out of memory (48 GB of allocated memory)
on the CALL dataset after > 2 h, thus no values are reported in those cells.

AC CRE BPIC12 BPIC17 CALL

NGD
SIMOD 0.24 (±0.01) 0.56 (±0.00) 0.37 (±0.00) 0.08 (±0.00)

ServiceMiner 0.13 (±0.01) 0.13 (±0.01) 0.06 (±0.00) 0.04 (±0.00)

CFLD
SIMOD 0.21 (±0.00) 0.55 (±0.00) 0.34 (±0.00) -

ServiceMiner 0.18 (±0.01) 0.16 (±0.00) 0.06 (±0.00) -

AED
SIMOD 91.72 (± 16.66) 61.57 (±10.80) 192.18 (±33.03) 48.13 (±0.11)

ServiceMiner 298.17 (±105.87) 29.22 (± 8.33) 51.24 (±11.90) 1.67 (±0.13)

CAR
SIMOD 110.38 (± 16.94) 336.42 (±42.98) 390.04 (±43.39) 61.68 (±0.00)

ServiceMiner 327.85 (±118.33) 153.25 (±24.76) 121.90 (±23.60) 3.57 (±0.20)

CED
SIMOD 2.22 (±0.09) 20.55 (±0.82) 10.72 (±0.50) 18.17 (±0.04)

ServiceMiner 1.63 (±0.19) 28.52 (±1.24) 9.87 (±0.42) 0.70 (±0.01)

RED
SIMOD 9.96 (±6.46) 3.99 (±0.95) 62.80 (±2.16) 0.10 (±0.00)

ServiceMiner 70.49 (±4.08) 45.91 (±2.09) 149.60 (±0.42) 0.03 (±0.01)

CTD
SIMOD 62.23 (±1.65) 93.45 (±0.71) 102.85 (±0.84) 8.18 (±0.08)

ServiceMiner 99.88 (±0.30) 124.21 (±0.33) 112.83 (±0.16) 12.04 (±0.07)

for the testing dataset. Table 3 shows the characteristics of the four training and
four testing- event logs. For each dataset, we ran two automated BPS model dis-
covery techniques (SIMOD and ServiceMiner) on the training log, and evaluated
the quality of the discovered BPS models on the test log.

Results and Discussion. Regarding EQ3, Table 4 shows the results of the pro-
posed measures for the BPS models automatically discovered by SIMOD and Ser-
viceMiner (henceforth MSIMOD and MSerMin, respectively). From the control-
flow perspective, MSerMin performs closer to the original log than MSIMOD for
all four datasets. The reason lies in the methods that the approaches use to
model the control-flow. SIMOD is designed to discover an interpretable process
model to support modification for what-if analyses. To this end, SIMOD uses a
model discovery algorithm that applies multiple pruning techniques to simplify
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the discovered model. Conversely, ServiceMiner discovers a Markov chain, which
yields more accurate results, yet can lead to complex ‘spaghetti models’.

Two main differences are reported w.r.t. the temporal and congestion aspects.
First, for Case Arrival Rate (CAR), MSerMin presents better results in BPIC12,
BPIC17, and CALL, while MSIMOD outperforms it in AC CRE. To model the
arrival of new cases, ServiceMiner splits the timeline into one-hour windows,
and bootstraps the arrivals per time window. SIMOD computes the inter-arrival
times (i.e., the time between each arrival and the next one) and estimates a
parametrized distribution to model them. The complexity of ServiceMiner’s
arrival model allows it to capture better the arrival rate in scenarios where the
density of case arrivals per hour is high, and/or the rate of arrivals varies through
time (BPIC12, BPIC17, and CALL). On the contrary, if cases are scattered over
time (AC CRE), SIMOD’s approach presents a better result.

The second main difference lies in the Relative Event Distribution (RED)
and the Cycle Time Distribution (CTD) distances. Here, MSIMOD obtains bet-
ter results in both measures except in one case. In the CALL dataset, MSerMin

obtains a smaller RED distance (both methods perform well w.r.t. the origi-
nal log). SIMOD outperforms ServiceMiner due to a high amount of extraneous
activity delays (i.e., waiting times not related to the resource allocation or activ-
ity performance) exhibited in these processes. Specifically, SIMOD includes a
component to discover extraneous delays, which improves the distribution of the
events within the case. Both techniques perform close to the original log in the
CALL dataset because extraneous delays are rare for the call centre process.

For seasonality, the Circadian Event Distribution (CED) reports slight dif-
ferences between the two methods for AC CRE and BPIC17, and a moderately
better result for MSIMOD in BPIC12. The CALL dataset presents the highest
difference, where MSerMin obtains better results, which can be attributed to its
highly accurate arrival model. The CALL dataset has mostly cases with one or
two events. Hence, case execution depends more on the arrival time of the case,
than on the activity performance and congestion models.

Combining all the temporal perspectives in one measure, the results of Abso-
lute Event Distribution (AED) follow the same distribution as CAR, where
MSerMin presents better results in BPIC12, BPIC17, and CALL, while MSIMOD

performing better in AC CRE. Although this measure summarizes all the tem-
poral performance in one, it is highly affected by the performance of the arrival
model. A wrong arrival rate propagates the error to all the events per case,
displacing them even if their relative distribution is accurate.

The proposed measures detected key differences between the considered BPS
model discovery techniques. Additionally, our results can help to identify poten-
tial improvements in these techniques. SIMOD’s inferior performance in the
control-flow perspective is expected, given that it takes a simplified process
model as input. Moreover, there is a natural fit between the control-flow mea-
sures (e.g., NGD) and the Markovian approach of ServiceMiner – as a Markov
chain is, in essence, a generative 2-gram model. The results also highlight the
benefits of SIMOD’s extraneous waiting time discovery component (a feature
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Table 5. Results of the proposed measures for the BPS models discovered by SIMOD
and ServiceMiner with the real-life logs in Table 3.

AC CRE BPIC12 BPIC17 CALL

AED
SIMOD 117.32 (± 18.85) 313.30 (±41.50) 314.92 (±43.02) 61.76 (±0.08)

ServiceMiner 315.88 (±115.60) 79.19 (±16.12) 65.56 (±12.55) 3.47 (±0.19)

CAR
SIMOD 110.38 (± 16.94) 336.42 (±42.98) 390.04 (±43.39) 61.68 (±0.00)

ServiceMiner 327.85 (±118.33) 153.25 (±24.76) 121.89 (±23.60) 3.57 (±0.20)

CED
SIMOD 3.11 (±0.18) 2.10 (±0.07) 1.65 (±0.03) 4.72 (±0.00)

ServiceMiner 2.50 (±0.27) 2.34 (±0.03) 1.65 (±0.02) 1.03 (±0.03)

RED
SIMOD 48.19 (±1.72) 96.82 (±1.61) 132.31 (±1.68) 0.00 (±0.00)

ServiceMiner 74.50 (±0.18) 150.83 (±0.57) 150.26 (±0.28) 0.00 (±0.00)

that ServiceMiner does not have). Finally, although ServiceMiner’s arrival model
achieved the best results in most of the scenarios, the evaluation in AC CRE
point towards an improvement opportunity in the situation where cases arrive
at a slow rate.

To evaluate EQ4, Table 5 shows the result of AED, CAR, CED, and RED
measures when computing the distance with 1WD, instead of EMD. The results
follow the same distribution in all cases, except in the CED measure on the
BPIC17 dataset, and the RED measure on the CALL dataset. In both cases,
the slight differences shown by EMD are reduced to a similar value by both
techniques. For arrivals, as explained in Sect. 3, computing the distance with
EMD and 1WD provide the same result, as the number of observations in both
samples is the same (i.e., the number of cases). In conclusion, computing the
distance using 1WD leads to similar conclusions at a lower computational cost.
Thus, we recommend using 1WD when the masses of both time series are close
to each other, and when the number of observations (amount of mass) is large.

Threats to Validity

The evaluation reported above is potentially affected by the following threats
to the validity. First, regarding internal validity, the experiments rely only on
8 BPS models of one synthetic process, and 8 automatically discovered BPS
models from 4 real-life processes. The results could be different for other datasets.
Second, regarding external validity, the evaluation was assessed with real-life
event logs from processes of different domains. However, the results could not be
generalized for processes of domains presenting specific unseen characteristics.
Third, regarding construct validity, we proposed a set of measures of goodness
based on discretized distributions and time series. The results could be different
for other measures. Finally, regarding ecological validity, the evaluation compares
the BPS models against the original log. While this allows us to measure how well
the simulation models replicate the as-is process, it does not allow us to assess
the goodness of the simulation models in a what-if setting, e.g., predicting the
performance of the process after a change.
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6 Conclusion

We proposed a multi-perspective approach to measure the ability of a BPS model
to replicate the behavior recorded in an event log. The approach decomposes sim-
ulation models into three perspectives: control-flow, temporal, and congestion.
We defined measures for each of these perspectives. We evaluated the adequacy
of the proposed measures by analyzing their ability to discern the impact of
modifications to a BPS model. The results showed that the measures are able
to detect the alterations in their corresponding perspectives. Furthermore, we
analyzed the usefulness of the metrics in real-life scenarios w.r.t. their ability to
uncover the relative strengths and weaknesses of two approaches for the auto-
mated discovery of BPS models. The findings showed that beyond capturing the
quality of BPS model and identifying the sources of discrepancies, the measures
can also assist in eliciting areas for improvement in these techniques. Finally, as
some of the proposed measures present higher computational cost, we evaluated
more efficient measures, finding that they perform similarly to computationally-
heavy methods.

In future work, we will explore the applicability of the proposed measures to
other process mining problems, e.g., concept drift detection and variant analysis.
Studying how to assess the quality of BPS models in the context of object-centric
event logs is another future work avenue. Lastly, we aim to study other quality
measures for BPS models adapted from the field of generative machine learn-
ing, for example, by using a discriminative model that attempts to distinguish
between data generated by the BPS model and real data.

Reproducibility. The scripts to reproduce the experiments, the datasets,
and the results are publicly available at: https://doi.org/10.5281/zenodo.
7761252. The measures have been implemented as a Python package
(log-distance-measures) installable from pip, and the code is publicly available
at: https://github.com/AutomatedProcessImprovement/log-distance-measures.
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Abstract. Process mining endeavors to extract fact-based insights into
processes based on event data stored in information systems. Due to the
variety of processes in different fields and organizations, there does not
exist a universal technique to allow for putting the process mining out-
come directly into action. Various techniques have been developed to sup-
port human analysis. Meanwhile, as raw event data are often provided at
the system level, the abstraction principle is applied to “lift” the data to
a higher level for human interpretation, which is called event abstraction.
Owing to the limitation of the information systems deployed in practice,
most abstraction techniques are developed based on the assumption that
all process activities are performed sequentially, ignoring the fact that
there may be activities performed concurrently or the relation of the
activity executions could not be clearly defined. In this paper, we pro-
pose an event abstraction framework based on partial order patterns. We
extract the candidate pattern instances and abstract event data based
on the pattern instances identified. Moreover, we instantiate the frame-
work and optimize the implementation. The framework is evaluated with
synthetic event data, and a case study based on a real-life process is per-
formed, demonstrating the applicability of the framework.

Keywords: Process mining · Event abstraction · Partial orders

1 Introduction

Modern organizations rely on business processes executed with the support of
information systems, which generate event data recorded during process execu-
tion. Process mining aims to extract valuable insights from such event data [2].
Numerous process mining techniques were developed to gain insights into various
aspects; process discovery reveals the actual behavior of a process, which is often
represented with a process model [4]; conformance checking identifies deviations
in a process [6]; performance analysis detects inefficiencies and bottlenecks in a
process [7]; process enhancement attempts to enhance a process model based on
factual insights discovered [20].
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Fig. 1. A process model discovered based on real-life event data [19], which abstracts
the behavior of 36 activities executed in 4, 366 ways in a process instance.

To turn process mining results into actionable insights, the outcomes must
be interpretable for humans, which is often achieved through the use of a process
model annotated with relevant information for a limited number of activities.
Typically, process mining techniques are directly applied to raw event data,
i.e., event data as recorded in information systems, resulting in outcomes that
may be too detailed or complex for human analysts as shown in Fig. 1, which
is impossible for humans to derive valuable insights without going into detail.
Due to the highly flexible and complex nature of real-life processes, the field
of event abstraction emerged to abstract event data to a higher level based on
the predefined or identified regularity of the execution of activities, i.e., well-
defined process steps, for human interpretability. By abstracting event data to
a higher level, the complexity is simplified, allowing stakeholders to understand
and interpret the results.

As most information systems deployed in practice support sequence data,
event data are often structured as a total order of the execution of activities.
Consequently, most event abstraction techniques are developed based on the
assumption that activities are executed sequentially. In practice, activities can
be executed concurrently, e.g., when a person multitasks, and/or the order of
executions cannot be clearly defined, e.g., when the executions are recorded at
the granularity of days, which leads to partially ordered event data.

We propose a framework to extract patterns from partially ordered event data.
By leveraging a pattern class defined by domain experts as an expected relation
of the execution of concepts, e.g., activities, in a process, the framework identifies
the corresponding pattern instances, i.e., the executions of the pattern class. The
abstraction is achieved by aggregating pattern instances; thereby, the framework
can be iteratively applied to construct a hierarchy of abstractions. We initiate
and implement the framework with a generic approach for identifying pattern
instances. Furthermore, we optimize the framework for extracting candidate pat-
tern instances, i.e., potential sets of event data that may be pattern instances.
We apply the framework to synthetic event data and experiment with the effect
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Table 1. A running example of partially ordered event data. Every row is a record
representing an activity instance characterized by its identifier (AID), the identifier of
the process instance it belongs to (cid), the activity name (Activity), and the duration
of the execution (Start and Complete Timestamp).

cid Activity (Abbre.) AID Start Timestamp Complete Timestamp

1 Get Appointment (A) 1 2021-03-26 10:36:09 2021-03-26 10:36:09

1 Consult (C) 2 2021-03-26 11:07:53 2021-03-26 11:20:23

1 Review History (R) 3 2021-03-26 11:07:07 2021-03-26 11:22:10

1 Phlebotomize (P) 4 2021-03-26 13:36:16 2021-03-26 13:39:27

1 Conduct Lab Test (L) 5 2021-03-29 00:00:00 2021-04-04 00:00:00

1 Conduct Lab Test (L) 6 2021-03-29 00:00:00 2021-04-04 00:00:00

1 Diagnose (D) 7 2021-04-09 15:32:02 2021-04-09 15:47:20

1 Provide Treatment (T) 8 2021-04-15 00:00:00 2022-05-22 00:00:00

1 Provide Treatment (T) 9 2021-05-04 00:00:00 2022-05-26 00:00:00

1 Provide Treatment (T) 10 2021-05-22 00:00:00 2022-09-03 00:00:00

1 Phlebotomize (P) 11 2022-09-08 20:09:40 2022-09-08 20:11:51

1 Conduct Lab Test (L) 12 2022-09-11 00:00:00 2022-09-17 00:00:00

1 Conduct Lab Test (L) 13 2022-09-13 00:00:00 2022-09-18 00:00:00

1 Evaluate (E) 14 2022-09-21 05:04:36 2022-09-21 05:32:15

of noises. To demonstrate the applicability, we conduct a case study based on
real-life event data based on the abstraction obtained with the framework.

The paper is structured as follows. A running example is presented in Sect. 2.
Section 3 introduces the mathematical concepts, which are applied to define the
framework in Sect. 4. We introduce the implementation in Sect. 5 and show the
experiments in Sect. 6. Finally, we review related work in Sect. 7 and discuss
future directions in Sect. 8.

2 Running Example - A Treatment Procedure

Table 1 presents an excerpt of synthetic event data, which serves as a running
example that we use throughout the paper. Every row represents an activity
instance. The table records the activities executed in a treatment procedure of
a patient. After the patient got an appointment at 10:36:09, he/she consulted
the general practitioner and the practitioner reviewed the medical history of the
patient at the same time. Then, a nurse phlebotomized the patient and sent the
blood samples to two laboratories for different hematological tests. The reports
were then sent back to the general practitioner for a diagnosis. Based on the
outcome, the patient was sent to three specialists for further treatment. After
roughly 1 year of treatment, the same blood tests are conducted again and the
outcome of treatment is evaluated.
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In Table 1, Get Appointment is executed in a time moment, as is often
assumed in classical event data; Conduct Lab Test and Provide Treatment
are recorded at the granularity of days, which causes unclear ordering, e.g.,
the two lab tests conducted at the first time; other activities are executed and
recorded in time duration. Due to the time interleaving and different granular-
ity recorded, such data form partially ordered event data1, requiring a different
abstraction mechanism compared to sequentially ordered event data.

Fig. 2. Visualization
of a pattern class.

Figure 2 visualizes a pattern class, assumed to be pro-
vided by domain experts, which specifies that two lab tests
must be performed concurrently after phlebotomization.
By representing an activity instance with its abbreviated
activity and its identifier as a subscript, we can extract
three sets of activity instances in Table 1 given the pat-
tern class: {P4, L5, L6}, {P11, L12, L13}, and {P4, L12, L13}.
Every set of activity instances forms a pattern instance.
As the blood sample phlebotomized with P4 is used for
L5 and L6, and the blood sample collected with P11 is used for L12 and L13, we
characterize the former two pattern instances as local pattern instances.

3 Preliminaries

Let X be an arbitrary set. P(X) = {X ′ | X ′⊆X} denotes the powerset of X
and |X| denotes the number of elements in X. A sequence over X is a function
σ : {1, 2, ..., n} → X, where σ is written as 〈x1, x2, . . . , xn〉. A strict partial order
is a binary relation ≺ on X, written as (X,≺), which is irreflexive (∀x ∈ X,x ⊀

x), asymmetric (∀x, y ∈ X,x ≺ y =⇒ x 
= y), and transitive (∀x, y, z ∈
X,x ≺ y ∧ y ≺ z =⇒ x ≺ z). (X,≺·) denotes the covering relation of (X,≺)
such that ∀x1, x2 ∈ X(x1 ≺ x2), we write x1 ≺· x2 if and only if �x′ ∈ X(x1 ≺
x′ ∧ x′ ≺ x2). For simplicity, we write (X,≺) = X as the shorthand for the
elements in (X,≺) and refer to a strict partial order as a partial order.

Given an arbitrary set X, l is a function of X to a set of labels; a partial order
on X with such a function is called a labeled partial order and written as (X,≺, l).
Let X and Y be two arbitrary sets. Given (X,≺, lX) and (Y,≺, lY ), (X,≺, lX)
and (Y,≺, lY ) are label-preserving isomorphic, denoted as (X,≺, lX)�(Y,≺, lY ),
iff there exists a bijective relation b : X → Y s.t. ∀x1, x2 ∈ X,x1 ≺ x2 ⇐⇒
b(x1) ≺ b(x2), and ∀x ∈ X, lX(x) = lY (b(x)).

Let (X,≺, l) be a labeled partial order on an arbitrary set X. Let z be an
arbitrary element, where z /∈ X, and lz is a labeling function of z. The function
ADD((X,≺, l), z, lz) adds z into (X,≺, l) s.t. ADD((X,≺, l), z, lz) = (X ′,≺′, l′)
where X ′ = X ∪ {z}, ≺′=≺ ∪(X × {z}).

Definition 1 (Event Data). A case is a process instance. Ucon is the universe
of concepts defined in a process, e.g., an activity; Uinst is the universe of the
1 A collection of time intervals must be a partial order; nevertheless, the proposed

framework is based on partial orders, which is more generically applicable. The
example is provided with timestamps as a motivating example.
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Fig. 3. Visualization of the covering relation of the activity instances in Table 1.

instances, e.g., an activity instance; Ucid is the universe of case identifiers. A
log, L = (CI,≺, πcon, πcid), where

– CI ⊆ Uinst is a set of instances;
– ≺ = CI × CI is a partial order on CI;
– πcon : CI → Ucon, where πcon(ci) is the concept of an instance ci ∈ CI;
– πcid : CI → Ucid, where πcid(ci) is the identifier of the case that an instance

ci ∈ CI belongs to.

We let CID(L) = {πcid(ci) | ci ∈ CI} denote the case identifiers in L. Given
c ∈ CID(L), CIc = {ci ∈ CI | πcid(ci) = c} and cL = (CIc,≺c), where
≺c = ≺ ∩ (CIc × CIc).

Figure 3 visualizes the covering relation of the instances in the case in Table 1.
Every node represents an instance, which is labeled with its identifier as a sub-
script and the corresponding (abbreviated) concept, i.e., the activity. The arrows
indicate the covering relation among the instances.

4 Framework

We introduce and define the framework in this section. First, we outline the
mechanism of the proposed framework in Sect. 4.1. Based on the mathematical
notations introduced, we define a pattern class and the corresponding pattern
instances in Sect. 4.2. The extraction of candidate pattern instances is introduced
in Sect. 4.3. Finally, we detail the abstraction with the identification of pattern
instances in Sect. 4.4.

4.1 Overview

Figure 4 presents a schematic overview of the proposed framework. We assume
that a log with partially ordered event data is provided. A pattern class can be
defined by a domain expert or with the knowledge obtained during the explo-
ration of the log. Given a pattern class, the framework exhaustively extracts all
the candidate pattern instances in the log. Next, one identifies partial orders of
pattern instances from the candidate pattern instances where the relationship
between the identified pattern instances is defined in a flexible manner. Finally,
an abstracted log based on the pattern class is constructed. Since the pattern
class and the extraction and the identification of pattern instances support par-
tially ordered event data, the proposed framework can be iteratively applied to
the abstracted log based on another pattern class.
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Fig. 4. A schematic overview of the framework. There are three key steps in the frame-
work, the extraction of candidate pattern instances, the identification of partial orders
of pattern instances, and the abstraction based on the pattern class.

4.2 Pattern Class and Pattern Instance

A pattern class is an expected relation of the execution of concepts; a pattern
instance is, intuitively, a set of instances that adhere to the expectation. We
formally define a pattern class as follows.

Definition 2 (Pattern Class). A pattern class PC = (X,≺, l), where l : X →
Ucon, is a labeled partial order where |X| ≥ 2. We assume that a pattern class is
a concept defined in a process such that PC ∈ Ucon. We say that {l(x) | x ∈ X}
are the underlying concepts of a pattern class.

A pattern instance is a labeled partial order of instances that is label-
preserved isomorphic to a pattern class as defined below.

Definition 3 (Pattern Instance). Let L be a log. Given c ∈ CID(L), let cL =
(CIc,≺c). Given CI ⊆ cL and a pattern class PC ∈ Ucon, a pattern instance
pi = (CI,≺, πcon), where ≺ = ≺c ∩ (CI × CI), is a labeled partial order over
CI where pi � PC. We assume that a pattern instance pi is an instance s.t.
pi ∈ Uinst and πp

cid : Uinst → Ucid and πp
con : Uinst → Ucon, where πp

cid(pi) = c
and πp

con(pi) = PC. We say that pi are the underlying instances of pi.

We define a pattern class with at least two elements since it is trivial with a
single element as it simply implies the projection of the label of the element on
instances. Meanwhile, with the constraint imposed on a pattern class, a pattern
instance consists of at least two instances. Note that a pattern instance is defined
in the context of a case and the definition above allows for the extraction of a
pattern instance where the relations of the underlying instances are undefined.
Figure 5 presents the pattern instances of the pattern class PC visualized in
Fig. 2. To differentiate with the visualization of event data, an element in a
pattern class is visualized with a square labeled with the corresponding concept;
the arrows indicate the partial order relation of the elements.

Meanwhile, a pattern instance may consist of instances that are hardly related
in practice. For example, the pattern instance pi3 visualized in Fig. 5 suggests
that the lab tests are conducted based on the blood sampled one and a half
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Fig. 5. Visualization of the pattern instances of the pattern class PC defined in Fig. 2
for the case in Table 1, where ∀1 ≤ i ≤ 3, πp

con(pii) = PC and πp
cid(pii) = 1. Note that

pi1 and pi2 are local pattern instances.

years ago. Compared to pi3, the other pattern instances, pi1 and pi2 in Fig. 5,
are more likely to be the pattern instances that one has in mind. Hence, to
further identify a pattern instance with closely related instances, we characterize
a pattern instance as a local pattern instance if the underlying instances are
related based on the covering relation.

Definition 4 (Local Pattern Instance). Let pi ∈ Uinst be a pattern instance.
We characterize pi as a local pattern instance iff ∀ci1, cin ∈ pi(ci1 
= cin),
∃〈ci1, ci2, . . . , cin〉, where ∀1≤i≤n, cii ∈ pi and ∀1≤i<n, cii ≺· cii+1 ∨ cii+1 ≺· cii.

By iteratively applying the framework, we identify pattern instances in every
iteration. Hence, a pattern instance consists of a set of instances that may be
activity instances and/or pattern instances identified in the previous iteration.

4.3 Candidate Pattern Instances

Given a pattern class, first, we search for all the possible pattern instances of a
pattern class in a log, which we name as candidate pattern instances. Since an
instance is only related to one case, the search is performed for every case and
the collection of the candidate pattern instances identified for every case in a log
is the candidate pattern instances in the log.

Definition 5 (Candidate Pattern Instance Extraction). Let L be a
log and PC be a pattern class. Let cL = (CIc,≺c), where c ∈ CID(L). We
define function EXTL : Ucid × Ucon → P(P(Uinst) × P(Uinst × Uinst)), where
EXTL(c,PC) = {can = (CI,≺, πcon) | CI ⊆ CIc,≺ = ≺c ∩ (CI × CI), can � PC}
denotes the candidate pattern instances of PC in c.

The candidate pattern instances in a case are a set of partial orders of
instances that are isomorphic to the pattern class. With the same example,
the partial orders of activity instances visualized in Fig. 5 are extracted as the
candidate pattern instances.

4.4 Abstraction Based on Patterns

We aggregate the underlying instances of a pattern instance to construct an
abstracted log. The pattern instances are identified for every case in a log and
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the relation between an instance in a case and a pattern instance is inferred
from the underlying instances of the pattern instance. First, we generalize the
identification of pattern instances as follows.

Definition 6 (Pattern Instance Identification). Let L be a log and CAN
be the candidate pattern instances in c ∈ CID(L). We define the function
IDENc : P(P(Uinst) × P(Uinst × Uinst)) → P(Uinst) × P(Uinst × Uinst), where
IDENc(CAN) = (PI,≺) is a partial order of pattern instances PI ⊆ CAN in c,
where ∀pi1, pi2 ∈ PI(pi1 
= pi2), pi1 ≺ pi2 =⇒ ∃ci ∈ pi1∀CI′ ∈ pi2(ci ≺ ci′).

The pattern instances in a case are a subset of the candidate pattern instances
in the case. The identification can be initiated in a flexible manner while the
partial order relation of the pattern instances identified must not violate the
minimum requirement specified in Definition 6. Note that two different pattern
instances may share some underlying instances.

Figure 6 motivates the necessity of the flexible instantiation of the identifi-
cation of pattern instances. Suppose that we extract two local pattern instances
pi1 and pi2 as specified in Fig. 6. By simply inferring the relation of the pattern
instances based on the underlying instances, pi1 ⊀ pi2 since they share a4. How-
ever, assume that the a4 represents a milestone achieved in a waterfall process;
it is more reasonable to define the relation as pi1 ≺ pi2. Hence, we generalize the
identification of pattern instances and allow one to impose the constraints that
are applicable to the organization; nevertheless, a generic instantiation is also
implemented and introduced in the next section.

Finally, the abstraction is realized by aggregating the pattern instance identi-
fied and defining the relation between the pattern instances and other instances.

Definition 7 (Abstraction). Let L = (CI,≺, πcon, πcid) be a log. Let
PIL = {pi | c ∈ CID(L) : πp

cid(pi) = c} be the pattern instances in L; ≺p= PIL ×
PIL denotes the partial order on PIL. Given CIrst = CI \ ⋃

pi∈PIL
pi and ≺rst =

≺ ∩ (CIrst × CIrst), i.e., the partial order of instances that are not in any pattern
instances. An abstracted log, L′ = (CI′,≺′, π′

con, π′
cid), is a log derived from L

where

– CI′ = CIrst ∪ PIL is a set of instances;

Fig. 6. A motivating example of pattern instance identification, where the identified
pattern instances, pi1 and pi2, are annotated and pi1 ≺ pi2.
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– ≺′ = ≺rst ∪ ≺p ∪ (CIrst × PIL) is a partial order on CI′, where ∀ci ∈ CIrst∀pi ∈
PIL(πcid(ci) = πp

cid(pi)), ci ≺ pi ⇐⇒ ∀ci′ ∈ pi(ci ≺ ci′) and pi ≺ ci ⇐⇒
∀ci′ ∈ pi(ci′ ≺ ci);

– π′
con : CI′ → Ucon, where ∀ci ∈ CI′, ci ∈ CIrst ⇐⇒ π′

con(ci) = πcon(ci) ∧
ci ∈ PIL ⇐⇒ π′

con(ci) = πp
con(ci);

– π′
cid : CI′ → Ucid, where ∀ci ∈ CI′, ci ∈ CIrst ⇐⇒ π′

cid(ci) = πcid(ci) ∧
ci ∈ PIL ⇐⇒ π′

cid(ci) = πp
cid(ci).

We define the key artifacts, i.e., a pattern class and a pattern instance, in
this section. We further impose constraints on the relation among the underlying
instances of a pattern instance to identify pattern instances that could be more
suitable under certain circumstances in practice. The proposed framework is
introduced and illustrated with the running example described in Sect. 2.

5 Implementation

In this section, we present the implementation of the framework. We explain the
implementation of candidate pattern instances extraction in Sect. 5.1, followed
by the extraction of local pattern instances in Sect. 5.2. A generic method to
identify pattern instances is introduced in Sect. 5.3.

5.1 Extracting Candidate Pattern Instances

To extract the candidate pattern instances in a case, we incrementally add
instances to a partial order of instances in the case and check for isomorphism
between the instances selected and a pattern class. Let PC = (X,≺, l) be a
pattern class and L be a log. Given a case c ∈ CID(L), cL = (CIc,≺c). Given
CI ⊆ CIc and ≺po = ≺c ∩ (CI × CI), we let po = (CI,≺po, πcon). We define the
following functions:

– INIT : P(Uinst) × P(Uinst × Uinst) → P(P(Uinst) × P(Uinst × Uinst)), where
INIT(cL) initiates a set of partial orders of instances to be extended where
∀(CI′,≺′) ∈ INIT(cL), CI′ ⊆ CIc and ≺′ = ≺c ∩ (CI′ × CI′).

– SEL : P(Uinst) × P(Uinst × Uinst) × P(Uinst) × P(Uinst × Uinst) → P(Uinst),
where SEL(po, cL) ⊆ CIc selects a set of instances to be added into po where
∀ci ∈ SEL(po, cL), ci /∈ po.

– CHECK : P(Uinst) × P(Uinst × Uinst) × Uinst × Ucon → {true, false}, where
CHECK(po, ci,PC) checks if adding ci ∈ CIc into po may form a candidate
pattern instance of PC, i.e., let po′ = ADD(po, ci, πcon), CHECK(po, ci,PC) =
true iff ∃X ′ ⊆ PC(|X ′| ≥ 1∧po′ � (X ′,≺X′ , l)), where ≺X′ = ≺ ∩ (X ′ × X ′);
if X ′ = PC, po′ forms a candidate pattern instance.

Algorithm 1 illustrates the implementation of EXTL(c,PC) in Definition 5
with the three key functions defined. The algorithm initiates a set of partial
orders of instances and incrementally adds other instances. If there are no
instances to be added such that it may form a candidate pattern instance of the
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input pattern class in the later iteration, we discard the partial order of instances.
Otherwise, we check if the instances form a candidate pattern instance. If so, the
instances form a candidate pattern instance, or the partial order of instances is
added back to the open items to be checked in the next iteration.

A (labeled) partial order can be easily converted into a (labeled) directed
acyclic graph (DAG). By representing a partial order of instances and a pat-
tern class as labeled DAGs, we apply graph edit distance [17], i.e., a measure of
similarity between two graphs that searches for the minimal cost of graph oper-
ations to make one graph isomorphic to the other, to check for the isomorphism
between two partial orders.

Algorithm 1. Candidate Pattern Instance Extraction

Input: case c ∈ CID(L), a pattern class PC ∈ Ucon

Output: a collection of candidate pattern instances of PC in c, i.e., candidates
1: cL = (CIc, ≺c)
2: open ← INIT(cL) � a set of partial orders of instances
3: candidates ← {} � an empty set to collect candidate pattern instances
4: while open do
5: po ← open.pop()
6: CI′ ← SEL(po, cL) � instances to add incrementally
7: for ci ∈ CI′ do
8: if CHECK(po, ci,PC) then � if po can be a potential candidate

� pattern instance of PC by adding ci
9: po′ ← ADD(po, ci, πcon)

10: if po′ � PC then
11: candidates.add(po′)
12: else
13: open.add(po′) � add po′ back to open for the next iteration
14: end if
15: end if
16: end for
17: end while

Optimization. We optimize the implementation by reducing the search space
while ensuring that the relation among the instances is not altered. The optimiza-
tion of the algorithm can be easily achieved by directly projecting the relevant
instances in a case, i.e., the instance of the underlying concepts of a pattern
class, since the relation among the instances remains after the projection.

5.2 Extracting Local Pattern Instances

The local pattern instances may be extracted by selecting from the pattern
instances identified. Alternatively, we search for candidate pattern instances with
the property of local pattern instances. The search of local pattern instances may
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be implemented in a similar way as described in Algorithm 1, however, with the
isomorphism check based on the covering relation of partial orders. The check
is realized by representing the covering relation of a partial order with a DAG,
which is the transitive reduction of the DAG representing the partial order.

Nevertheless, the optimization of the search cannot be performed in the
same way as the projection of relevant instances may result in missing rela-
tions in the graph representing the covering relation of a partial order. Hence,
we must ensure the connectivity of the covering relation of a partial order
of instances. Let PC = (X,≺, l) be a pattern class. Given start activities
SA = {l(x) | x ∈ X, �x′ ∈ X(x′ ≺ x)}, we add an artificial start node and the
relation from the start node to every node labeled with activity in SA to the
graph representing a case. We remove a node if there does not exist an undi-
rected path from the start node to the node. Then, the projection of relevant
instances may be performed and we optimize the search with the bread-first
search strategy.

5.3 Identification of Pattern Instances

One may impose semantic constraints on IDENc to identify pattern instances.
Alternatively, for a generic application of the framework, we implement IDENc

by introducing an overlapping threshold t ∈ R, where 0 ≤ t < 1. Let L be a
log and CAN denote the candidate pattern instances in a case c ∈ CID(L). For
any pi1, pi1 ∈ IDENc(CAN), |pi1 ∩ pi2|/|pi1 ∪ pi2| ≤ t; if t = 0, a set of disjoint
candidate pattern instances are identified as pattern instances. We determine
the relation between pi1 and pi2 based on the majority relation of the non-
shared underlying instances, i.e., given CI1 = pi1 \ pi2 and CI2 = pi2 \ pi1, pi1 ≺
pi2 ⇐⇒ |{ci1 ∈ CI1 | ci2 ∈ CI2(ci1 ≺ ci2)}|/|CI1| > 0.5; note that we assume that
πp
con(pi1) = πp

con(pi2) s.t. |CI1| = |CI2|. The instantiation is non-deterministic.
The abstraction, based on the given pattern instances and their relation, is

straightforward to implement, following the guidelines outlined in Definition 7.
As a result, an abstracted log is computed based on the pattern class, which
serves as the input for the subsequent iteration of another pattern class.

6 Experiments

In this section, we present the application of the proposed framework with a
synthetic log and conduct a case study based on a real-life log [19].

6.1 Evaluation

We construct a partially ordered log containing 5, 000 cases based on the process
in Fig. 7, from which Table 1 is extracted. We evaluate the proposed framework
in three aspects: the number of pattern instances selected, the performance with
optimization applied, and the quality metrics of the process models discovered.
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Fig. 7. A process model used for generating the synthetic log. The model is represented
with BPMN [1]. The labels correspond to the abbreviation of activity labels in Table 1.

Defining Pattern Classes. We define four pattern classes. Let the pattern
class visualized in Fig. 2 be pattern class PC2; other pattern classes are visualized
in Fig. 8. We identify local pattern instances for PC1 (Fig. 8a) and PC2 (Fig. 2).
The pattern class PC3 defined in Fig. 8b consists of three concurrent Provide
Treatment. The pattern class PC4 is defined by other pattern classes and activity
Diagnose (D). As the framework abstracts a log based on one pattern class at a
time, the numbers indicate the corresponding iteration.

Experimental Setup. Inspired by [12], we evaluate the impact of noises on
the proposed framework. We inject n%, where n ∈ {10, 20, 30}, of noises to the
log by injecting n% of noises to every case as illustrated in Algorithm 2. We
randomly select n% of instances in a case and swap the relation with one of the
directly succeeding instance for every instance selected, i.e., given an instance
ci, we select an instance ci′(ci 
= ci′), where ci ≺· ci′, and swap the relation. For
discovering the process models, we applied Inductive Miner - Infrequent with a
noise threshold of 0.2 [8].

Figure 9 shows the number of pattern instances identified for every pattern
class. Since the first three pattern classes do not share common activity labels,
the number of pattern instances extracted is independent; however, the number
of pattern instances of Treatment Process (PC4) dramatically decreases since
the pattern class is defined based on other pattern classes; hence, the number of
pattern instances abstracted is also limited to the number of pattern instances of
other pattern classes. The number of pattern instances identified for PC2 is much
higher than other pattern classes since the pattern class can be conducted several
times in a case. In addition, with the percentage of noise injected increasing, the

Fig. 8. Pattern classes defined for synthetic log. Abbreviated labels are provided for
simplicity. Note that PC4 is defined based on PC2, PC3, and Diagnose.
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Algorithm 2. Noise Injection of Case

Input: case c ∈ CID(L), a noise percentage n ∈ {10%, 20%, 30%}
Output: case with noise c′ = (CI′, ≺′)
1: c′ = (CIc, ≺c) � initiate a partial order of instances in case c
2: cnt ← floor(|CIc| × n) � number of pairs of instances to swap
3: CI ← randomly select cnt instances � CI ⊆ CIc, where |CI| = cnt
4: for ci ∈ CI do
5: ci′ ← SelectFollowingNeighbor(ci, cL) � ci ≺· ci′
6: c′ ← Swap(ci, ci′)
7: end for

number of pattern instances identified decreases because the noise alters the
relation of the instances in the log.

Figure 10 presents the average time required to abstract a case based on the
pattern classes defined. Regardless of the optimization, abstracting a case based
on a pattern class requires less than 1 second. With optimization, the runtime is
further reduced to 4 times faster; for the pattern class of Basic Consultation
(PC1), the optimization even results in 16 times faster. Meanwhile, we observe
that the abstraction based on the pattern class Treatment (PC3) is much faster
than other abstractions since the checking for isomorphism is much faster as the
graph representing the pattern class contains only isolated nodes labeled with
Provide Treatment and no relation, represented with edges in a graph, needs
to be examined.

Figure 11 reports the quality metrics of the process models discovered based
on the abstracted logs. We see that the noise has a negative impact on the
fitness as shown in Fig. 11a. Except for the abstraction based on PC4 without
noise injection, the fitness is correlated with the number of pattern instances
abstracted as shown in Fig. 9. Compared to fitness, the noise has less impact on
the precision as shown in Fig. 11b. Interestingly, with more noise injected, which
causes fewer pattern instances abstracted, the precision increases. By analyzing
the conformance details, we infer that it is due to the unmatched instances that
are labeled with the underlying concepts of a pattern class, which impacts the
number of instances in a case and further influences the metrics. The harmonic

Fig. 9. Number of pattern instances
abstracted per pattern class with dif-
ferent noise injection.

Fig. 10. Average abstraction time in
microsecond per case based on the pat-
tern classes defined.
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mean of the fitness and the precision, F-measure, as shown in Fig. 11c enhances
due to the increase in fitness.

Fig. 11. Quality metrics of process models discovered using abstracted logs. The ranges
of the y-axis of the plots are uniformly set from 0.6 to 1.0 for comparison.

6.2 Case Study

To demonstrate the proposed framework in practice, we apply the framework
to a real-life log [19]. We preprocess the log to construct a partially ordered
log based on timestamps. We pair every start record with exactly one complete
record based on their order to construct an activity instance. The pattern classes
are defined by sets of activities indicating a successful operation. Figure 12 shows
one of the pattern classes, indicating a successful application.2

Figure 14 presents an excerpt of the analysis. The figure shows the behavior
of the process with the relative frequency projected on the visualization. The
analysis shows that, since the pattern classes are defined by sets of successful

Fig. 12. Successful Application (PC1),
where WC is expected to be executed
concurrently in time with activities.

Fig. 13. Number of pattern instances
abstracted per pattern class defined for
case study.

2 We define PC2 as concurrent {O SENT BACK, W Nabellen offertes}, PC3 as concur-
rent {O ACCEPTED, A APPROVED, A REGISTERED, A ACTIVATED, W Valideren aanvraag},
and PC4 as a sequence of PC1, PC2, and PC3 (considering that a total order is also
a partial order).
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Fig. 14. An excerpt of the analysis based on an abstracted log. The visualization is
based on IMflc [9] and the shade of color shows the relative importance based on the
number of instances identified on the path. We highlight the defined pattern classes.

operation occurring sequentially in a process, as the process continues, the per-
centage of successful operations also decreases. The percentage of successful end-
to-end operation, i.e., PC4, depends on the last successful operations, i.e., PC3.
The analysis is further supported by the number of pattern instances abstracted
based on the pattern classes defined in Fig. 13. Meanwhile, with abstraction,
we can easier identify and further investigate the unsuccessful executions, e.g.,
other activities shown in the excerpt. In addition, we apply the abstraction with
the technique proposed in [14], where we model the undefined relations in the
pattern classes as parallelism in the representation of the regularity defined in
the work. With the same sets of activities in the regularity defined as the pattern
classes, the technique does not identify any instances.

7 Related Work

This section discusses the research in event abstraction in the field of process
mining. Numerous event abstraction techniques focus on identifying regularity in
event data to group activities or records of activities. The authors in [18] apply
a statistical model to predict the class of a record at a higher level. Nguyen
et al. decompose a process into sets of activities by exploiting the modularity
metrics based on a graph constructed from event data [15]. In [11], the authors
apply clustering based on the features encoded from fragments of a sequence of
event data, which are seen as an instance at the higher level and are provided
with domain knowledge. The work focuses on identifying the regularity from
sequential event data with strong assumptions on a process, e.g., sensor data
and milestone existence; the identification of the instances at the higher level is
rather straightforward or ignored due to the assumption of classical event data.

To facilitate analyzing event data at a higher level, it is important that, not
only concepts at the higher level, an instance of a concept at the higher level
is also identified such that one may apply abstraction iteratively based on their
needs. Some work applies the hierarchy of concepts to construct a hierarchy of
abstractions [10,13]. In Lu et al. [13], an instance at the higher level is extracted
by projecting the relevant records. Leemans et al. apply the discovering tech-
niques to discover groups of process models at different levels and compose them
to construct a complete model at the specified level [10]; the extraction of an
instance is achieved with alignment [3]. The alignment is also exploited to iden-
tify instances of the regularity identified in [14]. In Bose and van der Aalst [5],
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the authors discover frequent local execution regularity and abstract accordingly.
The techniques discussed consider the iterative applicability; however, except for
simply projecting the records in [13], the extraction of the instances at the higher
level tends to be limited to local regularity.

This paper explicitly considers partially ordered event data and focuses on
the extraction of the pattern instances. For discovering the regularity, since a
pattern class and a case can be represented as labeled DAGs, we argue that exist-
ing techniques for frequent graph pattern mining may be exploited [16]. With
a pattern class defined based on partial order relation, the extraction achieves
beyond local regularity and the reliability of the abstraction can be enhanced
with the support of human analysts by providing a more comprehensible repre-
sentation, i.e., the regularity that can be directly mapped to the behavior of the
execution of concepts, e.g., activities, observed in real-life.

8 Conclusion

Motivated by the applicability of event abstraction in practice, we present and
define a framework for identifying pattern instances based on partially ordered
event data, which reflect the behavior of the activities performed in real-life.
The framework abstracts a log based on a pattern class by extracting candi-
date pattern instances and identifying pattern instances of the pattern class. We
implemented the framework and conducted experiments by constructing a hier-
archy of abstractions based on a synthetic and a real-life log. The experiments
demonstrate the impact of noises and how one can obtain insights from the anal-
ysis based on abstracted logs. The framework is also applicable to classical event
data since a total order is also a partial order. For future work, our objectives
are two-fold. First, we aim to further support in defining the order of pattern
classes as specified by domain experts. Second, we plan to extend the extraction
to identify unexpected behavior in partially ordered event data, while explicitly
considering the causal relation of the instances.
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Abstract. Process discovery learns process models from event data and
is a crucial discipline within process mining. Most existing approaches
are fully automated, i.e., event data is provided, and a process model is
returned. Thus, process analysts cannot interact and intervene besides
parameter settings. In contrast, Incremental Process Discovery (IPD)
enables users to actively participate in the discovery phase by gradually
selecting process behavior to be incorporated into a process model. Fur-
ther, most discovery approaches assume process executions, also termed
traces, recorded in event data to be complete—complete traces span
the actual process from start to completion. Incomplete traces are usu-
ally removed in the event data preparation as most discovery algorithms
cannot handle them respectively treat them simply as full traces. This
paper presents a novel IPD approach that can incorporate process behav-
ior recorded in trace fragments, thus supporting incomplete data. Our
experiments show promising results indicating that using trace fragments
within IPD leads to high-quality process models.

Keywords: Process mining · Process discovery · Alignments

1 Introduction

Process discovery, i.e., learning process models from event data, is a critical
discipline within process mining. Discovered models are vital artifacts as they
capture the actual execution of processes. Further, many subsequently applied
process mining techniques require models as input, for example, generating tem-
poral performance diagnostics and conformance checking statistics [9]. Moreover,
these models are used for specifying process-aware information systems [15].

Most process discovery approaches are fully automated [3,22,23]. They take
event data as input and return a process model. Apart from parameter settings,
users cannot interact with these algorithms despite choosing the input event
data and post-processing the discovered model. Moreover, most process discovery
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Fig. 1. Overview of Incremental Process Discovery (IPD) with trace fragments and
potential origins of trace fragments. Process analysts gradually select process behavior,
i.e., full traces and trace fragments, that is added to the process model

algorithms consider the process executions, i.e., traces, recorded in the event data
to be complete—traces are assumed to span the process from start to completion.
Trace fragments are usually filtered during event data preparation [6,7].

In contrast to conventional process discovery, taking event data as input and
returning a process model, domain-knowledge-utilizing process discovery utilizes
additional information besides event data, e.g., user feedback in an interactive
discovery phase [10] or explicitly-specified knowledge like precedence constraint
among activities [12]. We provide a review of such approaches in [19].

This paper focuses on Incremental Process Discovery (IPD) [17], which dis-
covers process models from event data by gradually extending a model by new
process behavior, cf. Fig. 1. The central research question addressed is: How can
trace fragments, i.e., trace prefixes/infixes/postfixes, be (incrementally) added
to a process model? We answer this question by proposing a novel IPD app-
roach that allows gradually discovering models from trace fragments and full
traces. Thus, the proposed approach utilizes incomplete process behavior, i.e.,
trace fragments. We evaluate the proposed approach on real-life event data.
The results indicate that incorporating trace fragments is beneficial and yields
high quality process models. The results further show that a distinction between
trace fragments and full traces can lead to better models compared to approaches
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that do not support fragments respectively consider all traces as full. Finally, we
implemented the approach in the open-source process mining tool Cortado [20].1

Consider Fig. 1; trace fragments may originate from different sources. First,
event data itself may contain incomplete respectively partial traces that often
occur when event data of a specific time range is extracted from information sys-
tems. Since trace fragments are usually not labeled as such and are considered
complete by state-of-the-art process discovery approaches, event data prepara-
tion techniques must be used, e.g., [6], to identify trace fragments that can then
be added to the fragment pool, cf. Fig. 1. Second, users can manually extract
relevant fragments from full traces. Reasons to proceed in this way are manifold.
For instance, an analyst does not want certain variations from full traces that
cover specific process stages in the discovered process model; instead, the analyst
is only interested in specific fragments. Finally, users can manually create trace
fragments during IPD if particular process behavior is not present in the data
but should be reflected by the discovered model.

This paper addresses current challenges within business process management
(BPM) and process mining. Central research challenges of the BPM discipline
are identified in [4]. One challenge is the augmentation “of process mining with
common sense and domain knowledge” [4, p. 3]. Domain knowledge about the
process under study is often available besides event data; however, process min-
ing techniques often do not utilize such domain knowledge. IPD itself and the
proposed trace-fragment-supporting IPD approach allow such exploitation of
domain knowledge because 1) users gradually select process behavior (full traces
and fragments) to be incorporated into the process model under discovery and
2) can specify how traces from event data are interpreted, i.e., either as full
or prefix/infix/postfix traces. By manually creating trace fragments (cf. Fig. 1),
another means to incorporate domain knowledge exists. The authors [4] further
argue that domain knowledge utilization is beneficial to overcome event data
quality issues.

The remainder of this paper is structured as follows. Section 2 presents related
work, while Sect. 3 introduces preliminaries. We present the proposed trace-
fragment-supporting IPD approach in Sect. 4. An initial evaluation of the pro-
posed approach is presented in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

Plenty of conventional, automated process discovery algorithms exist; we refer
to [3,22,23] for overviews. These mainly differ in the model formalism used, guar-
antees of the discovered model concerning model properties (e.g., soundness),
concerning the event data provided (e.g., replay fitness), and computational
complexity. From an input/output perspective, however, these algorithms work
similarly, i.e., they take event data as input and automatically learn a model.
Domain-knowledge-utilizing process discovery approaches are significantly less

1 https://cortado.fit.fraunhofer.de (from version 1.10.0).

https://cortado.fit.fraunhofer.de
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common than conventional process discovery. We provide a systematic litera-
ture review in [19]. As considered in this work, IPD has been initially proposed
in [17]. In [21], the authors also use the term incremental process discovery. How-
ever, they create multiple transition systems describing process behavior and
then incrementally compose them into a single transition system from which
a process model is eventually discovered. Thus, their definition of incremental
discovery is unrelated to ours, as illustrated in Fig. 1.

Process model repair [2,11,14] is related to IPD, as elaborated in [19].
Model repair techniques extend process models by non-fitting process behav-
ior. Although repair techniques are not intended to be used incrementally, they
can be used similar as illustrated in Fig. 1. However, they create a process model
as close as possible to the input process model since the focus is on repairing
and not on discovering. This objective is an essential difference from IPD, where
this objective does not necessarily exist and is even disadvantageous because the
model in the discovery process is constantly being developed and changed.

To the best of our knowledge, no discovery approach, neither conventional
nor domain-knowledge-utilizing, and no model repair approach addresses trace
fragments explicitly. Thus, even if there is domain knowledge that allows traces
to be identified as fragments and labeled as such, no existing approach supports
it. However, note that discovery approaches utilizing region theory [5] can handle
prefixes. On the contrary, trace fragments—most approaches consider all traces
complete—are typically filtered from event logs to obtain better models [6,7].
Thus, supporting trace fragments within IPD is a novelty.

3 Preliminaries

Let X be a set. We denote the universe of multi-sets over X by B(X) and the set
of all sequences over X as X∗, e.g., [a3, c] ∈ B({a, b, c}) and 〈a, b, b〉 ∈ {a, b, c}∗.
Given two multi-sets M,M ′ ∈ B(X), we denote their union by M � M ′. We
denote the length of a sequence σ by |σ|. For 1≤i≤|σ|, σ(i) represents the i-th
element of σ. Given sequences σ and σ′, we denote their concatenation by σ·σ′,
e.g., 〈a〉·〈b, c〉 = 〈a, b, c〉. We extend the · operator to sets of sequences, i.e., let
S1, S2⊆X∗ then S1·S2 = {σ1·σ2 |σ1∈S1∧σ2∈S2}. For sequences σ, σ′, the set of
all interleaved sequences is denoted by σ	σ′, e.g., 〈a, b〉	〈c〉 = {〈a, b, c〉, 〈a, c, b〉,
〈c, a, b〉}. We extend the 	 operator to sets of sequences. Let S1, S2⊆X∗, S1	S2

denotes the set of interleaved sequences, i.e., S1	S2 =
⋃

σ1∈S1,σ2∈S2
σ1	σ2.

For σ∈X∗ and X ′⊆X, we define the projection function σ↓X′ :X∗→(X ′)∗

with: 〈〉↓X′ =〈〉,
(
〈x〉·σ

)
↓X′

=〈x〉·σ↓X′ if x∈X ′, and (〈x〉·σ)↓X′ =σ↓X′ otherwise.
Let t=(x1, . . . , xn) ∈ X1× . . . ×Xn be an n-tuple over n sets. We define pro-

jection functions that extract a specific element of t, i.e., π1(t)=x1, . . . , πn(t)=xn,
e.g., π2 ((a, b, c)) =b. For a sequence σ = 〈(x1

1, . . . , x
1
n), . . . , (xm

1 , . . . , xm
n )〉 ∈

(X1× . . . ×Xn)∗ containing n-tuples, we define projection functions π∗
1(σ) = 〈x1

1,
. . . , xm

1 〉, . . . , π∗
n(σ) = 〈x1

n, . . . , xm
n 〉; e.g., π∗

2 (〈(a, b), (c, d), (c, b)〉) =〈b, d, b〉.
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→
n0

n1.1

×
n2.1

→
n3.1

a

n4.1

b

n4.2 ∧
n3.2

c

n4.3

d

n4.4

τ

n2.2 ∧
n1.2

e

n2.3

a
n2.4

f

n2.5

Fig. 2. Exemplary process tree T0 =
(
V0, E0, λ0, n0) with V0 = {no, . . . , n4.4}, E0 ={

(n0, n1.1), . . . , (n3.2, n4.4)
}
, and λ(n0) = →, . . . , λ(n4.4) = d

3.1 Event Data

Event logs are a collection of event data describing the execution of a process.
Individual process executions, referred to as traces, are considered sequences of
executed activities. For instance, σ = 〈a1, a2, . . . , an〉 is a trace consisting of n
activities, and L =

[
〈c, b, d〉3, 〈a, e, d〉2

]
is an event log that consists of 5 traces.

Definition 1 (Trace & Event Log). Let A be the universe of activities. A
trace σ is a sequence of activities, i.e., σ ∈ A∗. An event log L is a multi-set of
traces, i.e., L ⊆ B(A∗).

3.2 Process Models

We use process trees that represent a subclass of sound workflow nets and are
an important model formalism used by many discovery approaches [8,13,17].
Process trees are rooted, labeled, ordered trees where leaf nodes represent activ-
ities and inner nodes control-flow operators that specify the execution of its
subtrees. We distinguish four operators: sequence (→), parallel (∧), loop (�),
and exclusive choice (×). Figure 2 depicts an example process tree T0.

Definition 2 (Process Tree). Let A be the universe of activities with τ /∈A
and

⊕
={→,×,∧,�} be the process tree operators. We define a process tree as

a labeled, rooted tree T=(V,E, λ, r) consisting of a totally ordered set of nodes
V , edges E ⊆ V ×V , a labeling function λ : V → A∪{τ}∪

⊕
, and a root r∈V .

–
(
{n}, ∅, λ, n

)
with λ(n)∈A∪{τ} is a process tree.

– Given k>1 trees T1=(V1, E1, λ1, r1), . . . , Tk=(Vk, Ek, λk, rk), node r /∈ V1∪ . . .
∪Vk, and ∀1≤i<j≤k(Vi∩Vj=∅) then T=(V,E, λ, r) is a process tree where:

• V = V1 ∪ · · · ∪ Vk ∪ {r},
• E = E1 ∪ · · · ∪ Ek ∪

{
(r, r1), . . . , (r, rk)

}
,

• λ(x)=λj(x) for all j∈{1, . . . , k}, x∈Vj, and
• λ(r) ∈

⊕
and λ(r) = � ⇒ k = 2.

We denote the universe of process trees by T .
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ρ = (n0, open),
(n1.1, open),

(n2.1, open),
(n3.2, open),

(n4.4, d), (n4.3, c),
(n3.2, close),

(n2.1, close),
(n1.1, close),
(n1.2, open),

(n2.3, e), (n2.5, f), (n2.4, a),
(n1.2, close),

(n0, close)

Fig. 3. Running sequence ρ∈RS(T0)

For an arbitrary T=(V,E, λ, r) ∈ T ,
we define function cT : V → V ∗

that returns the child nodes of a given
node sorted accordingly; for instance,
cT0(n1.2) = 〈n2.3, n2.4, n2.5〉. We refer to
the Lowest Common Ancestor (LCA) of
two nodes n, n′ ∈ V as lcaT (n, n′) ∈ V ;
e.g., lcaT0(n4.4, n2.2) = n1.1. The function
ΔT (n) → T returns the subtree rooted at
n ∈ V from T . We write T ′ � T to denote
that T ′ is a subtree of T .

We define the semantics of process
trees via running sequences consisting of
2-tuples where the first entry is a node n
and the second entry is either the label if
n is a leaf node or a label indicating the opening or closing of the subtree rooted
at n. Figure 3 shows one running sequence ρ of process tree T0. Note that ρ
corresponds to the trace

(
π∗
2(ρ)

)
↓A

= 〈d, c, e, f, a〉.

Definition 3 (Running Sequence). Let A be the universe of activities with
τ, open, close /∈ A. Let S = V × (A ∪ {τ, open, close}) be the set of steps. For
T=(V,E, λ, r) ∈ T , we recursively define its running sequences RS(T ) ⊆ S∗.

– if λ(r) ∈ A∪{τ} (T is a leaf node): RS(T ) =
{〈

(r, λ(r))〉
}

– if λ(r) =→ with child nodes cT (r)=〈v1, . . . , vk〉 for k≥1:
RS(T ) =

{〈
(r, open)

〉}
·RS(�T (v1))· . . . ·RS(�T (vk))·

{〈
(r, close)

〉}

– if λ(r) = × with child nodes cT (r)=〈v1, . . . , vk〉 for k≥1:
RS(T ) =

{〈
(r, open)

〉}
· RS(�T (v1))∪ . . . ∪RS(�T (vk)) ·

{〈
(r, close)

〉}

– if λ(r)=∧ with child nodes cT (r)=〈v1, . . . , vk〉 for k≥1:
RS(T ) =

{〈
(r, open)

〉}
· RS(�T (v1))	 . . . 	RS(�T (vk)) ·

{〈
(r, close)

〉}

– if λ(r) = � with child nodes cT (r)=〈v1, v2〉:
RS(T ) =

{〈
(r, open)

〉
·σ1·σ′

1·σ2·σ′
2·. . .·σm·

〈
(r, close)

〉
| m≥1 ∧ ∀1≤i≤m

(
σi∈

RS(�T (v1))
)

∧ ∀1≤i<m
(
σ′

i∈RS(�T (v2))
)}

The language of a tree T ∈ T is a set of supported traces, i.e., L(T ) ={
π∗
2(σ)↓A | σ∈RS(T )

}
⊆A∗. Further, we define its prefix/infix/postfix language.

– Lprefix(T ) = {σ1 | σ1, σ2 ∈ A∗ ∧ σ1 · σ2 ∈ L(T )}
– Linfix(T ) = {σ2 | σ1, σ2, σ3 ∈ A∗ ∧ σ1 · σ2 · σ3 ∈ L(T )}
– Lpostfix(T ) = {σ2 | σ1, σ2 ∈ A∗ ∧ σ1 · σ2 ∈ L(T )}

Finally, we formally introduce fitness-preserving process discovery.

Definition 4 (Fitness-Preserving Process Discovery). Let L ⊆ B(A∗) be
an event log. We define a fitness-preserving, automated process discovery algo-
rithm as a function disc : B(A∗) → T such that L ⊆ L

(
disc(L)

)
.
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Fig. 4. Examples of optimal alignments for process tree T0 (cf. Fig. 2)

3.3 Alignments

Alignments [1] are a state-of-the-art conformance-checking technique [9] to com-
pare process models with traces. Full alignments, often referred to as alignments,
and prefix alignments have been introduced in [1]. In [16], we define infix and
postfix alignments and describe their computation. Fig. 4 shows an exemplary
full, prefix, infix, and postfix alignment for different trace (fragments) and tree
T0. In general, the first row, i.e., the trace part, of any alignment corresponds to
the trace (fragment) when ignoring the skip symbol �. Analogously, the second
row, i.e., the model part, corresponds to a running sequence (fragment) of the
tree when ignoring �. Each column represents an alignment move; we generally
distinguish five types: synchronous moves , log moves , visible model moves ,

invisible model moves , and opening & closing model moves .

Definition 5 (Full/Prefix/Infix/Postfix Alignment). Let A be the uni-
verse of activity labels, �/∈ A∪{τ}, σ ∈ A∗ be a trace (fragment), T=(V,E, λ,
r) ∈ T , and S = V × (A∪{τ, open, close}) be the set of running sequence steps.
Sequence γ ∈

(
(A∪{�})×(S∪{�})

)∗ is a full/prefix/infix/postfix alignment if:

1. σ = π∗
1(γ)↓A ,

2. – Full alignment: π∗
2(γ)↓S

∈ RS(T ),
– Prefix alignment: ∃ρ ∈ S∗(π∗

2(γ)↓S
· ρ ∈ RS(T )

)
,

– Infix alignment: ∃ρ1, ρ2 ∈ S∗(ρ1 · π∗
2(γ)↓S

· ρ2 ∈ RS(T )
)
,

– Postfix alignment: ∃ρ ∈ S∗(ρ · π∗
2(γ)↓S

∈ RS(T )
)
,

3. (�,�) /∈ γ,
4. ∀1≤i≤|γ|

(
π1(γ(i))∈A ∧ π2(π2

(
γ(i)))∈A ⇒ π1(γ(i))=π2(π2(γ(i)))

)
, and

5. ∀1≤i≤|γ|
(
π2(π2

(
γ(i)))∈{open, close} ⇒ π1(γ(i))=�

)
.

We denote the universe of full/prefix/infix/postfix alignments for T and σ by
Γfull(T, σ), Γprefix (T, σ), Γinfix (T, σ), and Γpostfix (T, σ). We denote the universe
of alignments as Γ (T, σ) = Γfull(T, σ)∪Γprefix (T, σ)∪Γinfix (T, σ)∪Γpostfix (T, σ).
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Consider Fig. 4d, γ4 =
〈(

e,�), (e, (n2.3, e)), (f, (n2.5, f)), (�, (n1.2, close)),
(�, (n0, close))

)〉
is a postfix alignment. Let γ ∈ Γ (T, σ) and γ(i) for 1≤i≤|γ|

be an alignment move. We introduce abbreviations for ease of reading.

– traceLabel
(
γ(i)

)
= π1(γ(i))

– modelNode
(
γ(i)

)
=

{
π1

(
π2(γ(i))

)
if π2

(
γ(i)

)
∈ S

� otherwise

– modelLabel
(
γ(i)

)
=

{
π2

(
π2(γ(i))

)
if π2

(
γ(i)

)
∈ S

� otherwise

For example, consider postfix alignment γ4 shown in Fig. 4d: traceLabel
(
γ4(2)

)
=

e, modelNode
(
γ4(2)

)
= n2.3, and modelLabel

(
γ4(2)

)
= e.

For an alignment γ ∈ Γ (T, σ), we say that the alignment move γ(i) for
1≤i≤|γ| indicates a deviation if it is a log move, i.e., traceLabel(γ(i)) = �, or a
visible model move, i.e., traceLabel(γ(i)) = � ∧ modelLabel(γ(i)) ∈ A.

Let � ∈ {full , prefix , infix , postfix}, T ∈ T , and σ ∈ A∗. Since many align-
ments exist for a given trace (fragment) and a process tree, the concept of opti-
mality exists. An alignment is optimal if the number of visible model moves and
log moves is minimal. We define four functions align� : T ×A∗ → Γ�(T, σ) that
return a � alignment for σ ∈ A∗ and T ∈ T . We write alignopt

� to indicate that
we compute an optimal � alignment.

4 Trace-Fragment-Supporting IPD

This section describes the proposed trace-fragment-supporting IPD approach
(cf. Fig. 1) that builds on the IPD approach presented in [17], which only fea-
tures full traces. The basic idea, however, remains. When a full trace/trace
fragment is added that is not contained in the language of the current pro-
cess tree, the proposed approach determines relevant subtrees in the given pro-
cess tree causing the deviation and rediscovers these deviating subtrees such
that previous added traces/trace fragments and additionally the given trace
(fragment) are supported. The remainder of this section presents the algorithm
in detail. Section 4.1 presents the core part of the algorithm and introduces a
running example. Next, Sect. 4.2 describes how deviating subtrees are identi-
fied, and Sect. 4.3 introduces the corresponding sub-log calculation needed for
rediscovery.

4.1 Overview

This section provides an overview of the proposed approach. Further, we intro-
duce a running example demonstrating various critical steps of the approach, cf.
Fig. 5. Below, we list the required four inputs.

1. trace (fragment) σnext ∈ A∗ to be added next to the current process tree
2. interpretation � ∈ {full , prefix , infix , postfix} of trace (fragment) σnext

3. previously added traces and trace fragments, divided into full traces Lfull ⊆
A∗, prefixes Lprefix ⊆ A∗, infixes Linfix ⊆ A∗, and postfixes Lpostfix ⊆ A∗
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4. process tree T∈T , supporting previously added traces/trace fragments, i.e.,
Lfull ⊆ L(T ), Lprefix ⊆ Lprefix(T ), Linfix ⊆ Linfix(T ), and Lpostfix ⊆
Lpostfix(T )

Note that the proposed approach requires an initial process tree as input to start
the incremental process discovery in the very first iteration. For example, this
initial process tree can consist of only a single (invisible) activity. Alternatively,
users can manually model an initial tree or use a conventional process discovery
algorithm to discover one.

The output of the trace-fragment-supporting IPD algorithm is a process tree
T that, in addition to the previously added traces and trace fragments, con-
tains σnext in its language—depending on σnext’s interpretation, σnext ∈ L�(T ).
Subsequently, we introduce the overall algorithm, presented in Algorithm 1, and
exemplify critical steps with the running example shown in Fig. 5.

Fig. 5. Running example of a full execution of the proposed IPD approach
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Input Preparation. Algorithm 1 requires that the input artifacts, the tree T
and the traces/trace fragments as described above, are extended by an artificial
start and end activity. These artificial activities are needed to ensure the correct
integration of trace infixes and postfixes into T .

1. Process tree T is extended by start , end /∈ A activities, e.g., cf. Fig. 5a.
2. Trace (fragment) to be added next σnext and previously added traces/trace

fragments are correspondingly extended by start and end activities to match
the extended process tree T , for example, consider Fig. 5b.

Extending Process Tree T . This section describes Algorithm 1. First, we
calculate an optimal full/prefix/infix/postfix alignment γ according to σnext ’s
interpretation. In case γ does not indicate a deviation, we know that σnext ∈
L�(T ) and return. Otherwise, we call Algorithm 2 in line 3 that determines
the subtree TLCA � T that causes the first cohesive block of deviations, as
indicated in γ. Hereinafter, assume that TLCA exists. Next, we calculate sub-log
LLCA for the determined subtree TLCA, cf. line 4. The sub-log corresponds to
all sub-traces that TLCA must be able to replay, i.e., LLCA �⊆ L(TLCA). Sub-log
LLCA is therefore calculated based on previous added full/prefix/infix/postfix
traces and the trace (fragment) to be added next, i.e., σnext . Next, we replace
TLCA � T by a new subtree disc(LLCA) ∈ T that fully supports the computed
sub-log, i.e., LLCA ⊆ L(disc(LLCA)) (line 5). Again, we compute alignment γ
for the modified tree T and σnext (line 2). If γ still indicates deviations, we
repeat the procedure described above until all deviations are resolved. Note
that the termination of Algorithm 1 is guaranteed since in each iteration of the
while block (line 2–6), the first contiguous block of deviations is resolved. Thus,
eventually σnext ∈ L�(T ).

Algorithm 1: TraceFragmentSupportingIPD
input : T=(V, E, λ, r) ∈ T , // process tree to be extended
� ∈ {full , prefix , infix , postfix}, σnext ∈ A∗, // � trace σnext to be added to

L�(T )
Lfull , Lprefix , Linfix , Lpostfix ⊆ B(A∗), // previously added full traces/trace

fragments
output: T ∈ T // σnext ∈ L�(T ), Lfull ⊆ L(T ), Lprefix ⊆ Lprefix(T ),

Linfix⊆Linfix(T ), Lpostfix⊆Lpostfix(T )
begin

1 L� ← L� � [σnext ]; // add σnext to the corresponding log Lnext

2 while γ ← alignopt
� (T, σnext) indicates a deviation do // σnext /∈ L�(T )

3 TLCA ← DetermineSubtree(T, γ) ; // Alg. 2
if TLCA then

4 LLCA ← SubLog(T, TLCA, Lfull, Lprefix, Linfix, Lpostfix); // Alg. 3
5 T ← replace TLCA � T by disc(LLCA)∈T ;

else // no subtree causing the deviation could be determined
6 T ← extend T according to Fig. 6;

7 return T ;
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Consider the running example, cf. Fig. 5. The postfix alignment (cf. Fig. 5c)
indicates a deviation—the second move is a log move, i.e., activity a cannot be
replayed twice in the model. Next, we compute the subtree TLCA that causes
the deviation, cf. Fig. 5d. TLCA supports the postfix 〈a, f〉 but not the postfix
〈a, a, f〉. Since we want to replace respectively rediscover TLCA, we calculate a
corresponding sub-log LLCA, cf. Fig. 5e. The actual computation is explained in
a subsequent section. However, note that the calculated sub-log LLCA contains
〈e, a, a, f〉. Thus, when discovering a tree from LLCA using a fitness-preserving
discovery algorithm (cf. Definition 4), the discovered tree supports the execution
of two subsequent a activities.

So far, we assumed that TLCA causing the deviation(s) as indicated in γ could
be determined. However, one case exists in which TLCA cannot be determined,
i.e., σnext is an infix, and T does not contain any of its activities. Hence, γ
includes only log moves. Thus, we do not have any reference point in the tree

∧

→
r

start

ns

end

ne

×

τ

disc([σnext ])

T

Fig. 6. Extending tree T by an optional parallel subtree supporting σnext

Algorithm 2: DetermineSubtree (called in Alg. 1 line 3)
input : T ∈ T , γ ∈ Γ (T, σnext) // alignment for trace (fragment) σnext and T
output: TLCA � T// subtree that is responsible for the first deviation (block)
begin

1 forall 1≤i≤|γ| do
2 if γ(i) indicates a deviation then
3 ibefore ← closest move γ(ibefore) before γ(i) that is a synchronous

move or an invisible model move (if possible, otherwise null);
4 iafter ← closest move γ(iafter ) after γ(i) that is a synchronous move

or an invisible model move (if possible, otherwise null);
5 if ibefore ∧ iafter then // both corresponding moves exist
6 return ΔT

(
lcaT

(
modelNode(γ(ibefore)),modelNode(γ(iafter ))

))
;

7 else if ibefore then // only a corresponding move before exists
8 return ΔT

(
modelNode(ibefore)

)
;

9 else if iafter then // only a corresponding move after exists
10 return ΔT

(
modelNode(iafter )

)
;

11 else
12 return null ;
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where the infix should happen. In this case, we extend tree T as depicted in
Fig. 6, i.e., we discover a subtree disc([σnext ]), make it optional, and add it in
parallel to T (cf. line 6). This extension guarantees that σnext ∈ L�(T ). This
described procedure is however usually very The next sub-sections introduce the
algorithms DetermineSubtree and SubLog called in Algorithm 1 (line 3 and 4).

4.2 Subtree Detection

Algorithm 2 describes the subtree detection DetermineSubtree of TLCA. As input,
Algorithm 1 provides tree T and alignment γ ∈ Γ�(T, σnext) indicating a devi-
ation. The central idea is to find the first deviation (block) in γ and the closest
alignment moves that: surround the found deviation (block), do not indicate a
deviation, and correspond to an executed leaf node of T , cf. line 3 and 4. If
such two moves can be found, we compute an LCA from the corresponding leaf
nodes of these moves. We know that the subtree rooted at the computed LCA
is causing the deviation (block), and hence, we return it (line 6). If we can only
find one of the two moves, we return the subtree rooted at the corresponding
node—this subtree consists of only a leaf node and indicates that around this
leaf node, a deviation occurs regarding σnext . In the particular case that no sur-
rounding move can be found, we return nothing, cf. line 12. Note that this case
can only happen if we have an infix alignment containing only log moves—all

Algorithm 3: SubLog (called in Alg. 1 line 4)
input : T∈T , TLCA�T, Lfull , Lprefix , Linfix , Lpostfix⊆B(A∗)
output: LLCA ⊆ B(A∗) // sub-log for TLCA

begin
1 LLCA ← []; // initialize sub-log for TLCA

2 forall σ ∈ Lfull do

3 γ ← alignopt
full(T, σ);

4 LLCA ← LLCA � ExtractSubTraces(TLCA, γ, {1 , . . . , |γ|}); // Alg. 4

5 forall σ ∈ Lprefix do

6 γ ← alignopt
prefix (T, σ) · alignpostfix (T, 〈〉) such that γ∈Γfull(T, σ);

7 I ← {1, . . . , i} such that 〈γ(1), . . . , γ(i)〉 = alignopt
prefix (T, σ);

8 LLCA ← LLCA � ExtractSubTraces(TLCA, γ, I ); // Alg. 4

9 forall σ ∈ Linfix do

10 γ ← alignprefix (T, 〈〉) · alignopt
infix (T, σ) · alignpostfix (T, 〈〉) such that

γ∈Γfull(T, σ);

11 I ← {i, . . . , i+n} such that 〈γ(i), . . . , γ(i+n)〉 = alignopt
infix (T, σ);

12 LLCA ← LLCA � ExtractSubTraces(TLCA, γ, I ); // Alg. 4

13 forall σ ∈ Lpostfix do

14 γ ← alignprefix (T, 〈〉) · alignopt
postfix (T, σ) such that γ∈Γfull(T, σ);

15 I ← {i, . . . , |γ|} such that 〈γ(i), . . . , γ(|γ|)〉 = alignopt
postfix (T, σ);

16 LLCA ← LLCA � ExtractSubTraces(TLCA, γ, I ); // Alg. 4

17 return LLCA;
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Fig. 7. Extending the postfix alignment from the running example (cf. Fig. 5c)

other alignments have at least a synchronous move on the initially added start
or end activity (cf. Fig. 5a).

Consider alignment γ from the running example (cf. Fig. 5c). Its first and only
deviation is at the second move, surrounded by two synchronous moves represent-
ing the execution of node n2.4 and n2.5. Thus, we compute LCAT (n2.4, n2.5) =
n1.2, and return subtree TLCA rooted at n1.2 (cf. Fig. 5d) because this subtree
does not support executing two a activities, as indicated by γ.

4.3 Sub-log Calculation for Detected Subtree

Algorithm 3 describes the sub-log calculation SubLog called in Algorithm 1 line
4 for the determined subtree TLCA. The output of the sub-log calculation is an
event log LLCA that the determined subtree TLCA must support. To this end,
all traces and trace fragments including σnext are aligned with T � TLCA to
identify the corresponding sub-traces that TLCA must support.

For example, consider postfix alignment γ (cf. Fig. 5c) and TLCA with root
node n1.2 (cf. Fig. 5d). Adding σnext=〈a, a, f〉 to sub-log LLCA would result in an
unnecessary imprecise subtree because when replacing TLCA by a rediscovered
tree from LLCA, activity e would be optional. However, no previously added
trace (fragment) nor σnext requires activity e being optional. Thus, we extend
postfix alignment γ to a full one such that TLCA is fully executed within the
model part. Figure 7 exemplifies such an extension of γ. For each full execution
of TLCA, we generate a sub-trace. TLCA is opened in move 12, and closed in move
17. All moves in between that represent the execution of a leaf node (i.e., move
13, 14, and 16) are contained in TLCA. Thus, we add the sub-trace 〈e, a, a, f〉 to
LLCA. We proceed similarly for previously added traces and trace fragments.
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Algorithm 4: ExtractSubTraces (called in Alg. 3)
input : TLCA=(VLCA, ELCA, λLCA, rLCA) � T, γ∈Γfull(T, σ), I ⊆ {1, . . . , |γ|}
output: L ⊆ B(A∗) // sub-log for TLCA

begin
1 L ← [ ]; // initialize sub-log for TLCA

forall 1≤i≤|γ| do // iterate over alignment moves
2 σ′ ← 〈〉;
3 if VLCA = {rLCA} then // TLCA is leaf node
4 while modelNode(γ(i)) �= rLCA do
5 if γ(i) is log move then
6 σ′ ← σ′ · 〈traceLabel(γ(i))〉; // add log moves

7 i ← i+1;

if modelNode(γ(i)) = rLCA then // rLCA is executed
8 σ′ ← σ′ · 〈modelLabel(γ(i))〉; // modelLabel(γ(i)) = λLCA(rLCA)
9 if

∀i<j≤|γ|
(
γ(j) is neither a sync. nor an invisible model move

)

then
10 σ′ ← σ′ ·

〈
traceLabel(γ(j)), . . . , traceLabel(γ(|γ|))

〉
↓A

;

11 L ← L � [σ′];

12 else // TLCA is a subtree with more than one node
13 if modelNode(γ(i)) = rLCA ∧ modelLabel(γ(i)) = open then
14 while modelNode(γ(i)) �= rLCA ∨ modelLabel(γ(i)) �= close do

// consider all subsequent moves until rLCA is closed
15 if modelNode(γ(i))∈VLCA ∧

[
γ(i) is synchronous move ∨(

γ(i) is visible model move ∧ i/∈I
)]

then
16 σ′ ← σ′ · 〈modelLabel(γ(i))〉;

else if traceLabel(γ(i)) ∈ A then
17 σ′ ← σ′ · 〈traceLabel(γ(i))〉;
18 i ← i+1;

19 L ← L � [σ′];

20 return L;

Algorithm 3 provides the sub-log calculation. For full traces, we calculate a
full alignment (line 4) and extract the corresponding sub-traces. For trace frag-
ments, we compute a corresponding prefix/infix/postfix alignment and expand
this into a full alignment, as exemplified in Fig. 7. Extending to full alignments
is required as TLCA might span larger parts of the process and hence might be
only partially executed within the prefix/infix/postfix alignment. For instance,
consider Fig. 7. The depicted postfix alignment does not contain a full execution
of TLCA.

Algorithm 4 defines the extraction of sub-trace(s) for TLCA from full align-
ments. If TLCA is a leaf node (line 3), we add all log moves until TLCA is executed.
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If afterwards TLCA is never executed again, potential log moves after the last
execution of TLCA are also added to the sub-trace σ′. Thus, per execution of
TLCA one sub-trace is added to L. Note that log moves only occur for the trace
to be added, for all other previously added traces/trace fragments log moves do
not occur in γ. If TLCA is a leaf node (line 12), we search for the opening of
TLCA (line 13). All activities from visible model/synchronous moves that belong
to TLCA (line 16) and log moves (line 17) are added to σ′ until TLCA is closed.

5 Evaluation

We present an initial evaluation of the proposed trace-fragment-supporting IPD
approach. The central goal of the evaluation is to showcase that distinguishing
trace fragments from full traces within IPD leads to comparable or even better
process models than classic IPD [17], considering all traces as full ones.

5.1 Experimental Setup

We compare trace-fragment-supporting IPD (TFS-IPD) with IPD [17] and auto-
mated conventional process discovery algorithms: Inductive Miner (IM) [13],
IM infrequent (IMf) [13], and evolutionary tree miner (ETM) [8]. All listed
approaches discover process trees. We use publicly available real-life event logs.2

Note that event logs generally consider all traces recorded as full traces. Thus,
to obtain trace fragments, we proceed as follows.

1. Removing cases containing events in the first or last 20% of the period covered
by the event log (objective: filtering incomplete traces)

2. Iterating over remaining traces. With probability 1
2 we alter a full trace.

If so, we apply with probability 1
3 one of the following options (for x =

max{1, 20% avg. trace length}).
(a) we remove the first x activities (results in a trace prefix)
(b) we remove the last x activities (results in a trace postfix)
(c) we remove the first x and last x activities (results in a trace infix)

If the above procedure yields empty traces or empty trace fragments, we
ignore them. We calculate fitness and precision using the log after the first step,
as described above. For (TFS-)IPD, we discover an initial model from the 1%
most frequent full trace variants using IM. The source code of our experiments,
of (TFS-)IPD, and further results are available online.3

2 BPI Ch. 2020–Request for Payment (DOI: 10.4121/uuid:52fb97d4-4588-43c9-9d04-
3604d4613b51)
Road Traffic Fine Management (DOI: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b4
7990f)
Receipt log (DOI: 10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6).

3 https://github.com/fit-daniel-schuster/trace-fragment-supporting-incremental-
process-discovery.

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://github.com/fit-daniel-schuster/trace-fragment-supporting-incremental-process-discovery
https://github.com/fit-daniel-schuster/trace-fragment-supporting-incremental-process-discovery
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Fig. 8. Comparing IPD (left) and TFS-IPD (right)

5.2 Results

Figure 8 compares IPD with TFS-IPD for three different event logs. Both
approaches start from the identical initial model, and we add the same trace
(fragment) variants in the same order (starting from the most frequent one).
Across all logs, TFS-IPD significantly outperforms IPD in most cases. Espe-
cially in the beginning, we quickly obtain models with fitness around >90%
where TFS-IPD outperforms IPD regarding precision. Note that the goal of IPD
and TFS-IPD is not to necessarily incorporate all behavior because real-life event
logs often contain noise and are, therefore, typically filtered.

Table 1 lists the results for the different discovery approaches. Note that only
TFS-IPD distinguishes between full traces and trace fragments; other approaches
treat trace fragments as full traces. We observe that TFS-IPD often discovers



Incremental Discovery of Process Models Using Trace Fragments 71

Table 1. Model quality metrics rounded to two decimal points for the different
approaches and different percentage values of added trace (fragment) variants

Approach % of added trace
(fragment) variants

Event log

Road Traffic Fine
Management

BPI Ch. 2020–Request
for Payment

Receipt of
environmental permit
applications

F-measure fitness precision F-measure fitness precision F-measure fitness precision

Trace-fragment-
supporting
IPD

20 0.87 1.00 0.77 0.75 0.99 0.60 0.82 0.97 0.70

40 0.87 1.00 0.77 0.68 1.00 0.51 0.48 0.99 0.31

60 0.80 1.00 0.67 0.51 1.00 0.34 0.33 1.00 0.20

80 0.71 1.00 0.55 0.39 1.00 0.25 0.33 1.00 0.20

100 0.71 1.00 0.55 0.39 1.00 0.25 0.31 1.00 0.19

IPD [17] 20 0.73 1.00 0.58 0.72 0.98 0.57 0.64 0.97 0.48

40 0.73 1.00 0.58 0.72 0.98 0.57 0.40 0.99 0.25

60 0.70 1.00 0.54 0.49 1.00 0.32 0.45 1.00 0.29

80 0.70 1.00 0.54 0.45 1.00 0.29 0.45 1.00 0.29

100 0.70 1.00 0.54 0.46 1.00 0.30 0.45 1.00 0.29

IM [13] 20 0.76 1.00 0.61 0.63 1.00 0.46 0.76 0.97 0.62

40 0.72 1.00 0.57 0.68 1.00 0.24 0.42 0.84 0.28

60 0.56 1.00 0.39 0.44 1.00 0.28 0.25 1.00 0.15

80 0.65 1.00 0.48 0.39 1.00 0.24 0.28 1.00 0.17

100 0.67 1.00 0.50 0.37 1.00 0.23 0.33 1.00 0.20

IMf (0.9) [13] 20 0.81 0.78 0.84 0.52 0.54 0.50 0.76 0.97 0.62

40 0.81 0.78 0.84 0.26 0.64 0.17 0.42 0.84 0.28

60 0.75 0.66 0.86 0.17 0.65 0.10 0.25 1.00 0.15

80 0.71 0.66 0.77 0.43 0.86 0.29 0.28 1.00 0.17

100 0.71 0.66 0.77 0.17 0.64 0.10 0.33 1.00 0.20

ETM (default
settings, 60s
timeout) [8]

20 0.51 0.99 0.34 0.68 0.92 0.54 0.75 0.90 0.64

40 0.51 1.00 0.34 0.69 0.97 0.53 0.71 0.86 0.60

60 0.82 0.77 0.89 0.63 0.96 0.47 0.60 0.87 0.46

80 0.54 0.98 0.38 0.69 0.95 0.54 0.62 0.87 0.48

100 0.52 0.98 0.35 0.64 0.96 0.48 0.67 0.87 0.54

process models of similar or even higher quality regarding the metrics shown. As
expected, the more trace fragments are added by an approach, the higher the
fitness, but the precision decreases. In short, TFS-IPD often learns more precise
process models for comparable fitness values than other approaches.

6 Conclusion

We presented an IPD approach supporting trace fragments—prefix, infix, and
postfix traces. Supporting trace fragments and thus incomplete data within pro-
cess discovery is a novelty, as the general practice regarding trace fragments
usually focuses on filtering or considering fragments as full traces. We have
implemented the proposed approach, including functionalities for handling trace
fragments, in the open-source process mining tool Cortado [20]. Our experimen-
tal results indicate distinguishing trace fragments from full traces leads to high-
quality models. While this paper focused on the foundational algorithmic aspects
of supporting trace fragments in IPD, we plan to conduct a case study to inves-
tigate how process analysts can utilize trace fragments in real-world settings.
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Further, we plan to extend the sub-model freezing functionality for IPD [18] to
support trace fragments as well.
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Abstract. Alignments provide sophisticated diagnostics that pinpoint
deviations in a trace with respect to a process model. One crucial aspect
is to consider, in the alignment task, not only the control flow perspective
but also other sources of information available in event logs like data pay-
loads. However, the combination of these dimensions makes the problem
of multi-perspective trace alignment highly challenging since the number
of traces accepted by the model is typically infinite. In this paper, we
address this problem by proposing an approximate approach to align-
ment computation: instead of computing the optimal alignments based
on the complete knowledge about a process trace available in the log,
we perform approximate alignments based on lossy trace encodings that
only consider certain information about the trace. The advantage of this
approach is twofold. First, the trace alignment task is much faster. Sec-
ond, the analyst can choose what type of information is relevant for com-
puting the alignments by selecting the encodings that represent a trace
based on that information. Our experiments show that the approximate
approach is faster than the optimal one and, for encodings sufficiently
rich, able to provide accurate results.

Keywords: Conformance checking · Trace Encoding ·
Multi-Perspective process mining · SMT

1 Introduction

Conformance checking is one of the central tasks of process mining [2]. Its main
goal is to compare a reference process model with an event log containing actual
process executions to understand whether such concrete executions deviate from
the model. Within the family of conformance checking techniques, a prominent
approach is to measure and explain deviations through alignments.

An alignment is intuitively a sequence of pairs, called moves, consisting of
an event from the log and a transition in the process model. Given a suitable
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function that assigns cost to moves, an optimal alignment is an alignment whose
overall cost is minimal. This is notoriously challenging to compute, as it requires
to solve an optimization problem over a finite portion of the space of model
traces, where the portion to be considered depends on the length of the trace
under scrutiny, and comes with the additional computational burden of com-
puting trace distances. A plethora of techniques have been therefore defined to
tackle the problem in an optimal [2] or approximate [1] way.

In the alignment task, however, not only the control flow perspective is cru-
cial, but also other sources of information from event logs like data payloads.
This has led to a recent series of approaches to tackle data-aware conformance
checking [3,4,16,17]. There, Data Petri Nets (DPNs) [10,16] are the reference
model to represent a process that accounts for control-flow and data, with pro-
cess variables that can carry data values of different types.

The standard way for measuring the distance between a log trace and a
DPN is to compute optimal alignments, based on a notion of distance that
tackles at once the events, their orderings, and their data payloads. However, in
the presence of models with rich data and control flow perspectives, computing
optimal alignments can be extremely costly in terms of performance. This is also
due to the fact that even by bounding the maximum length of model traces, the
number of them is usually infinite, because of data. This calls for sophisticated
techniques to handle the data component.

In this paper, we propose an alternative approach for data-aware conformance
checking, which approximates optimal alignments based on machine learning
techniques, in particular lossy trace encodings [12,14]. To this end, we do not
work directly on models, but on sets of abstract traces. Roughly, our approach
proceeds in three stages:

(1) We build a set T of abstract traces, i.e., classes of traces representative for all
possible behaviors of the process. For this set, we propose two possibilities:
(1a) For the class of DPNs whose transition guards are only variable-to-
constant comparisons, we show how all possible behaviors up to a bounded
length can be succinctly represented by a finite set of abstract traces. (1b)
For DPNs with numeric variables but more complex guards, such a represen-
tation is in general not possible. In this case, our approach can be applied
by taking as T simply a set of “happy paths”, i.e., traces that are con-
sidered representative of the process behavior (e.g., obtained by collecting
sufficiently many cases).

(2) We use machine learning techniques known as encodings to represent T as a
set of vectors in a vector space. Here, different encodings can be employed to
preserve from the abstract traces the information that is deemed most rele-
vant for the conformance checking task. The result, called behavior encoding
space is a compact numeric representation of all relevant behaviors.

(3) In order to check the conformance of a concrete trace, we apply the encod-
ing from the previous stage to it, obtaining a vector X, and subsequently
compute the k vectors from the behavior encoding space that are closest to
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X, using a kNN-based method. From these vectors, we can then get back
the abstract traces that are considered closest to the input trace.

Note that the class of DPNs in (1a) has been found expressive and useful in
practice, and is amenable to automatic discovery techniques [8,11]. Moreover, it
is known that the process run in an optimal alignment can be upper-bounded in
length in terms of the given trace [3], and T is a complete set of representatives.
Therefore, the conformance checking task can be reformulated as the task to
select a suitable abstract trace from T , without loss of precision, which justifies
the subsequent approximation approach in stages (2) and (3).

We experimentally validate our approach for both settings (1a) and (1b),
comparing the results with the conformance checker CoCoMoT [3]. These exper-
iments show that abstract traces (1a) together with smart trace encodings and
vector space distance measures allow for a good approximation of the optimal
alignments, in terms of precision and similarity. Moreover, we show that even
when using a plain trace set as a representation of the process behaviors (1b),
the encoding-based approach approximates the optimal one with high precision.

The remainder of this paper is structured as follows: We first recall back-
ground about DPNs and alignments (Sect. 2). Then, we present our notions of
trace-based distance function and abstract traces (Sect. 3), and subsequently,
trace encodings (Sect. 4). We evaluate our approach in Sect. 5. Finally, we dis-
cuss related work (Sect. 6) and conclude (Sect. 7).

2 Background and Preliminaries

We use a restricted but significant class of Data Petri nets (DPNs) for modeling
multi-perspective processes, adopting the same formalization as in [3,16].

Let V be a set of process variables, each with a type and an associated domain:
integers (int), or rationals (rat).1 We consider two disjoint sets of annotated
variables V r = {vr | v ∈ V } and V w = {vw | v ∈V } to be read and written
by process activities, as explained below. Based on these, we define constraints
according to the grammar for c:

c ::= vz � z | vr � q | c ∧ c

where vz ∈ Vint, z ∈ Z, vq ∈ Vrat, and q ∈ Q, and � is in {≥,≤, >,<,=}. Our
constraints are thus more restrictive than in other sources [3], permitting only
variable-to-constant comparisons, but this will allow us to define precise abstract
traces. The set of constraints over variables V is denoted C(V ); they are used
for read and write operations in process activities.

Definition 1 (DPN). A tuple N = (P, T, F, �, A, V, guard) is a Petri net with
data (DPN), where:

– (P, T, F, �) is a Petri net with two non-empty disjoint sets of places P and
transitions T , a flow relation F : (P × T ) ∪ (T × P ) → N and a labeling
function � : T → A ∪ {τ}, where A is a finite set of activity labels and τ is a
special symbol denoting silent transitions;

1 Booleans and strings can be encoded as integers, as commonly done [3,17].
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– V is a set of typed process variables; and
– guard : T → C(V r ∪ V w) is a guard assignment; for t ∈ T with �(t) = τ we

assume that guard(t) does not use variables in V w.

Transition guards serve to simultaneously read and write variables. For
instance, a transition with guard (xr > 3) can only be taken if the current value
of variable x is greater than 3 (the superscript r indicates that the guard is on
the current, or read, variable). On the other hand, a guard (xw > 1) ∧ (xr < 4)
requires that the current value of x is smaller than 4 and, at the same time, it
non-deterministically writes to x a new value that is greater than 1 (superscripts
w refer to written values). Note that transition guards with disjunctions can be
simulated by employing multiple transitions between the same places.

As customary, given x ∈ P ∪ T , we use •x := {y | F (y, x) > 0} to denote
the preset of x and x• := {y | F (x, y) > 0} to denote the postset of x. In order
to refer to the variables read and written by a transition t, we use the notations
read(t) = {v | vr ∈ Var(guard(t))} and write(t) = {v | vw ∈ Var(guard(t))}.

To represent the current values of variables, we consider a state variable
assignment, i.e., a (possibly partial) function α that assigns a value (of the right
type) to each variable in V . We denote by dom(α) the domain of α. A state in a
DPN N is a pair (M,α) constituted by a marking M : P → N for the underlying
Petri net (P, T, F, �), plus a total state variable assignment α. Therefore, a state
simultaneously accounts for the control flow progress and for the current values
of all variables in V , as specified by α.

We fix one state (MI , α0) as initial, where MI is the initial marking of the
underlying Petri net and α0 specifies the initial value of all variables in V .
Similarly, we denote the final marking as MF , and call final any state of the
form (MF , αF ) for some αF .

A transition variable assignment is a partial function β with dom(β) ⊆
V r ∪V w that assigns a value to annotated variables, namely β(x) ∈ D(type(x)),
with x ∈ V r ∪ V w. Transition variable assignments are used to specify how
variables change as the result of activity executions (cf. Definition 2).

We now define when a Petri net transition may fire from a given state.

Definition 2 (Transition firing). A transition t ∈ T is enabled in state
(M,α) if there exists a transition variable assignment β such that:

– dom(β) = Var(guard(t)): β is defined for the variables in the guard;
– β(vr) = α(v) for every v ∈ read(t), i.e., β is as α for read variables;
– β |= guard(t), i.e., β satisfies the guard; and
– M(p) ≥ F (p, t) for every p ∈ •t.

An enabled transition may fire, producing a new state (M ′, α′), s.t. M ′(p) =
M(p) − F (p, t) + F (t, p) for every p ∈ P , and α′(v) = β(vw) for every v ∈
write(t), and α′(v) = α(v) for every v 
∈ write(t). A pair (t, β) as above is
called (valid) transition firing, and we denote its firing by (M,α) (t,β)−−−→ (M ′, α′).

Informally, a transition firing between the current state (M,α) and the next
state (M ′, α′) is a couple (t, β) where: i) t ∈ T is a transition that is enabled in
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the ‘token game’ sense of standard Petri nets; ii) β is a function connecting the
values of the read variables (matching the values assigned by α in the current
state) to the values of the write variables (matching the values assigned by α′ in
the next state); iii) β satisfies the guard associated to t.

Based on this single-step transition firing, we say that a state (M ′, α′)
is reachable in a DPN with initial state (MI , α0) iff there exists a sequence
of valid transition firings of the form f = 〈(t1, β1), . . . , (tn, βn)〉 such that
(MI , α0) (t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′). Moreover, such a sequence f is called a
process run of N if (MI , α0) f−→ (MF , αF ) for some αF , i.e., if the run leads to a
final state. As in [3,17], we restrict to DPNs where a final state is reachable. We
denote the set of transition firings of N by F(N ), and the set of process runs
by Runs(N ).

Example 1. Let N be as shown below (with initial marking [p0] and final marking
[p3]). Runs(N ) contains, e.g., 〈(a, {xw → 12}), (b, {yw → 1}), (c, {xr → 12})〉
and 〈(a, {xw → 1}), (b, {yw → 1}), (d, {xr → 1})〉, for α0 = {x, y → 0}.

p0
a

xw ≥ 0 p1
b

yw > 0 p2 c

xr ≥ 10
p3

e

yw = 5 ∧ xr ≤ 20

d

xr < 10

Given a set S, we denote S∗ as the set of sequences of elements from S, and
M(S) as the set of multisets over S. For a set A of activity labels, an event
is a pair (b, α) for b ∈ A and α a (typically partial) state variable assignment,
associating values to variables in V .

Definition 3 (Log trace, event log). Given a set E of events, a log trace
e ∈ E∗ is a sequence of events in E and an event log L ∈ M(E∗) is a multiset
of log traces from E.

Conformance checking aims at constructing an alignment of a given log trace
e wrt the DPN N , by matching events in the log trace against transitions firings
in a process run. Since not every event can typically be put in correspondence
with a transition firing, a “skip” symbol � is used. Let E� = E ∪ {�} and,
given N , the extended set of transition firings F� = F(N ) ∪ {�}.

Given a DPN N and a set E of events as above, a pair (e, f) ∈ E� × F� \
{(�,�)} is called move. A move (e, f) is a log move if e ∈ E and f = �; a model
move if e = � and f ∈ F(N ); and synchronous move if (e, f) ∈ E × F(N ).

For a sequence of moves γ = (e1, f1), . . . , (en, fn), the log projection γ|L of γ
is the maximal subsequence of e1, . . . , en in E∗, and the model projection γ|M of
γ is the maximal subsequence of f1, . . . , fn in F(N )∗ (i.e., without � symbols).

Definition 4 (Alignment). Given N , a sequence of legal moves γ is an align-
ment of a log trace e if γ|L = e, and it is complete if γ|M ∈ Runs(N ).
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Example 2. The sequences γ1 and γ2 below are possible complete alignments
of the log trace e = 〈(a, {x → 2}), (b, {y → 1}), (d, ∅)〉 wrt the DPN from
Example 1:

γ1 = a x → 2

a xw → 2

b y → 1

b yw → 1

d

d
γ2 = a x → 2

a xw → 12

b y → 1

b yw → 1

d

�
�
c

We denote by Align(N , e) the set of complete alignments for a log trace e
wrt N . A cost function is a mapping κ : MovesN → R

+ that assigns a cost to
every move. It is naturally extended to alignments as follows.

Definition 5 (Cost). Given N , e and γ = (e1, f1), . . . , (en, fn) ∈ Align(N , e),
the cost of γ is obtained by summing up the costs of its moves, that is, κ(γ) =∑n

i=1 κ(ei, fi). Moreover, γ is optimal for e if κ(γ) is minimal among all com-
plete alignments for e, namely there is no γ′ ∈ Align(N , e) with κ(γ′) < κ(γ).

For instance, using the standard cost function from [3, Def. 6] and the align-
ments in Example 2, we would have κ(γ1) = 0 and κ(γ2) = 3. We denote the
cost of an optimal alignment for e wrt N by κopt

N (e).

3 Trace-Based Conformance Checking

In this section, we develop notions to perform (approximated) conformance
checking on the basis of trace classes rather than the model itself.

Abstract Trace. In order to simulate the conformance checking procedure, we
first extract a set of abstract traces that are representative for the given DPN.
To that end, we use the following definitions, for a DPN with data variables V .
A variable range assignment ι is a (possibly partial) function from the set of
data variables V to intervals, such that for all v ∈ V , ι(v) is of the form [l, u],
]l, u], [l, u[, or ]l, u[, for l, u numeric values in dom(v). Then, given the set T of
transitions, an abstract event is a pair (t, ι), where t ∈ T and ι is a variable range
assignment, and an abstract trace is a sequence of abstract events.

A trace e = 〈e1, . . . , en〉 matches an abstract trace f = 〈f1, . . . , fm〉 if m = n
(same length); and for all 1 ≤ i ≤ n, if ei = (l, α) with corresponding fi = (t, ι),
it holds that l = �(t), i.e., they have the same label; and dom(α) = dom(ι), and
for all v ∈ dom(α), the value α(v) is in the interval ι(v). Finally, a finite set of
abstract traces T is representative for a DPN N up to length k if for every trace
e with |e| ≤ k and κopt

N (e) = 0, the trace e matches some ea ∈ T .
Our approach exploits that for a given log trace and DPN, the length of a

process run in an optimal alignment can be bounded upfront. More precisely:

Lemma 1 ([5, Lem. 2]). Given a log trace e of length n and a DPN N , there
is a computable function maxlen(N , n) s.t. e has an optimal alignment γ wrt
the standard cost function s.t. γ|M has length at most maxlen(N , n).
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Let a trace e correspond to a process run f if, for 〈f1, . . . , fn〉 the subsequence of
non-silent transitions in f , e = 〈e1, . . . , en〉, and for all i, 1 ≤ i ≤ n, if fi = (t, β)
then ei = (l, α) such that �(t) = l and α(v) = β(vw) for all v ∈ dom(β).

Using this notion, we get the following useful corollary of Lemma 1:

Theorem 1. Let a set of abstract traces T be representative for a DPN N up
to maxlen(N , n). Then, for every trace e with |e| ≤ n, there is an optimal
alignment γ such that T has an abstract trace ea that corresponds to γ|M .

This means that, in order to find the process run associated with an optimal
alignment for a given log trace, it suffices to consider abstract traces in a set of
representative abstract traces T .

Computing Representative Sets of Abstract Traces. We now show one concrete
method to compute a representative set T for a DPN N .

1. For a given k, we enumerate all transition sequences of N from the initial to
a final marking that have length at most k, and select from these the subset
T ′ of sequences which correspond to actual process runs. This filtering can
be done, e.g., by checking with an SMT encoding (as done in CoCoMoT)
whether the sequence of transitions is satisfiable.

2. For every sequence 〈t1, . . . , tn〉 in T ′ and 1 ≤ i ≤ n, we define a trace range
substitution ιi as follows. First, a variable v ∈ V is in dom(ιi) iff v ∈ write(ti).
For such v, let j (s.t. i < j ≤ n) be the smallest number such that either j = n,
or v ∈ write(tj+1). Thus, the value of v written in ti persists until instant
j. All guards in ti, . . . , tj are, by construction, conjunctions of variable-to-
constant comparisons. Let L be the greatest lower bound set for v, and U
the smallest upper bound set for v in ti, . . . , tj ; if no respective bound occurs,
L = −∞ or U = ∞. We fix ιi(v) to either [L,U ], [L,U [, ]L,U ] or ]L,U [,
depending on whether L and U are included or not. Finally, T consists of all
〈(t1, ι1) . . . , (tn, ιn)〉 such that 〈t1, . . . , tn〉 is in T ′.

It can be checked that the set T constructed in this way is indeed a representative
set of abstract traces.

Example 3. For N as in Example 1, a representative set of abstract traces up
to length 4 consists of 〈(a, x → [0, 10[), (b, y →]0,∞[), (d, ∅), (e, y → [5, 5])〉,
〈(a, x → [10,∞[), (b, y →]0,∞[), (c, ∅)〉, 〈(a, x → [0, 10[), (b, y →]0,∞[), (d, ∅)〉,
and 〈(a, x → [10, 20]), (b, y →]0,∞[), (c, ∅), (e, y → [5, 5])〉.

Measuring the Distance Between Two Traces. In conformance checking,
one usually measures the distance between a trace and a model run. Here, we
approximate such a cost by taking the distance between two traces:
Definition 6. For log traces e = 〈e1, . . . , em〉 and e′ = 〈e′

1, . . . , e
′
n〉, the trace

distance δ(e|i, e′|j) is recursively defined for all 0≤ i≤ m and 0 ≤ j ≤ n:

δ(ε, ε) = 0 δ(e|i+1, ε) = QL(ei+1) + δ(e|i, ε) δ(ε, e′|j+1) = QL(e
′
j+1) + δ(ε, e′|j)

δ(e|i+1, e′|j+1) = min

⎧
⎨

⎩

Q=(ei+1, e′
j+1) + δ(e|i, e′|j)

QL(ei+1) + δ(e|i, e′|j+1)

QL(e
′
j+1) + δ(e|i+1, e′|j)
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Here Q= and QL are two penalty functions, the former for synchronous moves
and the latter for asynchronous moves in one of the logs. These penalties can
be instantiated in different ways. We adapt the standard cost function [3,17] to
two traces and set

QL(b, α) = 1 Q=((b, α), (b′, α′)) =
{

|{v ∈ dom(α) | α(v) 
= α′(v)}| if b = b′

∞, otherwise

For instance, for the log trace e = 〈(a, {x → 2}), (b, {y → 1}), (d, ∅)〉 from
Example 2 and e′ = 〈(a, {x → 12}), (b, {y → 1}), (c, ∅)〉 (matching the process
run of γ2), we have δ(e, e) = 0 and δ(e, e′) = 3.

4 Approximating Alignments with Trace Encodings

In this section, we introduce an encoding approach for abstract traces (Sect. 4.1)
and then a kNN-based method to obtain an approximate solution of the trace
alignment problem (Sect. 4.2).

4.1 Encodings for Abstract Traces

To have a lossy representation of abstract traces, we use an encoding E : T → R
n

with n ∈ N that transforms each abstract trace into a vector of the n-dimensional
Euclidean space R

n. We call the resulting set of vectors E(T ) behavior encoding
space. The literature provides encoding functions to represent strings [6], which
we can directly employ for representing the control-flow dimension of the abstract
traces. For example, the boolean encoding represents a trace through a vector
of boolean values each indicating if a specific activity label is present or not in
the trace. The frequency-based encoding, instead of boolean values, represents
the control flow in a trace with the frequency of each activity label in the trace.
Another way of encoding a trace is by taking into account also information about
the order in which events occur in it, as in the simple index encoding. Here, each
dimension corresponds to a position in the trace and its value is a numeric code
representing the activity label occurring in that position.

A more complex control-flow encoding is obtained by associating each dimen-
sion in R

n to a different sub-trace of size p (i.e., p-grams). Each feature of this
encoding represents how frequently and “compactly” a sub-trace appears in the
trace of interest. For simplicity, we consider 2-grams, but the following can be
easily generalized to p-grams. Given an abstract trace ea, we employ a simpli-
fied version of the encoding from [14] to transform ea into a vector in R

n in two
steps. First, we identify all 2-grams occurring in all the abstract traces in T .
Then, we construct a vector in R

n where each dimension of the vector is a real
number representing the frequency and the compactness of a specific 2-gram.
E.g., for the 2-gram ab, this value is given by Eab(ea) =

∑
1≤i≤|ea|−1 λi[Λi]ab,

where [Λi]ab → 0, 1 indicates the occurrences of ab at distance i in ea, and
λ ∈]0, 1] is a parameter that represents the penalty provided for less compact
2-grams. Lower values of λ correspond to a higher distance between the numeric
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Table 1. Encoding of traces caba, caa and cb.

aa ab ac ba bb bc ca cb cc

caba λ2 λ 0 λ 0 0 λ + λ3 λ2 0

caa λ 0 0 0 0 0 λ + λ2 0 0

cb 0 0 0 0 0 0 0 λ 0

representation of more compact 2-grams wrt less compact ones (if λ is equal to
1 the compactness has no influence on the feature values of this encoding).

Example 4. Table 1 shows the 2-gram encodings of some traces over the activity
labels A = {a,b, c}. Trace cb has only one non-zero dimension Ecb(cb) = λ; trace
caa has two non-zero dimensions: Eca(caa) = λ + λ2 (ca occurs once with c and
a at distance 1, i.e., caa, and once with c and a at distance 2, i.e., caa), and
Eaa(caa) = λ (a is repeated after a single step in the trace only once, i.e., caa).

In addition to control-flow, abstract traces include variable range assignments
from the set of data variables V linked to each activity. For instance, if variable
Amount ∈ [10, 20[ triggers activity b after a in ea, then, the abstract event
corresponding to b contains interval [10, 20[ for variable Amount. All the possible
intervals for a variable (derived from all the abstract traces for a given DPN)
have to be transformed into specific values to apply existing methods for trace
encoding like the ones in [12]. To do so, we encode each variable v of each
abstract event ei using a feature space of interval features that are boolean
features composed of v and a possible interval I. In this way, for each abstract
event ei, we have a set of interval features with values Dei,v,I given by:

Dei,v,I =
{

1 if ι(v) ⊆ I,
0 otherwise (1)

where ι(v) is the variable range assignment in ei. As an example, given a
set of possible intervals for variable Amount {[0, 10[, [10, 20[, [10, 30[}, an
abstract event ei = (l, Amount = [16, 24]) is encoded by three boolean features:
Dei,Amount:[0,10[ = 0, Dei,Amount:[10,20[ = 0, and Dei,Amount:[10,30[ = 1.

We use these boolean features as “event attributes” of each abstract event in
an abstract trace. In this way, we can directly apply existing trace encodings [12]
to abstract traces. These encodings can include control flow features (that can
range from a simple boolean encoding to more complex encodings like the one
based on p-grams), and data-flow features (derived from the interval features
introduced above). We point out here that the choice of the encoding is part
of the analysis. The analyst can select the information that is more relevant
for computing the alignments depending on the specific process and the specific
context in which the alignments are computed. The encoded abstract traces in
the behavior encoding space E(T ) are used to identify the top-k alignments of
a (concrete) log trace e as described in the next section.
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4.2 Approximating Alignment Computation Using kNN

In the alignment problem, we assume to have a set of (abstract) traces ea ∈ T
and a set of non-conforming (concrete) log traces e. The trace alignment task
consists in searching the model trace e∗

a ∈ T that is the closest to each log trace
according to a given distance/cost function δE : Rn × R

n → R.
When in the alignment task, together with the control-flow also other per-

spectives available in event logs like timestamps and data payloads are taken
into consideration, this multi-perspective trace alignment becomes a challenging
problem. However, if we use encodings to represent model and log traces, we can
select the most relevant information needed to compute the alignments and, at
the same time, reduce the time needed to perform the task. The log traces and
the data space including the possible model traces (i.e., the possible alignments)
can be explored, once a log trace to be aligned is given, by using k-nearest neigh-
bors (kNN) algorithms. By using trace encoding, we can compute the encodings
of the log trace E(e) and of all the possible model traces E(ea), and compute
their distance using a distance function δE(ea, e) := 〈E(ea), E(e)〉. Then, the
trace alignment problem is solved by computing the approximate alignment for
an observed log trace e as min argea

δE(ea, e). In particular, the approximate
alignment(s) can be computed using kNN algorithms that find the k nearest
data points to a query x from a set X of data points according to a distance
function. By casting the trace alignment problem to a kNN problem, we can
find the best k alignments of a log trace e in the space of the model traces. This
can be done by using ad-hoc data structures like Ball-Tree and KD-Tree [13]
to retrieve the k-neighborhood of e by pre-ordering (indexing) the space of the
(embedded) model traces wrt a distance function δE .

kNN algorithms, being unsupervised, give to all features in E(ea) the same
weight. However, since control-flow is, in general, represented by a lower number
of features wrt the data flow, an equal distribution of the weights would penalize
the control-flow, which is, instead, crucial for the alignment task. Moreover, since
each variable is divided into interval features to represent the data-flow of the
abstract trace, based on the possible intervals for that variable, a variable having
a higher number of possible intervals would have a higher weight.

To overcome this problem, it is possible to use weighted kNN algorithms
and force a different distribution of weights. This can be done in two steps.
First, we separate E(ea) into EA(ea) and EV (ea) containing the control-flow
and the data-flow features for trace ea respectively. Then, we fix a parame-
ter s ∈ [0, 1] and assign weights s and 1 − s, to EA(ea) and EV (ea). In this
way, if, for instance, s = 0.4, we can assign weight 0.4 to the entire set of
control flow features and weight 0.6 to the entire set of data features. Sec-
ondly, to avoid that a data variable having more possible intervals in EV (ea)
gets a higher weight, we uniformly distribute the weight 1 − s over the data
variables and not over the interval features. For instance, if we have two data
variables Amount and Point with possible intervals Amount ∈ {[0, 10[, [10, 20[,
[10, 30[} and Point ∈ {[0, 5[, [5, 10[}, respectively, weight 1 − s = 0.6 is uni-
formly distributed over the two data variables and, then, the resulting weights
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(0.3 for each data variable) are distributed over the corresponding interval fea-
tures, leading the weight distribution (0.1, 0.1, 0.1, 0.15, 0.15) over the interval
features (Amount : [0, 10[, Amount : [10, 20[, Amount : [10, 30[ , Point : [0, 5[,
and Point : [5, 10[). Therefore, each interval feature for a data variable v1 having
more possible intervals gets a lower weight, but the sum of the weights of all the
interval features of each data variable is the same. In this way, considering all
the features l1, ..., lp from EA(ea) and v1, ..., vq from EV (ea), we define a variable
weight w = (wl1 , ..., wlp , wv1 , ..., wvq

), where
∑

w = 1,
∑

(wl1 , ..., wlp) = s, and∑
(wv1 , ..., wvq

) = 1−s. In the kNN algorithm, we multiply the features in E(ea)
by w to normalize them.

The computation of approximate alignments is more efficient than the com-
putation of optimal alignments. However, this computational gain comes with
a loss in precision. It is well-known that the generation of precise encodings for
graph data with loops is NP-complete [6]. To keep the information preserved at
most, we investigate different encodings recently provided by the process mining
community, as well as the proposed simplified p-grams encoding, in next section.

5 Experimentation

In this section, we report on experiments that contrast our approximate,
encoding-based approach with precise conformance checking techniques. As out-
lined in the introduction, we performed two experiments to that end. (a) First,
we compare our encoding-based approach with the state-of-the-art data-aware
conformance checker CoCoMoT [3]: here, for a given trace, we compare the best-
matching model run as computed by CoCoMoT, with the best-matching abstract
trace as estimated by our approximate approach (recall that every model run
corresponds to a unique abstract trace). (b) Second, we consider the situation
where the process behaviors are specified by a set of traces that plays the role
of a reference log. Here, for a given trace, we compare the best-matching trace
from the reference log according to the distance function from [17], with the
best-matching trace as estimated by our approximate approach. This second
setting can be of interest if no DPN is available; but the experiment also helps
to study specifically how well encodings can emulate the distance function.

Consequently, for stage (1) of our approach, process behaviors were repre-
sented as follows: (1a) We represented all behaviors of a DPN with variable-
to-constant comparisons by a complete set T of abstract traces, as described
in Sect. 3. (1b) We took as T a plain set of traces. Then, we (2) applied the
trace encodings discussed in Sect. 4.1 to obtain the behavior encoding space,
and (3) compared the returned approximate alignments with the optimal ones.
The implementation we used for the experiments is publicly available at https://
github.com/jonghyeonk/Multi-Trace-Alignment.

Datasets. For (1a), we used a DPN modeling a road fine management pro-
cess [10, Fig. 13] that was mined automatically and where all guards are variable-
to-constant comparisons. With the proposed abstract trace, we generated a rep-

https://github.com/jonghyeonk/Multi-Trace-Alignment
https://github.com/jonghyeonk/Multi-Trace-Alignment
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Table 2. Descriptive statistics of the trace representations T for the datasets.

Road Fines Sepsis

# of abstract traces 639 # of events 3,422 # of traces 1,079 # of events 15,214

# of activities 9 trace length 1∼6 # of activities 16 trace length 3∼185

# of data variables 5 # of data variables 2

resentative set T with 639 abstract traces, as well as a test set L of 1,885 log
traces with random values which comply with the DPN to a varying degree.

For (1b), we considered the Sepsis [15] event log, which represents the path-
way of patients with symptoms of sepsis in a Dutch hospital. Here, we took T
as all traces in the above dataset. As test set, we generated a log L consist-
ing of 30 non-compliant log traces by modifying 10 traces in T based on three
types of deviations: (i) modification of an activity label, (ii) modification of a
categorical feature (‘Diagnosis’), and (iii) modification of a numerical feature
(‘CRP’) obtained by multiplying the original value by 10. Statistics of the trace
representations T are summarized in Table 2.

Experiment Setup. For (1a) the Road Fines experiment, for each trace e
in the test set L, we computed the optimal alignment γ and the associated
process run γ|M using CoCoMoT, as well as its (unique) matching abstract trace
ea. Then, we compared ea with the result of the encoding-based approach. To
compute γ|M , we used the default settings of CoCoMoT, including its heuristic
to determine maxlen(N , |e|), which was obtained as |e| + m, where m is the
length of the shortest trace accepted by N .

For (1b) the Sepsis experiment, for each trace e in the test set L, we computed
the trace e′ in T such that δ(e, e′) is minimal according to the trace distance
(Definition 6), and compared it with the result of the encoding-based approach.

Experimental Settings. For both experiments, we used the same settings: we
set the split parameter s for feature weights to 0.5, selected the top k alignments
with k = {k(10%), k(20%), k(30%)} (k is the percentage of abstract traces returned)
using a kNN algorithm,2 and used three standard distance metrics (Cosine,
Manhattan, Euclidean) with the following five encodings [12,14]:

– aggregate: the control-flow is represented using numerical features indicating
the frequency of each activity label. Similarly, for categorical data variables,
we use numerical features indicating the frequency of each possible categorical
value. For numerical data variables, instead, we use the average, standard
deviation, max, min, and sum of the values;

– boolean: the numerical data variables are represented as in the aggregate
encoding. The control-flow and the categorical data variables are, instead,

2 We used a function provided by the sklearn Python library, using the parameter
auto for the selection of the algorithm, which makes the function able to select the
most appropriate algorithm based on the input.
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Fig. 1. Performance improvement on the Road Fines experiment after integrating the
variable weight function (for complexindex encoding and Euclidean distance).

represented through boolean features (true/false) indicating whether a certain
activity label or a certain categorical value is present in the trace;

– complexindex : this is the complex-index encoding introduced in [12]. The
control flow is represented using the simple-index encoding, i.e., each control-
flow feature corresponds to a position in the trace and the value of the feature
is the activity occurring in that position of the trace. Similarly, for each data
variable, we have different features representing that data variable in different
positions of the trace and the value of the feature is the value of the data
variable if the variable is numeric and, if the variable is instead categorical,
a code representing its categorical value;

– laststate: this encoding represents the control-flow with the simple-index
encoding and the data variables using the latest payload of a trace, i.e., data
variables are treated as static features without taking into consideration their
evolution over time;

– p-gram+aggregate: we used the encoding based on p-grams introduced in
Sect. 4.1 with p = 2 and λ = 0.7. We integrated in this encoding the data
perspective in the same way as done in the aggregate encoding.

In the evaluation, we measure (i) whether among the top-k alignments
returned by the kNN algorithm, there is the optimal alignment returned by
CoCoMoT (precision), (ii) how similar the top-k alignments returned by the
approximate method are wrt the optimal alignment returned by CoCoMoT (sim-
ilarity), and (iii) the execution times (time). For computing precision, we count
the number of true positives TP , i.e., how many times the top-k alignments
include the optimal alignment returned by CoCoMoT, and the number of false
positives FP , i.e., how many times the top-k alignments do not include the
optimal alignment returned by CoCoMoT. Then, the precision is computed as:
Precision = TP/(TP + FP ). For similarity, we calculate the average Euclidean
distance dist between the top-k alignments and the optimal alignment returned
by CoCoMoT and we compute the similarity score as: similarity = 1 − dist.
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Table 3. Precision of approximate trace alignment with different parameters in the
Road Fines experiment. For each k, the best precision is highlighted in bold.

Encoding method Distance metric k (%) Precision (ref = CoCoMot) Time (sec)

aggregate Cosine (10%/20%/30%) (0.613/0.740/0.803) (0.08/0.09/0.10)

aggregate Euclidean (10%/20%/30%) (0.195/0.501/0.551) (0.19/0.13/0.17)

aggregate Manhattan (10%/20%/30%) (0.195/0.518/0.555) (0.14/0.21/0.16)

boolean Cosine (10%/20%/30%) (0.580/0.712//0.756) (0.08/0.17/0.10)

boolean Euclidean (10%/20%/30%) (0.597/0.725/0.808) (0.13/0.19/0.13)

boolean Manhattan (10%/20%/30%) (0.596/0.729/0.828) (0.16/0.15/0.16)

complexindex Cosine (10%/20%/30%) (0.683/0.775/0.838) (0.28/0.24/0.27)

complexindex Euclidean (10%/20%/30%) (0.683/0.794/0.869) (0.36/0.33/0.37)

complexindex Manhattan (10%/20%/30%) (0.481/0.790/0.862) (0.70/0.73/0.67)

laststate Cosine (10%/20%/30%) (0.420/0.688/0.800) (0.08/0.08/0.17)

laststate Euclidean (10%/20%/30%) (0.494/0.712/0.845) (0.12/0.13/0.14)

laststate Manhattan (10%/20%/30%) (0.510/0.734/0.882) (0.16/0.18/0.16)

p-gram+aggregate Cosine (10%/20%/30%) (0.705/0.776/0.817) (0.07/0.08/0.08)

p-gram+aggregate Euclidean (10%/20%/30%) (0.715/0.776/0.853) (0.11/0.12/0.12)

p-gram+aggregate Manhattan (10%/20%/30%) (0.719/0.798/0.898) (0.12/0.14/0.18)

Table 4. Precision of approximate trace alignment with different parameters in Sepsis
experiment. For each k, the best precision is highlighted in bold.

Encoding method Distance metric k (%) Precision (ref = CoCoMot) Time (sec)

aggregate Cosine (10%/20%/30%) (0.813/0.833/0.841) (0.01/0.01/0.01)

aggregate Euclidean (10%/20%/30%) (0.888/0.898/0.906) (0.02/0.02/0.02)

aggregate Manhattan (10%/20%/30%) (0.888/0.898/0.906) (0.02/0.03/0.02)

boolean Cosine (10%/20%/30%) (0.776/0.800/0.808) (0.01/0.01/0.02)

boolean Euclidean (10%/20%/30%) (0.854/0.864/0.873) (0.02/0.02/0.02)

boolean Manhattan (10% / 20%/30%) (0.852/0.864/0.873) (0.02/0.02/0.03)

complexindex Cosine (10%/20%/30%) (0.816/0.816/0.888) (0.04/0.04/0.04)

complexindex Euclidean (10%/20%/30%) (0.891/0.931/0.949) (0.05/0.04/0.05)

complexindex Manhattan (10%/20%/30%) (0.924/0.938/0.951) (0.08/0.07/0.07)

laststate Cosine (10%/20%/30%) (0.822/0.822/0.822) (0.01/0.01/0.01)

laststate Euclidean (10%/20%/30%) (0.857/0.923/0.924) (0.01/0.01/0.02)

laststate Manhattan (10%/20%/30%) (0.855/0.923/0.924) (0.02/0.02/0.02)

p-gram+aggregate Cosine (10%/20%/30%) (0.864/0.881/0.891) (0.01/0.01/0.01)

p-gram+aggregate Euclidean (10%/20%/30%) (0.914/0.926/0.939) (0.02/0.02/0.02)

p-gram+aggregate Manhattan (10%/20%/30%) (0.914/0.926/0.939) (0.04/0.03/0.03)

We computed the execution times (in seconds) by running the alignment tools
on an Intel Core i9-12900H CPU with 2.5 GHz, 40 GB RAM, with MS Windows
11, and measuring the total time needed to align all log traces.

Experimental Results. Tables 3 and 4 show the precision of the approximate
method achieved by varying three parameters (encoding method, distance met-
ric, and k) for the Road Fines experiment and the Sepsis experiment. The results
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Table 5. Similarity between the approximate trace alignment and the CoCoMoT align-
ment with different parameters in the Road Fines experiment.

Encoding method Distance metric k Similarity (ref = CoCoMot) Time (sec)

aggregate Cosine (1/3/5/10) (0.971/0.971/0.971/0.973) (0.07/0.07/0.07/0.07)

aggregate Euclidean (1/3/5/10) (0.963/0.963/0.963/0.960) (0.11/0.12/0.12/0.12)

aggregate Manhattan (1/3/5/10) (0.933/0.938/0.942/0.948) (0.18/0.13/0.16/0.14)

boolean Cosine (1/3/5/10) (0.978/0.978/0.978/0.977) (0.06/0.07/0.08/0.08)

boolean Euclidean (1/3/5/10) (0.978/0.978/0.978/0.977) (0.16/0.12/0.12/0.17)

boolean Manhattan (1/3/5/10) (0.978/0.978/0.978/0.977) (0.13/0.13/0.14/0.14)

complexindex Cosine (1/3/5/10) (0.991/0.991/0.991/0.990) (0.22/0.25/0.25/0.25)

complexindex Euclidean (1/3/5/10) (0.991/0.991/0.991/0.990) (0.37/0.31/0.35/0.35)

complexindex Manhattan (1/3/5/10) (0.978/0.979/0.980/0.981) (0.68/0.68/0.70/0.64)

laststate Cosine (1/3/5/10) (0.985/0.985/0.984/0.984) (0.07/0.07/0.07/0.07)

laststate Euclidean (1/3/5/10) (0.985/0.985/0.984/0.984) (0.17/0.12/0.12/0.17)

laststate Manhattan (1/3/5/10) (0.985/0.985/0.984/0.984) (0.13/0.18/0.13/0.14)

p-gram+aggregate Cosine (1/3/5/10) (0.996/0.996/0.996/0.995) (0.06/0.07/0.06/0.07)

p-gram+aggregate Euclidean (1/3/5/10) (0.996/0.996/0.996/0.995) (0.10/0.10/0.15/0.11)

p-gram+aggregate Manhattan (1/3/5/10) (0.996/0.996/0.996/0.995) (0.15/0.12/0.13/0.12)

Table 6. Similarity of approximate trace alignment in respect to the CoCoMoT align-
ment with different parameters on the Sepsis event log.

Encoding method Distance metric k Similarity (ref = CoCoMot) Time (sec)

aggregate Cosine (1/3/5/10) (0.609/0.610/0.609/0.608) (0.01/0.01/0.01/0.01)

aggregate Euclidean (1/3/5/10) (0.608/0.608/0.608/0.608) (0.02/0.02/0.02/0.02)

aggregate Manhattan (1/3/5/10) (0.608/0.608/0.608/0.608) (0.02/0.02/0.02/0.02)

boolean Cosine (1/3/5/10) (0.606/0.606/0.607/0.606) (0.01/0.01/0.01/0.01)

boolean Euclidean (1/3/5/10) (0.606/0.606/0.606/0.607) (0.02/0.02/0.01/0.02)

boolean Manhattan (1/3/5/10) (0.606/0.606/0.606/0.606) (0.02/0.02/0.02/0.02)

complexindex Cosine (1/3/5/10) (0.620/0.620/0.620/0.620) (0.04/0.04/0.04/0.04)

complexindex Euclidean (1/3/5/10) (0.619/0.620/0.620/0.620) (0.04/0.04/0.04/0.04)

complexindex Manhattan (1/3/5/10) (0.619/0.620/0.620/0.621) (0.05/0.05/0.05/0.05)

laststate Cosine (1/3/5/10) (0.603/0.602/0.601/0.602) (0.01/0.01/0.01/0.01)

laststate Euclidean (1/3/5/10) (0.603/0.601/0.600/0.600) (0.02/0.02/0.02/0.02)

laststate Manhattan (1/3/5/10) (0.603/0.601/0.600/0.601) (0.01/0.02/0.02/0.02)

p-gram+aggregate Cosine (1/3/5/10) (0.604/0.607/0.607/0.607) (0.01/0.01/0.01/0.01)

p-gram+aggregate Euclidean (1/3/5/10) (0.605/0.607/0.607/0.607) (0.03/0.02/0.02/0.02)

p-gram+aggregate Manhattan (1/3/5/10) (0.605/0.607/0.606/0.607) (0.02/0.02/0.02/0.02)

show that, as expected, when k increases, the top-k alignments are more likely
to include the optimal trace or abstract trace. In the cases in which the preci-
sion is higher for lower values of k, the approximate approach results to be more
effective. Regarding the encoding methods, complexindex and p-grams+aggregate
have a higher precision overall wrt the other encodings. This was expected since
the aggregate and boolean encodings are less rich in the representation of the
control flow information and the laststate reflects less accurately the data flow.
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Figure 1 highlights the effectiveness of the variable weight function we have intro-
duced to guide the kNN algorithms in finding the top k alignments.

Concerning the similarity measure, Tables 5 and 6 report the average sim-
ilarity between the top k alignments returned by the approximate approach
with k ∈ {1, 3, 5, 10} and the optimal abstract trace returned by CoCoMoT
(for Road Fines), or the closest trace (for Sepsis). As the number of traces is
much lower wrt the number of traces used in Tables 3 and 4 (k(10%) = 64 and
k(10%) = 108 for Road Fines and Sepsis, respectively), the precision becomes
much lower. However, even if the optimal alignment could not be easily identi-
fied, the high similarity values shown in Table 5 indicate that the approximate
approach returns alignments that are very close to the optimal one. For Sepsis,
where we do not perform trace alignment wrt a DPN, the similarity is lower.
This is due to the fact that, in this case, the alignment task is more challenging
since the returned alignments are concrete traces whereas, in the Road Fines
case, the alignment returned is an abstract trace, i.e., a class of traces. However,
as shown in Table 4, when a larger number of possible alignments are returned,
this issue does not affect the precision of the approximate approach.

For what concerns the execution times, the approximate approach is, on
average, 100 times faster than CoCoMoT while producing alignments that are
very similar to the optimal one. For instance, the alignment task for the Road
Fines experiment has been completed in 22.02 s using CoCoMot, but it has been
completed in 0.18 s using the approximate approach with the p-grams + aggre-
gate encoding, Manhattan distance and k(%) = 30%. We also highlight that,
although the precision is high only when k is sufficiently large, the fact that the
approximate approach can return a fraction of the input log that likely contains
the optimal alignment can render this approach useful as a sampling method,
in combination with an optimal approach: the approximation technique can be
applied as a preprocessor to find a set of candidates C for optimal alignments.
Afterwards, less performant but optimal tools like CoCoMoT [3] can be applied
only to this limited set of candidates (either using trace distances or incorporat-
ing the information from C into the DPN).

6 Related Work

A few papers provide extensions over the computation of control-flow alignments
so that also the data dimension is considered. The approach in [9] first takes into
account the control-flow and, after it has been aligned, aligns case attributes.
The one in [8] is similar, but makes use of DPNs as process models, where
the data-perspective is taken into consideration by augmenting the computed
alignment with write operations over process variables via MILP solving. An
improvement of this is obtained in [16,17], where in a faster A*-based technique
the process and data dimensions are considered at the same time. Another recent
notable approach is the one we use as baseline in this paper, i.e., the one from
[3], where a very general multi-perspective conformance checking problem based
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on an abstract notion of cost function is solved via state-of-the-art SMT solv-
ing. Differently from our approach, all the above techniques compute optimal
alignments.

As the current approaches for alignment computation have the main prob-
lem of the complexity both in space and time, various approximate solutions for
control-flow alignment have been proposed. In [1], the authors provide a statis-
tical approach to conformance checking that employs trace sampling from the
event log and result approximation in order to derive conformance results in
an efficient manner. This solution is orthogonal to our technique since, instead
of sampling the log, we take abstractions from the model. Moreover, general
approximation schemes for alignment have been proposed in [19]. The work casts
a recursive strategy to solve the alignment problem by splitting ILP models into
small pieces. The same authors present in [20] a technique to decrease both in
execution time and memory the computation of alignments via the reduction
of the given process model and the event log. A decomposition-based method
is proposed in [7] for an approximation of the alignments with good precision
and low execution time. Recently, an approximate alignment approach based
on process trees has been proposed [18]. The approach splits the problem of
alignments into smaller sub-problems along the tree hierarchy and solves them
individually and in parallel. The approximate approaches presented so far con-
sider the alignment problem at the control-flow level, while there is no existing
work for handling the multi-perspective approximate alignment problem.

7 Conclusion

In this paper, we showed how trace encoding methods can be used to com-
pute multi-perspective trace alignments. By opportunely selecting the encoding
methods, the analyst can choose the relevant information for computing the
alignments. This also makes the alignment task faster. Our experiments show
that the approximate approach is 100 times faster than CoCoMoT. The results
are accurate in terms of precision (identification of the optimal alignment) and
similarity between the approximate and the optimal alignments. In future work,
we want to extend this approach to probabilistic trace alignment both in the
standard conformance checking scenario, in which a log trace is aligned with a
DPN, and in the case in which a trace is aligned wrt a log of “happy paths”. In
the latter, the probability of a path can be computed using clustering methods,
more precisely by taking the density of the cluster to which the path belongs.

References

1. Bauer, M., van der Aa, H., Weidlich, M.: Sampling and approximation techniques
for efficient process conformance checking. Inf. Syst. 104, 101666 (2022)

2. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7


Approximating Multi-perspective Trace Alignment Using Trace Encodings 91

3. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: CoCoMoT: conformance
checking of multi-perspective processes via SMT. In: Proceedings of BPM 2021
(2021)

4. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Conformance checking
with uncertainty via SMT. In: Proceedings of BPM 2022 (2022)

5. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Data-aware confor-
mance checking with SMT. Inf. Syst. 117 (2023). https://doi.org/10.1016/j.is.
2023.102230
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Abstract. Process models are used to represent processes in order to
support communication and allow for the simulation and analysis of the
processes. Many real-life processes naturally define partial orders over
the activities they are composed of. Partial orders can be used as a
graph-like representation of process behavior. On the one hand, par-
tially ordered graph representations allow us to easily model concurrent
and sequential behavior between activities while ensuring simplicity and
scalability. On the other hand, partial orders lack the support for typical
process constructs such as choice and loop structures. Therefore, in this
paper, we present a novel process modeling notation, i.e., the Partially
Ordered Workflow Language (POWL). A POWL model is a partially
ordered graph extended with control-flow operators for modeling choice
and loop structures. A POWL model has a hierarchical structure; i.e.,
POWL models can be combined into a new model either using a control-
flow operator or as a partial order. We propose an initial approach to
demonstrate the feasibility of using POWL models for process discovery,
and we evaluate our approach based on real-life data.

Keywords: POWL · process modeling · partial order · process tree

1 Introduction

A process model provides an illustration of a process that supports communica-
tion and allows for the simulation and analysis of the process. Process models
can either be created by hand or discovered using process discovery techniques
[2]. Organizations use information systems to track and record data about the
execution of their processes, and this data is used for the discovery of process
models. Process models might provide insights for organizations and allow them
to analyze their processes in order to detect problems and bottlenecks. This can
help to automate processes and to make better decisions.

Different modeling notations are used to model processes. Petri nets are a
powerful modeling notation widely used to formally describe the behavior of pro-
cesses. A sub-class of Petri nets, called Workflow nets (WF-nets), is usually used
to model business processes. WF-nets adhere to structural quality requirements;
e.g., they define a clear notion for marking the start and end of processes. How-
ever, WF-nets may still suffer from behavioral quality issues. For instance, it is
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possible to construct a Workflow net with dead parts that can never be reached.
WF-nets that do not suffer from such quality anomalies are called sound.

A process tree [16] is a hierarchical modeling notation, i.e., a mathematical
tree, in which the leaves represent activities and the internal vertices represent
control-flow operators for modeling behavioral dependencies between their chil-
dren. Process trees represent a strict subset of WF-nets; i.e., any process tree can
be transformed into a WF-net modeling the same behavior, but not all WF-nets
can be modeled as process trees. Process trees are guaranteed to be sound by
construction as they are limited to modeling hierarchical structures.

Partial orders are used as a representation of the execution order of activities
for many real-life processes. In a partial order, some activities may have a strict
order with respect to each other (e.g., activity “a” must happen before activity
“b”), while other activities are concurrent (e.g. activities “b” and “c” may hap-
pen in any order). This reflects the reality of many business processes, where
there may be multiple ways to accomplish a goal. Several partial-order-based
modeling notations have been introduced, e.g., prime event structures [25] and
conditional partial order graphs [22]. These notations allow us to model concur-
rency and sequential dependencies in an efficient and compact manner; however,
none of them properly support cyclic process behavior, which is very common
in practice. Moreover, in a partial order over activities, we assume all activities
to be executed, and thus, modeling a choice is not supported.

On the one hand, process trees fail to model non-hierarchical dependencies
that can be easily described by a partial order. On the other hand, we cannot
model loop or choice structures in a partially ordered graph. We propose a new
modeling notation that combines hierarchical modeling notations with partial
orders. We call our modeling language Partially Ordered Workflow Language
(POWL). A POWL model is a partially ordered graph extended with control-
flow operators for modeling choice and loop structures; i.e., a POWL model is a
hierarchical model that allows for defining partial orders over sub-models.

The remainder of the paper is structured as follows. We start with a motivat-
ing example in Sect. 2. We discuss related work in Sect. 3, and we briefly present
preliminaries in Sect. 4. We define POWL models in Sect. 5, and we introduce
an initial approach for the discovery of POWL models in Sect. 6. We evaluate
our approach using real-life data in Sect. 7. Finally, we provide a brief summary
of the paper and propose ideas for future work in Sect. 8.

2 Motivation

In this section, we motivate our contribution based on a simple example.
We consider a process for purchasing items from an online shop. The user

starts an order by logging in to their account (a). Then, the user simultaneously
selects the items to purchase (b) and sets a payment method (c). Afterward, the
user either pays (d) or completes an installment agreement (e). After selecting
the items, the user chooses between multiple options for a free reward (f). Since
the reward value depends on the purchase value, this step is done after selecting
the items, but it is independent of the payment activities. Finally, the items are
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Fig. 1. Process models.

delivered to the user (g). The user may exchange received items. The user can
return some items (h), and each time items are returned, a new delivery is made
afterward. The WF-net shown in Fig. 1a precisely models this process.

A process tree models hierarchical behavioral structures using the control-
flow operators →, ×, �, and +. The → operator models a sequential execution
of blocks; × models an exclusive choice; + models concurrency; � models a
do-redo loop between two blocks (i.e., the first block is executed once first, and
every time the second block is executed it is followed by another execution of
the first block). Figure 1b shows a process tree modeling the behavior of our
example process. This tree contains a choice of two sub-tree over the same set
of activities (b, c, d, e, and f). Process trees are limited to modeling hierarchical
structures; i.e., without duplicating activities, a process tree cannot precisely
model the dependencies between the activities b, c, d, e, and f .

Figure 1c shows a POWL model precisely modeling the behavior of our exam-
ple process. The outer layer of the hierarchy is a partial order modeling a
sequence between the activity sets {a}, {b, c, d, e, f}, and {g, h}. Another partial
order is used to model the non-hierarchical dependencies between the activity
sets {b}, {c}, {d, e}, and {f}. The process tree operators × and � are used to
model the choice between d and e and the loop between g and h respectively.

Compared to the process tree and the WF-net, the POWL model has a
simpler structure with fewer nodes and edges (i.e., no places and no duplication
of activities). Moreover, the POWL model shows non-hierarchical dependencies
without duplicating activities, while sub-models can still be easily identified in
the hierarchy and the soundness guarantee is preserved.

3 Related Work

Different modeling notations are used among process mining tools and tech-
niques. We refer to [3] for an overview of process modeling notations in process
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mining. In [16], Leemans introduce the inductive mining framework and multiple
process discovery approaches implementing it. The approach we propose for the
discovery of POWL models extends the inductive mining framework.

Many ideas for combining different modeling notations have been proposed.
In [4], a hybrid Petri net is defined as a Petri net extended with informal arcs
connecting transitions. In [27], another type of hybrid process models is defined
by combining imperative and declarative modeling languages.

Partial orders are used for data representation and process modeling. An
overview of the use of partial orders in process mining is provided in [17]. In
[21], Mannila et al. propose an approach for the discovery of frequent episodes,
where an episode is defined as a partially ordered set of events. This approach
is adapted in [15] to discover partially ordered sets of activities in event logs.
In [14], the authors create partially ordered representations of activities and
combine them into a workflow graph. In [13], the authors suggest an approach
for generating prime event structures from event logs. A prime event structure
[25] is a partially ordered graph enriched with a conflict relation. This approach
is able to model choice due to the conflict relation; however, loops remain a major
challenge for prime event structures. In [22], the authors present a method for
deriving conditional partial order graphs from event logs. A conditional partial
order graph [23] is a compact representation of a family of partial orders that is
able to model choice structures, but it fails to capture cyclic behavior.

In [26], the authors introduce a flow language (BPEL) that allows for com-
bining web service primitives using advanced control-flow constructs (including
event handlers). BPEL additionally allows for imposing an execution order over
primitives executed in parallel using control links. BPEL is a powerful language
for implementing web services; however, BPEL is very complex for end users and
can be viewed as a programming language rather than a modeling language [5].

4 Preliminaries

In this section, we present basic preliminaries that ease this paper’s readability.
IN={1, 2, 3, ...} denotes the set of natural numbers. We use INodd={1, 3, 5, ...}

to denote the set of odd numbers, and we use INeven={2, 4, 6, ...} to denote the
set of even numbers.

P(X )={X ′⊆X} denotes the powerset of a set X. For n sets X1, ...,Xn, we
define the n-ary Cartesian product as the set X1×...×Xn={(x1, ..., xn) | xi∈Xi

for 1≤i≤n}. An n-ary relation over X1, ...,Xn is a subset of the n-ary Cartesian
product X1×...×Xn.

Let X and Y be two sets, and f : X→Y be a function. f is injective if
∀

x,x′∈X
f(x)=f(x′)⇒x=x′. f is surjective if ∀

y∈Y
∃

x∈X
f(x)=y. f is bijective if it

is injective and surjective. We use B(X,Y ) to denote the set of all bijective
functions from X to Y . A multi-set generalizes the notion of a set and allows
for multiple occurrences of the same element. The order of occurrences of the
elements in a multi-set is irrelevant. We define a multi-set M over a set X as
a function M : X→IN∪{0}. We write a multi-set as M=[x1

c1 , ..., xn
cn ] where



96 H. Kourani and S. J. van Zelst

M(xi)=ci for 1≤i≤n (for x∈X with M(x)=1, we omit the superscript; in case
M(x)=0, we omit x). We use M(X) to denote the set of all multi-sets over X.

A sequence is an ordered collection of elements. We define a sequence over a
set X as a function σ : {1, . . ., n}→X, and we write σ=〈σ(1), ..., σ(n)〉. We use
|σ|=n to denote the length of σ and X∗ to denote the set of all sequences over
X. We use σ1·σ2 to denote the concatenation of two sequences σ1 and σ2, e.g.,
〈x1〉·〈x2, x1〉=〈x1, x2, x1〉. We overload notation and, for two sets of sequences
L1 and L2, we write L1·L2={σ1·σ2 | σ1∈L1 ∧σ2∈L2}. We use σ↑Y to denote the
projection of a sequence σ on a set Y . For example, 〈x1, x2, x1〉↑{x1,x3}=〈x1, x1〉.

Let ≺⊆X×X be a 2-ary relation over a set X . For (x1, x2)∈X×X, we write
x1≺x2 to denote that (x1, x2)∈≺, and we write x1⊀x2 to denote that (x1, x2)/∈≺.
≺ is a strict partial order if it is irreflexive (i.e., x⊀x for all x∈X ) and transitive
(i.e., if x1≺x2 and x2≺x3, then x1≺x3)1. In the remainder of the paper, we use
the term partial order to refer to a strict partial order. We refer to ρ=(X ,≺) as a
partially ordered set (poset). The language of ρ is defined as the set of sequences
L(ρ)={σ∈X∗ | ∃

f∈B({1,...,|σ|},X)
∀

1≤i≤|σ|
σ(i)=f(i)∧ ∀

1≤j≤|σ|
f(i)≺f(j)⇒i<j}. The

transitive reduction of ≺ is defined as ≺−={(x1, x3)∈≺ | �
x2∈X

x1≺x2∧x2≺x3}.

We use Π (X ) to denote the set of all posets over X . Let X and Y be two
sets, ρ=(X,≺) be a poset, and γ : X→Y be a labeling function. The triple
ρ′=(X ,≺, γ) is called a labeled partial order over X and Y . The language of
ρ′ is defined as the set of sequences L(ρ′)={〈γ(σ(1)), ..., γ(σ(|σ|))〉 | σ∈L(ρ)}.
We use Π (X , Y ) to denote the set of all labeled partial orders over X and Y .

We use Σ to denote the universe of activities, and we use τ /∈Σ to denote the
silent activity (τ is also referred to as the unobservable activity).

5 POWL Language

In this section, we introduce the Partially Ordered Workflow Language (POWL).
We define POWL models, their semantics, and an approach for transforming
POWL models into sound WF-nets.

A POWL model is a partially ordered graph representation of a process,
extended with control-flow operators for modeling choice and loop structures.
We define three types of POWL models. The first type is the base case consisting
of a single activity. For the second type, we use the existing process tree operators
× and � (defined in [16]) to combine multiple POWL models into a new model.
We use the operator × to model an exclusive choice of n≥2 POWL models and
the operator � to model a do-redo loop of two POWL models. The third type
of POWL models is defined as a poset of n≥2 POWL models. We interpret
unconnected nodes in a poset to be concurrent and connections between nodes
as sequential dependencies. Figure 1c shows an example POWL model.

1 Irreflexivity and transitivity imply asymmetry ; i.e., if x1≺x2, then x2⊀x1.
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Fig. 2. Translation of the POWL model shown in Fig. 1c into a set of labeled partial
orders. For simplicity, we only show the labels of the transitions. We also show the
language of each partial order (i.e., as a set of activity sequences).

Definition 1 (POWL Model). A POWL model is recursively defined as fol-
lows:

– Any activity a∈Σ∪{τ} is a POWL model.
– Let ψ1 and ψ2 be two POWL models. �(ψ1, ψ2) is a POWL model.
– Let P={ψ1, ..., ψn} be a set of n≥2 POWL models.

• ×(ψ1, ..., ψn) is a POWL model.
• A poset ρ=(P,≺)∈Π (P ) is a POWL model.

We use Ψ to denote the universe of POWL models. We define the execution
semantics for POWL models. Since a partially ordered set of POWL models is
a POWL model, we define the semantics of POWL models in terms of partial
orders as well. However, choice and loop structures cannot be described using
a single partial order. Hence, we define the semantics of a POWL model by
transforming it into a set of labeled partial orders over a set of newly generated
nodes (we call them transitions), and we use activities as labels. Figure 2 shows
the result of applying this transformation on the POWL model shown in Fig. 1c.

For the base case (i.e., a single activity), the POWL model is transformed
into a single partial order with a transition having the corresponding activity as
a label. For a silent activity, we create an empty labeled partial order. For the
operator ×, the language is defined as the union of the languages of the sub-
models. For the operator �, we combine labeled partial orders from the languages
of the sub-models such that the first order is from the do-part and each order
from the redo-part is followed by an order from do-part. When combining these
orders, we replace every transition from the orders of the languages of the sub-
models by a new transition having the same label. For a poset of POWL models,
labeled partial orders are generated by combining orders from the languages of
the sub-models such that the partial order of the sub-models is preserved.

Definition 2 (Partial Order Semantics). Let T be the universe of transi-
tions. Γ: Ψ→P(Π (T ,Σ)) is a function recursively defined to transform a POWL
model into a set of labeled partial orders as follows.
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– For a∈Σ, Γ(a)={({t}, ∅, (t, a))} where t∈T is a new transition.
– Γ(τ)={(∅, ∅, ∅)}.
– Let P={ψ1, ..., ψn} be a set of n≥2 POWL models.

• Γ(×(ψ1, ..., ψn))=
⋃

1≤i≤n

Γ(ψi).

• Γ(�(ψ1, ψ2))=⋃

n∈INodd

{(T,≺, γ) | ∃
(T1,≺1,γ1)∈Γ(ψ1̃),...,(Tn,≺n,γn)∈Γ(ψñ),f∈B(

⋃

1≤i≤n

Ti,T )

∀
1≤i≤n,ti∈Ti

(
γĩ(ti)=γ(f(ti))

∧ ∀
1≤j≤n,tj∈Tj

f(ti)≺f(tj) ⇔ ((i=j ∧ ti≺itj) ∨ i<j)
)
}

where T⊆T refers to a set of new transitions and ĩ refers to the transfor-

mation of an index i ∈ IN defined as: ĩ =

{
1 if i ∈ INodd,
2 if i ∈ INeven.

• For a poset ρ=(P,≺), Γ(ρ)={(T,≺′, γ) | ∃
(T1,≺1,γ1)∈Γ(ψ1),...,(Tn,≺n,γn)∈Γ(ψn)

T=
⋃

1≤i≤n

Ti

∧ ∀
1≤i≤n,ti∈Ti

(
γ(ti)=γi(ti)

∧ ∀
1≤j≤n,tj∈Tj

ti≺′tj ⇔ ((i=j ∧ ti≺itj) ∨ ψi≺ψj)
)
}.

After transforming a POWL model into a set of labeled partial orders, we
can derive the set of activity sequences that can be generated by the model. We
overload notation by defining the language of a POWL model ψ∈Ψ as the set of
activity sequences L(ψ)={σ∈Σ∗ | ∃

ρ=(T,≺,γ)∈Γ(ψ)
σ∈L(ρ)}.

Similar to process trees, POWL models can be recursively transformed into
WF-nets. The transformation approach is schematically presented in Fig. 3. The
generated workflow net is guaranteed to be sound; the soundness can be proven
by the composition theorem ([1, Theorem 3]).

6 Discovery of POWL Models

In this section, we demonstrate the feasibility of using POWL models in process
discovery by extending the base inductive miner [16] to mine for POWL models.

6.1 Event Log

Organizations use information systems to track and record information about
the execution of their processes. Data can be stored in different forms. In process
discovery, we assume data to be provided in the form of an event log. We define
an event log L∈M(Σ∗) as a multi-set of activity sequences. A trace σ∈L is a
sequence of activities that represents the execution of a single process instance.
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Fig. 3. POWL to WF-net converter C. For a WF-net W , we use λ̂(N) to denote the
Petri net that results after removing the source and sink places of W .

Let L∈M(Σ∗) be an event log. ΣL={a∈Σ | ∃
σ∈L,1≤i≤|σ|

σ(i)=a} denotes the

set of activities that occur in L. We use L�={a∈ΣL | ∃
σ∈L

σ(1)=a} to denote the

set of start activities and L�={a∈ΣL | ∃
σ∈L

σ(|σ|)=a} to denote the set of end

activities. The directly-follows graph (DFG) is a 2-ary relation �→L⊆ΣL×ΣL that
captures direct successions between activities; i.e., a�→Lb iff ∃

σ∈L,1≤i<|σ|
σ(i)=a∧

σ(i + 1)=b. The eventually-follows graph (EFG) �L⊆ΣL×ΣL captures direct
and indirect successions between activities; i.e., a�Lb iff ∃

σ∈L,1≤i<j≤|σ|
σ(i)=a ∧

σ(j)=b.
L1=[〈a, b, c〉3, 〈a, b, d〉2] is an example event log. This event log consists of five

traces with ΣL1={a, b, c, d}, L1�={a}, L1�={c, d}, �→L1={(a, b), (b, c), (b, d)},
and �L1={(a, b), (a, c), (a, d), (b, c), (b, d)}.

6.2 Inductive Miner

The inductive miner [16] is one of the leading approaches in process discovery.
It provides formal guarantees such as soundness, perfect fitness (i.e., it discovers
a model that covers all behavior recorded in the log), and rediscoverability of
certain process structures. There are several variants of the inductive miner (e.g.,
for handling incompleteness or infrequent behavior). In this paper, we extend
the base variant of the inductive miner that assumes a noise-free event log and
returns a model that perfectly fits the input event log.
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Fig. 4. Two steps of process tree cut detection: → and × cuts.

The inductive miner is a recursive top-down approach. The algorithm tries
to detect a cut, i.e., it tries to detect a behavioral pattern in the directly-follows
graph and a partitioning of the activities according to this pattern. The inductive
miner supports four cuts corresponding to the four operators of process trees,
and it recursively generates a process tree based on the detected cuts.

Definition 3 (Process Tree Cut). Let L∈M(Σ∗) be an event log. A process
tree cut (⊕, A1, ..., An) of L is tuple of a control-flow operator ⊕∈{→,×,+,�}
and a partitioning of the activities into n≥2 subsets; i.e., ΣL=A1∪...∪An and
Ai∩Aj=∅ for 1≤i<j≤n.

After detecting a cut, the event log is projected into the different groups of
the partitioning, creating several sub-logs. The same approach is then recursively
applied to all sub-logs until a base case of the recursion is reached. A base case
is defined as an event log whose activity set consists of a single activity. A base
case can be easily transformed into a process tree: either into a single node or
using the operators × or � to model an optional activity or a self-loop.

For the formal description of the different steps of the inductive miner, we
refer to [16]. Figure 4 shows an example directly-follows graph and two steps
of process tree cut detection based on it. First, a sequence cut (→, {a, b}, {c})
is detected in the initial directly-follows graph; i.e., a sequential dependency
between these groups of activities is discovered. The event log is then projected
into the two groups of activities, creating sub-logs. The second sub-log is a base
case. For the first sub-log, a choice cut (×, {a}, {b}) is detected, and again,
two sub-logs are generated. Both sub-logs are base cases, and the algorithm
terminates returning the process tree →(×(a, b), c).

If neither a base case nor a cut is detected, then the inductive miner invokes a
fall-through function. This function always returns a cut that might correspond
to an under-fitting model (i.e., a model that does not precisely capture the
behavior recorded in the log), but it allows for continuing the recursion. For
example, the fall-through function might return a concurrency cut between an
activity that occurs exactly once in every trace and the rest of the activities.
All steps of the algorithms are fitness-preserving [16]; i.e., all traces in the input
event log are guaranteed to be included in the language of the generated model.
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Fig. 5. Approach for the discovery of POWL models.

Fig. 6. Partial order cut detection.

6.3 Partial Order Cut

We adapt the inductive miner to discover POWL models instead of process
trees. If the algorithm fails to detect a base case or a process tree cut, we mine
for partial orders before invoking the fall-through function; we generate partial
orders over all possible partitionings of activities, and we validate these orders
using certain rules. If a valid order is found, then the event log is projected on the
partitioning of activities and the recursion continues on the sub-logs; otherwise,
the fall-through function is invoked. An overview of the different steps of our
approach for the discovery of POWL models is shown in Fig. 5.

We define a partial order cut as a partitioning of the activities and a par-
tial order over the partitioning. Since a partial order is transitive, we use the
eventually-follows graph instead of the directly-follows graph for the detection of
partial order cuts (we discuss the detection step in Sect. 6.4). Figure 6 shows an
example eventually-follows graph with a partial order cut detected based on it.
This cut consist of a partitioning of activities P={{a, b}, {c}, {d}} and a partial
order ≺ defined by two ordering relations {a, b}≺{d} and {c}≺{d}.

Definition 4 (Partial Order Cut). Let L∈M(Σ∗) be an event log. A partial
order cut of L is a poset ρ=({A1, ..., An},≺) over a partitioning of the activities
into n≥2 subsets; i.e., ΣL=A1∪...∪An and Ai∩Aj=∅ for 1≤i<j≤n.

Our approach tries to detect a process tree cut before mining for a partial
order. In case a sequence or a concurrency cut is detected, we transform it into
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a partial order cut since POWL models do not support the operators → and +.
A concurrency is modeled as a poset with an empty ordering relation; i.e., we
transform (+, A1, ..., An) into the poset ({A1, ..., An}, ∅). A sequence is modeled
as poset using the sequential order of the nodes; i.e., we transform (→, A1, ..., An)
into the poset ({A1, ..., An},≺) where Ai≺Aj iff 1≤i<j≤n.

The base inductive miner only detects cuts that preserve perfect fitness [16];
i.e., all traces observed in the event log are guaranteed to be included in the
language of the generated model. Similarly, we ensure perfect fitness for our
approach.

Definition 5 (Fitness-Preserving Partial Order Cut). Let L∈M(Σ∗) be
an event log and ρ=(P,≺) be a partial order cut of L. ρ is fitness-preserving iff
for any A1, A2∈P : A1≺A2⇒{σ↑A1∪A2

| σ∈L}⊆A1
∗·A2

∗.

6.4 Detection of Partial Order Cut

Our approach mines for a partial order cut before invoking the fall-through
function. We use a brute-force approach that generates all possible partitionings
of activities, and for each partitioning, we mine for a valid partial order. We
define a valid partial order cut as a behavioral pattern in the eventually-follows
graphs that corresponds to a partial order over the partitioning of activities.

A valid order contains an ordering edge between two groups of activities if
and only if all activities of the first group are eventually followed by all activities
of the second group and none of the activities of the second group is eventually
followed by an activity of the first group. Moreover, two groups are not connected
through any ordering edges if and only if they are concurrent. We define two
groups to be concurrent if every activity of each group is eventually following all
activities of the other group. Finally, we ensure that groups with no preceding
groups with respect to the order contain start activities and groups with no
succeeding groups with respect to the order contain end activities.

Definition 6 (Valid Partial Order Cut). Let L∈M(Σ∗) be an event log and
ρ=(P,≺) be a partial order cut of L. ρ is valid if the following conditions hold
for all Ai, Aj∈P ; Ai �= Aj:

1. (Ai≺Aj ∧ Aj⊀Ai) iff ∀
ai∈Ai,aj∈Aj

ai�Laj ∧ aj ��Lai.

2. (Ai⊀Aj ∧ Aj⊀Ai) iff ∀
ai∈Ai,aj∈Aj

(ai�Laj ∧ aj�Lai).

3. if �
Ak∈P

Ak≺Ai, then Ai∩L� �=∅.
4. if �

Ak∈P
Ai≺Ak, then Ai∩L� �=∅.

The partial order cut shown in Fig. 6 is valid. Note that if a valid partial order
cut over a partitioning of activities exists, then it is unique (the first condition
of Definition 6 uniquely defines a relation). Moreover, a valid partial order cut is
fitness-preserving; i.e., the partial order cut detection step is fitness-preserving.
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Theorem 1. Let L∈M(Σ∗) be an event log and ρ=(P,≺) be a valid partial
order cut of L. ρ is fitness-preserving.

Proof. Let Ai, Aj∈P with Ai≺Aj . Then, Aj⊀Ai since ≺ is asymmetric.
⇒ ∀

ai∈Ai,aj∈Aj

ai�Laj ∧ aj ��Lai.

⇒ �
σ∈L,1≤k<l≤|σ|

σ(k)∈Aj ∧ σ(l)∈Ai.

⇒ {σ↑Ai∪Aj
| σ∈L}⊆{σi·σj | σi∈Ai

∗ ∧ σj∈Aj
∗}=Ai

∗·Aj
∗. ��

6.5 Discussion: Scalability, Fitness, Maximality

Our approach serves as a proof of concept to demonstrate the feasibility of using
POWL models for process discovery. The step of partial order cut detection
needs to be improved in terms of efficiency. We use a brute force approach
for the step of partial order cut detection. Our approach generates all possible
partitionings of activities until a valid order over one of these partitionings is
found. For a large number of activities, this step becomes very time-consuming
unless a partial order cut is detected in an early stage. A possible improvement
for future work is to exploit the eventually-follows graph to dynamically prune
the search space instead of generating all partitionings of activities.

The inductive mining framework guarantees perfect fitness for the generated
models if all steps of the discovery are fitness-preserving [16, Corollary 4.2]. Our
approach extends the base inductive miner (IM) by adding the step of partial
order cut detection. All steps of IM are fitness-preserving [16], and we mine for
valid partial order cuts, which are also fitness-preserving (Theorem 1). Therefore,
our approach is guaranteed to discover fitting models.

Precision is another criterion used to assess the quality of process discovery
approaches. A precise process model is a model that does not allow for behavior
not observed in the log. Process discovery approaches aim at creating a balance
between fitness and precision. As our approach guarantees perfect fitness, our
goal is to maximize precision by discovering a model that allows for less behavior
as possible. In Definition 6, we defined valid partial order cuts by exploiting the
eventually-follows graph. This definition ensures the uniqueness of a valid cut
for a given partitioning of activities. However, a general notion of maximality
among different partitionings is missing. Currently, we only maximize the size
of the partitioning; we generate the partitioning of maximal size first and try
to detect a valid partial order cut over it, then we decrease the size of the
partitioning gradually. For future work, we would like to have a stronger notion
of maximality for valid partial order cuts over different partitionings.

7 Evaluation

We implemented our approach for the discovery of POWL models in PM4Py
(http://pm4py.org/), and we evaluate it using real-life event logs. We compare
our approach (IMP ) with the base inductive miner (IM) and a more advanced

http://pm4py.org/
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Table 1. Evaluation results. We highlighted differences in precision for models discov-
ered by IMP compared to IM: increases in green and decreases in red.

Event log #Act. Time (sec) Precision Fitness simplicity

IM IMP IMC SM IM IMP IMC SM IM IMP IMC SM IM IMP IMC SM

BPI 2017 8 1.54 1.22 6.03 8.85 0.37 0.68 0.27 0.56 1 1 1 1 0.67 0.74 0.62 0.65

BPI 2017 12 18.02 5.66 13.79 16.86 0.23 0.34 0.22 0.34 1 1 1 1 0.65 0.68 0.64 0.57

BPI 2018 8 25.79 16.31 11.48 45.14 0.35 0.32 0.29 0.29 1 1 0.99 1 0.65 0.63 0.64 0.54

BPI 2018 12 59.75 112.29 17.25 55.36 0.2 0.21 0.27 0.19 1 1 0.98 1 0.61 0.63 0.63 0.48

BPI 2019 8 2.93 2.95 8.5 13.48 0.62 0.78 0.78 0.73 1 1 1 1 0.64 0.67 0.67 0.54

BPI 2019 12 5.56 3.3 13.15 13.46 0.55 0.7 0.7 0.7 1 1 1 1 0.64 0.64 0.65 0.49

Dom. Decl. 8 0.08 0.26 0.5 0.57 0.4 0.4 0.39 0.9 1 1 1 1 0.65 0.66 0.65 0.57

Dom. Decl. 12 0.13 38.16 0.98 0.61 0.5 0.54 0.37 0.84 1 1 1 1 0.61 0.67 0.62 0.59

Int. Decl. 8 0.05 0.08 0.4 0.54 0.5 0.53 0.59 0.66 1 1 1 1 0.67 0.71 0.69 0.54

Int. Decl. 12 0.12 0.31 1.6 0.68 0.47 0.51 0.53 0.56 1 1 0.98 0.89 0.65 0.69 0.69 0.38

Travel Permit 8 0.17 0.2 1.05 1.58 0.51 0.51 0.68 0.56 1 1 0.96 0.92 0.67 0.67 0.71 0.44

Travel Permit 12 0.45 280.02 0.79 0.91 0.33 0.35 0.6 0.41 1 1 0.95 0.99 0.65 0.67 0.68 0.49

Travel Costs 8 0.04 0.19 0.12 0.19 0.43 0.39 0.35 0.55 1 1 1 0.99 0.63 0.68 0.67 0.56

Travel Costs 12 0.15 276.87 0.22 0.28 0.23 0.35 0.24 0.54 1 1 1 0.83 0.58 0.68 0.63 0.38

Pay. Request 8 0.05 0.19 0.27 0.43 0.75 0.75 0.29 0.91 1 1 0.9 1 0.63 0.68 0.66 0.55

Pay. Request 12 0.09 41.44 0.5 0.5 0.49 0.49 0.38 0.82 1 1 1 1 0.6 0.67 0.64 0.55

Sepsis 8 0.08 0.1 0.07 0.21 0.51 0.51 0.51 0.42 1 1 1 1 0.64 0.65 0.64 0.5

Sepsis 12 0.2 0.14 0.16 0.3 0.34 0.35 0.4 0.31 1 1 1 1 0.64 0.65 0.63 0.47

Fine 8 0.49 0.71 9.21 5.35 0.76 0.76 0.76 0.91 1 1 1 1 0.66 0.67 0.68 0.56

Fine 11 0.69 7.13 17.52 5.49 0.58 0.58 0.78 0.92 1 1 1 1 0.62 0.63 0.64 0.51

Hosp. Billing 8 0.59 0.69 9.09 10.67 0.78 0.78 0.6 0.9 1 1 1 1 0.67 0.67 0.64 0.56

Hosp. Billing 12 0.99 1.55 14.17 5.61 0.6 0.6 0.46 0.86 1 1 1 1 0.65 0.66 0.62 0.53

variant of the inductive miner that handles incompleteness (IMC) [16]. We addi-
tionally apply another state-of-the-art discovery approach: the split miner (SM)
[6]. Since both IM and IMP guarantee perfect fitness, we set the filtering thresh-
old of the split miner to 0; for the other parameters, we use the default values.

We transform the discovered models into WF-nets, and we assess their quality
using three conformance-checking metrics implemented in PM4Py: fitness [7],
precision [24], and simplicity [8]. Fitness quantifies how well the discovered model
reproduces the behavior recorded in the event log. Precision quantifies the degree
to which the model is restricted to the behavior recorded in the event log. The
simplicity metric implemented in PM4Py evaluates a model as simple if it has a
low average degree of arcs (i.e., a low number of arcs per place or transition).

We use multiple real-life event logs for the evaluation. We use an event log
that records sepsis cases from a hospital [19], an event log of a system managing
road traffic fines [18], an event log for a hospital billing system [20], BPI Chal-
lenge 2017 [9], BPI Challenge 2018 [12], BPI Challenge 2019 [10], and the five
event logs of the BPI Challenge 2020 [11]: Request For Payment, Prepaid Travel
Costs, Travel Permit Data, International Declarations, and Domestic Declara-
tions. We filter the event logs to only keep the most frequent activities using two
values for this filter: 8 and (at most) 12 activities.

The results of the evaluation are shown in Table 1. We report the time
required for discovering each model and the obtained conformance-checking
scores.
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On the one hand, IMP led to better time performance than the other
approaches in some cases (e.g., BPI Challenge 2017). On the other hand, IMP

was more time-consuming in other cases. Compared to IM, the time increased
from 0.17 s to 0.2 s for the travel permit log with 8 activities and from 0.45 s to
280.02 s for the log with 12 activities. This shows how increasing the number
of activities can dramatically worsen the time performance. These results were
expected as discussed in Sect. 6.5. IMP serves as proof of concept, and it needs
to be improved in terms of scalability in future work.

As expected, both IM and IMP led to perfectly fitting models, while for
IMC and SM, we observe lower fitness values in some cases. As discussed in
Sect. 6.5, IMP preserves the fitness guarantee of IM as the step of partial order
cut detection is fitness-preserving.

In general, the three variants of the inductive miner led to simpler models
than the split miner. Our approach achieved the highest simplicity score on aver-
age (0.67), while SM achieved the lowest score on average (0.52). Note that these
scores only evaluate the simplicity of the discovered models after transforming
them into WF-nets; i.e., we are not evaluating the simplicity of the three dif-
ferent types of models (IM and IMC produce process trees [16], IMP produces
POWL models, and SM produces BPMN models [6]).

We observe that precision varies among the different event logs. On the one
hand, SM led to significantly higher precision values and lower simplicity values
compared to the inductive miner in many cases (e.g., the fine management logs).
On the other hand, we observe cases where the inductive miner performed better
in terms of both precision and simplicity (e.g., the sepsis cases log). By comparing
the three variants of the inductive miner with each other, we observe that IMP

led to the highest precision on average. In Table 1, we highlighted differences in
precision between the models discovered by IM and IMP as IMP extends IM
aiming at improving precision.

In general, our approach led to more precise models than IM. For some of
these cases, this is due to the handling of incompleteness. Our approach uses
the eventually-follows graph instead of the directly-follows graph for detecting
partial order cuts. This design decision helps to handle incompleteness in the
event log since the directly-follows graph is a subset of the eventually-follows
graph; i.e., if the event log is incomplete and some connections are missing in the
directly-follows graph, these connections might still be present in the eventually-
follows graph. For instance, the precision of the BPI Challenge 2019 log with 12
activities increased from 0.55 to 0.7. However, the POWL model discovered by
IMP does not contain any structures that cannot be captured by a process tree.
It models the same behavior of the process tree discovered by IMC .

Figure 7 shows the POWL model discovered by IMP for the BPI Challenge
2017 event log with 8 activities. The POWL model achieved a precision of 0.68
compared to 0.37 achieved by the model discovered by the base inductive miner.
IMP discovers local dependencies between activities IM fails to discover. For
example, IMP discovered a simple sequential relation between the activities
“A Concept” and “A Accepted”. This simple sequence cannot be discovered
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Fig. 7. POWL model discovered for the BPI Challenge 2017 event log.

by IM as it only represents a local dependency; i.e., it does not correspond to a
global process tree cut covering all activities. The POWL model shows a non-
hierarchical structure that cannot be captured using a process tree (i.e., the
partial order over {A Concept}, {A Accepted}, {O Create Offer, O Created},
{W Complete application}, and {W Call after offers, A Complete}).

Although IMP led to more precise models compared to IM in most cases, we
observe some exceptions. For instance, for the BPI Challenge 2018 event log with
8 activities, the precision decreased from 0.35 to 0.32. This is an example where
invoking the fall-through function led to better results than detecting a partial
order. In order to continue the recursion, the fall-through function returned a
concurrency cut between an activity that occurs in every trace at most once and
the rest of the activities.

To sum up, our evaluation shows that our approach discovers structures that
cannot be captured by a process tree, and it leads to high precision and simplicity
in general. However, the approach needs to be improved in terms of scalability.

8 Conclusion

Different modeling notations are used to model processes. Partial orders pro-
vide a compact representation of concurrent systems, but they are not able to
represent cyclic or choice behavior. Process trees use control-flow operators for
modeling processes as mathematical trees, but they are limited to hierarchical
structures. A POWL model is a partially ordered graph representation, extended
with control-flow operators for modeling choice and loop. POWL models can be
converted into sound Workflow nets. We proposed an approach to demonstrate
the feasibility of using POWL models in process discovery. We evaluated our
approach using real-life event logs, and the evaluation showed that our approach
is able to discover dependencies that cannot be captured by a process tree.

We propose multiple ideas for future work. First, our approach needs to be
improved in terms of scalability. Moreover, it is possible to develop other types of
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approaches for the discovery of POWL models. Our approach is based on the base
inductive miner; i.e., it is a top-down recursive approach. Developing a bottom-
up approach and comparing it with the top-down approach is an interesting
idea for future work. Moreover, we can develop a discovery approach for POWL
models that exploits life-cycle information in event logs where each event has
a duration (i.e., each event has a start timestamp and an end timestamp). We
usually assume event logs to be totally ordered; i.e., we define a trace as a
sequence of activities. However, event logs might also be partially ordered. We
suggest developing an approach for the discovery of POWL models from partially
ordered event logs. Finally, the idea of combining different modeling notations
to create new types of process models is not restricted to POWL models. This
idea can be applied to combine other types of process models.
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Abstract. Conformance-checking is the field of process mining relating
modeled and observed behavior. State-of-the-art conformance checking
techniques do not scale for large process models and event logs, which
hampers its broader adoption.

In this paper, we present a polynomial-time method to compute the
markovian-based fitness and precision metrics for process trees. For that,
we first show that this is equivalent to the problem of computing the set
of substrings of length at most k of the model’s language. Then, we show
how to exploit the tree structure to compute this set in a compositional
way. The experimental evaluation shows that the proposed method out-
performs state-of-the-art conformance-checking techniques by orders of
magnitude, while still providing quality guarantees.

Keywords: Process mining · Conformance Checking · Process Trees

1 Introduction

Conformance checking is the field of process mining relating desired and observed
behavior. Given an event log and a process model, conformance checking aims
at identifying and quantifying differences between the event log and the process
model. An important use-case for conformance checking is to assess the quality
of automatically discovered process models in the form of a single number evalu-
ation metric. For that, multiple conformance metrics with distinct runtime and
quality characteristics have been proposed in the literature [1,8,11]. Unfortu-
nately, most state-of-the-art methods still require a runtime that is exponential
on the number of activities or do not satisfy all the desired axioms for a confor-
mance metric [13].

A notable exception are the Projected Conformance Checking (PCC) fitness
and precision metrics [7], which provide strong runtime and quality guarantees
for certain classes of models (process trees with unique activities and no invisible
labels). Nevertheless, the PCC metrics require multiple passes over the event log,
which makes them expensive to compute for large datasets.

In this work, we focus on the problem of efficiently computing conformance
metrics for process trees. Process trees are a well-established modeling formalism
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in process mining because of its soundness guarantees and simple structure. For
instance, many state-of-the-art process discovery algorithms return process trees.
We provide two important contributions: First, we present a simplified, yet more
expressive, definition of the k-th order markovian abstraction first presented in
[2]. Next, we show how to compute the k-th order markovian abstraction of a
process tree in polynomial time by exploiting the tree structure. The method
achieves an improvement of orders of magnitude in computation time for models
with a high degree of parallelism. Furthermore, the method scales linearly with
the size of the event log, making it suitable for very large event-logs.

The remainder of the paper is organized as follows: Sect. 2 presents basic
notations and concepts from automata theory, which are the backbone of the
presented technique, Sect. 3 presents the general framework for computing the
k-th order markovian abstraction of a process tree, Sect. 4 compares the app-
roach to other state-of-the-art methods, Sect. 5 presents related work in the field.
Finally, Sect. 6 concludes the paper with directions for future work.

2 Preliminaries

This section presents the basic concepts upon which the method is based. For
a given finite alphabet Σ, Σk is the set of all finite words of length k formed
with this alphabet and Σ∗ =

⋃
k≥0 Σk. The projection of a word w ∈ Σ∗ in

a set of symbols S ⊆ Σ is written wS . The concatenation of two words u, v is
written uv. Similarly, the concatenation of two languages U, V ⊆ Σ∗ is written
as UV =

⋃
u∈U,v∈V uv. Given a word w = w1w2 · · · wn and 1 ≤ i ≤ j ≤ n,

wi→j = wiwi+1 · · · wj denotes a substring of w (written γ � w). We further
write pref k(w), suff k(w), and subk(w) to denote the set of non-empty prefixes,
suffixes, and substrings of w with length less than or equal to k. The definitions of
pref k, suff k, and subk are extended to languages too. Finally, the paper assumes
familiarity with basic algorithms of automata theory [5]. We provide common
notations for finite automata below:

Definition 1 (Labeled Directed Graph). A Labeled Directed Graph is a triple
G = (V,Σ,E) where V is the set of vertices, Σ is the set of labels and E ⊆
V ×Σ ×V is the set of edges. Given an edge e = (v, l, v′), functions πsrc(e) = v,
πtgt(e) = v′, and πl(e) = l return its source and target vertices and its label
respectively

For this paper, all considered graphs are labeled directed graphs. A path
p in the a graph is a sequence of edges p = e1e2 · · · en such that πtgt(ei) =
πsrc(ei+1) ∀1 ≤ i < n. We define πl(p) = πl(e1)πl(e2) · · · πl(en) as the path’s

labeling (= ε if the path is empty). And πv(p, i) =

{
πsrc(e1) i = 0
πtgt(ei) i > 0

as the i-th

vertex visited by the path, where πv(p, 0) is the path’s start vertex.

Definition 2 (Nondeterministic Finite Automaton). Let ε be the empty
string. A Nondeterministic Finite Automaton (NFA) is a 5-tuple N =
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(Q,Σ, δ, q0, F ), where Q is the set of states, Σ is the alphabet, δ : Q×(Σ∪{ε}) →
P(Q) is the transition function, q0 is the initial state and F ⊆ Q is the set of
final states.

Any NFA N = (Q,Σ, δ, q0, F ) is associated to a graph G = (Q,Σ ∪ {ε}, E)
where E = {(q, l, q′) ∈ Q × (Σ ∪ {ε}) × Q | q′ ∈ δ(q, l)} (called the NFA’s
graph). Given q, q′ ∈ Q, we define q[w〉q′ = {p ∈ E∗ | πl(p) = w ∧ πv(p, 0) =
q ∧ πv(p, |p|) = q′} as all the paths from q to q′ labeled by w. If q = q0, q′ ∈ F ,
and q[w〉q′ �= ∅, then N accepts w and p is an accepting path. The accepted
language of N is defined as L(N) = {w ∈ Σ∗ | ∃f∈F s.t. q0[w〉f �=∅}. Similarly,
we denote q[w1〉q′[w2〉q′′ = {p1p2 | p1 ∈ q[w1〉q′ ∧ p2 ∈ q′[w2〉q′′}. Last, we define
q[w〉 = {q′ ∈ Q | q[w〉q′ �= ∅} as the set of states reachable from q by replaying
w.

In an NFA N , a state is dead if it is not reachable from the start state and
it is a trap if there is no path q leading from the state to a final state. We say
that an NFA is trimmed if it has no dead or trap states. For any trimmed NFA,
any path p in its graph is such that πl(p) is a substring of L(N).

Definition 3 (Deterministic Finite Automaton (DFA)). A Deterministic
Finite Automaton (DFA) is an NFA where δ(q, ε) = ∅ ∀q ∈ Q and |δ(q, l)| ≤
1 ∀q ∈ Q, l ∈ Σ.

Every DFA has the property that two paths in its graph starting from the
same node are equal if and only if their labelings are the same, i.e. |q[w〉| ≤ 1.
We will abuse notation and write q[w〉q′ to refer to the single element of this set
(when it exists). Given an NFA N , there exists an unique (up to isomorphism)
DFA D with a minimal number of states such that L(N) = L(D) that can be
obtained via determinization. This can be achieved via the powerset construction
followed by a minimization step [5]. In the worst case, D has exponentially many
more states than N . If the DFA’s graph is acyclic, we call it a Deterministic
Acyclic Finite State Automaton (DAFSA). Given a finite language L ⊆ Σ∗, it
is possible to construct a minimal DAFSA accepting L in linearithmic time [4].

While finite automata can be used to represent any regular language, process
analysts need a compact and understandable modeling formalism. Among which,
process trees [3] stand out for their soundness guarantees and block structure.
Process trees are graphs with a tree structure. In a process tree, the leaf nodes
represent activities in Σ or skips (τ) and the internal nodes represent one of four
possible operators: exclusive (×), sequence (→), loop (�), and parallel (∧). The
tree’s accepted language is defined recursively as follows:

Definition 4 (Process Trees Semantics). Let� be the shuffle product of two

words, defined as:
{

w� ε = ε� w = {w} w ∈ Σ∗

xu� yv = {x}(u� yv) ∪ {y}(xu� v) x, y ∈ Σ ∧ u, v ∈ Σ∗

For languages A,B, define A�B =
⋃

wa∈A,wb∈B wa�wb. Then, the accepted
language of a process tree is recursively defined as:
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– L(τ) = {ε}
– L(a) = {a}
– L(×(T1, · · · , Tn)) =

⋃n
i=1 L(Ti)

– L(→(T1, · · · , Tn)) = L(T1)L(T2) · · · L(Tn)
– L(�(T1, · · · , Tn)) = L(T1)(L(×(T2, · · · , Tn))L(T1))∗
– L(∧(T1, · · · , Tn)) = L(T1)� L(T2)� · · ·� L(Tn)

Given a process tree T , there exists a unique minimal DFA D such that
L(T ) = L(D) [3]. However, the size of D might be exponential with the size of
T . This exponential blow-up is the bottleneck for most conformance checking
techniques, including the metrics based on the k-th order markovian abstraction
presented in [2]. This paper focuses on improving the runtime for computing the
k-th order markovian abstraction. For this, we use a slightly different definition
than the one originally introduced in [2], based on the set of k-trimmed substrings
of a language:

Definition 5 (K-Trimmed Substrings). Let Σ be an alphabet and k ≥ 2.
Given a word w ∈ Σ∗, the set of k-trimmed substrings sk(w) is defined as:

sk(w) =

{
{w} if |w| ≤ k

{wi→i+k−1 | 1 ≤ i ≤ |w| − k + 1} otherwise

We extend the definition of sk to languages as sk(L) =
⋃

w∈L sk(w). Con-
sider languages X = {abc} and Y = {i, ijk} (these will serve as a running exam-
ple for the remainder of the paper), then s1(X) = {a, b, c}, s2(X) = {ab, bc},
and sk(X) = {abc} for k ≥ 3 and s1(Y ) = {i, j, k}, s2(Y ) = {i, ij, jk}, and
sk(Y ) = {i, ijk} for k ≥ 3. The k-th order markovian abstraction (defined
below) is similar to the set of k-trimmed substrings, but with special start/end
markers (+/−) to track the language’s prefixes/suffixes.

Definition 6 (The Modified k-th Order Markovian Abstraction). Let
Σ be an alphabet, +/− /∈ Σ be special start/end markers, and k ≥ 2. Given a
word w ∈ Σ∗, the k-order markovian abstraction of w is defined as follows:

mk(w) = sk(+w−)

Similarly, mk of a language L ⊆ Σ∗ is defined as
⋃

w∈L mk(w). In prin-
ciple, mk is defined for arbitrary languages, but throughout the rest of this
work we focus on computing mk for regular languages. We will always assume
that +,− /∈ Σ and write Σ± = Σ ∪ {+,−} and +L− = {+}L{−}. For
any language L ⊆ Σ∗, mk(L) represents a finite set of finite words and thus
can be associated to a unique minimal DAFSA (written Mk

L). Figure 1a shows
the minimal DAFSAs M3

X and M3
Y accepting m3(X) = {+ab, abc, bc−} and

m3(Y ) = {+i−,+ij, ijk, jk−} respectively. In general, Mk
L has a very specific

structure, detailed below:

Proposition 1 (Basic Properties of Mk
L). Let Σ be an alphabet, L ⊆ Σ∗

be an arbitrary language, k ≥ 2, and Mk
L = (Q,Σ, δ, q0, F ) the minimal DAFSA

accepting mk(L), then:
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Fig. 1. M3
X and M3

Y for X = {abc} and Y = {ijk, i} and their sequence and loop
concatenations. Start states are colored orange, final states are colored green, dead
states are gray, states in Q− are hatched, and ε-transitions are represented as dashed
lines.

1. mk(L) ⊆ mk(Σ∗) =
(⋃

0≤i<k−1 +Σi−
)

∪ (+Σk−1) ∪ (Σk−1−) ∪ Σk

2. Mk
L has only one final state, i.e. F = {qf}

3. Mk
L has exactly one edge labeled +. This edge has q0 as its source and we

write q+ to represent its target, i.e. δ(q0,+) = {q+}
4. All −-labeled edges in Mk

L lead to its unique final state. We define Q− = {q ∈
Q | qf ∈ δ(q,−)}

5. For every γ ∈ subk(+L−), there exists a path p in Mk
L such that πl(p) = γ,

and for every path p in Mk
L, there exists γ ∈ subk(+L−) such that γ = πl(p).

6. For every path p in Mk
L, + ∈ πl(b) ⇐⇒ πl(p) ∈ pref k(+L−). Similarly,

− ∈ πl(p) ⇐⇒ πl(p) ∈ suff k(+L−)
7. |Q| ≤ |Σ|k−1 + 2

Finally, Definition 7 presents the (modified) markovian-based fitness and
precision metrics. The metrics return almost the same (but not the same) values
as the ones presented in [2], because the original definition counts words of length
smaller than k twice. However, monotonicity still holds for our definition of mk,
i.e. if A ⊆ B ⇒ mk(A) ⊆ mk(B), such that the proofs of the axioms presented
in [2] are still valid.

Definition 7 (Markovian-Based Fitness and Precision with the Binary
Cost Function). Let L be an event log with language L ⊆ Σ∗, P be a pro-
cess model with language P ⊆ Σ∗, k ≥ 2, and #L(γ) the number of occur-
rences of substring γ in L. Then MAF k(L,P ) = 1 −

∑
γ∈(mk(L)\mk(P )) #L(γ)

∑
γ∈mk(L) #L(γ)

and

MAP k(L,P ) = 1− |mk(P )\mk(L)|
|mk(P )| are the markovian-based fitness and precision

metrics respectively.

The metrics are the set difference of the languages’ substrings. The fitness
metric is normalized by the substring frequency. Since that the current setting
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does not consider any notion of trace frequency for process models, the precision
metric is normalized by 1/|mk(P )|. It is possible to obtain a variation of the
metric by changing the cost function (see [2]). The markovian-based fitness and
precision metrics were empirically shown to agree with other state-of-the-art
conformance metrics such as escaping edges and PCC. However, the original
method for computing mk requires the computation of the process model’s DFA
and thus does not scale for larger models. In the next section, we show how to
compute mk for process trees without computing its state space, hence improving
scalability.

3 General Framework

This section shows how to efficiently compute mk for arbitrary process trees.
First, we present a method to compute sk for arbitrary regular languages. Next,
we show a compositional approach to compute mk for binary and uniquely-
labeled process trees which works by recursively computing mk for each tree
node from the mk of its child nodes. Last, we show how to generalize it for
arbitrary process trees.

3.1 Computing sk of a Regular Language

This section presents a method to compute sk(L) from a DFA accepting L.

Definition 8 (All-Substrings NFA). Given a trimmed DFA D = (Q,Σ, δ, q0,

F ), its all-substrings NFA is defined as SubD = (Q∪{q̂}, Σ, δ̂, q̂, Q∪{q̂}), where
δ̂ is defined as follows:

δ̂(q, l) =

⎧
⎪⎨

⎪⎩

δ(q, l) if l ∈ Σ ∧ q ∈ Q

Q if l = ε ∧ q = q̂

∅ otherwise

Notice that SubD accepts all substrings of DFA D. This can be used to
efficiently compute sk as follows:

Lemma 1 (Computing sk). Let L ⊆ Σ∗ be a regular language and D =
(Q,Σ, δ, q0, F ) a DFA accepting L. Then sk(L) can be computed in O(|Q||Σ|k).
Proof. We assume D to be trimmed, otherwise D can be trimmed in O(|Q|).
We define s=k(L) =

{
w ∈ sk(L) | |w| = k

}
and s<k(L) = sk(L) \ s=k(L). Notice

that s<k(L) can be computed in O(|Σ|k−1) time by running BFS from the start
node with a maximum depth of k − 1. We prove that L(SubD) ∩ Σk = s=k(L):

(⊆) Any w ∈ L(SubD) ∩ Σk is such that there exists an accepting path
p ∈ q̂[ε〉qi[w〉qi+k in SubD. And since D is trimmed, there exists u, v ⊆ Σ∗ such
that q0[u〉qi �= ∅ and qi+k[v〉f �= ∅, f ∈ F . Hence, q0[u〉qi[w〉qi+k[v〉f �= ∅ ⇒
uwv ∈ L ⇒ w ∈ s=k(L).
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(⊇) For any w ∈ sk(L), ∃t ∈ L | t = uwv, so p = q0[u〉qi[w〉qi+k[v〉qn is a path
in D. But this directly implies that there exists a unique path p ∈ q̂[ε〉qi[w〉qi+k

and that p is an accepting path of SubD. And since that w ∈ Σk, then w ∈
(L(SubD) ∩ Σk).

The runtime bound is achieved by computing L(SubD) ∩ Σk without deter-
minizing SubD. The product construction builds a DAFSA. It expands at most
|Σ|k nodes, where each node expansion has cost bound by |Q|. �

3.2 Leaf and Exclusive Nodes

This section shows how to compute mk for leaf and exclusive nodes, which do
not require any special constructs:

Lemma 2 (Leaf Nodes). For a ∈ Σ ∪{ε}, mk(a) =

⎧
⎨

⎩

{+−} k ≥ 2, a = ε

{+a, a−} k = 2, a ∈ Σ

{+a−} k > 2, a ∈ Σ

Proof. Follows directly from Definition 6. �

Lemma 3 (Exclusive Node). Let A,B ⊆ Σ∗ be arbitrary languages. Then:

mk(A ∪ B) = mk(A) ∪ mk(B)

Proof. From Definition 6, mk(A ∪ B) = sk(+(A ∪ B)−) = sk(+A − ∪ + B−) =
sk(+A−) ∪ sk(+B−) = mk(A) ∪ mk(B). �

3.3 Sequence Node

For the sequence node, mk is computed based on automata operations. For that,
we first define the markovian sequence concatenation �± as follows:

Definition 9 (Markovian Sequence Concatenation). Let A,B be arbitrary
languages with disjoint alphabets ΣA, ΣB, and Mk

A = (QA, Σ±
A , δA, q0a, {qfa})

and Mk
B = (QB , Σ±

B , δB , q0b, {qfb}) be the minimal DAFSAs accepting mk(A)
and mk(B) respectively. The markovian sequence concatenation Mk

A �± Mk
B

builds the DFA (QA ∪ QB , (ΣA ∪ ΣB)±, δ̂, q0a, {qfa, qfb}) where δ̂ is defined as
follows:

δ̂(q, l) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δA(q, l) q ∈ QA, l ∈ ΣA ∪ {+}
δB(q0b, l) q = q0a, l ∈ ΣB

δB(q+b , l) q ∈ Q−
A, l ∈ ΣB ∪ {−}

δB(q, l) q ∈ QB , l ∈ Σ±
B

∅ otherwise

Figure 1b shows M3
X �± M3

Y , which accepts {+ab, abc, bcij, bci−, ijk, jk−}.
Intuitively, the markovian sequence concatenation is merging the transition func-
tion of state q+b into the transition functions of states in Q−

A. Notice that
s3(L(M3

X �± M3
Y )) = {+ab, abc, bci, cij, ci−, ijk, jk−} = m3(XY ). Lemma 4

below formalizes this fact, which can be used to compute mk for the sequence
node:
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Lemma 4 (mk of Language Concatenation). Let A,B be arbitrary lan-
guages with disjoint alphabets ΣA, ΣB, and Mk

A = (QA, Σ±
A , δA, q0a, {qfa})

and Mk
B = (QB , Σ±

B , δB , q0b, {qfb}) the minimal DAFSAs accepting mk(A) and
mk(B) respectively. Then:

mk(AB) = sk(L(Mk
A �± Mk

B))

Proof. (⊆) For any w ∈ +AB−, there exists ŵa ∈ A, ŵb ∈ B such that w =
+ŵaŵb−. Then for any γ ∈ sk(+ŵaŵb−) one of the following holds:

γ =

⎧
⎪⎨

⎪⎩

γa γa � +ŵa

γb γb � ŵb−
γaγb γa ∈ suff k(+ŵa), γb ∈ pref k(ŵb−)

For Case 1, the condition implies |γa| = k and so γa ∈ mk(A). Let p be the
path in Mk

A accepting γa. Since that − /∈ γa, and that only −-labeled edges were
removed from Mk

A, then p is also an accepting path in Mk
A �± Mk

B .
Similarly for Case 2, |γb| = k and γb ∈ mk(B). Let p = q0b[γb〉qfb be the path

in Mk
B accepting γb. Then p̂ = q0a[γb〉qfb is an accepting path in Mk

A �± Mk
B .

For Case 3, the condition implies |γa|, |γb| < k, γa− � +ŵa− and +γb �
+ŵb−. And since |γa − |, | + γb| ≤ k then there exists αa, βb such that αaγa− ∈
sk(+ŵa−) ⊆ mk(A) and +γbβb ∈ sk(+ŵb−) ⊆ mk(B) (Proposition 1-5), and so
pa = q0a[αa〉q̂a[γa〉q−

a [−〉qfa and pb = q0b[+〉q+b [γb〉q̂b[βb〉qfb are accepting paths
in Mk

A and Mk
B . Then p = q0a[αa〉q̂a[γa〉q−

a [γb〉q̂b[βb〉 is a path in Mk
A�±Mk

B such
that πl(p) = αaγβb, and since |γ| = k, then γ ∈ sk(αaγβb) ⊆ sk(L(Mk

A�±Mk
B)).

(⊇) Notice that Mk
A �± Mk

B is acyclic. Therefore, for every accepting path
p in Mk

A �± Mk
B accepting πl(p) = w ∈ L(Mk

A �± Mk
B), there exists 0 ≤ j ≤ n

such that πs(p, i) ∈ QA ∀i ≤ j and πs(p, i) ∈ QB ∀i > j. If j = 0, then
w ∈ sk(+B−) and + /∈ w ⇒ w ∈ subk(B−). If j = n, then w ∈ sk(+A−) and
− /∈ w ⇒ w ∈ subk(+A). In both cases, |w| = k, thus w ∈ sk(+AB−).

If 0 < j < n, it holds that ej = (qj−1, wj , qj) where qj−1 ∈ Q−
A, wj ∈

ΣB , and qj ∈ δB(q+b , wj). So w1→j−1− ∈ sk(+A−) and +wj→n ∈ sk(+B−)
(Proposition 1-6). Which implies that w is a substring of +AB−. Now if |w| ≤ k,
then +,− ∈ w, which implies that w ∈ +AB− and thus {w} = sk(w) ⊆
sk(+AB−). If |w| > k, then it follows directly that sk(w) ⊆ sk(+AB−).

�
Mk

A �± Mk
B is a DAFSA with |QA| + |QB | ∈ O(|ΣA ∪ ΣB |k) states. From

Lemma 1, it follows that mk(AB) can be computed in O(|ΣA ∪ ΣB |2k).

3.4 Loop Node

In Sect. 3.3, we have seen how to concatenate two DAFSAs to compute mk

for language concatenation. Similarly, we define the loop concatenation as a
construct to compute mk for the loop node’s language. We first define an NFA
constructed from both markovians’ DAFSAs and show how this relates to the
markovian of the loop node. Then, we show that determinizing this construct is
polynomial-time due to its specific structure, thus still being efficient.
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Definition 10 (Markovian Loop Concatenation). Let A,B be arbitrary
languages with disjoint alphabets ΣA and ΣB and Mk

A = (QA, Σ±
A , δA, q0a, {qfa})

and Mk
B = (QB , Σ±

B , δB , q0b, {qfb}) the minimal DAFSAs accepting mk(A) and
mk(B) respectively. The markovian loop concatentation Mk

A �± Mk
B builds the

NFA N = (QA∪QB , (ΣA∪ΣB)±, δ̂, q0a, {qfa, qfb}) where δ̂ is defined as follows:

δ̂(q, l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δA(q, l) q ∈ QA, l ∈ Σ±
A

δB(q0b,+) q ∈ Q−
A, l = ε

δA(q0a,+) q ∈ Q−
B , l = ε

δB(q, l) q ∈ QB , l ∈ ΣB ∪ {+}
δB(q0b, l) q = q0a, l ∈ ΣB

∅ otherwise

Figure 1c shows M3
X �± M3

Y accepting {+ab, abc, bc−, bcij, bciab, ijk, jkab}.
Notice that s3(L(M3

X �± M3
Y )) = {+ab, abc, bc−, bci, cij, cia, iab, ijk, jka, kab}

= m3(A(BA)∗). Lemma 5 below formalizes this fact, which can be used to
compute mk for loop nodes:

Lemma 5 (mk of the Loop Node). Let A,B be arbitrary languages with
disjoint alphabets ΣA and ΣB, and Mk

A = (QA, Σ±
A , δA, q0a, {qfa}) and Mk

B =
(QB , Σ±

B , δB , q0b, {qfb}) the minimal DAFSAs accepting mk(A) and mk(B)
respectively. Then:

mk(A(BA)∗) = sk(L(Mk
A �± Mk

B))

Proof. We define sets Â = {wa ∈ A | |wa| ≤ k − 2} and B̂ = {wb ∈ B | |wb| ≤
k − 2}. The graph of Mk

A �± Mk
B is such that, for every ŵa ∈ Â, there exists

q−
a ∈ Q−

A such that q+a [ŵa〉q−
a �= ∅ (analogous for B̂).

(⊆) For every w ∈ +A(BA)∗−, then w = +wa,1wb,1wa,2 · · · wa,n− s.t. wa,i ∈
Â, ∀1 ≤ i ≤ n and wb,i ∈ B̂, ∀1 ≤ i < n. We distinguish between two cases:

Case 1: (|w| ≤ k) Then | + wa,i − | ≤ k for every i ≤ n, which implies that
+wa,i− ∈ L(Mk

A). Therefore, pa,i = q0a[+〉q+a [wa,i〉q−
a,i[−〉qfa in Mk

A is such that
q−
a,i ∈ Q−

A. Similarly for B, for every 1 ≤ i ≤ n−1, pb,i = q0b[+〉q+b [wb,i〉q−
b,i[−〉qfb

is such that q−
b,i ∈ Q−

B . Thus, the set q0a[+〉q+a [wa,i〉q−
a,i[ε〉q+b [wb,i〉q−

b,i[−〉qfb is not
empty and contains paths p̂ in Mk

A �± Mk
B such that πl(p̂) = +wa,iwb,i−. This

can be continued to find a path p in Mk
A �± Mk

B such that πl(p) = w. And since
|w| ≤ k, then w ∈ sk(L(Mk

A �± Mk
B)).

Case 2: (|w| > k) Then for every γ ∈ sk(w), it holds:

γ ∈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

suff k(+A)B̂(ÂB̂)∗pref k(A−)
suff k(+A)(B̂Â)∗pref k(B)
suff k(B)(ÂB̂)∗pref k(A−)
suff k(B)Â(B̂Â)∗pref k(B)
sk(+A−)
sk(B)

(1)
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For the first 4 cases, it is possible to apply an argument similar to Case 1, observ-
ing that prefixes/suffixes of A and B lead to q+a /Q−

A and q+b /Q−
B (Proposition 1-

6). For the fifth case, since that Mk
A is fully contained in Mk

A �± Mk
B , then γ ∈

mk(A) ⊆ mk(L(Mk
A �± Mk

B)). For the sixth case, +,− /∈ γ which implies that
there exist path q0b[γ1→1〉q̂1[γ2→k〉qfb in Mk

B . And so q0a[γ1→1〉q̂1[γ2→k〉qfb �= ∅

in the graph of Mk
A �± Mk

B .
(⊇) We first show that every w = w1w2 · · · wn ∈ L(Mk

A �± Mk
B) is a sub-

string of +A(BA)∗−. For that, consider all accepting paths p in Mk
A �± Mk

B . If
p only passes through edges in Mk

A, then πl(p) ∈ mk(A) ⊆ mk(A(BA)∗). Else,
if w1 ∈ ΣB and p does not pass through an ε edge, then p ∈ q0a[w1〉q̂[w2→n〉qfb

in Mk
A �± Mk

B and so q0b[w1〉q̂[w2→n〉qfb is a path in Mk
B ⇒ w ∈ mk(B). And

since that p does not pass through an +/−-labeled edge (they were removed from
Mk

B), then |w| = k, which implies w ∈ mk(A(BA)∗). Else, if p passes through
an ε edge, then one of the following holds:

p ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q0a[γa1〉q−
a [ε〉q+b [γb1〉q−

b [ε〉q+a [γa2〉 · · · q+a [γai
〉qfa

q0a[γa1〉q−
a [ε〉q+b [γb1〉q−

b [ε〉q+a [γa2〉 · · · q+b [γbi
〉qfb

q0a[γb1〉q−
b [ε〉q+a [γa1〉q−

a [ε〉q+b [γb2〉 · · · q+a [γai
〉qfa

q0a[γb1〉q−
b [ε〉q+a [γa1〉q−

a [ε〉q+b [γb2〉 · · · q+b [γbi
〉qfb

(2)

We only prove the first case (the other cases are analogous). For this case,
it holds that γa1 ∈ suff k(+Â), γai

∈ pref k(Â−) and γaj
∈ Â ∀1 < j < i and

γbj
∈ B̂ ∀1 ≤ j < i. This all implies that w ∈ suff k(+A)B̂(ÂB̂)∗pref k(A−)

(notice the correspondence to the first case of (1)) and that w is a substring of
+ÂB̂(ÂB̂)∗Â− ⊆ +A(BA)∗−. Now if |w| = k, then w ∈ mk(+A(BA)∗−). Else
if |w| < k, then |γa1 | < k − 1 ⇒ |γa1 − | < k and since that γa1− ∈ mk(A), then
+ ∈ γa1 . Similarly, we derive that − ∈ γai

and thus w ∈ +Â(B̂Â)∗− ⇒ w ∈
mk(+A(BA)∗−). �

Lemma 5 shows that sk(L(Mk
A �± Mk

B) = mk(A(BA)∗). But Mk
A �± Mk

B

is an NFA and the algorithm from Lemma 1 requires a DFA as input. NFA
determinization is worst-case exponential in its size. The following lemma shows
that this does not happen for Mk

A �± Mk
B due to its specific structure. The basic

idea is that the ε transitions are the only source of non-determinism and that
tokens of non-determinism “die” after at most k steps.

Lemma 6 (Determinizing the Markovian Loop Concatenation Does
Not Explode). Let A,B be arbitrary languages with disjoint alphabets ΣA, ΣB,
and Mk

A = (QA, Σ±
A , δA, q0a, {qfa}) and Mk

B = (QB , Σ±
B , δB , q0b, {qfb}) the min-

imal DAFSAs accepting mk(A) and mk(B) respectively, QAB = QA ∪ QB and
ΣAB = ΣA ∪ ΣB. Then runtime to determinize Mk

A �± Mk
B is in O(k|QAB |k).

Proof. Start by noticing that all ε-edges in Mk
A �± Mk

B lead to either q+a
or q+b . That means, that the ε-closure Ŝ of any state S ⊆ QAB reached
during the powerset construction is such that Ŝ ⊆ S ∪ {q+a , q+b }. Further-
more, the construction is such that for any reachable state q ∈ QAB , and
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la ∈ Σ±
A , if |δ̂(q, la)| �= ∅, then δ̂(q, la) ⊆ QA and similarly for every state

q ∈ QAB and lb ∈ ΣB , if |δ̂(q, lb)| �= ∅, then δ̂(q, lb) ⊆ QB . This implies
that every reachable state S in the powerset construction is such that either
S ⊆ QA or S ⊆ QB . Therefore, any path in the powerset construction is such
that πs(p) = (Sa1,1Sa1,2 · · · Sa1,n1

)(Sb1,1Sb1,2 · · · Sb1,m1
)(Sa2,1Sa2,2 · · · Sa2,n2

) · · · ,
where Sai,j

⊆ P(QA), Sbi,j
⊆ P(QB), and |Sai,1 | = |Sbi,1 | = 1.

Let qai,1 and qbi,1 be the single elements of Sai,1 and Sbi,1 . Now consider the
path Sai,1 [wa〉Sai,ni

, wa ∈ (Σ±
A )∗ in the powerset construction. Then Sai,ni

⊆
qai,1 [wa〉 ∪ ⋃

1<i≤n q+a [wi→n
a 〉 (in Mk

A). But since that Mk
A is a DAFSA with

maximum word length k, then q+a [wi→n
a 〉 = ∅ if |wi→n

a | ≥ k, which implies that
|Sa,n| ≤ k. A similar argument applies for wb ∈ Σ∗

B . Therefore, the powerset
construction expands at most |QAB |k nodes, with each node expansion costing
at at most k, where |QAB | ≤ |ΣA|k−1 + |ΣA|k−1 + 2 (Proposition 1-7). �

From Lemma 1, it follows that mk of the loop node can be computed in
O(k|Σ|k2

). This exponent seems very high at first, but in practice it does not
happen. This is related to the fact that if one of the subtrees does not accept
the empty word, then there is no real non-determinism in Mk

A �± Mk
B .

3.5 Parallel Node

Finally, we consider the parallel node. Parallel nodes largely contribute to the
original method’s inefficiency because they inevitably lead to an explosion in the
state space’s size. Before presenting the construction for the parallel node, we
must define the parallel composition of two languages [5]:

Definition 11 (Parallel Composition). Given languages A ⊆ Σ∗
A, B ⊆ Σ∗

B,
the parallel composition A ‖ B ⊆ (ΣA ∪ ΣB)∗ is such that:

w ∈ A ‖ B ⇐⇒ wΣA
∈ A ∧ wΣB

∈ B

The parallel composition is closely related to the shuffle product. In fact, if
ΣA ∩ΣB = ∅, then A ‖ B = A�B. Lemma 7 shows how to exploit this relation
to compute mk for parallel nodes:

Lemma 7 (mk of the Shuffle Product). Let A, B be arbitrary languages
such that ΣA ∩ ΣB = ∅, and ΣAB = ΣA ∪ ΣB. Then:

mk(A�B) = subk(mk(A)) ‖ subk(mk(B)) ‖ mk(ΣAB)

which can be computed in O(|ΣAB |2k).

Proof. Observe that ΣA∩ΣB = ∅ ⇒ mk(A�B) = sk(+(A�B)−) = sk(+A− ‖
+B−) and that subk(mk(A)) = subk(+A−) (Proposition 1-5).

(⊆) Consider w ∈ +A− ‖ +B−. Then for every γ ∈ sk(w), it holds that
γΣ±

A
� wΣ±

A
. And since wΣ±

A
∈ +A− and |γ| ≤ k, then γΣ±

A
∈ subk(+A−).
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Analogously, γΣ±
B

∈ subk(+B−). Finally, since γ = γΣ±
AB

and γ ∈ sk(+(A �

B)−) ⊆ mk(Σ∗
AB), then γ ∈ subk(+A−) ‖ subk(+B−) ‖ mk(Σ∗

AB).
(⊇) For every γ ∈ subk(+A−) ‖ subk(+B−) ‖ mk(Σ∗

AB), there exists wa =
αaγΣ±

A
βa ∈ +A− and wb = αbγΣ±

B
βb ∈ +B−. Notice that + is only present at

most once in γ and γ ∈ γΣ±
A

‖ γΣ±
B

, therefore + ∈ αa ⇐⇒ + ∈ αb. Similarly,
− ∈ βa ⇐⇒ − ∈ βb. Also notice that + /∈ αa, αb implies αa = αb = ε and
− /∈ βa, βb implies βa = βb = ε.

If + ∈ αa, then + ∈ αb ⇒ αa = +α̂a, αb = +α̂b and we define α = +α̂aα̂b.
Else, if + /∈ αa then α = ε. Similarly, we define β = β̂aβ̂b− or β = ε. In all cases,
αγβ ∈ +A− ‖ +B− ⇒ sk(αγβ) ⊆ sk(+A− ‖ +B−). Notice that if |γ| = k ⇒
γ ∈ sk(αβγ). And that if |γ| < k, then α = β = ε (since that γ ∈ mk(Σ∗

AB)),
⇒ γ ∈ sk(αγβ). Putting it together, γ ∈ sk(αγβ) ⊆ sk(+A− ‖ +B−).

For the runtime bound, notice that subk(mk(A)) and subk(mk(B)) can be
computed in O(|ΣAB |2k) and that the computation of the network automaton [5]
associated to subk(mk(A)) ‖ subk(mk(B)) ‖ mk(Σ∗

AB), expands at most |ΣAB |k
states. �

Total Runtime Boundary As shown above, computing mk for each tree node
is in O(k|Σ|k2

). For a process tree T containing n operator nodes, the runtime
to compute mk(T ) is in O(kn|Σ|k2

). Oftentimes, n is linear with |Σ|.

3.6 Handling Arbitrary Process Trees

The previous sections have shown how to compute mk for binary process trees
with unique visible label nodes. Notice that any process tree can be transformed
into a binary tree accepting the same language (hence having the same mk). For
trees with repeated labels, the results below show that it suffices to first map
each visible label node in the tree T to a unique label, and then map mk(L(T ))
back to the original labels.

Lemma 8 (mk of a Remapped Language). Let A ⊆ Σ∗
A and B ⊆ Σ∗

B be
arbitrary languages and λ : ΣB → ΣA s.t. A = λ(B), then sk(A) = λ(sk(B)).

Proof. Notice that for all wa, wb such that wa = λ(wb), then ∀i≤j wi→j
a ∈

sk(wa) ⇐⇒ wi→j
b ∈ sk(wb).

(⊆) For any wa ∈ A, there exists wb ∈ B s.t. wa = λ(wb). For all γa ∈ sk(wa),
γa = wi→j for some i ≤ j. Thus, γa = λ(wi→j

b ) and since |wa| = |wb|, then
wi→j

b ∈ sk(wb) ⇒ sk(wa) ⊆ λ(sk(wb)) ⊆ λ(sk(B)).
(⊇) For any wb ∈ B, there exists wa ∈ A s.t. wa = λ(wb). For all γb ∈ sk(wb),

it holds that γb = wi→j
b for some i ≤ j. Thus, λ(γb) = wi→j

a and since |wa| = |wb|,
then wi→j

a ∈ sk(wa) ⇒ sk(A) ⊇ sk(wa) ⊇ λ(sk(wb)). �
The result above can be extended to mk by defining λ± : Σ±

B → Σ±
A such that

λ±(l) =

{
λ(l) l ∈ ΣB

l l ∈ {+, −} . Then +A− = λ±(+B−) ⇒ mk(A) = λ±(mk(B)).

This mapping function can always be constructed for a process tree as follows:
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Lemma 9 (mk of Arbitrary Process Trees). For an arbitrary process tree
TA with alphabet ΣA and visible label nodes N = {n1, · · · ni}. Given an alphabet
ΣB such that |ΣB | = k and a bijective mapping r : N → ΣB defining a map
λ : ΣB → ΣA as λ(b) = L(r−1(b)), then the process tree T̂ obtained by relabeling
each visible node n of T with r(n) is such that L(T ) = λ(L(T̂ )).

Proof. It follows directly from Definition 4 by noticing that λ(AB) = λ(A)λ(B)
and λ(A�B) = λ(A)� λ(B). �

The results from this Section show that it is possible to compute mk for
arbitrary process trees in polynomial time. It is also possible to compute mk for
event logs in linear time. Thus, the markovian conformance metrics (Definition 7)
can also be computed in polynomial time.

4 Experimental Evaluation

This section compares the proposed method with the previous approach
described in [2] and state-of-the-art techniques in terms of runtime and the
induced metrics. For a fair comparison, all techniques are implemented in pure
Python1.

4.1 Effect of Parallelism

The first experiment measures the influence of parallelism in the runtime. For
that, we generate artificial process trees with a fixed number of activities (30)
and varying degrees of parallelism (0.2 to 0.5). For each configuration, 50 process
trees are generated. For each tree, an event log consisting of 2000 distinct variants
is sampled and a small amount of noise is injected into the logs by adding,
removing, and swapping activities.

We compare the runtime to compute three types of conformance artifacts:
trace alignment (align), the model and log projections required by the PCC
framework (PCC), and the markovian abstraction. For the latter two metrics,
we vary their k parameter, indicating the projection size and substring size
respectively, from 2 to 4 and break down the runtime for each method by the
time taken to process the log and the model. For the markovian abstraction,
we compare the method originally presented in [2] (mk-orig) and the proposed
method (mk-opt). For each experiment run, we set a timeout of 20min.

The results are summarized in Table 1. Trace alignment is by far the slowest
method, with an average execution time of over five minutes and multiple time-
outs. For comparison, none of the other methods timed out. PCC is arguably
the second-slowest method, being the slowest in all but two scenarios. mk-opt is
the fastest method in all scenarios.

1 The datasets and experiment results can be found at: https://github.com/
EduardoGoulart1/efficient-mk/.

https://github.com/EduardoGoulart1/efficient-mk/
https://github.com/EduardoGoulart1/efficient-mk/
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Table 1. The effect of parallelism on the runtime required to compute conformance
artifacts, broken down by log and model processing times (if applicable). The number
of timeouts (if any) is indicated in parenthesis.

k Method Time(s) [Log | Model]
par=0.2 par=0.3 par=0.4 par=0.5

align 343.4 (14) 368.4 (10) 454.2 (10) 439.9 (18)

2
PCC 0.262 0.054 0.228 0.050 0.310 0.051 0.258 0.048

mk-orig 0.009 0.108 0.009 0.320 0.010 0.564 0.010 1.465
mk-opt 0.029 0.034 0.047 0.051

3
PCC 4.376 0.507 3.424 0.476 5.442 0.487 3.976 0.445

mk-orig 0.010 0.358 0.009 0.895 0.011 1.727 0.010 4.127
mk-opt 0.143 0.241 0.354 0.438

4
PCC 41.704 3.388 36.459 3.133 36.795 3.207 37.661 2.909

mk-orig 0.011 2.005 0.010 4.327 0.012 8.751 0.011 20.408
mk-opt 0.925 1.503 2.680 3.663

For models with little parallelism, mk-orig and mk-opt perform similarly
well, with mk-opt being slightly faster. This is explained by the fact that these
models have a small and linear state-space. However, increasing the amount of
parallelism from 0.2 to 0.5 causes a tenfold increase in the runtime for mk-orig,
while for mk-opt it increases by a factor of at most 4, to which we conclude
that mk-opt can better handle large models. In comparison, PCC is unaffected
by the degree of parallelism. Instead, its runtime is dominated by the event log
projections.

In general, the experiment shows the shortcomings of trace alignment and
the PCC framework in terms of runtime, especially considering large event logs.
It also shows that mk-orig struggles to process large models. mk-opt emerged as
the clear winner in terms of performance. For event logs, mk-opt can be up to
400 times faster than PCC. At the same time, computing mk for process models
takes roughly the same time as computing the tree projections.

4.2 Real Datasets

Next, we evaluate the markovian-based conformance metrics on two real-world
datasets: the Italian Road Fines event log, and the BPI Challenge 2015 event
log (BPIC-15). We filter the BPIC-15 log for the municipality 1, subprocess 8,
and remove repeated activities. This preprocessing is needed as otherwise the
used process discovery methods would only return flower constructs. For each
event log, we mine four process trees with the Inductive Miner infrequent variant
with noise thresholds of 02 and 05 (IMf02 and IMf05 respectively), the Inductive
Miner incomplete variant (IMc) and the flower miner. We use alignment-based
trace fitness [1] (AL) as the ground-truth fitness measure and escaping edges pre-
cision [9] (ETC) as the ground truth precision measure. We vary the respective
k parameter of PCC, MAF, and MAP from 2 to 4. The results are summarized
in Table 2.



Polynomial-Time Conformance Checking for Process Trees 123

The first thing to notice is that the basic property that language inclusion
implies fitness of 1.0 is fulfilled by metrics for the IMc and Flower models for
both datasets. Next, for both datasets, PCC and MAF generate the same fitness
rankings as the ground truth alignment-based fitness measure (AL) for all k-s. As
k increases, the difference in fitness between models IMf02 and IMf05 increases.

For the Road Fines datasets, all metrics induce different precision rankings.
ETC is assigning a higher precision to the flower model than to the IMc model.
For k = 2, 3, PCC and MAP agree on their rankings, but assign IMc as being
more precise than IMf02. This is counter-intuitive since that the IMc model has
a lot more parallelism and self-loops. For k = 4, PCC even assigns IMc as the
most precise model. For the BPIC 2015 datasets, all metrics agree on the model
rankings. However, the PCC metric will assign a relatively high precision for
models such as IMc and the Flower model.

In summary, the experiment shows that MAF and MAP induce similar fitness
and precision rankings as other state-of-the-art techniques. Notice that for both
datasets, as k increases, MAP tends towards zero. This is expected from the
definition of MAP, which does not consider any notion of substring frequency.

Table 2. Quality evaluation of fitness and precision metrics.

Miner
Road Fines BPIC 2015

IMf02 IMf05 IMc Flower IMf02 IMf05 IMc Flower

F
it
n
e
s
s

AL 0.982 0.784 1.0 1.0 0.899 0.773 1.0 1.0

PCC2 0.986 0.857 1.0 1.0 0.985 0.962 1.0 1.0

PCC3 0.976 0.755 1.0 1.0 0.977 0.937 1.0 1.0

PCC4 0.967 0.664 1.0 1.0 0.968 0.912 1.0 1.0

MAF2 0.965 0.953 1.0 1.0 0.881 0.737 1.0 1.0

MAF3 0.936 0.826 1.0 1.0 0.833 0.475 1.0 1.0

MAF4 0.899 0.745 1.0 1.0 0.805 0.422 1.0 1.0

P
re
c
is
io
n

ETC 0.895 0.653 0.318 0.325 0.497 0.817 0.261 0.127

PCC2 0.946 0.949 0.931 0.593 0.735 0.924 0.660 0.635

PCC3 0.814 0.838 0.831 0.497 0.624 0.824 0.551 0.534

PCC4 0.658 0.703 0.718 0.423 0.529 0.722 0.462 0.451

MAP2 0.735 0.949 0.830 0.542 0.549 0.729 0.316 0.225

MAP3 0.277 0.389 0.353 0.134 0.115 0.411 0.047 0.020

MAP4 0.082 0.122 0.106 0.020 0.015 0.199 0.005 0.001

5 Related Work

Conformance checking is the field of process mining focused on comparing a pro-
cess’ desired to its observed behavior. The process model describes the desired
behavior. It is often encoded as a Petri net or any equivalent model with execu-
tion semantics (YAWL, Process Trees, etc.).



124 E. Goulart Rocha and W. M. P. van der Aalst

Conformance-checking is especially challenging because computing the pro-
cess model’s behavior has often worst-case exponential time due to the state
explosion problem. Hence, most state-of-the-art methods such as token-based
replay [11], alignments [1], entropia [10], or Earth mover’s distance [8] have
worst-case exponential time. This also includes the original method for comput-
ing markovian-based conformance metrics presented in [2].

A notable exception is the Projected Conformance Checking framework (PCC
framework) [7] which uses projections on subsets of activities to significantly
alleviate the state explosion problem. In fact, for certain classes of process trees
the runtime is polynomial. Nevertheless, PCC requires multiple passes over the
event log, which is impractical for large production datasets, as shown in Sect. 4.

The idea of exploiting the tree structure to speed up computations is not
new. In [12] a method is presented to approximate alignments by constructing
an equivalent optimization problem from the tree structure. In [14], a method
is presented to repair alignments for iterative scenarios, for the use-case where
alignments need to be computed for similar process trees. Our work differs from
them in which we provide a speed up in computation time without the need
to approximate. Finally, in [15] a method is presented to compute trace proba-
bilities by transforming the tree into a probabilistic context-free grammar, this
transformation is only possible because of the process tree’ structure.

Last, sampling techniques [6] can be orthogonally applied to any confor-
mance method, including our technique. However, sampling only provides a lin-
ear speed-up and previously exponential techniques will remain exponential. In
production settings, where controllable runtime is important, exponential factors
are rarely a good idea.

6 Conclusion

This paper provides two important contributions. First, we presented an alter-
native definition of the markovian abstraction that can be more easily manipu-
lated using techniques from automata theory. Next, we showed how to exploit the
tree-structure of process trees to perform polynomial-time conformance checking
with guarantees. The experimental evaluation shows an improvement of multiple
orders of magnitude in the runtime compared to the original approach presented
in [2] and other state-of-the-art conformance checking techniques, while at the
same time still generating similar fitness and precision rankings. Most impor-
tantly, the runtime of the approach is bounded by a polynomial, making it more
controllable.

As future work, we plan to apply the proposed technique to optimization-
based discovery techniques such as the evolutionary tree miner [3], which requires
repetitive computation of conformance metrics. We also plan to explore the
stochastic perspective, by computing the probability of each substring in the
process tree’s language, to address the problem of vanishing precision values for
MAP.
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Abstract. Business process simulation enables analysts to run a pro-
cess in different scenarios, compare its performances and consequently
provide indications on how to improve a business process. Process sim-
ulation requires one to provide a simulation model, which should accu-
rately reflect reality to ensure the reliability of the simulation findings.
An accurate simulation model passes through a correct stochastic mod-
elling of the activity firings: activities are associated with the probability
of each to fire. Literature determines these probabilities by looking at
the frequency of the activity occurrences when they are enabled. This is
a coarse determination, because this way does not consider the actual
process state, which might influence the probabilities themselves (e.g.,
a thorough loan assessment is more likely for larger loan requests). The
process state is as a faithful abstraction of the process instance execution
so far, including the process-variable values, the activity firing history,
etc. This paper aims to investigate how process states can be leveraged
to improve activity firing probabilities. A technique has been put forward
and compared with the baseline where basic branching probabilities are
employed. Experimental results show that, indeed, business simulation
models are more accurate to replicate the real process’ behavior.

Keywords: Process Simulation · Stochastic Models · Branching
Probabilities · Process Mining

1 Introduction

Business process simulation refers to techniques for the simulation of business
process behavior on the basis of a process simulation model, a process model
extended with additional information for a probabilistic characterization of the
different run-time aspects (case arrival rate, activity durations and probabilities,
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roles, etc.). Simulation provides a flexible approach to analyse and improve busi-
ness processes. Through simulation experiments, various ’what if’ questions can
be answered, and redesigning alternatives can be compared with respect to some
key performance indicators. The main idea of business process simulation is to
carry out a significantly large number of runs, in accordance with a simulation
model. Statistics over these runs are collected to gain insight into the processes,
and to determine the possible issues (bottlenecks, wastes, costs, etc.). By apply-
ing different changes to the simulation model, one can assess the consequences of
these changes without putting them in production, and consequently can explore
dimensions to possible process improvements.

A successful application of business process simulation for process improve-
ment relies on a simulation model that reflects the real process behavior; con-
clusions drawn on an unrealistic simulation model lead to process redesigns that
may not yield improvements, or even may worsen the performances. A large body
of research work has already focused on accurately creating process models and
several of their run-time aspects (cf. Sect. 5), including case arrival rate, activity
durations, and roles. However, no recent work has focused on accurately estimat-
ing, given a set of enabled activities at run time, the probability of each to occur.
Currently, this determination is solely based on the branching probabilities. Of
course, this is a course determination, which does not consider that probabilities
of activities to occur may vary as function of the characteristics of the process
instances, the activities that previously occurred in the same process instance,
time-related information, etc. Consider, for example, a loan application process:
the probability of executing an activity about a thorough assessment grows, e.g.,
with the amount of the requested loan, and decreases with annual salary of the
applicant. Also, the probability of rejecting an application may grow with the
number of requests to the applicant of providing further documents.

This paper introduces the concept of process state, which is a faithful abstrac-
tion of a case, and investigates the research question how a proper choice of this
abstraction allows a more accurate estimation of the activity firing probabilities
of simulation models, with respect to the simple branching probabilities. More
accurate firing probabilities lead to more accurate simulation models.

In order to answer this research question, the paper builds upon Petri nets,
and discovers a so-called weight function for each transition, which is defined
over a process state, which, e.g., can include process variables, and the transition-
firing history. Then, for the cases that are simulated, the current process state
is computed and used to evaluate the weight function of the transitions that are
enabled at that point. The probability to fire a transition is thus obtained as
the ratio of its weight and the sum of the weights of all enabled transitions. It
follows that the higher is the weight of a transition, the higher is the probabil-
ity of that transition to fire. Since the case characteristics that may influence
the probability may depend on the specific process that is being simulated, we
propose a framework where the process-state abstraction can be customized to
include or exclude certain characteristics. In Sect. 2, some examples for process
states are provided. In this paper, we report on the use of logistic regression to



Influence of Data-Aware Process States on Activity Probabilities 131

learn the weight function, but other approaches could be alternatively employed,
such as regression trees.

The research question is finally answered by applying the aforementioned
framework to two real-life processes, each with a real-life event log. For each
process, five different definitions of process states have been considered to com-
pute weights of the Petri-net models of the two processes to be simulated. The
results show that the simulation using models with transition probabilities based
on process states allows obtaining simulation results that are more accurate, if
compared with simulation models based on branching probabilities.

Section 2 starts introducing the preliminary concepts of event logs, and then
continues (i) introducing the novel notion of the process-state abstraction and
(ii) their usage with stochastic labelled Data Petri nets, a Petri-net extension
to associate weights to transitions. Section 3 discusses how to compute the tran-
sition weights as function of a customizable abstraction of the process state.
Section 4 illustrates how Stochastic labelled Data Petri nets can be represented
via Coloured Petri nets in CPN Tools, and reports on the benefits for simulation
models to use transition probabilities based on process states. Section 5 reports
on the related works, and Sect. 6 concludes the paper.

2 Event Logs and Stochastic Data Petri Nets

The determination of the weights is obtained from an analysis of an event log of
the process that aims to be simulated:

Definition 1 (Events). Let A be the set of process’ activities. Let V the set of
process attributes. Let WV be a function that assigns a domain WV(x) to each
process attribute x ∈ V. Let W = ∪x∈VWV(x). An event is a tuple (a, v) ∈
A × (V �→ W) where a is the event activity, v is a partial function assigning
values to process attributes with v(x) ∈ WV(x).

A trace is a sequence of events, the same event can potentially occur in different
traces, namely attributes are given the same assignment in different traces. This
means that potentially the entire same trace can appear multiple times. This
motivates why an event log is to be defined as a multiset of traces:1

Definition 2 (Traces & Event Logs). Let E = A×(V �→ W) be the universe
of events. A trace σ is a sequence of events, i.e. σ ∈ E∗. An event-log L is a
multiset of traces, i.e. L ⊂ B (E∗).

In this paper, simulation models are provided in form of so-called Stochastic
Labelled Data Petri Nets (SLDPNs). While SLDPNs are not able to represent
every aspect relevant for simulation models, they are simple, yet sufficient to
discuss and formalize the concepts behind activity probabilities. In SLDPNs, a
transition firing consists in executing a transition and assigning values to some
process attributes. The sequence of transition firings determines the process
state:
1
B(X) indicates the set of all multisets with the elements in set X.
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Fig. 1. Example of a Stochastic Data Petri Net. Transitions are annotated with the
weights, when the latter are present.

Definition 3 (Process State). Let T be a set of transitions. Let V the set of
process attributes. Let WV be a function that assigns a domain WV(x) to each
process attribute x ∈ V. Let W = ∪x∈VWV(x). Let Δ be the set of process states.
A process-state function maps a sequence of transition firings to a process state:
SΔ : (T × (V �→ W))∗ → Δ.

Note that the marking is not part of the process state (see below). A process-state
function can be customized, according to the specific domain. For instance, if
one wants to account for the process attributes in the set V, the set Δ of possible
process states consists of tuples (x1, . . . , xn) where xi is the value assigned to
variable vi ∈ V, after defining an ordering of the attributes in V. In particular,
for a sequence σ = 〈(t1, f1), . . . , (tm, fm)〉 of transition firings, SΔ returns a tuple
(x1, . . . , xn) in which xi is the latest value assigned to vi in σ, namely there is
a transition firing (tj , fj) ∈ σ such that fj(vi) = xi and, for all j < k ≤ m, vi is
not in the domain of fk.

In SLDPNs, each transition is associated to a weight function that is depen-
dent on a process state.

Definition 4 (Stochastic Labelled Data Petri Net - syntax). Let A be
a set of activities, and Δ the set of possible process states. A stochastic labelled
data Petri net (SLDPN) is a tuple (P, T, F, λ,Δ,M0, w), such that (P, T, F ) is
a Petri Net, λ : T �→ A be a labelling function, M0 is the initial marking, and
w : T × Δ → R

+ is a weight function.

Example. Figure 1 shows an example of an SLDPN. The control flow of this
SLDPN consists of an AND split followed by the parallel executions of b and
a choice between c and d. The transitions are annotated with weight functions
depending on the continuous variable X.

The state of an SLDPN is the combination of a marking and an process
state d ∈ Δ. Hereafter, when clear from the context, the process state is simply
referred to as state. The marking determines which transitions are enabled, while
the process state influences the probabilities of transitions:



Influence of Data-Aware Process States on Activity Probabilities 133

Definition 5 (Stochastic Labelled Data Petri Net - semantics). Let
N = (P, T, F, λ,Δ,M0, w) be an SLDPN. Let σ ∈ (T × (V �→ W))∗ be a sequence
of transition firings, leading to marking M . Let SΔ be the process-state function,
and E(M) ⊆ T be the set of transitions enabled at marking M of Petri net
(P, T, F ). The probability to fire t after σ is:

PrN (t,M, σ) =
w(t, SΔ(σ))

∑
t′∈E(M) w(t′, SΔ(σ))

.

3 Framework for Determination of Weights

In this section, we introduce a framework that, given an event log L, a Petri
net (P, T, F ), a labelling function λ and an initial marking M0, can be used to
determine the weights of the transitions, thereby transform the Petri net into
an SLDPN. The framework can be instantiated for a process-state function SΔ,
generalising the proposal in [10], and a parameterised weight function w, and
consists of four steps:

Step 1 For each trace σ ∈ L, reconstruct the corresponding path of transitions
that σ took through the model. This reconstruction is performed using
a sequence of moves: a synchronous move combines an event (a, v) in
the log trace with a transition t on the model path such that λ(t) = a;
a model move is a transition on the model path; while a log move is an
event in the log trace. Such a sequence of moves, where the projection
of the sequential synchronous and log moves yields the trace, and the
projection of the sequential synchronous and model moves yields the
path, is called an alignment [1].
For a given trace of the event log, an optimal alignment is an alignment
with a minimal number of log and model moves2, over all paths in the
model. Note that this alignment does not need to take the data values
or weight functions into account and can be computed solely based on
the regular Petri net and each trace of the event log.

Step 2 For one optimal alignment of each trace in the event log, we use the
process-state function SΔ to reconstruct the sequence of process states
Δ. By definition, any path of the model starts in the initial marking M0

and the process state SΔ(〈 〉). For each synchronous or model move m in
the optimal alignment, we have a transition t available. As the moves are
sequential, we can take the partial function assigning values to process
attributes (v) from the last synchronous move in the alignment, before
m. If no such last move exists, we take an empty function.
As such, we obtain a sequence of transition firings (t, v). Through SΔ,
this sequence yields a sequence of process states δ ∈ Δ. Similarly, the
sequence of markings can be derived from the model and the sequence
of transition firings.

2 For the minimalisation, we do not count model moves on unlabelled transitions.
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Step 3 For each transition t in the model, we gather the observations made in
each trace σ of the log related to this transition: each time that t was
enabled and fired in the sequence of transition firings, the associated
process state before firing t is recorded as positive observation. Each
time that t was enabled but another transition fired a negative obser-
vation using the process state before firing that transition is recorded.
Given these collected multisets of positive process states Δt+ ⊂ B (Δ)
and negative process states Δt− ⊂ B (Δ) we build a training set to learn
the influence of process states on the weight of transition t as:

⊎

δ∈Δt+

[(δ, 1)] ∪
⊎

δ∈Δt−

[(δ, 0)]

Step 4 We leverage any suitable machine learning model that supports the
process state representation chosen as input to serve as parameterised
weight function w. Such a model should assign higher weights, e.g., the
1 in the training set, for those process states in which the transition t
was observed to occur opposed to those in which another transition was
observed. We can obtain the overall parameterised weight function by
fitting a separate model for each transition t since the weights obtained
for enabled transitions in the SLDPN are not required to sum up to 1.

As an example, we instantiate our framework with a process state function SΔ

that takes into account (i) the event attribute values observed for the first event
in a trace and (ii) the count of the activity occurrences in the history of the
process instance:

SΔ(〈(t1, v1), . . . , (tn, vn)〉) = (v1, [t1, . . . tn]).

Our process state is, thus, defined as Δ = (V �→ W) ×B (T ). We use the logistic
function over the same attribute values and history as parameterised weight
function w.

Assume the example trace σ = 〈aX=3, dX=4, dX=5, bX=3, eX=5〉 with a single
process attribute X. We align σ in Step 1 to the model shown in Fig. 1. This
alignment is:

Log aX=3 dX=4 dX=5 bX=3 eX=5

Model a d - b e

In Step 2, we transform this alignment into a sequence of process states:

〈(X = 3, [a]), (X = 3, [a, d]), (X = 3, [a, b, d]), (X = 3, [a, b, d, e])〉
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Then, Step 3 constructs the observations:

Δa+ = [(X = ⊥, [])] Δa− = []
Δb+ = [(X = 3, [a, d])] Δb− = [(X = 3, [a])]
Δc+ = [] Δc− = [(X = 3, [a])]
Δd+ = [(X = 3, [a])] Δd− = []
Δe+ = [(X = 3, [a, b, d])] Δe− = []

In the final Step 4 the weight function is then approximated using logistic regres-
sion for each of the transitions using the training sets build from positive and
negative observations. We use logistic regression since it provides white-box
explanations and is more usable for simulators such as CPN Tools. Moreover,
white-box simulators can be used for what-if analysis, whereas deep learning
models cannot [6]. Logistic regression, and many other machine learning models,
requires input variables to be numeric. Thus, we need to transform the multiset
of activity occurrences into several variables, one for each activity in the pro-
cess model. Similarly, we could use one-hot encoding for categorical variables.
Finally, we obtain the coefficients for the logistic function and obtain the final
SLDPN including the learned weight function.

4 Experiments

The experiment focuses on verifying the similarity between the original event logs
and those obtained from simulation. Our probability model of activity firing is
only supported by CPN Tools, which includes simulation features.

Section 4.1 illustrates the case studies that are used to assess the validity of
the proposed approach. Section 4.2 discusses the experimental setup, including
how CPN Tools has been employed to define our probability model. Finally,
Sect. 4.3 reports the results, and discusses the findings.

4.1 Case Studies

The approach has been evaluated in two different case studies for which a public
event log and a reference model is available: Road-Traffic Fines and Sepsis (see [9]
for details).

The Road Traffic Fines event log describes the process of managing road
traffic fines by a local police force in Italy. The event log contains 150370 traces
and 11 different activities, with 12 data attributes. Sepsis case study is a real-
life event log obtained from an Enterprise Resource Planning (ERP) system
of a regional hospital in The Netherlands. It contains 1050 traces, 16 different
activities and several data attributes, most of them binary.

Figures 2 and 3 depicts the Petri Net models used for our evaluations, which
are shown in Fig. 12.8 and Fig. 13.3 of [9]. The Road-Traffic Fines model allows
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Fig. 2. Road-Traffic Fines Petri Net model.

executions with only one activity, i.e. Create Fine, however, the event log does
not contain any trace such that. This led us to improve the model: a place and
a transition after the first Payment are added to maintain the loop of it and
remove the possibility of ending the trace after Create Fine.

4.2 Experimental Setup

The assessment is based on comparing the similarity of the original event logs
with those obtained via simulation. The simulation models are constructed using
five different characterization of the process state: with data only, namely using
the values of the process attributes; with history only, namely using the num-
ber of occurrences of process activities; and with data and history, as well as
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Fig. 3. Sepsis Petri Net model.

with combinations of so-called binary history. History is also delineated in the
binary version, where we only consider whether or not an activity has hap-
pened, irrespectively of the number of occurrences. As baseline of comparison,
we also built the simulation model using branching probabilities, which were
computed through the Multi-perspective Process Explorer [11]. The comparison
of the original event log and those obtained via simulation is computed through
the Earth-Movers’ Stochastic distance introduced in [8]. This measure considers
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the stochastic characteristics of the event logs: which activities are executed in
which order, and how often a particular order of activities is executed.

For evaluating our approach, we divided the original logs into training and
test sets using a temporal split: 70% to the training set and 30% to the test
set. The training set was utilized to calculate the weights of the corresponding
SLDPNs, and also the branching probabilities of the comparison baseline. By
comparing the results of them, we can determine the effectiveness of our approach
and assess the impact of different processing techniques on performance.

We instantiated the framework for determining the weights described in
Sect. 3 in ProM by encoding the process state obtained into a set of attributes
and implemented the parameterised weight function as a set of logistic regression
models over that set of attributes and the binary dependent response variable.
We use ridge regression as implemented in WEKA 3.8 [17] and implemented an
export functionality to obtain the resulting coefficients β0, . . . , βn of the logistic
model that are sufficient to determine the weight. More complex models may be
added to the implementation in the future as long as their parameters can be
used to compute weights based on process states. After exporting the logistic
regression coefficients, we use them in the simulation models.

The simulation models are implemented using CPN Tools. In fact, one of
the key advantages of CPN Tools is the ability to model and analyze complex
systems. Additionally, the Standard ML programming language can be used
to implement custom functions, making it possible to adapt the model to the
specific needs of the simulation.

We illustrate how SLDPNs can be represented via CPN Tools through a
simple example. In particular, we focus on the SLDPN in Fig. 1. The CPN model
consists of several parts, each with a specific function. The black part represents
the Petri Net underneath, while the blue part focuses on the simulation of the
CPN Tools: n sim process instances are simulated one at time until the previous
instance is completed. Note that this does not affect the event log similarity since
the evaluation is based on control-flow and not on time-related measurements.
This is done here for the sake of simplicity: it is trivial to extend it to allow for
multiple process instance executions at the same time.

The brown part is related to generating the values of the process attributes
for the different simulated traces. The literature proposes to assign a suitable
statistical distribution to each process attribute (cf. Sect. 5): values are then
sampled from those distributions. However, this might introduce noise in the
experiments, if suitable distributions are not found. This ultimately leads to an
unfair comparison of the original event log and that obtained from simulation.
Recall that we simulate as many process instances, i.e. traces, as those in the
original event log. We leverage on this, and, for each trace of the original event
log, we use the same set of process-attribute values for one process instance that
is simulated.

The green part of the model checks the enabled transitions and the trace
history. Finally, the purple part is responsible for computing the probabilities of
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Fig. 4. Implementation of the SLDPN in Fig. 1 in CPN Tools.

firing the enabled transitions using the weights obtained by the logistic regression
models.

The arc inscriptions in the CPN Tools model example are used to implement
the SLDPN models: the getData function returns a list of real value representing
the i-th data state; the updateE function returns a tuple (enabled, actEx),
where enabled is the list of strings of the enabled transitions after having exe-
cuted a certain transition, and actEx is a list of real values of length number
of activities in which each value represents how many time the correspondent
activity has been performed; getT returns the transition to fire according to the
probabilities computed using a function that implements the formula in Defini-
tion 5, where w is the logistic regression using the coefficients exported from the
Prom Plug-In (Fig. 4).

This procedure is then applied to the Road-Traffic Fine and Sepsis SLDPNs.
Each simulated model has been used to generate as many traces as those in the
original event log (respectively, 150370 and 1050 traces). The simulation reports
generated by CPN Tools have been converted to obtain event logs in XES files
using a parser which we implemented in Python.3

4.3 Experimental Results

For each case study, we have thus computed six simulation models, using proba-
bilities based on the branching probabilities and on the weights with five differ-
ent process-state abstractions. Each simulation model has been run ten times,
to mitigate the stochasticity of simulation.

Table 1 shows the final results for each simulation model and case study. The
reported measures are the average of the Earth Movers’ distances between each
simulated event log and the real one. The value in brackets are the maximum

3
https://github.com/franvinci/InfluenceofDataawareProcessStatesonActivityProbabilities.

https://github.com/franvinci/InfluenceofDataawareProcessStatesonActivityProbabilities
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Table 1. Average Earth Movers’ distance (with absolute error) for each configuration.

Case Study Branching Data History Data Bin Data

Prob. & History History & Bin. History

Road-Traffic Fines 0.8793 0.8831 0.9526 0.9542 0.9352 0.9427

(±0.001) (±0.001) (±0.001) (±0.001) (±0.001) (±0.001)

Sepsis 0.5309 0.6245 - - 0.5906 0.6201

(±0.008) (±0.009) - - (±0.005) (±0.006)

Fig. 5. Road-Traffic Fines absolute errors of the probabilities of occurrence of an activ-
ity aj (columns) immediately after ai (rows) between the real and the simulated event
logs. Left: using branching probabilities. Right: using data and history. Darker colours
indicate lower errors.

variation of similarity for each of ten simulated logs obtained for each configura-
tion, wrt. the original event log. Note how the variation is negligible (less than
1%), thus positively hinting at the reliability of the results.

In the Road-Traffic Fines case study, it can be noticed a slight improvement in
log similarity using only data features. However, by adding history, our approach
outperforms the baseline of 7.5%: this suggests that, for this case, the data alone
are insufficient for capturing the control flow stochasticity, while the history
features provide valuable insights. Binary history also leads to good performance.
However, configurations with history states perform better.

On the other hand, in the Sepsis case study, using the data features without
history results in a 9.4% increase in baseline performance, proving that com-
puting firing probabilities based on these features can lead to more accurate
simulation models. We were unable to perform the experiments for the Sepsis
case study when the process state abstraction includes the history. Indeed, the



Influence of Data-Aware Process States on Activity Probabilities 141

Fig. 6. Sepsis absolute errors of the probabilities of occurrence of an activity aj

(columns) immediately after ai (rows) between the real and the simulated event logs.
Left: using branching probabilities. Right: using data. Darker colours indicate lower
errors.

simulation was often blocked in a livelock: the weight function associated to the
transition with label Leucocytes in the loop was typically returning weights
close to 1 in most of process states, due to the history being included in the pro-
cess state. This causes a loop to be infinitely repeating. This issue is certainly
due to the nature of the method to synthesize the weight function, namely the
use of logistic regression: it is likely the case that, because logistic regression
is only able to synthesize weight function of a certain nature, the synthesis is
unable to find a suitable weight function for transition with label Leucocytes.
Thus, we decided to employ a binary history, namely that only accounts whether
a transition has fired or not in the past, independently of the number of times.
The configuration using only binary history outperforms the baseline of 6%.
However, the results with the configuration with both data and binary history
states are similar to those using only data: this could be due to correlations
between the features.

To investigate which aspects of the simulation are improved in the best con-
figuration for each case study compared to the baseline, we computed for each
activity pair (ai, aj), the probability of aj executing immediately after ai, given
that ai has been executed. This probability has been computed as the ratio
between the number of times aj immediately follows ai and the number of times
ai is executed: |ai → aj |/|ai|. When a given activity a is the first of the trace, we
have a fictitious previous activity start to indicate this, namely a pair (start, a).
Similarly, we introduce a fictitious activity end. We then compared these proba-
bilities with those from the real event log. Given any immediately follow relation
ai → aj , we computed the absolute error as

∣
∣preal

ij − psim
ij

∣
∣, where preal

ij and psim
ij

are the probability described above for the real and simulated logs, respectively.
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Figures 5 and 6 illustrate the absolute errors for the two cases. In particular,
in the Road-Traffic Fines case study, our approach seems to work better when
Insert Fine Notification and Add penalty are executed. Indeed, it can be
noticed that the probabilities of Add penalty, Send for Credit Collection
and end immediately occurring after Insert Fine Notification are more sim-
ilar to the real ones using our approach, since the error is closer to zero. Similarly
for Add penalty.

In the Sepsis case, our method is more accurate after the execution of ER
Registration and ER Triage, and in the final activities: looking at the cells
(ER Registration, ER Triage), (ER Triage, ER Sepsis Triage), and the cells
of the end column, errors are smaller using data than using simply branching
probabilities.

There are some cases in which the error is greater with our approach than
with the basic one. This is probably due to the monotonicity of the logistic
regression, which cannot control the loop parts of the model. However, the overall
error decreases with our method.

5 Related Works

The determination of the activity probabilities in simulation model is related
to stochastic process discovery [3,10,15]. However, they do not focus on build-
ing simulation models, nor do they verify whether or not their approaches are
beneficial to increase the accuracy of business simulation models. In particu-
lar, Burke et al. use a similar concept of weights to determine probabilities [3],
but, instead of using a more elaborated process state, they only consider the
occurrences of previous activities, which our experiments show to not always be
beneficial. Mannhardt et al. also use weights to determine probabilities [3], but
they only focus on process attributes, which is similarly not always beneficial
for more accurate simulation models. This paper brings together the works by
Burket et al. and by Mannhardt et al. allowing both process-state abstractions,
their combination, and also richer abstraction (e.g., includining resource and
time information).

Related work also focuses on Markov-based stochastic models [2,16]. This
class of models is, however, unable to feature concurrency, data and silent tran-
sitions, which are all crucial aspects of business process models, including when
used for simulation.

On the other hand, several studies have been conducted in the simulation
domain to discover and improve simulation models. However, none of these works
have focused on discovering accurate activity firing probabilities. In [12], Pouar-
bafrani et al. proposed a framework with a simulation tool for enriched process
trees, and in [14], the authors used historical execution data to provide simulation
models. However, in these works, the probability of an activity occurring is not
dependent on the data states. Camargo et al. proposed hybrid approaches using
Deep Learning techniques to generate simulated logs in [6,7], but the control
flow depends on constant branching probabilities that do not consider the data
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and history. In [4,5], Simod has been introduced as a framework for the auto-
mated discovery of simulation models, but the activity firing probabilities are
again based on branching probabilities. GenCPN [13] was proposed as a tool that
extracts process parameters, including constant branching probabilities, directly
from an event log and uses Process Mining techniques to convert them into
a CPN model. However, these simulators use constant branching probabilities,
which are not dependent on process states.

6 Conclusions

Business process simulation is a flexible approach to analyze operational pro-
cesses, and, when different sorts of issues are observed, to evaluate alternative
scenarios wit the aim to overcome them. The advantage of business process
simulation is that the evaluation is performed through the digital twin of the
actual process, and hence these alternative scenarios are assessed without risk-
ing them in real production environments. Of course, the requisite of valuable
applications of process simulations is that this digital twin is an accurate rep-
resentation of the real process. The digital twin is modelled through a process
simulation model, which hence needs to be accurate in order to profit from the
advantage of simulation.

A process simulation model consists of the actual model of the process to be
simulated that is extended with the run-time characterization of the process (case
arrival rate, resources and roles, activity durations, etc.). While a large body of
research has recently been carried out to create accurate simulation models,
an accurate stochastic modelling of activity firings in these models has been
totally overlooked (cf. Sect. 5): it is simply assumed that these probabilities can
be well determined by looking at the frequency of occurrence of these activities
in the log (e.g., the so-called branching probabilities). Unfortunately, this is
a coarse determination because the activity firing probabilities usually depend
on characteristics of the single process instances that are simulated, and these
characteristics might significant change from instance to instance. For example,
the chance of executing the activity to reject a loan application might depend
on the amount requested and/on the number of further clarification requests.

This paper aims to assess whether our intuition that a more accurate mod-
elling of the activity firing probabilities passes on having them depend on the
process state, which models the characteristics of the cases. To answer this ques-
tion, we compute the weights of activities as function of the process state, where
these weights are proportional to the activity firing probability. The technique
has been operationalized using stochastic labelled Data Petri nets, a simple lan-
guage, yet sufficiently expressive to model weights, probabilities, and process
states. Each Petri-net transition is associated to a weight function: weights are
then computed by evaluate the weight functions on the current process state.

Since the process state is in fact an abstraction, we make it customizable as
function of the process to simulate. Indeed, these probabilities are possibly linked
to different process characteristics, depending on the process to simulate. We
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conducted experiments with two different process and five alternative process-
state definition to answer our business questions. The results confirm that our
weight-based estimation of activity-firing probabilities allowed us to build more
accurate simulation models, and that the best process-state abstraction changes
with the process to simulate.

Currently, weight functions are synthesized using logistic regression, which
imposes a certain shape of the function. This has also caused the livelock problem
in simulation discussed in Sect. 4.3, because it was not possible to synthesize a
suitable weight function when the process state includes the history. As a future
work, we aim to replace the synthesis based on logistic regression with alternative
synthesis methods, which possibly can return better approximations of the real
weight function. Also, we aim to asses how fitness and precision of the process
models influence the quality of the simulations.
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Abstract. Modern business processes are often characterized by con-
tinuous change, which can lead to bias in the results of process mining
techniques that assume a static process. This bias is caused by concept
drift, which can manifest in many forms and affect various process per-
spectives. Current research on concept drift in process mining has focused
on drift detection techniques in the control-flow perspective, with lim-
ited capabilities for comprehensive dynamic profiling of event logs. To
address this gap, this paper presents the DyLoPro framework, a generic
approach that facilitates the exploration of event log dynamics over time
using visual analytics. The framework caters to all types of event logs
and allows for the exploration of event log dynamics from various process
perspectives, both individually and combined with the performance per-
spective. Additionally, the framework is accompanied by an efficient and
user-friendly Python library, rendering it a valuable instrument for both
researchers and practitioners. A case study using large real-life event logs
demonstrates the effectiveness of the framework.

Keywords: Process Mining · Event Logs · EDA · Concept Drift ·
Visual Analytics

1 Introduction

Most Process Mining (PM) techniques are premised on the assumption of a
stable underlying process. However, business processes are often subject to con-
tinuous change. These changes are referred to as concept drift and can occur
in many different forms (sudden, gradual, recurring, incremental) and apply to
different perspectives (control-flow, resource, data, performance) [5]. Applying
PM on event logs in which this stationarity assumption does not hold, i.e. in
which one or more drifts occur in the underlying process, can induce a signifi-
cant yet oftentimes unnoticed bias in the results, leading to incorrect insights.
The impact of drifts in different perspectives on the results of the process mining
techniques varies depending on the technique used. Process discovery techniques
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generalize control-flow information into one static process model. Any significant
control-flow changes over time would result in the process model representing
an extensive set of behavior, falsely suggesting that we are dealing with a very
flexible process, while in reality merely a series of more rigid process models
are contained within the data. Moreover, both conformance checking as well as
performance analysis techniques produce measures (e.g. fitness scores, or wait-
ing times) as computed over an entire event log. Hence, both sets of techniques
depict a static image of measures that, in effect, vary and change over time. In
this manner, any crucial patterns, trends or changes over time remain largely
undetected. Furthermore, event log dynamics are also crucial for predictive pro-
cess monitoring (PPM) techniques, as PPM algorithms typically learn based
on case-specific information derived from multiple process perspectives so as to
optimize the prediction of outcome, remaining time, or next event(s). Despite
being often neglected, it is recommended that prior to training and evaluating
a predictive model, a thorough exploratory analysis of the dynamics over time
is conducted to uncover potential data leakage, perform feature selection, and
identify and account for significant changes and patterns that could affect the
validity or usefulness of a train-test split choice, in particular when the preferred
out-of-time evaluation setup is chosen.

These examples indicate the importance of properly exploring the dynam-
ics in event logs before applying such PM techniques. However, concept drift
detection in PM is largely confined to the detection of sudden drifts in the
control-flow perspective [7], and mainly evaluated on artificial data. Even for
recent techniques that initiate a widening beyond control-flow, comprehensive
dynamic profiling of event logs is well beyond their capabilities. To the best of our
knowledge, no framework has been developed to comprehensively and efficiently
explore the dynamics in an event log over time.

Therefore, this paper introduces Dynamic Log Profiling (DyLoPro), a com-
prehensive visual analytics framework designed to explore event log dynamics
over time. DyLoPro’s comprehensiveness is achieved through the incorporation
of the main process perspectives - the control-flow, data (including resources)
and performance, along two orthogonal dimensions of log concepts and represen-
tation types. It incorporates six log concepts to capture all essential information
from event logs, including variants and directly-follows relations for the control-
flow perspective, and categorical and numeric case and event features for the
data perspective. These six log concepts can be represented using five represen-
tation types, including four performance-oriented ones (throughput time, number
of events per case, outcome, and directly-follows-relations’ performance) and one
generic type. With this two-dimensional approach, end users can gain a nuanced
and holistic view of event log dynamics, efficiently identifying patterns, tempo-
rary or permanent changes, and trends of interest from multiple perspectives.
Upon identification, they can further analyze these patterns and trends, ulti-
mately leading to more appropriate application of downstream process mining
techniques.

Accordingly, the remainder of this paper is organized as follows. Section 2 dis-
cusses related work, followed by preliminaries in Sect. 3. The DyLoPro framework
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is formally introduced in Sect. 4. In Sect. 5, the effectiveness of the framework is
assessed on large real-life event logs with the aid of its associated Python library,
before concluding the paper in Sect. 6.

2 Related Work

Concept drift in PM is branded as one of the main challenges in the field [1].
Bose et al. [5] were first to propose a concept drift detection technique for event
logs. Later techniques primarily concerned the detection of (sudden) drifts in
the control-flow perspective, mostly evaluated using synthetic data [7]. More
recently, Adams et al. [2] introduce a framework that adds a cause-effect analysis
on top of concept drift detection, and thereby enables relating drifts in different
perspectives to each other. However, these detection algorithms are still subject
to tedious parameter tuning, time-consuming to run on large real-life event logs,
and not proven to be robust against noise.

Furthermore, Exploratory Data Analysis (EDA) [10], is widely considered as
the first crucial step in any data analysis project. However, partly due to the
complex sequential and multi-perspective nature of event logs, EDA in PM is
usually carried out in an ad-hoc way [12], if at all, with comprehensiveness diffi-
cult to attain without a considerable time and effort investment. On top of that,
the EDA phase in PM is often limited to control-flow exploration using interac-
tive process maps, thereby focusing on the most frequent paths and variants and
getting a feel for the degree of structuredness. Additionally, PM practitioners
often derive some summary statistics and observe the distribution of activities
and data attributes. However, these summary statistics and distributions are
typically aggregated over the whole log, thereby already incorporating the bias
induced by potential concept drift. Visualizations in general however, unveil vital
information omitted by summary statistics [6].

Avoiding biased PM results due to a failure to recognize and account for
non-stationary effects in event data, can be addressed by means of visualiza-
tion. One of the few techniques offering the visualization of the dynamics of
an event log over time, is the dotted chart technique [8]. While flexibly config-
urable, the dotted chart is strongly event focused, and therefore lacks capabilities
to provide more aggregated insights. Furthermore, Yeshchenko et al. [11] pro-
pose a methodology in which a drift detection technique is complemented by
visualizations to further explain the detected drifts. However, this technique is
restricted to detecting and visualizing drifts in the control-flow perspective. A
third relevant technique, implemented in the ProM [4] framework, is the Per-
formance Spectrum Miner (PSM) [3]. This technique specifically focuses on per-
formance visualization of any occurrence of an individual process segment over
time. PSM’s notions of process segments and the corresponding performances
are highly similar to our definitions of Directly-Follows Relationships (DFRs)
and DFR Performances (see Definitions 6 and 7). However, PSM only focuses
on the dynamic profiling of DFR performances, whereas our framework provides
four additional ways in which DFR characteristics can be visualized over time.
Moreover, we do not limit our method to DFRs, but to many other concepts
catering to different perspectives, as illustrated in subsequent chapters.
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3 Preliminaries

In PM, event logs record the activity executions within a case or instance of a
business process. We define an event as follows:

Definition 1 (Event). Let set A denote the universe of possible activity labels.
An event is a tuple e = (a, c, t, (cf1, cfv1), . . . , (cfm1 , cfvm1), (ef1, efv1),
. . . , (efm2 , efvm2)) with a ∈ A the activity label, c the case ID, t the times-
tamp, (cf1, cfv1), . . . , (cfm1 , cfvm1) (with m1 ≥ 0) the potential case features
with their values and (ef1, efv1), . . . , (efm2 , efvm2) (with m2 ≥ 0) the potential
event features and their values. All elements comprising the event tuple e can
be accessed individually. E.g., e(cf1) returns the value cfv1 of case feature cf1,
and e(a) returns the activity label corresponding to that event.

The complete sequence of events logged for one particular case forms a trace.
The terms case and trace will be used interchangeably.

Definition 2 (Trace). A trace is a non-empty sequence σ = [e1, . . . ,en ] such
that:

– All events within the same trace share the same case ID: ∀i, j ∈ [1 . . . n]
ei(c) = ej (c)

– Events in a trace are ordered chronologically: ∀ei ,ej ∈ σ : i < j ⇒ ei(t) ≤
ej (t)

– All events within the same trace share the same value for all case features (if
any): ∀i, j ∈ [1 . . . n]; ∀α ∈ [1, . . . , m1] : ei(cf α) = ej (cf α)

Furthermore, we introduce the following trace-level projection functions:

– |σ| (= n): the function returning the case length (in number of events).
– σ(cf α) = cfvα (α = 1, . . . , m1): the function returning the constant value of

case feature cfα for a trace σ.
– σ(ef β) = [efvβ,1, . . . , efvβ,n] (β = 1, . . . , m2): the function returning the vec-

tor of values of event feature ef β that occurred in the events of a trace σ.
Consequently, [efvβ,1, . . . , efvβ,n] = [e1(ef β), . . . ,en (ef β)].

An event log can then be defined as a collection or set of traces recording exe-
cutions of completed cases.

Definition 3 (Event Log). An Event Log L is a set of traces describing com-
pleted cases. Formally: L = {σi |1 ≤ i ≤ |L|}. The number of traces in L as
is indicated by |L|, and the time interval over which the traces in the event log
are recorded is denoted by T (L) = [tmin : tmax], with tmin and tmax being the
earliest and latest recorded timestamp over all events in the log.

Other meaningful case features can be derived based on the information available
in the event log. One such informative performance measure is the throughput
time.

Definition 4 (Throughput Time). The throughput time of a trace σ =
[e1, . . . ,e|σ |] corresponds to the total time that a case was processed. This can
be formally expressed as tt(σ) = e|σ |(t) − e1(t) and can be expressed in every
preferred time unit.



150 B. Wuyts et al.

Furthermore, for each trace, the ordered sequence of activity labels can be
derived. In most processes, often many different permutations of these sequences
can be executed to complete one particular case. Each of those sequences is called
a (control-flow) variant.
Definition 5 (Set of (Control-flow) Variants). Given a an event log L,
there exists a set Var(L) of unique variants v such that:

∀ σ = [e1, . . . ,en ] ∈ L : ∃! v = [v1, . . . , vn] ∈ Var(L) s.t. ∀i ∈ [1 . . . n] :
ei(a) = vi. Furthermore, let var(σ) = v (= [e1(a), . . . ,en (a)]) be the function
that maps a trace σ to its corresponding variant v.
Hence, a control-flow variant v = [v1, ..., vn] (with vi ∈ A,∀i ∈ [0, . . . , n]) is
simply a sequence of activity labels.

Another concept that relates to the control-flow information, is the concept
of Directly-Follows Relations (DFRs). More specifically, two activities belonging
to events of the same trace, are said to be in a directly-follows relation if the
second activity directly succeeds the first. Formally:
Definition 6 (Directly-Follows Relation (DFR)). Given a trace σ (∈ L),
then two activities x and y (x, y ∈ var(σ) are said to be in a directly-follows
relationship (x, y) ⇐⇒ ∃ei ,ej (∈ σ) : ei(a) = x,ej (a) = y ∧ j = i + 1.

Furthermore, since every trace is an ordered sequence of events, the total
number of DFRs present in a given trace equals |σ| − 1. Additionally, let us
define:

– The list of DFRs present in a given trace σ as: dfr(σ) = [(a1, a2), (a2, a3), . . .
(an−1, an)] (with ∀i ∈ [1, . . . , n] : ai = ei(a)).

– The number of times that a given dfr (x, y) occurs in trace σ as n(x,y)(σ). In
case of rework and/or loops in the process, this could be greater than 1.

The DFR performance of a certain DFR (x, y) in a given trace, can then be
defined as the time elapsed between the completion time of activity x and the
completion time of activity y.
Definition 7 (DFR Performance). Given a DFR (x, y) of a trace σ (∈ L),
i.e. (x, y) ∈ dfr(σ) as defined in Definition 6, the DFR performance of (x, y) in
that particular trace σ can then be defined as dfrperf

(
(x, y),σ

)
= ey (t)− ex(t),

with ex ,ey ∈ σ being the events corresponding to the occurrence of activity x
and y respectively. Since each DFR can occur multiple times within a given trace,
it is important to note that the projection function dfrperf can yield more than
one performance measure for the same trace. I.e. given that (x, y) ∈ dfr(σ),
dfrperf :

(
(x, y),σ

) 
→ R
α with α ≥ 1.

Analyzing the performances of certain (important) directly-follows relations
might for example reveal certain bottlenecks in the process.

4 The DyLoPro Framework

The DyLoPro framework consists of three main stages to construct and visual-
ize time series that characterize event log dynamics: (1) log discretization, (2)
domain definition, and (3) time series construction & visualization.
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4.1 Stage 1: Log Discretization

First, an event log L should be discretized into a chronologically ordered set of
sublogs D(L) = {L1, . . . ,L|T |}. Hereto, we start by splitting up the time interval
T (L) into smaller equal-length intervals as follows:

Definition 8 (Set of Time Intervals). The chronologically ordered set of
equal-length time intervals T is defined as:
T = {tp

1, . . . , t
p
|T |} s.t. ∀i, j ∈ [1, . . . , |T |], i < j : tp,end

i < tp,start
j , ∀i ∈

[1, . . . , |T |] : tp
i ⊆ T (L),

with p the interval length, and |T | the number of time intervals created.
Secondly, based on the ordered set of intervals T , each trace has to be

assigned to exactly one interval so as to create the log discretization D(L) of
ordered sublogs. However, since traces might not be fully contained within one
single subinterval tp, there are multiple options for assigning a trace to an inter-
val, e.g. based on the timestamp of the first event, or last event, or based on
the interval in which most events of a trace occur. For the sake of simplicity, we
will assume that cases are assigned to the time period that contains the times-
tamp of a trace’s first event. However, in the implementation, other assignment
conditions can be chosen.

Definition 9 (Set of Sublogs). Given event log L and its set of time intervals
T , then the log discretization produces a set of chronologically ordered sublogs
D(L) = {L1, . . . ,L|T |}, with each sublog corresponding to a certain time period,
such that:

– Each sublog Li contains all the traces that were initialized in time period tp
i :

∀i ∈ [1, . . . , |T |] : Li = {σ ∈ L|eσ
1 (t) ∈ tp

i }.
– Each trace σ ∈ L is assigned to exactly one sublog Li : ∀σ ∈ L : ∃! Li ∈ D(L)

s.t. σ ∈ Li .

For example, an event log covering a one year time interval T (L) and with the
subinterval length p1 set to one week, will be discretized in a chronologically
ordered set of 52 sublogs D(L) = {L1, . . . ,L52}.

4.2 Stage 2: Domain Definition

Secondly, after log discretization, we need to define how to capture and represent
event log dynamics, referred to as domain definition. This entails the specifica-
tion of log concepts, i.e. the main dimensions along which we capture event log
dynamics, and representation types, i.e. how the event log dynamics should be
represented and analyzed for each log concept. Concretely, each log concept -

1 What a good value for p constitutes, depends on the arrival frequency of cases. Each
resulting sublog should be populated enough such that the derived measures are
representative, but not too populated, as aggregating over a too long period and/or
over too many cases could level out interesting trends and patterns.
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representation type combination will translate itself into a domain-specific map-
ping function, mapping each of the sublogs onto a real-valued vector. Table 1
presents an extensive but non-exhaustive set of log concepts and representation
types, along with their respective mapping functions. A mapping function can
be formally defined as:

Definition 10 (Mapping Function g). Let Li be a sublog, let Co be the
selected log concept, let Rt be the selected representation type of Co and let θCo

be the set of concept-specific configuration parameters. The mapping function
g then maps the sublog Li to a set of real-valued vectors M , with the exact
implementation of g

(
Li , (Co, Rt),θCo)

depending on concept Co, the concept-
specific configuration parameters θCo

, and representation type Rt. The θCo

is
omitted for readability. This can be formally expressed as g (Li , (Co, Rt)) = M ,
with M = {M1, . . . ,Mξ} (ξ ≥ 1)2 and ∀i ∈ [1, . . . , ξ] : Mi ∈ R

K (with K ≥ 1)3.

For each log concept Co, regardless of the representation type Rt, a specific
set of one or more configuration parameters θCo

is provided. These configu-
ration parameters denote all configuration options on top of the domain def-
inition that provide the practitioner with additional flexibility, and include,
i.a., choosing aggregation operator ‘Agg(X)’ and K dimensions. More specif-
ically, most functions in Table 1 include an aggregation operator ‘Agg(X)’,
which aggregates over a set of values X derived from a sublog and returns
a single number. A sensible default implementation of ‘Agg(X)’ is the mean,
but could e.g. also be the median, minimum, maximum and so on. Addition-
ally, also the dimensionality K as discussed in Definition 10 has to be deter-
mined. The exact realization of these dimensions depends on Co, and will
be explained when discussing each of the concepts. Now that we have intro-
duced the dimensionality K, we can rewrite mapping function g (Li , (Co, Rt))
as [g1 (Li , (Co, Rt)) , . . . , gK (Li , (Co, Rt))], in which each gk (Li , (Co, Rt)) maps
to a set of one or more scalars Mk = {M1,k, . . . , Mξ,k} (ξ ≥ 1; ∀ k ∈ [1, . . . , K]).
These are also the functions displayed in Table 1. To retrieve the set of real-valued
vectors M as defined in Definition 10, one simply has to apply gk (Li , (Co, Rt))
for each of the selected dimensions k. Figure 1 illustrates how mapping function
gk (Li , (Co, Rt)) maps the fourth sublog L4 to two scalars Mk = {M1,k,M2,k}.
As discussed in Sect. 4.3, applying gk (Li , (Co, Rt)) to each consecutive sublog
L1, . . . ,L|T | allows us to construct and visualize the two corresponding time
series.

Log Concepts

Variants. The Variants log concept focuses on individual variants as defined in
Definition 5. Variants are one way to conceptualize the control-flow perspective.
2 For our proposed set of mapping functions displayed in Table 1, ξ is either 1 or 2.

However, this framework is rather meant as a starting point, and its verbosity can
be extended at the discretion of the user.

3 The dimensionality K, which is constant for every vector Mi (i ∈ [1, . . . , ξ]), is
completely determined by the concept-specific configuration parameters θCo

. We do
not include this in the notation for simplicity.
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Fig. 1. Visual illustration of the mapping function for one particular dimension k
(∈ [1, . . . , K]). After having constructed a log discretization and having defined the
domain definition, the associated mapping function is applied to every sublog, thereby
yielding one or more time series. In this illustration, gk

(
Li , (C

o, Rt)
)

results in ξ = 2
measures, and hence two time series are ultimately constructed and visualized.

The dimensions that still need to be selected are the K variants that are to be
analyzed, which we denote by [v1, . . . ,vK ]. A good starting point would be to
analyze the K most frequently occurring variants in the whole event log L. As
shown in Table 1, three different representation types can be used to represent
the Variants concept.

Directly-Follows Relations. The Directly-Follows Relations log concept is
concerned with individual DFRs as defined in Definition 6. DFRs, like variants,
can be utilized to conceptualize the control-flow perspective. While variants
describe complete process executions, DFRs allow for a more granular analy-
sis of the control-flow perspective by focusing on small subsegments comprising
of two consecutive activities in process executions. Furthermore, the K dimen-
sions correspond to the K DFRs to be selected by the user, which we denote
by [dfr1, . . . , dfrK ]. A good initial selection strategy could be to select the most
important successions of two activities, like for example the K DFRs with the
largest number of occurrences in event log L. As shown in Table 1, five differ-
ent representation types can be used to represent the Directly-Follows Relations
concept.

Categorical Case Features. Assuming that one or more categorical case fea-
tures are present in the event log L, and that the practitioner has chosen one
particular categorical case feature cf to explore, the Categorical Case Feature
log concept focuses on the individual categories, also known as levels, of cf . Let
us first denote the cardinality of cf as κ. Furthermore, the user might opt for
selecting a subset of levels to analyze, or analyzing all levels at once. The K
dimensions to be selected correspond to the K (K ≤ κ) levels of cf ultimately
chosen by the user, which we define as [l1, . . . , lK ]. As illustrated in Table 1,
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the Categorical Case Feature log concept can be represented by means of four
different representation types.

Numerical Case Features. Assuming the existence of one or more numerical
case features in an event log L, the Numerical Case Features log concept facili-
tates the exploration of the dynamics of each individual numerical feature in a
concurrent manner. If multiple numerical case features exist, one can choose to
explore all of these separate features at once, or only a subset of them. The set of
K numerical case features ultimately selected for further analysis is denoted by
[cf 1, . . . , cf K ]. Table 1 displays the four different ways in which the Numerical
Case Features concept can be represented.

Categorical Event Features. Also event features can be categorical. The dif-
ference with categorical case features, is that categorical event features can take
on different values over the different events belonging to the same trace. For this
reason, although highly similar, a separate concept is dedicated to categorical
event features. Assuming that one or more categorical event features are present
in the event log L, and assuming the user has chosen one particular event feature
ef to explore, the Categorical Event Feature log concept focuses on the individual
levels of ef . Let us first also denote the cardinality of categorical event feature
ef as κ. Furthermore, the user might opt for analyzing a subset of levels, or
analyzing all levels at once. This corresponds to selecting the K dimensions for
the Categorical Event Feature concept. The K (K ≤ κ) levels of ef ultimately
chosen, is defined as [l1, . . . , lK ]. As illustrated in Table 1, the Categorical Event
Feature log concept can be represented by means of four different representation
types. Furthermore, since we regard resource information as a categorical event
feature, this concept can be utilized to conceptualize both the data and resource
perspective. Additionally, also the activity labels can be regarded as a categori-
cal event feature. Therefore, this concept can also be leveraged to examine the
dynamics of specific activities over time.

Numerical Event Features. As discussed in Definition 2, the function σ(ef )
gives us the vector [efv1, . . . , efv |σ |] which contains all values of numeric event
feature ef that occurred in the events of trace σ. The DyLoPro framework
primarily aims to chart the evolution of trace-level characteristics over time.
Consequently, an additional abstraction method is needed to project a trace’s
sequence of numeric event feature values onto a single numeric value. We formally
denote this abstraction operation as σ(ef ) : σ(ef ) 
→ R. Depending on the nature
of ef , different abstraction operations can be used, like e.g. taking the last value,
the average, the minimum, maximum or the sum (of all non-null values). After
having chosen an abstraction operation, the Numeric Event Features concept
becomes equivalent with the Numeric Case Features concept (see supra).

Now that we have established the concepts, as well as the embodiment of
the K dimensions for each of these concepts, we will discuss the five proposed
representation types, together with their implementation for the different con-
cepts. Before doing so, it should also be noted that for some of the log concepts,
each sublog Li can be further subdivided into two distinct subgroups of cases,
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for each of the selected dimensions k (∀ k ∈ [1, . . . , K]). In particular, for the
Variants and Categorical Case Feature concepts, a sublog can be further sub-
divided into cases pertaining to respectively a certain variant vk or categorical
level lk on the one hand, and all remaining cases on the other hand. Similarly,
for the Directly-Follows Relations and Categorical Event Feature concepts, each
sublog can be further subdivided into cases containing at least one occurrence
of a certain DFR dfrk or categorical level lk, vs. all other cases.

Representation Types

Isolated. The Isolated representation type focuses on the evolution of each
selected dimension k (∀k ∈ [1, . . . , K]). The associated mapping functions, for
the Numerical Case and Event Feature concepts, map each sublog Li to the an
aggregate measure of that feature, e.g. the mean. For the other four concepts,
each sublog is mapped to one4 measure: the relative fraction of cases correspond-
ing to that dimension, or containing that dimension at least once.

Throughput Time. The Throughput Time representation type establishes
a link between each concept-specific dimension k (∀k ∈ [1, . . . , K]) and the
throughput time of cases. The associated mapping functions, for the Numer-
ical Case and Event Feature concepts, map each sublog Li to an aggregated
measure of the ratio of units of throughput time needed per unit of that feature.
For the other four concepts, each dimension k can be utilized to subdivide the
cases of a sublog Li into two groups. Accordingly, given a sublog, two throughput
time measures are computed for each dimension k by computing the aggregate
throughput time over the cases for both subgroups. By doing so and by compar-
ing these two throughput time aggregations, possible effects of each dimension
on the cases’ throughput times can be identified.

Case Length. The Case Length representation type establishes a link between
each concept-specific dimension k (∀k ∈ [1, . . . , K]) and the case length in num-
ber of events per case). The associated mapping functions, for the Numerical
Case and Event Feature concepts, map each sublog Li to an aggregated measure
of the ratio of case length per unit of that feature. The Case Length represen-
tation type is not applicable to the Variants concept, since the case length for
a certain variant remains constant. For the other three concepts, we again first
subdivide a sublog’s cases into two groups for each dimension k as discussed
earlier. Consequently, given a sublog, the aggregate case length is computed for
both groups of cases. By doing so and by comparing these two case length aggre-
gations, any distinctive relation between a dimension k (∀k ∈ [1, . . . , K]) and the
number of process steps needed to complete a case can be examined.

Outcome. This paper makes the simplifying assumption of case outcomes being
binary. However, the framework can easily be extended to cater for higher dimen-
sional outcomes too. If such an outcome target is present in the event log, then
4 For the DFRs concept, two measures are computed. One giving the relative fraction

of cases in which dfrk occurs at least once, and another one giving the aggregated
amount of occurrences per case.
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possible correlations between a concept-specific dimension k (∀k ∈ [1, . . . , K])
and the outcome of a case can be analyzed by means of the Outcome represen-
tation type. For the Numerical Case and Event Feature concepts, this is realized
by means of mapping each sublog to the two following measures: the aggregated
numerical feature value for cases with a positive outcome, and the aggregated
feature value for cases with a negative outcome. For the other four concepts,
again after first having subdivided a sublog Li into two groups of cases for each
dimension k (see supra), this is realized by computing the fraction of positives
for both of these groups.

DFR Performance. Finally, the DFR Performance representation type is only
applicable to the Directly-Follows Relations concept. Instead of linking the pres-
ence or absence of a certain dfrk (∀k ∈ [1, . . . , K]) to trace-level performance
characteristics (such as the throughput time, case length and outcome), here, we
will focus on a performance measure at the level of individual DFRs themselves,
namely the DFR Performance measure (Definition 6). As such, for each dfrk

(k ∈ [1, . . . , K]), a sublog Li is mapped to an aggregate of DFR Performance
for dfrk, over all its occurrences in Li .

4.3 Stage 3: Time Series Construction and Visualization

After having defined a log discretization in the first stage, and subsequently hav-
ing defined the process domain in the second stage, a time series construction
procedure is performed. This basically boils down to applying the mapping func-
tion resulting from the domain definition on each of the chronologically ordered
sublogs part of the log discretization.

Definition 11 (Time Series Construction). Given an event log L, a cor-
responding log discretization D(L) = {L1, . . . ,L|T |}, the domain-specific map-
ping function gk (Li , (Co, Rt)), and the chosen dimensionality K, then for each
dimension k (∈ [1, . . . , K]), a uni- or multivariate time series TSk can be con-
structed as follows:
∀k ∈ [1, . . . , K] : TSk = [gk (L1, (Co, Rt)) , . . . , gk

(
L|T |, (Co, Rt)

)
]

Subsequently visualizing the constructed uni- or multivariate time series TSk

(∀k ∈ [1, . . . , K]) allows for easily identifying any interesting patterns, changes
or trends over time. This was already graphically illustrated in Fig. 1. By apply-
ing the mapping function, which returns two measures Mk = {M1,k,M2,k},
on each of the consecutive sublogs, a multivariate (ξ = 2) time series com-
prised of two univariate ones, is constructed and visualized. This example could
e.g. correspond to the visualization of the throughput time dynamics for a cer-
tain categorical case feature level lk, and hence uncover the interesting pattern
of cases pertaining to lk continuously having a significantly larger throughput
time compared to other cases. In addition, a clear decline in the throughput
time of cases pertaining to lk, and an even sharper decline in the through-
put time of all other cases, can be observed towards the end of the event
log.
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5 Experimental Evaluation

The visualization capabilities offered by the framework are implemented in the
associated DyLoPro Python library. We evaluated the DyLoPro framework and
library by means of conducting an extensive analysis on a number of commonly
used real-life event logs5. In the remainder of this section, we provide and discuss
extracts of an extensive analysis of two large real-life event logs, and thereby
demonstrate the effectiveness of our framework in identifying interesting patterns
prior to the application of other PM techniques.

The BPIC176 and BPIC197 event logs are two of these large real-life event
logs used to evaluate and benchmark a variety of PM techniques in the literature.
Thoroughly examining the dynamics in these two event logs prior to applying
PM on them, is however hardly done. By applying the DyLoPro framework, by
means of the identically named Python library, on both event logs, we uncovered
a number of interesting patterns. In what follows, we provide and discuss extracts
from these analyses.

The BPIC17 event log records cases of a loan application process of a Dutch
financial institute, and consists of 31, 413 cases and 1, 198, 366 events. The log
has, inter alia, been extensively utilized to evaluate PPM algorithms for various
prediction targets. We shift our focus towards the use of BPIC17 for outcome
prediction . More specifically, a loan application can either be accepted, refused
or canceled. In the literature, this multi-class classification problem has been
broken down into three separate binary classification tasks [9]. For each of these
three tasks, the Outcome representation type can be leveraged to examine any
outcome-related patterns, and the stability of these patterns, over time. Our
extensive dynamic profiling of the BPIC17 event log unearthed multiple interest-
ing patterns, but among them, one pattern in particular stands out as especially
significant, and is displayed in Fig. 2. There you can see that the numerical event
feature ‘CreditScore’ has a weekly average of 0 for cases being refused, and a
weekly average fluctuating around 500 for cases not being refused by the bank.
As this pattern might indicate data leakage, further analysis was conducted.
This pointed out that indeed 3,719 out of 3,720 ‘positively’ labeled cases only
had a value of 0 for the numeric event feature ‘CreditScore’. This pattern could
potentially signify leakage, and therefore warrants further investigation before
including it as an input in future research.

The BPIC19 event log pertains to a purchase handling process of a large
Dutch multinational active in the area of coatings and paints. It contains 251, 470
cases and 1, 587, 925 events. Our comprehensive visual analysis has unearthed
some remarkable patterns. In particular, the mean weekly throughput time,
which fluctuates around 80 days during the initial eight months, suddenly starts
decreasing gradually around 09/2018 and converges to zero towards the end of

5 Annotated notebooks with the most interesting visualizations for each event log can
be found here: https://github.com/BrechtWts/DyLoPro_CaseStudies.

6 Data: https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.
7 Data: https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1.

https://github.com/BrechtWts/DyLoPro_CaseStudies
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
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Fig. 2. DyLoPro library - BPIC17 event log: Weekly evolution of the mean value for the
numeric event feature ‘CreditScore’ (left) and its mean value for cases with a positive
outcome vs. cases with a negative outcome (right).

the event log. Additionally, we observe a significant and sudden drift in the
control-flow perspective around this exact same point in time (09/2018). This is
shown in Fig. 3. The left panel contains the weekly amount of cases initialized on
its left axis, and the weekly average throughput time on its right axis. The right
panel displays the evolution of the weekly relative fraction of cases accounted
for by the six most occurring variants. The fraction of cases pertaining to the
most frequently occurring variant (variant 1) initially remained relatively stable,
fluctuating around the range of 25–30% of cases, but suddenly incurred a sud-
den and steep decline around 09/2018. Similar changes can be observed for the
second, fourth and fifth most occurring variants. In contrast, the sixth most fre-
quent variant (variant 6) goes from being almost non-existent to being the ‘main
supplier’ of cases around the exact same point in time. The potential inclusion of
incomplete cases towards the end of the log would have been a sensible explana-
tion for the observed control-flow and performance drifts. However, the specific
sequence of activities in variant 6, i.e. (Create Purchase Requisition Item, Cre-
ate Purchase Order Item, Vendor creates invoice, Record Goods Receipt, Record
Invoice Receipt, Clear Invoice), the fact that activity ‘Clear Invoice’ is also the
ending activity for four of the five most common variants, the similarity between
variants 1 and 6, and the average case length amounting to 6.3 events per case
all make this explanation unlikely.

Additionally, Fig. 4 displays multiple time series regarding the two most fre-
quent levels of categorical case feature ‘case:Spend area text ’, namely ‘Packaging’
and ‘Sales’, and thereby illustrates how DyLoPro can also be used to uncover
interesting relations between the data perspective and the performance perspec-
tive. On average, purchase orders (POs) pertaining to the ‘Packaging’ level have
a significantly higher throughput time compared to all other cases. For POs per-
taining to the ‘Sales’ level, the opposite holds. Both patterns initially remain
relatively stable over time, but also break down around this exact same point
in time, 2018-09. Similar patterns can be observed for other levels, both for the
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Fig. 3. DyLoPro library - BPIC19 event log: Weekly evolution of the number initialized
cases and mean throughput time (left), and of the fraction of total cases belonging to
the 6 most occurring variants (right).

same categorical case feature, as for others present in BPIC19. These findings
illustrate that at least a certain degree of cautiousness is recommended when
evaluating and comparing PM techniques on the BPIC19.

Fig. 4. DyLoPro library - BPIC19: Dynamics two most occurring levels of categorical
case feature ‘case:Spend area text ’. Relative fraction of cases pertaining to each level
(left) and the mean throughput time of cases belonging to each level, vs. to all other
cases (right).
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6 Discussion and Future Direction

In this paper, we proposed the DyLoPro framework, complemented with the
DyLoPro library, enabling PM researchers and practitioners to efficiently and
comprehensively analyze the dynamics in (real-life) event logs over time. First
of all, the framework starts with subdividing the event log into a chronologi-
cally ordered set of sublogs. Afterwards, guided by the process perspective of
interest, the log domain has to be defined, which in its turn consists of choosing
a way to conceptualize the log, and subsequently choosing a way in which this
log concept should be represented. The chosen log domain will determine the
mapping function used to quantify each of the sublogs. In the third and final
stage, time series are constructed and subsequently visualized by applying this
mapping function on each of the chronologically ordered sublogs. Furthermore,
we briefly demonstrated DyLoPro by uncovering two interesting patterns in two
often-used public event logs, the BPIC17 and the BPIC19 event logs. We have
also applied the DyLoPro framework and library on other frequently used real-
life event logs, as well as conducted a more elaborate analysis on the BPIC17 and
BPIC19 logs. These results are documented in annotated notebooks and can be
found here: https://github.com/BrechtWts/DyLoPro_CaseStudies. These first
use cases already indicate the potential of this framework and library in terms
of enabling PM researchers and practitioners to efficiently and comprehensively
explore the dynamics in event logs, prior to applying PM techniques on them.
Thereby, biased results because of the stationarity assumption of PM techniques
being violated, can be avoided. Additionally, complementing the results of PM
with these visuals facilitates interpreting these results.

Future Direction. The framework and proposed mapping functions (Table 1) are
not meant to be exhaustive, and can be extended in both dimensions. Accord-
ingly, in the near future, we are planning on extending the framework’s and corre-
sponding Python Library’s capabilities. Moreover, fostering collaboration within
the PM community, requests with enhancements to the open source DyLoPro
Python library will be monitored and accepted if successfully tested.
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Abstract. The detection of undesired behavior is a key task in process mining,
supported by techniques for conformance checking and anomaly detection. A
downside of conformance checking, though, is that it requires a process model
as a basis, limiting its applicability, whereas existing anomaly detection tech-
niques look for statistically infrequent behavior, even though infrequency does
not necessarily imply undesirability. The recently introduced concept of seman-
tic anomaly detection overcomes these issues by detecting behavior that stands
out from a semantic point of view, such as a claim being paid after it has been
rejected. In this manner, it detects behavior that is undesirable, while its ground-
ing in natural language analysis allows it to consider behavioral regularities
extracted from other processes, alleviating the need to have a process model
available. However, the state-of-the-art approach for semantic anomaly detec-
tion, a rigid, rule-based approach, is limited in its scope and accuracy. Therefore,
we propose a machine learning-based alternative, which uses a classifier trained
to recognize whether observed process behavior is normal or anomalous. Our
experiments show that this learning-based approach greatly outperforms the state
of the art. Users can directly apply our approach to detect semantic anomalies in
their own event data by using one of our pre-trained classifiers, even if their data
contains so far unseen process behavior.

Keywords: Process mining · Anomaly detection · Natural language
processing · Machine learning

1 Introduction

Process mining analyzes data recorded during the execution of business processes in
order to gain insights into an organization’s operations [2]. A common task in this regard
involves the detection of undesired process behavior, since such occurrences can, e.g.,
reveal compliance issues, operational inefficiencies, or recording errors. Such unde-
sired behavior can be detected using conformance checking techniques [3], though only
when a normative process model is available. Alternatively, techniques for anomaly
detection [18] can be used to detect behavior that stands out in a statistical sense, i.e.,
because it is infrequent. However, infrequent behavior does not necessarily mean that it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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is undesired, since it could point to rare, but acceptable situations, whereas, conversely,
behavior that is common is not necessarily desirable.

The recently introduced concept of semantic anomaly detection [1] overcomes these
limitations by aiming to detect process behavior that stands out from a semantic point
of view. It achieves this by considering the natural language labels associated with
events, which allows it to recognize behavior that does not make logical sense, such
as a claim being paid after it has been rejected or an order that is updated before it is
created. Given that such semantic issues are often applicable across processes, semantic
anomaly detection can exploit behavioral regularities extracted from existing resources,
such as process model repositories. In this manner, undesired behavior can be detected,
without the need to have a process model for the particular process at hand.

The problem that we address in this paper is that the state-of-the-art approach for
semantic anomaly detection [1] is limited in terms of its accuracy and scope. In par-
ticular, it can only detect anomalies between pairs of activities that relate to the same
business object and has limited generalization capabilities due to its rule-based nature.

Therefore, we propose an alternative approach that uses machine learning (ML) and
state-of-the-art natural language processing (NLP) techniques. The core of our approach
is formed by a classifier that we trained on data from a large process repository, cov-
ering a variety of domains. Our approach uses this classifier to detect out-of-order and
exclusion anomalies, thus being able to recognize when two events should have been
performed in a different order or should not have both been executed for the same case.
We test classifier architectures that use classical ML techniques with word embeddings
and deep learning techniques based on transformers. Our evaluation shows that both
architectures greatly outperform the state of the art in terms of precision and recall,
allowing our approach to detect a broader range of anomalies in a more accurate man-
ner. Due to its demonstrated generalization capabilities, users can apply our approach
directly on their event data, i.e., without requiring any training or labeled examples,
even if their data contains process behavior that our classifiers have not seen before.

The remainder of this paper is structured as follows. Section 2 motivates the goal
of semantic anomaly detection and highlights the limitations of the state of the art.
Section 3 defines essential preliminaries. Section 4 presents our proposed ML-based
approach, which we evaluate in Sect. 5. Finally, Sect. 6 discusses related work, whereas
Sect. 7 concludes the paper.

2 Motivation

This section illustrates the potential of semantic anomaly detection, before describing
the current state-of-the-art approach and its limitations.

Illustration. Consider the following two traces of a claims-handling process:

t1 = 〈receive claim, accept claim, check claim, pay compensation〉
t2 = 〈receive claim, check claim, reject claim, pay compensation〉

Without having any additional information about the process, the activity labels in
these traces reveal two clearly undesirable process executions: in trace t1, a claim was
accepted before it had been checked, rather than the other way around, whereas in trace
t2, compensation was paid, even though the claim had been rejected.
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Such examples demonstrate the potential of semantic anomaly detection based on
the natural language of activity labels. This task is particularly easy for humans, who
can apply their commonsense and transferable knowledge to the process at hand in
order to recognize that both traces show undesirable process behavior. To do this in
an automated manner, however, requires an approach to learn such semantic relations
between steps in a process, which is notably harder.

State of the Art. The approach by Van der Aa et al. [1] tackles this challenge by estab-
lishing a knowledge base that captures rules about the semantics of appropriate pro-
cess executions, extracted from a linguistic resource (VerbOcean) and a process model
repository. Each rule captures a relation that should not be violated between two actions
(i.e., verbs) applied to the same business object in a trace. For example, the knowledge
base contains a rule that states that business objects should be checked before they can
be accepted, which can be used to detect the anomaly in trace t1.

Limitations of the State of the Art. As the first approach of its kind, the approach
by Van der Aa et al. [1] demonstrated the potential of semantic anomaly detection, yet
also left considerable room for improvement with respect to its scope and accuracy. In
particular, the approach proposed in our paper overcomes the following limitations:

Only Intra-object Anomalies. The existing approach can only detect anomalies involv-
ing two activities related to the same business object. In this manner, it can detect that
accept claim should not come before reject claim in trace t1, since both relate to a
claim object. However, the approach cannot recognize that pay compensation should
not follow reject claim, since these relate to different objects. By contrast, our proposed
learning-based approach can detect both intra and inter-object anomalies.

Limited Generalizability. The existing approach is limited in its ability to generalize
information on process behavior. Specifically, it can learn individual rules, e.g., that
reject and accept are mutually exclusive actions, and can generalize these to some
degree by recognizing synonymous terms, e.g., that a claim can then also not be rejected
and approved (a synonym of accept). However, this is as far as its generalization capa-
bilities go, since the approach does not make connections between the rules it extracts,
e.g., in order to recognize that in general positive outcomes (accept, approve, confirm,
support, etc.) are exclusive to negative outcomes (reject, refuse, limit, etc.). By contrast,
our proposed learning-based approach incorporates the information from all examples
it encounters, to learn such broader behavioral regularities.

No Context-Specific Anomalies. Finally, the existing approach treats all business objects
in the same manner. However, many desirable or undesirable behavioral relations are
context specific, meaning that they should or should not be allowed for certain business
objects. For example, whereas in general it is fine that objects can be changed after
they have been created, e.g., updating a created text document, this does not apply to
objects such as a so-called rush order in SAP systems, which are special order types
that are not allowed to be changed after creation, so that they can be safely processed
immediately. Our proposed learning-based approach can make such context-specific
distinctions, provided it receives training data that contains examples of when a certain
behavioral regularity should and should not hold.
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3 Preliminaries

Event Model. Our work takes as input an event log L, which is a collection of traces.
A trace t = 〈e1, e2, .., en〉 ∈ L is a sequence of events belonging to the same case of a
process. Each event in a trace is associated with a textual label, indicating the activity
to which it corresponds. Without loss of generality, we denote traces as sequences of
their event labels when convenient, as e.g., shown for traces t1 and t2 in Sect. 2.

Process Model. A process model defines desired execution dependencies between the
activities of a process. For our purposes, it is sufficient to abstract from specific process
modeling languages and focus on the behavior defined by a model. Therefore, we define
a model M as a set of activity label sequences that lead the defined process from its start
to its final state. We also define MF ⊆ M as the set of loop-free label sequences of M ,
i.e., the sequences that do not repeat any process fragments.

Eventually-Follows Relation. We use the eventually-follows relation ≺ to capture
inter-relations between pairs of labels, stemming from recorded traces or allowed pro-
cess model sequences. Given a trace t = 〈e1, e2, .., en〉, we use ei ≺t ej to denote that
ei occurs (directly or indirectly) before ej in the trace. Similarly, ai ≺M aj holds if
a process model M contains an execution sequence in which activity label ai occurs
before aj , and ai ≺MF aj holds if M contains a loop-free sequence with that relation.

Vector Operations. We use v = [v1 v2 · · · vn] to denote a numerical n-dimensional
vector, with vi ∈ R for 1 ≤ i ≤ n. The average of two vectors, v and w, is obtained
by dividing the sum of the vectors by two, i.e., (v + w)/2. Finally, we denote the
concatenation of two vectors as [v w].

4 Approach

This section presents our proposed approach for semantic anomaly detection. As shown
in Fig. 1, our approach takes as input a trace t and consists of two main components. The
first component, the event-pair extractor, takes a trace t and extracts a set of eventually-
follows pairs of events Pt to be checked for anomalies. Then, the second component,
the anomaly detector, takes each event pair ei ≺ ej ∈ Pt and uses a classifier to
determine if events ei and ej should be able to follow each other in this particular
order, i.e., whether or not this behavior is anomalous. We provide classifiers that we
pre-trained on data stemming from a large process model repository, which means that
users of our approach do not have to train their own classifier themselves. Based on such
a classifier, our approach detects ordering anomalies, i.e., cases where ej should have
become before ei rather than vice versa, e.g., accept request followed by check request,
as well as exclusion anomalies, i.e., cases where ej should not follow ei because the
two are mutually exclusive, e.g., reject request followed by pay compensation.

4.1 Event-Pair Extractor

Our approach detects anomalies for pairs of events that are in an eventually-follows
relation in a trace t = 〈e1, e2, .., en〉. We use this abstraction level, instead of a directly-
follows relation, because semantic inter-relations between process steps often remain
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Fig. 1. Overview of our anomaly detection approach.

applicable even when other process steps occur in between them. For example, the
notion that receive request should precede accept request holds true, irrespective of the
occurrence of other steps in between, such as check request or read request documents.

However, when extracting eventually-follows pairs from a trace, it is important to
consider the notion of rework, stemming from loops in a process. This is a crucial factor,
because rework can have an important impact on the semantics of a process instance,
particularly with respect to which events may or may not follow each other. For exam-
ple, although reject request should normally not be followed by pay compensation (cf.,
trace t2 in Sect. 2), this does not apply to trace t3 shown in Fig. 2. There, rework was
conducted after initially rejecting the request, which made the subsequent payment of
compensation acceptable.1

Fig. 2. Illustration of the necessity to identify rework in traces.

Therefore, to prevent the detection of incorrect anomalies, we only check for
anomalous behavior within the same cycle of an instance’s execution, by avoiding the
comparison of behavior occurring in different loops through the process. To do this
in the absence of a normative process model (which would render anomaly detection
unnecessary), we detect rework at a trace level. Specifically, we split traces into sub-
traces, by creating a new sub-trace each time we observe a label that was already present
in the current sub-trace. For example, as shown in the lower part of Fig. 2, trace t3 is
split into two sub-traces, where sub-trace t3:2 starts when check request occurs for the
second time. Alternatively, a process model can be discovered for the event log, in order
to recognize loops in the process.

Given such sub-traces (a single one for traces without any repetition), we then
extract the set of event pairs Pt so that it includes all pairs of events that are in an
eventually-follows relation within an identified sub-trace. For sub-trace t3:2, this yields
check request ≺ accept request, check request ≺ pay compensation, accept request ≺
pay compensation, whereas Pt3 comprises 6 + 3 = 9 event pairs in total. By contrast,
without splitting t3 into its sub-traces, the set would comprise 21 pairs.
1 Note that rework considerations would also apply to directly-follows relations, e.g., in 〈..,
check, reject, check, accept 〉 we observe that check [request] (directly) follows reject
[request], rather than vice versa, yet that this is allowed due to rework being conducted.
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4.2 Anomaly Detector

In this component, we apply a classification model to determine for each event pair in
the set Pt if it is anomalous or not. We train this classification model on data from a large
process model repository, which can then be used when applying our approach on any
event log.We test twomodel architectures for this: An architecture using Support Vector
Machines (SVMs), a traditional machine learning technique, in combination with word
embeddings, and a transformer-based architecture, a deep learning technique, using a
fine-tuned BERT model.

Given that SVMs are simpler and faster to train, whereas transformers often gain
better accuracy on complex problems, the comparison of the two architectures allows
us to gain insights into the complexity of the problem (i.e., whether or not traditional
machine learning suffices), as well as into the benefit of building on a pre-trained lan-
guage model (i.e., BERT) and a more computationally-intensive method (i.e., deep
learning using transformers).

Model Architecture 1: SVM-Based Classification.. Architecture 1 first transforms the
natural language labels of an event pair ei ≺ ej ∈ Pt into a vector representation by
using word embeddings. This vector is then fed into a trained SVM, which will return
a classification, i.e., whether or not ei ≺ ej is an anomaly.

Vector Representation Using GloVe. Given that SVMs (as most machine learning tech-
niques) require a numerical vector as input, we first turn an event pair ei ≺ ej into a
vector representation vei,ej using GloVe representations [21].

GloVe (short for Global Vectors) is a static word representation technique that can
be used to create an embedding for a given word, i.e., a vector representation of the word
in a high-dimensional space. Such word embeddings are used to capture the meaning
of words in a vector, by placing semantically similar words close to each other in the
embedding space. Given an event label, e.g., accept request, we first use GloVe to estab-
lish an embedding of each word, resulting in two 300-dimensional vectors, e.g., vaccept

and vrequest. Then, to obtain vectors of equal length, independent of the number of
words in a label, we take the average of all word vectors of the event label, resulting
in a single vector representation, e.g., ei = (vaccept + vrequest)/2. Finally, to encode
an event pair, we concatenate the vectors of the two event labels, i.e., vei,ej = [ei ej],
resulting in a vector of size 600, which accounts for the order in which ei and ej were
observed (i.e., vectors vei,ej and vej ,ei are different).

By using embeddings as input for text classification, a classifier can recognize event
pairs that have a similar meaning, allowing it to generalize from its training data. For
example, if the relation check application ≺ approve application is observed during
training, a classifier can recognize that the relation check request ≺ accept request is
semantically similar (i.e., has a similar vector representation), and thus recognize that
this previously unseen behavioral relation is not an anomaly.

Support Vector Machine. We use the obtained vector representation vei,ej as input for
a two-class SVM, which is a common technique for supervised (traditional) machine
learning on textual data [4]. As shown in Fig. 3a, an SVM aims to establish a hyperplane
that separates data points belonging to different classes in the feature space, in our case
event pairs in the high-dimensional vector space obtained through embedding.
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Fig. 3. Illustration of SVMs (based on [4]).

When training an SVM (the procedure is described below), we alter two primary
settings: the applied kernel function Φ and the choice of the regularization parameter
C. A kernel function Φ transforms the dimensionality of the data at hand, aiming to
represent the data in a higher dimensionality that allows for better separation. Figure 3b
shows an example in which data points are not separable in a two-dimensional space,
but that can be clearly separated after applying a kernel function that transforms the
data into a three-dimensional space. In our experiments, we test linear, polynomial, and
Gaussian functions. Furthermore, we alter the regularization parameter C, which sets
the degree of misclassification allowed when establishing a hyperplane. Particularly, as
shown in Fig. 3c, by allowing for a soft margin (corresponding to a low C value), some
of the training data points may fall outside of the hyperplane, i.e., be misclassified. By
allowing for this, the SVM can avoid overfitting to the training data.

Model Architecture 2: BERT-Based Classification. Architecture 2 is a transformer-
based architecture that uses a fine-tuned BERT model for anomaly detection.

Transformers and BERT. A transformer is a type of neural network architecture that
uses self-attention mechanisms to process sequences of data, such as natural language
sentences, and learn the relationships between different elements in the sequence [24].
BERT (short for Bidirectional Encoder Representations from Transformers), in turn, is
a transformer-based language representation model [6] that has been shown to achieve
excellent performance on a broad range of natural language processing tasks.

BERT learns to understand language by processing large amounts of text data (such
as the entire English Wikipedia) in an unsupervised manner. This pre-training is per-
formed using masked language modeling (Masked LM) and next sentence prediction
(NSP). Masked LM trains the model to predict masked tokens based on the context of
the surrounding tokens, which allows BERT to learn to represent words in the context
of the entire sentence, rather than just based on their local context. In NSP, BERT is
trained to predict whether two sentences are consecutive in the input text or not, which
helps the model to learn about the relationships between sentences and the broader con-
text of the text. By pre-training on these tasks, BERT learns to represent words and
sentences in a way that captures the semantic relationships between them, allowing it
to understand natural language text and perform well on a wide range of downstream
tasks, such as text classification, question answering, and named entity recognition.
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BERT Fine-Tuning. To use BERT for semantic anomaly detection, we fine-tune a pre-
trained BERT model on the task at hand. Fine-tuning has the benefit that the classifi-
cation model can use the language understanding it obtained during pre-training, while
requiring much fewer training samples and computation time than would be required
when training such a model from scratch.

To perform fine-tuning, we extend BERT’s architecture with an additional out-
put layer for two-class classification (whether an input pair is anomalous or not) and
then train it in a supervised manner on a collection of positive and negative train-
ing samples. Since BERT takes a sequence as input, we provide it event pairs in the
following manner: [[CLS], receive, request,[SEP ], check, document, completeness,
[SEP ], [PAD], ..., [PAD]], where [CLS] is a special token to indicate a classifica-
tion task, [SEP ] is used to indicate the end of an event label, and [PAD] is used to
fill the input vector to its maximum length of 128 (since transformers process an entire
input sequence of fixed length at once).

Model Training. We train our SVM-based and BERT-based classification models on
label pairs extracted from an available process model collection M (details on the data
itself provided in Sect. 5.1). Given a process model M ∈ M, we extract training sam-
ples in the form of allowed and anomalous label pairs based on the model’s loop-free
eventually-follows relation ≺MF . Specifically, we first establish a set of positive label
pairs P+

M , which consists of all pairs of activity labels that can appear in an eventually-
follows relation in model M , without any loops in the process. For the example model
M1 in Fig. 4, this yields a set P+

M1
with eight eventually-follows relations, such as

receive request ≺+ check request and check request ≺+ pay compensation.2

Fig. 4. Exemplary process model used as a basis for training samples.

Then, we establish a set of anomalous samples P−
M consisting of label pairs not

allowed in model M , i.e., that are not included in P+
M . To provide a balanced training

set, we populate P−
M by randomly selecting pairs that are not in P+

M , until we have an
equal number of positive and negative samples. This would yield a set P−

M that also
consists of eight relations for the example from Fig. 4, e.g., including reject request ≺−

pay compensation and accept request ≺− check request.

Anomaly Detection. Finally, we use a trained classification model to classify each
event pair ei ≺ ej ∈ Pt as either anomalous or not, resulting in a set of anomalous
relationsAt ⊆ Pt. Note that, before feeding a label pair into a classifier, we first sanitize
the labels using a previously proposed tokenization technique [22], which deals with,
e.g., underscores and camel case labels.
2 For clarity, we use ≺+ and ≺− to denote positive and negative training samples, respectively.
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4.3 Approach Output

Our approach yields a set of detected anomalies At per trace. When presenting the
results to a user, we recognize that a single issue in a process can lead to multiple
anomalous label pairs. For example, a trace t4 = 〈accept claim, receive claim, check
claim〉 will yield two anomalous relations, i.e., At4 = {accept claim ≺ receive claim,
accept claim ≺ check claim }, which both relate to the premature occurrence of accept
claim. Furthermore, we verbalize the detected issues using a standard template in order
to make them easier to interpret. For the exemplary trace t4, this then yields the follow-
ing output:

“Anomaly in t4: accept claim occurred before receive claim and check claim.”

Finally, we aggregate the anomalies detected for all traces in an event log L, resulting
in a multi-set of identified issues and their respective frequencies.

5 Experimental Evaluation

This section reports on evaluation experiments conducted to assess the accuracy of our
proposed approach, including its two model architectures, and compare it to the state-
of-the-art rule-based approach. We describe the data collection Sect. 5.1 and the exper-
imental setup in Sect. 5.2. In Sect. 5.3, we present the evaluation results demonstrating
that our ML-based approach accurately detects semantic anomalies and greatly outper-
forms its rule-based competitor in this regard. Finally, Sect. 5.4 shows an application
scenario in which we apply our approach on a real-world event log. The employed
implementation, data collection, evaluation pipeline, and raw results are all available in
our repository.3

5.1 Data Collection

To evaluate our approach, we require a data collection consisting of traces with known
anomalies, or, more specifically, event pairs for which a gold standard classification as
anomalous or not is available. Since there are no real-world event logs available that
include such a gold standard, we instead obtain gold standard data from a large collec-
tion of real-world process models from the BPM Academic Initiative (BPMAI) [25].

Specifically, we selected those process models from BPMAI that are in the BPMN
notation, have English labels, and that can be turned into a sound workflow net, yielding
a total set M of 2,813 process models. This set comprises process models from a broad
range of types and domains, including typical processes related to the handling of orders
and requests, as well as more specialized processes, e.g., from software engineering and
healthcare domains.

Train-Test Split. To evaluate our approach in an unbiased manner, we established a
random split of the process model collection by dividing M into a training set, Mtrain,
comprising 70% (i.e., 1,969) of the models, and a test set,Mtest, containing the remain-
ing 30% (844). The training set was used for model training, including hyper-parameter

3 https://gitlab.uni-mannheim.de/processanalytics/ml-semantic-anomaly-dection.

https://gitlab.uni-mannheim.de/processanalytics/ml-semantic-anomaly-dection
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optimization (see Sect. 5.2), whereas the test set is exclusively reserved for assessing
the performance of our approach. The train-test split is available on our repository.

Characteristics. For each model M ∈ M, we establish equally-sized sets of (unique)
normal and anomalous eventually-follows pairs, i.e., P+

M and P−
M , using the method

described in theModel training paragraph of Sect. 4.2, this means that 50% of the label
pairs in the training and in the test are anomalies, whereas the rest corresponds to regular
process behavior.

Table 1 shows the characteristics of the train and test set separately. It shows that
nearly half of the label pairs in the test set (10,073) are not included in the training
set. With so many unseen label pairs in the test set, a successful anomaly detection
approach needs to be able to generalize well from the pairs that it observes during
training, making the data collection highly suitable for our purpose.

Table 1 also reports on the number of label pairs that relate to the same business
object (BO), such as create order ≺ accept order, since the rule-based state of the
art [1] is restricted to such pairs.

Table 1. Characteristics of the data collection. The Unseen column refers to labels or label pairs
that only occur in the test set, not the training set.

Training set Test set

Total Total Unseen

Process models 1,969 844 –

Unique labels 9,089 4,715 2,684

Total label pairs 53,598 23,770 10,073

Unique label pairs 43,483 21,934 9,906

Total label pairs (same BO) 3,724 1,714 723

Unique label pairs (same BO) 2,711 1,488 694

5.2 Experimental Setup

Implementation and Environment.We implemented our approach in Python (see our
repository) and conducted experiments on a machine with 768GB of RAM, an Intel
Xeon 2.6GHz CPU, and an Nvidia RTX 2080 Ti GPU (used to fine-tune BERT).

Hyper-parameter Optimization. We conducted a hyper-parameter search to identify
the most promising configuration for each of our model architectures.

For the SVM-based architecture, we tested different kernel functions, i.e., a lin-
ear, a polynomial, and a Gaussian radial basis function (RBF), various values for the
degree D of the polynomial kernel function, i.e., D ∈ {2, 4, 6, 8, 10} , and different
settings for the regularization parameter C, i.e., C ∈ {2−5, 2−3, 2−1, 2, 23}. Moreover,
we tested the effect of reducing the dimensionality of the embedding vectors using
Principal Component Analysis (PCA) prior to training the SVM, because this can help
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reduce the time required for training. The results obtained after using PCA showed that
this causes too much information loss, though, and thus leads to considerably worse per-
formance. Therefore, we use the original vector size of 600, obtained by concatenating
two 300-dimensional GloVe embeddings, one per label of a pair.

For the BERT-based architecture, we tested two base models for English: bert-base-
cased, which is pre-trained on text that is case sensitive, and bert-base-uncased, which
is pre-trained on all lower case text. Furthermore, we tested different learning rates
(5e−5, 4e−5, 3e−5, 2e−5) and warm-up steps the model performs when fine-tuning (0,
500, and 1000 steps). We use 3 epochs for fine-tuning in order to avoid over-fitting [6].4

To select a configuration, we randomly split the models of the training set Mtrain

into a 90% part that is used for the actual training and 10% that are used for validation.
We then conducted a train-validation run per configuration, and selected the configura-
tion that yielded the best results:

– SVM: an RBF kernel with a C-value of 2, and a vector size of 600.
– BERT: bert-base-uncased with a learning rate of 5e−5 and 500 warm-up steps.

We trained an SVM-based and a BERT-based classification model on the entire training
set using these optimal configurations, which we use for our experiments on the test set
and provide as pre-trained models to users of our approach in our repository.

Baseline. We compare our approach against the rule-based approach by Van der Aa
et al. [1], of which the details are described in Sect. 2. It is important to note that this
baseline can only detect anomalies for label pairs that share the same business object
(as reported in Table 1); the baseline thus automatically classifies pairs with distinct
BOs as non-anomalous. We compare our work against the configuration with the best
results reported in the original paper, referred to as SEM4 in their experiments. Most
importantly, this configuration uses a semantic similarity threshold to improve the gen-
eralizability of the rules learned by the approach.

Measures. We measure the performance of our approach in terms of precision, recall,
and F1-scores, obtained by comparing the predicted classes of label pairs (i.e., anomaly
or normal behavior) to the gold standard. Given a class c ∈ {Anomaly, Normal}, we
denote the number of pairs correctly assigned to c as tp, the number of pairs that are
incorrectly assigned to c as fp, and the number of pairs that belong to c in the gold
standard, yet, are not assigned to c as fn. Precision (Prec.) is then defined as tp/(tp+ fp),
recall (Rec.) as tp/(tp+ fn), and the F1-score as the harmonic mean of the two.

5.3 Results

This section presents the results obtained through our evaluation experiments. We first
focus on an in-depth analysis of the classification performance of our approach and the
baseline, followed by a report on the training and inference times.

Overall Results. Table 2 gives an overview of the main results of our experiments.
It shows precision, recall, and F1-scores per model architecture and the baseline, for
different subsets of the event pairs included in the test set.

4 We provide detailed results of the hyper-parameter optimization in our repository.
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Overall, the SVM-based model achieves a reasonable F1-score of 0.69 when con-
sidering the entire test set, which shows its general capability to distinguish semantic
anomalies from normal behavior. The similar F1-scores for the individual classes, i.e.
0.68 for the Anomaly and 0.70 for Normal class, indicate that the model’s has learned
to recognize anomalous behavior and normal behavior equally well.

Table 2. Results of the evaluation experiments obtained on the test set. Bold numbers indicate
the best score for that particular row.

Scope Class Support SVM BERT BL [1]

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

All pairs Anomaly 11,885 0.70 0.66 0.68 0.76 0.74 0.75 0.69 0.01 0.01

Normal 11,885 0.68 0.72 0.70 0.75 0.77 0.76 0.51 0.99 0.67

Overall 23,770 0.69 0.69 0.69 0.76 0.76 0.76 0.60 0.50 0.54

All pairs w. same BO Anomaly 857 0.73 0.71 0.72 0.81 0.76 0.78 0.69 0.07 0.12

Normal 857 0.72 0.73 0.73 0.77 0.82 0.80 0.51 0.97 0.67

Overall 1,714 0.72 0.72 0.72 0.79 0.79 0.79 0.60 0.52 0.56

Unseen pairs Anomaly 5,009 0.64 0.64 0.64 0.62 0.66 0.64 0.67 0.01 0.01

Normal 5,064 0.64 0.64 0.64 0.64 0.60 0.62 0.50 0.99 0.67

Overall 10,073 0.64 0.64 0.64 0.63 0.63 0.63 0.58 0.50 0.54

Unseen pairs w. same BO Anomaly 343 0.72 0.73 0.73 0.79 0.76 0.77 0.68 0.07 0.12

Normal 380 0.75 0.75 0.75 0.79 0.82 0.80 0.54 0.97 0.69

Overall 723 0.74 0.74 0.74 0.79 0.79 0.79 0.60 0.54 0.57

Our BERT-based model outperforms its SVM-based alternative in all aspects on
the entire test set. It achieves a good overall F1-score of 0.76, which shows that it
accurately classifies unseen behavior into semantic anomalies and normal behavior. The
better results compared to the SVM-based model suggest that the general language
understanding of the transformer in combination with its process-specific fine-tuning
improves the performance on our anomaly detection task. At the same time BERT’s
performance is also stable across classes, achieving comparable scores (0.74–0.77) for
all metrics, for both the Anomaly and the Normal class.

Both our models greatly outperform the baseline (with the exception of recall on the
Normal class), which achieves an overall F1-score of 0.54, versus 0.69 and 0.76 of our
models. Part of this difference occurs because the baseline, by definition, cannot detect
anomalies for event pairs with different business objects, which comprises about 93%
of the total pairs. As a result, the baseline assigns the Normal class in the vast majority
of cases, resulting in a low precision (0.50) but high recall (0.99) for that class, while
achieving a recall of only 0.02 for the Anomaly class, with a precision of 0.64.

Same BO Pairs.We also computed the results for the subset of label pairs that share the
same business object (i.e., intra-object anomaly detection), this, among others, provides
a fairer comparison to the baseline. We observe that—in line with expectations—the
performance of the baseline improves for this subset, achieving an overall F1-score of
0.56 compared to 0.54 on the full collection, caused by an increase in recall to 0.07
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for the Anomaly class (versus 0.01 for the total collection. However, the baseline is still
outperformed by both our models, which achieve overall F1-scores of 0.72 (SVM) and
0.79 (BERT). The performance of the SVM-based model slightly improved from 0.69
overall F1-score on the entire dataset to 0.72 on the subset of data, whereas the BERT-
based model demonstrated larger gains, achieving an overall F1-score of 0.79 compared
to 0.76 for the full collection. We can thus note that even if we only consider data that
the baseline is designed to handle, our approach still consistently achieves better results.

Unseen Label Pairs. To be able to assess how well our approach can deal with unseen
behavior, we computed the results for the subset of label pairs that only occur in Mtest

and thus have not been observed by our models during training.
The results obtained for this subset show that both model architectures of our app-

roach can generalize reasonably well to such unseen data, although it is clear that this
anomaly detection task is more challenging. We observe that the performance of the
BERT-based model drops to an F1-score of 0.63, from 0.76 for the entire test set,
whereas the SVM-based model is more stable, achieving an F1-score of 0.64, compared
to 0.69 for the entire set.

The main generalization capabilities of our approach become apparent when con-
sidering the detection of intra-object anomalies, i.e., by considering unseen label pairs
with the same business object. For this subset, both model architectures perform equally
well on unseen pairs as on the set including seen pairs, achieving F1-scores of 0.79
(BERT-based) and 0.74 (SVM-based). It should be noted that this subset is relatively
small, though, consisting of 723 label pairs.

Overall, these results reveal that anomaly detection can be well-generalized to
intra-object relations, e.g., by learning that objects should be received before they are
checked, whereas it is more challenging to learn rules that also apply to unseen activi-
ties that relate to different business objects, e.g., just because an order must be created
before a delivery, does not mean that this also applies to two unseen objects.

Post-hoc Analysis. In order to gain deeper insights into the results, we go beyond a
quantitative analysis and take a closer look at the correct and incorrect classifications
of our approach and the baseline. Specifically, we focus on our BERT-based model,
which has demonstrated better performance. We find that our approach is able to cor-
rectly identify a wide range of semantically problematic behaviors in the test set. For
instance, it finds that reject credit should not happen before assess risk, that wait for
payment should only happen after create invoice, and that receive payment should not
be followed by confirm order. Note especially that none of these anomalies can be
detected by the baseline, since the activities per pair refer to distinct business objects.

Looking at the baseline’s results in detail, we observe that, even though it specifi-
cally targets the detection of semantic anomalies that involve the same business object,
our approach finds additional, relevant intra-object anomalies that the baseline could
not detect. For instance, our model correctly detects that approve application should
not follow cancel application and that evaluate request should not happen before prior-
itize request, which the baseline does not find. Such cases illustrate the capability of our
approach to better consider the meaning of entire activities, not just the actions applied
to the same object, as done by the baseline.
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However, there is also behavior that our approach fails to classify correctly. For
instance, our approach detects receive payment followed by pick shipment as an
anomaly, whereas it is well-imaginable that for some order handling process a ship-
ment is indeed only sent after payment for that shipment was collected. Conversely, our
approach did not find that, e.g., send loan request followed by fill out loan request may
be problematic, for instance, if these are executed by the same resource. Our approach
currently does not consider such context-dependent anomalies, which would require the
incorporation of resource information, a direction for future research.

Computation Time. Table 3 depicts training and inference times of our models and the
baseline. The training time refers to the time it takes to train a model using the pairs in
Mtrain. The duration refers to the actual training, thus excluding the time it takes to
load process models and establish training pairs (which is the same for all approaches).

Table 3. Average training and inference times of our models and the baseline.

SVM BERT BL [1]

Training time 23.4s 1,859.8 s 2.8 s

Inference time per label pair 0.01 s 0.01 s 0.03 s

We find that our SVM-based model requires a training time of 23 s, whereas the
BERT-based model requires 1,859 s (~31min) for fine-tuning in 3 epochs. The knowl-
edge base population of the baseline only takes about 3 s, since it just performs a single
pass over the label pairs, storing their counts. As such, there is a trade-off between
lower training times and optimized performance. Nonetheless, the performance gain is
so strong that we give a clear recommendation for using the BERT-based model. This
is especially the case because users do not need to train our approach themselves, but
can directly use the fine-tuned model provided in our repository.

With respect to inference time, both our models and the baseline are fast, classifying
label pair in less than 0.03 s on average.

5.4 Real-World Application

Finally, we also applied our approach on real-world data: the permit log from the BPI
2020 challenge [9], which captures data on work trips conducted by university employ-
ees. The process flow concerns the request for and approval of a travel permit, the trip
itself, a subsequent travel declaration, as well as associated reimbursements.

Although there is no gold standard available that indicates true anomalies in this pro-
cess, our approach (using the BERT-based model) detects various interesting situations,
as shown in Table 4. The examples correspond to situations in which trips happened
before a permit was properly handled or approved (a1 and a2), declarations submit-
ted before a trip rather than after (a3), as well as payments that were approved before
the respective permit was (a4). Still, we also recognize that certain detected anoma-
lies look concerning, but are fine in light of the specifics of the process. This applies to
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anomaly a5, which corresponds to payments occurring before a declaration was actually
approved. Although this seems problematic, it is possible in this process for payments
related to pre-paid expenses.5

Table 4. A selection of anomalies detected for the real-world permit log.

ID Detected anomaly Frequency

a1 end trip occurred before permit final approved by supervisor 2,800

a2 start trip occurred before permit submitted by employee 2,205

a3 declaration submitted by employee occurred before start trip 4,707

a4 request for payment approved by administration occurred before permit approved by supervisor 611

a5 declaration final approved by supervisor occurred after request payment and payment handled 4,292

6 Related Work

Various approaches for anomaly detection in process mining have been proposed. Most
of these are frequency-based, arguing that uncommon behavior is not of interest or
undesirable, as opposed to our semantic approach. Such frequency-based anomaly
detection is an inherent part of certain process discovery algorithms [14], which use it
to preserve only the most common process behavior. Close to our approach are ML-
based techniques, such as works that use autoencoders [13,19], as well as LSTMs
(long short-term memory) [12], working in unsupervised or semi-supervised manners.
Whereas most approaches only consider control-flow information, others also incor-
porate additional perspectives, such as BINet [18] for deep learning-based anomaly
detection detection, and pattern-based techniques employed in the context of filtering
in the process discovery [16] and the repair of event log imperfections [8].

Our work also relates to other NLP applications that focus on distinguishing
normal from abnormal relations, primarily in the form of commonsense reasoning.
Beyond using ML-based techniques, such reasoning can be done based on, e.g., lexical
resources, such as WordNet [17] or VerbOcean [5], which capture relations between
words, or commonsense knowledge graphs [11,20], which capture common relations
between entities. Such reasoning is, for example, employed to improve the quality of
actions and state changes extracted from natural language texts [15,23].

7 Conclusion

In this paper, we proposed an ML-based approach for the detection of semantic anoma-
lies in business processes, allowing users to detect undesired behavior without depend-
ing on the availability of a normative process model. By building on state-of-the-art
NLP techniques to train an anomaly classifier, our approach has learned to distinguish
normal from undesired process behavior based on the textual labels associated with

5 Note that such false positives would be avoided when using an object-centric event log, since
there would be no relation between the events related to pre-payments and declarations.
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recorded events. Our experiments demonstrate that our learning-based approach greatly
outperforms an earlier, rule-based approach for semantic anomaly detection in terms of
both scope and accuracy.

Still, our work is subject to limitations. Our approach itself is limited by its focus
on event pairs. Although this perspective is chosen because it allows us to achieve accu-
rate results and fine-granular anomaly insights (i.e., much more specific than detecting
whether or not a trace is anomalous), the event-pair perspective does not allow us to
detect missing behavior, e.g., that check request was skipped (unlike the baseline app-
roach [1]). Also, the performance of our approach depends on the similarity of behav-
ioral regularities observed during training and those in the event log on which it is
applied. Positive points in this regard are that we trained our approach on data from
a broad range of domains and that we have demonstrated its capabilities to generalize
to unseen data, especially when it comes to intra-object anomalies. Furthermore, in the
absence of real-world logs with known anomalies, our experiments are conducted using
generated samples. However, these samples are established based on real-world process
models, whereas we also show the potential of our work in a real-world application.

In future work, we aim to lift the concept of ML-based semantic anomaly detection
to the recent wave of generative large language models, such as ChatGPT and GPT4,
once such technology becomes freely accessible, so that experiments can be conducted
in a reproducible manner. Here, we would also like to stress that our conceptual idea
is independent of a specific language model, so that the same approach can later be
updated according to new developments on the NLP side. Furthermore, we also aim to
incorporate additional perspectives into the detection of anomalies. Particularly, we aim
to encode resource roles and categorical attribute values, allowing our approach to, e.g.,
consider who performed a certain step and what the outcome of a decision was. Finally,
in terms of application scenarios, we plan to integrate our work into analysis pipelines
in which semantic correctness plays an important role, such as in the privatization of
event data, where the insertion of obvious noise should be avoided [10], and in next
activity prediction, where predicted next steps should make semantic sense [7].

Reproducibility: Our employed implementation, data, and obtained results are avail-
able through the project repository linked in Sect. 5.

References

1. van der Aa, H., Rebmann, A., Leopold, H.: Natural language-based detection of semantic
execution anomalies in event logs. Inf. Syst. 102, 101824 (2021)

2. van der Aalst, W.M.P.: Process Mining: Data Science in Action, vol. 2. Springer, Cham
(2016). https://doi.org/10.1007/978-3-662-49851-4

3. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

4. Chauhan, V.K., Dahiya, K., Sharma, A.: Problem formulations and solvers in linear SVM: a
review. Artif. Intell. Rev. 52(2), 803–855 (2019)

5. Chklovski, T., Pantel, P.: VerbOcean: mining the web for fine-grained semantic verb rela-
tions. In: EMNLP, pp. 33–40 (2004)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: NAACL, pp. 4171–4186. ACL, Minneapolis,
Minnesota (2019)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-99414-7


ML-Based Semantic Anomaly Detection 179

7. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: W.M.P., Carmona,
J. (eds.) Process Mining Handbook. vol. 448. LNBIP, pp. 320–346. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-08848-3_10

8. Dixit, P.M., et al.: Detection and interactive repair of event ordering imperfection in process
logs. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 274–290.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_17

9. van Dongen, B.: BPI challenge 2020 (2020). https://doi.org/10.4121/UUID:52FB97D4-
4588-43C9-9D04-3604D4613B51

10. Fahrenkrog-Petersen, S.A., Kabierski, M., van der Aa, H., Weidlich, M.: Semantics-aware
mechanisms for control-flow anonymization in process mining. Inf. Syst 114, 102169 (2023)

11. Havasi, C., Speer, R., Alonso, J.: ConceptNet 3: a flexible, multilingual semantic network for
common sense knowledge. In: RANLP. pp. 27–29. John Benjamins Philadelphia, PA (2007)

12. Krajsic, P., Franczyk, B.: Semi-supervised anomaly detection in business process event data
using self-attention based classification. Proc. Comput. Sci. 192, 39–48 (2021)

13. Krajsic, P., Franczyk, B.: Variational autoencoder for anomaly detection in event data in
online process mining. In: ICEIS (1), pp. 567–574 (2021)

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38697-8_17

15. Losing, V., Fischer, L., Deigmoeller, J.: Extraction of common-sense relations from proce-
dural task instructions using BERT. In: 11th Global Wordnet Conference, pp. 81–90 (2021)

16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven process dis-
covery - revealing conditional infrequent behavior from event logs. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-59536-8_34

17. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
18. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: BiNet: multi-perspective business pro-

cess anomaly classification. Inf. Syst. 103, 101458 (2019)
19. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process anomalies

using autoencoders. Mach. Learn. 107(11), 1875–1893 (2018)
20. Omeliyanenko, J., Zehe, A., Hettinger, L., Hotho, A.: LM4KG: improving common sense

knowledge graphs with language models. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS,
vol. 12506, pp. 456–473. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-
4_26

21. Pennington, J., Socher, R., Manning, C.: GloVe: Global vectors for word representation. In:
EMNLP, pp. 1532–1543. ACL, Doha, Qatar (2014)

22. Rebmann, A., van der Aa, H.: Enabling semantics-aware process mining through the auto-
matic annotation of event logs. Inf. Syst. 110, 102111 (2022)

23. Tandon, N., Dalvi, B., Grus, J., Yih, W.t., Bosselut, A., Clark, P.: Reasoning about actions
and state changes by injecting commonsense knowledge. In: EMNLP, pp. 57–66 (2018)

24. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
25. Weske, M., Decker, G., Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Model Col-

lection of the Business Process Management Academic Initiative (2020)

https://doi.org/10.1007/978-3-031-08848-3_10
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.4121/UUID:52FB97D4-4588-43C9-9D04-3604D4613B51
https://doi.org/10.4121/UUID:52FB97D4-4588-43C9-9D04-3604D4613B51
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-030-62419-4_26
https://doi.org/10.1007/978-3-030-62419-4_26


Inferring Missing Entity Identifiers
from Context Using Event Knowledge

Graphs

Ava Swevels(B) , Remco Dijkman , and Dirk Fahland

Eindhoven University of Technology, Eindhoven, The Netherlands
{a.j.e.swevels,r.m.dijkman,d.fahland}@tue.nl

Abstract. Complete event data is essential to perform rich analysis.
However, real-life systems might fail in recording the (correct) case iden-
tifiers the system has operated on, resulting in incomplete event data.
We aim to infer missing case identifiers of events by considering the phys-
ical constraints of the process which previous work has failed to do. We
extended Event Knowledge Graphs (EKGs) with concepts for context
and rule-based inference. We use the extended EKGs to model event
data in its physical context and define five inference rules to infer iden-
tifiers of physical objects in a process. We evaluate the effectiveness of
the rules on data from the IC manufacturing industry using conformance
checking. Initially, none of the traces were complete. Our method inferred
a case identifier for 95% of the events resulting in 88% complete traces.

Keywords: Log repair · Event Knowledge Graph · Modeling ·
Inference Rule · Contextual Information · Physical Constraints

1 Introduction

Business Process Analytics (BPA) is an area of data analytics that facilitates
rich analysis of the way in which business processes work, providing insight into
how business processes can be improved. BPA techniques rely on event logs
that record the events that happened in the business process, along with (the
identifier of) the case to which they belong and the moment in time at which
they happened, possibly extended with other information. However, in real-life
systems the data in the event logs may be incomplete [20]. Consequently, before
event data can be used for BPA, missing data must be added or incomplete
events must be removed. If missing data can somehow be inferred from the
context of the events, that is preferred, because it leads to more usable data to
work with. This work focuses on inferring missing case identifiers, also known as
the “event-case correlation” problem [5].

Several methods exist to infer missing case identifiers from context. The dom-
inant context information that these methods use for inferring case identifiers is
a process model [13,18]. This has some clear drawbacks. Firstly, a process model
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may not exist or may be hard to create, for example in multi-entity processes [11]
or in case the data is at a different level of abstraction than the level at which
the process is understood. Secondly, inference for cyclic processes either requires
further context information, such as constraints on time [4] or data [5], which
may not be available either, or it may require time-consuming iterations [6] to
do the inference. Thirdly, most existing methods only connect the incomplete
information to the context information within the algorithm. Only [6] makes the
connection between data and context available for further analysis.

To alleviate these problems, we aim to develop techniques for inferring miss-
ing identifiers without relying on a process model. This paper focuses on inferring
missing case identifiers for processes with batching where context information is
available about the handling of physical objects. Since these objects are bound
by the laws of physics, information about them can be used in combination with
simple physics rules to infer other information. For example, if a physical object
is in one place in one event and in another place in another event, it must have
been moved in between and a movement event must have involved this object.

We propose to use knowledge graphs (KGs) for such inference. A KG combines
a graph-based representation of data and its context with an inference mecha-
nism [7]. Specifically, translating an incomplete event log into an (incomplete)
Event Knowledge Graph (EKG) [11] models which events are known to relate
to which entities. The problem now is to infer missing relations between events
and entities (instead of a global case) which also allows inference for processes
with batching. EKGs [11] currently lack concepts for context and inference.

This paper extends EKGs with context information about the process and a
pattern-based inference mechanism over this context to infer missing identifiers
(relations between events and entities). We demonstrate how to define context in
terms of the physical context of events (locations of activities and their handling
of physical objects) and how to define inference rules that encode constraints for
objects based on the physical context of events.

We implemented and evaluated the technique on an industrial case study
with NXP Semiconductors by showing that it can be used to infer missing entity
identifiers. Using our method on event data of 7250 events, where 86% of the
events lacked an entity identifier, we could infer an identifier for 95% of the events
within 30 s. Subsequent conformance checking against a normative process model
validated the correctness of the inferred identifiers.

Against this background, the remainder of the paper is structured as follows.
The related work is discussed in Sect. 2. The problem is elaborated on in Sect. 3
along a running example. Section 4 describes a method for inferring identifiers
from context using an EKG. Section 5 shows the proposed method by creating
inference rules for the running example and industrial use case and validates the
inference using conformance checking. The findings are discussed in Sect. 6.

2 Related Work

Data-driven process analysis defines minimal requirements for event logs [14]:
each event contains at least an activity, timestamp and a case identifier. However,
in practice, collected event data might not meet these requirements.
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Table 1. Overview of types of (incomplete) data

Timestamp Activity Case Identifier Context Knowledge used for Inference

- � � timing information [12,19]

� - � other attributes to activities [2,15,23]

� � - acyclic process model [13,18];

process model + add. constraints [4,5];

process model + sim. annealing [6];

surrogate id [17]; activity properties [this]

Event data quality issues are assessed in terms of missing or incorrectly
recorded attribute values. These typically manifest themselves in systematic
“imperfection patterns” [20] due to imperfect data recording mechanisms.
Accordingly, specific techniques have been proposed to detect if such data quality
‘patterns’ exist in an event log [1] and to repair them. Repairing data enables us
to apply techniques that require complete data such as rich analysis techniques
and traceability.

Assuming correct activity and case attributes have been identified [3,16],
we focus on missing values for the standard attributes of case/object identifier,
activity, and timestamp. Existing literature infers missing values for one of the
attributes based on information in the other attributes and additional context
knowledge as summarized in Table 1.

Missing timestamps can be inferred by using knowledge of duration of pro-
cess steps, both, for isolated cases [19] and cases processed via shared resources
and queues [12]. Missing activities can be inferred by knowledge of how events
with specific data attributes in a specific behavioral context relate to activities,
e.g., by aggregating low-level observations to activities [15,23] or matching text
attributes to activity descriptions [2].

Missing case identifiers are typically inferred by leveraging control-flow
knowledge. Existing techniques use a given acyclic probabilistic Markov
model [13] or first estimate a model of an acyclic process from an incomplete log
and then infer case identifiers [18]. Inferring identifiers for cyclic processes not
only requires a process model, but also additional timing constraints [4], data
constraints [5], or multiple iterations of matching, e.g., through simulated anneal-
ing [6] that also generate rules for correlating events to cases based on the activ-
ity, event properties, and their immediate context. No process model is required
when a surrogate identifier such as the user in a clickstream is present [17]. A
common trait of all techniques is that they assume isolated cases (no batching)
and the context knowledge is kept separate from the incomplete event data and
reconciled within the algorithmic technique itself.

This paper addresses the problem of inferring missing entity identifiers in
processes with batching but without leveraging a process model defining the
control-flow or surrogate identifiers. Instead, we focus on processes handling
physical objects and use knowledge on the activities themselves and the context
the activities operate in to infer entity identifiers.
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The problem of inferring missing identifiers is a subproblem of knowledge
inference addressed by knowledge graphs (KGs). A KG thereby consist of (i) a
semi-structured graph modeling data and/or knowledge, (ii) a set of inference
rules over this graph; applying the rules on the initial graph results in (iii) a
derived graph describing derived knowledge [7]. “Semi-structured” means a KG
can be flexibly extended with new concepts. Event Knowledge Graphs [11] allow
to model relations between events and (identified) entities of a process, and allow
to describe processes with multiple objects and batching. This makes them a
suitable model for our problem (inferring missing identifiers in processes with
batching, without a given model). As EKGs as defined in [11] lack concepts for
describing a process context and an inference mechanism, we will propose these
in Sect. 4.

3 Missing Identifiers in Processes with Physical Objects

We illustrate the problem of identifying from incomplete data which physical
objects in a process suffered from errors. We show by a simple example that
existing inference techniques fail to reliably infer correct entity identifiers for
processes with physical objects and batching. We illustrate how we can reli-
ably infer entity identifiers when applying contextual knowledge about activi-
ties, physical objects, and how they are constrained. Then, we state the specific
problem together with the expected in- and output.

Notation on Event Data. We first recall some notation on event data over
multiple identifiers, i.e., object-centric event data, based on [11]. We write V al for
the universe of values, including disjoint sets of activity names and timestamps
Act, Time ⊆ V al. Time is totally ordered by ≤.

An event table with entities (i.e., object-centric log) T = (E,Attr, Ent, #)
consists of events E, attributes {act, time} ⊆ Attr, entity type attributes ∅ �=
Ent ⊆ Attr, and partial attribute value function # : E × Attr � V al assigning
e ∈ E and a ∈ Attr value #a(e) = v (#a(e) =⊥ if a is undefined for e) with
#time(e) ∈ Time and #act(e) ∈ Act are defined.

An event e may have a multi-valued attribute #a(e) = {v1, . . . , vn} (set) or
#a(e) = 〈v1, . . . , vn〉 (list) for example for events referring to multiple objects;
and we write vi ∈ #a(e). For uniform notation, we also write v ∈ #a(e) for
single-valued #a(e) = v.

In the generalized setting of object-centric or multi-entity processes [11] a
trace is defined in relation to an entity identifier. Let ent ∈ Ent be an entity
type. The entity identifiers of type ent ∈ T are ent(T ) = {n | n ∈ #ent(e), e ∈
E} \ {⊥}. Let n ∈ ent(T ) be an entity identifier. An entity trace of n is a
sequence πn = 〈e1 . . . ek〉 of events {e1 . . . ek} = {e ∈ E | n ∈ #ent(e)} ordered
by #time(ei) ≤ #time(ej) for 1 ≤ i < j ≤ k. In the following, we specifically
discuss (identifiers of) entities that are physical objects, e.g., a box.

Running Example. Figure 1 shows a process, modeled as a proclet [12] (bot-
tom), and the context it is executed in, i.e., the physical environment (top).
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Fig. 1. A process model (proclets [12]) of assembly lines where boxes in a tray are
filled, sealed, and labeled (bottom) together with the physical context (top).

There are two Assembly Lines at which Boxes are filled and sealed. A Tray of
Boxes, i.e. a batch, is loaded into an Assembly Line if it is Empty, then each
Box individually passes several stations and finally the Tray is unloaded from
the Assembly Line. The first station is the Fill Station, at which a Box is loaded,
filled and unloaded. The second station is the Seal Station at which a Box is
loaded, sealed and unloaded. Loading and Unloading of the stations is done by
a robot arm that needs to be aware of the Position of the Box in the Tray.

Only when Seal ing, each Box is labeled making it uniquely identifiable. Hence
only Seal events record an entity identifier for the box. Further, Load and Unload
events register per station the Position of a Box in the Tray. For instance, pro-
cessing three boxes results in the incomplete log shown in Fig. 2 where attribute
b records the box identifier and p the position in the tray. No event records, both,
b and p. Figure 2(a) visualizes this incomplete log as a Performance Spectrum
with each color referring to a different box, i.e., blue refers to b1, orange to b2
and green to b3 [9]. Note that no complete traces of boxes can be constructed.

Suppose a Fill ing error occurred at e3. We cannot determine which box was
affected by the error on the incomplete log. As a result, an operator has to
inspect and possibly even discard the entire Tray. To mitigate this problem, we
have to obtain complete traces by inferring the likely values for b.

Using control-flow models as context knowledge, e.g., [13,18] allows to infer
unknown value #b(ei) from known value #b(ej) when ej directly precedes or
succeeds ei; e.g., infer #b(e9) = b1 from #b(e10) = b1. Existing technique fail to
address the physical constraints and batching (boxes in trays) in our example.
The method of [18] generates multiple possible solutions of box id values and
traces (depending on parameters), two are shown in Fig. 2(b) and (c): besides
the analyst having to pick a solution, the method wrongly relates e1 and e20 to
only a single box and wrongly claims b1 went through filling and sealing first,
while the log shows that the box at p = 2 was filled first and sealed second.

Physical Constraints and Context. In contrast, Fig. 2(d) visualizes the com-
plete traces of the three boxes in line with the process’ context and its (physical)
constraints. We note three basic (physical) principles that hold for this process:
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Fig. 2. A small log with missing identifiers: observed events with missing entity iden-
tifiers (a), behaviors found with a control-flow method (b, c) and correct behavior (d).

(P1) for a physical object to be present at/removed from a location, the physi-
cal load/unload activity of that location must have involved this physical object;
(P2) activities are performed at physical locations (stations) and the physical
object they operate on must be at that location; (P3) physical objects that
are consistently kept at the same (relative) spatial location can consistently be
distinguished from each other (e.g. positions in the tray/on a conveyor belt).
Applying these principles does not require a process model, but context infor-
mation on activities: (C1) which activities process which kind of physical objects
at which locations, (C2) which physical activities move which kinds of physical
objects into/out of locations, (C3) relations between locations and (C4) relations
between individual physical objects and batches as visualized in Fig. 1.

Applying P1-P3 on the context knowledge shown in Fig. 1 allows us to infer
missing identifiers: Activities Fill and Seal process boxes at distinct locations
(the Fill and Seal Station), while physical (Un)LoadSS and (Un)LoadFS activ-
ities move a box into/out of these locations. Physical activities LoadAL and
UnloadAL move a Tray of boxes into/out of the AssemblyLine containing the
locations of the Seal and Fill station. (1) From #b(e10) = b1 we know that b1 is
at the Seal Station; by P1, box b1 must have been moved into/out of the Seal Sta-
tion: #b(e9) = #b(e13) = b1. (2) From #b(e10) = b1,#b(e15) = b2,#b(e18) = b3
we know that b1, b2, b3 are at the Seal Station and thus at the AssemblyLine;
by P1 they must have been moved into/out of the AssemblyLine resulting in
multi-valued #b(e1) = #b(e20) = {b1, b2, b3}. (3) Box #b(e9) = b1 is at location
#p(e9) = 1 in the Tray ; from b1 ∈ #b(e1) = #b(e20) follows that b1 at p = 1 is
at the AssemblyLine from time t1 to t20. By P2, P3 and #p(e5) = #p(e7) = 1
we know that e5 and e7 must have operated on the box with p = 1 at the fill
station, resulting in #b(e7) = b1. (4) From #b(e5) = #b(e7) = b1 we know that
b1 is present at the Fill Station from t5 to t7. From P2 follows that e6 must
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operate on a box present at the Fill Station, thus #b(e6) = b1. Consistently
applying this reasoning infers all identifiers shown in Fig. 2(d).

Problem statement. The problem we address in this paper is how to automate
the above inference of missing entity identifiers based on context knowledge of a
process with physical objects. We assume as input: (I1) an event table T where
each event has a timestamp, activity and the top-level location (e.g. equipment)
but may not have an entity identifier, and for each real physical object in the
process, there is at least one event e ∈ E that refers to it, and (I2) context
information about the process, e.g., physical constraints C1-C4 above. Given
I1 and I2, we want to (O1) infer for each event the (likely) entities involved
such that (O2) the resulting entity traces describe a consistent execution of the
process matching the (physical) context. The latter can be validated by replaying
the log on a process model, though the model itself is not a required input.

4 Inferring Entity Identifiers from Context

We now describe our method for inferring identifiers from context. We first
encode the incomplete event data (I1) in an Event Knowledge Graph (EKG).
Exploiting the flexibility of KGs, we show how to extend the EKG with context
information (I2). We then define inference rules over EKGs to infer the missing
identifiers (O1). While the concepts for modeling context and inference rules are
generic, we demonstrate their application for the concrete problem of inferring
identifiers for processes with physical objects stated in Sect. 3.

4.1 Basic Idea

Fig. 3. Example on how to
infer missing entity identifiers
using context information.

We first illustrate the basic idea on how to define
and use context information for inference on a part
of the log of Sect. 3 repeated in Fig. 3.

The log has event e10 with activity Seal for
box b1 in equipment 3012. The physical context
described in Fig. 1 shows that Seal occurs at the
Seal Station within equipment 3012. The log con-
tains events e9 and e13 with activities LoadSS and
UnloadSS which are are not correlated to a box,
i.e. #b(e9) = #b(e13) =⊥. Context (c.f. Figure 1)
shows that (1) activities LoadSS and UnloadSS
operate on a box, thus e9 and e13 have incom-
plete information, and (2) these activities occur
at the same location as e10 (the Seal Station of
equipment 3012 ). From principle (P1), b1 must
have been loaded into the Seal Station before t10 and unloaded from Seal Sta-
tion after t10, e9 and e13 are the first preceding load event and succeeding unload
event, hence #b(e9) = #b(e13) = b1. Even though events e11 and e12 occur in
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between e10 and e13, they are not considered simply because they occur at a
different location.

Figure 3 (bottom) schematically visualizes this reasoning over the context of
the events as an inference rule. On the left-hand side, only event e10 is correlated
to b1 (blue circle, edge to b1) while events e9 and e13 are uncorrelated (black
circles); e9 and e13 perform activities at the same physical location (bar labeled
SS from e9 to e13) where e9 loads an object into the location (down arrow) and
e13 unloads an object (up arrow); e10 occurs time-wise between e9 and e13 and
performs an activity at location SS (arrow from e10 to SS). On the right-hand
side, the correlation of e9 and e13 to b1 is inferred (blue circles, red dashed edges
to b1). In the following subsections, we discuss how to precisely define and apply
such inference rules on event data.

4.2 Modeling Context in Property Graphs

The rule and its application we illustrated in Fig. 3 reasoned over events corre-
lated to multiple entities, and their context of activities (with properties) and
locations (see C1-C4 in Sect. 3). We now show how to formally model event data
with such contextual information using event knowledge graphs (EKGs). We first
recall the underlying data model of labeled property graphs (LPG), the specific
model of EKGs, and how the incomplete log of Fig. 3 is modeled as an EKG.
Afterwards, we extend the meta-model of EKGs with contextual information
and define rules over these extended EKGs.

Existing Models. An LPG G is a directed multi-graph where each node and
each edge of G (called relationship) is typed by one or more labels Lab. A node
n may have multiple labels λ(n) ∈ 2Lab; a relationship r always has one label
λ(r) ∈ Lab. A node or relationship can carry properties, i.e., attribute-value
pairs, written #a(n) = v; see [21, App. A]. We write n ∈ � if � ∈ λ(n) and
(n, n′) ∈ � or n � n′ if r is an edge from n to n′, −→r = (n, n′), and λ(r) = �.

An Event Knowledge Graph (EKG) is an LPG G with node labels Event,
Entity and relationship labels corr (“event correlated to entity”), and df (“event
directly followed by event”) so that (1) Event and Entity nodes are disjoint, (2)
each e ∈ Event has #time(e) ∈ Time and #act(e) ∈ Act defined and (3) each
df-relationship r ∈ df,−→r = (e, e′) defines that e′ directly follows e from the
perspective of entity r.ent = n ∈ Entity.1 The meta-model of this basic EKG is
shown in Fig. 4 (red-dashed rectangle).

We work with the slightly extended meta-model shown at Fig. 4 (top)
proposed in [11] which additionally defines relationships n1 rel n2 between
n1, n2 ∈ Entity and relationships e observed a describing that e ∈ Event exe-
cuted activity a ∈ Activity.

The standard EKG construction from an event table with entities creates
Event, Entity and Activity nodes and corr, df and observed relationships as fol-
1 Formally, let e, e′ ∈ Event be correlated to the same entity n ∈ Entity, (e, n), (e′, n) ∈
corr: e df e′ holds iff #time(e) < #time(e

′) and there is no other event e′′ ∈
Event, (e′′, n) ∈ corr between e and e′, i.e. #time(e) < #time(e

′′) < #time(e
′).
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Fig. 4. Schematic meta-model; (a) basic EKG meta-model [10]; (b) extended meta-
model; (c) extension by this work; (d) refined meta-model for use case

lows [11]: (1) each event record is translated into an Event node; (2) infer entity
node n with #type(n) = ET if there is an Event node e with #ET (e) = n and
add e corr n (e is correlated to n); (3) infer an n1 rel n2 relationship if there is
an event node e with e corr n1 and e corr n2; (4) infer df-relationships between
events correlated to the same entity node n; (5) infer Activity nodes a with
#name(a) = act name if there is an Event node e with #act(e) = act name and
add e observed a.

In case of incomplete information in the event table, step (2) results in incom-
plete correlation (corr) relationships and step (3) results in incomplete and false
df-relationships.

Adding Context. In every process, each event is related to the activity per-
formed and the entities involved. We therefore consider activity and entities as
the natural context of an event, while the timestamp is local to the event itself.
For a specific process, we can further detail the context of an event based on
domain-knowledge of the process. For this, we have to refine the Entity and
Activity nodes in the meta-model in larger Entity and Activity contexts (see
Fig. 4 (bottom)). Next, we discuss this refinement for the processes with physi-
cal objects in our problem.

The entity context is refined by introducing a dedicated label for each entity
type and for each relationship type in the process. The refined entity context of
our example is shown in Fig. 4 (bottom) and defines entity labels for 3 types of
entity nodes for Equipment, Box and BatchPosition and an at pos relation.

The activity context of an event is refined by adding more information about
the activity that is executed, i.e., by adding more related nodes that describe
the activity further. Which information is added depends on the process and the
required inference. For our use case, we require activity context in the form of
how the activities operate on entities and their locations, see C1-C4 in Sect. 3.
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Table 2. Records containing contextual data

Location Records

name part of

AL -

FS AL

SS AL

Activity Records

activity label entity type location

LoadAL load box AL

UnloadAL unload box AL

LoadFS load box FS

UnloadFS unload box FS

Fill acts on box FS

.. .. .. ..

We introduce two additional node labels EntityType and Location and relation-
ship labels acts on, at and part of. Each Activity acts on EntityTypes at a specific
Location, e.g., LoadSS acts on a Box. Depending on the use case, a more specific
label instead of acts on can be chosen to describe the semantics of the activity,
e.g. activity LoadSS loads a Box. Further, we use part of relation to express when
a location l1 is physically part of a larger location l2, e.g., SS part of AL.

We adapt the procedure to construct an EKG with a refined entity and
activity context as follows. We change to procedure to infer refined Entity nodes
(step 2) and relationships (step 3): (2) We infer a node n with labels λ(n) =
{entity,ET} if there is an Event node e with #ET (e) = n; then relationship
e corr n is added as usual; (3) We use the label of a refined relationship (instead
of generic rel) between two entity nodes whenever one is defined in the schema.
Adding the activity context to the EKG requires use-case specific adaptations to
the procedure. Assuming context information about activities and locations is
specified in tables similar to event tables (see Table 2), we perform the following
steps after step 5: (6) For each location record l we treat #name(l) as a unique
identifier and create node loc ∈ Location and set #prop(loc) = #prop(l) for
each prop ∈ Attr in l. (7) Add relationship l part of l′ for l, l′ ∈ Location iff
#name(l′) = #part of (l). (8) We create for each unique value et = #entitytype(r)
in Activity records r a new node et ∈ EntityType. (9) Each Activity Record r
provides details for an activity #activity(r) = a that already exists as a node a ∈
Activity in the EKG. Thus, we can link a to the location node l = #location(r)
created in step (6) by adding relationship a at l. (10) For each activity a =
#activity(r) in Activity Records r, qualifier = #label(r) defines how a operates
on et = #entitytype(r) and we add a relationship a qualifier et.

Figure 5 shows part of the EKG obtained from the incomplete log (Fig. 2)
extended with Activity and Location nodes based on the records and relations in
Table 2.

4.3 Inference Rules

We now have an EKG G extended with context information where corr relation-
ships are incomplete due to missing information in the underlying event table.
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Fig. 5. Partial instance of the EKG

As df-relationships are unreliable due to missing corr relationships, we remove all
df-relationships from G. We infer the missing corr relationships based on which
we can compute reliable df-relationships. Modeling event context in an EKG
enables us to infer missing corr relationships by defining local rules describing
contextual patterns in EKGs. We first define the rules in general, then present
a first example and then define the semantics of rule application on EKGs.

We define an inference rule as a simple graph-transformation pattern in an
EKG G that defines for nodes n1, . . . , nr a “left-hand-side” (LHS) graph pattern
specifying the context from which missing relationships can be inferred. The
“right-hand side” (RHS) of the rule are then relationships from n1, . . . , nr to
other nodes in the LHS; e.g. adding corr relationships between events and entities
provides the missing identifiers.

More concretely, an inference rule IR = (G,Rinferred, c,m) is an EKG G
where we mark one or more relationships Rinferred of G as the RHS, i.e., to
be inferred, by setting property #RHS (r) = True. All other nodes and relation-
ships of G define the LHS. Further, IR defines an ordering condition c and a
minimization condition m over the properties of the nodes N in G to limit the
matches of the LHS; see [21, App. A].

For example Fig. 6 describes an inference rule based on principle (P1) from
Sect. 4.1. It infers the unknown entity identifiers of load and unload events f0
and f2 from event f1 occurring in between f0 and f2 at the same location.

Fig. 6. Inference rule detailing the short-hand nota-
tion of Fig. 3.

Figure 6 depicts the LHS
of the rule by solid edges.
It defines three events (f0, f1, f2 ∈
Event). The activity operation
and location of each event
fi is modeled through the
activity fi observed ai, ai ∈
Activity. Specifically, by the
relationship labels r from a0

and a2 to et ∈ EntityType with #name(et) = ‘Box’, events f0 and f2 observe a
physical loading and unloading activity for a box. The events are observed at the
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same location � by the relationships fi observed ai at �, � ∈ Location, i = 1, 2, 3.
Furthermore all events are correlated to the same equipment fi corr eq ∈
Equipment, i = 1, 2, 3, and only f1 is correlated to box b, i.e., f1 corr b ∈ Box
while f0 and f2 are not correlated to a box, i.e., Nincomplete = {f0, f2}.

Ordering condition c: #time(f0) ≤ #time(f1) ≤ #time(f2) restricts the LHS
to events f0,f1,f2 that follow each other in time. Minimization condition m:
minimize #time(f2) − #time(f0) restricts the LHS to only those f0, f2 such that
no other (un)load events happen in between f0 and f2. m also implies that
f0, f2 are the first preceding load event and first succeeding unload event w.r.t.
f1. Note that the LHS cannot rely on df-relationships to express ordering of the
events as df-relationships are incomplete due to incomplete corr relationships.

The RHS of the rule is Rinferred = {r0, r2} with −→r0 = (f0, b) and −→r2 = (f2, b)
(indicated by red dashed edges in Fig. 6). Subsequently, we use the notation
shown in Fig. 3 as short-hand for inference rules, i.e., Fig. 3 denotes the rule of
Fig. 6.

An inference rule IR = (G,Rinferred, c,m) is applied on an (incomplete)
EKG G′ as follows. Let LHS (IR) be the graph G without Rinferred. (1) An
instance of LHS (IR) is a sub-graph G′′ of G′ that is injectively homomorphic
to LHS (IR), so that the ordering condition c holds in G′′, i.e., the sub-graph
G′′ has all nodes, relationships, labels, and properties described in G and c
except Rinferred, and possibly other relationships not described in G. (2) If the
minimization condition m is defined, pick only those instances G′′

1 , . . . , G′′
k of

LHS (IR) where m is minimal; otherwise pick all instances. (3) For each picked
instance G′′

i of LHS (IR) in G′, apply IR by extending G′′
i by the RHS of IR,

i.e., adding the missing relationships Rinferred; see [21, App. A].
For example, LHS (IR) of Fig. 6 has an instance G′′ in the EKG of Fig. 5 as

LHS (IR) injectively maps to G′′ by f0 �→ e9, f1 �→ e10, f2 �→ e13, b �→ box1, eq �→
eqpm3012, a0 �→ aLoadSS , a1 �→ aSeal, a2 �→ aUnloadSS , � �→ SealStation and
et �→ etBox. Note that G′′ has all nodes, labels, properties and relationships
specified in LHS (IR). Further, c holds in G′′ as #time(e9) ≤ #time(e10) ≤
#time(e13). G′′ also minimizes m : #time(e13) − #time(e9). Applying the RHS
adds corr relationships −→r9 = (e9, b1) and −→r13 = (e13, b1)

The complete inference procedure using a set of rules {IR1, . . . , IRk} on an
EKG G (with added context) is: (1) remove all df-relationships from G, (2)
repeatedly apply each IRi until no more relationships are added to G, (3) infer
the df-relationships (now based on complete corr-relationships).

5 Application and Evaluation

We now use the generic principles for extending EKGs with (use-case specific)
context (see Sect. 4.2) and inference rules (see Sect. 4.3) to define concrete infer-
ence rules for the problem of inferring identifiers for physical objects defined
in Sect. 3. The rules are implemented as queries over the Neo4j graph DB. We
report on their use in an industrial use case.
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5.1 Inference Rules

Based on the entity and activity context defined in the refined EKG meta-model
of Fig. 4, we translated principles P1-P3 of Sect. 3 into five inference rules.

Inference for One Level. Fig. 7 shows two rules to infer missing entity iden-
tifiers for an object at a location L using the short-hand notation introduced in
Sect. 4.1, see [21, App. C] for EKG notation. Rule A is explained in Sect. 4.1; from
an event f1 with known identifier, we can infer the identifiers for the load and
unload events f0 and f2 at the same location L. Rule B is simply the reverse of

Fig. 7. Rules A, B, C, D and E

Rule A; based on the load and unload events
of a location, we infer the missing identifiers of
the events happening at that location by prop-
agating downwards. Note that any rule can
correlate any number of entities to an event.
For Rule A, this is desired behavior: all phys-
ical objects present at location L need to be
loaded and unloaded from L. For Rule B, it
depends on the context whether this is desired
behavior. If f1 should only be correlated to
one of the objects loaded/unloaded during f0
and f2, more information is required which
will be explained in Rule E.

Inference between Entities. Rule C
(Fig. 7) is derived from principle (P3); from
an event f0 associated both to a box b1 and a
batch position x, we can infer that box b1 is
at pos x in the tray.

Inference for Multiple Levels. Rules D
and E of Fig. 7 use the same principles as
Rule A and B respectively for locations con-
taining other locations. As the part of relation
is transitive, principles (P1) and (P2) can be
also used to infer missing entity identifiers on
higher/lower location levels via part of (see
Fig. 4) or its transitive closure part of*. Rule D
infers missing identifiers through multiple lev-
els by propagating upwards and Rule E down-
wards through multiple levels.

Rule E also deals with events that should
only be correlated to one of the objects
loaded/unloaded during f0 and f4. As stated

before, additional information is required for correct inferences such as the rela-
tive spatial position of an object (P3). Hence, events happening at a lower-level
location L correlated to position x can be related to entity b1 at pos x that is
loaded into K.
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These rules allow correlating multiple entities to the same events, which
allows to infer, e.g., batching, when physically possible, or reveal ambiguous
context information when physically impossible.

5.2 Implementation and Demonstration

We implemented the approach of Sect. 4 and rules A-E of Sect. 5.1 as Cypher
queries over the Neo4j graph database; see [21, App. D] and https://github.com/
Ava-S/EKG Inference.

Applying the implementation on an incomplete event table of our running
example infers the correlation and traces shown in Fig. 8 as follows: (1) applying

Fig. 8. An incomplete event table of
running example.

Rule D propagates b1, b2 and b3 from
Seal events upwards to LoadSS, UnloadSS,
LoadAL and UnloadAL events; (2) apply-
ing Rule C creates the at pos relation
between Box and BatchPosition nodes
using LoadSS events which are now
correlated to both these entities; (3) apply-
ing Rule E propagates entity identifiers
from (Un)LoadAL events downwards to
LoadFS and UnloadFS events; (4) apply-
ing Rule B propagates identifiers from
(Un)LoadFS events to Fill events; see [21,
App. B] for the full EKG after inference.

Recall that any rule can correlate any
number of entities to an event. Rule D
assigns multiple boxes (b1, b2 and b3) to the
LoadAL event e1 and UnloadAL event e20.
Even though Rule D is unaware of batch-
ing events, it is still able to infer multiple
identifiers to batching events. The result-
ing traces align with the process in Fig. 1
and the physical constraints.

5.3 Industrial Use Case: NXP’s Sawing Process

The proposed method was applied on an industrial use case; the sawing process
at NXP Semiconductors (NXP). NXP is a globally operating company that
designs, develops, and manufactures Integrated Circuit (IC) chips. We focus
on the dicing step in which wafers are sawn into dies (unpackaged chips). The
sawing equipment has several sensors installed to record the different events
operating on the wafers. The collected data covered a week of manufacturing.
Data inspection revealed that some entity identifiers were recorded incorrectly.
These identifiers were dropped during data cleaning and needed to be inferred.

Process Description. Multiple wafers are loaded into the sawing equipment
together in a rack for wafers. All wafers are then handled in parallel as follows: the

https://github.com/Ava-S/EKG_Inference
https://github.com/Ava-S/EKG_Inference
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Table 3. Overview of the activity types and whether the wafer identifiers are present.

type entity wafer identifier(s) # activities # events

act on wafer � 3 ≈ 1000

act on wafer - 10 ≈ 3100

load (batch of) wafers - 1 ≈ 50

load wafer - 5 ≈ 1550

unload wafer - 5 ≈ 1550

Total 24 ≈ 7250

wafers are aligned and cut at the cutting station, and then cleaned at the cleaning
station. Finally the rack with all cut wafers is unloaded. A rack has multiple slots
containing one wafer each; wafers in the same rack are distinguished by their slot
position in the rack.

Activities and Events. Table 3 gives an overview of the different activity types
in NXP’s sawing process, how many activities of this type the process has and
their frequency. Only 3/24 activities recorded wafer identifiers, resulting in
≈ 6250/7250 events without wafer identifier.

Inferring Missing Information. We adapted the entity and activity con-
text in the EKG meta-model of Fig. 4 and the inference rules of Sect. 5.1 to
match the NXP use case: The Entity:Box and Entity:BatchPosition nodes were
replaced respectively with Entity:Wafer and Entity:SlotPosition nodes. We applied
the adapted Rules A-E to infer the missing wafer identifiers. Construction of
the complete EKG and inference required less than 30 s, resulting in 7225/7250
events correlated to at least one wafer.

Validation. We validated the correctness of the inferred identifiers through
alignment-based conformance checking. A proclet reference model of the multi-
entity process was created and validated with NXP [22]; the proclet describes
for each entity type (e.g. wafer, rack) a life-cycle model as state machine without
concurrency. The proclet model was added to the EKG by modeling df a rela-
tionships between Activity nodes (see Fig. 4 and [11]), where a df a a′ describes
that activity a can be directly followed by a′ for a particular entity, e.g. wafer
or a rack. This allowed us to measure whether all df-relationships of a wafer w
form a complete trace according to the wafer life-cycle using the technique in
[11, Sect 6.4]: we checked whether each df-relationship (e, e′) of w has a corre-
sponding df a-relationship (a, a′) for wafers with e observed a and e′ observed a′.
While for the extracted data, 0 wafers had a complete trace, after inference 88%
had complete traces, the remaining 12% of incomplete traces were attributed to
non-recorded or double-recorded events.
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6 Conclusion

In this paper, we studied the problem of inferring missing entity identifiers in
the generalized setting of multi-entity processes (e.g., with batching) that are
executed in a physical environment. We showed that the problem can be modeled
and solved in Event Knowledge Graphs (EKGs) by extending an EKG over
incomplete data with context information about entities and activities, and by
defining inference rules over this EKG according to simple principles of physical
processes. As a side-effect, the inclusion of context information and inference
rules makes EKGs “true” knowledge graphs [7]. Using inference rules over EKGs
shows that missing identifiers can be inferred efficiently even when no normative
control-flow model is available or applicable (e.g., in case of multi-entity processes
or batching). An industrial case study proved that our technique is applicable
to industrial processes both in terms of quality of inference and performance. It
should be noted that the running example was constructed based on the industry
use case.

While the techniques of inference rules over context-extended EKGs are
generic, our study only demonstrated context representation and inference rules
for multi-entity interactions in the form of batching 1:n synchronization and
activities in hierarchical locations. Similar processes with incomplete informa-
tion exist in healthcare, customer movement, and other production processes [8],
which suggest further research on applying the proposed techniques in these
domains. For processes with other forms of synchronization or activity context,
more research is required to develop a generic, systematic approach for extend-
ing EKGs with context information and defining inference rules over incomplete
event data. Our approach is also limited in dealing with noise. We assumed each
entity identifier to be observed in at least one event and events to not deviate
from the intended process. In case all identifiers are missing and we know that a
particular activity only happens once for a certain entities, artificial identifiers
can be generated. Additionally, in the industrial use case some unload events
were not recorded, however the rules were still able to infer the missing iden-
tifiers for the preceding load events. Other forms of missing identifiers require
further research. In case of deviating events, information about the intended
process (i.e., process model) has to be included in the inference. Finally, the
proposed inference rule mechanism is not specified to inferring corr edges, sug-
gesting further viable research for inference by integrating event data and process
knowledge beyond missing identifiers.
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Abstract. For the enactment of inter-organizational processes,
blockchain can guarantee the enforcement of process models and the
integrity of execution traces. However, existing solutions come with
downsides regarding throughput scalability, latency, and suboptimal
tradeoffs between confidentiality and transparency. To address these
issues, we propose to change the foundation of blockchain-based process
enactment: from on-chain smart contracts to state channels, an overlay
network on top of a blockchain. State channels allow conducting most
transactions off-chain while mostly retaining the core security properties
offered by blockchain. Our proposal, process channels, is a model-driven
approach to enacting processes on state channels, with the aim to retain
the desired blockchain properties while reducing the on-chain footprint
as much as possible. We here focus on the principled approach of state
channels as a platform, to enable manifold future optimizations in various
directions, like latency and confidentiality. We implement our approach
prototypical and evaluate it both qualitatively (w.r.t. assumptions and
guarantees) and quantitatively (w.r.t. correctness and gas cost). In short,
while the initial deployment effort is higher with state channels, it typi-
cally pays off after a few process instances—considerably reducing cost.
And as long as the new assumptions hold, so do the guarantees.

Keywords: Blockchain · Business Process Enactment ·
Choreographies · Interorganisational processes · State Channels

1 Introduction

For the enactment of inter-organizational processes, blockchain can guarantee the
enforcement of rules and the visibility and integrity of execution traces—without
introducing a centralised trusted party. The current state of the art focuses on-
chain enactment, where a process model is transformed into a smart contract
and executed on the blockchain [1]. However, blockchain execution comes with
downsides and suboptimal tradeoffs regarding scalability and confidentiality. [2,
Chapter 3]. On-chain process enactment inherits these problems; to address this,
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related work has focused on improving the cost of the on-chain components
(e.g., [3–5]). In contrast, we propose a more fundamental change: to move from
full on-chain enactment to layer two state channels. Layer-two technologies have
emerged as a promising direction to address fundamental challenges of blockchain
technology [6]. One of these technologies are state channels. State channels move
the bulk of transactions into off-chain channels. In these channels, participants
transact directly without the involvement of the blockchain. The blockchain is
only used for channel creation and as a dispute resolution and settlement layer.
This can greatly reduce the on-chain footprint, enabling new levels of scalability
and improved confidentiality, while mostly retaining the core security properties
offered by blockchain.

In this paper, we focus on conceptualising the principled approach of enacting
processes in state channels. We focus on the fundamental aspects of this new app-
roach: conceiving how to achieve the main functionality and quality attributes,
studying where advantages and disadvantages lie, and creating a basis for a
new line of research. To this end, we propose process channels: a model-driven
approach to transform process models into state channel constructions.

To evaluate our approach, we develop a prototype: Leafhopper. As we propose
a new platform for blockchain-based enactment, we provide a qualitative assess-
ment and investigate the guarantees and assumptions compared to on-chain
enactment. We also provide a quantitative evaluation and benchmark our pro-
totype in terms of correctness and gas cost. While gas cost is foremost known as
a measure for transaction cost on Ethereum, it is directly linked to the amount,
size, computational complexity, and storage requirement of transactions [7]—
serving well as a measure to assess the on-chain footprint. We find that, while
the initial deployment cost of Leafhopper is higher, it can considerably reduce
gas cost. Leafhopper does so without weakening the main security guarantees of
the blockchain, given that some additional assumptions hold.

Following open science principles, we make the entire code and data of our
prototype and evaluation publicly available – see Footnote 10. Beyond Leafhop-
per, we also publish Chorpiler, the first open-source compiler capable of gener-
ating optimised smart contracts from choreographies. In the remainder of the
paper, we first discuss the background (Sect. 2) and related work (Sect. 3), before
presenting the process channel approach (Sect. 4). Implementation and evalua-
tion are covered in Sect. 5, before Sect. 6 concludes.

2 Blockchain and Layer Two Channels

A blockchain is an append-only store of transactions distributed across a net-
work of nodes [2, Chapter 1]. This data store is called ledger; the ledger and the
network of nodes form the defining parts of a particular blockchain system. Par-
ticipants in the network are identified through their blockchain address, which is
derived from a public key. Each transaction is cryptographically signed with the
sender’s corresponding private key, and is validated according to the blockchain
system’s protocol. Smart contracts allow to execute user-defined programs on the
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blockchain. In practice, a blockchain system can provide integrity, immutability,
non-repudiation, equal-rights, and full transparency [2, Chapter 1.4]

Layer two channels attempt to scale the underlying blockchain layer by
offloading transactions [6]. The blockchain is no longer involved in every minute
transaction—these are moved into channels. The idea first emerged in the con-
cept of payment channels (e.g., [8]). Say, you want to pay an online news site
$0.10 per article that you read. You create a channel with the news site, where
you lock $5.00 as initial funds (or collateral). Every time you read an article,
you exchange an off-chain transaction with the news site, assigning an additional
$0.10 to their account. After 32 articles, you decide to close the channel, with
the accrued $3.20 assigned to the news site and the remaining $1.80 refunded
to your account. This concept has since been generalised to state channels [9].
Participants wishing to transact first agree on a contract governing the rules
of the channel and encode these on the blockchain (e.g., in a smart contract).
They then conduct off-chain transactions directly across the channel. For each
transaction, they agree on the outcome and cryptographically commit to their
agreement. Finally, when they have concluded their contract, they submit the
final state to the chain. If at any point a participant (supposedly) violates the
rules, e.g., attempts to falsify the outcome of a transaction, or become unavail-
able, the last unanimously agreed transaction is posted to the blockchain. From
this state, participants can then safely resume their interaction on the chain,
where the blockchain protocol enforces the honest execution of the contract.

More specifically, a channel constructs off-chain peer-to-peer connections
between all channel participants. The off-chain channel replicates an on-chain
state machine, e.g., a smart contract, called the channel contract. Both can be
modelled with state i and state transition function step. The transition func-
tion takes a set of commands cmdi+1 and transitions the state from i to i + 1.
Channels typically transition through the following lifecycle phases [6]:

1. Establishment: All participants agree on a channel contract, which encodes
the rules of the channel and the initial state. Usually, this phase involves
on-chain activity, such as locking collateral or deploying the contract.

2. Transition(s): A participant proposes a new state transition stepi+1 through
a cryptographically signed message. Every other participant verifies that
stepi+1 is in conformance with their local version of the contract. If so, they
confirm by signing it and sending their signature to every other participant.
Once a participant receives all other signatures on transition i + 1, they can
consider the result of stepi+1 the new valid state.

3. Dispute: If a participant did not receive all signatures on a state transition
in time, or they receive conflicting transitions, they must assume that some
fault occurred. They must now start a dispute process on the blockchain. To
do so, the participant submits the last unanimously signed state transition
to the channel contract, which will install the result as new current state.
This closes the off-chain channel and starts the dispute window. Should a
participant submit a state transition that has already been superseded by a
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more recent one, so called stale state, another participant must notice and
submit the most recent state.

4. Closure: After a channel closes and the dispute window elapses, future tran-
sitions can be sent directly to the channel contract, which ensures the contin-
ued validity of transitions. A channel can also be closed by unanimous vote,
installing the last agreed state transition as final state of the contract.

Channels introduce new assumptions that must hold [6]:

1. Blockchain Reliability: The security properties of the blockchain hold and
valid transactions submitted to the blockchain are eventually accepted.

2. At Least One Honest Participant must be present in the channel to
contest faulty state transitions.

3. Always Online: State channels require participants to remain online during
the entire lifecycle of the channel to prevent execution forks [10], in which
a malicious actor starts the dispute phase and submits stale state to the
blockchain, e.g., statei−1. Honest participants must notice such an attempt
and submit statei.1

Given these assumptions, channels can achieve safety: the integrity of the con-
tract’s state is ensured, even when all parties but one are malicious; and liveness:
an honest participant can always advance the contract given a valid transition
function, even when all other parties try to stall the process [9].

3 Related Work

The current state of the art in blockchain-based business process enactment
focuses on-chain enactment [1]. To reduce the on-chain footprint, related work
has focused on improving the cost of the on-chain components. Garćıa-Bañuelos
et al. [3] introduced an optimised generation of smart contracts through petri net
reduction. We extend this approach for BPMN choreographies. López-Pintado
et al. [4], and Loukil et al. [5] propose an interpreted approach, where a pro-
cess model is not compiled but executed by an interpreter component on the
blockchain. While the deployment becomes more costly, it leads to cost savings
over multiple instance runs.

In a recent survey, we pointed to layer two technologies as a promising
research direction [1]. To the best of our knowledge, this is the first work to
investigate layer two state channels for enacting business processes. The state
of the art in state channel2 constructions focuses on the formalisation and secu-
rity of protocols for general applications (e.g., [9,12,13]). More in line with our

1 We generally assume a party “looks after themselves”, and follows a strategy with
the highest payoff.

2 Hyperledger Fabric uses the terminology of channels for their subnet functional-
ity [11]. The similarity to state channels is weak; like subnets, fabric channels par-
tition the on-chain ledger. State channels construct off-chain channels and use the
security guarantees of the on-chain ledger as settlement and dispute resolution layer.
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Fig. 1. Overview: From BPMN choreographies to process channels.

work, McCorry et al. [14] present a case study investigating the feasibility and
applicability of their state channel construction. They present a template for
migrating an existing smart contract to a state channel construction. While
they present a state channel architecture for n parties, they chose a two-party
game as their case. In two-party games, participants can take turns. However,
when more participants are involved, a schedule becomes necessary [13] (see also
Sect. 4.2) We present process channels: a model-driven approach, where a process
model is used to automatically generate the entire channel setup. The process
control-flow naturally enforces a schedule upon the participants. We discuss the
particularities of enforcing choreographies in channels and evaluate our approach
quantitatively and qualitatively in comparison to a full on-chain baseline. For
our evaluation, we chose two commonly used business processes, which allows us
to compare our approach to existing related work.

4 Process Channels

In this section, we first give an overview of our approach. We, then, address
a particular challenge when designing n-party state channels: the scheduling
problem. After, we can describe our model transformation approach, and, lastly,
outline the channel’s protocol in detail.

4.1 Overview

In Fig. 1, we show an overview of our approach. At its core is the model-driven
engineering paradigm. This paradigm has been found to address many challenges
of developing blockchain-based applications, specifically, reduce blockchain spe-
cific complexity [15]. Channel constructions exacerbate this complexity issue fur-
ther. More functionality is required, both on and off the chain, thus, also intro-
ducing a new trust concern: the security of the channel protocol. To alleviate
this issue, we propose to generate channel components from a process model. We
base our approach on BPMN choreography diagrams. These fit well the model
of state channels, where the focus is on a set of interconnected autonomous
participants, initiating messages according to some schedule. From a BPMN
choreography model, a compiler component generates an interaction Petri net.
This serves as a middle layer presentation, and allows us to apply optimisation
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techniques before compilation. From the optimised interaction net, we gener-
ate the channel trigger components. Furthermore, the process channel contract
is generated, which is deployed on the blockchain. Each participant deploys a
trigger and exposes it to the channel network. Each trigger is interconnected.
Additionally, each trigger must be connected to the blockchain, providing access
to the channel contract. We assume that each organisation runs a process-aware
information system (PAIS) in their (private) organisational network. The PAIS
communicates with the trigger to interact with the network. In particular, the
responsibilities of each generated component are as follows.

– The channel contract handles channel establishment, disputes, and closure,
and is deployed on the blockchain. Upon deployment, the blockchain addresses
of the participants are bound to their corresponding role. Should a dispute be
triggered, the contract validates the submitted state transition by verifying
that it has been signed by all participants. The channel also contains process
enactment capabilities: it enforces the honest continuation of the contract,
should a dispute have occurred.

– The channel trigger communicates with the channel network to enact the
process model. Each trigger must be configured with: the identify and secret
key of its participant, the blockchain addresses of the other participants,
the host information of the other triggers, and the address of the channel
contract. Once a trigger receives a request from its PAIS, the trigger performs
a conformance check to verify the request locally; when successful, it proposes
a new state transition to the network. The trigger monitors continuously
whether the channel contract has transitioned into the dispute phase. Should
a trigger not be able to advance the process, or receive a non-conforming
transition request, it starts a dispute phase invoking the channel contract.

4.2 The Scheduling Problem

In an n-party state channel construction, multiple concurrent proposals can
deadlock the protocol, where a subset of participants is waiting for the con-
sent to a proposed state transition, while other participants, in turn, are waiting
for the consent of a concurrently proposed transition [13]. In 2-party state chan-
nels, participants can simply take turns (e.g., in [12]). However, for n-parties,
this problem constitutes a leader election problem. A probable solution is the
utilisation of a leader election algorithm; however, this would introduce commu-
nication overhead and is not done in practice. Instead, this problem is either
not addressed in literature, or a specific schedule of turns is enforced over all
participants (see [16] for a survey). However, the scheduling of a process is a
well understood problem in the world of business process management. A pro-
cess model inherently contains rules considering the order of events, while a
process choreography contains rules regarding the roles and interactions of par-
ticipants [17, Chapter 6]. We can make direct use of this control-flow information
to derive a valid schedule to be enforced within the state channel.
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4.3 Optimised Generation

As outlined, channel contract and trigger components require process enact-
ment capabilities. We generate these from a BPMN choreography model. Our
approach, hereby, is based on the optimised translation technique presented in
Garćıa-Bañuelos et al. [3]: a process model is converted into a Petri net, this net
is then reduced according to well-established equivalence rules. From the opti-
mised net, code is generated. In the code, the process state is then encoded as
efficient bit array. While [3] is based on BPMN process models, we use BPMN
choreography models. Thus, our approach is based on interaction Petri nets,
which are a special kind of labelled Petri nets. Interaction Petri nets have been
proposed as the formal basis for BPMN choreographies [18]. As labels, they
store the initiator and respondent information, which are essential for the chan-
nel transitions. After conversion, we apply the same reduction rules as in [3].
For this contribution, we limit the scope to choreography tasks, start and end
events, and parallel and exclusive gateways. As in [3], this also supports looping
behaviour. In contrast to [3], we must restrict enforcement to certain roles: only
initiators are allowed to enforce tasks.3 Here, we can differentiate between man-
ual and autonomous transitions. Manual transitions correspond to tasks that are
initiated by a participant; these must be explicitly executed. Autonomous transi-
tions are the remaining silent transitions. Converting a process model into a Petri
net creates silent transitions, and while most of them can be deleted through
reduction, some cannot be removed without creating infinite-loops [3]. These
transitions must then be performed by the blockchain autonomously, given that
the correct conditions are met. Consequently, these transitions are not bound to
a role. The differentiation allows a more efficient execution: if the conditions for
a manual task are met, it is fired and terminated; further autonomous transitions
may be fired, without requiring further manual transitions.

4.4 Channel Protocol

Once the components are generated, they execute the channel protocol. In the
following, we outline the protocol of our channel construction, based on the
channel lifecycle model introduced in Sect. 2.

Establishment. For the following, we assume all channel triggers are deployed
and have established, secure connections. From here, blockchain addresses are
exchanged between participants. Any participant can now deploy the channel
contract. The deployment initialises the contract, binding all addresses to their
role and setting the initial state. The address of the deployed contract is then
distributed to all participants; these verify the contract to ensure it was initialised

3 A choreography task can be one-way or two-way: i.e., it optionally includes a
response. We assume that a choreography task is one-way; two-way tasks can be
regarded as syntactic sugar and adding support for those is no conceptual challenge.
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Fig. 2. Sequence diagram for a channel transition (happy path).

with the correct addresses and the correct initial process state.4 If the contract
passes verification, the contract is accepted as channel contract.

Transition. We depict the protocol for a state transition for a sequence flow
from state statei−1 to statei in Fig. 2. The PAIS sends an enactment request for a
task to its corresponding channel trigger. The task must encode all required infor-
mation to compute the new process state and can additionally include arbitrary
data. The trigger verifies that the enactment of the task is in conformance with
its local process state. It then becomes the proposing initiator p for this task, and
prepares the state transition proposal stepi. Each transition proposal is assigned
a sequence number i, which is incremented after each successful transition. stepi
includes the proposed task and resulting state newStatei.5 The trigger crypto-
graphically signs the proposed transition and sends stepi, and its signature sigi,p
to all other participants, called the signing participants. All signing participants
verify that stepi was proposed by the correct initiator by verifying the signa-
ture, and that stepi leads to the next conforming state. If all checks pass, each
signing participant s signs the new step and sends their signature sigi,s back to
the initiator. Once the initiator has collected all signatures (sigi,s, ..., sigi,n), it
can accept newStatei as new state of the process. It now confirms the transi-
tion proposal by sending the set of signatures to all signing participants. These
also verify the signatures and, when all checks pass, can also accept newStatei.
All participants must store the received signatures and corresponding transition
proposals, as they are required should a dispute occur.6

As we have discussed in Sect. 4.2, a problem of n-party state channels are
multiple concurrent state transition proposals. Imposing an order of transitions
is, therefore, paramount. Using the control-flow information of the model, it is
often trivial to enforce such an order. Consider, a simple sequence flow from
4 This procedure can be made easier by forcing deployment from an agreed upon

channel factory contract [2, Chapter 7.4.4].
5 To prevent the replay of transitions across cases, instances, or blockchains, unique

identifiers must also be included, e.g., case ID, instance ID, and chain ID.
6 To reduce the amount of messages, confirmations can be prepended to a transition

proposal. That is, once an initiator has collected all signatures for stepi., it only sends
the confirmation to the next initiator. The next initiator prepends the confirmations
to the next transition proposal stepi+1.
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task t to task t′. The ordering t < t′ naturally follows. This is less so when
control-flow branches after gateways. For exclusive gateway branches, it suffices
to collapse the possible branches into one during run time. That is, the conditions
present on the outgoing sequence flows of the gateway must be based on internal
channel state and be part of the transition proposal, so it can be made available
to the blockchain in case of a dispute; it can not be based on external state.
This requirement can be lifted when all immediately following tasks belong to
the same initiator, as it then becomes a (private) choice of a single participant.

Parallel gateways, on the other hand, permit concurrent behaviour and a
unique order is not enforceable. Real concurrency is a non-trivial problem in
state channel constructions [16]. As each state transition must encode a sequence
number and the new global process state, a concurrent execution can deadlock
the off-chain protocol. We, thus, require that tasks on parallel branches are seri-
alised at run time into any order chosen by the participants. Should a deadlock
still occur, the blockchain contract can always enforce an order during a dispute
phase, as the blockchain ledger enforces a unique order of transactions.

Dispute. At any point, the channel contract is in a certain state i. A participant
can trigger a dispute by providing all participants’ signatures for state transition
stepj , where i < j. Once the contract is in dispute mode, additional state can
be submitted until the dispute window elapses. Then, the contract continues
on-chain. We describe possible dispute scenarios.

– Non-Conforming Transition: Consider a non-conforming transition is pro-
posed in the channel. Assuming there is at least one honest participant, the
transition would not acquire unanimous consent. A participant can trigger a
dispute submitting the last agreed transition to the blockchain; thus, forcing
the continuation of the contract on the blockchain. Faulty participants can,
however, also stop to take part in the protocol, which we discuss next.

– Unavailability: Consider a transition is proposed to the channel. After a local
timeout, the initiator does not receive signatures from all participants. To
ensure liveness, a dispute must be triggered to force the transition on-chain.
Consider the reverse: after a local timeout, a signing participant does not
receive the expected transition proposal or confirmation. The participant can
trigger a dispute. Now, the initiator has to perform the transition on-chain
or be identified as participant stalling the process, which could be penalised.

Closure. Once participants reach the end event in unanimous consent, they sub-
mit the final state to the channel contract. Otherwise, the end event is reached
on-chain. In both scenarios, the process terminates and a new case can be instan-
tiated. The contract assigns a new case ID and resets the process state.

5 Implementation and Evaluation

To enable the evaluation of our approach, we developed two prototypes, Chor-
piler and Leafhopper. We perform a quantitative and qualitative evaluation and
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compare our approach to an on-chain enactment baseline. For the quantitative
evaluation, we use process models from well known cases from literature. We
verify the correctness of our implementation by replaying process traces and
perform benchmarks to assess cost. For the qualitative evaluation, we discuss
the required assumptions and provided guarantees of process channel enactment
in comparison to full on-chain enactment.

5.1 Implementation and Setup

Chorpiler and Leafhopper. We have developed two tools, Chorpiler and
Leafhopper. Chorpiler implements the optimised generation of enactment com-
ponents, as outlined in Sect. 4. It is capable of generating process channel con-
tracts and on-chain enactment contracts in Solidity, as well as enactment func-
tionality in TypeScript, which is used in the channel triggers. The static trigger
component capabilities, e.g., routing, signature verification etc., are implemented
in Leafhopper and run on Node.js7. Leafhopper uses Chorpiler to generate the
process channel contract and the enactment capabilities of the channel trig-
ger. For each participant in the choreography, a trigger is deployed. For ease of
deployment, each trigger is run in a Docker container and the trigger network
can be deployed using Docker Compose.8

Benchmark Setup. We benchmark the supply chain [19] (adapted from [20])
and incident management [21] case, which are well known from related work. To
help assess our approach, we compare it to a baseline. The baseline provides the
same model support as Leafhopper, but enacts the process completely on-chain,
as in related work. For each case, we generate the baseline, channel triggers, and
channel contract. The triggers are run in a local network. The smart contracts
are deployed to an Ethereum environment; we use the Ethereum simulation tool
Ganache.9 Following open science principles, and to enable replicability, we made
both our prototypes, evaluation scripts, and data publicly available.10

5.2 Quantitative Evaluation

Correctness. We verify that the network only accepts conforming traces and
always remains in a stable state, i.e., all triggers report the same state after
some finite time. To do so, we follow the methodology outlined in [19]. For each
case, we replayed all conforming traces (two for supply chain and four for the
incident management case). After, we generated 2000 non-conforming traces;
to do so, a conforming trace was randomly manipulated by one of the following
7 See Node.js, https://nodejs.org/en, accessed 2023-03-17.
8 See Docker Compose, https://docs.docker.com/compose, accessed 2023-03-17.
9 See Ganache, https://trufflesuite.com/ganache, accessed 2023-03-17.

10 Leafhopper is available at https://github.com/fstiehle/leafhopper. The repository
includes instructions and scripts to automate the replication of our evaluation. Chor-
piler is available at https://github.com/fstiehle/chorpiler.

https://nodejs.org/en
https://docs.docker.com/compose
https://trufflesuite.com/ganache
https://github.com/fstiehle/leafhopper
https://github.com/fstiehle/chorpiler
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Table 1. Gas cost of Leafhopper in relation to the baseline.

Case Baseline Leafhopper

Deployment Avg. Exec. Deployment Exec. Best
Case

Avg. Exec.

Case Task Bad Case Worst Case On-Chain
Task

Supply
Chain

396.732 347.076 34.708 772.282 88.319 310.186 495.207 38.691

Incident
Mgmt.

408.954 190.509 31.752 784.823 88.319 199.545 328.889 34.774

operations: add an event, remove an event, and swap the position of two events.11

We replayed these traces from a local script which, for each event, connects to the
corresponding initiator to propose the task.12 All events were classified correctly
w.r.t. conformance, and after each trace replay the channel was in a stable state.

Cost Analysis. We compare the cost of our baseline to Leafhopper. For the
baseline, we replayed, for each case, all conforming process variants (two for sup-
ply chain and four for the incident management case) and recorded the gas cost
of all interactions with the blockchain. As gas costs are deterministic, multiple
runs of the same variant are not required.
Cost in Leafhopper is more difficult to assess and is driven by the cost for the
channel establishment (deployment of the contract) and successful closure (unan-
imous submission of the final state) or dispute. To study the cost behaviour, we
performed, analogous to our baseline, for each conforming process variant the
following benchmarks:

1. A best case run with no disputes, where the channel is unanimously closed.
2. A bad case run, where a dispute is triggered after half of the process. As a

result, the other half must be completed on the blockchain.
3. A worst case run, where a dispute with stale state is made immediately

after the start event. An honest participant then submits the last agreed-
upon state, and the entire remaining process must be completed on-chain.

Table 1 shows the recorded gas costs for our benchmark experiments.13 Com-
pared to our baseline, Leafhopper incurs around twice the cost for deployment
due to the implemented channel capabilities. However, the best case execution
considerably improves upon the avg. execution cost of the baseline. Furthermore,
we can see that the best case execution cost is fixed. It requires one round of
signature verification. The cost, hence, does not depend on the complexity of
11 We removed any coincidentally created conforming traces. In total we replayed 1812

non-conforming traces to the incident mgmt. and 1933 to the supply chain case.
12 Normally, the local trigger would also verify the request and only forward valid

requests. We disabled this functionality to allow us to simulate a faulty component.
13 While our baseline is based on [3], it incurs increased gas cost (compare with Table 2),

as it additionally implements role enforcement (c.f. Sect. 4.3).
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Fig. 3. Gas savings compared to baseline, when the initial deployment is re-used.

Table 2. Gas cost of Leafhopper in relation to other approaches.

Case Approach Deployment Avg. Case Execution Leafhopper Overhead

Deployment Best Case Bad Case Worst Case

Supply Chain Garćıa-Bañuelos et al. [3] 298.564 272,186 1.6 −0.7 0.1 0.8

Caterpillar [22] 1,100,590 566,861 −0.3 −0.8 −0.5 −0.1

ChorChain [23] 2,802,543 1,156,734 −0.7 −0.9 −0.7 −0.6

CoBuP [5] 4,832,706 254,661 −0.8 −0.6 0.2 0.9

Incident Mgmt. Garćıa-Bañuelos et al. [3] 345.743 166,345 1.3 −0.5 0.2 1.0

Caterpillar [4] 1,119,803 324,420 −0.3 −0.7 −0.4 0

ChorChain [23] 3,278,656 1,028,505 −0.8 −0.9 −0.8 −0.7

CoBuP [5] 4,639,652 249,378 −0.8 −0.6 −0.2 0.3

the process or its tasks, only on the number of participants—five participants
for both cases.

The bad case execution cost is still lower for the supply chain case and slightly
higher for the incident management case compared to the avg. execution cost
of the baseline. The incident management case is on average shorter (six versus
ten tasks of the supply chain case) but has the same number of participants.
Thus, the fixed state verification cost has a higher impact on the total cost of
the shorter process. The worst case cost is considerably higher than the base-
line’s average. This is expected, as it constitutes two state submissions and the
enactment of the entire remaining process on the chain. Should a dispute occur,
Leafhopper exhibits slightly (around 10%) higher cost for enacting a singular
task on the blockchain. This is the result of having to determine whether a
dispute is currently active.

Cost Under Different Dispute Scenarios. To put the cost of Leafhopper into
context, we assess the relative overhead of Leafhopper compared to the baseline
when considering different dispute rates. That is, the number of expected dis-
putes over multiple case runs. We illustrate this in Fig. 3, where we show how
the average cost savings for a case execution on Leafhopper develops for dif-
ferent dispute scenarios, when the initial deployment is re-used. We depict five
scenarios, only best case runs, 5% disputes, 20% disputes, only bad, and only
worst case runs. For the 5% and 20% runs, we assume an equal share of bad
and worst cases. Both percentages are taken from an industry survey, where 5%
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constitutes the best and 20% the worst measured average contract dispute rate
by industry sector.14

We can see that, when considering only best cases, the deployment costs
of Leafhopper is amortised after three case runs. The 5% dispute rate follows
closely, while the 20% run requires 4 cases to break even. Furthermore, we can
see that less than one best case run can more than amortise one worst case run.

Cost Compared to Related Work. In Table 2, we compare the cost of Leafhopper
to selected approaches from literature by reporting its relative overhead.15 We
chose Garćıa-Bañuelos et al. [3] for its efficient implementation technique; Cater-
pillar [22] for providing the most complete feature set; and the choreography-
based approaches ChorChain [23] (compiled) and CoBuP [5] (interpreted).

The results of this comparison are in line with our above analysis. Leafhop-
per’s best case provides vast cost improvements (between 1/10 to 1/2 of the
cost). The medium case overhead ranges from big improvement (1/10) to slightly
worse (20% more expensive) depending on the efficiency and feature support of
the approach. The worst case cost ranges from double the cost to still consid-
erably (3/10) cheaper. Notably, Caterpillar and ChorChain exhibit the highest
cost. However, both provide more features. ChorChain additionally implements
answer and response patterns and does not implement net reduction and encodes
the process state as simple array type, leading to increased cost. This shows the
potential of Leafhopper to improve the cost of more complex implementations
with its fixed state verification cost.

5.3 Qualitative Evaluation

To gain a more holistic understanding of the proposed approach, we now move
to a higher level of abstraction and compare the process channel approach to
our baseline on-chain approach, which enacts the entire process on-chain, on
the basis of relevant quality attributes. As such, we assess which guarantees the
approaches provide, and which assumptions must hold. Xu et al. [2, Chapter 1.4]
identify the main non-functional properties that blockchain provides: immutabil-
ity, non-repudiation, integrity, transparency, and equal rights. We summarise our
assessment in Table 3.

Assumptions. Both approaches assume the reliability of the blockchain. In addi-
tion, process channels require at least one honest participant in a channel; other-
wise, colluding participants can install arbitrary state. In contrast, an on-chain
approach can still rely on other validators in the blockchain network to verify

14 IACCM: Are you in an adversarial industry? Insights for contract negotiators and
managers. 2014. https://wp.me/pa5oX-RH, accessed 2023-03-28.

15 Due to the different feature sets being supported, these approaches incur different
gas costs; cost should not be understood as the only yardstick to compare approaches
by. Since our approach in this paper is quite different from full on-chain approaches,
we find this comparison worthwhile reporting.

https://wp.me/pa5oX-RH
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Table 3. Assumptions and guarantees of on-chain and process channel enactment.

Assumptions On-Chain Process Channel

Blockchain Reliability � �
At Least One Honest Participant ✕ �
Explicit Role-Binding ✕ �
Participants are Always Available ✕ �
Security of Off-Chain Protocol ✕ �
Guarantees

Integrity � �§

Immutability � �†

Non-Repudiation � �†�

Transparency � �§

Equal Rights � �§
�Stalling is a non-attributable fault
†Requires storage of proof
§Requires access to channel

a transaction. Process channels also require explicit role-binding: roles must be
bound to (trigger) hostnames and blockchain accounts. This information must be
propagated through the channel. Additionally, participants joining the network
must deploy trigger components. This inhibits process flexibility. Also, partici-
pants in the channel must be always available, they cannot go offline in-between
tasks. They must sign transitions and watch for disputes. Some usage scenarios,
e.g., energy-constrained wireless devices, may be ruled out by this requirement.
Finally, channels introduce additional components and, thus, additional attack
surface.

Guarantees. As only channel participants see and verify transitions, integrity
and transparency can only be demonstrated to participants with access to the
channel. Also, equal rights can only hold within the channel. Immutability and
non-repudiation require that transition proposals are stored durably by a partic-
ipant. Otherwise, a faulty participant can submit stale state. Additionally, under
certain circumstances a participant can stall the process without being identified
as doing such. It is undecidable whether an initiator is stalling the process by
not sending the next transition proposal or whether a signing participant has
refused to sign it [14]. While the process will be forced to continue on-chain, the
channel contract cannot attribute who was at fault, limiting the use of penalties.

5.4 Discussion

In Sect. 5.3, we analysed the assumptions and guarantees of off-chain enactment.
When these assumptions are met, the channel can offer comparable guarantees to
an on-chain approach. However, additional complexity is introduced by requiring
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dedicated channel components, which require a certain degree of redundancy, as
they must stay online. While choreographies already require participants to han-
dle messages reliably, process channels increase this reliability requirement. All
participants must stay online to advance the choreography and prevent execution
forks. Additionally, process data is no longer durably stored on the blockchain;
where such durability is required, it needs to be ensured by the participants off-
chain. Finally, the closed nature of the channel hinders flexibility. Third parties
can only verify the honest execution of the process if given access to all messages
in the channel.

In Sect. 5.2, we reported on the gas cost of our prototype Leafhopper. While
gas costs are an especially limiting factor when enacting processes on public
blockchains, they can also limit scalability of private and permissioned deploy-
ments, as gas costs are directly linked to the number, computational complexity,
and storage requirement of transactions. We found that, for processes which
are repeated more than 3–4 times without disputes, Leafhopper can signifi-
cantly reduce the gas cost of on-chain enactment. In Leafhopper, costs are highly
dependent on how often a dispute occurs. If we assume the off-chain protocol
will resolve trivial faults, such as temporary connectivity issues, the blockchain
will be mainly involved in resolving permanent faults, such as malicious acts
or long-term crashes, which constitute a contract breach. For our benchmarked
cases, a worst case run was amortised after only one dispute-free run. In the case
of interorganisational processes, organisations generally form a collaboration to
work towards a common business goal; and under typical industry dispute rates,
Leafhopper was able to significantly reduce cost. Nonetheless, Leafhopper’s cost
is case specific and not as predictable as on-chain enactment. This introduces
additional uncertainties. We have provided an analysis to help gauge the cost of
Leafhopper. Still, future studies are required to address these uncertainties and
aspects not covered in our current evaluation, like latency.

Beyond cost, process channels have the potential to improve further dimen-
sions such as latency and confidentiality. On-chain approaches are highly depen-
dent on the underlying latency of the blockchain. Process channels can reduce
this reliance. Blockchain latency differs greatly between different blockchain plat-
forms and the required trust assumptions of the application; related work reports
latency ranging from seconds (e.g., [19,24]) to minutes and more (e.g., [25]).
Furthermore, blockchain consensus can be highly probabilistic, resulting in high
latency outliers (see e.g., [24,25]). Similarly, channels reduce the exposure of
data. While confidentiality is breached during a dispute phase, there is potential
to design the dispute phase in a confidentiality-preserving manner; for example,
by utilising zero-knowledge proofs. While these are usually costly operations,
they would only be required in the case of a dispute, making their use viable [26].
There are further topics not addressed and left to future work.

– Length of Dispute Window : The choice of the dispute window is an important
factor. It must be chosen so that an honest participant has time to react to
stale state. Thus, it must be multiples of the underlying blockchain latency.
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There is currently no consensus in literature on how to determine this. In the
BPM context, the particular business case may also influence this choice.

– Dispute Phase Design: In a choreography, a participant that stops to collabo-
rate will stall the process indefinitely. A more advanced dispute design could
penalise faulty participants and replace them. There is potential to design dis-
pute processes, specific to business cases, to incentivise honest participation.
However, such a design is limited by non-attributable faults.

– Channel Networks: In channel networks, multiple channels are supported by
one root contract. In our current design, the channel smart contract is appli-
cation specific. Exploring a design where a contract can support multiple
processes could pave the way toward a network of cost efficient, blockchain-
based choreographies.

6 Conclusion

In this paper, we propose to address challenges in inter-organizational process
enactment by moving to a layer two approach: blockchain-based state channels.
With this approach, we aim to reduce the on-chain footprint. The quantitative
evaluation shows a significant reduction in gas cost for common settings. The
qualitative evaluation shows that the blockchain properties largely remain intact
when moving to our channel approach—as long as the assumptions are met, such
as having at least one honest participant per channel.

Moving communication and state into channels may, in the future, prove
useful to achieve lower latency and improved confidentiality—but those aspects
were out of scope for this paper, where we focused on the principled approach and
extensive evaluation. Future work will, thus, address latency and confidentiality.
Beyond that, we outlined a multitude of other research opportunities, such as
the design of process channel networks, where multiple channels are supported
by a singular on-chain contract.
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Abstract. Dynamic task assignment involves assigning arriving tasks
to a limited number of resources in order to minimize the overall cost
of the assignments. To achieve optimal task assignment, it is neces-
sary to model the assignment problem first. While there exist separate
formalisms, specifically Markov Decision Processes and (Colored) Petri
Nets, to model, execute, and solve different aspects of the problem, there
is no integrated modeling technique. To address this gap, this paper pro-
poses Action-Evolution Petri Nets (A-E PN) as a framework for mod-
eling and solving dynamic task assignment problems. A-E PN provides
a unified modeling technique that can represent all elements of dynamic
task assignment problems. Moreover, A-E PN models are executable,
which means they can be used to learn close-to-optimal assignment poli-
cies through Reinforcement Learning (RL) without additional modeling
effort. To evaluate the framework, we define a taxonomy of archetypical
assignment problems. We show for three cases that A-E PN can be used
to learn close-to-optimal assignment policies. Our results suggest that
A-E PN can be used to model and solve a broad range of dynamic task
assignment problems.

Keywords: Petri Nets · Dynamic Assignment Problem · Business
Process Optimization · Markov Decision Processes · Reinforcement
Learning

1 Introduction

During the execution of a business process, tasks become executable and
resources become available to execute these tasks. As resources are assigned
to tasks, they become unavailable to execute other tasks. Consequently, contin-
uously assigning the right task to the right resource is essential to run a process
efficiently. This problem is known as dynamic task assignment. The dynamic task
assignment problem can be seen as a particular case of the dynamic assignment
problem, which, according to [1], is the problem of assigning a fixed number of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Di Francescomarino et al. (Eds.): BPM 2023, LNCS 14159, pp. 216–231, 2023.
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individuals to a sequence of tasks, such as to minimize the total cost of the allo-
cations, which may include setup costs, travel costs, or other time-varying costs.
This problem has been extensively studied in business process optimization [2] as
well as related areas, such as manufacturing [3]. For the sake of brevity, we will
employ the term “assignment problem” to indicate the general dynamic (task)
assignment problem.

To solve an assignment problem, it must first be modeled mathematically.
Markov Decision Processes (MDPs) are a common technique for modeling assign-
ment problems [4], and they are the standard interface for Reinforcement Learn-
ing (RL) algorithms [5]. The basic definition of MDP involves a single agent inter-
acting with an environment to maximize a cumulative reward, which is a global
signal of the goodness of the actions chosen by the agent during a (possibly infi-
nite) sequence of system states. In the context of business process optimization,
the environment is the business process that must be executed, and the agent
decides which task to assign to which resource. The reward is calculated based
on what we want to optimize in the process, such as the total time resources
spend working, the total cost of employing the resources, or the time customers
spend waiting. While MDPs provide a good formalism for modeling the agent’s
behavior, they consider the environment, in our case the business process, as
a black box that provides rewards for the decisions taken by the agent with-
out exposing its internal behavior. Moreover, they do not have an agreed-upon
syntax and lack any type of graphical representation. On the other hand, (Col-
ored) Petri Nets [6] are a well-known formalism for modeling a business process
but have no inherent mechanisms for modeling and calculating the best decision
in a given situation. Also, frameworks exist for many mathematical optimiza-
tion techniques, such as linear programming and constraint programming, where
problems can be modeled and solved without additional effort. However, no such
framework exists for dynamic task assignment problems.

To fill this gap, this paper presents a unified and executable framework for
modeling assignment problems. We use the term “unified” to refer to the capabil-
ity of expressing both the agent and the environment of the assignment problem
in a single standardized notation, thus simplifying the modeling of new prob-
lems. We use the term “executable” to refer to the possibility of using the models
to train and test decision-making algorithms (specifically RL algorithms) with-
out additional effort. To this end, we propose a new artifact in the form of a
modeling language with a solid mathematical foundation, namely A-E Petri Net
(A-E PN), which draws from the well-known Petri Net (PN) formalism to model
assignment problems in a readable and executable manner. This paper pays par-
ticular attention to embedding the A-E PN formalism in the RL cycle, such that
RL algorithms can be trained and used to solve assignment problems without
additional effort.

The proposed artifact is evaluated by modeling and solving a set of archetyp-
ical assignment problems. A taxonomy of assignment problem variants is pro-
posed, and an example for each of the three main variants is modeled through
A-E PN. An RL algorithm is trained on each instance, achieving close-to-optimal
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results. Apart from modeling each assignment problem as an A-E PN, no addi-
tional effort is required to achieve these results, empirically demonstrating that
A-E PN constitutes a unified and executable framework for modeling and solving
assignment problems.

Against this background, the remainder of this paper is structured as follows.
Section 2 is dedicated to a review of relevant literature. Section 3 introduces
Timed-Arc Colored Petri Nets (T-A CPN). Section 4 is devoted to the formal
definition of Action-Evolution Petri Net and the description of the integration of
A-E PN in the classic RL loop. In Sect. 5, an essential taxonomy of assignment
problem variants is presented. A problem instance for each variant is modeled
through A-E PN, and a RL algorithm is trained on each instance, obtaining
close-to-optimal results. Section 6 discusses the proposed method’s benefits and
limitations and delineates the next research steps.

2 Related Work

To the best of our knowledge, this paper presents the first attempt at defin-
ing a unified and executable framework for assignment problems. In contrast,
the relation between (generalized stochastic) Petri Nets and Markov Chains is
well studied [7], but Markov Chains cannot be used to model and optimize (task
assignment) decisions. Since Markov Decision Processes can be seen as an exten-
sion to Markov Chains, the idea of extending Petri Nets to model Markov Deci-
sion Processes follows naturally. Several attempts at this exist in the literature,
but none focus on the assignment problem. An overview of existing frameworks
for modeling and solving dynamic optimization problems is presented in Table 1,
listing, for each framework, the Petri Net variant employed, the scope of appli-
cability, and whether the framework is unified and executable. The current work
is presented in the last line.

Table 1. Comparison of existing frameworks for dynamic optimization.

Reference PN Scope Unified Executable

[8] FPN Problems expressible as finite MDPs Yes Yes*

[9] DPN Problems expressible as finite MDPs No Yes

[10] GSPN A single power management problem Yes No

[11] TCPN A single manufacturing scheduling problem Yes No

[12] TCPN Manufacturing scheduling problems Yes No

This paper A-E PN Assignment problems Yes Yes

*No executable example is provided.

In [8], the authors define a CPN variant: Factored Petri Net (FPN). In FPNs,
the transition probabilities are defined explicitly, and a reward is attached to each
network state. A limitation of [8] is that actions must be input marks from a
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single source transition (a transition without input arcs), while our framework
allows actions to be defined anywhere in the Petri net, thus allowing for more
modeling flexibility.

In [9], the authors propose the Decision Petri Net (DPN) formalism. In DPN,
the network is partitioned into a probabilistic network, in which transition prob-
abilities are determined on arcs, and a non-deterministic network, corresponding
to the actions that can be taken at a given moment by the decision maker. In our
framework, we remove the need for two separate subnets and model the agents
as tokens in the network, obtaining a unified representation. Both [8], and [9]
require the number of states in the system to be finite, whereas our approach
does not rely on states enumeration.

In [10], the authors propose a model for a power-managed distributed com-
puting system that is based on the Generalized Stochastic Petri Net (GSPN)
formalism and provide a translation to the equivalent continuous-time MDP.
The work demonstrates the expressive power of PN variants, but the resulting
model is not executable. Also, the paper presents a single case study, while our
approach is demonstrated to be generally applicable to modeling and solving
problems with different characteristics.

In [11], a manufacturing scheduling problem is modeled using Timed Colored
Petri Nets (TCPN). The search for an optimal policy is implemented using Q-
learning, where each action corresponds to a complete schedule, which is a path
from the initial marking to a final marking of the TCPN representing the system,
whereas in our case, an action corresponds to a single assignment, which allows
for more flexible modeling of decisions. Moreover, [11] only covers a single case
study, relying heavily on problem-specific heuristics.

In [12], the authors provide an example usage of TCPN in the context of
manufacturing systems, focusing on reinforcement learning as solving approach.
While [12] highlights the relationship between TCPN and RL, TCPNs are used
only to describe the environment and not to train or test solving algorithms. In
contrast, our work provides a unified and executable framework.

3 Preliminaries

This section provides the formal definition of Colored Petri Net (CPN) and
Timed-Arc Colored Petri Net (T-A CPN), which will be used to define the new
formalism.

Colored Petri Net (CPN) [6] is an extension of Petri Nets (PN) in which
tokens have different characteristics called colors. In the remainder of this
section, we rely on the CPN definition provided in [13].

Definition 1 (Colored Petri Net). A CPN is defined as a tuple CPN =
(E , P, T, F,C,G,E, I), such that:

– E is a finite set of types called color sets. Each color set must be finite and
non-empty.

– P is a finite set of places.
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– T is a finite set of transitions, such that P ∩ T = ∅
– F ⊆ P × T ∪ T × P is a finite set of arcs.
– C : P → E is a color function that maps each place p into a set of possible

token colors. Each token on p must have a color that belongs to the type C(p),
which is called the place’s color set.

– G is a guard function. It is defined from T into expressions such that for
each t ∈ T , G(t) is a Boolean expression and Type(V ar(G(t))) ⊆ E, where
Type(x) denotes the type of x and V ar(f) denotes the set of free variables in
the function f .

– E is an arc expression function. It is defined from F into expressions such
that for each f ∈ F , Type(E(f)) = C(P (f))MS and Type(V ar(E(f))) ⊆ E
where P (f) is the place of f . This means that each evaluation of the arc
expression must yield a multi-set (indicated by the MS subscript) over the
color set attached to the corresponding place.

– I is an initialization function. It is defined from P into expressions such that
∀p ∈ P : Type(I(p)) = C(p)MS. The initialization function determines the
network’s initial marking.

Definition 2 (Marking). A marking of a CPN is a function M , such that for
each place p ∈ P , it defines a multi-set of colors C(p) → N, which maps each
possible color of the place to the number of times it occurs.

For a place p with colors C(p) = {c1, c2}, we also write M(p) = cn1 cm2 to
denote that p has n) token with color c1 and m tokens with color c2. Since a
marking is a multi-set, multi-set operations, such as ≥, +, and −, are available
on markings.

Definition 3 (Binding). For a transition t, the variables V ar(t) =
V ar(G(t))∪{V ar(E(f))|f ∈ F, T (f) = t} represent the set of variables from the
guard function and the expressions on its arcs, where T (f) is the transition of
arc f .

A binding of a transition t ∈ T is a function Y that maps each v ∈ V ar(t) to
a color, such that ∀v ∈ V ar(v) : Y (v) ∈ Type(v) and G(t)〈Y 〉 evaluates to true,
where f〈Y 〉 denotes the evaluation of a function f with its free variables bound
as Y .

For a transition t with variables V ar(t) = {v1, v2}, we also write Y (t) =
〈v1 = c1, v2 = c2〉 to denote that the binding Y assigns color c1 to variable v1
and color c2 to variable v2.

We now define the behavior of a CPN through its firing rules.

Definition 4 (CPN Firing Rules).

1. A transition t is enabled in marking M for binding Y if and only if ∀(p, t) ∈
F : M(p) ≥ E((p, t))〈Y 〉.

2. An enabled transition can fire, changing the Marking M into a marking M ′,
such that ∀p ∈ P : M ′(p) = M(p) − E((p, t))〈Y 〉 + E((t, p))〈Y 〉.
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The standard CPN definition assumes that the effect of a firing is always
instantaneous. To account for time, we will refer to a modified version of the
Timed-Arc Petri Net (T-A PN) formulation [14]. Our version defines a global
clock, updated according to a next-event time progression. This is also the time
management paradigm implemented in CPN Tools [15], a widely adopted soft-
ware for Petri Nets modeling.

Definition 5 (Timed-Arc Colored Petri Net). A T-A CPN is defined by
a tuple TACPN = (E , P, T, F,C,G,E, I), where P, T, F,C,G, I are as in Defi-
nition 1, and E and E are adapted as follows:

– E is a finite set of timed types called timed color sets. A color of a timed color
set has both a value v and a time τ , we also denote this as v@τ .

– E is an arc expression function. It is defined from F into tuples of two ele-
ments. For a given f ∈ F , E(f)0 is defined the same as E in Definition 1 and
E(f)1 is a scalar increment, thus ∀f ∈ F : Type(E(f)1) = N, that indicates
the generated tokens’ time with reference to the global clock. The second tuple
element is ignored for arcs outgoing from places and incoming to transitions
since the scalar increment is only used when producing new tokens.

Note that each color now has a time and consequently, each color in a marking
and in a binding has time. For example, we can refer to the marking of a place
p with M(p) = c1@21c1@35 as the marking that has one token with color c1 at
time 2 and five tokens with color c1 at time 3. With some abuse of notation, we
will allow arc expression functions E(f)0, to ignore the time element of colors
and leave it unaffected, and we will denote with c@e that an expression e only
changes the time element of a timed color.

We also extend the concept of marking to account for the presence of a global
clock, which we need further on in the paper to define the transition rules for
A-E PN.

Definition 6 (Timed Marking). A timed marking is defined as the tuple
TM = (M, τ), where M is a marking and τ is the current value of the global
clock.

The T-A CPN firing rule can then be expressed as follows:

Definition 7 (T-A CPN Firing Rules).

1. Let t be a transition that is enabled in marking M for binding Y = 〈v1 =
c1@τ1, v2 = c2@τ2, . . . , vn = cn@τn〉 as in Definition 4 (using only E0 for E).
The enabling time of the transition, denoted τE, is max(τ1, τ2, . . . , τn).

2. An enabled transition t is time-enabled in timed marking (M, τ), if its enabling
time τE is less than or equal to τ , and there exists no transition t′ that is
enabled in marking M for some binding Y ′ with enabling time τ ′

E ≤ τE.
3. A transition t that is time-enabled in timed marking (M, τ) for binding Y with

enabling time τE can fire, changing the timed marking to (M ′, τE), where
M ′ is constructed, such that ∀p ∈ P : M ′(p) = M(p) − E((p, t))0〈Y 〉 +
E((t, p))0〈Y 〉@τE + E((t, p))1.
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4. When there exists no t in timed marking (M, τ), for which there is a binding
Y , such that t is time-enabled, the global clock τ is increased until there is.

In practice, point 4 can be performed by evaluating bindings that are enabling
but not time-enabling. The binding that leads to the lowest enabling time reveals
the minimal increase of the global clock, making it possible to update the global
clock using a next-event time progression.

4 Action-Evolution Petri Nets

This section extends the definition of T-A CPN to provide a model that can
automatically learn close-to-optimal task assignment policies. This extension
is called Action-Evolution Petri Nets (A-E PN). The new elements are first
described informally, then a formal definition is provided. Finally, the definition
is incorporated into the RL cycle, allowing for automated learning of close-to-
optimal task assignment policies.

4.1 Tags and Rewards

The overall objective of A-E PN is to mimic the behavior of an agent that
observes changes in the environment and acts upon those changes when possible.
We will thus extend the CPN definition provided in the background section to
distinguish two separate types of transitions:

– Actions: transitions that represent actions taken by the agent. In the context
of assignment problems, the firing of an action transition represents a single
assignment.

– Evolutions: transitions that represent events happening in the system inde-
pendently of the actions taken by the agent. The firing of an evolution tran-
sition represents a single event in the environment, for example, the arrival
of a new order.

This distinction is expressed by associating every transition with a transition
tag, that can be either A (action) or E (evolution), through a transition tag
function L. We also extend the concept of marking to embed a network tag l,
which can assume a single value in {A,E}: only transitions associated with a tag
of the same type as the one in the network tag are allowed to fire. The network tag
l must be updated every time no transitions with the same tag are available for
firing. The tag update function S performs the update by changing the network’s
tag from A to E or vice versa: S(l) = A, if l = E;S(l) = E, if l = A. We use the
term tag time frame to refer to the period between changes in the network tag.

The objective of the RL cycle is the maximization of a cumulative reward
over a (possibly infinite) horizon. To track rewards in A-E PN, we introduce a
transitions reward function R that associates a reward to the firing of any tran-
sition, and we embed the total reward accumulated by firing transitions, which
we call network reward ρ, in the network’s marking. In general, a reward can be
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produced by any change in the environment, regardless of whether an action or
an evolution produced such change. For this reason, a reward is produced due to
the firing of any transition, regardless if the transition is tagged as an action or
an evolution. To comply with the classic RL cycle, rewards associated with evo-
lutions are accumulated and awarded to the last action taken, eventually after
a normalization operation (see Subsect. 4.3).

To further clarify the basic mechanisms of A-E PN, the example in Fig. 1
provides an overview of a sequence of firings.
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Fig. 1. A sequence of firings in a simple task assignment problem.

The network shows the evolution of a system with two types of tasks, a and
b, and two employees, one that can undertake only task a and one that can
undertake only task b. A task of each type arrives at every clock tick, and an
employee is assigned to a task of the same type. Assignments take one clock
tick to complete, and a reward of 1 is produced every time an assignment is
completed. The parentheses on the top right corner contain the components
of the tagged marking that are not directly represented as network elements.
Guard functions and reward functions are associated with single transitions.
Timed tokens and arcs follow the notation introduced in Definition 5. The initial
marking is presented in the dotted square a, in which only E transitions are
enabled. After two firings of transition Arrive, consuming both tokens in the
Arrival place (in any order), no evolution transitions are available, so the tag
is updated, and the system transitions to state b. Notice that the transition
from e to a does not produce a clock update, since actions are available to be
taken at time 0. In b, transition Start is enabled. In this case, the RL agent
would have two available actions: pairing task a with resource a, or pairing task
b with resource b. In this case, both actions will be taken sequentially, in any
order, leading to tagged marking c, while in the general case, choices would have
to be made by a decision algorithm on which assignments to make. In c, the
network tag is again E, and two transitions are associated with time-enabled
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steps: Arrive and Complete. The firing of Arrive produces two new tokens at
time 1 in the Waiting place, while the firing of Complete places two tokens back
in the Resources place at time 1 and generates a network reward increment of 2
units in state d.

4.2 Formal Definition of Action-Evolution Petri Net

To provide a formal definition of A-E PN, we must adapt three definitions from
T-A CPN: the net itself, the marking, and the firing rules.

Definition 8 (Action-Evolution Petri Net). Let T = {A,E} be a finite
set of tags representing actions and evolutions, and S : T → T a network
tag update function. An Action-Evolution Petri Net (A-E PN) is as a tuple
AEPN = (E , P, T, F,C,G,E, I, L, lo,R, ρ0), where E , P, T, F,C,G,E, I follow
Definition 5, and:

– L : T → T is a transition tag function that maps each transition t to a single
tag. Only transitions associated with the same tag as the network can fire.

– l0 ∈ T is a singleton containing the network’s initial tag, usually equal to E.
– R : T → (f : R) associates every transition with a reward function. The func-

tion can take timing properties or numbers of tokens (representing completed
cases) as parameters, thus allowing for flexibility in modeling reward.

– ρ0 ∈ R is the initial network reward, usually equal to 0.

Definition 9 (Tagged Marking). A tagged marking is a tuple TM =
(M, l, τ, ρ), where the tuple (M, τ) is a timed marking, as in Definition 6, l ∈ T is
the network tag at the current time τ , and ρ ∈ R is the total reward accumulated
until the current time τ .

Definition 10 (A-E PN Firing Rule).

1. A transition t is tag-enabled in a tagged marking (M, l, τ, ρ) for binding Y if
and only if t is enabled in M according to Definition 1, and L(t) = l.

2. Let t be a transition that is tag-enabled in tagged marking (M, l, τ, ρ) for
binding Y = 〈v1 = c1@τ1, v2 = c2@τ2, . . . , vn = cn@τn〉. The enabling time
of the transition, denoted τE, is max(τ1, τ2, . . . , τn).

3. An enabled transition t is tag-time-enabled in tagged marking TTM =
(M, l, τ, ρ), if its enabling time τE is less than or equal to τ , and there exists
no transition t′ that is enabled in tagged marking TTM for some binding Y ′

with enabling time τ ′
E ≤ τE.

4. A transition t that is tag-time-enabled in tagged marking (M, l, τ, ρ) for
binding Y with enabling time τE can fire, changing the tagged marking
to (M ′, l, τE , ρ′), where M ′ is constructed, such that ∀p ∈ P : M ′(p) =
M(p) − E((p, t))0〈Y 〉 + E((t, p))0〈Y 〉@τE + E((t, p))1 and ρ′ = ρ + R(t).

5. When there exists no t in tagged marking TTM = (M, l, τ, ρ), for which
there is a binding Y , such that t is time-enabled, the set of all transitions
is partitioned in two disjoint sets: Tcurrent = {t ∈ T |L(t) = l} and Tnext =
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{t ∈ T |L(t) = l}. Let τcurrent be the minimum value for which a transition
in Tcurrent is time-enabled (according to Definition 7), and let τnext be the
minimum value for which a transition in Tnext is time-enabled. Note that
τcurrent and τnext can be undefined.
– If τcurrent is defined, and τcurrent ≤ τnext or τnext is undefined, only

the global clock is updated, leading to a new tagged marking TTM ′ =
(M, l, τcurrent, ρ).

– If τnext is defined, and τcurrent > τnext or τcurrent is undefined, both
the global clock and the network tag are updated, leading to a new tagged
marking TTM ′ = (M,S(l), τnext, ρ).

4.3 Extending the Reinforcement Learning Loop

Having completely defined the characteristics of the A-P PN formalism, we can
clarify how it can be used to learn optimal task assignment policies (i.e. mapping
from observations to assignments) by applying it in a Reinforcement Learning
(RL) cycle. Figure 2 shows the RL cycle. In every step in the cycle, the agent
receives an observation (a representation of the environment’s state), then it
produces a single action that it considers the best action for this observation.
The action leads to a change in the environment’s state. The environment is
responsible for providing a reward for the chosen action along with a new obser-
vation. Then the cycle repeats, and a new decision step takes place. The MDP
formulation is the standard framework for training an agent to take actions that
lead to the highest cumulative reward.

reward 

observation 
action 

Agent

Environment

Fig. 2. A common representation of the RL training cycle [5].

In recent years, the embedding of neural networks in RL algorithms gave birth
to the field of Deep Reinforcement Learning (DRL), achieving breakthroughs in
settings such as playing board games [16] and robotic manipulation [17], as well
as successful applications in domains like industrial process control [18], and
healthcare [19]. With the proliferation of robust DRL algorithms, the main hur-
dle in modeling new problems is the definition of the environment, which is
usually represented as a black box, as in Fig. 2, thus leaving the implementation
of the system’s dynamics entirely to the modeler. The lack of a standardized
interface makes the creation of new environments time-consuming and depen-
dent on the modeler’s coding skills. Moreover, even introducing small changes
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potentially requires substantial effort once the environment has been modeled.
These observations motivate the effort to provide a unified and executable frame-
work. In Fig. 3, the classic RL cycle is extended to account for the presence of
A-E PN. The main element is the A-E PN, which acts as a simulator for the
whole process.

Fig. 3. The reinforcement learning cycle with A-E PN

The A-E PN communicates with the agent through two sub-components:
observation manager and action manager. The observation manager is invoked
every time the tagged marking changes, regardless if due to a firing or not. The
new reward is stored, and the network tag is evaluated: if the tag is E, no action
is required, and the control is given back to the A-E PN, which can fire a new
E transition. If the tag is A, the accumulated rewards are added up, and the
result is divided by 1 + (τt+1 − τt). The resulting value is returned to the agent
as rt+1. The reward value takes into account the possible misalignment between
clock ticks (τ) and RL steps (t), given by the fact that multiple actions can
happen at the same τ . The observation manager also returns to the agent the
new observation ot+1. For the set of experiments presented in the next section,
the observation is built as a vector containing, for each place, the number of
tokens of each color in the place’s color set. The action manager is invoked every
time the agent chooses an action at, which it transforms into the corresponding
binding Bt (associated with an action transition) to be fired.

5 Evaluation

This section aims to show that A-E PN constitutes a unified and executable
framework for expressing dynamic task assignment problems with different char-
acteristics: in fact, all the examples were modeled using a single notation (except
for color-specific functions on arcs, guards, and rewards) and a RL algorithm was
trained on each problem, without any additional development effort.
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We provide a (non-exhaustive) taxonomy of assignment problem variants
based on [20]. We distinguish three archetypes of assignment problems.

– Assignment Problem with Compatibilities: resources are assigned to
tasks according to a measure of compatibility. Two problem subclasses can
be formulated:

• Assignment Problem with Hard Compatibilities: resources can
only be assigned to tasks if they are compatible. The dynamic task assign-
ment problem in Subsect. 5.1 falls into this subclass.

• Assignment Problem with Soft Compatibilities: resources can
always be assigned to tasks, but different assignments result in different
system behaviors. An example of such a problem is if multiple resources
can perform a task, but some will be faster at it than others.

– Assignment Problem with Multiple Assignments: the same resource
can be assigned to multiple tasks, or the same task can be assigned to multiple
resources. Two problem subclasses can be formulated:

• Assignment Problem with Resource Capacity: resources have a
maximum capacity of tasks that they can undertake before being consid-
ered full. In the simple case each resource can only be busy with a single
task at a time. The dynamic bin packing problem in Subsect. 5.2 provides
a more elaborate example.

• Assignment Problem with Task Capacity: tasks have a minimum
capacity of resources to be assigned to them before processing. In the
simple case each tasks needs exactly one resource.

– Assignment Problem with Dynamic Resources’ Behavior: resources
have dynamic behavior. Two problem subclasses can be formulated:

• Assignment
Problem with Action-Dependent Dynamic Resources’ Behav-
ior: resources change their attribute values as the consequence of taking
actions. The dynamic order-picking problem in Subsect. 5.3 falls into this
category.

• Assignment Problem with Action-Independent Dynamic
Resources’ Behavior: resources change their attribute values as the
consequence of evolutions in the environment. For example, resources
may take breaks or go on holidays.

In the following sections, one example is detailed for each archetype. An example
for each subclass is implemented in the provided Python package.

5.1 Dynamic Task Assignment Problem with Hard Compatibilities

Let us consider a system that solves a task assignment problem, similar to the one
presented in Fig. 1. At every clock tick, two tasks arrive: one has type r1 and the
other r2. Two resources are available for the assignment: one can only undertake
tasks of type r1, while the other can undertake tasks of type r1 or r2. Once a
task is assigned to a resource, completion always takes one clock tick, after which
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the resource becomes available for a new assignment. A resource cannot work on
multiple tasks at the same time. A network reward of 1 is returned every time a
task is assigned to a resource and every time an assignment completes, leading
to a theoretical maximum reward of 200 over 100 clock ticks. The problem can
be fully expressed in terms of A-E PN, as reported in Fig. 4.
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Fig. 4. A-E PN initial marking for the dynamic task assignment problem

5.2 Dynamic Bin Packing Problem

In this scenario, we model a dynamic version of the bin packing problem where
items (the problem tasks, characterized by their weight) arrive sequentially and
they must be allocated to two bins (the problem resources, characterized by the
total weight of objects in the bin curr and the bin’s total capacity tot) that are
emptied at every clock tick (except for the first, which is used to generate the
objects to be put in the bins). The fullness of the bins before being emptied gives
the measure of goodness of the object’s allocation, quantified as the weight of
objects in the bin divided by the total bin capacity. This problem showcases how
tokens’ colors can be used to model non-trivial reward functions. In the example
reported, three objects arrive in the system at every clock tick, one of weight 1
and two of weight 2. Two initially empty bins are available, one with capacity
2 and one with capacity 3. The optimal allocation would give a reward of 2,
leading to a theoretical maximum reward of 200 over a 100 clock ticks horizon.
The A-E CPN formalization of the problem is reported in Fig. 5.

5.3 Dynamic Order-Picking Problem

In this section, we present an example of action-dependent resource behavior
(i.e. the agent taking decisions on the actions that it performs). The example is
a simple order-picking problem in which a single agent (the resource) moves on
a squared grid of size 2, trying to pick orders (the tasks). The agent’s and the
orders’ colors are characterized by two parameters representing the coordinates
on the grid (infinite capacity is assumed). The agent starts in position (0, 0) and
can move left, right, up, or down, but not over a diagonal. If an order is in the
same position as the agent, the latter can use an action to pick the order. A
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Fig. 5. A-E PN initial marking for the dynamic bin packing problem

single order arrives at every clock tick, always in position 1, 1, and the order
stays on the grid for exactly one clock tick, according to a time-to-live (TTL)
parameter. The agent’s objective is to pick as many orders as possible, so it gets
a reward of 1 every time an order is picked, leading to a theoretical maximum
reward of 98 over a 100 clock ticks horizon (at least two orders will be lost due
to the agent moving to position (1, 1). The problem is formulated in terms of
A-E PN in Fig. 6.

Fig. 6. A-E PN initial marking for the dynamic order-picking problem

5.4 Experimental Results

All experiments were implemented in a proof-of-concept package1, relying on
the Python programming language and the widely adopted RL library Gym-
nasium [21]. Proximal Policy Optimization (PPO) [22] with masking was used
as the training algorithm. Specifically, the PPO implementation of the Stable
Baselines package [23] is used. Note, however, that the mapping from each A-E
PN to PPO was automated and requires no further effort from the modeler.
The PPO algorithm was trained on each example for (106 steps with 100 clock

1 The code is publicly available in https://github.com/bpogroup/aepn-project.

https://github.com/bpogroup/aepn-project
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ticks per episode, completed in less than 2300 seconds on a mid-range laptop,
without GPUs), always using the default hyperparameters. The experimental
results were computed on (network) rewards obtained by the trained agent and
following a random policy over 1000 trajectories, each of duration 100 clock
ticks. In Table 2, the average and standard deviations of rewards obtained by
the trained PPO are compared to those of a random policy on each of the three
presented problem instances, with reference to the maximum attainable reward.
In all cases, PPO shows to be able to learn a close-to-optimal assignment policy.

Table 2. The results for the three presented problem instances.

Instance Random PPO Optimal

Task Assignment 186.894 ± 2.084 199.852 ± 0.398 200

Bin Packing 186.746 ± 1.941 199.963 ± 0.186 200

Order Picking 6.046 ± 2.585 96.776 ± 2.019 98

6 Conclusions and Future Work

This paper presented a framework for modeling and solving dynamic task assign-
ment problems. To this end, it introduced a new variant of Petri Nets, namely
Action-Evolution Petri Nets (A-E PN), to provide a mathematically sound mod-
eling tool. This formalism was integrated with the Reinforcement Learning (RL)
cycle and consequently with existing algorithms that can solve RL problems.
To evaluate the general applicability of the framework for modeling and solv-
ing task assignment problems, a taxonomy of archetypical problems was intro-
duced, and working examples were provided. A DRL algorithm was trained on
each implementation, obtaining close-to-optimal policies for each example. This
result shows the suitability of A-E PN as a unified and executable framework
for modeling and solving assignment problems.

While the applicability of the framework was shown, its possibilities and
limitations are yet to be fully explored. This will be done in future research
by expanding the provided taxonomy of assignment problems and considering
different problem classes.
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Abstract. The information systems used in companies store event data
describing the historical execution of the processes they support. Process
mining covers the automated analysis of such data, generating insights
that may ultimately lead to process improvement. A core branch of pro-
cess mining is process discovery, dealing with event-data-based auto-
mated discovery of process models. In practice, the same activity may
often be executed in a significantly different context, e.g., in a vaccina-
tion program, multiple vaccine doses are typically provided at different
points in time. Process discovery algorithms assume that all executions
of the same activity are to be mapped onto the same modeling element.
Consequently, the presence of repeated activity executions under differ-
ent contexts typically leads to underfitting discovered process models.
To this end, activity label-splitting algorithms have been proposed to
relabel the recordings of the same activity occurring in significantly dif-
ferent execution contexts. Yet, the state-of-the-art label-splitting algo-
rithm adopts a trace-level-mapping strategy, yielding inferior results in
the presence of loop constructs and infeasible computation time. There-
fore, this paper proposes a novel label-splitting preprocessing technique
that overcomes these issues. Our experiments confirm that our newly
proposed label-splitting algorithm outperforms the state-of-the-art.

Keywords: Process mining · Process discovery · Label-splitting

1 Introduction

Most business processes executed in companies in various domains are supported
by multiple, often interconnected, information systems. Among storing docu-
ments and artifacts, many such information systems, e.g., Enterprise Resource
Planning (ERP) systems and Manufacturing Execution Systems (MES), store a
digital representation of the historical execution of the processes they support.
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Such data is referred to as event data. The intrinsic value of event data is con-
firmed by the successful application of event-data-driven analysis techniques in
various domains, i.e., referred to as process mining [1].

In process mining, process discovery, which aims at the automated discovery
of business process models describing the process as recorded, is one of the most
prominent tasks [1]. Many process discovery algorithms have been proposed and
studied in the literature [5]. While the discovery algorithms have made consid-
erable progress and shown their values in real life, many other challenges remain
largely unsolved. One of these challenges is the accurate handling duplicated
tasks [1,5,19].

A duplicated task is manifested as a process task executed at different stages
of the process, representing different activities. For example, the patient con-
sultations at the beginning and end of a treatment trajectory are both called
consultations but refer to different activities. When modeling such a process,
a process analyst typically uses two task nodes to represent such duplicated
tasks. However, when such tasks are executed, the corresponding events are
recorded with the same label, i.e., consultation. Most existing discovery algo-
rithms then consider these events to belong to the same activity and discover
an overgeneralized loop to capture the behavior in the event log. To tackle this
challenge, activity label-splitting techniques have been proposed [19,23]. Label-
splitting techniques aim to detect the groups of events that refer to the same
activity but are executed in a different context and, therefore, should be treated
by the process discovery algorithm as conceptually different activities.

It is shown that label-splitting algorithms can significantly improve the
quality of subsequently discovered process models [19], yet a relatively limited
amount of work has been done in the area. The label-splitting technique pro-
posed in [19] has shown that splitting the labels can lead to discovering more
precise process models in some cases. However, the proposed approach uses a
brute-force algorithm to find an optimal mapping of the events with the same
labels between different traces, also called trace mapping, to detect candidate
events for label-splitting. When two events have the same label in every trace
in the log, this approach has to search 2N possible mappings to find an optimal
solution. As a result, the technique has a high time complexity (thus a poor run-
ning time) and has difficulties handling processes with loops. Other techniques
use additional contextual information (such as the timestamps of the events) [23].
As a result, these approaches cannot handle an arbitrary log.

Therefore, we propose a novel label-splitting framework that is robust to
looping behavior executed in the process and can handle real-life logs. The key
artifact of our proposal is an event graph connecting all events that describe
the same label and are candidates for label-splitting. Several techniques can
be applied to detect clusters of equally labeled events with similar contexts,
e.g., community detection [13]. The proposed event graph ignores the process
instances in which the events occur and focuses on the execution context of the
events (e.g., preceding and succeeding activities); the events of the same loop
occur in a similar context and, thus, will be clustered automatically. As a result,
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the approach can handle event logs from the processes with loops. We conducted
an extensive range of quantitative experiments to assess our proposed framework.
The results of our experiments show that our proposed approach consistently
outperforms the state-of-the-art label-splitting preprocessing method.

The remainder of this paper is structured as follows. In Sect. 2, we discuss
related work. Section 3 presents background concepts and the notation used in
this paper. We present our main contribution in Sect. 4. In Sect. 5, we present
the evaluation of our approach. Finally, Sect. 6 concludes this work.

2 Related Work

In this section, we discuss related work. We primarily focus on label-splitting. For
a general overview of process mining, we refer to [1]. For an overview of existing
process discovery algorithms, we refer to [5]. In terms of event data preprocessing
techniques, next to label-splitting, we primarily identify two significant fields of
study, i.e., outlier and noise detection [14], and event abstraction [27].

Various label-splitting methods exist that refine imprecise labels as a pre-
processing step. Lu et al. [18,19] propose a label-splitting algorithm that refines
event labels based on their context similarity by creating a mapping between
process traces. The goal is to maximize the pairs of mapped events with sim-
ilar contexts. For this, they use a cost function based on various aspects like
neighbors of the events and location of the events in the trace is used. However,
mapping complete traces cannot express the relationship between events within
the same trace and leads to various issues in practice, most significantly for
traces with loops. Our approach proposes to use an event graph that connects
all events of the same label. This allows our approach to cluster the events of a
loop and, thus, tackle this limitation.

Tax et al. [23] propose using the timestamps of events to perform label-
splitting. The assumption is that when the events occurred at different times
of the day, this may suggest the events carry a different meaning (e.g., eating
during the morning versus eating during the evening). This leads to good results
on the event logs (such as smart devices) that satisfy this assumption, yet, it does
not apply to arbitrary process event logs, as this method requires a correlation
between the time and execution of events in different contexts. Our approach
does not have such assumptions and is generally applicable to any event log. In
addition, our approach can be extended to also take additional context (such as
timestamps) into account as features, which are used as input for clustering or
community detection algorithms.

Another type of approach to label-splitting is the extension of existing pro-
cess discovery algorithms. For example, Fodina [7] is an extension of the heuristic
miner algorithm [25] that introduces a simple label-splitting based on the local
context of events. There has also been an effort to extend the α-algorithm [4]
to enable it to deal with duplicate tasks [17]. Another class of process dis-
covery algorithms that can apply label-splitting are genetic process discovery
algorithms [2,9]. This class of algorithms uses an evolutionary computational
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paradigm to gradually learn process models, naturally supporting adding sev-
eral modeling elements with the same label. Some region-based process mining
algorithms also support label-splitting [3,10]. However, the emphasis of label-
splitting in these algorithms is to enable the discovered model to describe all
observed behavior in the input data. Consequently, these approaches need to
take more contexts into account, which can lead to excessive label refinement.
Another technique suggested by Vazquez-Barreiros et al. [24] discovers duplicate
tasks in an already mined heuristic net or causal net. Finally, Yang et al. [26] use
hidden Markov models to discover workflow models and split states during dis-
covery. A general downside of all methods that integrate label-splitting within
process discovery is that these methods are tied to their respective discovery
algorithms and can not be used as a general preprocessing method. In contrast,
our approach is independent of any discovery algorithm and can be seen as a
preprocessing step of the event log.

3 Background

This section presents the background concepts used in this paper. After briefly
presenting notational conventions, we introduce the notion of event data.

A sequence σ of length n over a set X is a function σ : {1, . . .n}→X. We write
σ = 〈x1, x2, . . .xn〉, where xi = σ(i) for 1 ≤ i ≤ n. The length of a sequence σ
is denoted as |σ|. Given 1 ≤ i < j ≤ |σ|, we let sub(σ, i, j) = 〈σ(i), . . ., σ(j)〉,
i.e., the strict sub-sequence of σ ranging form index i to j. We let X∗ denote
the set of all possible sequences over X. Given a sequence σ ∈ X∗, we let
elem(σ) = {x|1 ≤ i ≤ |σ| ∧ (σ(i) = x)} to return all elements in σ.

We define an event log as follows. Consider Table 1, presenting a simplified
example of an event log. Each row refers to an event, recording the execution
of an activity, e.g., the first row represents a recording of the “Open Expense
Report” activity. Each event has a unique event identifier. Similarly, each event
has a unique case identifier, representing the process instance for which the
activity was executed. Finally, a timestamp is recorded, recording the activity
execution time. We formally the notion of event logs as follows.

Definition 1 (Event, Case, Event Log). Let C denote the universe of cases,
let E denote the universe of events, and let Σ denote the universe of activity
labels. An event e ∈ E is a data tuple, recording the historical execution of an
activity. We assume that at minimum, an event describes:

– An activity attribute, accessed by πact(e) ∈ Σ,
– A timestamp attribute, accessed by πtime(e) ∈ R

+.1

A case c ∈ C records an instance of the process and describes a collection of
events, i.e., πevents(c) ⊆ E. An event log L is a collection of cases, i.e., L ⊆ C.

1 We assume that, for t0, Δ ∈ R
+, every timestamp t can be represented as t = t0+Δ.
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Table 1. Simple event log describing recorded process behavior. The event log captures
at what point in time an activity was executed for a specific case.

Event ID Case ID Activity Timestamp

1 1 Open Expense Report 26-10-2022 9:40 AM
2 1 Attach Receipts 26-10-2022 9:42 AM
3 1 Send Report 26-10-2022 9:43 AM
4 2 Open Expense Report 26-10-2022 10:21 AM
5 2 Attach Receipts 26-10-2022 10:27 AM
6 2 Write Supporting Motivation 26-10-2022 10:35 AM
7 2 Send Report 26-10-2022 10:42 AM
8 2 Receive Revision Request 26-10-2022 5:25 PM
9 2 Write Supporting Motivation 27-10-2022 9:45 AM

10 2 Send Report 27-10-2022 9:53 AM
11 1 Receive Confirmation 27-10-2022 11:13 AM
12 1 Close Report 27-10-2022 11:14 AM
13 2 Receive Confirmation 28-10-2022 11:18 AM
14 3 Open Expense Report 29-10-2022 11:22 AM
15 3 Attach Receipts 29-10-2022 11:28 AM
16 3 Write Supporting Motivation 29-10-2022 11:36 AM
17 3 Send Report 29-10-2022 11:43 AM
18 3 Receive Revision Request 29-10-2022 3:20 PM
19 3 Write Supporting Motivation 31-10-2022 3:55 PM
20 3 Send Report 31-10-2022 4:27 PM
21 3 Receive Confirmation 31-10-2022 5:16 PM
...

...
...

...

We write ĉ as a shorthand notation for πevents(c) ⊆ E . In the context of this
paper, we assume that a total order is deterministically available for a case, i.e.,
seq(c) ∈ ĉ∗, s.t., elem(seq(c)) = ĉ, |seq(c)| = |ĉ| and:
∀1 ≤ i < j ≤ |seq(c)| (πtime(seq(c)(i)) ≤ πtime(seq(c)(j))). We also assume that
events occur uniquely in one case in an event log, i.e., ∀c, c′ ∈ L(ĉ∩ĉ′ �= ∅ =⇒ c =
c′).

4 Event-Graph-Based Label-Splitting

In this section, we present our novel proposed framework for activity label-
splitting. In Sect. 4.1, we present a motivating example, which we use as a run-
ning example in the remainder of the paper. In Sect. 4.2, we present an overview
of our proposed framework. Section 4.3 presents the construction of the event
graph, i.e., the foundational artifact of our approach. Section 4.4 briefly discusses
graph clustering. We present the relabeling mechanism in Sect. 4.5.
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Fig. 1. Example used in this paper, describing a simple compensation request.

4.1 Motivating Example

To motivate our proposed approach and to ease the readability of this paper,
we explain the steps of our framework using a motivating running example. We
consider a (simplified) reimbursement process. Consider Fig. 1a, in which we
depict a process model (using the BPMN modeling formalism) describing the
reimbursement process. Firstly, a report is created. Then, receipts are attached
to the report. If the total sum of the reimbursement claim is below $500, the
report is directly submitted. Subsequently, the report is automatically accepted,
and a confirmation is sent out to the applicant. If the sum of the claim is above
$500, the applicant writes a supportive motivation, after which the report is
submitted. The applicant either receives a confirmation or a revision request.
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Fig. 2. Schematic overview of the proposed approach. The event log is converted to an
event graph in which equally-labeled similar events are connected. Community detec-
tion is applied to detect events that depict similar behavioral contexts.

The applicant must revise and resubmit the supporting motivation if a revision
request is received. Table 1 captures three executions of the process described.

State-of-the-art approaches for process discovery inaccurately handle event
data describing the behavior of Fig. 1a. When applying the Inductive Miner
algorithm [15] on a noise-free event log based on the model in Fig. 1a, we obtain
the process model depicted in Fig. 1b. Since the discovery algorithm maps all
occurrences of the send report activity on the same model element, the model
is severely underfitting, i.e., it describes many more execution sequences than
the process’s reference model. When applying the state-of-the-art label-splitting
algorithm [19], we obtain the process model depicted in Fig. 1c.2 Whereas the
model discovered by applying the label-splitting algorithm of [19] is language
equivalent to the ground truth model (cf. Fig. 1a), it does have conceptual qual-
ity issues. The model falsely suggests that two distinct “Send Report” activities
are possible after writing the supporting motivation, yielding a different out-
come. As modeled in the ground truth model, the decision point of confirmation
or requiring another revision is made after receiving the report. In contrast,
our newly proposed algorithm can, when splitting the “Send Report” activity,
rediscover rediscover the ground truth model (cf. Fig. 1a).

4.2 Overview

This section presents an overview of our proposed framework for activity label-
splitting. Consider Fig. 2, in which we schematically present the basic steps of
our framework. The input of our framework is an event log. We assume that
some activity label a ∈ Σ, i.e., we aim to split label a, has been determined in
advance by a domain expert. As a first step, the event log is converted into an
event graph where all events e in the log that describe activity a (πact(e) = a)
form the vertices of the graph. If they are significantly similar, given some arbi-
trary context, two vertices are connected. Generally, the context and similarity
function are parameters of the approach. Examples include, among others, the
resource executing the event, the activities preceding and succeeding the event,

2 The default implementation of the algorithms falsely splits the event data on “Write
Supporting Motivation”. The model in Fig. 1c is closest to the ground truth model
(Fig. 1a) and is obtained by using a custom parameterization of the algorithm.
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Fig. 3. Example event graph, based on the running example event log (cf. Table 1).
The vertices contain the event ids, and the similarity context used is the succeeding
activity within the case that the event belongs to. Vertices 7 and 17 have a similar
context. Similarly, vertices 10 and 20 have a similar context.

etc. We apply graph clustering on the graph to detect groups of equally labeled
events that occur in a different context. All events in the same cluster obtain a
“fresh” activity label.

4.3 Event Graph Construction

In this section, we describe the first step of our approach, i.e., event graph
construction. Events that have the same activity label, i.e., e, e′ ∈ E s.t.
πact(e) = πact(e′), form the vertices of the graph. Two events vertices are con-
nected if, for some context-based symmetrical similarity function, their corre-
sponding events are significantly similar. Generally, such a similarity function
can be any contextual data feature recorded for the events, e.g., the two activ-
ities may be executed by the same resource, the two activities may require the
same input document, etc. From a formal perspective, we require the similarity
metric to be symmetric.

As a simple example, reconsider Table 1. Observe that the activities “Write
Supporting Motivation” and “Send Report” are executed twice for both case 2
and case 3. We decide to apply label-splitting on the “Send Report” activity,
hence, the events describing said activity form the vertices in the event graph
(events 7, 10, 17, and 20). For simplicity, assume that we use each event’s direct
succeeding activity as a context (within the same case). For events 7 and 17,
followed by events 8 and 18, respectively, the succeeding activity is “Receive
Revision Request”. Similarly, events 10 and 20 are followed by events 13 and
21, respectively, which both describe the “Receive Confirmation” activity. If we
only connect those events in the event graph with the exact same context, i.e.,
succeeding activity, we obtain the graph depicted in Fig. 3. We define the notion
of an event graph as follows.

Definition 2 (Event Graph). Let V ⊆ E be a collection of events. Let
ϕ : E×E→[0, 1] be a context-based symmetric similarity function on the uni-
verse of events and let ts ∈ [0, 1]. We let G(ϕ,ts) = (V,E) be an undirected
graph, referred to as the (ϕ, ts)-driven event graph of L, where {v, v′} ∈ E iff
ϕ(v, v′)≥ts.
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The exact characterization of the similarity function ϕ is a parameter of our
approach, i.e., it depends on the attributes available in the event data as well as
the nature of the process and its corresponding logging. Hence, we refrain from
providing formal definitions of instantiations of ϕ, yet, since we assume that at
least an activity and timestamp attribute are available, we provide an example
instantiation based on control flow. Additionally, note that, in certain scenarios,
the ϕ-value can be used as a weight function on the edges of the event graph.

Let σ = seq(c) for some c ∈ C denote a sequence of events (recall
seq(c) ∈ E∗), let 1 ≤ i ≤ |σ| and let k ∈ N. The sequence sub(σ,max(1, i−k),
max(1, i−1)) describes the preceding k events of the ith event in σ. Similarly,
sub(σ,min(i+1, |σ|),min(i+k, |σ|)) describes the succeeding k events of the ith

event in σ. Clearly, given some c′ ∈ C with σ′ = seq(c′) and 1 ≤ j ≤ |σ′|,
we compare the k preceding events of event σ(i) in σ with the k preced-
ing events of event σ′(j) in σ′, e.g., by computing the edit distance between
sub(σ,max(1, i−k),max(1, i−1)) and sub(σ′,max(1, j−k),max(1, j−1)). The
same can be applied for the k succeeding events. Both distances can subse-
quently normalized and a weighted average can be computed. Several variations
of the above scheme are possible. For example, the event graph in Fig. 3 uses
k = 1 and ignores the preceding activities.

4.4 Graph Clustering

The second step of our approach entails global graph clustering [21]. Any algo-
rithm that computes a partitioning of the vertices of an undirected graph based
on the graph’s topological structure is applicable. For example, connected com-
ponents is used by the approach of [19]. However, we found that community
detection leads to better results which is why we decided to focus on this clus-
tering method.

Community Detection; Community detection algorithms [13] detect clusters
in which the intra-connectivity of vertices of a cluster is high, and the inter-
connectivity to vertices in a different cluster is low. Applying community detec-
tion allows for detecting clusters, even if the graph is connected. For example,
consider the schematic example graph in Fig. 2. The graph itself is connected,
yet, two separate communities are identifiable.

Observe that, in the context of our running example, most clustering tech-
niques find the two vertex clusters visualized in Fig. 3, i.e., events 7 and 17, and,
events 10 and 20 are grouped together.

4.5 Relabeling

In the final step of our framework, we relabel the events that form the clus-
ters in the event graph. In particular, all events belonging to the same clus-
ter obtain the same activity label. Let G(ϕ,k) = (V,E) be a (ϕ, k)-driven
event graph of some event log L, similarity function ϕ, and threshold k. Fur-
ther, assume that a clustering algorithm of choice resulted in a partitioning
V = {V1, V2, . . ., Vn}. To relabel the events in the event log, we return a relabeling
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function λ : V →Σ, s.t., λ(e) �= ‘πact(e), ∀1 ≤ i ≤ n (∀e, e′ ∈ Vi (λ(e) = λ(e′))),
and ∀1 ≤ i < j ≤ n(∀e ∈ Vie

′ ∈ Vj(λ(e) �= λ(e′))). The process discovery algo-
rithm that is used on the event log L uses λ(e) as a replacement for πact(e).
As an example instantiation of λ, assume the activity label that we aim to split
is label a ∈ Σ. Given the partitioning V = {V1, V2, . . ., Vn}, for e ∈ V1, we let
λ(e) = a1, for e′ ∈ V2, we let λ(e′) = a2, etc.

In practice, the label-splitting algorithm typically outputs two artifacts, i.e.,
an event log L′ and the label function λ. In event log L′, the πact(e) values
(e.g., Activity column in Table 1) are simply overwritten by the λ function.
After process model discovery is applied on L′, the λ(e) values occurring in the
discovered model are replaced by their original πact value. The framework can
be iteratively applied, i.e., if the new activity labels used for the identified event
clusters are unique.

5 Evaluation

In this section, we present the evaluation of our approach. In Sect. 5.1, we dis-
cuss the implementation of our approach, followed by the experimental setup in
Sect. 5.2. The results are presented in Sect. 5.3.

5.1 Implementation

A public implementation of our framework is available3. The implementation
supports three types of contexts based on the k preceding/succeeding activ-
ities (cf. Sect. 4.3). Based on the length-k preceding and succeeding activity
sequences, we support the computation of normalized edit distance. Addition-
ally, the sequences can be further abstracted using either the set abstraction
(elem-function defined in Sect. 3) or the Parikh vector representation [20] (multi-
set representation counting the occurrences of each activity in the activity
sequences). The implementation uses the Louvain community detection algo-
rithm [6] for community detection.

The implementation supports variant compression. In the compression, all
events occurring in cases that describe the same sequence of activities, e.g., cases
2 and 3 in Table 1, are represented by a single unique vertex (observe that all
these events have the same control-flow context). The arc weights between the
vertices are equal to the sum of the arc weights in the uncompressed event graph.
Additionally, self-loops are added to the vertex to represent the similarity of the
equal events. Consider Fig. 4, showing a visual example of the application of
variant compression. The compression equals the initial data structure used in
the Louvain community detection algorithm and is, as such, particularly useful
in combination with said community detection algorithm.

3 https://github.com/jonas-tai/python-label-refinement.

https://github.com/jonas-tai/python-label-refinement
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Fig. 4. Example of variant compression. Events {e1, e2, e3}, {e4, e5}, and {e6, e7} are
part of the same case variant, respectively. Vertex v1 represents {e1, e2, e3}, vertex v2
represents {e4, e5}, and vertex v3 represents {e6, e7}.

5.2 Experimental Setup

In this section, we describe the experimental setup of our experiments. We con-
duct two sets of experiments, i.e., an experiment using several synthetic event
logs (part of [19]) with a known ground-truth and an experiment using several
real event logs, i.e., without any known ground-truth.

We are primarily interested in the precision of the discovered process model
after applying label-splitting. The precision of the discovered models describes
the additional amount of behavior described by the model compared to an event
log. Typically, models discovered on the raw data are underfitting and have
low precision. As such, we investigate the increased precision of the discovered
process models due to label-splitting.

For the synthetic data, we know precisely which events belong to the same
“activity cluster”. Therefore, we can use Adjusted Rand Index (ARI) of the dis-
covered event clustering and the ground truth clustering to measure the general
quality of the detection mechanism (i.e., the ARI measures the similarity of two
clusterings).

Experiments with Synthetic Data. We compare our approach with and
without variant compression to the state-of-the-art approach presented in [19]
(we use the same set of data as presented in [19]). In our experiments, we found
that the use of community detection instead of connected components leads to
better results. To show that our method outperforms the approach of [19] inde-
pendent of the clustering method, we substitute the use of connected components
by community detection in their implementation. In our approach, we use 11 dif-
ferent similarity thresholds, varying from 0.0 to 1.0, for including edges in the
constructed graph, five context sizes, and three metrics to measure the simi-
larity of events. We evaluate the approach of [19] with similar configurations
of their unfolding threshold tu, used to determine if two events with the same
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Table 2. Parameter space for experiments on the synthetic event logs.

Algorithm Parameters

Context-based with
Variant Compression

Similarity threshold ts = {0, 0.1, . . . , 0.9, 1}
Context size k = {1, 2, 3, 4, 5}

Distance metric dm = {edit distance,
set distance,
multi-set distance}

Case-Mapping-based with
Community Detection

Unfolding threshold tu = {0, 0.1, . . . , 0.9, 1}
Variant threshold tv = {0, 0.1, . . . , 0.9, 1}

Table 3. Parameter space used for the experiments on the real life event logs.

Algorithm Parameters

Context-based with
Variant Compression

Similarity threshold ts = {0, 0.25, 0.5, 0.75, 1}
Context size k = {1, 3, 5}

Distance metric dm = {edit distance,
set distance,
multi-set distance}

Case-Mapping-based with
Community Detection

Unfolding threshold tu = {0, 0.25, 0.5, 0.75, 1}
Variant threshold tv = {0, 0.25, 0.5, 0.75, 1}

label in one case get different labels, i.e., if they are part of a loop or not, and
variant threshold tv, used to prune edges on the graph structure created by the
algorithm to compare case mappings, parameters. A detailed list of the used
parameter space for each of the algorithms is depicted in Table 2. We use the
Inductive Miner [15] algorithm for process discovery without embedded noise
filtering. As such, the algorithm guarantees that the process model describes all
event data in the input (referred to as perfect fitness). Since a ground truth is
available, we know what labels are candidates to be used for the label-splitting
approach.

Experiments with Real-Life Event Data. We use publicly available event
logs in combination with our proposed algorithm in experiments with real-life
event data. We use 5 different event logs, i.e., the BPI Challenge logs from
2012 [11], 2013 (Closed Problems log) [22] and 2017 [12] (referred to as BPIC12,
BPIC13 and BPIC17, respectively). Additionally, we use the road fines event
log [16] and the environmental permits event log [8]. Due to the size of the
event graphs, we primarily focus on the results of the variant compression, i.e.,
as presented in Sect. 5.1. The values for the parameters are listed in Table 3.
We again use the Inductive Miner [15] algorithm for process discovery, in this
case, with embedded noise filtering. We investigated several activity labels as
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Fig. 5. Results obtained for the experiments with synthetic data.

a candidate for splitting. We tested our approach on the three most frequently
occurring activities. We selected the best-performing candidate, as we did not
have a domain expert to pick the best candidate for every event log manually.
For the road fines log, we selected the Payment activity for splitting due to
insides from a manually created model [16]. This model shows that the Payment
activity can be executed in different contexts, making it a prime candidate for
label-splitting.

5.3 Results

Here, we present the results of the experiments. We further divide this section
based on the results on synthetic event data and real event data, respectively.

Results on Synthetic Event Data. As indicated, in total, we used 270
different event logs from [18].

Consider Fig. 5, in which we present the corresponding results. In terms
of ARI score (Fig. 5a), our approach outperforms the existing state-of-the-art
label-splitting algorithm. Secondly, applying variant-based compression has a
negligible effect on the overall ARI score. In Fig. 5b, the precision scores of the
discovered process models is presented. The results are in line with the results
obtained for the ARI score, i.e., in general, our technique outperforms the app-
roach presented in [19]. Clearly, using the ground-truth event log generally leads
to models of near-perfect precision. Yet, the median result of applying process
discovery with our proposed label-splitting as a preprocessing step is well over
0.8. On average, the approach presented in [19] seems to have little effect com-
pared to applying discovery on the unrefined event data.
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Table 4. An overview of the results of the experiments with real event logs.

Unrefined Log Variant Compression

Event Log IM Noise
Threshold

Min Cases
per Variant

Precision F1-Score Max
Precision

Average
Precision

Max
F1-Score

Average
F1-Score

Average
Runtime

BPI12 0.1 3 0.31 0.48 0.58 0.33 0.73 0.48 36 s
BPI13 – 1 0.8 0.89 0.98 0.87 0.99 0.93 49 s
BPI17 0.1 3 0.37 0.53 0.54 0.4 0.68 0.56 492 s
Road Fines 0.1 1 0.56 0.72 0.83 0.68 0.89 0.79 2 s
Permit 0.1 1 0.19 0.31 0.36 0.25 0.52 0.4 0.2 s

Results on Real Event Data. Here, we present the results of applying our
proposed label-splitting algorithm on real event data. The variant-compression-
based version of our framework is the only algorithm that finished within a
reasonable time for all event logs. The algorithm presented in [19] only finished
within the time-out set for the permits event log (13 s vs. 0.2 s of our approach,
lower precision results: 0.15 average precision vs. 0.25 of our approach), road
traffic fines event log (2823 s seconds vs. 2 s of our approach, lower precision
results: 0.6 average precision vs. 0.68 of our approach) and BPI challenge 2013
event log (575 s vs. 49 s of our approach, equal precision results: 0.87 average
precision vs. 0.87 of our approach).

In Table 4, we present an overview of the results of our algorithm (using
different parameter configurations) and compare them with the results applied
to the raw event data. To reduce the number of events in the event data, for
BPI12 and BPI13, we enforce a minimum of 3 cases describing the same variant
to be included in the event log. We use the Inductive Mining algorithm as a
discovery algorithm with a noise threshold of 0.1 (except for BPI13, where no
threshold is used). The noise threshold allows for ignoring small portions of
noise, i.e., generally a large share of the behavior in the event log. We observe
that our algorithm increases the precision scores and, similarly, the F1-score.
The increase in precision is most significant in the Road Fines event log, where,
on average, an increase of 0.12 is measured. The compression yields a relatively
small graph for some logs, and the algorithm terminates within a few seconds.
Clearly, we observe higher runtime values for larger graphs (e.g., BPI17).

Finally, consider Fig. 6, in which we present box plots of the precision
obtained for the different instantiations of our algorithm on the real event logs.
We also present the result of [19] for the permits event log (“Case Mapping” in
the figure). We observe that the median value of our results outperforms the
results of the process discovery algorithm on the unrefined event log for all logs
except for BPI12, where it is slightly lower. For the road fines log, all obtained
precision values exceed the result on the raw event log. Notably, the approach
presented in [19] does not always improve the quality of discovered process mod-
els, compared to using the raw event data, inline with the conclusion in [19].
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Fig. 6. Results obtained for the experiments with real life event data. The red line
indicates the precision on the unrefined event log. (Color figure online)

6 Conclusion and Discussion

Label-splitting, i.e., an established preprocessing technique in process mining,
generally allows for better results from process discovery algorithms. However,
the state-of-the-art label-splitting algorithm performs poorly on real event data
and often has infeasible runtime. Therefore, this paper presented a novel label-
splitting framework based on event similarity graphs. Our experiments show that,
compared to the state-of-the-art label-splitting algorithm, our approach yields
process models with higher precision and has better runtime performance.

One interesting finding of our evaluation is that the best parameter configu-
ration for our algorithms highly depends on the input event log. One solution is
to run our algorithm over a range of parameter configurations. By using various
optimizations in the implementation, e.g., only recalculating the graph edges
after the first iteration, we found this to be a feasible solution in our evaluation
of real event data.

Future Work. Using variant-compression allows us to obtain a feasible runtime
for the algorithm. We plan to perform experiments with different community
detection algorithms and investigate whether the compression can be adopted.
Secondly, we aim to investigate detection mechanisms for label-splitting, i.e.,
indicating what activity labels may be good candidates for splitting.
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Abstract. Process compliance aims to ensure that processes adhere to
requirements imposed by natural language texts such as regulatory doc-
uments. Existing approaches assume that requirements are available in a
formalized manner using, e.g., linear temporal logic, leaving the question
open of how to automatically extract and formalize them for verification.
Especially with the constantly growing amount of regulatory documents
and their frequent updates, it can be preferable to provide an approach
that enables the verification of processes with requirements in natural
language text instead of formalized requirements. To this end, this paper
presents an approach that copes with the verification of resource com-
pliance requirements, e.g., which resource shall perform which activity,
in natural language over event logs. The approach relies on a compre-
hensive literature analysis to identify resource compliance patterns. It
then contrasts these patterns with resource patterns reflecting the pro-
cess perspective, while considering the natural language perspective. We
combine the state-of-the-art GPT-4 technology for pre-processing the
natural language text with a customized compliance verification compo-
nent to identify and verify resource compliance requirements. Thereby,
the approach distinguishes different resource patterns including multiple
organizational perspectives. The approach is evaluated based on a set of
well-established process descriptions and synthesized event logs gener-
ated by a process execution engine as well as the BPIC 2020 dataset.

Keywords: Compliance Requirements Verification · Resource
Mining · Natural Language Text · Process Descriptions · Event Logs

1 Introduction

Business process compliance is the task of ensuring that processes obey the rules,
guidelines, and constraints imposed on them. Those compliance requirements
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are typically outlined in extensive regulatory documents such as legislative texts
or ISO norms [12]. Compliance requirements need to be verified, i.e., they are
checked against the actual execution of a process captured by an event log. In
order to enable verification, the compliance requirements are typically formal-
ized using, e.g., linear temporal logic [2,15,26]. However, as regulatory docu-
ments change frequently, the compliance requirements have to be re-formalized
equally frequently [27]. Therefore, it can be desirable to enable direct compliance
verification between requirements provided in natural language and event logs.

Business process compliance refers to multiple perspectives beyond control
flow, i.e., time, resources, and data [15]. In recent work, we focus on verifying
quantitative temporal compliance requirements over event logs [4]. In this paper,
we consider the resource perspective which captures legally relevant concepts
such as the segregation and binding of duties [25], reframed as Responsibility
deviation Requirements in [22]. In general, process activities are carried out by
resources, which can be classified into categories human and non-human [21].
Human resources refer to individuals involved in the process, while non-human
resources are typically machines, robots, or computer-based systems. The pre-
sented approach can extract both, compliance requirements referring to human
and non-human resources, but the main focus will be on human resources. In the
case of human resources, in this paper four different types of resources are dis-
tinguished following [21]: organizations, such as company X, represent a larger
grouping of resources. Organizational units such as departments or teams are
subgroups within an organization and are responsible for specific activities. Roles
are used to define the specific responsibilities and tasks assigned to different
resources within an organization. The role of a software developer, for example,
contains responsibilities such as developing and maintaining software applica-
tions. Finally, users are specific individuals. In the case of human resources,
users can be identified by their name or an ID, while non-human resources may
be identified by their unique identifiers or serial numbers.

The identification of resources paired with activities from natural language
text has been addressed by, e.g., [5,11,20]. Yet, a) the organizational struc-
ture reflected by the resources, b) the different compliance requirement patterns
associated with each resource, and c) the compliance verification of natural lan-
guage texts over event logs have not explicitly been considered. Moreover, we
see the extraction of resource activity pairs as a pre-processing step, and rely
for this on the model GPT-4 [19]. Therefore, the main contribution is not how
to identify and extract those pairs from natural language text, but how to use
the output w.r.t. compliance verification over event logs. In order to address
this question, we analyze in Sect. 2 i) the process perspective through workflow
resource patterns [21], mining organizational structures from event logs [10] and
the eXtensible event stream (XES) standard [1], and ii) the compliance perspec-
tive by identifying resource compliance requirements [3,15,24,25]. We establish
a mapping between both perspectives and extract a summary of resource com-
pliance patterns that are feasible to detect from a natural language processing
perspective. Moreover, we identify which assumptions an event log needs to fulfill
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to enable compliance verification. Based on those findings, in Sect. 3 we design
an approach consisting of five steps divided into a pre-processing component
and the actual compliance verification component. The approach is evaluated in
Sect. 4 followed by a discussion of evaluation results and limitations in Sect. 5.
Section 6 presents related work and Sect. 7 concludes the paper with a summary
and outlook on future work.

2 Resource Compliance Requirements Pattern Elicitation

In the following, we provide an analysis of which resource compliance require-
ments patterns exist and how they are reflected by the process and event log
perspective. This analysis constitutes the fundamentals for the resource com-
pliance requirements verification approach, presented in Sect. 3. First, Sect. 2.1
summarizes how resources are represented from the process and event log per-
spective by reviewing the literature on workflow resource patterns [21], mining
organizational structures from event logs [10] and the XES standard [1]. Second,
in Sect. 2.2, we analyze literature on resource compliance requirements [3,15,23–
25], and related work. This body of literature was selected based on a literature
search conducted on DBLP1 using keywords “resource” or “organizational” or
“role” and “mining”, “organization” or “resource” and “compliance” or “require-
ments”, and “resource-aware process verification”. Table 1 presents a mapping
between the resource patterns considered in [21] and those identified papers. A
detailed analysis is provided in a spreadsheet, which can be accessed at https://
www.cs.cit.tum.de/bpm/data/.

Table 1. Mapping of Resource Patterns; ✓ = mentioned; ✗ = not mentioned

Pattern Description
Process Compliance

[21] [10] [24] [15] [25] [3] [23] [28]

1. Performed by A1 must be performed by resource Re ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2. Not Performed by A1 can not be performed by resource Re ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

3. Dynamic SoD
(4-Eyes-Principle)

A1 and A2 must be performed by
different resources, independently of roles. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4. Static SoD A1 and A2 must be performed by different
resources with different roles ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5. Multi-segregated A set of activities (A1, A2, A3, ..., An) must
be performed by (m) different resources ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

6. Dynamic Bonded A1 and A2 must be performed by different
resources with the same role ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

7. Static Bonded A1 and A2 must be performed by the
same resource with the same role ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

8. Multi-bonded A set of activities (A1, A2, A3, ..., An) must be
performed by the same resource with the same role ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

9. Automatic A1 is automatically executed ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

2.1 Process Perspective

In [21], 43 patterns describing the distribution and execution of activities in
workflow systems are proposed. These patterns are classified into five categories:
1 https://dblp.org/, last access: 2023-06-19.

https://www.cs.cit.tum.de/bpm/data/
https://www.cs.cit.tum.de/bpm/data/
https://dblp.org/
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Creation patterns limit how activities are executed, determine which resources
can perform an activity, and match activities with capable resources. Push and
Pull are distribution patterns where activities are allocated by a central authority
or chosen by resources respectively. Detour and Visibility allow resources to
modify ongoing activities or view available ones, while Multi-Resource sets limits
on how many activities a resource can perform at the same time. These patterns
ensure efficient and effective execution while meeting business requirements. Our
approach takes into account the Creation patterns, assuming that a resource
will be able to perform the same activities throughout the entire process. In all
the Creation patterns, the requirements only involve the relationship between
a resource and the activities’ performance. To represent these requirements, we
introduce the concept of Resource-Activity Requirement (R-AR) which capture
the patterns presented in Table 1. Algorithm 1 determines how R-ARs are built.

The sub-patterns related to Allocation-based Creation are omitted from
Table 1. These sub-patterns, encompassing diverse allocation strategies like
assigning tasks based on hierarchy or deferring assignments to future activities,
are viewed as ancillary data rather than essential for forming resource-activity
pairs. For example, we focus on whether Resource R executed Activity A, rather
than whether Resource R was the original assignee. This approach aids to avoid
unnecessary complexity and potential biases, thereby centering our research
on fundamental resource-activity pairings. Of all the literature analyzed, [10]
adheres most closely to the resource patterns presented in [21]. Nonetheless, we
suggest further research to extract control flow aspects from process descriptions,
which could extend our approach and incorporate cross-perspective patterns.

As we aim at compliance verification over event logs we consider the XES
standard [1], which contains an organizational extension describing human
actors. Therein, three elements are distinguished, first resource which contains
the “name, or identifier, of the resource having triggered the event.” [1], a role
which reflects the “role of the resource having triggered the event, within the
organizational structure.” [1] and a group that represents the “group within the
organizational structure, of which the resource having triggered the event is a
member.” [1] Considering the terminology we chose for this paper, a resource
refers to a rather generic term compared to the term resource as used within
the XES standard. A user corresponds to resource, group corresponds to orga-
nizational unit and we additionally add organization in order to include the
perspective that multiple organizations and interactions between them could be
described in one natural language text. Overall, the event log must contain basic
elements as specified by the XES standard, including trace names, event labels,
event IDs and fields denoting the resource type as well as a field detailing the
organization. The event log may not contain errors like duplicate events.

2.2 Compliance Requirements Perspective

The first aspect that can be observed in Table 1, is that the papers that focus on
studying resource compliance verification do not consider the Creation automatic
activity execution sub-pattern, even though it involves the system as a resource.
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We decided to maintain the automatic execution sub-pattern [21] because there
may be cases where the system is the only one permitted to execute an activity,
and no one else can. In contrast, [3,10] introduced the Not Performed by pat-
tern, which is not covered in [21]. Similarly, the Multi-segregated pattern is only
discussed in [25,28]. As there is little consensus among the papers regarding the
definition of resource (e.g. using other terms like agent, or considering only users
and roles), we decided to define the resource concept and its types in Sect. 1.
In [24], the authors distinguish between resources and agents and consider both
resource-aware and data-aware compliance requirements. This paper presents
examples of cross-perspective patterns, such as If attribute X has value v then
resource Re must execute the activity pattern. From a resource perspective, both
[15,24] cover the same patterns. However, [24] discusses authorization, whereas
[15] addresses the same issues but refers to users and roles. In [25], the same
resource patterns as in [15,24] are addressed, with the addition of the Multi-
segregated pattern. Both [3,23] focus on less than 10 specific resource examples,
which overlap with each other and do not introduce any new patterns. Addi-
tionally, [28] focuses on the Segregation of Duties (SoD) when studying resource
patterns, as their primary objective is task-based authorization constraints. In
this paper, they include aspects that previous papers do not handle but we are,
such as The same activity can only be performed twice by the same resource,
and A1 and A2 must be performed by different resources.

3 R-AR Verification Approach

The resource compliance requirements verification approach is presented in
Fig. 1, and illustrated based on a running example depicted in Fig. 2, and Fig. 3.
The approach consists of a pre-processing component (cf. Sect. 3.1) and a com-
pliance verification component (cf. Sect. 3.2). It takes as input a natural language
text, e.g., a process description, and an event log, which must fulfill the assump-
tions as detailed in Sect. 2.1. Consistency in naming resources and activities
within the process description and within the log is assumed, but synonyms of
both, resources and activities, across the description and log are handled by the
approach. Note that the textual document is always considered as the ground
truth, i.e., compliance of a given event log is verified against the textual docu-
ment.

The approach consists of five steps and allows for user intervention for com-
pensating errors after steps 1, 2, and 3. These step’s results are saved for possible
necessity, as the approach’s outcome hinges on their quality. In general, the app-
roach is independent of the domain but with all intermediate results available,
domain knowledge can be easily integrated, e.g., in order to tailor the GPT-4
prompt towards a specific dataset. Moreover, several parameters must be set by
the user such as thresholds for similarity mappings. Further details are provided
in the explanations of the single steps. The output of the compliance verification
component consists of two files. The first one, generated after step 3, details on
activity matching results for transparency allowing for tracing whether errors
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Fig. 1. Overview of Resource Compliance Requirements Verification Approach

occurring later on were caused by the previous activity matching. The second
file contains the compliance verification results. Both files are ordered by unique
event log pairs, i.e., resource-activity pairs, for easier comprehension.

3.1 Pre-processing Component

The pre-processing component handles a process description in natural language
text and in parallel the event log data. The intermediate pre-processed outputs
serve as input for the second component, the compliance verification component.
Step 1 – Pre-process Process Description. Consider the running example,
Fig. 2, depicting a process description along with examples of resource compli-
ance patterns. The intended outcome of the running example’s pre-processing is
a collection of Resource-Activity Requirements (R-ARs). Each R-AR includes a
resource (marked in bold), and activity (underlined), along with the necessary
metadata (cf., output of Algorithm 1) used to identify the appropriate resource
pattern for each R-AR.

Fig. 2. Running Example – Natural Language Text

Examples of these patterns include Performed by, as in 4 a clerk from cus-
tomer advisory informs the customer, and Not Performed by, which identifies
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resources that are not allowed to execute an activity, such as 8 approve pay-
ment schedule may never be executed by Anna or Hans. Additionally, more
complex requirements involving multiple resources may be present, such as a
Multi-segregated, where 7 he and another clerk from the management must
approve the schedule. In this case while pre-processing the description we need
to consider anaphora resolution in order to know which resource is meant by he.
Note that resources are not limited to humans; automated tasks can also occur
during process execution, such as 9 sending an email to the customer (Auto-
matic Pattern). Moreover, the running example shows the different granularity
levels of a resource: organization (Elite Holdings, Miracle Credit), organizational
units (customer advisory, management), roles (clerk, manager), and particular
users (Anna, Hans, system).

The extraction of R-ARs from process descriptions is carried out using the
GPT-4 model from OpenAI [19]. The prompt schema is showcased in Algorithm
1. To ensure reproducibility, the original prompt is also provided as input for the
evaluation of our implementation. The prompt provides fundamental information
such as the meaning of a resource and an organization, along with examples for
each. These examples are not taken from our dataset. Details about the required
format, necessary parameters, and the type of each parameter are also included
in the prompt. The delivery of this information is thoroughly explained within
the prompt. For example, if the activity concerns two resources, the aim is to
treat each as a separate resource instead of a collective group. In cases of lengthy
process descriptions, even if there is not a specific question about the control flow,
the model takes the initiative to propose a control flow concept, which could be
exploited if the control flow is also analyzed in future work.

Algorithm 1: Process Description Pre-processing Prompt Schema
Input: Process Description
Output: Set of R-ARs with fields: “role”, “user”, “org_unit”, “organization”, “activity”, “inclusion”, “exclusion”,

“min”, “max”, “equals”, “anaphora”, “is_performed”
Function SetFields():

Initialize: “role”, “user”, “org_unit”, “organization”, “activity”
Set “inclusion” and “exclusion”

// capture relations between R-ARs (e.g., conflicts between R-ARs)

Set “min”, “max”, “equals” //limit the number of resources performing an activity

Set “anaphora” //indicate the original resource which references the pronoun

if activity is not performed then
Set “is_performed” = false

else
Set “is_performed” = true

end

Step 2 – Pre-process Event Log. Figure 3 illustrates an excerpt of an event
log reflecting the process description in Fig. 2. For brevity, the trace ID in Fig. 3
is omitted and it is assumed that all depicted events belong to the same trace and
that the trace is complete. The events that comply with the process description
are E1, E2 and E7 (Fig. 2 1 , 2 and 9 ). Events E3, E4, E5 and E6 (Fig. 2
3 , 5 , 7 ) do not comply. In event E3, the organization should be referred
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to as Miracle Credit not Elite Holdings. Events E4 and E5 must not occur
simultaneously in one trace. Additionally, the activity in event E6 should be
carried out by employees holding the role of manager, as well as by a specific
employee in the clerk role, rather than being exclusively assigned to one unique
employee with the clerk role.

Fig. 3. Running Example – Event Log Trace containing Violations

The event log, i.e., also this trace, serves as input for the event log pre-
processing step. This step constructs an object-oriented representation of the
event log’s structure, which includes an attribute, event, trace, and event log
class. Each class contains methods to extract the most crucial information from
the event log. To generate a pre-processed event log output for persistent storage,
an event log is parsed into a data frame using PM4Py [7]. The data frame is then
converted into an event log object from the custom-created class. The event log
class features a method generating an output file containing every distinct event
in the log. Thereby, a distinct event is defined as a unique resource-activity pair,
where a resource is a combination of a user, role, organizational unit, and orga-
nization. An example of a pre-processed event is Event = {“activity”: “perform
solvency check”, “user”: “Peter”, “role”: “clerk”, “org_unit”: “unknown”, “organi-
zation”: “Miracle Credit”}

3.2 Compliance Verification Component

After pre-processing the process description and the event log, the actual com-
pliance verification can be carried out. This requires a mapping between the
R-ARs from process descriptions and event logs. The component unfolds in the
following three steps.
Step 3 – Identify Matching Activities. In this step of the overall approach,
activities in the event log output file are compared for similarity with those in
the description output file. To make the approach more resilient in real-world
settings, we accept variations in how activities are phrased between the event log
and the process description, as we only expect terminology consistency within
each of these individually. All the activities in the pre-processed log are com-
pared with all activities in the description output, identifying matches based on
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high similarity scores. Each match’s score is then evaluated against a predefined
threshold to decide whether to accept it. If the score falls short of this thresh-
old, we denote the log activity as unmatched. This safeguards against finding
matched resource-activity pairs in subsequent steps. The threshold and similar-
ity score for matching pairs range from zero to one. If activities are few and
similar, scores are near one; diverse activities yield scores near zero. An expert,
familiar with the data, should set a threshold to eliminate misclassified matches.
This threshold is adjustable to accommodate various activities and the selected
similarity measure, impacting synonym levels in pre-processed files. Three sim-
ilarity measures - TF-IDF2, BERT3, and spaCy4 evaluate activity likenesses in
the log and description. The user initially selects one, alongside the threshold
for valid activity matches. The output of this step contains a measurement-
type section containing the compliance verification input information, e.g., the
set threshold for activity similarity matching and the activity matching result
information. Activity Matching Output: Measure Types: {“similarity measure”:
“TF-IDF”, “threshold”: 0.65, ...}, “activity_matching_output”: [{ “Activity Log”:
“accept order”, “Detected Activity”: “accept the order”, “Similarity Score”: 1.0}...]
Step 4 – Determine Resource Similarity. In the previous step, each activity
from the pre-processed event log was matched with an activity from the pre-
processed process description. In this step, we evaluate whether the resource
performing each activity for a specific event in the event log is similar to its
counterpart in the process description. For that, the same similarity measures
are used as within step 3. This semantic similarity needs to be executed since
resources can be subject to different naming conventions, and wording. The
threshold used for comparing resources can differ from the one used for activities,
reflecting the importance of knowledge of the mentioned resource types in the
text and event log. Furthermore different types of resources to be checked for
similarity to ensure event log compliance can be selected. These resources can
be organizational units or users with specific roles, depending on what is stored
in the log and the information granularity provided in the text document. If the
chosen resource structure type is not specified for a particular event in the log, a
mechanism is in place to automatically build the resource to be checked using the
available resource values in the log, as long as they are defined. For instance, if the
initial choice was to check the organizational unit as the resource structure but
the value is undefined for a specific event in the log, the mechanism will instead
construct the resource based on the user, role and organization information.
Step 5 – Generate Compliance Verification Results. The last step creates,
based on the outcome of the resource checks, the compliance output file. Hence,
the implemented approach verifies the minimum criteria necessary to classify
a resource-activity pair as compliant or non-compliant. Two main distinctions
are made for these checks. When a resource, whether human or non-human,
is expected to perform an activity (patterns 1 and 9), the resulting similarity
2 https://scikit-learn.org/stable/install.html, last access: 2023-06-19.
3 https://www.sbert.net, last access: 2023-06-19.
4 https://spacy.io/usage/linguistic-features, last access: 2023-06-19.

https://scikit-learn.org/stable/install.html
https://www.sbert.net
https://spacy.io/usage/linguistic-features
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score from step 4 must exceed a predefined threshold. On the other hand, if
a specific resource should not perform an activity (pattern 2), the similarity
score should be lower than the threshold. The resulting output file maintains
the same granularity, naming convention, and structure for both approaches.
The order of events in the output file corresponds to the pre-processed event
log file, as the compliance of the process is verified for each distinct event by
comparing it to the description. Similar to activity matching, the output includes
a section for measurement types and appears as follows: Compliance Matching
Output: Measure Types: ..., default compliance check output: [“Matched Activity”:
“accept the order”, “Resource Log”: “sales department”, “Resource Description”:
“member of the sales department”, “Similarity Score of Matched Resources”: 0.65,
“Corresponding Traces”: ..., “Compliant”: true, “Non-Compliant Reason”: “ ...].

Furthermore, based on the information given in all resulting files from the
overall process, users can manually verify if patterns incorporating multiple
resource-activity pairs at once (patterns 3–8) are also compliant, if necessary.

4 Evaluation

The approach has been implemented as a prototype in Python 3 and can be
accessed publicly at the following location: https://www.cs.cit.tum.de/bpm/
software/. All input, intermediate files, like JSON files from GPT-4 prompt exe-
cution, and pre-processed event logs, and output files are available, as well, via
the above link. In Sect. 4.1, details on the datasets used in the evaluation are pro-
vided while the evaluation results for the pre-processing, as well as compliance
verification component, are described separately in Sect. 4.2. All the synthesized
and modified event logs are available at https://www.cs.cit.tum.de/bpm/data/.

4.1 Dataset Preparation

The evaluation features synthetic as well as real-world datasets. In the following,
we describe how the synthetic datasets were generated and how the real-world
dataset was prepared.
Synthetic Datasets. First of all, we take into account the process description
of the Running Example (RE), which was initially introduced in Sect. 3. This
example was meticulously designed to allow the evaluation of an extensive set of
patterns, which are comprehensively detailed in Table 1. Additionally, the PET
dataset, a well-known collection of 45 process descriptions [6], with a total num-
ber of resource activity pairs of 449, was included in the analysis. On average
each process description of the PET dataset contains 10 resource activity pairs.
From this extensive dataset, two specific descriptions were singled out for consid-
eration: Bicycle Manufacturing (BM) and Schedule Meetings (SM). On average,
each of these two descriptions contain 10.50 resource activity pairs. For each of
these three process descriptions a model and event logs were generated using the
Cloud Process Execution Engine5 (CPEE) [16]. These event logs did initially not
5 https://cpee.org, last access: 2023-06-19.

https://www.cs.cit.tum.de/bpm/software/
https://www.cs.cit.tum.de/bpm/software/
https://www.cs.cit.tum.de/bpm/data/
https://cpee.org
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contain any resource violations. To test the compliance verification component
of our approach, resource compliance violations were introduced into the logs.
This was done by randomly selecting resource activity pairs and modifying the
resource executing the activity. This process of modeling, log generation, and
log alteration was overseen by one of our authors who was not involved in the
technical implementation process.
Real-World Dataset. In addition to the synthetic datasets, we had a look at
real-world event logs used within the Business Process Intelligence Challenges
(BPIC). Among those, we identified the BPIC 2020 to be suitable since it con-
tains resources not only in the form of IDs but verbal (e.g., budget owner) and
comes at the same time with a detailed textual process description6. This dataset,
collected between 2017 and 2019, comprises a total of 270,216 events recorded
across five logs. In BPIC, resources are classified as STAFF MEMBER or SYS-
TEM. The first type of resource can have a role while the system not. The
column values for event and case ID were adjusted to match the terminology
used in the implementation for pre-processing the event log. The names of the
roles (e.g., DIRECTOR) were removed from the original label of the activity
(e.g. PERMIT REJECTED by DIRECTOR). Offered as supplementary mate-
rial, the script specifically designed for this task could be employed as a blueprint,
enabling the adaptation of an event log from any domain, with a different data
structure, to suit our approach.

4.2 Results

Owing to the significant impact of the pre-processing quality on the compliance
verification results, we first provide a succinct overview of the results for the pre-
processing component before diving deeper into the evaluation of the compliance
verification component.
Pre-processing Component. To assess the performance of the pre-processing
of process descriptions, a gold standard file for each process description is gener-
ated containing the desired set of R-AR results. We utilize this gold standard to
compare the performance of GPT-3.5 and GPT-4 in retrieving the set of R-ARs.
To accomplish this, the GPT models receive as input each process description
together with the prompt, which was built following the steps outlined in Algo-
rithm 1. All intermediate files generated during this evaluation process are saved
and stored in our repository for future reference and analysis. Table 2 displays
the precision and recall values for the results obtained from both the GPT-3.5
and GPT-4 model.

A R-AR is deemed successfully detected if it contains both the activity and
resource, representing a pair in the process description, and matches any of the
patterns outlined in Table 1. By looking at Table 2, on average, the precision
scores improved by 40% when using GPT-4 compared to its predecessor. Addi-
tionally, the recall demonstrated a substantial increase of 135%. Most GPT-3.5
6 https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51 last access:

2023-06-19.

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
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errors stem from anaphoras, scattered information, passive voice, and activity
boundary detection issues.

Dataset Precision Recall
GPT-3.5 GPT-4 GPT-3.5 GPT-4

RE 0.92 1.00 0.92 1.00
BM 0.62 0.90 1.00 1.00
SM 0.50 0.89 0.17 1.00
BPIC 0.76 1.00 1.00 1.00

Table 2. Evaluation Results Pre-
processing Component

In [5], a GPT-3 model was utilized.
However, this model had limitations
in identifying the resource responsible
for an activity if the word perform was
not explicitly mentioned in the sen-
tence. In contrast, our pre-processing
approach was designed to handle more
complex cases and successfully identi-
fied resources in all instances, even those involving anaphora, embedded con-
ditions, and other related factors such as excluding and including activities.
Misclassifications in the results produced by GPT-4 often stem from the model
trying to assume too much information, which can result in false positives when
the model tries to infer activities that were not clearly specified. As outlined in
[18], they suggest improving the quality of the PET dataset by employing data
augmentation methods. Another issue with models like GPT-4, such as gener-
ating labels with new words or synonyms, can be mitigated by narrowing the
prompt, as indicated in [13]. This approach not only helps avoid these issues but
also leads to more faithful and reasonable texts, reducing the hallucination, i.e.,
AI creating information without input basis, that occurs in natural language
generation.
Compliance Verification Component. The evaluation of the compliance ver-
ification component is depicted in Table 3. It depicts the intermediate results for
the matched activities (step 3), the extraction of resource similarity (step 4), and
the final compliance verification outcomes (step 5). For the synthetic datasets,
RE, BM, and SM, which had less contextual detail, TF-IDF was applied, and
activity (step 3) and resource-activity (step 4) thresholds were between 0.60
and 0.80. For the compliance verification of BPIC, we used the BERT model
to account for varying naming conventions and synonyms. To manage BERT’s
tendency to assign high similarity scores to dissimilar pairs, we set activity and
resource-activity thresholds at 0.8 and 0.9. This approach maintained accuracy
by ensuring context-specific matches, despite the presence of synonyms.

Upon examining the output of step 1 of BPIC, 17 unique resource activ-
ity pairs were identified. However, step 2 revealed a larger number, presenting
55 unique resource activity pairs. Once we processed the results of the com-
pliance verification component, we deduced that only 7 pairs from the original
event log were accurately represented in the process description. These pairs
included (declaration final approved, director), (declaration approved, admin-
istration), (declaration rejected, employee), (declaration submitted, employee),
(request payment, automatic), (permit rejected, employee), and (request for pay-
ment rejected, employee). The BPIC process description lacks explicit informa-
tion about the remaining 48 pairs, preventing further interpretations without
making extensive assumptions. This challenge that the BPIC dataset presents,
is partially solved by the use of thresholds, and it is not present in the synthetic
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dataset because the total number of unique pairs in the log is very close to the
total number of resource-activity pairs identify in the process description.

RE BM SM BPIC

Step 3 Precision 0.94 0.87 0.81 1.0
Recall 1.0 1.0 1.0 1.0

Step 4 & 5 Precision 0.64 1.0 1.0 0.71
Recall 1.0 0.92 1.0 1.0

Table 3. Evaluation Results of Steps 3–5

Considering the results for step 3
in Table 3, it is notable to see that
the approach was able to match in all
the cases the activities presented in the
process description. The small propor-
tion of mismatches (c.f., precision of
BM or SM) from the activities pre-
sented in the event log was due to the
presence of events not described in the process description. The results of steps
4 and 5 are evidence of the impact that has the good handling of the granu-
larity of a resource. The RE contained a wider variability of granularity which
ended up being more challenging and had a direct impact on the extraction of
non-compliant traces.

In RE, BM, and SM, the majority of non-compliant traces were due to a
conflict with another resource with different granularity, as indicated in the pro-
cess description, performing an activity (e.g., Elite Holdings vs Hans from Elite
Holdings). While in the BPIC dataset, non-compliant traces were primarily char-
acterized by three factors. Firstly, traces that contained missing as a resource
keyword were flagged. Secondly, traces that involved staff members who, by
hierarchical implication, were permitted to perform the activities of their sub-
ordinates were noted. Lastly, instances, where system automation carried out
activities intended for human staff members, were also marked as non-compliant.
Future enhancements should thus address these distinct issues accordingly. The
ensuing section will discuss the limitations of the current study and potential
avenues for further research.

5 Discussion and Limitations

In order for the presented approach to achieve optimal results, it is essential that
the pre-processing of the natural language text delivers all necessary information,
such as activities, the different levels of granularity of a resource, and other
fields, as shown in Algorithm 1. We utilize state-of-the-art GPT-4 technology
to accomplish this as it is undoubtedly powerful and provides the means to
boost the performance of our approach. However, there are certain drawbacks
to consider which also led to the decision to develop a customized compliance
verification component without GPT-4.
Reproducibility. GPT-4 is a black box model, which makes ensuring repro-
ducibility challenging due to its dependence on finely-tuned prompts. To address
this issue, we provide both the prompt we used and the output from GPT-4,
which can then be incorporated into the compliance verification component. If
we had used GPT-4 also for compliance verification we see a further challenge in
describing the pattern-based check accurately in a prompt for GPT-4. Crafting
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a prompt that consistently produces reliable results for compliance verification
might require a significant amount of effort and expertise.
Reliability, Explainability, and Transparency. Furthermore, GPT-4 is a
third-party service and may not always be accessible when needed (e.g., having
a cap of 25 messages every 3 h). During the evaluation, we also recognized a
certain instability in the results it produced, e.g., slower service, loss of history.
GPT-4, being a large transformer model, is considered a black box meaning its
results might be difficult to understand. In particular, the incorrect classification
of events into compliant or non-compliant in the compliance verification would
provide a lack of transparency without being able to explain the process. Our
aim is to provide a transparent step-by-step resolution of compliance verification
results, which is not easily achievable with GPT-4.
Technical Feasibility and Costs. As users must pay for each executed prompt,
it might become expensive and also impractical to process a large event log
containing thousands of events which is another reason we want to keep the
usage of GPT-4 to a minimum. The final goal is to develop a fully automated
compliance verification approach, however, this is difficult to offer when relying
on a commercial product.
Suggestions for Improvement. One option for a customized pre-processing
component could be built based on existing work, e.g., [5,11,20]. The task of
identifying resources could be, e.g., follow a rule-based approach incorporating
a custom-trained named entity recognition (NER) model. A second option is
to explore OpenAssistant [14], a lightweight open-source project to collaborate
on large language models. Further improvements include the implementation of
a hierarchy compliance resolution verification system that evaluates compliance
for role and department hierarchies. For instance, this would enable a manager to
carry out tasks usually done by a junior developer. The method will also evaluate
varying organizational structures like user-role and role-department, merging the
best combinations for each scenario. Additionally, it could investigate handling
cases with multiple process logs but only one process description, looking into
how these logs can be combined and compliance ensured.

6 Related Work

Related work on how resources are handled from a process, compliance and event
log perspective has been discussed in Sect. 2. In order to provide a holistic view
of the topic, we outline additional related work in the following.

For the pre-processing component, literature on the identification and extrac-
tion of resource information from natural language text constitutes a further line
of related work. This task has been addressed by approaches that aim at process
model generation from natural language text, like, e.g., [11]. Other approaches
employ semantic role labelling in order to extract resources [20] or pre-trained
language models and in-context learning in order to extract business process
entities and their relations from natural language texts [5]. The latter makes use
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of GPT-3 [8]. However, when using GPT-3.5 in the pre-processing component,
we could not come up with satisfying results. Only the latest released GPT-4
model [19] was capable of delivering the necessary quality for the pre-processing
component. Another line of research is focusing on extracting access control poli-
cies from natural language text, e.g., [17]. They also make use of semantic role
labelling like [20] but as demonstrated in Sect. 2, resource compliance patterns
are more diverse. Moreover, none of the mentioned approaches has envisioned
compliance verification over event logs as it is the aim of this paper.

In order to enable compliance verification, by now, compliance requirements
need to be formalized as, e.g., LTL formulas manually. Recent efforts have
focused on automatically extracting LTL formulas from natural language texts,
cf., e.g., [9] for a comprehensive state-of-the-art analysis. However, according to
this survey “a general enough solution, that is capable of translating free, natural
English texts into unbounded, general LTL formulas is still missing.” [9].

7 Conclusion and Future Work

In this paper, an approach for resource compliance requirements verification over
event logs has been presented. Compared to existing work, resource compliance
requirements do not need to be formalized in, e.g., LTL formulas, but can be kept
as natural language text. The approach consists of a pre-processing component
that makes, i.a., use of recent advances in deep learning, in particular GPT-4.
The compliance verification component constitutes the main contribution of this
paper and encounters several steps to achieve resource compliance verification.
Each step of the approach was evaluated quantitatively using precision and recall
on multiple synthetic as well as a real-world dataset, the BPIC 2020 dataset. The
evaluation results are promising and provide clear pointers for future work. In
particular, we plan to implement a customized pre-processing component for the
requirements extraction from natural language text, e.g., using OpenAssistant
[14], and compare it to the current solution which uses GPT-4. This allows us to
cope with limitations arising due to possible downtimes of GPT-4, the necessity
to have access to GPT-4, and investing time to fine-tune the employed prompt.
Moreover, we plan to incorporate further perspectives like control flow, data,
and time to come up with a holistic compliance verification approach.
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Abstract. Process performance measurement assesses how well a pro-
cess is running, covering various dimensions such as time, cost, and qual-
ity. This task involves the definition of measurable Process Performance
Indicators (PPIs), which in many cases are calculated based on data
recorded in an event log. An inhibitor of effective performance analy-
sis is that establishing PPI definitions measurable from event logs is
highly complex, because it requires process analytical expertise, as well
as in-depth knowledge about the structure and contents of the available
event data. Given that managers typically do not have such knowledge,
this means that those stakeholders that are generally most interested
in measuring process performance cannot do so in a convenient man-
ner. Recognizing this, we bridge this gap by proposing an approach for
the measurement of process performance based on textual descriptions
and event logs, which combines state-of-the-art natural language pro-
cessing techniques with matching strategies that are tailored to the task
at hand. Evaluation experiments using textual descriptions provided by
both industry and academic users demonstrate the accuracy of our app-
roach.

Keywords: Process performance measurement · process mining ·
natural language processing · matching

1 Introduction

Process Performance Measurement is the practice of evaluating various dimen-
sions of business processes, such as time, cost, and quality, to determine if busi-
ness processes are achieving strategic and operational goals, and to assist in their
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optimization. It includes the definition, collection, visualization and analysis of
Process Performance Indicators (PPIs), which are quantifiable metrics used to
evaluate the efficiency and effectiveness of one or more business processes [4].
PPIs can be calculated from different sources, with recorded execution data,
stored event logs, being among the main ones [15] and the focus of this paper.

The definition of PPIs calculated from event logs consists of two pri-
mary parts: (1) establishing a formal definition of the manner in which pro-
cess performance should be measured, according to a certain metamodel for
PPIs [13,16,21], and (2) linking that definition to the data structure and con-
tents of a specific event log. For example, to measure the “average time until
reimbursement” in a travel reimbursement process, part (1) involves the recog-
nition that this corresponds to a PPI that should compute the average (an
aggregate measure) time (a measure type) between receiving a request (start
moment) and the reimbursement being paid (end moment). Part (2), in turn,
requires one to recognize that this measure should be linked to the time between
“receive request” and “payment handled ” activities in a particular event log.

The problem here is that both parts of this task involve expertise from
users regarding process performance measurement and process mining (how to
properly define PPIs, how event logs work, etc.), as well as in-depth knowl-
edge about the data in an event log (which activity or attribute value corre-
sponds to an occurrence of interest, e.g., that the moment of reimbursement,
non-straightforwardly, corresponds to a “payment handled ” activity). Given that
such expertise and domain knowledge are rarely (both) held by managers, pro-
cess performance currently cannot be conveniently measured by those stakehold-
ers most interested in it. Instead, managers need to involve process analysts and
domain experts to obtain the insights they desire, which can lead to considerable
hindrance in terms of additional effort and delays, as well as possibly incorrect
measurements caused by miscommunication [1].

In this work, we overcome this barrier by proposing an approach for mea-
suring process performance based on event logs and textual descriptions. In this
manner, our work allows managers to conveniently and quickly obtain useful
insights by describing desired performance measures in a textual manner, such
as “the fraction of requests that are rejected” or “the maximum time between
receiving and delivering orders that were approved”. With this goal, our work
complements recent work on using natural language querying in process min-
ing [2,11], with an approach tailored to the task of process performance mea-
surement.

Our approach builds on a language model fine-tuned to the task of extracting
entities from PPI descriptions. To align these extracted entities to the contents
of an event log, we propose various matching functions, as well as heuristics to
infer missing information. Evaluation experiments using real-world event logs
and PPI descriptions collected from industry and academic users highlight the
potential of our approach, yet also reveal the challenging nature of the task.

In the remainder, Sect. 2 describes the challenges of automated transfor-
mation, whereas Sect. 3 provides essential definitions. Section 4 describes our
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automated approach to compute PPIs described in natural language. Section 5
presents a quantitative evaluation of our approach. Streams of related work are
described in Sect. 6 and we conclude our paper in Sect. 7.

2 Problem Illustration

This section illustrates the main challenges associated with the transformation
of textual PPI descriptions into measurable definitions. As a basis for this, we
use the well-known domestic declarations event log from the 2020 BPI Chal-
lenge [5] and the PPI descriptions in Table 1. This process involves the submis-
sion, approval or rejection, and payment of travel declarations by employees.

Table 1. Exemplary PPI descriptions

ID Description

ppi1 The average duration between submission and payment of a declaration
ppi2 The average time it takes for a declaration to be paid after its submission
ppi3 The amount of time until reimbursement
ppi4 The percentage of rejected requests
ppi5 The number of denied declarations as a fraction of the total submitted ones
ppi6 The number of declarations above 100 euros
ppi7 The total amount paid per year

C1: High Flexibility of Natural Language. Textual PPI descriptions can
describe the same measure in many different ways. For example, ppi1 to ppi3 all
describe the time between submission and payment of declarations, using differ-
ent structures (e.g., starting point first or last) and terminology (e.g., duration
versus time). Similarly, whereas ppi4 immediately indicates that this is a frac-
tional measure, this information comes later in ppi5, which starts in the exact
same manner (“The number of [..] ”) as is common for count measures, such as
ppi6. These examples are only the tip of the iceberg, though, which means that
a transformation approach must be able to deal with highly variable input.
C2: Differences Between Description and Data. When describing a mea-
sure of interest, users do not necessarily account for the way that a process is
recorded, which can result in large differences between the contents of a textual
description and an event log. This often results in the use of synonyms (denying
versus rejecting), though differences may also be process specific. For example,
ppi3 refers to the time until reimbursement, yet there is no activity in the event
log that contains this term. Rather, the moment of reimbursement corresponds to
the Payment handled activity. Therefore, when matching information extracted
from a PPI description to the contents of an event log, an approach must be
able to find challenging correspondences.
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C3: Missing Information. Finally, PPI descriptions may leave certain infor-
mation implicit that is required to define a measure. Common examples are:
missing aggregation functions (does ppi3 refer to the average, total, or individ-
ual time until payment?), missing starting points of time measures (what is the
starting point of ppi3?), and missing denominators of fractions (e.g., in ppi4 ).
A transformation approach needs to be able to make the right choices in such
situations, in order to still be able to compute a value for the desired measure.

3 Measurable PPI Definitions

This section presents the formal PPI definitions that our approach uses. These
definitions are inspired by the PPINOT metamodel [4], which we specifically
adapted to the way in which PPIs are commonly described in natural language,
allowing for easier and more accurate transformation from textual description to
a formal PPI. The values for PPIs defined in this manner can be automatically
measured using a PPI computation tool (cf., [15]).
Scope. Our work covers a broad range of PPI definitions, allowing users to
combine the following aspects. Each PPI definition should correspond to one of
three types of base measures: count, time, and data. These can be complemented
with additional operators such as aggregation functions (e.g., min., max., aver-
age), group-by conditions (e.g., request per year or department), negation (e.g.,
requests not accepted), and filters (such as above 100 euros or in the form of a
fraction, such as the fraction of rejected declarations).
Definitions. We formalize measurable PPIs through the following definitions.

Definition 1 (Universes). We define the following universes:

– Uatt and Uval are the universes of attribute names and values in an event log,
including an activity attribute to refer to activities and their names. For each
a ∈ Uatt, we use dom(a) ⊆ Uval to refer to values that a can take.

– Uagg is the universe of aggregation functions. In this paper we consider Uagg =
{avg,max,min, sum, perc}.

– Uop is the universe of operations. In this paper Uop = {==, �=, >,<,≥,≤}.
– Ucase is the universe of possible conditions that refer to a case. In this paper,

Ucase = {begin, end}, which refer to the beginning and end of a case.
– Umval is the universe of possible values of base measures computed on an event

log. This includes integers (for count measures), time intervals like 7 days for
time measures, and Uval for data measures.

We next define the different kinds of conditions used to specify measures:

Definition 2 (Conditions). We define two sets of conditions:

– Instant conditions CI = CE ∪ CC comprise event and case conditions. Event
conditions CE = Uatt ×Uop ×Uval are tuples that relate an attribute name to a
value using a comparison operator. Case conditions CC = Ucase refer to either
the beginning or end of a case.
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– Measure conditions CM = Uop × Umval are tuples that define a boolean expres-
sion based on a comparison against a possible measure value (Umval).

An example of an event condition is (activity,==, submit declaration), which
occurs when a submit declaration activity is completed, while to select cases
of declarations above 100 euros, we specify (>,e100) as a measure condition
over a measure value that refers to a case attribute. Using instant and measure
conditions, we can define the base measures supported by our approach.

Definition 3 (Base measures). Base measures MB = MC ∪ MT ∪ MD,
comprise three types:

– Count measures MC = CI × (CM ∪ {⊥}) are tuples that include an instant
condition that specifies when to count, and an optional measure condition that
is applied to the result of the count (⊥ as the absence of a condition).

– Time measures MT = CI ×CI ×(CM ∪{⊥}) are tuples that include two instant
conditions specifying when the time measure starts and stops, respectively, and
an optional measure condition (⊥ as the absence of a condition).

– Data measures MD = Uatt × (CM ∪ {⊥}) are tuples that include the attribute
whose value we want to obtain, and an optional measure condition.

For example, the count measure for ppi4 is ((activity,==, reject), (>, 0)),1 the
time measure for ppi3 is (begin, (activity,==, payment handled),⊥), and the
data measure for ppi7 is (amount,⊥).

Finally, we define aggregated measures, which expand the expressiveness of
base measures with aggregation, group-by, and filtering options:

Definition 4 (Aggregated measures). The set of aggregated measures
MA = MB × Uagg × (Uatt ∪ {None}) × (CE∪ ⊥) is the set of tuples such that
a = (b, agg, att, c) means that the aggregation function agg is applied over the
base measure b, grouping by attribute att, and filtering the cases that meet con-
dition c. If att = None, this means that no grouping is applied; if c =⊥, this
means that no condition is applied.

For example, the full measure for ppi1 is (((activity,==, submit), (activity,==
, payment handled),⊥), average,None,⊥), i.e., the average time between the two
activities, and for ppi7 we get ((amount,⊥), sum, ′year ′,⊥), to group the data
measure (sum of the amount attribute) per year.

4 Approach

Figure 1 depicts an overview of our approach. The input is a textual description
of a PPI and the output is the result of evaluating this PPI against a given event
log. The approach consists of four main steps. Step 1 focuses on the extraction of
relevant entities from the textual PPI description (tackling challenge C1). Step

1 (>, 0) is used to count the cases for which this activity happens at least once.
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2 matches the extracted entities against the contents of the event log in order
to start establishing a measurable PPI definition (challenge C2). Then, for cases
in which a user left out certain required information (challenge C3), Step 3 uses
various heuristics to fill in the gaps and thereby complete the PPI definition.
Finally, Step 4 uses the established definition in order to compute the desired
PPI, thus directly measuring process performance for the event log.

Fig. 1. Overview of our approach

4.1 Step 1: Entity Extraction

In this first step, our approach takes a textual PPI description P as input and
extracts the entities necessary to establish a PPI definition. We first discuss the
kinds of entities we extract, before describing the extraction technique itself, and
the data augmentation strategy we used to compensate for the small size of the
available training data.
Entity Types. Our approach aims to extract a number of entity classes, which
we each denote with a specific tag. The tags for base measures are:

– Count measures: We use a count entity CE to capture what should be counted,
e.g., requests for reimbursement or accepted orders.

– Time measures: We use start and endpoints (TSE and TEE) when present in
descriptions, e.g., “The amount of time until reimbursement” contains an end
point (“reimbursement”). However, descriptions of time measures may also use
a single entity to refer to the range from start to end, for which we use a TBE
tag, such as for “The time to approve declarations”.

– Data measures: We use the DMA tag to refer to the description of the attribute
to be measured, such as the total amount in ppi7.

On top of these classes for the measure types, we extract aggregation functions
(AGR), such as average or maximum, group-by clauses (GBC), such as per year
in ppi7, measure conditions, which are composed of an operator (CCI) and a
measure value (MEV), such as above 100 euros in ppi6, and filters (FDE), such as
pre-approved in the total amount of requests that are pre-approved.
Extraction Technique. We apply a two-stage approach for entity extraction,
using an annotated training dataset of PPI descriptions DT (see below) and
a pre-trained language model [20] as a basis for both stages. In this paper,
we use DistilBERT [18] as the pre-trained language model, but the proposal is
independent of the language model used.
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In the first stage, we use text classification to categorize a PPI description
P according to its base type (count, time, or data). To this end, we fine-tune
the pre-trained language model, with a linear layer on top of its pooled output,
using the gold-standard measure types of the training collection DT . We use the
resulting fine-tuned model to infer the measure type of unseen PPI descriptions.

In the second stage, we use token classification to identify the entities of inter-
est in a description P . As a basis for this, we use the gold-standard tags of the
descriptions in DT . Since entities can span multiple words, tags are assigned
per chunk, e.g.: The\O,average\AGR, time between\O submission\TSE and\O
payment of a declaration\ TEE.2 Based on these gold-standard tags, we fine-
tune the pre-trained language model for token classification, using a linear layer
on top of its hidden-states output. We do this separately for count, time, and data
measures, so that we obtain language models that are specifically fine-tuned to
extract information from a given measure type, as identified by the aforemen-
tioned text classifier.

Given a textual PPI description P , we represent the output after token clas-
sification as a sequence ΦP \TP = 〈φ1\t1, . . . , φm\tm〉. Each φi\ti represents a
chunk of text (φi) and its assigned tag (ti). Each chunk, φi consists of one or
more consecutive words from P and each word is assigned to exactly one chunk.

Data Augmentation. We only had a collection of 165 PPI descriptions avail-
able, including 129 from prior research [1]. However, the fine-tuning of language
models requires a considerable amount of training data, especially when dealing
with such diverse kinds of input and entities as in our work (challenge C1).

We address this challenge through data augmentation. Specifically, we greatly
extend the initial set of PPI descriptions with automatically generated ones.
To this end, we handcrafted textual patterns based on the descriptions in the
initial set, making sure that a wide variety of different patterns is included. For
instance, a typical text pattern for time measures is [Agg] time from [cond1]
to [cond2]. Then, we used Chatito3, a text generation tool, to generate distinct
training phrases by combining all alternatives provided for each pattern. In this
manner, we ended up with a total of 12,036 annotated descriptions in DT .

Using this augmented set to train the aforementioned text and token classifi-
cation techniques, our entity extraction step can deal with highly flexible input.

4.2 Step 2: Entity Matching

We next set out to establish an actual measure MP , according to the con-
cepts defined in Sect. 3. To illustrate this step, we use ppi1 as an example,
which Step 1 identifies as a time measure with the tagged sequence ΦP \TP :
〈average\AGR, submission\TSE, payment of a declaration\TEE〉.

To establish MP , we start with the structure of an aggregated measure
(b, agg, att, c), as defined in Definition 4, and expand its base measure b with the
structure of the identified measure type. Since ppi1 is a time measure, b’s struc-
ture is (s, e, (op, v)) (cf. Definition 3), yielding MP = ((s, e, (op, v)), agg, att, c).
2 Tag O indicates that a chunk does not belong to any entity from the tag set.
3 https://rodrigopivi.github.io/Chatito/.

https://rodrigopivi.github.io/Chatito/


From Text to Performance Measurement 273

Overall Procedure. Given a tagged sequence ΦP \TP , each tagged chunk φ\t
will be used to find a value for an element of MP . The correspondence between
a chunk φ\t and an element ε follows from the tag t. For instance, average\AGR
corresponds to agg, whereas submission\TSE and payment of a declaration\TEE,
respectively, correspond to the time measure’s start (s) and end (e).

For a chunk φ\t, we use a matching function match(φ\t) to identify the
right value for its corresponding element ε in MP , from a target domain D. For
instance, match(φ\AGR) identifies the value for its corresponding element agg
from its domain, which is Uagg (cf., Definition 4). As detailed next, we propose
six instantiations of match(φ\t), for different tags t. The general procedure is the
same, though: match evaluates the similarity between the chunk φ and elements
of the target domain D using a similarity measure, returning the element with
the highest score.

Matching AGR Tags. Chunks with AGR tags correspond to aggregation func-
tions, which means that the matching function’s target domain is Uagg =
{avg,max, min, sum, perc}. Therefore, to match φ\AGR, we consider the simi-
larity between φ and each of the possible values of Uagg. Additionally, we also
consider synonyms for each of them (e.g., average, mean, total average).

This is formalized as match(φ\AGR) = argmaxd∈Uagg
simcomb(φ, d), where

simcomb combines both the syntactic and semantic similarity of text chunk φ to
the respective domain values d of the tag and its synonyms as follows:

simcomb(φ, d) = w1semSim(φ, d) + w2synSim(φ, d)

The semantic similarity (semSim(φ, d)) of φ with a domain value d is the average
of the semantic similarity of d and its synonyms. This semantic similarity is
the cosine distance between vectors obtained using an algorithm like word2vec4.
The syntactic similarity (synSim(φ, d)) is determined using the mean of the well-
known Damerau-Levenshtein dl(φ, d) and the Jaro-Winkler j(φ, d) distances,
where we consider the synonym of φ with the highest score.

Matching CCI Tags. This tag corresponds to an operator (e.g., above or greater
than). Therefore, its target domain is Uop. The approach followed is exactly the
same as for aggregation functions: match(φ\CCI) = argmaxd∈Uop

simcomb(φ, d).

Matching DMA and GBC Tags. These tags corresponds to the attribute name
used in data measures (e.g., amount in “the total amount paid per year ”), and
group by clauses (e.g., “orders per customer type”), respectively. For these tags,
the function match again uses simcomb, this time to compare φ to L’s attribute
names in Uatt, which is their target domain. However, for the GBC tag, we restrict
the target domain to a subset of Uatt, so that it only includes attributes with a
relatively low number of distinct values (we use 15 as a guideline). The rationale
is that we expect users to be interested in groupings with a limited number of
categories (e.g., per customer_type), as opposed to grouping by attributes that
have unique values per case (e.g., per order_ID).

4 We use the en_core_web_lg model provided by spacy (https://spacy.io/).

https://spacy.io/
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Matching CE and TBE Tags. The target domain of these tags is the set of instant
conditions CI of the event log L, which are composed of three parts: attribute,
operator, and value. Therefore, given a chunk φi\TBE like reimbursement in ppi3,
its matched value is (activity,==, payment handled). We perform this matching
at once, for just a single chunk φ, since users generally do not specify conditions
in an attribute-operator-value manner, but rather use a shorthand. For instance,
“reimbursement” does not explicitly state that this condition refers to an equals
to operator and that the relevant attribute is an event’s activity.

A challenge is that the target domain is huge (spanning numerous combina-
tions of attributes and their values), so we apply three actions to reduce it. First,
we only consider categorical attributes whose number of categories is lower than
a threshold (we use 100). Second, we only consider the attributes whose value
changes across the events of at least one case. The reason is that, if the attribute
does not change, it is not useful to use it as a condition in count or time metrics.
Finally, we restrict the operator of instant conditions to equals to, whereas we
support not equals to in the PPI completion step (Sect. 4.3). This restriction of
the operator does not apply to the operator identified by the CCI tag.

Let S ⊆ CI be the subset of conditions after applying these three actions.
Then, to match a text chunk φ to an instance condition, we define match(φ\t) =
argmaxd∈SconSim(φ, d), where t ∈ {CE, TBE}. Here we quantify the condition
similarity conSim between φ and a condition d = (a,==, v) as follows:

conSim(φ, d) = (1 − watt)valSim(φ, a, v) + watt

∑

vi∈dom(a)

valSim(φ, a, vi)
|dom(a)|

The first part of the equation computes the value similarity (valSim) between
the text chunk φ and the attribute-value pair of the condition. The second part
of the equation considers the average similarity between the chunk and all values
of the attribute domain (dom(a)). This allows us to prioritize those attributes
whose domain is closer to φ. watt represents the weight given to the latter.
valSim(φ, a, v) itself is computed as follows:

valSim(φ, a, v) = (1 − wc)indSim(φ, v) + wcindSim(φ, a + v)

Here, the first part of the equation computes the individual similarity (indSim)
between the text chunk and the value of the attribute v, whereas the second part
of the equation computes the same similarity but considering both the name of
the attribute and its value (“< a > < v >”). This is done to account for cases
where the text chunk either omits or includes the name of the attribute.

Finally, indSim(φ, v) can be computed using any established similarity mea-
sures. In this paper, we combine four similarity measures with a weighted sum:
simcomb as defined above, simis, which uses a standard measure for bag-of-words-
based similarity we applied in a previous work [1]. simemb, which uses the cosine
distance between the sentence embeddings of the chunks [14]. simbert, which uses
pre-trained natural language inference models as zero shot text classifiers [22].

Matching TSE and TEE Tags. These tags refer to the conditions that determine
the beginning (TSE) and end (TEE) of a time measure such as “the duration
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between submission and payment of a declaration.” When both of these tags
are extracted from P , we can extend the approach used for CE and TBE with
the following two heuristics to improve its performance. First, the from and to
conditions are likely to be related to the same attribute (e.g., if the first condition
refers to an activity, the second condition tends to refer to an activity as well).
Second, the from condition should commonly occur before the to condition in
the case. Therefore, given a text chunk φ, we compute the similarity for each
possible pair of conditions di = (ai,==, vi) and dj = (aj ,==, vj) as follows:

pairSim(φ, di, dj) = (1 − wmh)
conSim(φ, di) + conSim(φ, dj)

2

+wmh
same(ai, aj) + cr(di, dj)

2

(1)

where same(ai, aj) has a value of 1 if ai = aj and 0 otherwise, and cr(di, dj) is
the ratio of cases where the from condition occurs before the to condition from
all cases where both conditions occur. To penalize only those conditions where
the condition ratio is significantly low, we apply a logistic function normalized

between 0.5 and 1 as follows: 2
(

1
1 + e−k×cr

− 0.5
)

, where k is a parameter that

determines the steepness of the curve. We use k = 10 in our implementation.

Matching MEV Tag. This tag refers to a measure value used in a measure
condition, such as “100 euros” in ppi6. Its target domain is the set of possible
values of base measures computed on an event log L (Umval). The matching is
performed using the context provided by the measure type identified in Step 1.
For count measures, it just involves parsing an integer. For time measures, we
use a syntactic parsing of time deltas. For data measures, it depends on the
domain of the attribute used in it. For instance, in The number of declarations
with amount above 100 euros, we would match 100 with the domain of amount,
which is an integer. If the domain is categorical, we use simcomb.

4.3 Step 3: PPI Completion

After the previous step, a PPI definition MP has been built according to the
information that is explicitly provided in the textual description P . However,
as described in challenge C3, some details may have been left implicit, which
means that certain mandatory slots in MP may still be empty. In this step, we
fill these remaining slots based on several heuristics, which reflect common-sense
interpretations of the missing pieces of information.

Missing Time Points. Descriptions such as “The amount of time until reim-
bursement” only describe a single point in time (the end, here), even though
a time measure requires both a start and an end. Therefore, we complete time
measures with an unspecified start point by setting it to the earliest timestamp
of a case, and use the last timestamp for missing endpoints.
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Default Conditions. Users can provide descriptions of count measures like “the
percentage of rejected requests.” Such percentage aggregations require measure
conditions in order to be properly defined. Therefore, we add a measure condition
> 0 to the result of the count, in our example: ((activity,==, declaration rejected
by employee), (>, 0)), to capture that this activity should occur at least once for
a case to be considered in the aggregation’s numerator.

Default Aggregations. Users may provide descriptions for time measures such
as “The amount of time until reimbursement” (ppi3 ). Although these technically
do not indicate that this is an aggregate measure, we recognize that a user is likely
not interested in the time of individual instances, which is why we automatically
set the aggregation function to average here. Similarly, for a count measure such
as “the number of declarations”, we employ a sum aggregation by default.

Applying Negation. Instant conditions can include negations, e.g., the number
of requests that are not paid, which can be recognized using available dependency
parsers.5. In these cases, we must ensure that the corresponding negated measure
is properly defined. For time measures, this is straightforward, since we can
just change the operator of the identified instant condition from equals to to
not equals to. However, if we negate the condition of a count measure, such
as (activity, �=, payment handled), we would get a situation in which all non-
payment activities are counted. Therefore, we instead insert a measure condition,
i.e., (=, 0), which ensures that all cases for which the payment handled activity
did not occur are counted.

4.4 Step 4: PPI Computation

Step 3 yields a complete PPI definition. To actually compute a value for it,
this definition can be translated into the input for a PPI computation tool, like
ppinot4py [15] or the Celonis Process Query Language (PQL) [19]. In this paper,
we use ppinot4py because there is a direct correspondence between the elements
of the PPI definition and the PPINOT model so no transformation is needed.

5 Evaluation

To test our approach, we conducted an evaluation in which we compare PPI
definitions obtained by our approach to a manually created gold standard.6

5.1 Evaluation Data

We collected two data sets of textual PPI descriptions for real-world event logs,
whose main characteristics are summarized in Table 2. To allow for a high exter-
nal validity of our evaluation, the data was obtained from different sources. The
first one was gathered during different BPM courses with undergraduate and
5 We again use the Spacy library for this.
6 More information, our prototype, and links to the materials can be found at https://

github.com/isa-group/ppinat.

https://github.com/isa-group/ppinat
https://github.com/isa-group/ppinat
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master students and includes 52 PPI descriptions related to the event log of a
public traffic fine management process (TF) [12]. The second one was collected
using an online questionnaire, through which industry and academic users from
different countries provided 53 PPI definitions, all related to the domestic dec-
larations process (DD) [5]. Participation was voluntary and anonymous.

Table 2. Information about the datasets in the test collection

Dataset Participants PPIs Reason to exclude PPIs tested
(1) (2) (3) Time Count Data

Traffic fines (TF) 18 52 7 7 18 12 8 0
Declarations (DD) 14 53 12 9 2 11 17 2

(1) Information not in the log. (2) Not supported. (3) Ambiguous information.

In both datasets, a pre-processing step was needed and, as shown in Table 2,
some PPI textual descriptions from the original data collection had to be
excluded. These PPI descriptions could not be manually transformed into struc-
tured definitions to be computed against the information available in the corre-
sponding event logs. Although most PPIs are time-related, the diversity of the
PPI descriptions provided by the participants is noteworthy.

5.2 Experimental Setup

Implementation. To conduct the evaluation, we implemented the presented
approach in Python, available in our repository.

Hyperparameter Search. The entity-matching step uses various weights
to operationalize the matchers. To find the appropriate settings, we per-
form an exhaustive grid search considering the following values: wsimx ∈
{0, 0.25, 0.5, 0.75, 1}, watt ∈ {0, 0.1, 0.2}, wc ∈ {0, 0.5, 1}, and wmh ∈
{0, 0.25, 0.5}, where watt, wc, wmh are the weights defined in Sect. 4.2, and wsimx
captures the weights of the similarity measures used in indSim, testing a total
of 945 combinations.

In this manner, we selected a configuration with the following weights:
wsimis = 0.25, wsimemb

= 0.5, wsimbert = 0.25, wsimcomb
= 0, wc = 0.5, watt = 0.2

and wmh = 0.25. We report on the impact of these parameters below in the
discussion of the results of Step 2.
Evaluation Measures. To assess the quality of our approach we use the well-
known precision and recall measures to compare generated PPI definitions to a
manually created gold standard. The gold standard, available in the repository,
was created by the three authors, who independently established measurable
definitions for the gathered PPI descriptions based on their understanding of
the respective event logs. The few differences were then resolved through a joint
discussion. Here, precision reflects the fraction of slots that our approach filled



278 M. Resinas et al.

correctly according to the gold standard, whereas recall represents the fraction
of slots filled in the gold standard that were also correctly filled by our approach.

5.3 Results

In this section we report on the overall results obtained using our approach,
followed by an assessment of its individual steps and configurations.
Overall Results. Table 3 summarizes the results obtained in our evaluation.
The Approach column reports on the results obtained by applying our full app-
roach on the data, which shows that it obtains a precision and recall of above
0.70 for both datasets.

Table 3. Evaluation results obtained for the two datasets and various configurations

Dataset: Domestic declarations (DD) Traffic fines (TF)
Config.: Approach Perfect No comp. Approach Perfect No comp.

Slot type n prec. rec. prec. rec. prec. rec. n prec. rec. prec. rec. prec. rec.
Aggreg 29 0.93 0.93 1 1 0.88 0.76 18 0.89 0.89 0.95 0.95 0.75 0.33
Cond 12 0.8 1 0.92 1 1 0.08 3 0.75 1 1 1 0 0
From 11 0.72 0.72 0.82 0.82 0.6 0.27 12 0.58 0.58 0.75 0.75 0.33 0.08
To 11 0.45 0.45 0.54 0.54 0.6 0.27 12 0.67 0.67 0.83 0.83 0.67 0.17
When 16 0.44 0.44 0.47 0.47 0.44 0.44 6 0.83 0.83 0.87 0.87 0.83 0.83
Total 82 0.70 0.72 0.78 0.80 0.67 0.44 52 0.72 0.75 0.86 0.86 0.64 0.27

As expected, the best results are obtained for the matching of aggregation
slots, which have a small, fixed target domain. Condition slots also get a high
precision and recall in both datasets, but in this case the majority of true posi-
tives comes from the PPI completion of Step 3 (see below). Regarding from, to,
and when slots, their precision and recall changes significantly from one dataset
to the other, which suggests that they are heavily domain-dependent. Note that
we omitted slot types (group-by, data, and filters) with n ≤ 2.

Step 1: Impact of Entity-Extraction Quality. We evaluate if and how
any mistakes made by the parser used in Step 1 affect the overall result of our
approach. To do this, we also computed results obtained when using perfectly
extracted entities (from the gold standard) as input for Step 2. As shown through
the Perfect column in Table 3, we then obtain a precision of 0.78 and recall of
0.80 for DD, and precision and recall of 0.86 for the TF dataset, showing that
our matching strategies are accurate. Compared to the results obtained with our
full approach, we observe differences between 0.08 in DD and 0.14 in TF. This
improvement is especially apparent for from and to slots, where more precise
extraction leads to clear improvements for entity matching.

Step 2: Matching Configurations. Next, we assess the impact of the various
parameter settings and heuristics used in Step 2 to match extracted entities to
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the elements of an event log. The results obtained during hyperparameter search
(available in the repository) show that the configuration of the matchers consid-
erably affects the overall result quality. Out of the 945 matcher configurations,
the best configured matchers outperform the worst matchers by 0.11 for DD and
0.14 for TF in terms of precision and recall. To further examine the effects of the
weights, we compared the values of the top 25% and the worst 25% configura-
tions. The best configurations typically combine at least two similarity metrics
(out of the four simx options) for matching extracted entities to instant con-
ditions for the from, to, and when slots. Moreover, virtually all configurations
in the top 25% use a similarity metric based on language models (simbart or
simemb), frequently combining both.

With respect to the matching heuristics, we find that top-25% configurations
typically consider the order in which entities matched to from and to slots appear
in traces (by using wmh > 0), whereas the worst configurations tend to omit this
consideration (using wmh = 0). Furthermore, when matching from, to, and when
slots, the majority of the top-5% configurations consider attribute names (on top
of attribute values), by setting wc = 0.5. By contrast, there is no clear difference
between configurations that assign positive weights to watt, which also lets a
matcher consider the entire domain of an attribute. Nevertheless, the positive
impact of wmh and wc thus highlight the importance of considering the contents
of an event log, in terms of event order and attribute names, during matching.

Step 3: Impact of PPI Completion. We assess the relevance of the PPI
completion step by comparing the results of our full approach to those obtained
when omitting this step (No comp. in Table 3). The results reveal a significant
drop in recall, i.e., of 0.28 in DD and 0.49 in TF. This shows that the proposed
PPI completion heuristics help to identify many missing default values for aggre-
gation, condition, from, and to slots. Precision also decreases (e.g., from 0.72 to
0.64 for TF), because without Step 3, negations are not properly interpreted.

Runtime Efficiency. We tested our approach on an Intel i9 PC with 64GB of
RAM, a 2TB SSD hard drive, and a consumer GPU GeForce RTX 3080 Ti. The
average execution time for steps 1 to 3 for each PPI defined for DD and TF is
0.66 and 0.91 seconds, respectively. The initialization time, which is executed just
once for each log and involves loading the log and computing the embeddings of
the attribute names and values, is 10 seconds for DD and 42 seconds for TF.

5.4 Discussion

A post-hoc analysis of the results obtained reveals that the approach faces several
challenges related to the entity-extraction and entity-matching steps.

Entity-Extraction Challenges. The usage of a state-of-the-art token classifi-
cation technique allows our approach to deal with highly flexible input (challenge
C1), and performs well with previously unseen terms. However, it is occasionally
infeasible to distinguish different entity types based on just a description. For
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instance, in the TF dataset, the description “Percentage of fines with an incre-
ment” corresponds to a percentage aggregation over a count entity CE (counting
the cases with an “Add Penalty” activity). By contrast, the description “Percent-
age of fines appealed with vehicle class A”, involves a filter entity FDE on top of
the count entity CE, even though the two descriptions are structurally identical.
Here, one might envision a post-processing step that evaluates all different alter-
natives and picks the one that fits best with the event log or even fine-tuning
the token classification for the specific domain at hand.

Matching Challenges. The entity-matching step also faces the problem of
lack of domain knowledge to resolve its task. For instance, in the DD dataset
there are several activities with the text “approval” in them (e.g., Declaration
approved by Administration and Declaration final approved by supervisor). If
the PPI description does not provide indications about what kind of approval
it refers to, e.g., “Percentage of declarations are approved ”, it is near impossible
for the entity matching to tell to which approval activity it should be matched.

A related problem occurs when confounding words appear in the PPI descrip-
tion and the entity-matching step gives them more relevance than the actual key
words of the description. For instance, the DD dataset has two activities called
Request payment and Approve request. When trying to match a PPI descrip-
tion like “Average time to approve the request for reimbursement”, the matcher
has to decide which part of the text is more relevant: “approve the request”,
which matches best with Approved request or the confounding “request for reim-
bursement”, which matches best with Request payment. This problem may be
addressed by recognizing when a PPI description refers to the overall goal of a
process (e.g., request for reimbursement) and using that information to reduce
the relevance of these confounding elements for matching.

6 Related Work

Process Performance Measurement. Most process mining tools support the
computation of some types of PPIs. In most cases, however, they just support
a predefined set of metrics, mainly related to time. There are some exceptions
to this, e.g. the PQL language to define customized PPIs in Celonis [19]. The
main drawback in this case is that the computation results are not designed to
be used outside the tool platform and integrated with other tools or workflows.
Recently, ppinot4py was presented as a library that can be used to compute
a wide variety of custom PPIs [15]. Yet, its main limitation is that users need
to know low-level details of the log involved as well as technical aspects of the
definition of PPIs. There is another thread of works that proposes user-friendly
approaches to define custom PPIs, in the form of graphical representations [4,9]
or templates [17]. A caveat is that the PPIs from these approaches cannot be
directly computed over an event log.

NLP Interfaces for Data Base Querying. Highly related to our approach
is the existing work on defining queries on tables or databases using natural
language. There are two main threads in this regard. The first thread uses natural



From Text to Performance Measurement 281

language text and a database schema as input to generate an SQL query that can
be directly computed on the database. An example of this is the work presented
in [8], but many more can be found in a recent survey [10]. The second thread
does not generate an intermediate query model, but uses deep learning to learn
the appropriate output, given a natural language query and a database table.
Some examples are [6,7]. Although these works address a similar problem to the
one presented in this paper, the nature of processes and the event logs that collect
their information differs significantly from that of databases, which prevents us
from using the same approaches off-the-shelf.

NLP Interfaces for Process Mining. Finally, there is developing interest in
using NLP to facilitate process mining tasks. For instance, Kobeissi et al. [11]
present an intent-based natural language interface to allow users to perform
queries on an event log. However, their work focuses on queries about event
related data, with performance queries being out of scope. In addition, [11] needs
to be adapted for each event log, unlike our proposal, which is log-independent
and does not require human intervention to hand-craft the training set for each
new event log. Barbieri et al. [2] present an architecture to support a conver-
sational, process mining oriented interface to existing process mining tools, but
only focused on questions over process execution data. This preliminary work
is extended in [3]. It introduces a taxonomy for natural language questions for
process mining and also provides support to queries over process behavior and
process mining analyses. However, their implementation and evaluation is per-
formed with general questions applicable to any event log, leaving those associ-
ated with selected, domain-specific event logs for future work.

7 Conclusion

In this paper, we presented a first approach to calculate process performance
indicators against a given event log based on textual descriptions. Our work
builds on a fine-tuned language model to extract relevant entities, tailored tech-
niques to match these entities to the contents of an event log, as well as com-
pletion heuristics to deal with incomplete descriptions provided by users. The
evaluation performed yielded promising results, although there are also clear
open challenges. It is worth noting that the heuristics used for completing PPIs
have been useful in improving the performance of our approach. In addition, the
publicly available dataset we established for this work is valuable in itself, as it
allows other researchers and us to continue advancing in this direction.

In future work, we aim to improve both the scope and accuracy of our work.
For this, we naturally aim to use the exponentially increasing potential of large
language models (LLMs) such as GPT-4. A first direction, aiming for accuracy
improvements, is to incorporate LLMs directly into our proposed approach by
using their functionality to replace parts of our work that currently rely on
other NLP technologies, such as the entity-extraction step and the computation
of semantic similarity scores. Next to that, we aim to use the conversational
capabilities of LLMs to facilitate interaction between a user and an approach
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such as ours, in order to guide users through the step-by-step definition of PPIs
using textual input. In such an interactive setting, the agent can ask clarifying
questions where appropriate and, furthermore, allow users to iteratively build
up highly expressive performance measures, thus improving both the accuracy
and scope of our work.

Acknowledgments. We thank Maria Isabel Ramos and Javier Vilariño for their sup-
port in the implementation.
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Abstract. Process discovery studies ways to use event data generated
by business processes and recorded by IT systems to construct models
that describe the processes. Existing discovery algorithms are predom-
inantly concerned with constructing process models that represent the
control flow of the processes. Agent system mining argues that business
processes often emerge from interactions of autonomous agents and uses
event data to construct models of the agents and their interactions. This
paper presents and evaluates Agent Miner, an algorithm for discover-
ing models of agents and their interactions from event data composing
the system that has executed the processes which generated the input
data. The conducted evaluation using our open-source implementation
of Agent Miner and publicly available industrial datasets confirms that
our algorithm can provide insights into the process participants and their
interaction patterns and often discovers models that describe the business
processes more faithfully than process models discovered using conven-
tional process discovery algorithms.

1 Introduction

Process discovery is a subarea of process mining that studies ways to construct
models that faithfully describe processes of a system based on event data the
system has generated [26]. Constructed models assist analysts in understanding
the system and, consecutively, deciding how to improve it. The state-of-the-art
process discovery algorithms build models that describe the control flow of the
processes. This focus on control flow has at least two limitations. Firstly, the
resulting models are not well suited for analyzing the behavior of individual pro-
cess participants and their interactions, as activities and interactions performed
by a specific actor are often scattered across a discovered control flow model.
Secondly, control flow models discovered from large data arrays are often too
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complex, the phenomenon known as spaghetti models [26]. Models of interacting
agents, or agent systems, where agents are the process participants, address the
former limitation by their very definition and, importantly, do not necessarily
grow in complexity with the growth of the amount of data they represent [29].

Agent system mining is a type of process mining that studies ways to derive
and use knowledge about systems composed of interacting agents based on the
events these agents generate [24]. This paper presents and evaluates an agent
system discovery algorithm. Concretely, this paper makes these contributions:

– It presents Agent Miner, a divide-and-conquer algorithm for discovering mod-
els of agents and their interactions from event data. The algorithm “divides”
the input collection of events into several special subsets and “conquers” these
subsets using conventional discovery algorithms, like Inductive Miner [11] and
Split Miner [2], to construct an agent system that has generated the data.

– It presents the results of an evaluation of Agent Miner based on our open-
source implementation of the algorithm that shows that Agent Miner can
discover agent and interaction models from publicly available industrial event
data that i) provide an additional perspective on the system that has gen-
erated the data and ii) often describe the processes more faithfully than the
corresponding process models constructed using conventional control flow dis-
covery algorithms; thus, addressing the two stated limitations.

– It demonstrates the value of agent system mining and invites the community
to more intensive explorations of the agent-based paradigm in process mining.

The remainder of this paper proceeds as follows. The next section presents a
motivating example. Then, Sect. 3 gives basic notions required for understanding
the subsequent discussions. Section 4 presents our new discovery algorithm, while
Sect. 5 discusses the results of its evaluation. Finally, Sect. 6 surveys related work
before Sect. 7 gives concluding remarks on this work.

2 Motivating Example

As a motivating example, we propose a hypothetical health surveillance process
sketched in Fig. 1. The process starts with a check (see the check activity in the

Fig. 1. A schematic visualization of the health surveillance process.
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Fig. 2. DFGs that describe the health surveillance process (readability not intended).

figure) of the patient by doctor d1. If the analysis (analyze) of the results of the
check indicates a risk of developing ill-health, the doctor prescribes (prescribe)
medical tests and preventive therapy. The possible tests are blood test (B-test),
ultrasound (U-sound), and X-ray. The therapy includes yoga, physio, gym, and
swimming (swim). The tests and the therapy are performed independently; any
subset of tests and exercises can be prescribed. Doctors d2 and d4 perform the
tests, while the therapy is conducted by doctors d3 and d5. Once the tests and
the therapy are completed, doctor d1 rechecks (check) the patient. If the new
check shows good results, the patient is discharged (discharge), and the process
terminates; otherwise, further tests and therapy are prescribed. The information
system that supports the process recorded a log of events that stem from man-
aging 1 024 patients. Each recorded event has four attributes that specify the
timestamp of the event occurrence, activity that triggered the event, the patient
case the event relates to, and the doctor, or agent, that performed the activity.

Figure 2 shows three directly-follows graphs (DFGs) [26] that describe con-
trol flow dependencies between the activities of the health surveillance process
discovered from 2, 8, and 32 traces from the log, where a trace is a sequence of
all events with the same case attribute ordered by their timestamps. The com-
plexity of the DFGs, defined as the number of nodes and arcs, grows as they
represent more data, where the model in Fig. 2c is an example spaghetti model.

Figure 3a and Fig. 3b show the interaction net and one agent net that
describes one of the three agent types discovered by Agent Miner from the events
of the 32 traces used to construct the DFG in Fig. 2c captured as Petri nets [19].
Besides providing an alternative, modular perspective on the process, that is, an
explicit representation of process participants and their interactions, these mod-
els, similar to the DFGs in Fig. 2, describe control flow dependencies between the
activities. These dependencies can be captured explicitly in an integrated Petri
net, called the Multi-Agent System (MAS) net, obtained by refining labeled tran-
sitions of the interaction net with the corresponding agent nets. Interestingly,
this MAS net is smaller and represents the traces encoded in the event data more
faithfully than the Petri net constructed from the same 32 traces using Inductive
Miner (IM) [11]—a conventional process discovery algorithm. The MAS net has
155 nodes and arcs, while the IM net shown in Fig. 4 has 175 nodes and arcs.
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Fig. 3. Petri nets that describe: (a) interactions of the three agent types a1 (doctor
d1), a2 (d2 and d4), and a3 (d3 and d5) and (b) agent type a1 from the health
surveillance process with transition labels check (c), analyze (a), prescribe (p), and
discharge (d).

The precision of the MAS net and the IM net is 0.37 and 0.16, respectively.
To support model comparison, both algorithms were configured to discover per-
fectly fitting models (recall of 1.0). A model has good precision if it does not
replay traces not recorded in the log and a good recall if it replays many traces
from the log, where the values closer to 1.0 indicate better models. Precision and
recall were measured for the 32 traces used to construct the models using the
entropy-based approach [16,17], the only existing measures that guarantee that
better discovered models result in better measurements [23].

A MAS net often does not require an increase in size to represent more data
well due to an ability of an agent system to simulate the non-decreasing com-
plexity of the behavior of a system [24,29]. For instance, the same MAS net we
discovered from the 32 traces has precision of 0.43 and recall of 1.0 if measured
for all 1 024 traces. This example confirms that Agent Miner can construct mod-
ular, fitting, and precise models of process participants and their interactions.
Finally, while the interaction and agent nets enable dedicated analyses of the
respective artifacts, like identification of repetitive work handovers and verifi-
cation of safeness and liveness of individual agent nets, the information about
agents is scattered in the IM net, see the U-sound activity by agent a2 amidst
activities swim and yoga by agent a3 in Fig. 4, which hinders the analysis of indi-
vidual agents and their interactions. The input log, models, and measurements
discussed in this section are publicly available [25].

3 Preliminaries

This section introduces Petri nets (Sect. 3.1) and event logs (Sect. 3.2).

3.1 Petri Nets and Workflow Nets

Petri nets formalism suits well for describing models of distributed systems [19].



288 A. Tour et al.

Fig. 4. The IM net discovered from 32 traces of the example health surveillance process.

Definition 3.1 (Petri nets).
A (labeled) Petri net, or a net, N is a quintuple (P, T, F, Λ, λ), where P is a finite
set of places, T is a finite set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the flow
relation, Λ is a set of labels, such that τ ∈ Λ is the silent label and sets P , T ,
and Λ are pairwise disjoint, and λ : T → Λ is the labeling function. �

If λ(t) = τ , t ∈ T , t is silent ; otherwise t is observable. Observable transitions rep-
resent activities from the problem domain, and silent transitions encode internal
actions of the system. A marking M of a net encodes its state and is a multiset
over its places. Figure 3a shows a Petri net N = (P, T, F, Λ, λ), with eight places
(P = {p1, . . . , p8}) and seven transitions (T = {t1, . . . , t7}). In the graphical
notation, places are drawn as circles, while transitions as squares or rectangles.
Transitions t1, t2, t6, and t7 are silent, shown as black rectangles. The labeling
function assigns labels a1, a2, and a3 to transitions t5, t4, and t3, respectively.
The flow relation is shown as directed arcs. A marking is denoted as an arrange-
ment of black dots, called tokens, inside of the corresponding places. Marking
M shown in Fig. 3a is the multiset [p1]; see one black dot in place p1.

Let n ∈ P ∪ T be a place or transition, then by •n={x ∈ (P ∪ T ) | (x, n) ∈ F}
we denote its preset and by n•={x ∈ (P ∪ T ) | (n, x) ∈ F} we denote its postset.
Let N = (P, T, F, Λ, λ) be a net. A transition t ∈ T is enabled in a marking M
of N , denoted by (N,M) [t〉, if every input place of t contains at least one token,
i.e., ∀ p ∈ •t : M(p) > 0; by M(p) we denote the multiplicity of p in M . An
enabled transition t ∈ T can occur. An occurrence of t leads to a fresh marking
M ′ = (M \ •t) � t• of N , denoted by (N,M) [t〉 (N,M ′).

Workflow nets are special nets used for modeling workflows [26]. A workflow
net is a Petri net (P, T, F, Λ, λ) with a dedicated initial place i ∈ P , •i = ∅, a
dedicated final place f ∈ P , f• = ∅, and every place and transition on the vertex
sequence of some directed walk from i to f in graph (P ∪ T, F ). Marking [i] is
the initial marking of a workflow net. A workflow net is safe if every marking
reachable from [i] via a sequence of transition occurrences is a set. It is sound if
every transition of the net can occur in some sequence of transition occurrences
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that starts in [i], every sequence of transition occurrences that starts in [i] can
be extended to “put” a token in the final place, and once there is a token in the
final place no other places hold tokens [26]. Figure 3a and Fig. 3b show safe and
sound workflow nets with final markings [p8] and [p6], respectively.

3.2 Events, Event Logs, and Traces

Table 1. An event selection.

event timestamp case activity agent

ea 30 Mar 16:34 case1 check d1/a1

eb 30 Mar 16:35 case1 analyze d1/a1

ec 31 Mar 16:35 case2 check d1/a1

ed 01 Apr 08:22 case2 analyze d1/a1

ee 01 Apr 16:05 case1 prescribe d1/a1

ef 03 Apr 11:55 case1 B-test d4/a2

eg 03 Apr 16:59 case1 X-ray d4/a2

eh 06 Apr 10:02 case1 physio d3/a3

ei 06 Apr 11:01 case1 swim d3/a3

ej 07 Apr 15:55 case1 yoga d3/a3

ek 07 Apr 11:11 case1 physio d3/a3

el 10 Apr 13:13 case1 swim d3/a3

em 10 Apr 15:05 case1 yoga d3/a3

en 11 Apr 09:12 case1 physio d3/a3

eo 11 Apr 10:05 case1 swim d3/a3

ep 13 Apr 11:03 case1 yoga d3/a3

eq 13 Apr 14:57 case1 check d1/a1

er 16 Apr 12:11 case1 analyze d1/a1

es 17 Apr 10:03 case1 prescribe d1/a1

et 17 Apr 16:36 case2 prescribe d1/a1

An event log, or log, represents real-world
processes recorded by an information sys-
tem. In process mining, events are often
organized into time-ordered sequences,
called traces. As explained in Sect. 2,
in our work, each event has at least
four attributes: timestamp, activity, case,
and agent (either instance or type). Let
A be the universe of attribute names,
with {timestamp, activity , case, agent} ⊆
A. Let V be the universe of attribute
values. Then, an event is an attribute
function e : A → V that maps attribute
names to attribute values. By E we
denote the universe of events. An event
selection S ⊆ E is a finite set of
events. Without loss of generality, we
assume that events have unique times-
tamps. Table 1 defines event selection S =
{ea, . . ., et}. Each row of the table describes one event. For example, et

= {(timestamp, 17 Apr 16:36) , (activity , prescribe) , (case, case2) , (agent , a1)} is
the event from the last row of Table 1; the agent attribute specifies agent type.

Let X be a finite non-empty set. A partition of X is a set Π of disjoint subsets
of X such that the union of the subsets equals X; the subsets are parts of Π.
Partition Π can be defined by an equivalence relation ∼⊆ X × X such that if
two events ei, ej ∈ X are equivalent under ∼, that is, it holds that (ei, ej) ∈∼,
then ei and ej belong to the same part of Π. We use notation Π = X/ ∼ to
denote that partition Π is defined by the equivalence relation ∼ over X. Against
this background, we define a trace of an event selection as follows.

Definition 3.2 (Traces induced by partitions).
The trace σ of event selection S induced by part π of partition Π = S/∼ is the
ordered by timestamps sequence of all and only events in π. �

We refer to Π and ∼ as the trace partition and the trace relation that induce σ.
The trace set of S induced by Π = S/∼ is the set of traces Σ that for each part
π of Π contains the trace of S induced by π, and contains no other traces.
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Definition 3.3 (Event logs).
An event log, or log, of event selection S induced by partition Π = S/ ∼ is a
triple (S,Σ, ν), where Σ ⊂ S∗ is the trace set induced by Π, and ν : S → V is a
naming function that assigns names to events in S. �

Multiple event logs induced by different partitions and naming functions
can be defined. For example, in classical process discovery, traces are
induced by case attributes. Let C be a universe of cases. The case trace
set of event selection S is the trace set of S defined by relation ∼c ={
(ei, ej) ∈ S × S | ei (case) = ej (case)

}
, denoted by Σc; we refer to traces in Σc

as case traces. For instance, the case trace set of the event selection in Table 1
consists of two case traces, namely 〈ea, eb, ee, ef , eg, eh, ei, ej , ek, el, em, en, eo,
ep, eq, er, es〉 and 〈ec, ed, et〉.

The naming function of an event log specifies the names of the events used
by the discovery algorithms to identify activity names in the constructed pro-
cess models. In process discovery, events are often identified by their activity
attributes, that is, ν = {(e, e(activity)) | e ∈ S}. In general, other naming func-
tions can be used. We will use this feature in the subsequent sections.

4 Agent Miner

In this section, we introduce the core notions required to define the Agent Miner
algorithm (Sect. 4.1) and present the algorithm (Sect. 4.2).

4.1 Agent Logs and Nets

A trace of an agent trace set is a sequence of events that refer to the same case,
are performed by the same agent (identified by the agent attribute), and are not
interrupted by an event from the same case performed by a different agent.

Definition 4.1 (Agent trace sets).
The agent trace set of event selection S is the trace set of S induced by the
partition of S defined by relation ∼=

{
(ei, ej) ∈ S × S | (ei (agent) = ej (agent))

∧ (ei (case) = ej (case)) ∧ (¬∃ ek ∈ S : (((ei (timestamp) < ek (timestamp) <
ej (timestamp)) ∨ (ej (timestamp) < ek (timestamp) < ei (timestamp))) ∧
(ei (agent) �= ek (agent) ∧ ei (case) = ek (case))))} . �

The set {〈ea, eb, ee〉, 〈ec, ed, et〉, 〈ef , eg〉, 〈eh, ei, ej , ek, el, em, en, eo, ep〉, 〈eq,
er, es〉} is the agent trace set of the event selection in Table 1. For instance, in
trace 〈ea, eb, ee〉, all events are from case1, performed by agent a1, and, though
interrupted by events ec and ed, the latter events are from a different case. Note
that, by definition, relation ∼ from Definition 4.1 is an equivalence relation.

Next, we define several useful logs. Traces of an interaction log are composed
of events that allow identifying all handovers of work between agents.
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Definition 4.2 (Interaction logs).
The interaction log of event selection S is the triple

(
S̄, Σ, ν

)
, where S̄ is the

agent event selection composed of the first events of all the traces in the agent
trace set Δ of S, that is, S̄ = {δ(1) | δ ∈ Δ}, Σ is the case trace set of S̄, and
ν =

{
(e, e(agent)) | e ∈ S̄

}
names each event by the corresponding agent. �

The interaction log of the event selection from Table 1 is, therefore, the event
log

(
S̄, Σ, ν

)
, where S̄ =

{
ea, ec, ef , eh, eq

}
, Σ =

{〈ea, ef , eh, eq〉, 〈ec〉}, and
ν =

{
(ea, a1) , (ec, a1) ,

(
ef , a2

)
,
(
eh, a3

)
, (eq, a1)

}
. For instance, trace 〈ea, ef ,

eh, eq〉 in Σ suggests that agent a1 starts case1; note that ea (agent) = a1 and
ea (case) = case1. Then, agent a2 takes over the work on case1. Agent a2 then
passes the work on case1 to agent a3, who later hands work back to agent a1.

Traces in the agent trace set done by the same agent compose its agent log.

Definition 4.3 (Agent logs).
The agent log of agent a and event selection S is the triple (Sa, Σ, ν), where
Sa = {e ∈ S | e(agent) = a}, Σ is the set of traces in the agent trace set Δ of
S performed by a, that is, Σ = {δ ∈ Δ | ∀ i ∈ [1 .. |δ|] : δ(i)(agent) = a}, and
ν = {(e, (a, e(activity))) | e ∈ Sa} is the naming function that names an event
by the pair comprising its agent and activity attributes. �

The agent log of agent a1 and the event selection from Table 1 is defined
by the triple

(
Sa1, Σ, ν

)
, where Sa1 =

{
ea, eb, ec, ed, ee, eq, er, es, et

}
, Σ =

{〈ea, eb, ee〉, 〈ec, ed, et〉, 〈eq, er, es〉}, and ν maps events in Sa1 to their names and
contains, for instance, it holds that

{
(ea, (a1, check)) ,

(
ed, (a1, analyze)

)} ⊂ ν.
Next, we discuss several classes of workflow nets used by Agent Miner. An

interaction net describes the structure of interactions between agents.

Fig. 5. An i-net.

Definition 4.4 (Interaction nets).
An interaction net, or an i-net, of event selection S is a workflow net
(P, T, F, Λ, λ), where Λ = {a ∈ V | ∃ e ∈ S : e(agent) = a} ∪ {τ}. �

Fig. 3a and Fig. 5 show two i-nets of the event selection from Table 1. They
describe alternative ways the agents could have interacted to generate the event
data. For example, the i-net in Fig. 5 suggests that agent a1 starts the interaction,
and then any number of sequences of interactions of a1 with agent a2, then of
a2 with agent a3, and finally of a3 again with agent a1 can occur.

A MAS net describes how agents perform activities in a collaborative setting.
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Fig. 6. The Agent Miner algorithm.

Definition 4.5 (Multi-Agent System nets).
A Multi-Agent System (MAS) net of event selection S is a workflow net
(P, T, F, Λ, λ), with Λ = {(a, b)∈V×V | ∃ e∈S :e(agent)=a ∧ e(activity)=b} ∪
{τ}. �

A MAS net of events of a single agent is an agent net of this agent.

Definition 4.6 (Agent nets).
A MAS net of event selection S such that the agent attribute of every event in
S is equal to a, that is, ∀ e ∈ S : e(agent) = a, is an agent net of a. �

4.2 Algorithm

Figure 6 defines the Agent Miner algorithm as a workflow net. It is parameterized
by two conventional control flow discovery algorithms: an Agent Net Discovery
Algorithm (ANDA) and an Interaction Net Discovery Algorithm (INDA). Agent
Miner takes an event selection as input and produces an interaction net, agent
nets, and a MAS net. Similar to standard process discovery algorithms, the
latter explains how the discovered interaction and agent nets represent the traces
identified by the case attribute. The algorithm has six steps detailed below.
Create Agent Trace Set. The agent trace set of the input event selection is
created by associating each event with an agent trace, see Definition 4.1.
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Fig. 7. Three agent nets.

Fig. 8. A MAS net.

Create Interaction Log. The interaction log is created by selecting the first
events of all traces in the agent trace set and constructing the case trace set of
this event selection, see Definition 4.2.
Discover Interaction Net. In this step, INDA is used to discover an i-net,
see Definition 4.4, from the interaction log. For example, the i-net in Fig. 5 was
discovered from the interaction log of the event selection in Table 1.
Create Agent Logs. Multiple (n) agent logs are created, one for each agent
encountered in the input event selection, by extracting the corresponding agent
traces from the agent trace set, see Definition 4.3.
Discover Agent Net. In this step, ANDA is used to discover n agent nets (one
net is discovered from each agent log), see Definition 4.6. Figure 7 shows three
agent nets discovered from the agent logs of the event selection in Table 1.
Discover MAS Net. Finally, a MAS net, see Definition 4.5, is constructed
by “embedding” the agent nets into the i-net and applying the Fusion of Series
Places reduction [14] to the refined i-net. Figure 8 shows the embedding of the
agent nets in Fig. 7 into the i-net in Fig. 5. The embedding is performed by
refining each observable transition in the i-net with the corresponding agent
net. The resulting MAS net describes how agents (doctors) interact to support
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the execution of cases (treatment of patients) in the health surveillance process
introduced in Sect. 2 discovered based on the event selection from Table 1.

Thus, Agent Miner is a divide-and-conquer algorithm that “divides” the
input event selection into interaction and agent logs and “conquers” these logs
using ANDA and INDA. In this work, as ANDA, we used DFG translation to
Petri nets (DFG-PN) [12], while as INDA, we used Inductive Miner (IM) [11]
and Split Miner (SM) [2] and removed iterations of observable transitions in
the obtained i-nets. This approach follows the agent system paradigm, where
agents are sequential machines, and parallelism emerges through collaborations
of agents. If the algorithms guarantee that the constructed models are safe and
sound workflow nets, which holds for DFG-PN and IM, every constructed MAS
net is guaranteed to be a safe and sound workflow net (cf. Theorem 2 in [18]).

5 Evaluation

The Agent Miner algorithm (Fig. 6) and its evaluation pipeline (Fig. 9), including
the code, the discovered models, and detailed results, are publicly available [25].
This section presents and discusses the design (Sect. 5.1) and results (Sect. 5.2)
of an evaluation of Agent Miner using real-world datasets.

5.1 Design

Figure 9 presents our five-step evaluation pipeline. We executed this pipeline for
each real-world dataset used in this evaluation. The steps are explained below.

Fig. 9. Evaluation pipeline.

Select Events. In this step, we select events from the dataset to ensure events
have required attributes and remove infrequent case traces. Specifically, every
event must have a case, timestamp, activity, and agent attribute. Moreover, each
selected event must be part of a frequent case variant (a trace within vff% of the
most common case traces, where vff is the variant frequency filter parameter).
Identify Agent Types. For the event selection, we identify agent instances
using agent attribute values of events and group them into agent types by clus-
tering them based on distances between agent instance DFGs, where an agent
instance DFG is constructed from the corresponding agent log (Definition 4.3).
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For a pair of agents (a1, a2), we calculate the distance between the DFGs of a1

and a2 as:
1 − max(|DFa1∩DFa2 |/|DFa1 |, |DFa1∩DFa2 |/|DFa2 |),

where DF a1 and DF a2 are the directly-follows relations (sets of edges) in the
corresponding DFGs. Thus, the more one DFG subsumes the directly-follows
relations of the other DFG, the more likely the corresponding agent instances
belong to the same agent type. Once the agent types are identified, the agent
attribute values of all the events in the input event selection are updated from
instances to types. For example, this step leads to the identification of three
agent types a1 (doctor d1), a2 (doctors d2 and d4), and a3 (doctors d3 and
d5) in the motivating example from Sect. 2.
Discover CM Models. We refer to a discovery algorithm based on the con-
ventional process mining paradigm as a Conventional Miner (CM) and a model
discovered by a CM algorithm as a CM model. We use two state-of-the-art CM
algorithms, Inductive Miner IMf variant (IM) [11] and Split Miner (SM) [2], to
construct CM models from the case traces induced by the event selection, that is,
traces identified by the case attributes, see Definition 3.3. Given an event selec-
tion S, to discover CM models, we use two naming functions: i) activity-only
labeling (AOL) defined by νaol = {(e, e(activity)) | e ∈ S} and ii) agent and
activity labeling (AAL) defined by νaal = {(e, (e(agent), e(activity))) | e ∈ S}.
Thus, for each event dataset, we construct four CM models. For example, the
model in Fig. 4 is the IM model constructed using the νaol naming function.
Hence, agent attributes of events were not used to construct the model, and then
observable transitions were annotated with agent info. For each CM algorithm
and naming function, we construct ten CM models, one for each configuration of
the threshold parameter of the algorithm, noise threshold for IM and frequency
threshold for SM (in the range from 0.0 to 0.9 in 0.1 increments). This approach
ensures that the discovered CM models show a range of quality characteristics.
Discover AM Models. For the event selection over agent types, we use the
Agent Miner (AM) algorithm (refer to Sect. 4) to discover agent nets, the model
of agent interactions, and the MAS net that defines the semantics of the resulting
agent systems. DFG translation to Petri nets (DFG-PN) [12] algorithm is used
as an ANDA. Inductive Miner (IM) [11] and Split Miner (SM) [2] are used
as INDAs. For each configuration of ANDA and INDA, we run AM ten times
with ten different parameter pairs (ff i, thi), with i ∈ [1 .. 10], ff i = i × 0.1, and
thi = 1− i×0.1. Parameter ff i is the activity frequency filter parameter used by
the ANDA. Parameter thi is the threshold parameter used by the INDA, noise
threshold for IM and frequency threshold for SM. The lower the value of i, the
more filtered the event selection is and the less the discovered models are fit to
the input data.
Compare Models. To compare the discovered CM and AM models, we calcu-
late their recall and precision with respect to the case trace set of the original
event selection, and size (as the number of nodes and arcs). To compute pre-
cision and recall, we use the entropy-based measures [16,17]. These measures
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fulfill all the desired properties for these classes of measures [23]. For exam-
ple, the entropy-based precision measure guarantees that a model that describes
fewer traces not in the event log has a better precision score. For CM models
constructed using AOL and AAL naming functions of events, we measure their
precision and recall with respect to the event logs that identify events using
the corresponding naming functions. Note that labels of observable transitions
of AM models are composed of agent-activity pairs, see, for example, the MAS
net in Fig. 8. Hence, to compare MAS nets to CM models constructed using the
AOL naming function, we also measure precision and recall of MAS nets after
rewriting their transition labels to only mention activity names.

Table 2. Size, recall, and precision of IM nets and MAS nets discovered by Agent
Miner (Inductive Miner as INDA) that rely on activity-only labeling of observable
transitions.

BPIC
dataset

Variant
frequency
filter (vf%)

Inductive Miner Agent Miner (MAS nets)

lowest size greatest precision lowest size greatest precision

size recall prec. size recall prec. size recall prec. size recall xprec.

2011 10% 592 0.72 0.41 592 0.72 0.41 466 0.92 0.35 466 0.92 0.35

2012 80% 420 1.00 0.06 454 0.88 0.32 333 0.80 0.18 333 0.80 0.18

2013 80% 54 0.70 0.53 105 0.78 0.62 69 0.62 0.64 69 0.62 0.64

2014 10% 229 0.85 0.28 335 0.55 0.45 231 0.78 0.36 231 0.78 0.36

2015 80% 199 0.95 0.35 199 0.95 0.35 122 0.95 0.34 122 0.95 0.34

2017 80% 216 0.85 0.22 241 0.91 0.26 340 0.76 0.15 597 0.94 0.15

2018 10% 350 0.88 0.13 350 0.88 0.13 535 0.85 0.09 535 0.86 0.09

2019 10% 270 0.61 0.24 375 0.54 0.46 191 0.65 0.34 191 0.65 0.34

2020 80% 204 0.72 0.18 220 0.69 0.25 200 0.75 0.19 200 0.75 0.19

5.2 Datasets and Results

To evaluate Agent Miner, we used publicly available real-world Business Pro-
cess Intelligence Challenge (BPIC) datasets and assumed they stem from agent
systems. These datasets are widely used to evaluate conventional process discov-
ery algorithms. We assumed that the resource attributes of events specify agent
instances that triggered them and selected all BPIC datasets that specify events
with resource attributes, leading to nine selected datasets.1

Initially, we used the vff % parameter of 80% and completed the evaluation
pipeline (cf. Figure 9) for datasets BPIC 2012, 2013, 2015 (Municipality 1), 2017,
1

BPIC 2011 (https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54),
BPIC 2012 (https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f),
BPIC 2013 (https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07),
BPIC 2014 (https://doi.org/10.4121/uuid:3cfa2260-f5c5-44be-afe1-b70d35288d6d),
BPIC 2015 (https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1),
BPIC 2017 (https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b),
BPIC 2018 (https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972),
BPIC 2019 (https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1), and
BPIC 2020 (https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51).

https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:3cfa2260-f5c5-44be-afe1-b70d35288d6d
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51


Agent Miner: An Algorithm for Discovering Agent Systems from Event Data 297

and 2020 (Travel Permit Data). Due to performance reasons, to process the other
datasets, we lowered the vff % parameter to 10%. Table 2 summarizes the quality
measurements for workflow nets discovered using Inductive Miner and MAS nets
constructed by Agent Miner, using activity-only labeling (AOL) of transitions
in the discovered nets. For each dataset, the table lists size, recall, and precision
values for the models that scored the lowest size and the greatest precision.
These results confirm that the quality of the MAS nets discovered by Agent
Miner is comparable to the quality of CM models. This observation is remarkable
for at least two reasons. First, as stated above, we had no background knowledge
of whether the datasets stem from agent-driven business processes. Still, for most
datasets, we discovered interesting (in terms of size, recall, and precision) MAS
nets. Second, in addition to high-quality MAS nets, Agent Miner constructs
agent nets and i-nets that can be used as a starting point for analysis and
improvement of ways the process participants work individually and together.

To support the above conclusions, Fig. 10 shows three types of trade-offs
as two-dimensional Pareto fronts for the nets discovered from the BPIC 2015
dataset. Each point in the plots denotes two quality measurements for one net
generated by the evaluation pipeline. The Pareto fronts indicate the nets with
better quality measurements. The MAS nets discovered by Agent Miner com-
plement workflow nets discovered by Inductive Miner to result in more satu-
rated Pareto fronts, that is, fronts with more models of interesting qualities.
For the BPIC15 dataset, MAS nets 1 to 8 discovered by Agent Miner belong to
the recall/precision Pareto front and demonstrate combinations of these qual-
ity measurements better than most CM models discovered by Inductive Miner.
MAS net 8 belongs to the size/precision Pareto front and is better in terms of
size/precision than most of the CM models. MAS nets 1 to 5, 7, and 8 demon-
strate a better combination of size/recall measurements than almost all CM
models. Overall, the Pareto fronts contain more AM models than CM models,
except in the size/precision case, when the front is represented by one AM model
and one CM model. Similar to the BPIC 2015 results, the Pareto fronts for the
BPIC 2013 dataset, presented in Fig. 11, include points for the MAS nets. The
Pareto front plots for all the datasets are included in the evaluation results [25].

Agent Miner uses an additional event attribute that specifies the agent that
triggered the event. Hence, it is reasonable to expect it to construct compara-
ble or better models than conventional algorithms, which do not require this
attribute. To obtain generalizable conclusions, for all the datasets, we analyzed
Pareto fronts and performed paired samples t-tests to establish whether CM
and AM models are of the same qualities, for CM models discovered using both
activity-only labeling (AOL) and agent and activity labeling (AAL). When mea-
suring precision and recall of AOL and AAL models, both AM and CM models,
events in the logs were identified correspondingly. The null hypotheses used in
the t-tests are such that means of quality measurements for AM and CM models
are equal. Table 3 summarizes comparisons of Pareto fronts for IM nets and AM
nets (IM as INDA), while Table 4 shows the results of the tests, where results
are for size (s), recall (r) and precision (p) measurements. In Table 3, AM, CM,
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Fig. 10. BPIC 2015 Pareto fronts: IM–AOL nets (“•”) and AM–AOL MAS nets (“◦”).

and AM&CM entries stand for situations when the Pareto front is composed
of AM only, CM only, or AM and CM models, respectively. In Table 4, for the
significance level of 0.05, AM, CM, and AM&CM entries stand for situations
when AM models are significantly better, CM models are significantly better,
and the null hypothesis was not rejected, respectively. We accept the AM and
AM&CM entries as situations when Agent Miner provides additional value to
CM models and highlight them in bold (the majority of the entries).

Fig. 11. BPIC 2013 Pareto fronts: IM–AOL nets (“•”) and AM–AOL MAS nets (“◦”).

Table 3. Comparison of Pareto fronts.

BPIC
data

AM vs CM fronts (AOL) AM vs CM fronts (ALL)

r/p s/p s/r r/p s/p s/r

2011 AM AM&CM AM AM&CM CM AM&CM

2012 AM&CM AM&CM AM&CM AM&CM AM&CM AM

2013 AM&CM AM&CM AM&CM AM&CM AM&CM AM&CM

2014 AM&CM AM&CM CM AM&CM AM&CM AM&CM

2015 AM&CM AM&CM AM&CM AM&CM CM CM

2017 AM&CM CM CM AM&CM AM&CM CM

2018 CM CM CM CM CM CM

2019 AM&CM AM&CM AM&CM CM CM AM&CM

2020 AM&CM AM&CM AM&CM AM&CM AM&CM AM&CM

Table 4. Results of t-tests.

BPIC
data

AM vs CM tests (AOL) AM vs CM tests (ALL)

s r p s r p

2011 CM CM CM CM AM AM&CM

2012 CM CM AM&CM AM&CM AM AM&CM

2013 CM AM&CM AM&CM AM&CM AM AM&CM

2014 CM CM AM&CM CM AM AM&CM

2015 CM AM&CM AM&CM CM AM AM&CM

2017 CM AM&CM AM&CM AM&CM AM&CM AM&CM

2018 CM CM AM&CM AM&CM AM&CM AM&CM

2019 CM CM AM CM AM AM&CM

2020 CM CM AM&CM CM AM CM

The results confirm that Agent Miner discovers interesting models to comple-
ment models constructed by conventional discovery algorithms that also rely on
event attributes that specify agents that triggered the events and describe this
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information in the constructed models. The results for Split Miner, CM models,
and AM models (Split Miner as INDA), demonstrate similar conclusions as for
IM models presented above.

6 Related Work

This section reviews business process modeling with agents, process discovery
addressing agents, and agent system modeling in a broad context.
Agent Modeling in Business Process Management. The relationship
between business process management and agent-based modeling was first
explored in the ‘90s by Jennings et al. [7]. In an extension of their work, dubbed
ADEPT, the authors propose to model a business process as a negotiation sys-
tem between agents, similar to our interaction nets [8]. However, their model
of negotiating agents is conceptual in its nature, while our model is formal and
executable. Several authors advocate for an agent-based perspective on business
process modeling [6,22]. In these works, the process is seen as such composed
of interacting agents [7]. However, they do not provide automated discovery of
models from data.
Process Discovery. Traditional process discovery techniques assume a case
perspective when learning models from data while often ignoring additional
perspectives such as resources. Several process discovery techniques extended
traditional methods beyond the case perspective. Rozinat et al. [20] propose a
multi-perspective approach for mining simulation models from event data that
includes the resource perspective. The resulting models are executable and can
be used for performance analysis of the underlying system. However, resources
are considered static entities and not active agents. Van der Aalst et al. [1]
address the modeling of behavior and availability of resources. Yet, resources
play a secondary role, with cases being the dominant perspective that defines
business processes. Klijn et al. [9] develop a technique for querying event logs to
uncover interactions between process entities. Yet, they do not provide a formal
model that can be evaluated for its correctness or goodness-of-fit. Discovering
functional architecture models (FAM) that comprise interacting modules that
internally perform various activities was proposed in [28]. Unlike the modules in
FAMs, our agents are dynamic, decentralized, and may interact not only with
other agents, but also with the environment. Fettke and Reisig presented an
approach to system mining called Heraklit [5]. Heraklit proceeds by construct-
ing distributed runs of participating agents and then combining them into the
overall system, whereas Agent Miner constructs agent nets and an additional
net that explicitly describes agents’ interactions.

Tour et al. [24] have shown that by shifting process mining paradigm from
case-based to agent-based, one can discover less complex models of business pro-
cesses. Within this agent paradigm, Nesterov et al. [15] have recently proposed a
process discovery solution. Their algorithm constructs sound generalized work-
flow nets that capture agents’ behavior. In contrast to our approach, Nesterov
et al. assume to know the interaction patterns between agents and aim to imple-
ment this given interaction pattern, while we discover the interactions from the
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data. Moreover, their algorithm can only discover pre-defined workflow patterns,
while Agent Miner is generic and can model any pattern its ANDA component
can discover. Furthermore, we evaluated Agent Miner over real-life logs, while
Nesterov et al. tested their approach over synthetically generated data.

Our approach can also be viewed as a log-decomposition process discovery
approach [27]. Such techniques propose to localize the event log to discover
different models tailored to the data in these local logs. In these techniques, the
log decomposition is usually driven by the case attribute, whereas we propose
an agent-driven log decomposition.
Multi-agent System Modeling. Multi-agent systems (MASs) have been stud-
ied extensively in the past; cf. [4] for a recent overview. Here, we focus on
approaches that model multi-agent systems using Petri nets, our formalism of
choice. A seminal paper by Moldt et al. [13] proposed to use colored Petri nets
(CPNs) to model agent systems. Their model captures three crucial compo-
nents in a MAS: communication, independence (between agents), and intelli-
gence. However, given the richness of CPNs, formal results on correctness of
constructed models were not obtain. Celaya et al. [3] model a multi-agent sys-
tem using elementary Petri nets to capture interactions between agents and use
Petri net analysis to ensure the models are deadlock-free. In our work, we dis-
cover MAS models from event data rather than relying on human expertise.

7 Conclusion

This paper presents and evaluates Agent Miner, a divide-and-conquer algorithm
for discovering models of agents and their interactions from event data. The
algorithm “divides” the input data into special parts and then “conquers” the
parts using conventional process discovery algorithms. The constructed agent
and interaction models provide a new, modular perspective on the data, suit-
able for analyzing process participants and their interactions. These artifacts can
be integrated into a model that describes process control flow. Such integrated
models are often smaller and represent the event data more faithfully than cor-
responding process models constructed using conventional discovery algorithms.
The configuration of Agent Miner used in the evaluation reported in this paper
ensures that the obtained integrated models are safe and sound.

Agent Miner has several limitations representing areas of interest for future
work. First, the interaction logs are constructed by taking the first event in each
agent trace of each agent. This approach ignores the information on the duration
of agent activities and interactions. For instance, information on the durations
of activities between interactions can be obtained by considering the first and
the last event from agent traces between those interactions. Consequently, one
can apply lifecycle-aware process discovery [10] or queue mining techniques [21]
to infer agent interactions. Next, Agent Miner associates each event with only
one agent. One can relax this limitation and study the effects of multiple agents
sharing the same event. Finally, the evaluation approach used in this article is
limited to the traditional model quality measures used in process mining. The



Agent Miner: An Algorithm for Discovering Agent Systems from Event Data 301

use of new agent-specific quality measures for discovered models may highlight
additional benefits of Agent Miner and other agent system mining algorithms in
the context of agent-based business process management.
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Abstract. Process pattern discovery methods (PPDMs) aim at identi-
fying patterns of interest to users. Existing PPDMs typically are unsu-
pervised and focus on a single dimension of interest, such as discovering
frequent patterns. We present an interactive multi-interest-driven frame-
work for process pattern discovery aimed at identifying patterns that
are optimal according to a multi-dimensional analysis goal. The proposed
approach is iterative and interactive, thus taking experts’ knowledge into
account during the discovery process. The paper focuses on a concrete
analysis goal, i.e., deriving process patterns that affect the process out-
come. We evaluate the approach on real-world event logs in both inter-
active and fully automated settings. The approach extracted meaningful
patterns validated by expert knowledge in the interactive setting. Pat-
terns extracted in the automated settings consistently led to prediction
performance comparable to or better than patterns derived considering
single-interest dimensions without requiring user-defined thresholds.

Keywords: Process Pattern Discovery · Multi-interest Pattern
Detection · Process Mining · Outcome-Oriented Process Patterns

1 Introduction

Process pattern discovery methods (PPDMs) aim to discover process patterns
that are of interest for the human analyst, where a process pattern corresponds
to a set of process activities (possibly annotated with additional data) with their
ordering relations. The interest of a pattern is usually computed according to
one or more functions. Previous studies highlighted how these techniques often
uncovered interesting behaviors that would otherwise remain hidden in start-to-
end process models [23].
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Several approaches have been proposed to discover process patterns from
a given event log [7,13,23] and employed them in several applications, for
instance, event abstraction [20], or trace classification [26]. However, most of
these approaches focus on a single interest dimension. In particular, they usu-
ally aim to detect frequent patterns, which often leads to the generation of a
multitude of non-interesting patterns and possibly the missing of interesting but
infrequent ones [22]. As pointed out by recent studies in the pattern mining
field [12], the concept of interest of a pattern is often linked to multiple dimen-
sions, some of which may be in conflict with each other. These considerations
also hold in the process domain since processes emerge from the interplay of
multiple factors, highlighting the need for multi-dimensional thinking in pro-
cess analysis [11]. Few PPDMs introduced a broader notion of interest, either
by allowing the user to define cut-off thresholds for several metrics [23], which
are then aggregated to rank the obtained set of patterns, or by directly using
a composite metric during the pattern generation phase [9,22]. However, these
solutions offer limited support in dealing with a multi-dimensional notion of pat-
tern interest. Defining appropriate cut-off thresholds for different and conflicting
metrics is a non-trivial decision that strongly impacts the obtained results. Fur-
thermore, aggregating multiple dimensions in a single one leads to a single ranked
collection of patterns which depends on the aggregation setting and hides the
interplay of the different dimensions. To deal with this complexity, the detection
of process patterns should be expressed as a multi-objective problem.

Beside the multi-objective challenge, most PPDMs are unsupervised and suf-
fer from pattern explosion in real-life event logs. Previous studies showed that
leveraging expert domain knowledge can avoid or mitigate the pattern explosion
issue [2,18]. A semi-supervised PPDM [18] was proposed for users to manu-
ally select and extend patterns. However, the approach still relies exclusively
on frequency-based metrics. Also, the burden of the selection and extension of
discovered patterns is left to the user as a manual task without much guidance.

In this work, we introduce the IMPresseD framework (Interactive Multi-
interest Process Pattern Discovery) for process pattern discovery. IMPresseD
is designed to derive interesting and easily interpretable patterns for the end
users by combining different strategies. First, the framework allows users to
define different interest functions to measure the interest of patterns, supporting
customizable multi-dimensional analysis goals. In this way, the user has more
control over the measures of relevance that they use, which is expected to lead to
patterns that are indeed considered meaningful by end users. Multi-optimization
strategies are used to allow the user to go over far fewer patterns than the ones
obtained by threshold-dependent strategies to identify the relevant ones. The
framework supports an in-depth analysis of the pattern characteristics, which
also considers the characteristics of the process executions in which the pattern
occurs. Finally, the approach is iterative and interactive. At each step, the user
is presented with the process patterns that are best according to the user-defined
interest functions, and they can select the ones to expand further.
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To showcase the framework’s usefulness, we also discuss how to use it with
a concrete analysis goal, i.e., deriving process patterns affecting the process out-
come. This is inherently a complex problem for which different aspects need to be
considered. Furthermore, to the best of our knowledge, most outcome-oriented
pattern detection approaches do not support a multi-dimensional analysis. Given
this concrete analysis goal, we carried out a two-fold evaluation to validate our
approach. First, we use a real-world case study in healthcare to show the capa-
bility of the proposed framework in supporting domain experts in extracting
meaningful patterns in an interactive setting. Then, we evaluate our approach
in a quantitative experiment to assess the predictive power of the automati-
cally discovered patterns. We compare the results of our approach with the ones
obtained by using a single metric and using the entire pattern set without filter-
ing. The obtained results show that the discovered set of patterns consistently
ranked within the top positions, while patterns mined by adopting single met-
rics led to a more unstable performance. Furthermore, the proposed framework
returned a set of patterns significantly smaller than the entire pattern set while
preserving a comparable predictive power.

Summing up, the paper contributes to the literature by introducing:

– a multi-interest and interactive process pattern discovery framework;
– tailored interest functions for discovering process patterns affecting the out-

come of the process.

The remainder of this paper is organized as follows. Section 2 reviews the
relevant related work. Section 3 provides basic concepts used throughout the
paper. Section 4 introduces the proposed framework, together with a concrete
instantiation of the interest function to support outcome-oriented pattern dis-
covery. Section 5 presents and discusses the evaluation. Finally, Sect. 6 draws the
conclusion and delineates some ideas for future studies.

2 Related Work

Most previous PPDMs take an event log as input and generate patterns based
on user-defined thresholds on a set of predefined measures of interest. These
approaches vary depending on the type of patterns they aim to extract. Early
work focused on discovering sequences of event traces, such as identifying
sequences that fit predefined templates [6] or using a sequence pattern min-
ing algorithm [14]. More recent research has focused on patterns represent-
ing more complex control-flow relationships, for instance, episodes represent-
ing eventually-flow relations [16], or graphs representing both sequential and
concurrent behaviors [9,15]. Patterns that represent a more comprehensive set
of control-flow relationships, including sequences, concurrency, and choice, are
considered in the approach proposed by Tax et al. [23]. This approach has been
extended to allow the extraction of patterns based on a more general set of utility
functions [22]. Taking into account the context in which patterns are observed,



306 M. Vazifehdoostirani et al.

Acheli et al. extended previous work to discover contextual behavioral patterns,
allowing for insights into the aspects that influence a process conduction [1].

Although these unsupervised PPDMs can uncover interesting patterns, they
offer little or no support for multi-dimensional analysis goals involving possibly
conflicting dimensions. Furthermore, they do not incorporate user knowledge,
which often results in the return of uninteresting patterns. A possible mitigation
strategy to this problem consists in keeping “humans in the loop”, as observed by
previous authors. For instance, Benevento et al. showed potential improvements
in the quality and clarity of the process models by employing interactive process
discovery in modeling healthcare processes compared to traditional automated
discovery techniques [3,4]. Within the PPDMs domain, a semi-supervised app-
roach is proposed for discovering process patterns which involves the user in the
pattern extraction process [18]. However, this approach only exploits frequency-
based interest functions based on user-defined thresholds.

3 Preliminaries

In this section, we recall the basic concepts needed to introduce our framework.

Definition 1 (Event). Let AC be the universe of activities, C be the uni-
verse of case identifiers, T be the time domain, and D1,D2, ...,Dm be the sets
of additional attributes with i ∈ [1,m], m ∈ Z. An event is a tuple of
e = (a, c, t, d1, . . . , dm), where a ∈ AC, c ∈ C, t ∈ T and di ∈ Di.

Definition 2 (Trace, event log). A trace σ = 〈e1, · · · , en〉 is a finite non-
empty sequence of events e1, · · · , en in which their timestamp does not decrease.
Let S denote the universe of all possible traces, an event log can be defined as
L = {σ1, σ2, · · · , σn} ⊆ S which is a set of traces.

We use Eσ for the set of events in trace σ. We define πact(e), πtime(e),
πcase(e), and πdi

(e) to return the activity, timestamp, case identifier and the
attribute di associated with e, respectively.

A well-known issue of log traces is that they flatten the real ordering rela-
tions among process events, hiding possible concurrency [17]. Since we intend
to discover patterns representing both sequential and concurrent relations, we
convert log traces in so-called partially ordered traces. It is possible to derive
partially ordered traces from fully ordered traces by using a conversion oracle
function obtained from expert knowledge or data analysis [10,19].

Definition 3 (Partially ordered trace). Given a conversion oracle function
ϕ and a log trace σ, a partially ordered trace ϕ(σ) = (Eσ,≺σ) is a Directed
Acyclic Graph (DAG), where Eσ and ≺σ ∈ Eσ × Eσ corresponds to the set of
nodes and edges, respectively. We define matrix Aϕ(σ) as an upper triangular
adjacency matrix that specifies directed edges from e to e′, with e, e′ ∈ Eσ. Also,
Rϕ(σ) is the reachability matrix derived from Aϕ(σ) to represent all possible paths
from e to e′ of length l such that 2 ≤ l ≤| σ | −1 . For each pair of events
e, e

′ ∈ Eσ, such that e �= e′, we define the following ordering relations:
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– if Rϕ(σ)(e, e′) �= 0, e′ eventually follows e′,
– if Aϕ(σ)(e, e′) �= 0, e′ directly follows e,
– if Rϕ(σ)(e, e′) = 0 and Rϕ(σ)(e′, e) = 0, then e is concurrent with e′.

Definition 4 (Process pattern). A process pattern P = (N, 	→, α, β) is a
DAG, where:

– N is a set of nodes,
– 	→ is set of edges over N
– α is a function that assigns a label α(n) to any node n ∈ N ,
– β is a foundational pattern for P , which means pattern P is extended from

pattern β.

Also, we denote that if | N |= 1, then β is NULL, i.e., a single node is
considered a pattern without any foundational pattern.

Examples of process patterns can be found in Fig. 2. P 1
θ , ..., P 5

θ all share the same
foundational pattern θ, represented by the single node b. In turn, pattern ω is
the foundational pattern for P 1

ω and P 2
ω in the middle column. Given a process

pattern, an instance of the pattern is an occurrence of the pattern in a log trace.

Definition 5 (Pattern instances set). Let P = (N, 	→, α, β) be a pattern,
ϕ(σ) = (Eσ,≺σ) a partially ordered trace, A�→ be an upper triangular adjacency
matrix over N , and R� be the reachability matrix of size | N | −1 derived from
A�→. Given a subset E′ ⊆ Eσ of nodes in ϕ(σ), such that there is a bijective
function I : E′ → N , then we define the pattern instances of P in ϕ(σ) as
PI(P,ϕ(σ)) = {E′ | ∀e, e′ ∈ E′, Aϕ(σ)(e, e′) = A�→(I(e), I(e′)) ∧ Rϕ(σ)(e, e′) =
R�(I(e), I(e′))∧πact(e) = α(I(e))}. The pattern instances set of pattern P over
event log L is defined as PIS(P, L, ϕ) =

⋃
σ∈L PI(P, ϕ(σ)).

4 IMPresseD Framework

Given an event log, the objective of the IMPresseD framework (Fig. 1) is to
discover the set of process patterns that are best according to multiple interest
functions defined by the user. The framework includes the following steps.

Step 1 Converting all traces in the event log into partially ordered traces using
a conversion oracle derived from expert knowledge or data analysis.

Step 2 Defining the interest functions which fit the users’ notion of pattern inter-
estingness based on their analysis goal. Analytical dashboards to visual-
ize the discovered patterns and the computed interest functions are also
defined.

Step 3 Extracting patterns of length-1, i.e., individual activities.
Step 4 Measuring the interestingness of each discovered pattern through the set

of interest functions defined at Step 2.
Step 5 Returning the set of patterns that are the best according to the interest

functions (i.e., non-dominated patterns in the Pareto front).
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Step 6 If the user is satisfied with the current set of patterns or there is no exten-
sion possible, the procedure ends. Otherwise, the user selects pattern(s)
to extend (i.e., the foundational patterns), and the procedure goes to
Step 7.

Step 7 Building all extensions of the foundational patterns and going to Step 4.

In the remainder of this section, we delve into the pattern selection (Steps 4
and 5) and extension (Step 7). Finally, we show an instantiation of the interest
functions (Step 2) using an analysis goal for the discovery of process patterns
affecting the process outcome.

Fig. 1. Overview of the IMPresseD framework

4.1 Pattern Selection

Let Pi = {P 1, P 2, ..., P k} be the set of all patterns discovered in ith iteration of
the method and let I = {I1, I2, ..., Im} be the set of interest functions, where
∀Ik ∈ I, Ik : Pi → R. The pattern selection module aims to return the set
of patterns (P ∗ ⊆ Pi) that optimize the pre-defined interest functions. This
corresponds to solving a multi-objective optimization problem (MOP).

Several approaches have been proposed in the literature to solve a MOP.
Note, however, that a feasible solution optimizing all objective functions simul-
taneously usually does not exist. Therefore, the goal is to find the so-called
Pareto Front, which involves a set of patterns that are not dominated by any
other pattern in terms of the multiple interest functions. Informally, solutions on



Interactive Multi-interest Process Pattern Discovery 309

the Pareto front are such that no objective can be improved without worsening at
least one of the other objectives. In this paper, we use the algorithm proposed by
[5] to filter out dominated patterns. For any pair of patterns P l, P j ∈ Pi, we say
that P l dominates P j if and only if: a) ∀Ik ∈ I, Ik(P l) is no worse than Ik(P j);
b) ∃Ik ∈ I, Ik(P l) is strictly better than Ik(P j).

4.2 Pattern Extension

Informally, extending a pattern P means generating a new pattern P ′ by adding
new nodes and edges to P according to a set of extension rules applied on
partially ordered traces involving at least one instance of the pattern. Formally,
let ϕ(σ) = (Eσ,≺σ) be a partially ordered trace, and P = (N, 	→, α, β) be a
pattern, in a way that | PI(P,ϕ(σ)) |> 0 and E′ ∈ PI(P,ϕ(σ)). An extension
operator is a function Extf that takes as input pattern P and an instance
pattern E′ and returns a new pattern P ′ according to the extension rule f .
Specifically, Extf (P,E′) = (N ∪ Vf , 	→ ∪ 	→f , α ∪ α

′
, P ), where Vf is the set of

nodes in ϕ(σ) satisfying the ordering relation expressed by the extension rule f ,
	→f is the set of edges linking the nodes of Vf with the nodes in E′, and α

′
is the

labelling function for nodes in Vf . In this paper, f ∈ {	→, 	→′, ||,�,�′, dc}, which
represents respectively: (1) direct following, (2) direct preceding, (3)concurrent,
4)eventually following, (5)eventually preceding, (6) direct context relations.

Given Aϕ(σ) as adjacency matrix and Rϕ(σ) as reachability matrix of size
| σ | −1 over Eσ, we define V �→ = {e ∈ Eσ | ∀n ∈ E′, e /∈ E′, Aϕ(σ)(n, e) = 1}. In a
similar way, V� = {e ∈ Eσ | ∀n ∈ E′, e /∈ E′, Aϕ(σ)(n, e) = 0, Rϕ(σ)(n, e) > 0} and
V|| = {e ∈ Eσ | ∀n ∈ E′, e /∈ E′, Aϕ(σ)(n, e) = 0, Rϕ(σ)(n, e) = 0, Rϕ(σ)(e, n) = 0}.
Note, V �→′ and V�′ can be derived by changing the order of e and n in the
definition of V �→ and V�, respectively. Finally, dc is defined as Extdc(P,E′) =
Ext�→(P,E′) ∪ Ext �→′(P,E′) ∪ Ext||(P,E′).

Figure 2 illustrates some examples of pattern extensions. The black dotted
boxes in each column of the figure highlight the instance found in the partially
ordered trace of a pattern P we want to extend. For instance, single node b is an
instance of pattern θ, and its corresponding extensions are patterns P 1

θ , .., P 5
θ . ,

where the number in the red dotted box reflects the ordering of the rule set. For
instance, the first (second) rule represents the directly following (preceding) rela-
tion, which results in patterns P 1

θ (P 2
θ ); the third rule involves nodes concurrent

to b, i.e., in this case, only node c1.; and so on. Users can select all or a subset
of rules f to explore all possibilities for the extension of a selected foundational
pattern in each iteration of IMPresseD. Therefore, the set of all extended pat-
terns from the foundational pattern P using a subset of rules called F ′ is defined
as PP =

⋃
σ∈L

⋃
E′∈PI(P,ϕ(σ))

⋃
f∈F ′ Extf (P,E′).

1 Please note that we added the black dots only for the sake of clarity in the visual-
ization of a concurrent pattern and they do not belong to the extended pattern.
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Fig. 2. Pattern extension procedure example

4.3 Interest Functions for Outcome-Oriented Pattern Detection

To show a concrete example of the use of the IMPresseD framework, this section
outlines tailored interest functions for the outcome-oriented pattern discovery
goal. We designed these functions by analyzing related literature and through
discussions with domain experts.

While previous studies in outcome-oriented pattern discovery have focused
on identifying patterns that are highly correlated with the outcome [21], we argue
that correlation should not be the only dimension of interest. Our discussions
with healthcare experts revealed that ignoring the frequency measure may lead
to identifying too rare patterns that are often less interesting. In addition, fre-
quent patterns that are not highly correlated may still be worth exploring. For
example, a particular treatment “A” may be highly frequent but not highly cor-
related. However, when studying different extensions of “A”, some interesting
correlated patterns may emerge. Hence, in our analysis, we define frequency-
based interest besides correlation-based interest. Moreover, it is well-known that
potential confounding variables may play an important role in determining the
outcome of a treatment process [25]. For example, let treatment pattern P1 be
detected as a pattern that negatively affects the treatment outcome. We may
find that P1 is only delivered to elderly patients. This questions the reliability of
the relation between P1 and the treatment outcome since the patients’ age may
actually be the real factor leading to worse treatment results. To mitigate the
effect of confounding variables, we consider the distance between cases with or
without a specific pattern as the third interest dimension.

Following these observations, we established three dimensions of interest to
support outcome-oriented pattern discovery with their corresponding interest
functions.
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Frequency Interest. evaluates the frequency of occurrence of a pattern in the
event log. In this study, we define frequency interest function as the percentage
of cases that have at least one pattern instance P as:

CC(P,L, ϕ)=
| {σ ∈ L | PI(P,ϕ(σ)) > 0} |

| L |

Outcome Interest. measures the effect of each pattern on the process outcome.
For continuous outcome values, we use a correlation-based function. For the
categorical outcomes, we use an information-gain-based function.

Let Φ be a set of values representing possible outcomes. The outcome of a
process is defined as a function f : S → Φ, that maps the set of all possible input
traces to the set of all possible outcome values. Then we define OV = (f(σ))σ∈L

as the outcome vector for event log L. Let PC-freq(P,ϕ(σ)) =| PI(P,ϕ(σ)) | be
the frequency of pattern P in trace ϕ(σ), we define FV = (PC-freq(P, ϕ(σ)))σ∈L

as the frequency vector of pattern P for event log L. Then, the outcome interest
function is defined as OI(P, L, ϕ) = ρ(OV, FV), where for continues outcome
ρ is the Spearman correlation coefficient, while for categorical outcome ρ is
the information gain.

Case Distance Interest. is designed to mitigate the impact of confounding
variables. Here, we consider initial case attributes as potential confounding vari-
ables. Let AT be a set of user-defined case attributes, ATσi

= (πdj
(e1))dj∈AT is

a vector of initial case attributes corresponding to trace σi. Let CP = {σ ∈ L ||
PI(P,ϕ(σ)) |> 0} be the set of cases including an instance of the pattern P and
CP̄ =

⋃
σ∈L{πcase(σ)} − CP be the set of cases without P . Then we define the

Case distance function as CD(P, L, AT ) =
∑

σi∈CP

∑
σj∈CP̄

1
|L|dist(ATσi , ATσj ).

Let distEuc be the Euclidean distance for numerical features, and distJac be
the Jaccard distance for m categorical feature, and Fnormal be a normalization
function, then dist = Fnormal(distEuc)+distJac

m+1 as defined in [8].
Ideally, there must be CD(P,L,AT ) = 0 to ensure that the pattern P is

not influenced by any confounding variable. However, in real-life scenarios, some
differences between case attributes are inevitable. To assist users in analyzing
which case attributes might have an effect on the outcome, we present a dash-
board that visualizes the differences in selected case attributes. This enables the
user to pinpoint specific case attributes that may be important for pattern P
or explore the reasons behind each process behavior if it is related to the case
dimension. An example of this dashboard is presented in Fig. 4.

5 Implementation and Evaluation

This section aims to demonstrate the usefulness of the IMPresseD framework for
a concrete analysis goal defined by expert users (i.e., detecting process patterns
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affecting the process outcome) through two forms of evaluation. We have imple-
mented an open-source tool in Python for outcome-oriented pattern discovery
goals, which is publicly available through GitHub2.

The first evaluation (user-based evaluation) aims to show the usefulness of the
proposed framework in supporting the user in dealing with pattern discovery in
an interactive and multi-interest setting. In the second evaluation (quantitative
evaluation), we performed a comparative analysis using different sets of patterns
in a fully automated setting to evaluate their predictive capabilities.

5.1 User Based Evaluation

Evaluation Setup. The goal of this evaluation is to determine whether our
framework is able to discover patterns confirming expert knowledge of the treat-
ment process. To this end, we asked two expert users from the medical domain
to use the IMPresseD tool on historical data to discover treatment process pat-
terns affecting patients’ survival time. We then asked the users to validate the
discovered patterns using their own medical knowledge.

As interest functions, we maximize CC(P,L, ϕ) and OI(P,L, ϕ) based on the
Spearman correlation, and minimize CD(P,L,AT ). Regarding the visualization
dashboard, we opted for distribution plot for the numerical features (e.g., age,
albumin level, etc.) and pie chart for the categorical features (e.g., gender, mor-
phology, etc.) based on expert suggestion. We also visualized the Kaplan-Meier
curve, as it is a very common graphical representation of the survival probabil-
ity for a group of patients based on their observed survival times. The Log-rank
test is also included to check the significance of the difference in survival time
between cases with or without a particular pattern.

Dataset. We used an event log provided by the Netherlands Cancer Registry
(NCR) regarding the treatment process for patients with metastatic stomach or
esophageal cancer. These patients can usually not be cured and receive palliative
care to increase the quality of the remaining lifetime and possibly extend it.
Therefore, the outcome of the treatment process is the patient survival time.

We did some data preprocessing according to the domain experts. Specially,
we removed cases where there were logging errors (e.g., patients for which the sur-
vival time was not known), as well as exceptional cases or outliers, like patients
who received one or multiple treatment(s) abroad. Similarly, patients with too
deteriorated health are removed from the dataset, as they are not fit enough to
receive any treatment. At the end of preprocessing, the event logs consisted of
957 cases, 32 distinct treatment codes, and 368 process variants. We also used
domain knowledge as a conversion oracle for transforming each trace into a par-
tially ordered trace. In particular, two groups of treatments are considered to
be parallel: 1) systematic treatments starting within three days from each other,
and 2) all treatments which start and end on the same day.

2 https://github.com/MozhganVD/InteractivePatternDetection.

https://github.com/MozhganVD/InteractivePatternDetection
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Fig. 3. Non-dominated pattern in three iterations of discovery algorithm

Results. In the first iteration of the algorithm (extension step 0), we obtained
8 non-dominated treatments as shown in Fig. 3 (3D graph left side). The frame-
work allows users to assess every single non-dominated treatment in a three-
dimensional view.

Users can select each of the recommended single treatments by the Pareto
front as a foundational pattern and apply the extension functions discussed in
Sect. 4.2. The experts selected capecitabine and paclitaxel as interesting patterns
to extend. In the second iteration (extension step 1), we identified 18 patterns
out of the 206 extended patterns from capecitabine and 14 patterns out of the
116 extended patterns from paclitaxel in the Pareto front, indicating that the use
of defined interest functions and Pareto front enables users to concentrate on a
maximum of 10% of the total discovered patterns in this step. The expert decided
to filter out patterns with a minimum frequency of 10 patients, thus focusing on
the 8 and 6 most frequent patterns from capecitabine and paclitaxel within the
Pareto front, reported in Fig. 3. The users decided to stop after one extension
step for capecitabine, while a second extension step was carried out for paclitaxel.
For each pattern, values of each interest function are reported. Furthermore, we
also generate a dashboard showing its control-flow structure and corresponding
case data. The main goal of the dashboard is to allow users to compare different
case attributes corresponding to the cases with and without patterns. These
dashboards enable users to investigate the reasons behind each process behavior.
An example is shown in Fig. 4. This pattern depicts a treatment pathway that
commences with oxaliplatin and capecitabine. After some time, oxaliplatin is
stopped, and capecitabine is continued. The significant difference between the
survival curves of patients with and without this pattern suggests the efficacy
of these treatment combinations. Cases with and without patterns are quite
similar according to the selected attributes, though the dashboard shows that
this pattern was never prescribed to patients with a tumor morphology labeled
as “other” (which was in line with experts’ expectations).

Patterns colored green in tables inside the Fig. 3 are the patterns marked
as interesting by expert users (i.e., patterns validated by medical knowledge).
The users considered two patterns from extending capecitabine not interesting
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Fig. 4. An example of dashboard visualization for a pattern extended from capecitabine.
Note: the inner ring of pie charts and red color in distribution plots correspond to the
cases with the shown pattern in the dashboard.

because of a too low correlation with the outcome, leading to very similar sur-
vival time for patients with and without the pattern (MedianOutcome in/out in
the dashboard), which does not allow them to say anything about the relation-
ship with the outcome. As regards patterns extended from paclitaxel, in the first
step only one pattern was marked as not interesting. The reason is that the user
expected an additional treatment which, however, was not possible to detect
in combination with the discovered patterns. Further investigations are needed
to determine why the occurrence of this particular treatment in the dataset
does not fit with experts’ expectations. Note that for the second extension, with
foundational pattern paclitaxel 5, the users were especially interested in exten-
sions involving radiotherapy. The last extended pattern in the extension step 2
did not involve radiotherapy and was hence marked as not interesting. Over-
all, the detected patterns confirmed the effectiveness of the previously known
combination of treatments, providing valuable evidence-based insight. Only a
few patterns were marked as not interesting. Both users found the visualization
dashboard very helpful in understanding the detected patterns and in uncov-
ering potential relations with the case attributes. We would like to point out
that without using the Pareto front, users would have to either try different
thresholds or explore all the extended patterns manually.

5.2 Quantitative Evaluation

Evaluation Setup. The goal of the quantitative evaluation consists in assessing
the predictive capabilities of patterns detected employing multi-interest func-
tions compared to patterns detected utilizing a single dimension or without any
filtering. If the multi-interest functions obtain a predictive performance in line
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Fig. 5. Quantitative evaluation results

with the other strategies, this shows they allow to preserve the same predictive
power, in addition to them leading to more meaningful process patterns filtering
out many non-interesting ones (as illustrated in the user-based evaluation). We
drew inspiration from the common evaluation used in “deviance mining” [21]
to assess the quality of the set of discovered patterns in predicting the outcome
of the process without exploiting the user’s knowledge. In this setting, discov-
ered patterns are treated as independent features, while the process’s outcome is
considered the dependent feature. Frequency-based encoding is used to encode
independent features. Specifically, we compare the performance of decision trees
(DTs) trained on the K patterns obtained from the Pareto front in each exten-
sion step to those trained on the top K patterns identified by considering every
single dimension, as well as those trained on all discovered patterns. To achieve
this, all the K non-dominated patterns in the extension step ith were used as
foundational patterns to be extended in iteration i + 1th. As interest functions,
we maximize the outcome (information-gain-based) and frequency functions and
minimize the case distance function. During the pattern discovery procedure, we
only considered the training set to prevent potential bias or information leakage
in the evaluation.

Datasets. We analyzed the three most commonly used event logs in out-
come prediction literature, namely BPIC2012, BPIC2011, and Production, by
leveraging preprocessed and labeled logs from prior research [24]. We used all
case-related attributes for calculating the case distance function. For the NCR
dataset, we divided the survival time into three classes with equal frequency
based on the experts’ knowledge for this evaluation.
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Results. Fig. 5 presents the results of the 5-fold cross-validation (i.e., the aver-
age F1-score with minimum and maximum obtained values). The DT trained
on the patterns obtained from the Pareto front outperformed or it is as accu-
rate as its counterparts. The only configuration that does better in some cases
is the all patterns configuration, which involves a much higher number of pat-
terns. Indeed, on average, the ratio between the size of the feature set obtained
from the Pareto front and the size of the feature set obtained in all patterns
configuration is 47.5%. This result shows that using Pareto optimal solutions,
we combine the best of multiple criteria and manage to retain discriminative
information with a smaller number of patterns than all possible ones. Another
interesting finding is that the results of the DT trained on patterns from the
Pareto front consistently rank among the best ones, while results of DTs trained
on patterns obtained from single dimensions show a stronger dependency on the
dataset.

When comparing single-interest measures, the case distance obtained the
worst performance in most of the tested datasets. The outcome measure out-
performed all single measures in 5 out of 10 studied event logs (BPIC11 2,
BPIC11 4, BPIC12 1, BPIC12 2, BPIC12 3), while the frequency interest out-
performed the other single measures in 3 event logs (BPIC11 3, NCR, Produc-
tion). This suggests that there might be a relationship between the characteris-
tics of the event log and the predictive power of single-interest dimensions.

5.3 Discussion

The quantitative evaluation indicates that using the Pareto front leads to com-
parable or better prediction performance than the ones achieved by using single
measures, and with much fewer patterns than using all possible ones. Using the
Pareto front also has the additional advantage that less effort is required than
selecting a threshold for a specific metric. Furthermore, the developed approach
provides a flexible means for the user to define the desired pattern characteris-
tics. Note that the quantitative evaluation also shows that the proposed method
has the potential to be used in a fully automated setting.

However, a surprising observation is that extending the process patterns often
does not improve the prediction results, except for a slight improvement in per-
formance after the first extension in the NCR dataset. This may be due to an
overlap between the pattern obtained from the (i+1)th iteration and the founda-
tional patterns in the ith iteration. Considering all patterns in the Pareto front
as foundational patterns for being extended in the next iteration may have led to
overlap that increases the dimension of the problem without adding much new
information. One direction for future research would be to minimize the overlap
between patterns obtained from each iteration.

On the other hand, the results of the user-based evaluation demonstrate the
usefulness of the IMPresseD framework in discovering process patterns for sup-
porting outcome-oriented process pattern detection. The Pareto front selection
of patterns allows users to reach their desired pattern without exploring many
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non-interesting patterns. Furthermore, the designed visualization dashboard pro-
vides effective support to the human analyst in exploring and interpreting the
patterns. We would like to point out that, to the best of our knowledge, no other
process pattern discovery tool provides these functionalities. However, this eval-
uation has some threats to validity. First, being based on a use case, these results
cannot be generalized to different contexts. Furthermore, only two experts were
involved in verifying the discovered patterns. To mitigate these threats, we pro-
vide a prototype of the tool to enable other researchers to replicate our results
and apply the approach to other case studies. Furthermore, a comprehensive sur-
vey involving more experts from different perspectives, such as data scientists
and oncologists, is planned to evaluate the proposed method on a wider scale.

6 Conclusion and Future Work

The paper presented the IMPresseD framework, designed to derive interesting
and easily interpretable process patterns for the end users. The framework is iter-
ative and interactive and allows the user to select the most interesting patterns
to expand further. The paper also discussed a concrete analysis goal of deriving
process patterns affecting the process outcome, which is a complex problem that
requires considering different aspects. The paper evaluated the proposed app-
roach using a real-life case study in healthcare and in a completely automated
setting using publicly available event logs. Overall, the paper contributes to
the process pattern discovery literature by introducing a framework that takes
into account a multi-dimensional notion of interest and by demonstrating its
effectiveness through empirical evaluations. In future work, to further evaluate
and enhance the efficacy of our proposed framework, we intend to conduct a
comprehensive survey that draws on a wider range of expert knowledge and
opinions. This survey will allow us to gather valuable feedback on the usefulness
of our framework and explore potential avenues for future research. Additionally,
we intend to explore additional extension operators to discover more complex
patterns, as well as introduce constraints on the pattern extension in a fully-
automated setting.
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Abstract. This study presents an online experiment to analyse twomeasures (suc-
cess stories and additional information) to overcome a potential status quo bias
towards adopting robotic process automation (RPA) in the nonprofit sector using
150 participants and two treatments. Data is analysed using PLS-SEM. Our find-
ings indicate that the adoption ofRPA technologies in the nonprofit sector is indeed
influenced by status quo bias. Moreover, the treatment of success stories might
help to overcome some aspects of this bias. Future research should focus on the
application of RPA in the nonprofit sector, deepening our understanding of cogni-
tive biases and technology adoption, and testing further potential countermeasures.
Our findings should inform organisations that develop a communication strategy
within their RPA implementation efforts. This study is one of the first efforts to
close the gap of missing RPA studies in the nonprofit sector identified in literature
reviews. Moreover, it contributes to a deeper understanding of cognitive biases
and technology adoption.

Keywords: Robotic Process Automation · Adoption · Status Quo Bias ·
Countermeasures

1 Introduction

Robotic Process Automation (RPA) technologies are a major trend in the Business Pro-
cess Management (BPM) discipline. They have received growing attention in academia
[1–3] and practice [4]. RPA describes software or so called “bots” that allow the automa-
tion of business process via the graphical user interface (GUI) of underlying core systems
with little or no technical skill [3]. It is widely seen as easy to apply in business process
improvement efforts and, as such, as a means to digitally transform business processes
[1, 2, 5]. While there is striking evidence of the success of RPA implementations in the
private sector [e.g., 6, 7], there are only a few accounts of RPA adoption in the public
or nonprofit sector [with notable exceptions such as 8]. In fact, missing insights on RPA
usage in the nonprofit sector were identified as one research gap in a recent literature
review [3]. Reasons for this apparently low adoption ofRPA technologies in the nonprofit
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or social sector could be found in lacking methodological support for adoption. Syed
et al. call for more research on the issues pertaining to RPA use [2]. Similarly, Plattfaut
et al. [9] identify the importance of change management and the active persuasion of
stakeholders to use RPA. Naturally, nonprofits’ decision structures, skills available or
budgetary constraints [10] could also be major influences, but are not the focus in this
research effort.

The literature on the adoption and use of technology identifies two main drivers: The
expected performance of a technology and the expected effort of using the technology
heavily influence adoption and use. This influence was shown in various theoretical
models and empirical studies [11–13]. However, this theoretical perspective fails to
explain the low adoption and use of RPA technologies in the nonprofit sector. Prior
research on RPA unequivocally praised the low efforts of implementation (ad effort
expectancy) and the high value of RPA implementations (ad performance expectancy)
[1–3].

One prominent avenue to explain the low adoption and use of technologies is status
quo bias (SQB), but countermeasures have not yet been tested in information systems
(IS) research. SQB describes the effect that individuals typically have a biased prefer-
ence for the current state of affairs (e.g., for the currently used technology) and, thus, are
reluctant to change (e.g., switch to a new technology) [14]. SQB thus impedes organisa-
tions from implementing RPA, requiring dedicated change management efforts [9]. But
if individuals do not accept changes because of a biased perception of RPA compared
to the status quo, valuable improvements and innovations cannot bear fruit. Therefore,
information technology (IT) and IS practitioners and researchers are vested in employ-
ing valid countermeasures to SQB in the case of technology adoption. But despite a
wealth of knowledge that affirms SQB’s presence in different situations ranging from
the introduction of an enterprise resource planning system [14] to that of a health cloud
[15] to date, no study has examined measures to counter SQB in IT in general or RPA
in specific.

In other disciplines, studies testing countermeasures are also scarce. Still, two strate-
gies have proven successful, which we also test here: Lorenc et al. (2013) tested the
effects of an intervention with additional information material on energy tariff switch-
ing behaviour. Shealy et al. (2019) succeeded in getting civil engineers to conceptualise
more sustainable buildings with success stories. In this study, we test both ideas of using
additional information and success stories to counter SQB towards adopting robotic pro-
cess automation (RPA) in the nonprofit sector. More specifically, we aim to answer two
research questions:

• RQ1: Does SQB affect the technology acceptance of RPA?
• RQ2: Can more information and/or the reference to prior success stories help counter

SQB regarding RPA and increase intention to use?

To this end, we conduct an online experiment [16]with 150 participants. Our findings
indicate that adoption is indeed affected by SQB and that success stories might help
overcome some aspects of this bias.
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2 Background

2.1 Robotic Process Automation

RPA is a comparably new technology to automate business processes. While a plethora
of different definitions exist [as discussed in, e.g., 1–3], we follow the integrative def-
inition of Plattfaut and Borghoff and understand RPA as “a technology that allows the
development of (multiple) computer programs (i.e., bots) that automate rules-based busi-
ness processes through the use of GUIs” [3]. This definition indicates that RPA enables
the automation of processes supported by information technology but executed manu-
ally. To this end, RPA mimics end-user behaviour through the GUIs. As such, it can be
understood as a non-invasive technology as it does not require any underlying systems
or infrastructure change.

The literature agrees that RPA comes with comparably low implementation effort.
Prior studies highlight that “RPA development is both simple and rapid” [3]. Implement-
ing RPA bots compared to more traditional forms of process automation is “relatively
easier and cheaper” [2]. This effect is partly because tech-savvy business people can
implement RPA as RPA requires more process and subject matter expertise and fewer
IT programming skills [6, 17, 18].

Moreover, the literature also highlights the advantages of RPA regarding its perfor-
mance [19]. Processes can be executed faster, more reliably, and potentially 24/7 [1].
Case studies especially highlight the great advantages of cost-savings compared to the
low investment costs [6]. As such, compared to other more traditional means of pro-
cess automation, the performance benefits of RPA are high. Hence, RPA is increasingly
included in organisations’ BPM efforts [17].

2.2 Technology Acceptance and Adoption

Much research has examined technology acceptance and adoption to explain the user
acceptance of new IT such as RPA. The starting point for this research was the theory
of reasoned action that postulated that an individual’s attitudes and subjective norms
influence their behavioural intention and, subsequently, their behaviour [20]. The theory
of planned behaviour later complemented that with the third construct of perceived
behavioural control [21]. This theory offered the theoretical basis for examining users’
technology acceptance and adoption behaviour. The most prominent models developed
to examine the behavioural intention to use a technologywere the technology acceptance
model (TAM) and the unified theory of acceptance and use of technology (UTAUT) [11,
12, 22, 23].

Across technology acceptance models, two constructs are prominent: (1) Perfor-
mance expectancy describes how beneficial an individual perceives the system regarding
their job performance [12]. Similarly, perceived usefulness measures how far an individ-
ual perceives a new system to enhance their job performance [22]. (2) Effort expectancy
describes how easily an individual perceives the use of a system [12]. Similarly, per-
ceived ease of use measures how far an individual believes using a new system is free
from effort [22]. We focus on these constructs in our study as researchers have estab-
lished that these are most influential in determining individual technology acceptance
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and use behaviour [24]. Furthermore, the relevance of these constructs has also been
proven for RPA already [13].

2.3 Status Quo Bias (SQB)

Status quo bias describes a biased preference for a current solution or way of doing
things [25]. The literature distinguishes three explanation approaches for this preference:
1) Cognitive misperception or loss aversion refers to the “non-rational” preference of
individuals to remainwith the status quo because potential losses in the context of change
are perceived as unrealistically large [26]. 2) Rational decision-making captures the
perception of “rational” aspects like net benefits and costs (uncertainty and transition
costs) [14]. 3) Psychological commitment comprises other “non-rational” influences
like sunk costs, control, and social norms. In their initial publication, Samuelson and
Zeckhauser [27] did not explicitly delineate these rational and non-rational explanation
approaches. We thus need to consider them in combination to one another.

In the IS domain, SQB has elicited particular interest in the context of system adop-
tion. Kim and Kankanhalli (2009) studied SQB in the technology acceptance context.
They developed an integrative framework combining SQB theory, technology accep-
tance literature, and the equity implementation model. They then successfully tested
parts of this model in the context of an ERP introduction [14]. For the specific case of
RPA in the social sector, not all SQB constructs are relevant. As the literature review
by Lee and Joshi [28] demonstrates, prior studies typically selected only those SQB
constructs relevant to their context. Across the literature, one of the main advantages
proposed for RPA is that it is cheap and does not require substantial changes to the
processes for automation [2]. Thus, several SQB constructs – especially those related
to costs – are less relevant for this context. RPA works on the system interfaces as a
human would; therefore, it requires no substantial change to current processes. In the
simplest case, tasks that a human did beforehand are now executed the same way with
RPA. Nonetheless, individuals could fear that they will lose privileges or other benefits
of the current way of working [14] – in the most extreme case, they could fear that their
job would also be automated one day. Therefore, loss aversion could be relevant in this
context. However, uncertainty and transition costs become irrelevant with a technology
that requires no large investments and is easy to implement. Regarding psychological
commitment, sunk costs are irrelevant in this context as RPA typically replaces a man-
ual process. Social norms, however, remain relevant as the behaviour of colleagues and
superiors could still influence the acceptance of RPA. Finally, control could also be an
issue, as introducing RPA could cause insecurities. Therefore, this research focuses on
loss aversion, net benefits, social norms, and control as the relevant constructs and thus
covers all three explanation approaches to SQB.

Research has discussed several countermeasures for SQB [25]. Two countermea-
sures stand out both because of their suitability for RPA and because of their empirical
grounding (albeit outside the domain of technology acceptance and use): 1) Providing
additional information: Lorenc et al. [29] tested the effectiveness of an intervention to
motivate energy tariff switching. They conducted two interviews with 150 individu-
als. In the first interview, they provided information on energy tariffs. Similarly, other
researchers recommend providing individuals with additional information or resources
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to counter SQB: Several researchers recommend enabling users to “feel in control,” e.g.,
via additional resources [30, 31]. For example, it can be more information in general
[32, 33], more information about alternative options [29], or specific information on the
change [34, 35]. 2) Telling success stories: Shealy et al. (2019) tested the effect of best
practice examples (or success stories) on getting engineers to conceptualise more sus-
tainable buildings. Other researchers have also commented on the use of success stories,
for example, demonstrations, lighthouse projects or references to successful compa-
nies [35–37]. Based on this, we created treatments to test the influence of additional
information and success stories on SQB and the adoption of RPA technologies (see
Table 1).

3 Hypotheses

To effectively test the influence of the two selected countermeasures (giving individuals
additional information and telling them success stories), we combined SQB with tech-
nology acceptance theory. We present our hypotheses derived from prior literature on
SQB and technology acceptance in the following. We build a conceptual model of the
construct relationships shown in Fig. 1 based on three overarching hypotheses.

H1. Based on prior results in the technology acceptance literature, we expect perfor-
mance and effort expectancy to influence the behavioural intention to adopt [12, 13].
We thus hypothesize (H1.1) a positive influence of PE on BI to use RPA and (H1.2) a
positive influence of EE on BI to use RPA.

H2. Kim and Kankanhalli (2009) proposed a direct influence of SQB constructs on
technology acceptance constructs. Due to the specific nature of our context, we focus
on loss aversion, net benefits, social norms, and control as relevant constructs for SQB
(see above). In building our hypotheses, we rely on several authors who have used these
concepts [15, 35, 43, 44]. Li et al. [43] find a positive influence of loss aversion on user
resistance, which we would expect to be inverted for behavioural intention. Therefore,
we expect a negative influence of loss aversion on the direct determinants. We thus
hypothesize (H2.1) a negative influence of LA on PE and (H2.2) a negative influence of
LA on EE. Zhang et al. [44] find a positive influence of perceived benefits on behavioural
intention.Kim [35] finds a negative influence of perceived value on user resistance,which
we expect to be inverted for the direct determinants of behavioural intention. We assume
(H2.3) a positive influence of NB on PE and (H2.4) a positive influence of NB on EE.
Hsieh [15] finds a positive influence of social norms on the behavioural intention to use
health clouds. Similarly, Polites and Karahanna [45] also find a positive influence of
social norms on behavioural intention. In other words, the positive affirmation of people
who are important to the individual should increase the intention to use a system. As
Venkatesh et al. (2003) conceptualised performance expectancy and effort expectancy
as direct determinants of behavioural intention, we also expect a positive influence of
social norms. We thus hypothesize (H2.5) a positive influence of SN on PE and (H2.6)
a positive influence of SN on EE. Hsieh [15] also finds a positive influence of control
on the behavioural intention to use health clouds. He refers to the effect that the more
resources and knowledge an individual has, the higher their intention to use a new system
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Table 1. Constructs derived from literature.

Constructs Definition Source

Tech. Acc Performance expectancy (PE) Performance expectancy describes
how beneficial an individual
perceives the system regarding their
job performance

[12]

Effort expectancy (EE) Effort expectancy describes how
easily an individual perceives the use
of a system

[12]

Behavioural intention (BI) Behavioural intention describes the
behavioural intention of the
individual to use the system

[12]

SQB Cognitive misperception: Loss
aversion (LA)

Loss aversion describes that
individuals prefer to avoid potential
losses even when these evenly match
with potential gains

[38]

Rational decision-making:
Net benefits (NB)

Net benefits describe the perceived
benefits relative to the costs of a
change

[14]

Psychological commitment:
Social norms (SN)
Control (CO)

Social norms describe the level of
influence the individual attributes to
the opinions of others

[39]

Control describes the level of control
an individual has regarding a change.
They achieve this through resources
or capabilities to deal with the new
way of doing things

[31]

Treatment Additional information (AI) Participants receive additional
information on RPA for nonprofit
organisations in a textual format
adapted from an online source [40]

[29]

Success story (SU) Participants receive a success story
on RPA for nonprofit organisations in
a textual format adapted from an
online source [41]

[42]

is. Hence, we argue for (H2.7) a positive influence of CO on PE and (H2.8) a positive
influence of CO on EE.

H3. In line with prior research [29, 42], we tested two countermeasures and expected a
significant influence of our two treatments on the SQB constructs. We assume a positive
influence on those constructs we hypothesised to influence the intention to use positively
and the reverse. (H3.1) A negative influence of AI on LA; (H3.2) a positive influence of
AI on NB and (H3.3) a positive influence of AI on SN and (H3.4) a positive influence of
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Fig. 1. Research Model.

AI on CO; (H3.5) a negative influence of SU on LA; (H3.6) a positive influence of SU
on NB; (H3.7) a positive influence of SU on SN and (H3.8) a positive influence of SU on
CO.

4 Research Method

To assess our research model, we employed an online experiment [16]. For analysis,
we used structural equation modelling (SEM) using partial least squares (PLS) [46,
47]. PLS-SEM is a well-accepted method in IS research with advantages in case of
single-item measurement and lower sample sizes [48].

4.1 Measurement

We used the items suggested by Venkatesh et al. (2003) to measure performance and
effort expectancy. For themeasurementmodel of SQB,we relied onKimandKankanhalli
(2009). As these have not published the items for the SQB constructs, we relied on prior
literature for the measurement items [14, 31, 35, 38, 39].We adopted these in the context
of automated processes with RPA. Following prior literature, we used a seven-point
Likert scale (1= strongly disagree, 7= strongly agree) to assess all measurement items
[35]. We conducted two pre-tests with ten employees from nonprofit organisations. The
first pre-test indicated conceptual issues regarding the control construct, which led us to
adjust the wording. The second pre-test showed no issues.

To be as close to a real-life situation as possible, we adopted both treatments from
actual texts available on the internet. For the additional information treatment, we used
a text by Tarulata Champawat posted under the title ‘How RPA Benefits Nonprofit
Organisations?’ on Infobeans in February 2020 [40]. For the success story treatment, we
used a text by the RPA provider UiPath describing their successful collaboration with
the New York Foundling, a US-based non-governmental organisation [41]. We removed
pictures and edited the texts minimally to fit into our survey.1

1 See the appendix for the survey questions used. The full survey incl. Explanatory texts and
treatment material can be requested from the authors.
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4.2 Survey Administration and Data Inspection

In total, we recruited 150 participants affiliated with nonprofit organisations from Pro-
lific and via personal connections. Prior research has shown Prolific, an online platform
enabling large-scale data collection by connecting researchers and survey participants,
to yield adequate results for cognitive bias research [49]. We recruited participants that
indicated a concrete affiliation with a charity organisation. This broader focus allowed
us to test our treatments in the broader ecosystem of NGOs. Support for new technolo-
gies does not only need to come from within the organisation, but a favourable view
across stakeholders is vital, especially for organisations with such high transparency
and accountability requirements [50, 51].

We administered the online experiment via Unipark, an online survey tool, and ran-
domly assigned participants to four treatment groups. The first treatment group received
the text with additional information on RPA and the success story. Participants in groups
two and three received only one treatment, and those in group four received no treatment.
Wechecked the resultingdataset for qualitymeasures, e.g., if participants answered atten-
tion checks correctly or answered questions in unrealistic times, but no issues appeared.
We also recruited several NGO employees to check for significant differences regarding
answer times or patterns but found none [52]. No values were missing, as all questions
were mandatory, and we did not provide a non-answer option.

5 Results

5.1 Measurement Model Analysis

Following prior literature, we employed PLS-SEM to analyse the hypothesised causal
relationships between the constructs. PLS-SEM has been employed for UTAUT [12]
and SQB [39]. Moreover, as we had a small sample size and employed non-normally
distributed variables (i.e., the treatments), it seemed especially suitable (Hair et al. 2019).
We created the outer or measurement model using reflective constructs only following
prior researchers’ assumption of a causal priority from the construct to the indicators
[53]. To test for internal consistency reliability, we used Cronbach’s alpha [54] and, for
convergent reliability, the average variance extracted (AVE).

We estimated discriminant validity using the Fornell–Larcker criterion [55]. We
conducted all analyses using Smart PLS 3.3.3 [56] and used thresholds in line with Hair
et al. [46]. Tests for construct reliability and validity were positive for all constructs
(see Table 2). All values were above the threshold of 0.7 for Cronbach’s alpha and
thus considered high [54]. High internal consistency reliability indicates that the items
validly measure their corresponding constructs. The same applies to the Fornell-Larcker
criterion. The correlations between all constructs were lower than the square root of the
AVE, which supports convergent and discriminant validity [55] (Table 3).
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Table 2. Fornell-Larcker Criterion

Table 3. Factor loadings for constructs

A look at the factor loadings (see Table 4) confirmed all factor loadings were above
the required threshold of 0.7. The only items that were slightly below that threshold
were pe04 and la02. We adapted these items from prior literature [12, 35], and they did
not appear as an issue during the pre-test. As prior literature consistently relied on the
same three items [12, 35, 43, 45, 57], we decided to keep the constructs and items as
there was no other way to ensure content validity. To test for common method bias, we
employed the standard collinearity test. The variance inflation factor of all constructs
with a random variable was below 3.3, indicating that common method bias does not
apply here [58, 59].
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5.2 Structural Model Analysis

We employed both the general PLS algorithm and bootstrapping to assess our model. For
the parameters of the PLS algorithm, we followed Hair et al. [46] and the agreed-upon
standards. We used a path weighting scheme with 300 iterations and a stop criterion
of 10–7. To test the significance of our model, we employed bootstrapping using 5,000
iterations of randomly drawn subsamples and the parameters as indicated above [46].
As a result, we identified seven significant influences (see Fig. 2), which we present in
the following according to our hypotheses.

Table 4 presents the path coefficients we assessed to test our hypotheses. With this,
we analysed significance based on the p-values of the path coefficients. In full support
of H1, we see a very strong significant positive effect of performance expectancy on
behavioural intention to use RPA (H1.1+). We also see a significant effect of effort
expectancy on behavioural intention (H1.2+). We expected this result as several studies
have tested UTAUT across domains [57].

Fig. 2. Results of PLS-SEM analysis

We only find partial support for H2. We see a highly significant positive influence
of net benefits on performance expectancy (H2.3+) and on effort expectancy (H2.4+). It
stands to reason that a positive perception of the benefits of RPA also reflects in a positive
expected performance and a high perception of usage ease. We also find a significant
effect of control on performance expectancy and effort expectancy (H2.7+, H2.8+).
This finding is also logical as individuals that feel more in control of the technology
will be confident about their performance and effort expectancy. However, we find no
significant effect of loss aversion on either performance or effort expectancy (H2.1−,
H2.2−). Thus, in our case, participants did not fear the loss of the currentway ofworking.
This effect could be because the first processes to be automated are rather repetitive
and administrative tasks [2], and thus nothing they would miss. Similarly, we find no
significant effect of social norms on performance or effort expectancy (H2.5−, H2.6−).
This finding implies that, at least in our context for RPA, the opinion of colleagues and
friends does not affect the perception of the technology. We discuss possible reasons and
avenues for further research in the next section.
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Table 4. Path coefficients (*** = p-value < .001, ** = p-value < .01, * = p-value < .05)

PE EE BI LA NB SN CO

Performance expectancy (PE) .537***

Effort expectancy (EE) .229**

Behavioural intention (BI)

Loss aversion (LA) .016 .074

Net benefits (NB) .537*** .290***

Control (CO) .280*** .535***

Social Norms (SN) .047 .052

Additional information (AI) −.014 .040 .009 −.035

Success story (SU) .103 .193* .035 .057

In contrast to our expectations derived from prior literature, we only find weak
support for H3. We see a weak effect of the success story on one SQB construct and no
significant effects of the additional information treatment. The success story treatment
positively influenced the perception of net benefits slightly (H3.6). This finding is in
line with prior literature that has recommended success stories as a tool to influence
rational decision-making [35–37, 42], but we would have expected a stronger effect.
Interestingly, we cannot confirm that simply giving individuals additional information
about the technology and the implicated change is a valid countermeasure. Thus, at
least for our specific context of RPA adoption, this recommendation from the literature
[29–35, 43] does not seem to apply.

6 Discussion

Exploring the effects of SQB, we find significant influences of SQB on adopting RPA
but only weak or even no support for the countermeasures we tested. We combined a
selection of constructs to measure SQB from the literature [14] with technology accep-
tance constructs to assess two things: Firstly, if the SQB constructs affect technology
acceptance of RPA, and second if more information and the reference to previous suc-
cess stories help counter SQB regarding RPA and increase the behavioural intention to
use. Our results indicate that only the SQB constructs net benefits and control affected
the direct determinants of technology adoption. This finding highlights the relevance of
re-testing established phenomena for “lightweight” technologies. Our hypothesis were
based on results of studies with “heavyweight” systems – the first studies on SQB in IS
focused on ERP systems for example [25]. This context change apparently reduces the
effects of SQB constructs. Secondly, our results show the importance of testing coun-
termeasures. At least in the context of RPA in the social sector, simply giving people
more information does not suffice, and success stories only have a slight influence. Even
though our results did not fully confirm our hypotheses derived from the literature, we
contribute to both theory and practice with three main aspects:
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Firstly, we contribute to the body of knowledge on RPA. Different literature reviews
have highlighted that more insights into the adoption processes of RPA, especially in the
nonprofit sector, are needed [9]. Our online experiment highlights and confirms that RPA
adoption depends on perceptions regarding performance and effort. Moreover, people
might be biased towards the status quo. However, as our results show, only a part of
the constructs derived from measuring the influence of SQB on the adoption of ERP
systems is relevant [14]. Our findings imply that the effects of other biases on adopting
RPA and similar “lightweight” technologies also need further examination – a relevant
insight considering the large number of biases currently employed in IS research [60].

Secondly, we contribute to the theory of technology adoption and cognitive biases.
Researchers have found SQB to influence technology decisions; we deliver an additional
puzzle piece to understand SQB and its effect and influences as detailed as possible. We
modelled SQB with a selected range of concepts from the proposed full set by Kim
and Kankanhalli [14]. Prior studies like Kim (2011) focusing only on cost aspects have
already alluded to the fact that the full model might not fit all contexts. Our example
confirms that the full range of concepts does not work in all contexts. We found signifi-
cant effects only for the two constructs, net benefits and control. We found no effect for
loss aversion and social influence. An interesting find as loss aversion has already been
found to influence IS adoption behaviour, e.g., regarding two-factor authentication [61]
and social influence is one of the key determinants of technology adoption models like
UTAUT [12]. This contradiction implies that the adoption of RPA in the social sector dif-
fers from other technologies and contexts. Thus, we must challenge the generalizability
of cognitive bias and adoption research so far.

Thirdly, we contribute a more nuanced understanding of countermeasures to SQB.
When individuals who are supposed to adopt IT are affected by SQB, technology is
either not introduced or not accepted. As such, it cannot unfold its value. Therefore,
finding effective countermeasures is important for the IS community – both researchers
and practitioners. We managed to test two potential countermeasures, even though our
treatments only had a limited effect. There are three main potential reasons for the
limited effect of our countermeasures: (1) The first option, which is unlikely regarding
the substantial evidence in prior literature, is that our participants did not suffer from
SQB concerning RPA. (2) The second option is that, in line with media richness theory
[62], our delivery method was inadequate for the technology’s complexity. But then,
it is still interesting that internet articles, as they exist today alone, are insufficient to
sway people’s opinions. (3) The third option is that not all often-cited countermeasures
work against SQB. If that is the case, researchers should stop recommending them, and
practitioners should focus their resources elsewhere.

Moreover, our research also has important implications for practice. Firstly, we pro-
vide guidance to IT decision-makers and suppliers specialising in the NGO sector on
what to consider when introducing RPA. Secondly, our insights are relevant to managers
looking to improve their organisation in a general way. SQB is not a phenomenon unique
to IS; thus, it might also impede other changes. Our findings highlight that countermea-
sures require careful consideration. Thirdly, our work is important as it highlights the
transferability of IS research in the private sector to the social sector. Where practition-
ers often struggle with concepts clearly designed for profit-seeking organisations, our
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findings demonstrate that the technology acceptance models can also be used in this
sector. Nonetheless, we had to consciously tailor the SQB model from prior literature
[14]. Thus, further tests of the theories of our domain against a sector that is unique in the
motivation of its workforce, the IT infrastructure and skills available and its budgetary
constraints [10] are necessary.

We designed our research most carefully. Nonetheless, there are still some limita-
tions, which we cluster around five aspects. Firstly, and most prominent is surely the
limited number of participants. With 150 participants, the number of participants is suf-
ficient to give a strong indication, not a final result. Nonetheless, we believe that our
results highlight the importance of researching countermeasures to SQB further. Sec-
ondly, even though we synthesised our measurement model from prior literature, as we
chose to select only part of the concepts due to our context, our choice might not have
exhausted the full possibility of relevant concepts. Thirdly, other studies combined SQB
with user resistance. In our research effort, we, therefore, expected an inverted effect for
intention to use. However, intention to use and user resistance might be more dissimi-
lar than we thought, explaining the lack of significant effects of most SQB constructs.
Fourthly, the use of prolific participants, for whomwe could not verify the exact nature of
their nonprofit affiliation or the type of nonprofit work they were involved with, instead
of participants recruited directly might have skewed results despite prior positive results
with Prolific in cognitive bias research [49]. Finally, following media richness theory,
the text format we chose might not have been sufficient to relay the complex level of
information required to understand RPA [62]. Similarly, different texts, e.g., a success
story written by a nonprofit and not a software provider, might have had different effects.

Our results and limitations open up four avenues for further research. First, future
research could conduct further studies in the nonprofit sector to understand the impact
of RPA in more detail. Here, scholars could also try to identify other cognitive biases at
play (potentially also other than SQB only). Research could also explicitly try to address
our limitations, especially regarding the use of an online panel. Second, future research
could also work on the constructs to measure SQB and apply this to other technologies.
Our research model was the first attempt to practically measure SQB as conceptualised
by Kim and Kankanhalli [14] for the context of RPA in the social sector. Therefore, it
is essential to examine our measurement instruments and the hypothesised effects again
in other contexts. This further research could also look at user resistance as a depen-
dent variable. Fully understanding the interplay of the different constructs could bring
more precision to efforts to design countermeasures. For example, researchers might
find that not all constructs selected by Kim and Kankanhalli [14] are relevant for SQB
in a specific context; this would also explain the findings of Lee and Joshi [28]. Third,
future research should test more countermeasures against the SQB towards RPA usage.
Based on established measurement models, it is possible to empirically test the effect
of countermeasures and our examples highlight the need for systematic tests. The list of
countermeasures in the literature [25] implies there are still manymore countermeasures
to be tested. Researchers should aim to test more of the countermeasures typically pro-
posed for cognitive biases to ensure the significance of their advice. It may be that other
countermeasures are more important in the communication strategies of organisations
implementing RPA. Fourth, scholars should further investigate the two countermeasures
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we tested and the effect of the potential SQB countermeasure of additional experience
we identified. The two examples from prior literature only worked to a limited extent – at
least in a simple text format. That could mean testing with a video format or, if Covid-19
allows it, a treatment delivered via personal interaction to transport a higher level of
complexity following media-richness theory [62].

Appendix

Table 5. Measurement Items used to measure UTAUT and SQB constructs

Constructs Items Source

UTAUT Performance expectancy (PE) I would find processes automated with RPA
useful in my job
Using processes automated with RPA enables
me to accomplish tasks more quickly
Using processes automated with RPA increases
my productivity
If I use processes automated with RPA, I will
increase my chances of getting a raise

[12]

Effort expectancy (EE) My interaction with processes automated with
RPA would be clear and understandable
It would be easy for me to become skillful at
using processes automated with RPA
I would find processes automated with RPA
easy to use or interact with
Learning to use processes automated with RPA
is easy for me

Behavioral intention (BI) I intend to use processes automated with RPA
in the next 6 months
I predict I would use processes automated with
RPA in the next 6 months
I plan to use processes automated with RPA in
the next 6 months

SQB Net benefits (NB) Considering the time and effort that I have to
spend, the change to the new way of working
with processes automated with RPA is
worthwhile
Considering the loss that I incur, the change to
the new way of working with processes
automated with RPA is of good value
Considering the hassle that I have to
experience, the change to the new way of
working with processes automated with RPA is
beneficial to me

[14]

(continued)
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Table 5. (continued)

Constructs Items Source

Social norms (SN) I would use processes automated with RPA if
people who influence my behavior think I
should
I would use processes automated with RPA if
people who are important to me think I should
I would use processes automated with RPA if
people whose opinions I value want me to do so

[39]

Control (CO) I personally have what it takes to deal with the
situations caused by processes automated with
RPA
I have the resources I need to successfully use
processes automated with RPA
I have the knowledge necessary to use
processes automated with RPA
I am confident that I will be able to use
processes automated with RPA without any
problems

[31]
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Abstract. Evidence-based innovations are critical in optimising the
delivery of healthcare services. Process mining aims to provide health-
care stakeholders with insights, derived from historical data recorded in
hospital information systems, to optimise healthcare processes. Health-
care processes are well-known for their complexity and control-flow vari-
ations are inherent in patient pathways undertaken by different patient
cohorts. Comparative process mining can reveal insights from study-
ing the differences between healthcare processes to better understand
best-practice patient pathways. In this paper, we take a design science
approach to redefine an existing method for process comparison (PCM).
Where PCM considers predominantly the control-flow perspective, we
extend this method with the stochastic perspective, that is, how likely
a particular pathway is for certain patient cohorts, to obtain the Prob-
abilistic Process Comparison Method (P2CM). Furthermore, we further
automate the method. Concretely, we introduce new, stochastic-aware,
methods for sub-dividing process behaviour into cohorts based on trace
attributes or other trace features, methods for focusing the compara-
tive analysis on specific pairs of interesting cohorts, and provide a new
method for in-depth comparison of process differences. The approach
is evaluated using three real-life healthcare datasets, of which one case
study is conducted with a domain expert from an Australian hospital.

Keywords: process mining · healthcare · comparative process mining

1 Introduction

Healthcare is a field that is confronted with widespread challenges, which require
process improvement to be an integral part of the system. Data-informed innova-
tions are important to make healthcare better and efficient [1–3]. New methods
can assist healthcare organisations to rapidly adapt their processes to changing
needs. Healthcare organisations around the world recognise the need to con-
tinually put efforts to improve their clinical as well as administrative processes.
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Healthcare organisations rely heavily on hospital information systems which sup-
port clinical and administrative processes, and record executed process steps in
process execution data [4]. This data consists of sequences of process steps (activ-
ities) executed for patients, hospital stays, etc. (cases).

Process mining is a family of techniques and methods, which can assist
in answering questions that are crucial to improving processes in healthcare
organisations. One area of process mining focuses on comparing groups of cases
(cohorts) of a process. In such comparative process analysis, processing of dif-
ferent cohorts is compared, which may lead to insights into the process-based
differences between cohorts - if processing is expected to be similar, e.g. lead-
ing to the identification of best practices, and into process-based similarities -
where differences are expected [5,6]. The insights from such comparative process
analysis can then be leveraged to optimise the processes involved. When compar-
ing processes, several perspectives can be identified: the control-flow perspective
entails the activities that can be performed in a process and their organisation
into pathways, while the stochastic perspective describes how likely activities,
pathways and behaviour in processes are [7]. In comparative process mining
analysis, both perspectives may be beneficial: the control flow perspective may
indicate that, for instance, a rework loop is possible, however without knowl-
edge of the stochastic perspective that will indicate how likely that rework loop
is, it remains unclear what the impact on the process of the rework loop is.
A little-executed rework may be part of normal operating procedure, while an
often-executed loop may pose a threat to process performance. Thus, a compar-
ison of both perspectives may be beneficial in process comparison to optimise
optimisation efforts [1].

Several techniques have been proposed to compare different parts of a process
with one another, however applying them effectively in practice requires highly
similar processes [5]: benefits have been shown to be derivable from the same
(or, supposedly similar) process being executed in different settings. In some
literature, such a setting of highly similar processes was known, for instance,
comparing fulfilment processes in different geographic regions [8] and building
permit processes in different municipalities [9]. To compare two processes with
one another, several techniques can be applied [10,11]. However, if a single pro-
cess is to be considered, a sub-division into variants (or, in log terms, cohorts) is
necessary first. Several techniques have been proposed to identify cohorts from
event logs [6,12].

To assist with applying the combination of these techniques, in [5] a generic
method was proposed, the Process Comparison Methodology (PCM). However,
as we detail in Sect. 2, PCM does not consider the stochastic perspective, and is
highly manual with little automated support. As such, there is no method that
takes an event log file as an input and identifies cohorts as output, along with
visualisations of similarities and differences between the cohorts.

Given this gap, our problem statement is that we would like to have a method
with which analysts can compare sub-processes for stochastic processing differ-
ences. In this paper, we use a design science [13] approach to extend the PCM
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method with stochastic awareness, operationalise PCM in a systematic manner,
and provide further guidance on how the techniques can be applied. We refer to
this new method as the Probabilistic Process Comparison Method (P2CM). We
evaluate our updated method twofold: using two real-life data sets, we validate
the applicability of the method and using a case study, we validate the usefulness
of the method in practice.

The remainder of this paper is organised as follows: Sect. 2 discusses related
work. Section 3 details the research design. Section 4 introduces the updated
method, Sect. 5 discusses the evaluative case studies, and Sect. 6 concludes the
paper.

2 Related Work

In this section, we discuss related literature and derive our design objectives.
Process Mining in Healthcare. While PCM can be applied to datasets from any
domain, in this paper we focus on healthcare processes as these processes typ-
ically consist of many variants, and as domain experts are keen to understand
how the different patient cohorts pass through a hospital. Healthcare processes
are characterised as complex and inherent to significant variations [14]. These
variations can be a result of the differences in which the patient pathways pro-
ceed in a hospital. Process mining has the potential of uncovering details related
to the execution of processes and has been used in healthcare. The potential
has been explained in literature reviews [15] and a research agenda paper that
highlights various opportunities and challenges [2]. In [16], the authors reviewed
a pool of articles to understand how process mining has been applied to clin-
ical pathways. The papers were classified in three categories, (i) discovery of
actual execution pathways, (ii) analyse variants of execution pathways, and (iii)
improve execution pathways.

As noted, one of the key areas of use of process mining is variant explo-
ration. In [1,17], the authors used process mining to understand the similarities
and differences between practices of different hospitals, but this comparison was
done manually. Identifying differences between groups of pathway executions
using process variant analysis can help to identify areas of potential improve-
ment. Specific challenges related to process variant analysis exist. For example,
comparing processes from a resource perspective, checking for compliance, and
finding adverse events were mentioned in [2,18]. Despite growing interest in com-
paring healthcare processes, [2] identified the need for algorithms and methods
that provide detailed explanations on the differences between process “variants”
as a key challenge. This brings forth our first design objective:

DO1: A method that allows comparative analysis of process-based differences
in cohorts of a single process.

Comparative and Stochastic Analysis. To compare multiple event logs with one
another, a cross-comparison method has been proposed that first discovers a pro-
cess model for each event log, and measures the differences between the model
and each other event log in a cross-product setting [9]. This method, used in
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PCM [5] as well, is susceptible to the trade-offs that are present in process
discovery, and consider the stochastic perspective only partially, as the discov-
ered models only consider the control-flow perspective. To compare two event
logs with one another, approaches have been proposed based on transition sys-
tems [10,11] and fingerprints [19]. Furthermore, [9,20] both cross-compare two
event logs: [20] by means of quality measures and [9] by means of deviations.
Furthermore, in [21], predicted future process models can be compared. How-
ever, these techniques do not consider the stochastic perspective explicitly, which
is essential to spot e.g. that exceptional behaviour is much more likely in one
part than in the other, and assume that the two to-be compared event logs are
known. Therefore, for our method, we specified the following design objective:

DO2: A method that compares the stochastic behaviour of two processes.
Process Comparison Methodology (PCM). PCM [5] has been proposed as a
method to support comparative process mining. PCM consists of 5 consecu-
tive phases: (1) in the first phase, the data must be extracted from information
systems and pre-processed into the XES event log format [22]. Furthermore, in
this step a trace attribute is selected to divide the event log (the α attribute). (2)
in the second phase, the event log is divided into sub-logs, and an initial selection
of these sub-logs is made, such that this selection will enable the answering of
business questions and satisfy the goal of the comparative analysis. (3) in the
third phase, suitable pairs of sub-logs (cohorts) are selected for comparison. (4)
in the fourth phase, the selected pairs of sub-logs are compared to obtain detailed
process-based differences. (5) the fifth phase involves reporting the relevant and
impactful differences to the process owner.

In [5], the PCM method was applied to a non-healthcare case study, using
semi-automated techniques and visualisations for phases 2, 3 and 4. However,
most of the mentioned techniques utilised in PCM [5] only take the control flow
– which steps are executed – into account, but only implicitly and unpredictably
considering the stochastic perspective – how likely pathways are. Furthermore,
considering the phases in detail, the alpha-attribute is chosen in phase 1, but lit-
tle guidance is provided on how this attribute can be chosen, and data-supported
automation that may aid analysts is limited. These details resulted in the fol-
lowing design objective:

DO3: A method that combines guidance for users with automated recom-
mendations derived from data.

3 Research Design

We adopt a design science approach [23] and follow the six phases as described
in [24].
(1) Problem Identification. Prior literature conveys that comparative pro-
cess mining is important, in general, and in the healthcare sector in particular,
to visualise the similarities and differences between processes. There is a need to
develop comparative process mining techniques and methodological guidance
to assist healthcare organisations in identifying potential improvements.
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(2) Definition of Design Objectives. The overall objective is to propose
a process comparison method that takes an event log file as an input, groups
similar cohorts together, and provides visualisation of similarities and differences
among the cohorts. Three design objectives (DOs) motivated by the related work
in 2 are as follows:

DO1 A method that allows comparative analysis of process-based differences in
cohorts of a single process;

DO2 A method that compares the stochastic behaviour of two processes;
DO3 A method that combines guidance for users with automated recommenda-

tions derived from data.

(3) Design and Development. The design objectives identified in Step 2 were
used to design and develop the P2CM method. The proposed method leverages
the overall structure of PCM and extends several steps with stochastic awareness,
provides more automated techniques, and provides more guidance for users of
the method. As such, the P2CM method can be seen as an enhanced version of
PCM. The six steps of the P2CM method are detailed in Sect. 4.
(4) Demonstration. To apply the P2CM method in practice, we implement
scripts for the new alpha attribute selection technique and the new comparative
process visualisation algorithm.
(5) Evaluation. To evaluate the P2CM method, we use the evaluation frame-
work presented by [25]. Two ex-post evaluation strategies are used. First, an
experimental controlled experiment [23] is conducted by applying the P2CM
method to two real-life publicly available event logs with the objective of assess-
ing the applicability of the method. Second, we perform an observational case
study [23] with the emergency department of a healthcare organisation - the
Princess Alexandra Hospital, Brisbane, Australia. The objective was to assess
the usefulness of the method, i.e., whether the method we propose can be used
to unearth meaningful insights for stakeholders. The findings are presented in
Sect. 5. The ex ante evaluation [25] of these design objectives - to, for instance,
validate their applicability in practice or their appropriateness with focus groups
– is not within the scope of this paper, but would be an interesting area of further
research.
(6) Communication. This manuscript is a means of sharing the new P2CM
method. All introduced techniques have been implemented, and their source code
is publicly available.

4 Artifact: P2CM

In this section, we introduce our new method, the Probabilistic Process Compar-
ison Method (P2CM), which extends and instantiates the PCM framework. As
by DO3, we aim to automate the steps as much as possible, we slightly change the
overall structure of the PCM method, described in Sect. 2: we denote the selection
of the alpha attribute in its own phase, as this step can be automated. Figure 1
provides a visual overview of P2CM. Furthermore, we change the following phases
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Fig. 1. P2CM. The darker steps are new or different from PCM.

to explicitly consider the stochastic perspective (DO2) and further automate
them (DO3): we introduce the new phase 2 (selecting the alpha attribute),
we change phase 4 (identifying comparable sub-logs) and change phase 5
(in-depth comparison).

4.1 Assisted Alpha Attribute Selection

The alpha attribute plays a significant role in distinguishing between process
variants. However, identifying a suitable alpha attribute in an event log requires
domain expertise and a good understanding of the process. To assist the ana-
lyst while minimising domain expert input, we rank the trace attributes in an
event log by feature importance as a guide to the user. We propose two machine
learning techniques, one based on unsupervised learning (ID-K), which groups
similar data points without any dependency on a target variable and the other
on supervised learning (ID-R), which combines decision trees for classification
based on a target variable.. Each method returns a graph of the relative impor-
tance of each trace attribute in an event log. Both techniques may indicate the
importance of an attribute; an attribute indicated by both provides an even
stronger indication.

ID-K: k-Means Clustering. Clustering groups data into clusters based on their
similarity in certain features. For our analysis, we start with an XES event log,
and consider the trace attributes. Numeric, boolean and categorical features are
considered, while unique identifiers, timestamps and free-text comments are not
considered. These latter categories are inherently unsuitable as alpha attributes,
as they do not sub-divide the traces of the log into clearly defined and under-
standable sub-logs. To transform data into a format that machine learning algo-
rithms can process, factorisation is used for categorical and boolean attributes1,
which transforms this data into enumerated or categorical values.

Once the data has been transformed, the next step is determining the opti-
mal number of clusters through the Elbow method [26], which allows a user
to select the appropriate number of clusters by visualising the within-cluster
sum of squares (WCSS) [27]. The inflection point or ”elbow” in the plot, where

1 https://pandas.pydata.org/docs/reference/api/pandas.factorize.html.

https://pandas.pydata.org/docs/reference/api/pandas.factorize.html
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increasing the number of clusters would not significantly lower the WCSS, shows
a levelling out of the inter-cluster variability. For instance, Fig. 3 shows the
elbow graph for one of our evaluations. In this graph, the elbow is at number of
clusters = 2, as after that there is no significant decrease in the WCSS.

Then, the k-means clustering algorithm is applied to the selected trace
attributes. The contribution of each attribute in segregating the traces into dif-
ferent groups is studied and a plot of the relevant importance of each feature
is returned. This is done by calculating the significance of each feature for each
cluster based on the magnitude of the weight of the feature in the centroid vector.

ID-R: Random Forest Classifier. In a supervised learning setting, we assess the
influence of each trace attribute on a target variable. Here, we consider the length
of a trace as the target variable, while the training features are the attributes
from the log data. We want the outcome to factor in the effect of length of
a trace as the count of activities carried out for a case may have interesting
reasons, so we extract the count of activities per trace and add it as the target
feature in the data set. We choose to utilise an ensemble classifier, specifically the
Random Forest classifier, which combines multiple decision trees to enhance the
model’s overall performance [28]. It operates by training multiple decision trees
on randomly selected subsets of the data and then averaging the predictions of
all the trees to make a final prediction. This method is robust to high variance
and outliers.

In a random forest classifier, the importance of attributes is calculated using
the mean decrease impurity (MDI) method [28], which calculates the total reduc-
tion of Gini impurity that each attribute provides across all the trees in the
forest. The attribute importance is then determined by averaging the reduction
in impurity across all trees that use the attribute.

4.2 Identifying Comparable Sub-Logs

The identification of comparable sub-logs is the next phase of the analysis. Some-
times the alpha attribute may have hundreds or thousands of values and compar-
ing them one-on-one creates n ∗ (n − 1)/2 comparisons. To reduce the potential
number of comparisons, and thereby limit domain expert involvement (DO3),
we introduce a new method, consisting of ranking, filtering and clustering. The
method follows several steps. First, it ranks the values of the alpha attributes
based on their count and takes the top-most frequent ones, based on a user-
provided parameter. Second, we reduce the n2 comparison space by clustering
sub-logs based on their similarities with other sub-logs.

In order to take the stochastic perspective into account, we use the Earth
Movers’ Stochastic Conformance Checking (EMSC) [7] to obtain a sub-log vs
sub-log similarity score table. We used the stochastic perspective instead of the
control flow perspective to show the likelihood of following a pathway by similar
patient cohorts (DO2). Given two sub-logs, EMSC will compute a score that
is 1 if the two logs have the same stochastic behaviour, and 0 if the stochastic
behaviour of the two sub-logs is completely different.
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In the table of similarity scores, each sub-log has a pairwise similarity score
between 0–1 with every other sub-log. After creating this table, we need to find
the optimum number of clusters, for which we apply the Elbow method. Next,
clustering is applied to the vectors of EMSC scores, to identify clusters of sub-
logs.

Then, the sub-logs to compare are to be chosen, which is a step that inher-
ently requires domain expertise. Nevertheless, the clustering provides guidance
in two ways: pairs of sub-logs in different clusters are likely to differ in stochastic
behaviour, while pairs of sub-logs are less likely to differ in stochastic behaviour.
The former can be used to study the differences between process cohorts – e.g.
to perform auditing –, while the latter can be used to study commonalities – e.g.
to identify best practices.

4.3 In-Depth Comparison

Using the techniques of Sects. 4.1 and 4.2, we get the alpha attributes and the
sub-logs that we want to compare. In this section, we present a new visualisation
technique of in-depth comparison between two sub-logs which we call the Visual
Process Comparator (VPC). VPC takes a log (the complete, not-subdivided
log), L and two sub-logs of that log, L1 and L2. At first, a directly follows
graph (DFG) is made from L. In a DFG, every node represents an activity
and the edges describe the relationship between the activities [29]. To increase
understandability, and to avoid clutter and spaghetti models, we first filter the
edges: given a percentage parameter set by the analyst, we remove all edges
that are below that threshold. If the log is not very complex, we can choose a
threshold of 0. Then we check how many of those connections are present in L1

and L2 and use only those. Second, we visualise the differences between L1 and
L2 on this filtered DFG.

We denote L1(a → b) and L2(a → b) as the frequency of the DFG edge from
a to b in L1 and L2 respectively. For a particular node a,

∑
(a,b′)∈DFG L1(a, b′)

and
∑

(a,b′)∈DFG L2(a, b′) denote the summation of all the edge frequencies out
going from that particular node for L1 and L2 respectively.

The below formula is used for showing the relative frequency difference D:

D(a→b) =
L1(a → b)

∑
(a,c′)∈DFG L1(a, c′)

− L2(a → b)
∑

(a,c′)∈DFG L2(a, c′)

To indicate the importance of an edge, we scale the width according to its
relative appearance in both sub-logs varying between a width of 0.5 when the
edge is present in neither L1 or L2 to 1.5 when the edge is the only outgoing
edge of that node. The below formula is used for width calculation,

width(a→b) =
L1(a → b)

∑
(a,c′)∈DFG L1(a, c′)

+
L2(a → b)

∑
(a,c′)∈DFG L2(a, c′)

+ 0.5
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Fig. 2. Example of the Visual Process Comparator.

The edges are coloured so that the user can see the differences instantly.
We use the HSV colour scale for the graph. The colour ranges from red (0◦,
73%, 96%) to blue (200◦, 73%, 96%) and all the colours in between based on D
(see Fig. 2). Grey colour indicates the edges are neither in L1 nor L2.

Besides that, the frequency of each edge of each sub-log (denoted as F1 and
F2) and the relative frequency differences in percentage between two sub-logs,
are also shown on each edge.

For instance, consider Fig. 2. The thin grey edges indicate they are only
present in the L but not in L1 and L2 and the green edge indicates near 0
relative difference. CRP → Leucocytes edge is deep blue as it only present in
L2. ER Registration → CRP has a teal colour as the relative difference is 71%
and ER Registration → Leucocytes has relative difference of -61.98% and the
colour is orange here.

5 Evaluation

In this section, we describe the twofold evaluation we performed to verify the
applicability and usefulness of the method and its implemented tool support.

5.1 Applicability

As a first evaluation, we assess the applicability of P2CM by applying it to two
real-life healthcare data sets that are publicly available. The aim is to illustrate
that P2CM can be applied to real-life event logs and may lead to insights into the
differences in (stochastic) process behaviour of cohorts within a single process
with minimal domain experts’ input.

Sepsis. Sepsis, a condition characterised by the body’s harmful response to
infection, is a frequent cause of severe illness and death worldwide [30]. The
data setfootnotehttps://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/
12707639 consists of 1 050 patient cases recorded between 2013 and 2015 and
includes diagnostic test results, patient demographic information and organi-
sational information. We apply P2CM to understand the diagnostic journey of
sepsis patients and identify factors that may affect patient outcomes. Data pre-

processing. The event log has 5 distinct release types, i.e. patient discharges.

https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
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Fig. 3. The Elbow method on our Sepsis analysis.

Table 1. Alpha attribute influence.

Sepsis

Feature ID-R ID-K

Age 0.23 0.76
Diagnose 0.33 0.30
SIRSCritHeartRate 0.03 0.16
SIRSCritTachypnea 0.04 0.16
Release type 0.04 0.08

MIMIC

Feature ID-K ID-R

icd title 0.51 0.15
chiefcomplaint 0.08 0.16
acuity 0.44 0.01
heartrate 0.07 0.15
temperature 0.01 0.14

PAH

Feature ID-K ID-R

Time on Ramp 0.10 0.13
Primary Diagnosis 0.86 0.08
Location after Triage 0.44 0.07
Consultation Type 0.03 0.06
Departure Destination 0.11 0.05

After applying a filter to exclude cases that lacked any release activity, as
these cases were deemed incomplete and lacked a definitive end activity, a
total of 777 cases remained. We added a new trace attribute to the event
log denoting the release type. The event log contains trace attributes such as
Case ID, Age, Transition, Organization, Activity Count, Diagnose, and
Diagnostic Tests. After removing the non-contributing trace attributes (case
identifier, comments and timestamps, see Sect. 4.1), we have 26 trace attributes
for our analysis. We removed the cases with missing values for these attributes
and this filtered event log has 729 cases.

Assisted Alpha Attribute Selection. We applied the ID-K and ID-R methods to
select the alpha attribute from the selected 26 trace attributes and got their
respective relevant importance of each feature as output, using the output of
the Elbow method in Fig. 3). The relevant importance of the top 5 attributes of
both methods is shown in Table 1. It can be observed that ID-K and ID-R both
returned Age and Diagnose as the most important features and for our analysis,
we have considered both Age and Diagnose as candidate alpha attributes.

Scoping analysis. In the selected candidate alpha attributes, Diagnose has more
than 100 distinct values, and we take the top ten most frequent ones choose
C,B,E,H,G,D,K,R,Q and S, as a result we have 10 sub-logs; one for each selected
diagnosis (the diagnoses are anonymised; knowledge of them is not necessary for
P2CM). For Age, we partition the values into 10-year periods, resulting in eight
sub-logs and they are 0–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90.
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Fig. 4. VPC on two Sepsis sub-logs.

Identifying comparable sub-logs. In this step, we apply our new method
(see Sect. 4.2) to obtain the log vs log comparison scores. We find the num-
ber of optimal cluster is 3 by using the elbow method on the scores. After that,
we use k-means clustering to find {C,B,E,H,D,K and, R} in cluster 0, {S} in cluster
1 and {G,Q} in cluster 2.

After applying VPC (Sect. 4.2) on the age attribute sub-logs, obtaining the
log vs log comparison scores and using the Elbow method (Sect. 3), we get 2
clusters. Then using k-means clustering, we find 0–20, 20–30 in cluster 0 and
30–40, 40–50, 50–60, 60–70, 70–80, 80–90 in cluster 1.

In the next step, we perform pairwise comparison within clusters to find the
similarities and between clusters to find key differences. We choose the sub-logs
B vs S from Diagnose and 0–20 vs 30–40 from Age for the in-depth comparison.
In-depth comparison. Next, we compare the sub-logs using VPC, with a filtering

parameter of 40%.
When comparing the sub-logs of B and S (see Fig. 4a), we instantly notice

a significant number of bright red edges, which indicates that B has a lot more
edges. The edges IV Liquid → IV Antibiotics and LacticAcid Triage →
Admission NC (not shown) have relative differences -36.99% and -52.81% which
means for sepsis S patients’ treatment, this paths play an important role.

Analysing the Age attribute of sub-log 0–20 vs 30–40 (see Fig. 4b), we see
that around 50% of the edges are only present in the sub-log 30–40. IV Liquid →
IV Antibiotics has a percentage difference of -39.08 percent which indicates
that for patients’ age between 40–50, this path is more important than any
other paths. When the sub-logs were compared using VPC, it became clear
that the treatment paths for sepsis patients varied significantly and that IV
fluids were preferable to IV antibiotics for patients aged 40–50. Overall, P2CM
provided insights into the differences between sub-logs of healthcare pathways
with minimal domain expert input.
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MIMIC. MIMIC-IV-ED is a database of emergency department (ED) admis-
sions at the Beth Israel Deaconess Medical Center between 2011 and 2019, which
contains vital signs, triage information, medication reconciliation, medication
administration and discharge diagnoses of around 425 000 ED stays. The ED is
a resource limited environment and human care is rationed to provide the best
possible patient care [31]. MIMICEL is an event log derived from MIMIC [31].

Data pre-processing. We selected the event attributes temperature, heartrate,
resprate, o2sat, sbp, dbp, pain, acuity, chiefcomplaint and icd_title
and lifted them to the trace level. Other attributes that had a high percent-
age of null values or were identifiers, timestamps or comments were dropped;
10 trace attributes were used further. Out of the initial 448 972 cases, 436 737
cases remained after filtering traces with missing values. Assisted Alpha Attribute

Selection. We utilised both ID-K and ID-R; the top five results are shown in
Table 1. The two most important features from ID-K are icd_title and Acuity,
and for ID-R are icd_title and chiefcomplaint; we selected the common one
icd_title as the alpha attribute.
Scoping Analysis. Here, we find comparable sub-logs based on the icd_title
attribute, which has more than a thousand values, and it is not possible to com-
pare these all one-on-one. So we select the top ten most frequent values and gen-
erate ten event logs by filtering the event log based on these values. Identifying

Comparable Sub-Logs. Then we create ten event logs from the MIMICEL event
log based on these ten values. By using our proposed technique for identifying
comparable sub-logs, we obtain the log vs log comparison scores. The Elbow
method indicates using 3 clusters. We then apply k-means clustering to find
Pneumonia, unspecified organism, Altered mental status unspecified,
Fever, unspecified in cluster 0, ALCOHOL ABUSE-UNSPEC, Alcohol abuse
with intoxication unspecified in cluster 1 and Unspecified abdominal
pain, CHEST PAIN NOS, Chest pain unspecified, ABDOMINAL PAIN OTHER
SPECIED, HEADACHE in cluster 2.

Next, we compare two DFGs - they are ALCOHOL ABUSE-UNSPEC vs Alcohol
abuse with intoxication, unspecified and HEADACHE vs Altered mental
status, unspecified. As ALCOHOL ABUSE-UNSPEC and Alcohol abuse with
intoxication, unspecified are in the same log with very similar diagnosis
name, we are interested in understanding the main differences between them.
HEADACHE and Altered mental status, unspecified are in two different clus-
ters, and thus we also like to observe the main differences between them.

In-depth Comparison.
To the selected pairs, we apply the VPC with a filtering parameter of 80%. When
we look at ALCOHOL ABUSE-UNSPEC vs Alcohol abuse with intoxication,
unspecified in cluster 1. As the names suggest, there should not be too many
differences between them, and the graph validates our intuition. All the edges
are green except Triage in the ED → Vital sign check, -43.29%. This shows
that, when there is intoxication involved, more patients are sent for Vital sign
check.
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Fig. 5. VPC on HEADACHE vs Altered mental status, unspecified comparison.

Lastly, Headache vs Altered mental status, unspecified Fig. 5 shows
considerable differences in edges. Specially, Triage in the ED → Vital sign
check, -76.03% indicates Vital sign check is an important step when treating
patients with Altered mental status, unspecified. Overall, using P2CM we
were able to study process-based differences with minimal domain expert input.

5.2 Usefulness

The second evaluation entails an application of P2CM in a case study, performed
at the emergency department of the Princess Alexandra Hospital in Brisbane,
Australia. The corresponding data set contains ED pathways in 2019–2021. Data

pre-processing. The data set was converted to XES, after which the activities
related to bed management were removed to focus the analysis. Furthermore,
cases with data-type mismatches were removed. The remaining log had 2 329 846
events, 134 846 traces and 48 activities.

Assisted Alpha Attribute Selection. In our study on alpha attribute extraction, we
utilised our exclusion criteria to select categorical attributes that were likely to
be useful alpha attributes. Our methods ID-K and ID-R both on the pre-selected
attributes revealed that Time on Ramp and Primary Diagnosis Snomed Code
were the top 2 most important attributes for segregating the traces into sub
event-logs. The relative importance of the top 5 attributes of both methods is
shown in Table 1. From the alpha attribute selection, we get Time on Ramp and
Primary Diagnosis Snomed Code (Primary Diagnosis) as the alpha attributes.

Scoping Analysis. We binned the Time on Ramp in six parts based on their
frequency, while attempting to keep the bins balanced in their number of
traces. From the Primary Diagnosis feature, we chose the top 10 diagnoses
based on their frequency, this included Chest Pain, Mental Health Problem,
Abdominal Pain, Viral Illness, Syncope, Back Pain, NSTEMI - Non-ST
Segment Elevation MI, Headache, Cellulitis and Alcohol Intoxication.

Identifying Comparable Sub-logs. The clustering of sub-logs, with 3 clusters
identified, was according to expectation: the bins of Time on Ramp that were
close in value were clustered together. We go through the same process for
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Fig. 6. VPC on Chest Pain and NSTEMI - Non-ST segment elevation MI.

Fig. 7. VPC on time on ramp: (0, 1.0] vs (1.0,105.0] minutes.

Primary Diagnosis and obtain 3 clusters. Based on the clustering, the domain
expert identified two pairs of potential interest: (1) mental health problem vs
viral illness, as an example of within-cluster differences, and (2) chest pain
vs NSTEMI - Non-ST segment elevation MI, as these are medically closely
related, but still showed as being in different clusters. Furthermore, we decided to
compare sub-logs based on the time on ramp attribute clustering, taking (0,1.0]
vs (1.0,105.0] minutes as representatives of two different clusters (3).

In-depth Comparison and Interpretation and Validation. We apply the
VPC to these three pairs of sub-logs. For the first pair, we compared
mental health problem and viral illness. Some of the procedural differ-
ences highlighted in the visualisation were expected by stakeholders, such
as the edge from Triaged at to Treat Nrs, and Service Commencement to
Edip date as for many mental health problems, neither Emergency Depart-
ment treatment nor admission occurs. These patients are rapidly transferred
to the Emergency Mental Health Unit. Other differences were Triaged at to
Clerk seen at, which stakeholders indicated may be a missing recording step
in the process. For the second pair, we compared Chest Pain with NSTEMI
- Non-ST segment elevation MI, shown in Fig. 6. Again, several differences
were expected, Triaged at → Clerk Seen, which indicates that the admin-
istrative step in the middle is often skipped for urgent cases. However, the
Service Commencement to Treating Clin Seen edge was a new insight to the
expert, while Service Commencement to Edip Date may again indicate a record-
ing issue. For the third pair, we compared time on ramp being less than one
minute (F1) vs 1 to 105 min (F2), shown in Fig. 7. The first observation is that
the colours indicate large process-based stochastic differences, as several edges
are of teal and yellow colours. These findings suggest both differences that can
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be explained by differences in the nature of the clinical presentations and their
journey through the ED as well as differences related to data recording processes,
which may be important in performance reporting.

From our discussion, it is clear that PVC as part of P2CM, based on the alpha
attributes Primary Diagnosis and Time on Ramp, can be effective in showing
the stochastic process-based differences between different patient groups.

5.3 Discussion

P2CM presented in this paper takes a single event log as input and provides
results between cohorts within that event log. P2CM hence allows comparative
analysis of process-based differences (DO1). P2CM is also a stochastic-aware
technique (DO2). The key steps of alpha attribute selection and identifying com-
parable sub-logs and in-depth comparison, which are stochastic to a larger extent
than the original PCM, make P2CM stochastic-aware. In the future, P2CM could
be extended in the data pre-processing and scoping analysis steps with explicit
consideration of the stochastic perspective. Furthermore, P2CM provides auto-
mated techniques that guide users into choosing alpha attributes and comparable
sub-logs, and visualises stochastic differences between processes to guide analysts
in finding differences or commonalities between cohorts of a process, thus taking
a step towards satisfaction of guiding users with automated recommendations
(DO3). In the future, it would be interesting to extend automation by refining
the comparable sub-logs identification step using heuristics or machine learning
to guide analysts further towards potentially notable differences.

The techniques introduced in this paper as part of P2CM use concepts from
existing stochastic-aware techniques, but differ in key ways. In [6], an event log
is split along trace attribute values to find their values with the largest influ-
ence on stochastic behaviour. Our approach extends it with a full method, non-
categorical attributes and a visualisation of the actual differences. Finally, we
provide several automated techniques that assist analysts in selecting or creating
one or more alpha attributes. Suitable pairs of sub-logs to compare are selected
in phase 3, however [5] emphasises the need to use similar processes. We extend
the method with a stochastic-aware approach that guides analysts in choosing
similar and dissimilar pairs of sub-logs for comparison. Furthermore, our app-
roach does not require the discovery of process models to perform this selection,
which inherently involves certain well-known trade-offs [32]. The process com-
parison methods in phase 4 of [5] and literature do not focus on the stochastic
perspective. We provide a new process discovery technique/visualisation that
highlights differences in stochastic behaviour between two sub-logs.

The experiments can be reproduced using the scripts available at https://
github.com/asadTariq666/BPM-Alpha-Attribute-Selection. The Sepsis data is
publicly available, while the MIMIC data is semi-publicly available [31]. For
legal/privacy reasons, the data of the Princess Alexandra Hospital cannot be
shared.

Several limitations of this work are noted. As the author team applied P2CM
themselves, it was not possible to evaluate the ease of use of P2CM objectively:

https://github.com/asadTariq666/BPM-Alpha-Attribute-Selection
https://github.com/asadTariq666/BPM-Alpha-Attribute-Selection
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future research is needed to assess this aspect. Second, the experiment covered
treatment (Sepsis) and emergency care (MIMIC, PAH), and we see no factors
that would prevent applying P2CM to other areas of healthcare. In order to gen-
eralise the application of P2CM to other domains, it is important that such cases
have attributes, or, more in general, sub-processes that can sensibly be compared
with one another. In case these sub-processes are already known to domain
experts, P2CM might be applicable partially (identifying comparable sub-logs
& VPC). Another limitation is that the ordinal encoding used for categorical
and boolean attributes may impose an order that can impact k-means cluster-
ing. Future research could explore alternative encoding methods like word2vec
or one-hot encoding to preserve semantic meaning without introducing implicit
order.

6 Conclusion

In health processes, optimisation ideas may be derivable from the comparison
of similar but differing processes. In this paper, we applied a design science
approach to introduce a method, the Probabilistic Process Comparison Method
(P2CM), to satisfy the design objectives of (i) allowing for comparative anal-
ysis of process-based differences in cohorts of a single process, (ii) considering
the stochastic perspective of behaviour, and (iii) guiding users with automated
recommendations derived from data. We showed that P2CM adheres to (i) and
(iii), while (ii) is satisfied by the combination of the techniques used in P2CM: in
all changed steps, the stochastic perspective is taken into account: most insights
obtained were of a stochastic nature, and would have been missed by tech-
niques unaware of the stochastic perspective. Following open-science principles,
method and analysis techniques are available to the community and two publicly
accessible datasets were used to ensure the reproducibility of our findings.

As further future work, the concepts of process cubes [12] may be applied
to expand P2CM to use the structure between attributes to further reason
about (hierarchical) relations between attributes, and guide users towards sub-
processes with notable differences.
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Abstract. Process models support a variety of tasks, which can be orga-
nized differently. Notably one can discern local tasks focusing on a sin-
gle part of a model and global tasks requiring an overview of several
parts. These two task types are assumed to affect users’ understand-
ing of processes differently especially if the processes are decomposed
into many interlinked and self-contained models through modularization.
Local tasks can benefit from abstraction as they enable information hid-
ing, while global tasks can be impeded by fragmentation caused by the
split attention effect. Following a task-centric approach, we substantiate
this hypothesis by investigating the cognitive effects of abstraction and
fragmentation in modularization. Therein, we focus particularly on hor-
izontal modularization and study users’ cognitive load, comprehension
and behavior when solving local and global tasks. Our findings con-
firm that, compared to abstraction, fragmentation hinders users’ com-
prehension of the model and raises their cognitive load. Additionally,
users exhibit different search and integration behaviors when perform-
ing local and global tasks. The outcome of this work motivates the shift
from artifact-centric to task-centric empirical studies, raises the need for
approaches to mitigate the effect of fragmentation and explores different
alternatives to achieve this goal.

Keywords: Process model understandability · modularization ·
cognitive load theory · eye tracking

1 Introduction

Process models serve as a mediator for digital transformation as they support
process enactment but also facilitate the communication between stakeholders
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and promote change in business processes [31]. Different process modeling ini-
tiatives exist to support these different activities (e.g., SAP Signavio Process
Transformation Suite1). Yet, most of the research and tool development in the
Business Process Management (BPM) field are focused on the model artifacts
themselves (i.e., the graphical representation of processes), with limited inter-
est in the task-perspective [25], i.e., what types of tasks a process model is
supposed to support. This perspective is crucial for identifying what kind of
information and support are needed in a particular context. In this paper we
address this gap by investigating two recurrent tasks encountered in practice:
local and global tasks. The former is typically focused on a local part of the model
(e.g., to comprehend or maintain a particular sub-process or model fragment),
while the latter covers global aspects requiring an overview of several parts of
the model (e.g., cross-cutting concerns spanning over several sub-processes or
process fragments). We study these tasks in the light of horizontal modulariza-
tion, i.e., a particular branch of modularization where a system is decomposed
into interlinked modules with no strict assumptions on their hierarchy [23,40].
This approach allows modeling flexible and knowledge intensive processes [3,17].
Moreover, it is commonly used to support case-based process execution [3,17]
and has shown a positive impact on model comprehension [40].

While one should expect that modularization generally supports model com-
prehension, existing empirical studies suggest that it does not always make the
execution of tasks easier [32,40,43]. Notably, it was hypothesized that mod-
ularization enables abstraction as it supports information hiding and pattern
recognition, while it causes fragmentation since users are required to split their
attention between different fragments to find relevant information [43]. Hence,
local tasks, which are constrained to a single module might be supported by
abstraction and become easier, whereas global tasks, which refer to several mod-
ules might be hindered by fragmentation and become more difficult to perform.

To investigate this hypothesis we conduct an empirical study. Therein, we
first confirm the effects of abstraction and fragmentation on the understandabil-
ity of modularized process models. Secondly, we delve into users’ behavior when
engaging with modularized models to compare the behavioral traits character-
izing the solving of local tasks and global tasks.

Our empirical study is based on eye-tracking. Following the fragment-based
modeling approach proposed in [17], we design a horizontally modularized pro-
cess model and a set of local and global tasks. Then, we test the effects of abstrac-
tion and fragmentation on both model comprehension and users’ cognitive load.
Therein, we use a multi-modal approach covering the typical model comprehen-
sion and subjective cognitive load measures used in the literature [14,43] – but
also advanced objective cognitive load measures derived from eye-tracking. Doing
so, we provide a multi-perspective empirical account allowing us to draw more
robust conclusions on the effects of abstraction and fragmentation. Our findings
confirm that the task type is a crucial factor with a significant impact on model
comprehension and users’ cognitive load. As for the behavioral investigation,

1 See https://www.signavio.com/products/process-transformation-suite/.

https://www.signavio.com/products/process-transformation-suite/
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we look at eye-tracking measures reflecting the search complexity and cognitive
integration effort exhibited by the users when solving local and global tasks. Our
analysis shows that global tasks are associated with complex search and higher
cognitive integration due to the effect of fragmentation. Based on these insights,
we propose several solutions to compensate for this effect and thus support users
when solving global tasks on modularized process models.

Overall, this work provides an empirical affirmation for the cognitive effects
associated with the solving of global and local tasks. Moreover, our research
model demonstrates how to investigate users’ comprehension, cognitive load and
behavior while reading process models using a wide array of multi-modal mea-
sures. From a more applied perspective, the outcome of this work raises the need
for incorporating the task type in model comprehension frameworks, developing
novel mechanisms to support global tasks and providing new foundations for
managerial decisions on task distribution. In the remainder, Sect. 2 provides the
background and related work. Section 3 describes our empirical study design. Sec-
tions 4 and 5 present and discuss the findings of our study respectively. Section 6
concludes the paper.

2 Background and Related Work

This section describes the theoretical underpinnings related to this work
from the process modeling (cf. Sections 2.1-2.3) and cognitive (cf. Section 2.4)
perspectives.

2.1 Modularization in Process Modeling

Modularization denotes the process of decomposing a system into interlinked
modules with self-contained properties [29]. Authors in the process modeling
literature [23,40] have discerned three types of modularization: vertical, hor-
izontal and orthogonal. Vertical modularization decomposes the process into
sub-processes using a hierarchical structure [23,40]. Horizontal modularization,
in turn, aims at partitioning the process into several interconnected fragments
with no strict assumptions on their hierarchy [23,40]. Lastly, orthogonal modu-
larization divides the process along cross-cutting concerns (i.e., privacy, security)
spanning over several elements of the model [23,40].

Since horizontal modularization allows separating process modules regard-
less of their hierarchical relationship and cross-cutting concerns, this approach
appears to be more general and thus well suited to investigate the effects of
abstraction and fragmentation on users’ comprehension and cognitive load.
While a general positive impact of horizontal modularization can be assumed
based on [40], we investigate how horizontal modularization affects compre-
hension tasks focused on single modules (local) versus comprehension tasks
focused on multiple modules (global). We use the fragment-based approach [17]
(cf., Sect. 2.2) as a representative for this type of modularization.
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2.2 Fragment-based Process Modeling Approach

The fragment-based modeling approach [17] is based on Business Process Mod-
eling and Notation (BPMN). It aims at supporting the case-based modeling
paradigm [3], which focuses on the dynamical adjustments of processes during
execution and emphasizes the role of data as a driving force. At design time,
process modules are modeled as separate process fragments, interlinked with
data objects. As the linkage between the fragments does not necessarily imply
any hierarchical relationship among them, the fragment-based modeling app-
roach can be seen as an instance of horizontal modularization (cf. Section 2.1).
At run time, the fragments can be dynamically combined in any required order.
The data objects can be defined as input conditions for the activities in the frag-
ments and can thereby pose restrictions on the fragments. A data object belongs
to a specific data class and is assigned to a state, which is mutable based on the
execution of an activity. The set and order of possible states are depicted by a
labeled transition system called lifecycle.

Figure 1 provides an example of the fragment-based modeling approach, as
it was used in our experiment. The two fragments “F1 Offload Container” and
“F2 Analyse Shake Event” are connected based on the data object “Sensor”.
As soon as the activity “Activate accelerometer sensor” in the first fragment is
executed the state of the sensor changes to “idle” and the second fragment can be
executed. When the event “Shake event” occurs the activity “Check intensity of
the shake” needs to be executed and the state of the sensor changes to “signalling
shake”. It is important to notice that the second fragment only depends on a
single data-object, i.e., the sensor. This means that as soon as the sensor reaches
the state “idle” the fragment can be executed multiple times, independently from
any other fragment. The sensor lifecycle “LC1 Sensor” additionally shows that
the state of the data-object can alternate between “idle” and “signalling shake”.

Similar to the fragment-based approach, other techniques have been proposed
in the literature. Therein, events were instead used to link the process fragments
(cf. overview in [22]) or other modeling languages such as (colored) Petri nets
were extended to achieve the same outcome [13]. We decided to focus on the
fragment-based approach [17] since it is based on BPMN (i.e., the de-facto mod-
eling language in the community) and provides in particular a clear execution
semantic, based on data input and output conditions for the activities. In this
way, the modeling approach provides a higher expressiveness and can depict
real-world behavior more accurately.

2.3 The Effects of Abstraction and Fragmentation in Modularized
Process Models

The use of modularization to support the comprehension of business processes
has been subject to many empirical investigations (overview in [43]). Yet, based
on Zugal’s Literature review [43], there is no consensus on whether modular-
ization supports or hinders model comprehension as existing empirical studies
yielded inconsistent and therefore inconclusive results. The opposing effects of
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Fig. 1. Example of a horizontally modularized process model following the fragment-
based approach. A better resolution is available at github.com/../figures [1].

abstraction and fragmentation have been raised in the context of vertical mod-
ularization to explain these inconclusive results [32,36,43]. Similarly, they are
likely to occur in other modularization types (e.g., horizental modularization),
due to the spatial separation of modules.

Abstraction emerges from the ability of modularization to divide a large pro-
cess into composable units (or fragments) and thus allowing users to focus their
attention on the task-relevant fragments only while hiding the irrelevant ones.
Following the insights in [30], users are presumably better at performing com-
prehension tasks when their attention is focused on the task-relevant parts in the
model. Additionally, the recognition of patterns becomes much easier within the
individual fragments compared to the overall process model, especially if their
size remains within manageable limits. As pointed out in [27] large models are
difficult to understand and thus should be decomposed into smaller fragments.
Hence, with abstraction, modularization is expected to support model compre-
hension and lower users’ cognitive load. Conversely, fragmentation is caused by
the need to repeatedly switch attention between the different fragments, which
is likely to cause the split attention effect [35,43]. This effect occurs when infor-
mation is distributed across several locations, requiring the reader to repeatedly
switch their attention between these locations, which can be distracting and more
cognitively demanding. This effect is likely to impede model comprehension and
raise users’ cognitive load. Additionally, compared to abstraction, fragmenta-
tion is likely to affect users’ behavior differently. Indeed, the attention switching
and the underlying attention split effect would make the search for relevant
information more complex and would raise the need to constantly integrate the
information coming from the separated locations (i.e., fragments).

https://github.com/aminobest/BPM2023TaskType/tree/main/figures/
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The effects of abstraction and fragmentation can be captured using local
and global tasks. Therein, the local tasks requiring information within a single
fragment can benefit from abstraction, whereas the global tasks, in which the rel-
evant information is distributed over several fragments would be impeded by the
effect of fragmentation. Accordingly, users are expected to get more challenged
when solving global tasks compared to local ones. This hypothesis takes root in
the cognitive fit theory [37], positing that the fit between the task at hand and
the problem representation (i.e., the artifact presented to the user e.g., a mod-
ularized process model) affects the problem-solving procedure [12,37]. Since the
fit is lower when solving global tasks (compared to the local ones), the problem-
solving procedure would be more complex. Such complexity is likely to affect the
model comprehension as well as users’ cognitive load and behavior.

Our work extends existing research on the effects of abstraction and fragmen-
tation [32,43] by (1) switching the focus from vertical to horizontal modulariza-
tion, (2) using a wider array of measures capturing both users’ comprehension
and cognitive load to confirm these effects from different perspectives and (3)
delving into users’ behaviour to investigate the traits characterizing their engage-
ment with local and global tasks. The measures used to confirm the effects of
abstraction and fragmentation and to study the underlying users’ behavior are
introduced in the following section (cf. Sect 2.4).

2.4 Investigating Users’ Comprehension, Cognitive Load
and Behavior

The following paragraphs introduce the concepts and measures serving to (1)
investigate the effects of abstraction and fragmentation on model comprehension
and cognitive load as well as (2) assess users’ behavior in terms of search and
cognitive integration when solving local and global tasks.

Comprehension. Comprehension denotes the process of interpreting an arti-
fact (e.g., text or process model) and building a mental representation of it
[21]. In the literature, comprehension measures have been used as key depen-
dent variables to study the effect of different factors (e.g., presentation medium,
model complexity, the naming of activities, task type) on users’ understanding
of the model (cf. overview in [14]). Therein, low comprehension accuracy (i.e.,
the correctness of provided answers) and low comprehension efficiency (i.e., time
needed to solve a task) indicate challenges in understanding the model at hand.

Cognitive Load. The cognitive load theory posits that when humans approach
the full capacity of their working memory, they become more challenged with
the task at hand, which affects their performance negatively and raises the risk
of committing errors or taking wrong decisions [10,28]. In the context of process
model comprehension, this would translate to difficulties understanding the given
model and a higher risk of misinterpreting the encoded behavior.
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Cognitive load can be captured subjectively, through the means of intro-
spection, or objectively through changes in humans’ behavior and cognitive
states [10,18,39]. The subjective assessment of perceived difficulty is a measure
that has been shown to differentiate different levels of cognitive load [34]. It is
typically administrated as a questionnaire based on Likert scales following each
task [34] (e.g., a 5-points Likert scale: [0: “very easy”, 4: “very difficult”]).

Eye-tracking provides substantial means to study humans’ cognitive load
more objectively [10,18,39]. Additionally, unlike the perceived difficulty measure
which can be administrated only after a task is completed, the measures derived
from eye-tracking can be collected continuously along the entire task, providing
in turn, measurements with finer granularity in time and potentially more precise
insights. In eye-tracking, the eye-mind hypothesis associates fixations2 on the
stimulus with mental processing under the assumption that what is fixated by
the eyes is being simultaneously processed by the mind [20]. Accordingly, the
average fixation duration has been used in several studies as an indicator of
cognitive load such that the longer the fixation duration, the higher the user’s
cognitive load will be (e.g., [5,38]). Another prominent cognitive load measure is
the low/high index of pupil activity (LHIPA) [11]. This measure is based on the
pupillary features of the eyes. It separates the low pupil oscillations frequencies
from the higher ones to derive a measure that correlates negatively with cognitive
load, i.e., low value refers to high cognitive load [11].

Beside these cognitive load measures, the aforementioned comprehension
measures have been also proposed to capture cognitive load in the literature [10].

Search. Search denotes the process of identifying task-relevant information
among a set of irrelevant information [42,43]. In the process modeling literature,
investigations of users’ search behavior yield, for instance, interesting insights
about their engagement with different hybrid process model representations [4],
extending imperative process models with linked rules [38] or enriching declar-
ative process models with textual annotations and guided simulations [6]. The
duration of fixations has been used, in this vein, to discern different types of
mental processes [15,38]. Notably, in [38], fixations with duration ≤ 250 ms were
associated with information screening behavior. Accordingly, increased num-
bers of this type of fixations imply a more pronounced search behavior. Another
prominent search measure is the scan-path precision used in [30]. This measure
calculates the ratio of fixations on the task-relevant parts of the model to the
total number of fixations. Herein, a high ratio would indicate a simpler search,
more focused on the task-relevant parts, whereas a low ratio would imply a more
difficult search impeded by too many distracting fixations on non-relevant parts.

Cognitive Integration. Cognitive integration denotes the consolidation of
information from different locations [8]. In the process modeling literature, visual

2 A fixation refers to the time interval when the eye remains relatively stationary at
a specific position within a visual field [18].
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associations derived from eye-tracking have been suggested to indicate cognitive
integration [8]. In turn, the average returns to relevant-regions (or look-backs as
defined in [18]) measures how often on average a relevant region (i.e., an area on
the screen, which provides relevant information for a comprehension task) has
been repeatedly fixated. It can therefore provide insights on visual associations
made when recalling and integrating different pieces of task-relevant information
located within a single fragment or spread over several fragments.

Overall, through our different measures of model comprehension and cog-
nitive load, we aim at confirming that compared to the local tasks (benefiting
from abstraction), the global tasks (impeded by fragmentation) yield lower com-
prehension accuracy and efficiency as well as higher perceived difficulty, higher
average fixation duration, and lower LHIPA. Also, using our behavioral mea-
sures we aim at showing, that global tasks are associated with complex search
and higher demand for cognitive integration than local tasks. Based the afer-
omentioned theoretical underpinnings, our measures are particularly suited to
investigate the difference in local and global task solving. Their selection is also
supported by existing cognitive theories and their successful application in pre-
vious experiments.

Fig. 2. Research model for hypothesis testing. T - Theoretical construct, O - Opera-
tionalization of construct.

3 Research Method

To investigate the effects of abstraction and fragmentation, we have conducted
an eye-tracking study following the guidelines in [2]. Sections 3.1 –3.3 provide
an overview of the study design, the study execution, and the data analysis
procedures respectively.

3.1 Study Design

Research Model. Based on the theoretical background introduced in Sect. 2,
our empirical study aims at investigating the impact of abstraction and
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fragmentation on users’ comprehension and cognitive load as well as users’
behavior in terms of search and cognitive integration. Our research model is
depicted in Fig. 2. As treatment, we manipulate the locality of task factor, which
we separate into two-factor levels with local tasks addressing control-flow aspects
located within a single process fragment, and global tasks addressing control-flow
aspects located within two process fragments. As explained in Sect. 2.3, local
tasks benefit from the effect of abstraction, whereas global tasks are challenged
by the effect of fragmentation. The task locality factor is expected to impact
comprehension, cognitive load, search and cognitive integration, which denote the
theoretical constructs at the output side. As shown in Fig. 2, we operationalize
these theoretical constructs using the measures introduced in Sect. 2.4. Following
our research model, we formulate the following hypotheses:

• H1: Global tasks yield lower model comprehension than local tasks in hori-
zontal modularization.

• H2: Global tasks yield a higher cognitive load than local tasks in horizontal
modularization.

• H3: Global tasks yield more complex search than local tasks in horizontal
modularization.

• H4: Global tasks yield a higher cognitive integration than local tasks in hor-
izontal modularization.

Material. The material used for the experiment comprises a process model,
based on the fragment-based modeling approach proposed in [17], and a set of
local and global tasks capturing abstraction and fragmentation effects respec-
tively. The model depicts a logistic process and consists of six different frag-
ments. Each fragment refers to a particular part of the onward carriage process
of a container after it arrived at a port, which involves the unloading, scanning,
temporally storing and loading of a container, as well as its registration and
monitoring. The fragments are connected based on three different data objects,
i.e., container, enterprise resource planning file, and sensor. The possible state
changes of each data object are additionally visualized by three respective life
cycles. To avoid confounding factors [41] the design of the layout and the mod-
eling constructs are carefully aligned with the guidelines proposed by [7], which
will be addressed in the following.

All process fragments are of similar size (six to eight unique activities) and
complexity. Each fragment contains two to four gateways, which are either exclu-
sive (XOR) or parallel (AND). Since domain knowledge can also be a confound-
ing factor [41], the activities are labeled in layman’s terms and specific details
of a real logistic process are left out.

In total, the material includes eight different tasks, which have to be solved
by every participant. Each task consists of a question, which is posed as a true
or false statement. The statements address one of the following control-flow
patterns: sequential, concurrent, exclusive, or repetition. Each statement refers
to two particular activities, which can either be found in a single fragment (local
task) or in two separate fragments (global task). For each control-flow pattern,
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Fig. 3. Difference between local (left) and global (right) tasks and how they are mod-
eled by the fragment-based modeling approach. A better resolution is available at
github.com/../figures [1].

a participant has to solve one local and on global task. Figure 3 provides an
overview of all eight tasks, the control-flow patterns used in the statements
and how they are modeled for the local and the global task type respectively.
Additionally, Fig. 3 shows that the used tasks were formulated following a pre-
defined template. For each control-flow pattern, the associated local and global
tasks were phrased in the same way. Also, each pair of local and global tasks
have the same answer (either both true or both false). With this formulation,
we ensure that no task-related confounding factors are affecting our design since
the only difference between the local and global tasks is the locality of the
activities, i.e., either within the same fragment or spanning over two fragments.
The experiment material is available online at github.com/../material [1].

Figure 4 depicts a screenshot of the user interface used during the experiment
to navigate through the tasks. The process fragments and life cycles are provided
in different files, which can be accessed through the file explorer shown on the
left side of the screen. Note that only one single file can be viewed at a time.
The question is shown at the very top of the screen.

Participants. The eye-tracking study covers 46 participants. The experiment
sessions were conducted at four different locations: at the University of St. Gallen
(22), at the Karlsruhe Institute of Technology (17), at the research institute
Forschungszentrum für Informatik FZI in Karlsruhe (4), and at the IT consult-
ing company Promatis in Karlsruhe (3), within a time frame of 4 weeks. The
participants were between 20–50 years old with a majority in the age range
of 20–30 years (63%). For the professional background, there were three main
groups: researchers at PhD level or higher (22), students (17), and participants
with an industry or IT-admin background (7). The participants had different
levels of expertise in BPMN. To ensure that they could take part in the exper-

https://github.com/aminobest/BPM2023TaskType/tree/main/figures/
https://github.com/aminobest/BPM2023TaskType/tree/main/material
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Fig. 4. User interface with an example of an experiment question.

iment, we have conducted a uniform familiarization and tested their knowledge
with a quiz as it will be explained in Sect. 3.2. Additionally, to avoid confound-
ing factors related to differences in the participants’ expertise, we have used a
within-subject design. Therein, every participant was exposed to each factor level
multiple times, i.e., four local and four global tasks. Although the participants’
expertise might still impact the outcome of each task, based on the within-
subject design both treatments are equally impacted and it is therefore possible
to draw valid conclusions regarding their distinctiveness. A complete overview of
the participants’ demographic data is available at github.com/../demograhics [1].

3.2 Experiment Procedure

Each participant was invited to an individual experiment session, which lasted
about one hour. The experiment was conducted in a controlled lab environ-
ment. The procedure for each session is depicted in Fig. 5. The session starts
with familiarizing the participant with BPMN and the fragment-based model-
ing approach. The familiarization is followed by a short quiz, consisting of two
comprehension tasks, to test whether the fragment-based modeling approach is
understood. During the quiz, the participant could ask additional questions and
receive feedback regarding the solution. The actual experiment starts with two
test tasks, which allow the participants to familiarize themselves with the user
interface and to get to know the procedure. These tasks are not used for the
data analysis later on. This approach is chosen to avoid any bias in the data due
to the unfamiliarity of the participants with the experiment setup. To compen-
sate for a potential learning effect, the tasks are randomized and presented in
different orders to the participants. For each task, the participant has to answer
a comprehension question and two additional follow-up questions. In the first
follow-up question, the participant is asked to verbally justify how the task was
solved. In the second follow-up question, the participant is asked to provide a
self-assessment of how difficult the task was.

https://github.com/aminobest/BPM2023TaskType/tree/main/demographics
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Fig. 5. The different steps during each experiment session.

3.3 Data Analysis

Based on the collected data, the measures introduced in Sect. 2.4 are calculated.
From 46 participants, we obtained 184 data points per factor level (i.e., local
tasks or global tasks). To avoid interdependence between the data points coming
from each individual, a mean value was calculated for the four tasks capturing
each factor level for each participant. This resulted in 46 paired data samples.
Due to technical issues with the eye-tracker, the data was further reduced to
44 paired data samples for the fixation-based measures and to 43 paired data
samples for the pupil-based ones. In the first two cases the brightness in the room
was too high, such that the eye-tracker could not detect the participants’ gazes
correctly. In the third case, the participant kept moving their head which affected
the measurement of their pupil dilation. The remaining data was used to compute
the descriptive and inferential statistics in order to investigate our hypotheses
(cf. Table 1). We used the non-parametric Wilcoxon Signed-Rank test (single-
tailed) for the inferential statistics since it is adequate for comparing paired data
samples and does not require the data to be normally distributed. Our analysis
approach is documented through the used Python notebooks available online at
github.com/../analysis [1].

4 Findings

This section presents the findings of our empirical study. Section 4.1 reports the
results of the comprehension and cognitive load analysis, while Sect. 4.2 reports
the results of the behavioral analysis.

4.1 Comprehension and Cognitive Load Analysis

Based on the results in Table 1, comprehension accuracy (in the range [0:incor-
rect, 1:correct]) was significantly (p< .001) lower for global tasks (M=0.739 )
than for local tasks (M=0.978 ). Likewise, comprehension efficiency (measured
in seconds) was significantly (p< .001) lower for global tasks (M=117.593 s)

https://github.com/aminobest/BPM2023TaskType/tree/main/analysis/
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Table 1. Comprehension, cognitive load and behavioral analyses. N: number of obser-
vations (cf. Section 3.3), M: calculated mean. A p-value< .05 means that the pairwise
comparison results are significant.

Hypothesis/Construct Measure Descriptive Inferential

N Local M Global M p-value

Comprehension and Cognitive Load Analysis

H1/Comprehension Comprehension accuracy 46 0.978 0.739 < .001

Comprehension efficiency 46 54.097 117.593 < .001

H2/Cognitive load Perceived difficulty 46 0.62 1.891 < .001

Average fixation duration 44 194.323 200.966 < .001

LHIPA 43 1.185 0.815 < .001

Behavioral Analysis

H3/Search Fixations with duration ≤ 250 ms 44 142.153 298.883 < .001

Scan path precision 44 0.111 0.077 < .001

H4/Cognitive Integration Av. returns to relevant regions 44 4.108 7.844 < .001

compared to the local ones (M=54.097 s). Based on the background presented
in Sect. 2.4, these two measures indicate that global tasks yield reduced model
comprehension compared to local tasks, which confirms Hypothesis H1.

With regards to cognitive load, the subjective assessment of perceived diffi-
culty (measured in the range [0: “very easy”, 4:“very difficult”]) was significantly
(p< .001) higher for global tasks (M=1.891 ) than for local tasks (M=0.62 ).
Similarly, the average fixation duration was significantly (p< .001) higher for
global tasks (M=200.966 ) compared to local tasks (M=194.323 ). Finally, the
LHIPA score was significantly (p< .001) lower for global (M=0.815 ) than for
local (M=1.185 ) tasks. The trends of these measures (cf. Section 2.4) show that
when solving global tasks users experience increased cognitive load, compared
to local tasks, which confirms Hypothesis H2.

4.2 Behavioral Analysis

Based on Table 1, the fixations with duration ≤ 250ms are significantly higher
(p< .001) for global (M=298.883) than for local tasks (M=142.153). This indi-
cates that users’ exhibited more information-screening behavior when performing
global tasks (cf. Section 2.4). Additionally, the scan path precision is significantly
lower (p< .001) for global tasks (M=0.077) than for local tasks (M=0.111).
This indicates that for global tasks users had to look and scan through a higher
number of irrelevant process model elements before finding the relevant ones
(cf. Section 2.4). These insights hint towards a complex search when dealing
with global tasks, which confirm Hypothesis H3.

With regards to cognitive integration, the average returns to relevant regions
is significantly higher (p< .001) for global tasks (M=7.844) compared to the local
ones (M=4.108), showing, in turn, more demand for recalling and integrating
information, spread over different fragments, when engaging with global tasks
(cf. Section 2.4). This finding confirms Hypothesis H4.
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5 Discussion

Based on the inferential statistics reported in Sect. 4, we can confirm that the
task type has an impact on users’ comprehension and cognitive load when engag-
ing with horizontally modularized process models. This validates the existing
suppositions in the literature [32,43], i.e., while local tasks require less cogni-
tive effort, due to the effect of abstraction, global tasks require more cognitive
effort, due to the effect of fragmentation. Additionally, our behavioral analysis
suggests that the cognitive processes underlying global and local tasks differ, as
global tasks are associated with a more complex search and require more cog-
nitive integration than local tasks. Since horizontal modularization allows for a
very flexible decomposition of process models into modules, regardless of their
hierarchical relationships and cross-cutting concerns, it can be assumed that
the gained insights generally apply to other modularization approaches as well,
which are more restrictive in terms of decomposition.

Following these insights, we suggest that researchers should consider the task
type as an integral part of their research models aiming at explaining the compre-
hension of process models. This proposal finds also support in other literature,
demonstrating the impacts of different task types on the understandability of
software artifacts [12,33]. The framework of Mandelburger and Mendling [25]
can be seen as a prominent example in this direction as it motivates the shift
from artifact-centric to task-centric research. This way, the comprehension of
process models would not only be justified by the model proprieties (e.g., size,
density, connectivity) but also through the characteristics of the task at hand.

From a practitioner’s perspective, it should be recognized that not only design
choices impact the comprehensibility of a modular system, but also how specific
tasks are defined and distributed among development teams. Tasks should, if
possible, be confined to specific self-contained modules instead of multiple mod-
ules at once. This is indeed in line with existing software engineering practice
and the general idea of microservice architecture [19]. At the same time it should
be clear that in general, tasks cannot always be confined to a single module. This
holds, in particular, true for cross-cutting concerns, such as security and privacy.
In this case, the restriction of tasks to specific services or modules hinders the
comprehensibility of the overall system and therefore the ability to solve cross-
cutting concerns [19]. To overcome this issue our findings motivate the need to
develop support for search and cognitive integration to compensate for some of
the negative effects of fragmentation.

One possibility to support the search as well as the cognitive integration
of information is to use modeling tools interlinking modules to improve their
navigation. Yet, empirical evidence is missing, on how such a navigation affects
model comprehension [24]. Another approach to avoid the searching and inte-
gration issues is to use simulators to evaluate the executions allowed under
different scenarios as proposed in [26]. Therein, for certain global tasks users
do not necessarily need to search and cognitively integrate information across
several modules, since the simulation can provide information regarding global
process behavior. To further facilitate the integration of information, one could
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also provide a general overview or mapping of the modules, e.g., in the form
of a model landscape. This approach has also been applied for fragment-based
process models and empirical tests show indeed a benefit in terms of process
model comprehensibility [16]. Additionally, to particularly facilitate the search
for information, one could use natural language processing based on the lexi-
cal similarity between task description and the textual corpus of the software
artifact. A similar approach has been proposed for feature location in software
systems [9].

All in all, future BPM tools should incorporate the characteristics of the
user task to augment their support. Based on our empirical findings, for global
tasks, this support should particularly focus on reducing the search and cognitive
integration effort underlying this type of tasks.

Threats to Validity. Our work can be subject to some validity threats.
Although the experiment sessions are conducted in a unified manner based on an
experiment protocol and in a controlled environment, one cannot eliminate the
possibility of the existence of confounding factors, which might have influenced
the outcome of the study and therefore its internal validity. However, several
measures are taken to mitigate this risk. To avoid learning effects, the compre-
hension tasks were presented in a random order to each participant. These tasks
also refer to different process fragments or different combinations of fragments.
Moreover, each of the used six fragments is only relevant for two out of eight
tasks. The relatively high number of subjects for an eye-tracking study (46) fur-
ther supports the internal validity of the experiment. Each participant received a
uniform introduction to BPMN and to the fragment-based modeling approach,
thus ensuring that all participants have a similar basic knowledge to partici-
pate in the study. A further concern is whether the identified findings could
be applied to other process modeling languages. This risk to external validity
is again mitigated to some extent by the design of our comprehension tasks
addressing different control-flow patterns. Hence, the results are less dependent
on particular model structures. Also, it is worthwhile to mention that these
control-flow patterns are typically found in process models [43].

6 Conclusion and Future Work

The conducted eye-tracking study confirms that, in horizontal modularization,
global tasks impede the model comprehension and raise users’ cognitive load in
comparison to local tasks. This can be explained by the two opposing effects of
abstraction and fragmentation, caused by modularization. Additionally, based
on our behavior analysis, it becomes, in particular, apparent that global tasks
require complex search and a higher cognitive integration effort, due to fragmen-
tation. To overcome this issue we propose several possible tool augmentations
and motivate the need to attend more attention to the task perspective.

In the future, we are planning to investigate tasks addressing the data-
flow perspective in fragmented process models. Additionally, we will extend our
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behavioral investigation to identify other traits characterizing the solving of the
covered tasks. Moreover, we can move our analysis of cognitive load to a more
fine-grained level to obtain more detailed insights into the particular modeling
constructs challenging users in different tasks. Lastly, we can also investigate the
effects of the proposed augmented tooling on solving global tasks.

Data Availability Statement. As pointed out in the relevant sections of the paper,
the experiment and analysis material are available on GitHub [1].
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Abstract. The digital age entails challenges that pressure organisations
to redesign their business processes for improved performance. A sig-
nificant aspect of this effort is the appropriate assignment of human
resources – or people – to tasks. Despite the importance, there is a lack of
structured guidance on allocating people to tasks considering various per-
formance considerations such as time, cost, quality and flexibility. This
paper presents 15 human resource allocation patterns organised into five
categories: resource capability, utilisation, reorganisation, productivity
and collaboration. The pattern collection is designed to offer guidance
on diverse strategies for human resource allocation, focusing on process
redesign for performance improvement from a resource perspective. The
research was conducted in a two-phase approach. In the first phase, a
literature review was conducted to identify existing resource patterns
and practices, synthesised into an initial catalogue of human resource
allocation patterns. In the second phase, this catalogue was evaluated
through expert interviews with ten practitioners. The patterns provide a
repository of knowledge guiding academics and practitioners on different
ways a person can be assigned to a task for improved process efficiency.
These patterns form a strong foundation for future research in the area
of human-centred business process redesign.

Keywords: Process improvement · Allocation patterns · Human
resource · BPM

1 Introduction

Organisations have faced and continue to face pressure to adapt to trends in
an increasingly hyper-connected and fast-moving world [6]. A changing work-
force, the shortage of skilled workers and increasing automation significantly
impact the work organisation. The need for efficient and effective work alloca-
tion to people is more important than ever. A McKinsey survey [5] finds 83% of
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executives believe that strategic use of people can drive value and help deliver
higher returns to stakeholders. Similarly, research shows that assigning the right
people to the right task can improve process efficiency, income, and customer
satisfaction [3,10,33].

Business Process Management (BPM) is a boundary-spanning field of
research that supports organisations in operating effectively and efficiently
through the discovery, execution, analysis, and redesign of business pro-
cesses [11]. Business Process Redesign (BPR) (not to be confused with busi-
ness process re-engineering) is the key activity in BPM for identifying process
improvement opportunities. Processes can be analysed and improved from the
control-flow, data, and resource perspective [11]. The resource perspective con-
cerns all actors (human and non-human) involved in a business process [11]. The
allocation of people has been acknowledged as a significant problem in BPM
research [3,4,23]. It is, therefore, imperative that human resource considerations
are taken into account during BPR.

Recognising the importance of resource allocation on the performance and
efficiency of a process [4], an increasing amount of research is being conducted in
this field. One of the earliest works by Russell et al. is on workflow resource pat-
terns [27] that capture how resources (both human and non-human) can be used
and represented in workflow systems. Other studies have focused on developing
distinct resource allocation methods by leveraging techniques such as machine
learning (e.g., [28,31]) and Markov models (e.g., [17]). While prior literature on
potential resource allocation mechanisms does exist, it is fragmented. There is
a lack of understanding and support for considering human resource allocation
in BPR. Given people’s continuing important role in executing a process, this
study investigates how ‘best’ to assign people to process tasks. Therefore, we
formulate our research question as follows: How can human resources be best
allocated to tasks when redesigning business processes?

We propose a human resource allocation patterns (HRAPs) catalogue to
address this research question. Patterns capture best practices and assumptions
from the field and have been used as a common tool to provide methodologi-
cal support for BPR [15,34]. Patterns have the advantage of being specific to a
problem in hand but also generic enough to address future problems [15]. They
provide a simple entry point into BPR as they are easy to understand, describe
clear redesign ideas, and, hence, can foster creative thinking about BPR options
in generic and specific situations [18]. We employ a two-phase research approach
to synthesise these patterns. First, we collate and analyse existing literature to
develop HRAPs. Next, we evaluate and refine them through expert interviews
with BPM professionals with BPR experience. We also evaluate the patterns’
impact on process efficiency in terms of time, cost, quality, and flexibility [11].
These 15 patterns provide scholars and practitioners with a repository of knowl-
edge about the different aspects to consider when allocating human resources to
tasks in a process.

The remainder of the paper is structured as follows. Section 2 provides back-
ground on redesign patterns and related research in people assignment in BPM.
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Section 3 introduces the study’s methodological setup while Sect. 4 presents the
refined set of HRAPs. Section 5 provides an overview of expert interviews con-
ducted for refinement and evaluation purposes and discusses changes to the
refined set of patterns. In Sect. 6, we conclude by highlighting research contri-
butions, limitations and avenues for further research.

2 Related Work

BPM is the continuous cycle of discovering, executing, analysing, redesigning,
and monitoring business processes [11]. BPR is considered the most value-adding
phase in the BPM lifecycle [11,25,34]. Consequently, the BPM discipline seeks
principles, methods, techniques, and tools to support this phase [30,34,37].

People are essential elements of enacting business processes, and their roles,
capabilities, and interactions play a crucial role in successfully redesigning pro-
cesses. Much more than machines, people have heterogeneous strengths and pref-
erences that, if correctly leveraged, can positively impact process performance.
A key challenge in BPR is identifying the right people with the right skills
and knowledge to perform tasks [4]. Best practices in the form of BPR pat-
terns provide the inspiration for creating improvement options. A pattern can
be described as a general solution to solve specific problems by reusing experi-
ence instead of rediscovering it [15, p. 2]. BPR patterns (commonly also referred
to as redesign heuristics) “suggest particular changes to an existing process to
influence its operation in certain ways” ([18, p. 193]) and are often documented
as text, sometimes augmented by illustrations and implementation examples.
BPR patterns are rarely invented but rather observed from the field and com-
piled for utilisation [34]. Several BPR pattern collections have been published
in the past, focusing on general business processes [25,29] as well as specific
domains such as customer-centric service design [14], or healthcare [20].

Specific resource-related BPR patterns also exist. For example, Russell et
al. [27] present both human and non-human resource patterns in the context
of workflow management systems. Reijers and Mansar [25] present a subclass
of BPR patterns, which focus on resource view. Zellner [34] presents a set
of IT resource-related patterns. However, none of the papers purely focus on
human resources. Just as business process performance is a multidimensional
construct, redesigns affect the process in a multidimensional way. Selecting per-
formance objectives from high-level yet sometimes opposing dimensions like
quality, cost, time, flexibility, or customer/employee satisfaction guides redesign
initiatives [11,14].

Several works have been conducted on resource allocation in business pro-
cesses, recognising the significance of resources in business process improvement.
In a literature review, Zhao and Zhao [36] highlighted cross-organisational min-
ing, dynamic resource allocation, and role complexity analysis as significant
research directions. Arias et al. [4] proposed a recommendation framework for
resource allocation based on process mining at the sub-process level, which con-
siders six dimensions, frequency, performance, quality, cost, expertise, and work-
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load. Zhao et al. [35] presented a resource allocation model that minimises execu-
tion time while meeting cost and resource availability constraints for higher pro-
cess performance. Erasmus et al. [12] used the Fleishman taxonomy for human
abilities to specify the abilities required for different tasks and allocate appro-
priate resources to tasks during run-time. Pika et al. [24] extracted resource
behaviour from event logs and quantified outcomes using regression analysis.
Kim et al. [16] proposed a framework to derive features that capture people’s
experience from event log data and used random forest and XG Boost for classi-
fication. Yang et al. [32] developed an approach to learn execution contexts from
event logs by defining categorisation rules based on case, activity, and time and
using a decision tree to learn these rules. In the area of human resource allocation
problems, a growing body of research focuses on optimising resource allocation
to minimise costs or maximise profits [7]. Various techniques, including assign-
ment methods proposed by Pentico et al. [22], have been developed to address
this optimisation problem. These techniques, such as heuristics and branch and
bound algorithms, aim to find exact solutions [7]. However, it is important to
note that this literature primarily emphasises the development of optimisation
techniques rather than providing comprehensive guidance on resource allocation
for process improvement.

The literature on human resource allocation in business processes lacks a
comprehensive method for improving business process performance in terms of
time, cost, quality, and flexibility. Current approaches vary and address specific
aspects, such as profiling resources or distributing resources during run-time,
but a holistic approach is missing. This study aims to bridge this gap by offering
guidance on resource-based personnel allocation in process redesign.

3 Research Design

Our research method included two phases. In the first phase, we developed the
initial catalogue of 15 HRAPs through a narrative literature review. In the second
phase, we interviewed ten process improvement experts to evaluate and refine
the initial catalogue.

3.1 Development Phase

Since there are already some documented examples of BPR patterns in the
literature, we started our collection with a narrative literature review adopt-
ing guidelines proposed by vom Brocke et al. [8]. We reviewed the proceed-
ings of the BPM conferences of the last 15 years and the databases ABI
INFORM, EBSCOhost, ScienceDirect, JSTOR, and Google Scholar. The key-
words used were “process redesign patterns”, “process redesign heuristics”,
“process re-design patterns”, “process re-design heuristics”, “process improve-
ment patterns”, “process improvement heuristics”, “resource redesign patterns”,
“resource redesign heuristics”, “resource re-design patterns”, “resource re-design
heuristics”, (“resource allocation” AND “patterns” OR “heuristics”), “resource
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optimisation patterns”, and “resource optimization patterns”. These keywords
were looked for in titles and keywords of papers, resulting in a pool of 848
papers. The titles and abstracts of these papers were reviewed to find papers
that address patterns in a BPR context. In addition, a forward and backward
search of seminal papers was conducted to collect representative literature [8],
resulting in 39 articles.

63 patterns were identified from the remaining papers. These patterns were
assessed in more detail using four criteria consistent with the study’s motivation.
They are: (1) the BPR pattern relates to human resources, i.e., people, (2) the
BPR pattern and its use can be evaluated during the (re)design of the process,
(3) the BPR pattern should lead to a quantifiable increase in the performance
of the process in one or more dimensions of process performance, and (4) the
implementation of the BPR pattern should not entail major changes for the
organisation (e.g., value proposition, structural changes to the organisation).
A systematic application of these criteria yielded a total of 24 patterns. For
example, the system-determined work queue content pattern [27], which allows
a system to determine the order in which work should be done, can not be used
for human resources and hence was not considered. However, the history-based
distribution pattern [27] was kept as it advocates the use of performance history
before assigning a task, and this concept can be used for human resources. The
resulting 24 patterns were: order assignment, flexible assignment, split respon-
sibility, customer teams, numerical involvement, case manager, extra resources,
specialist/generalist, empower (all found in [25]), direct distribution, role-based
distribution, separation of duties, case handling, authorization, retain familiar,
capability-based distribution, history-based distribution, organisational distri-
bution, random allocation, round-robin allocation, shortest queue, delegation,
escalation, and additional resources (all found in [27]).

These 24 patterns were reviewed further to see if they could be grouped into
a higher-order pattern and augmented with other literature on human resource
allocation patterns. This resulted in the initial catalogue of 15 patterns. For
example, we merged the specialist pattern [25] and the capability-based distri-
bution patterns [27] into one pattern referred to as expertise-based task assign-
ment. Similarly, shortest queue, round-robin allocation, and random allocation
were merged into workload-based task assignment.

3.2 Refinement Phase

Next, interviews were conducted with ten process improvement experts. Purpo-
sive sampling [21] was used to recruit experts with several years of experience
and varying areas of practice (see Table 1) to enable a more general assess-
ment based on a well-founded judgement. The interviews were semi-structured
in nature with the overall objective to gauge the perceived usefulness, perva-
siveness, and comprehensiveness of the HRAPs and to estimate their potential
effect on process performance.

Each interview was administered by one researcher. In accordance with [19],
the interviews started by providing the participants with an overview of the
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study and the approach to derive these patterns. Each pattern was individu-
ally assessed, starting with explaining its basic idea and a simple application
example. We presented each pattern individually to the experts together with
a brief description. After clarifying possible comprehension questions about the
pattern at hand, the experts assessed its usefulness and pervasiveness. Ratings
were based on a four-point scale, allowing for simple dichotomies. Next, using
qualitative statements, the experts evaluated the potential impact of applying
the patterns on performance dimensions (cost, time, quality, and flexibility). For
example, they provided assessments such as “very high impact on cost” or “the
pattern may slightly improve throughput time.” The experts had the opportu-
nity to readjust their previous ratings as the interview progressed to subsequent
items. The researcher also recorded any additional expert comments for further
analysis. The interview data were analysed using a hybrid approach [13]. Expert
ratings were aggregated per pattern to calculate the mean and standard devia-
tion in a deductive approach. Performance assessments and relevant indications
from existing literature were consolidated for each pattern. In an inductive app-
roach, the comments were analysed to gather new insights. We report on the
survey in Sect. 5.

4 Human Resource Allocation Patterns (HRAP)

We present 15 HRAPs derived from the literature synthesis and expert inter-
views. The patterns have been grouped across five categories1(see Fig. 1):

(1) Capability: human resource allocation based on their ability to complete
tasks;

(2) Utilisation: human resource allocation considering their effective use;
(3) Re-organisation: human resource allocation to individual tasks or a process

based on strategic and tactical decisions taken by the organisation;
(4) Productivity: human resource allocation based on their efficiency evidenced

through historical data; and
(5) Collaboration: human resource allocation based on their interactions with

other members within the organisation.

Each HRAP is presented in a structured format consisting of a title; a
description, explaining the core idea for process redesign; an example, indicating
where/how the process pattern is applied in use; the estimated impact, indicat-
ing the change in business process performance with regard to the dimensions
of time, cost, quality, and flexibility; and implementation, describing the key
aspects required to implement the pattern in a business process. The patterns
are applicable at both process and instance (single and multiple) levels. The
following subsections present the HRAPs per category.

1 Four category names have been adapted from Pika et al. [24], while the reorganisation
category has been introduced based on the literature synthesis. [24] did not propose
any patterns; we have only adapted the category names (e.g., capability).
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Fig. 1. Overview of human resource allocation patterns in five categories.

4.1 Human Resource Capability

The patterns in this category allocate people based on their expertise, role, and
preference.

Expertise-Based Task Assignment. Assign tasks based on the unique skills
of the person(s) involved. Expertise is defined as the specialised skills possessed
by a resource.

Example: To examine a patient who reported a cardiac issue, a doctor with
expertise in cardiology is assigned the task.

Impact: This BPR pattern will lead to a high-quality outcome in less time, albeit
at a higher cost.

Implementation: The pattern requires prior knowledge of the skills needed to
complete the task, including specialised skills of personnel. Skills needed for the
task are matched with the skills of available resources, and a person with the
required expertise is then assigned to the task.

Role-Based Task Assignment. Assign tasks based on the role of the resource
involved in a process.

Example: Upon arriving at the emergency department, the patient is directed
to see any available nurse (based on role) for an initial assessment.

Impact: This pattern will increase flexibility and reduce time.

Implementation: The pattern requires knowledge of the roles to complete tasks
within the process. When assigning tasks, the required role for the task is
matched with the corresponding role within the organisation and then assigned
to personnel within that role.
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Preference-Based Task Assignment. Assign a task to a person based on the
person’s preference. Preference is defined as a set of activities that the person
has an inclination towards and hence may have been executed more often along
with higher execution efficiency by a person.

Example: In Scrum, preference-based task assignment allows team members to
choose tasks based on their preferences and past efficiency. For instance, if a
team member prefers doing programming tasks, they can choose to work on
those tasks.

Impact: This pattern will result in high-quality outcomes in less time and cost.

Implementation: The pattern requires knowledge of the requirements of the pro-
cess and record keeping of individual preferences of team members. Team mem-
bers’ preferences can be inferred from their past involvement in certain tasks or
directly provided by them. During the assignment, tasks and preferences of team
members are matched and assigned to those with the corresponding preferences.

4.2 Human Resource Utilisation

This category assigns tasks to people based on workload and execution con-
straints within a process.

Workload-Based Task Assignment. Assign tasks to people based on their
workload, which refers to the number of task instances started but not yet com-
pleted by a person.

Example: A team of customer service representatives receives a high volume of
incoming calls. The workload-based task assignment pattern assigns new incom-
ing calls to the representative with the least amount of calls in progress.

Impact: The pattern might lead to better resource utilisation, task completion
rates, and reduced idle time.

Implementation: The implementation of workload-based task assignments
requires the tracking of tasks and their completion status for team members,
along with a system to assign tasks based on each person’s workload.

Constraint-Based Task Assignment. Assign tasks to resources based on
constraints associated with the execution of tasks within the business process.

Example: An organisation’s travel process includes approving travel requests and
reconciling financial reports. During resource assignment, the resource assigned
to these two tasks should be different to ensure that the separation of duties
constraint adheres.

Impact: This pattern will result in an outcome of high quality and ensures com-
pliance. However, flexibility, creativity and throughput time could suffer from
strict adherence to constraints.
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Implementation: The implementation involves identifying the constraints asso-
ciated with the execution of tasks, defining the rules for assigning tasks based on
those constraints, and incorporating those rules into the task assignment process.

4.3 Human Resource Re-Organisation

This category involves allocating people based on the need for resource expan-
sion, task delegation, empowering people to make decisions, and assigning an
accountable person to the process.

Increased Resource Assignment. Allocate more people to a task in a process
for strategic reasons, such as speeding up the process or reacting to trends.

Example: When launching a new product, increase the number of customer ser-
vice agents available to handle customer inquiries and support requests to ensure
timely and efficient service and enhance the customer experience.

Impact: The pattern will result in a high-quality outcome in less time, albeit at
a higher cost.

Implementation: For increased resource assignment, details related to expertise,
preference, role, workload, productivity, the collaboration of resources, and con-
straints in process execution need to be known. Based on the needs of the process,
additional resources will be matched and allocated to the process.

Empower Resources. Grant decision-making authority to people rather than
seeking approval from a supervisor.

Example: To streamline the insurance claim process, resources are empowered to
make decisions in place of middle management, reducing approval bottlenecks.

Impact: This pattern will result in less time and cost.

Implementation: To empower resources, gather information about their capa-
bility, productivity, collaboration, and utilisation. Based on this information,
identify resources capable of making decisions and provide them with the nec-
essary authority. Communicate the reasons behind the decision to empower
resources and the expectations and constraints associated with the decision-
making authority.

Task Delegation. Task delegation is when a person who was originally assigned
a task passes it on to another person based on their position in the organisational
hierarchy.

Example: The customer complaint manager delegates two complaints to one
team member and three to another.

Impact: This pattern will result in an outcome in less time but may decrease the
quality.
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Implementation: Prior knowledge related to the privileges of people within the
organisation is required. People can then be granted the authority to delegate
tasks to team members based on their position. Ensure transparency to those
with delegation powers on the capabilities and utilisation of delegates for good
delegation decisions to be made.

Case Manager Assignment. Assign a person as a manager for a case who is
responsible and accountable for all decisions taken during the process execution.

Example: An organisation assigns a new resource as a recruitment process man-
ager responsible for decision-making related to process flow, resource allocation,
data handling, and other relevant decisions.

Impact: This pattern will result in high-quality outcomes in less time and cost.
Ensures clear accountability and responsibility for the process, while it can create
a bottleneck if the case manager is not readily available.

Implementation: Involves identifying the process to be managed, selecting a
suitable resource as the case manager, providing the necessary authority and
resources to carry out the responsibilities, and ensuring effective communication
and collaboration among the resources involved.

4.4 Human Resource Productivity

The patterns in this category allocate people based on past performance, expe-
rience, quality, and cost.

Performance-Based Task Assignment. Assign tasks based on a person’s
past performance, measured by execution time and successful outcomes.

Example: An organisation assigns a complex data analysis task to a resource who
has previously demonstrated expertise in that area and consistently produced
accurate and timely results.

Impact: This pattern will result in a high-quality outcome in less time and cost.

Implementation: Performance metrics must be defined and measured (in partic-
ular time taken to complete activities) for different tasks. Based on these metrics,
persons can be assigned tasks that they have performed well in the past.

Experience-Based Task Assignment. Assign a task to a person based on
their experience, measured by the number of times they have executed a work
item, been involved in a case, and interacted with others.

Example: An organisation assigns a senior manager role in data and analytics to a
person with at least 10 project involvements, five project leadership experiences,
and team management experience of at least 20 people.

Impact: This pattern will result in high-quality outcomes in less time.
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Implementation: Experience metrics for people must be available. At the time
of execution, the experience required for the task will be matched with existing
data and to select an appropriate person.

Quality-Based Task Assignment. Assign a task based on prior internal or
external customer feedback or quality metrics.

Example: An organisation evaluates the performance of its customer service
representatives based on customer feedback and assigns high-performing repre-
sentatives to handle complex customer complaints.

Impact: This pattern will result in high-quality outcomes.

Implementation: For quality-based task assignments, details related to the cus-
tomer evaluation feedback for resources need to be known. At the time of allo-
cation, people with the best quality feedback will be chosen for the task.

Cost-Based Task Assignment. Assign tasks based on the cost of a resource,
defined as the person’s per-hour cost when executing a task.

Example: An organisation assigns a data entry task to persons that charge a
lower hourly rate for the same quality of work.

Impact: This pattern will result in lower cost. Implementation: For cost-based

task assignments, data related to the cost per hour of employees within an organ-
isation must be known. A resource with an appropriate cost will be assigned for
a particular task.

4.5 Human Resource Collaboration

This category of patterns allocates people based on interactions within a team
and with different functional units within an organisation.

Teamwork-Based Assignment. Assign a task to a person based on their
experience working with other resources, which is measured by factors such as
the time taken for handovers, number of interactions, and diversity of experience
with different people.

Example: The review risk task in a loan application process requires two
resources to work together. The task is hence allocated to resources A and B as
they have evidenced working well together in the past.

Impact: This pattern will result in a high-quality outcome in less time and cost.

Implementation: For a teamwork-based assignment, a prior understanding of the
interaction of a resource with other resources needs to be known. Based on that
understanding, appropriate resources will be allocated.
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Department-Based Assignment. Assign tasks to people based on their inter-
actions with other departments to involve multiple departments or limit involve-
ment.

Example: The review loan application task has been assigned to a resource from
the finance and human resources departments, as they have shared responsibility.

Impact: This pattern will result in a high-quality outcome in less time and cost.

Implementation: For department-based assignments, prior information related
to different departments, people in those departments, their skills, and the time
involved in handovers may be required. Based on this information and the objec-
tive of the process, the appropriate resources would be allocated to the tasks of
the process.

5 Evaluation

Ten BPR experts were interviewed to share their opinions. Table 1 provides an
overview of the interviewees. Table 2 presents the results obtained from expert
feedback on the perceived usefulness and pervasiveness of the HRAPs. Similarly,
expert comments related to certain patterns were analysed and three main types
have been identified: (a) Comments reinforcing the value of a pattern and its
rank among others, which served as a consistency check for the quantified ratings
of perceived usefulness and pervasiveness. (b) Comments seeking clarification of
a pattern’s description, which were utilised to improve the wording and naming
of the patterns. (c) Comments sharing practical examples or further experiences
related to pattern usage, which were incorporated into the pattern descriptions
in Sect. 4. The results show that all patterns are perceived to be at least use-
ful: expertise-based task assignment, case manager assignment, and increased
resource assignment were considered very useful. In a similar vein, the perceived
pervasiveness of the patterns was also agreed by experts, with expertise-based
task assignment, workload-based task assignment, role-based task assignment,
and cost-based task assignment being used often. For example, “we often use
expertise-based assignment. It is very useful” (INT8).

The discussions, especially on the patterns with high standard deviations,
yielded interesting results. Preference-based task assignment often scored lower
where experts used the context of high-volume processes and higher where the
experts demonstrated affinity to knowledge-intensive processes. Experts overall
emphasise the value of the selected prioritisation in case handling for the patterns
in the productivity category, especially experience-based task assignment and
quality-based task assignment. Yet, on performance-based task assignment, three
experts noted that it could lead to disorder, resource overload and imbalanced
workloads. Although “cost-based task assignment is highly prevalent”(INT1),
four experts commented that while the pattern may result in lower cost, it may
compromise the quality of outcome if the people do not have adequate skills to
perform the task (e.g., “Cost-based task assignment is used often but we need to
ensure that quality and time involved remain good”(INT3)) This indicates that
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Table 1. Overview of interview participants.

INT Role Exp. Industry Employees

1 Head of Organisation and BPM 12 yrs. Real Estate 500

2 Head of Business Process Excellence 20 yrs. Construction Industry 32,000

3 Business Analyst 6 yrs. Academic Consulting 250

4 Business Performance Improvement Consultant 4 yrs. BPM Consulting 100

5 Business Analyst 5 yrs. Academic Consulting 250

6 Technical Business Analyst 4 yrs. IT services & consulting 13000

7 General Manager 20 yrs. Public Services Research and Innovation 12

8 Head of Business Services 20 yrs. Insurance 159,000

9 Senior Business Analyst 5 yrs. Finance and Insurance 13000

10 Senior Business Analyst 6 yrs. Banking 700

Table 2. Evaluation results across the HRAPs.

p. usefulness1 p. pervasiveness2

Category Pattern Mean Std.Dev Mean Std.Dev

Capability Expertise-based task assignment 2.6 0.49 2.7 0.46

Role-based task assignment 2.4 0.66 2.7 0.64

Preference-based task assignment 2.1 0.83 2.0 0.63

Utilisation
Workload-based task assignment 2.5 0.50 2.7 0.46

Constraint-based task assign-
ment

2.5 0.50 2.5 0.50

Re-organisation Increased resource assignment 2.6 0.66 2.3 1.00

Empower resources 2.5 0.50 2.1 0.70

Task delegation 2.5 0.67 2.6 0.66

Case manager assignment 2.8 0.40 2.6 0.49

Productivity Performance-based task assign-
ment

2.1 0.83 1.7 0.46

Experience-based task assign-
ment

2.1 0.70 2.3 0.64

Quality-based task assignment 2.5 0.67 2.1 0.83

Cost-based task assignment 2.5 0.50 2.7 0.46

Collaboration Teamwork-based assignment 2.4 0.66 2.3 0.64

Department-based assignment 2.1 0.70 2.5 0.50

1 Responses from each interviewee for perceived usefulness were mapped as follows:
not useful (0), somewhat useful (1), useful (2), and very useful (3).
2 Responses from each interviewee for perceived pervasiveness were mapped as follows:
not at all (0), rarely (1), sometimes (2), and often (3).

in some situations, patterns might need to be used in pairs to allocate resources
optimally: one could use both the empower resources and experiencebased task
assignment patterns together to identify and empower experienced persons to
handle activity without the involvement of a supervisor. Another interesting rev-
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elation from interviews was how patterns were viewed based on the nature of
the processes within an organisation. In large-scale processes designed to roll
out in several markets or regions, role-based task assignment was deemed more
relevant, while it was considered less relevant for smaller-scale processes. This
conveys that factors such as process standardisation, knowledge and creativity
involved in processes, and others may make certain HRAPs more relevant for
a process. Furthermore, through inductive analysis, new insights were gained
from further statements. Besides overall statements like “this collection of pat-
terns is useful”(INT1), themes were commented on that we already outline in
the paper: The call for process improvement methods that consider the human
with its distinct features and needs. “BPM has an operations view, not a peo-
ple development view”(INT2). “Mapping HR positions to roles is challenging
in practice”(INT3). In addition, new people-specific considerations were raised
in the interviews, which have less impact on the classic process performance
dimensions but may have longer-term implications for the organisation. Two
experts commented on the need to assign tasks such that they contribute to
building the capabilities of an employee, e.g., “The notion of knowledge shar-
ing/development should be integrated into human-centric BPM”(INT1) and
“The long-term perspective of employee development is usually not considered as
part of BPM”(INT2). Another expert suggested that avoiding monotonous work
over long periods of time is necessary for people to maintain their psychologi-
cal well-being. “Themes like personal traits, mental well-being, the intrinsic joy
of work, and personal development are worth considering”(INT3). These com-
ments communicate the significance of considering up-skilling and well-being
when allocating tasks to people. Organisations are facing a paradigm shift in
the management of employees from simple recruiting and terminating to man-
aging the well-being and retention of employees [2]. Up-skilling employees are
recognised as a major factor for retention [26] as is meaningful work [9]. Being
able to do diverse tasks and feeling a sense of purpose is also associated with
employee mental health and well-being [1]. Henceforth, The interviews suggest a
new human resource allocation theme that should be further explored in future
research: employee well-being. Moreover, the gravity of considering various fac-
tors that may affect the efficiency of people and their ultimate impact on process
efficiency is also indicated. Henceforth, identifying the key indicators of resource
efficiency is another area of future investigation.

6 Conclusion and Future Work

While digital processes continuously evolve for efficiency and effectiveness, the
significance of humans remains undeniable as a crucial factor for exceptional
customer experiences. Therefore, it is imperative to reimagine resource allocation
considerations such that people can be assigned tasks in a value-creating manner.
In this paper, we present 15 human resource allocation patterns that provide
guidance on how to allocate people best. The patterns were derived from the
synthesis of literature followed by expert evaluations. Our evaluation conveys
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the perceived usefulness and pervasiveness of these HRAPs and their impact
on process performance. The patterns provide a repository of knowledge on the
different aspects to consider when allocating people. They also provide guidance
on the data that needs to be maintained to make these allocation decisions at
design time. Thus, this BPR pattern catalogue can serve as a common language
or a reference point for academics and practitioners.

We acknowledge the limitations associated with this work. The patterns
were deduced from a narrative literature synthesis within the BPM discipline.
Unlike systematic literature reviews, narrative reviews are known to carry risks
of bias and subjectivity, lack replicability, and may feature inconsistent quality
appraisal. Nevertheless, our review was designed to encompass a wide breadth
of literature, all critically examined with the explicit objective of unearthing
patterns related to human-centric process improvement. The findings are not
presented as a narrative interpretation of the literature, but instead, we have
elected to list the patterns. This list represents our efforts to cluster and merge
patterns, thus minimising subjective interpretation and enhancing the clarity
and applicability of the results. To mitigate bias, we evaluate the patterns with
process improvement experts. It should be highlighted that even though our pat-
tern collection is derived from a comprehensive review of literature and expert
discussions, it isn’t deemed to be all-encompassing. Certain constraints tied to
the expert survey, such as the utilization of a purposive sample, could potentially
skew the results. There may also be bias emanating from the researcher-led inter-
view approach. Furthermore, gauging the value of patterns via single-rated items
may not fully capture the intricacy of usefulness. To counter these shortcomings,
we have incorporated relevant expert comments to supply further contextual
information.

The theme “mental health and well-being” did emerge from expert inter-
views, and further work is required to investigate the significance of this cat-
egory and any new HRAPs that may arise. We also recognise that the design
and level of detail of the fields collected may not be fully comprehensive. For
example, the authors are interested in exploring suitable techniques to automate
the recognition and application of the patterns in further research. To this end,
research should also investigate how preferences and past experiences can be
processed and presented for decision making. Beyond that, the work presented
in this manuscript opens various avenues for future research. Future researchers
might conduct surveys to evaluate the completeness of the patterns in the field
and both collect and conduct case studies for pattern application in the field. In
addition, techniques can be developed to execute the rules described in the pat-
terns, which can be integrated into tools such as workflow management systems
or business process management systems. Finally, research is also advocated to
identify and harness the key factors that lead to value-creating human work in
processes.
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Business Process Management. BPM 2022. Lecture Notes in Computer Science,
vol. 13420, pp. 163–180. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-16103-2 13

https://doi.org/10.1016/j.dss.2021.113669
https://doi.org/10.1016/j.dss.2021.113669
https://doi.org/10.1007/978-3-642-28108-2_4
https://doi.org/10.1007/978-3-642-28108-2_4
https://doi.org/10.1108/14637150710740455
https://doi.org/10.1108/14637150710740455
https://doi.org/10.1007/978-3-642-12186-9_58
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.1016/j.omega.2004.04.012
https://doi.org/10.1007/11431855_16
https://doi.org/10.1016/S0167-9236(00)00136-6
https://doi.org/10.2139/ssrn.3916817
https://doi.org/10.1145/2600821.2600843
https://doi.org/10.1007/978-3-031-16103-2_13
https://doi.org/10.1007/978-3-031-16103-2_13


394 K. Goel et al.

33. Yeon, M.S., Lee, Y.K., Pham, D.L., Kim, K.P.: Experimental verification on
human-centric network-based resource allocation approaches for process-aware
information systems. IEEE Access 10, 23342–23354 (2022). https://doi.org/10.
1109/ACCESS.2022.3152778

34. Zellner, G.: Towards a framework for identifying business process redesign patterns.
BPMJ 19(4), 600–623 (2013). https://doi.org/10.1108/BPMJ-Mar-2012-0020

35. Zhao, W., Yang, L., Liu, H., Wu, R.: The optimization of resource allocation based
on process mining. In: Huang, D.-S., Han, K. (eds.) ICIC 2015. LNCS (LNAI),
vol. 9227, pp. 341–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22053-6 38

36. Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen,
Z., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 277, pp. 701–708.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54924-3 66

37. Zuhaira, B., Ahmad, N.: Business process modeling, implementation, analysis,
and management: the case of business process management tools. BPMJ 27(1),
145–183 (2021). https://doi.org/10.1108/BPMJ-06-2018-0168

https://doi.org/10.1109/ACCESS.2022.3152778
https://doi.org/10.1109/ACCESS.2022.3152778
https://doi.org/10.1108/BPMJ-Mar-2012-0020
https://doi.org/10.1007/978-3-319-22053-6_38
https://doi.org/10.1007/978-3-319-22053-6_38
https://doi.org/10.1007/978-3-642-54924-3_66
https://doi.org/10.1108/BPMJ-06-2018-0168


A Novel Multi-perspective Trace
Clustering Technique for IoT-Enhanced

Processes: A Case Study in Smart
Manufacturing

Yannis Bertrand(B) , Jochen De Weerdt , and Estefańıa Serral
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Abstract. IoT-enhanced business processes (BPs) are processes sup-
ported by Internet of Things (IoT) technology, such as sensors capable
of monitoring the physical environment where processes are executed.
Although the execution of BPs is typically recorded in event logs, IoT-
enhanced BPs also generate IoT data that contain vital contextual infor-
mation. Such BPs are typically found in manufacturing contexts, where,
for instance, temperature sensors can provide valuable insights into the
storage conditions of sensitive raw materials. However, the potential of
this IoT-enhanced process mining (PM) has not been fully explored. In
this paper, we propose TROPIC, an approach for multi-perspective trace
clustering that considers three key perspectives: the control-flow perspec-
tive, the trace attribute data perspective and the time series sensor data
perspective. We demonstrate the efficacy of our approach in a real-world
manufacturing use case. The evaluation of the resulting clusters revealed
that integrating the three different perspectives enabled the detection of
process variants and anomalous instances that would have been missed
using any one of the perspectives in isolation.

Keywords: Process mining · Internet of Things · Trace clustering ·
IoT-enhanced process mining

1 Introduction

Currently, the use of Internet of Things (IoT) devices in organisations is becom-
ing increasingly common, providing support to their business processes (BPs),
known as IoT-enhanced BPs [16,36]. The execution of BP activities is usually
recorded in event logs, which can be analysed to gain insights into the BP and
identify opportunities for improvement. When BPs are augmented with IoT
devices, these devices can also provide critical contextual information. One of
the main domains where IoT-enhanced BPs are found is smart manufacturing.
In these BPs, sensors can track time series (TS) data on various process param-
eters, such as, for example, flow, temperature, and pressure, which can aid in
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predicting process outcomes and automating tasks. However, due to the unique
characteristics of IoT data, such as granularity and storage independent of the
process system [4], it is necessary to develop new PM techniques designed specif-
ically for them. This emerging field of IoT-enhanced process mining (PM) is still
in its early stages [4], with only limited research being already done, focusing
primarily on decision mining using IoT data [2,32].

In this paper, we propose TROPIC (TRace attributes, cOntrol-flow Plus Iot
Clustering), a novel approach for multiperspective trace clustering that is capa-
ble of integrating the TS sensor data perspective, in addition to the control-flow
and trace attribute data perspectives. By integrating these different perspec-
tives, multi-perspective trace clustering can effectively identify process variants
and anomalous process executions in smart manufacturing that may not be
apparent from analysing the control-flow or another single perspective alone.
Knowing these variants can, in turn, help organisations identify and propagate
best practises to enhance process efficiency and increase the likelihood of positive
process outcomes. To demonstrate the effectiveness of our approach, we apply
it to a real-life manufacturing process and provide a detailed evaluation of the
results. This case study highlights the potential of our approach to analyse and
improve IoT-enhanced BPs.

The remainder of the paper is organised as follows. First, Sect. 2 provides
an overview of previous research in multi-perspective PM, IoT-enhanced PM,
and trace clustering. In Sect. 3, we present TROPIC, our two-level approach for
multi-perspective trace clustering, and apply it to the manufacturing process
in question in Sect. 4. The experimental results are discussed in Sect. 5, before
concluding the paper in Sect. 6 with final remarks and suggestions for future
work.

2 Background

2.1 Trace Clustering

Trace clustering is a technique used to group similar process instances, for
instance, based on their shared sequential activity patterns. Traditionally, trace
clustering has been used to improve process discovery by splitting the event log
into sublogs consisting of instances that share comparable activity sequences,
and mining a model of each sublog separately. This approach produces simpler
and better fitting models that describe different process variants [5,9,13]. How-
ever, more recently, trace clustering has been applied to other goals, such as
concept drift detection and process evolution analysis [19] and outlier detection
[11]. Although improving process discovery results can typically rely only on the
control-flow perspective, other objectives can greatly benefit from incorporating
context information in clustering.

According to [8], three main categories of trace clustering approaches have
been proposed: distance-based, feature-based, and model-based. Distance-based
approaches directly cluster traces based on the distances between traces as
sequences of activities, using distance metrics such as the Hamming distance,
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Levenshtein distance, Damerau-Levenshtein distance, and geodesic distance.
Feature-based techniques, on the other hand, derive features from the traces,
such as scalars, graphs and embeddings and cluster based on the feature values.
Finally, model-based techniques aim to create clusters of traces that produce the
best process models [9], optimising criteria such as model fitness. These three
approaches have their advantages and disadvantages depending on the nature
of the data and the intended application. Choosing the appropriate approach is
critical to the effectiveness of the trace clustering process.

2.2 Multi-perspective Process Mining

Multi-perspective PM refers to process analysis techniques that take more than
one process perspective into account, e.g., the control-flow and data attributes.
The following perspectives are listed in [22] lists the following perspectives:

– Control-flow perspective: Activity ordering in each process instance;
– Resource perspective: Human and non-human resources executing tasks;
– Data perspective: Trace and event attributes;
– Time perspective: Activity duration, throughput time, business rules, etc.;
– Function: Granularity of the activities of the process.

Multi-perspective techniques have been proposed for various types of PMs,
such as multi-perspective process discovery [18,24] and multi-perspective con-
formance checking [14,23]. In trace clustering, a multi-perspective approach is
proposed in [15], where a distance metric is presented to compare traces based
on the control-flow perspective, the resource perspective, and the data perspec-
tive. The (possibly weighted) average of these metrics is computed and used as a
pairwise multi-perspective distance measure to perform hierarchical clustering.

However, extending such a technique to TS data can be challenging, as TS
typically need to be characterised by many features. For example, [12] reviewed
the proposed TS characteristics in the literature and identified a list of approxi-
mately 7,700 characteristics to fully represent the TS data. Therefore, proceeding
in one step, inputting TS features in a feature vector or including them in an
average as in [15], would likely result in either TS features dominating over
other perspectives or require very carefully selecting TS features beforehand.
This problem grows dramatically when considering multivariate TS, which are
very common in manufacturing. To address this issue, we propose a two-step
approach that is more versatile than the simple average of distances computed
over multiple perspectives.

2.3 IoT-Enhanced PM

Event Log Derivation. The existing literature on IoT-enhanced PM has pri-
marily focused on deriving high-level events of the process from low-level IoT
data to create event logs. Subsequently, traditional PM techniques have been
employed to analyse these event logs and discover control-flow models of the
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processes. Several techniques have been proposed specifically for manufacturing
processes. In [35], a four-step framework is presented to generate event logs from
industrial IoT data, including data preprocessing, clustering of low-level data,
classification to derive events from clusters, and creation of the final event log.
Also, focussing on industrial applications, [34] propose to transform raw IoT data
into an XES event log using complex event processing and event detection and
refinement techniques. The authors present another approach in [33] to detect
activities interactively from sensor data based on visualisation and exploratory
analysis. In [37], a domain-specific language is developed to extract event logs
from IoT data by specifying the case and activity identifiers.

Process Contextualisation. Next to event log derivation, some context-aware
techniques have also been investigated, e.g., IoT data-aware process discovery
[2,20], sensor TS-aware decision mining [32], and IoT-aware conformance check-
ing [28]. In a manufacturing context, [32] outlines an approach to derive deci-
sion rule patterns from TS sensor data by automatically featurising the sen-
sor data and training a decision tree to learn the rules. A different problem is
addressed by [28], who present an approach for IoT-enhanced deviation detec-
tion. In their paper, they argue that traditional conformance checking cannot
take into account data that changes over time independently of the events of the
process (i.e., TS data). They subsequently proposed a method to detect patterns
in the TS data directly.

3 Methodology

TROPIC involves a two-step clustering process (see Fig. 1) currently tailored to
the setting of smart manufacturing, typically characterised by highly structured
processes around which sensor data are collected in the form of TS. Indeed, in
such manufacturing BPs, sensor data and process activities are usually corre-
lated, with process activities leaving recognisable patterns in the sensor data and
certain sensor data values triggering the execution of certain process activities. In
the clustering process of TROPIC, process instances are first clustered separately
according to three perspectives: the control-flow, trace attribute data and TS sen-
sor data perspectives. In this step, each perspective is considered independently,
providing a detailed view of each aspect of the process. Then, the distances to
each centroid in each clustering are computed and used as features for a sec-
ond clustering step, which takes into account all three perspectives together.
This results in a multi-perspective clustering that groups instances based on
their unique combinations of control-flow, trace attributes and TS sensor data,
providing a comprehensive view on the process.

Next, we explain the approach applied for each single-perspective clustering,
followed by the multi-perspective clustering.
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Fig. 1. Overview of TROPIC, our proposed approach.

3.1 Control-Flow Perspective

As mentioned in Sect. 2, three main categories of trace clustering have
been proposed: distance-based, feature-based, and model-based approaches.
Our approach follows the former by using the Damerau-Levenshtein (DL) dis-
tance. The DL distance is a string metric used to compute the edit distance
between two strings, which is the minimum number of single-character edits (i.e.,
insertions, deletions, substitutions, and transpositions) required to transform
one string into the other. It extends the Levenshtein distance by also including
transpositions of characters. The DL distance between strings A and B, denoted
DL(A,B), is computed as follows:

DL(A,B) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max(|A|, |B|) if min(|A|, |B|) = 0

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DL(A1..i−1, B) + 1
DL(A,B1..j−1) + 1
DL(A1..i−1, B1..j−1) + δai,bj

DL(A1..i−2bi, A1..j−2aj) + 1

otherwise (1)

where |A| denotes the length of string A, ai denotes the i-th character of string
A, and δai,bj is the Kronecker delta function, which is equal to 1 if ai = bj , and 0
otherwise. The last term in the minimum function corresponds to transposition,
and is only included if i, j > 1 and ai−1 = bj and bj−1 = ai.

Due to the strictly ordered nature of control-flow data in many manufacturing
processes, other trace clustering paradigms are usually less suitable. Additionally,
activities are often logged at a fairly low level of granularity, making model-based
techniques less appropriate. It is worth noting that manufacturing processes tend
to be more structured in nature, and thus may not require more complex trace
clustering techniques designed for less structured processes.
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3.2 Trace Attribute Data Perspective

Trace attributes are usually numerical, categorical, or ordinal features that can
be clustered using traditional clustering techniques. Common clustering tech-
niques include hierarchical techniques [38], distance-based techniques, such as
K-means [21] or K-medoids [27], model-based techniques, such as self-organising
maps [17]; and density-based techniques such as DBSCAN [10]. TROPIC uses
K-means, as a generic technique for mixed-type input features, which is most
often the case in smart manufacturing. Moreover, its simplicity makes it eas-
ily understandable for non-experts. However, depending on the specific process,
other techniques could be applied as well; for a general discussion of clustering
techniques, see [31].

3.3 Time Series Sensor Data Perspective

In TS analysis, [1] distinguishes three categories of techniques to cluster whole
TS: distance-based features, using measures such as Euclidean or dynamic time
warping (DTW) distance [30]; structure-based features, which characterise the
whole TS; and shape-based features, created by searching for common motifs.

We use DTW distance, which allows a direct comparison of whole TS and
is suitable for TS that are expected to share a common general structure as
is the case in most manufacturing processes but can differ in length and speed
(i.e. certain subsequences can last longer in one TS than in the other). Intu-
itively, it corresponds to the distance remaining between two series after elimi-
nating timing differences, i.e., correcting for varying activity duration. It relies
on the computation of a warping function mapping time points from two series
together to minimise the distance between the two series. More specifically,
given two series A = a1, a2, ..., ai, ..., an and B = b1, b2, ..., bj , ..., bm, with dis-
tance di,j = ||ai − bj ||, DTW aims at finding an optimal mapping function
F = c1, c2, ..., ck, ..., cl such that the total distance E(F ) =

∑l
k=1 d(c(k)) · w(k)

is minimised:

DTW (A,B) = min
F

[∑l
k=1 d(c(k)) · w(k)

∑l
k=1 w(k)

]

(2)

where w(k) is a weight coefficient for the elements of the mapping function.
Applying this for each pair of batches yields a distance matrix which can be

used as input for clustering techniques like K-medoids or hierarchical clustering.

3.4 Multi-perspective Clustering

Once process instances are clustered separately in each perspective, the results
are combined by clustering them together. Single-perspective clusters can be
represented in different ways, such as using their labels as categorical features
or computing distances to the centroids. We follow the latter approach, which
retains more information for multi-perspective clustering.
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Moreover, perspectives can be weighted to adjust their contribution to the
multi-perspective clustering. For example, control-flow can be given more weight
to ensure it has sufficient influence on the final clustering. Weights can also be
used to account for differences in the number of clusters generated by each per-
spective, where more clusters may result in more features and a greater impact
on the final clustering.

4 A Case Study in Smart Manufacturing

4.1 Use Case

Process Description. We applied TROPIC to a real use case at a partner
company active in the production of chemical products. Their production process
can be summarised in four main steps:

1. Preparing raw material and loading the tank;
2. Mixing the raw material in the tank;
3. Circulating the product through filters to remove impurities;
4. Bottling and packing the finished product.

Sometimes, the quality of the product is not high enough after filtering, i.e.,
some characteristics of the product do not meet the specifications. In this case,
an adjustment is applied by loading additional raw materials into the tank and
repeating steps two and three, resulting in the high-level production process
depicted in Fig. 2.

Fig. 2. High-level model of the process analysed in the experiment.

This seemingly simple process has to be executed with extreme precision and
care as the slightest presence of impurities in the finished product greatly dimin-
ishes its quality. This is why the company is interested in analysing production
logs and TS sensor data together to find out variation in process execution.

Data. Two main data sources are used in this use case: 1) logs from the produc-
tion system, which contain the sequences of activities executed for each process
instance and trace attributes and 2) TS data from sensors tracking the flow of
the product in the four tanks and in the pipes leading through the filters every
second. The data span a period from October 2020 to April 2022, representing
161 complete process instances and 199.4 million rows of sensor data.
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Data Preprocessing. First, relevant TS pump circulation flow data was
extracted for each batch. The data were resampled to one measurement per
minute for smoothing and to reduce their length (the raw TS for the longest
batch counted more than one million measurements before resampling), and
some missing values due to the storage format were imputed. Finally, all data
were normalised.

4.2 Clustering and Evaluation Approach

Multi-perspective Trace Clustering. We applied our two-step multi-
perspective trace clustering approach to the obtained data. For the control-flow
perspective, we followed a distance-based approach by computing the DL dis-
tance between the event sequences for each pair of batches and using the result-
ing distance matrix as input for the K-medoids. The number of clusters was set
to five by plotting inertia and following the elbow method. The clusters con-
tained 28, 23, 52, 22 and 36 instances, respectively. Secondly, regarding the trace
attributes perspective, we applied the K-means algorithm with K = 5 (based on
the elbow method). This yielded clusters of 23, 48, 41, 25 and 24 instances. Note
that the attributes “tank open time” and “time in tank” are considered trace
attributes as they measure batch quality and not timeliness. Third, we applied a
distance-based TS clustering approach for the TS sensor data perspective, com-
puting the DTW distance between the TS of each pair of batches to obtain a
TS distance matrix used as input for K-medoids, with K = 6 (based on the
elbow method), which formed clusters of sizes 9, 44, 59, 20, 21 and 8. Finally, to
perform multi-perspective clustering, we computed the distances to centroids for
each single-perspective clustering. Then we weighed the clusterings to take into
account the different values of K in each clustering and applied K-means to all
distances to centroids together, with K = 4 based on the elbow method. When
K-means were applied, centroids initialisation was optimised to speed up conver-
gence of the clustering by sampling centroids based on marginal inertia decrease,
while when K-medoids were applied, medoids were randomly initialised.

Clustering Evaluation. The evaluation of clustering results is a challenging
task that often depends on the specific domain and task at hand. A range of
metrics are available to score clusterings based on intrinsic properties, such as
the Davies-Bouldin (DB) score [6], which measures the similarity of clusters to
their respective most similar cluster (lower value is better), or the Silhouette
index [29], which compares the similarity between an instance and instances
in its cluster with the similarity between this instance and instances in other
clusters (higher value is better). Other metrics compare clusterings with known
classes in the data or other clusterings, such as the Rand index [26], entropy, or
purity. However, it is worth noting that better-formed clusters may not necessar-
ily be more useful in practise, hence obtaining external validation from experts
is critical to evaluate clustering results.

In our case study, we compared the clusters obtained from the multi-
perspective approach with those derived from single-perspective clustering, using
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Fig. 3. Visualisation of multi-perspective clustering with t-SNE (cluster 1 = purple,
cluster 2 = blue, cluster 3 = green, cluster 4 = yellow). (Color figure online)

both metrics and expert feedback. We computed silhouette indexes and DB
scores for each clustering to assess the quality of the clusters in each approach.
We also computed adjusted Rand indexes (ARI; where a higher value indicates
higher similarity) and entropy scores (where a lower value indicates higher sim-
ilarity) to determine the degree of similarity between the clusterings and to
identify which perspective has the most influence on multi-perspective cluster-
ing. To validate our clustering results, we presented them to a senior process
engineer at our partner company. Specifically, we showed the engineer the cen-
troids of each multi-perspective cluster, as well as an overview of each cluster,
including a directly-follows graph (DFG) for the control-flow, the mean or mode
of trace attributes, and the DTW barrycenter average (DBA) [25] for the TS
perspective, which is a method to compute the average of several TS taking into
account potential time shifts.

4.3 Results

Multi-perspective clustering with K = 4 resulted in clusters of sizes 18, 53, 69,
and 21 (see Fig. 3). In the remainder of this section, we provide visualisations
of the clusters and report the values of the metrics and the interpretation and
evaluation of the clusters by the process expert for each perspective.

Clustering Quality Assessment and Visualisation. The Silhouette score
and the DB index are reported in Table 1. As can be seen, multi-perspective clus-
tering has better scores than other clusterings for both metrics. Trace attributes
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clustering has the worst scores, while control-flow and TS clusterings have similar
values.

Table 1. Internal validation metrics for each clustering.

Metric Multi-perspective Control-flow Trace attributes Time series

Silhouette index 0.2516 0.0331 -0.0168 0.0284

DB score 1.3845 3.0526 4.5942 3.2061

Table 2 reports the cluster similarity metrics. Both entropy and ARI show
that multi-perspective and control-flow clusterings have the highest similarity,
i.e., they most often group the same instances together. On the other hand, trace
attribute data clustering has high entropy and low ARI for all other clusterings,
indicating that it forms very different clusters than the other perspectives.

We visualised the multi-perspective clusters by modelling the DFGs of their
control-flows (see Figs. 4–5, where high-level steps from Fig. 2 are highlighted),
computing the mean and the mode of their attributes (see Table 3) and plotting
the DBAs of their TS data (see Figs. 6–7). DFGs and DBAs were used and are put
forward in this paper as they can provide intuitive visualisations of the control-
flow and the TS data of many instances of a process at once, enabling business
experts to quickly understand and analyse whole clusters. Note that while all the
results of the multi-perspective clustering are shown, only particularly interesting
results are displayed for the other clusterings, and that activity labels as well as
some trace attribute values were anonymised on request of the company.

Expert-Based Validation. When showing the multi-perspective clusters, the
process expert categorised them as follows. Cluster 3, the largest cluster and the
ones with the fewest distinctive characteristics, was identified as representing the
standard execution of the process. Cluster 2 typically included traces with fewer
adjustment activities and a lower material adjustments attribute than those in
the other clusters, as shown in Fig. 4b and Table 3. In contrast, cluster 1 repre-
sented batches that required more adjustment activities and have a higher value
for the material adjustments attribute (see Fig. 4a and Table 3) than batches
in the other clusters. Having more adjustments also caused the filtering step to
last longer, which can also be seen in the TS data by comparing Figs. 6a and 6b
(filtering being characterised by long periods with a stable flow). Finally, cluster
4 included traces with missing activities that were necessary for proper pro-
cess execution. These instances were identified as anomalies caused by improper
logging of these activities.

4.4 Comparison of the Clusterings

In general, single-perspective clusters are more difficult to interpret than multi-
perspective clusters. While control-flow clustering also groups together batches
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Table 2. Pairwise similarity metrics values.

Multi-perspective Control-flow Trace attributes Time series

Multi-perspective entropy 0 0.8661 1.1585 0.9749

Multi-perspective ARI 1 0.2552 0.0301 0.0886

Control-flow entropy 1.1806 0 1.4154 1.3783

Control-flow ARI 0.2552 1 0.0340 0.0359

Trace attributes entropy 1.4790 1.4213 0 1.4663

Trace attributes ARI 0.0301 0.0340 1 0.0141

Time series entropy 1.2930 1.3817 1.4638 0

Time series ARI 0.0886 0.0359 0.0141 1

that required more adjustments, no cluster groups instances with fewer adjust-
ments as neatly as multi-perspective cluster 2 (see Figs. 5a–5b). It is particularly
difficult to recognise consistent patterns across perspectives in data clusters,
while TS clusters succeed to some extent in grouping together instances with
similar control-flows. Next to this, the most difficult perspective to interpret
in all clusterings seems to be the TS perspective, where DBAs have difficulty
capturing typical TS shapes, partly due to the presence of batches with miss-
ing data. This being said, DBAs based on TS clustering (see Fig. 7) seem more
distinct and more easily interpretable.

5 Discussion

TROPIC successfully integrates TS sensor data in multi-perspective trace clus-
tering, resulting in clusters that consider different process perspectives. The two-
step structure makes it easy to disentangle the different perspectives, adjust
their importance, and compare them. In our manufacturing use case, compar-
ing multi-perspective trace clustering with single-perspective clustering showed
that by leveraging underlying relationships between different perspectives, multi-
perspective trace clustering could outperform single-perspective clustering even
in their own perspective. For instance, multi-perspective trace clustering grouped
instances with few adjustments better than control-flow clustering, as other per-
spectives helped recognise these instances.

In addition, the process expert found multi-perspective clusters more mean-
ingful from a business point of view, as they identified variants and anomalies.
This insight could help the company investigate the differences between clusters
1 and 2 to reduce the number of necessary adjustments in the future.

Furthermore, some anomalous process instances were detected in the use case,
although we did not apply any anomaly detection technique. This observation
highlights the potential of multi-perspective anomaly detection using TROPIC
by applying outlier detection to the distances to centroids.

In addition, the choice of K for K-means and K-medoids clustering could
have a great impact on the results of clustering at both stages. In this paper,
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Table 3. Mean or mode of the trace attributes for each cluster of all clusterings
(standard deviations between brackets).

Cluster Materials Adj. materials Tank open time Solvent Time in tank Tank

Multi 5.7222 3.8889 6392.9444 A 381671.8889 T3

perspective 1 (5.3776) (3.2519) (4161.9357) / (223893.4571) /

Multi 7.2453 0.0755 7552.4151 B 261959.6038 T4

perspective 2 (2.0466) (0.3848) (2760.7288) / (60081.1298) /

Multi 7.0 2.7681 8689.6377 B 298360.3478 T1

perspective 3 (1.4349) (1.5449) (2785.0268) / (84948.1399) /

Multi 7.2381 2.8095 10599.1429 B 260751.6667 T4

perspective 4 (1.9211) (1.4703) (2919.2145) / (97850.3688) /

Control-flow 1 7.8929 1.1071 7877.0 B 270904.6786 T4

(3.6952) (2.3308) (1878.0679) / (69923.7843) /

Control-flow 2 6.2609 3.9565 8857.0 A 325021.1739 T1

(2.4349) (2.5132) (3929.4461) / (118121.8841) /

Control-flow 3 7.1538 2.0769 8587.3077 B 301473.25 T4

(1.9742) (1.4799) (3264.1794) / (108380.1455) /

Control-flow 4 5.8636 2.2273 9019.5909 A 283188.4545 T4

(2.1447) (1.3778) (3878.9293) / (118979.1435) /

Control-flow 5 7.1111 1.25 7452.2222 A 273584.1389 T1

(1.6695) (1.9911) (2711.0095) / (124958.7138) /

Trace attributes 1 8.4348 4.6957 9494.7391 B 291919.2609 T4

(3.4089) (2.6187) (3112.0703) / (94352.3756) /

Trace attributes 2 7.2083 1.1667 8225.375 B 257210.7083 T4

(1.688) (1.3262) (2075.6587) / (65348.9021) /

Trace attributes 3 6.7317 1.3415 7048.2683 A 282512.2683 T1

(2.3667) (1.5266) (3339.7471) / (73998.1907) /

Trace attributes 4 5.84 2.52 7396.36 A 354616.76 T3

(2.5113) (1.8735) (3202.4594) / (180006.1447) /

Trace attributes 5 6.6667 1.75 10434.7083 B 304496.7917 T4

(2.1196) (1.7508) (3427.8528) / (128730.3709) /

TS 1 5.6667 2.2222 9548.1111 Other 217580.6667 T4

(2.2913) (1.8559) (4358.0709) / (38620.8273) /

TS 2 6.6136 1.75 7262.3182 A 355988.5455 T3

(2.4133) (1.6999) (2992.4131) / (123518.9904) /

TS 3 7.1356 2.0169 8272.678 B 260759.0508 T4

(2.5492) (2.4878) (2755.9548) / (97720.4561) /

TS 4 7.7 1.9 9000.9 B 267001.65 T4

(1.8382) (1.8035) (2929.1435) / (68154.5069) /

TS 5 6.7143 2.5714 9366.0 B 312286.619 T2

(2.1941) (2.0874) (4099.0399) / (120953.309) /

TS 6 8.0 2.0 8406.375 B 239005.5 T4

(3.4641) (2.3299) (2185.4744) / (24086.8173) /
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(a) DFG for cluster 1. (b) DFG for cluster 2.

(c) DFG for cluster 3. (d) DFG for cluster 4.

Fig. 4. DFGs for each cluster of the multi-perspective clustering.

the popular elbow method was used and yielded good results, as the clusters
formed were insightful from a business perspective. Future work could investigate
more complex methods to determine the value of K, e.g., based on stability or
separation as in [7].
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(a) DFG for cluster 1. (b) DFG for cluster 5.

Fig. 5. DFGs for clusters 1 and 5 of the control-flow clustering.

However, ARI and entropy indicated that the control-flow perspective pro-
duced a clustering more similar to the other perspectives. This result suggests
that the control-flow perspective might be more important than other perspec-
tives in the multi-perspective trace clustering. Weighting the perspectives could
rebalance their contributions, but as all perspectives are correlated, weighting
may not fundamentally change the clustering in the use case.

Finally, although we focused on three specific perspectives in this paper,
we believe our approach could be extended to consider other perspectives. For
example, a similar approach to that applied to the TS data obtained from IoT
sensors could be applied to other processes that evolve over time, such as process
performance. Such a different perspective could serve as a substitute for one of
the current three dimensions, or the approach could easily be adapted to a higher
dimensionality, allowing for several other perspectives to be included, such as the
resource perspective.
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(a) DBA for cluster 1. (b) DBA for cluster 2.

(c) DBA for cluster 3. (d) DBA for cluster 4.

Fig. 6. DBAs for each cluster of the multi-perspective clustering.

(a) DBA for cluster 1. (b) DBA for cluster 5.

Fig. 7. DBAs for clusters 1 and 5 of the TS clustering.

6 Conclusion

In this paper, we presented a novel approach for multi-perspective trace cluster-
ing of manufacturing processes that considers three perspectives: control-flow,
trace attributes, and TS sensor data. This approach can reveal process variants
that are homogeneous across all three perspectives simultaneously. We evaluated
the approach in a real-life use case of a smart manufacturing process, where it
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revealed meaningful clusters and anomalous instances for a specific IoT-enhanced
BP, both actionable insights to improve process design and execution.

In future work, we plan to extend this approach in various ways. One possibil-
ity is to propose a generalisation to n arbitrary perspectives. We could also con-
sider including event attributes and incorporating TS data at the event level. Fur-
thermore, we could explore other clustering techniques for the multi-perspective
clustering if our approach were to be used for more flexible types of processes,
such as ensemble clustering methods or soft clustering techniques. Finally, we
find that integrating contextual information in the log in the form of events, as
suggested in [3], is an interesting alternative approach.

Acknowledgement. This research was supported by the Flemish Fund for Scientific
Research (FWO) with grant number G0B6922N.

References

1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inf. Syst. 53, 16–38 (2015)

2. Banham, A., Leemans, S.J., Wynn, M.T., Andrews, R., Laupland, K.B., Shinners,
L.: xPM: enhancing exogenous data visibility. Artif. Intell. Med. 133, 102409 (2022)

3. Bertrand, Y., De Weerdt, J., Serral, E.: A bridging model for process mining and
IoT. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 98–110.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3 8

4. Bertrand, Y., De Weerdt, J., Serral, E.: Assessing the suitability of traditional
event log standards for IoT-enhanced event logs. In: In: Cabanillas, C., Garmann-
Johnsen, N.F., Koschmider, A. (eds.) Business Process Management Workshops.
BPM 2022. Lecture Notes in Business Information Processing, vol. 460, pp. 63–75.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25383-6 6

5. Bose, R.J.C., Van der Aalst, W.M.: Context aware trace clustering: towards
improving process mining results. In: Proceedings of the 2009 SIAM International
Conference on Data Mining, pp. 401–412. SIAM (2009)

6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 2, 224–227 (1979)

7. De Koninck, P., De Weerdt, J.: Similarity-based approaches for determining the
number of trace clusters in process discovery. In: Koutny, M., Kleijn, J., Penczek,
W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XII. LNCS,
vol. 10470, pp. 19–42. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-55862-1 2

8. De Weerdt, J.: Trace clustering (2019)
9. De Weerdt, J., Vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clus-

tering for improved process discovery. IEEE TKDE 25(12), 2708–2720 (2013)
10. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm

for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp.
226–231 (1996)

11. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Applying sequence mining for
outlier detection in process mining. In: Panetto, H., Debruyne, C., Proper, H.A.,
Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230,
pp. 98–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4 6

https://doi.org/10.1007/978-3-030-98581-3_8
https://doi.org/10.1007/978-3-031-25383-6_6
https://doi.org/10.1007/978-3-662-55862-1_2
https://doi.org/10.1007/978-3-662-55862-1_2
https://doi.org/10.1007/978-3-030-02671-4_6


Multi-perspective Trace Clustering 411

12. Fulcher, B.D., Little, M.A., Jones, N.S.: Highly comparative time-series analysis:
the empirical structure of time series and their methods. J. R. Soc. Interface 10(83),
20130048 (2013)

13. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Mining expressive process models by
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Abstract. Complexity is an important characteristic of any business
process. The key assumption of much research in Business Process Man-
agement is that process complexity has a negative impact on process
performance. So far, behavioral studies have measured complexity based
on the perception of process stakeholders. The aim of this study is to
investigate if such a connection can be supported based on the analysis
of event log data. To do so, we employ a set of 38 metrics that capture
different dimensions of process complexity. We use these metrics to build
various regression models that explain process performance in terms of
throughput time. We find that process complexity as captured in event
logs explains the throughput time of process executions to a consider-
able extent, with the respective R-squared reaching up to 0.96. Our study
offers implications for empirical research on process performance and can
serve as a toolbox for practitioners.

Keywords: Process complexity · Process performance · Throughput
time

1 Introduction

Business processes management (BPM) provides various analysis techniques for
improving the performance of business processes (see, for example, [11]). Several
of these techniques support the identification of root causes behind performance
issues of a process. Some studies have pointed to the connection between process
complexity as a root cause of bad process performance. More specifically, it has
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been established that standardized business processes are connected with better
process performance [23] and outsourcing success [32]. For this reason, high
business process complexity is often a motivation for business process redesign
initiatives [14], but also a challenge for standardization efforts [28].

However, these studies largely build on perceptual measures, which entails at
least three key issues. First, such measures require specific attention in order to
meet potential validity concerns [17]. Second, perceptual differences exist along
the organizational hierarchy. The so-called hierarchical erosion effect states that
perceptions become less favourable towards the lower levels of the hierarchy [12].
Third, a study based on perceptual measures is often restricted to an observation
at only a single point in time. All of this raises the question to which extent a
more precise investigation of the connection between process complexity and
performance is possible.

In this paper, we address this research problem. To this end, we utilize avail-
able event log dataset to a) calculate complexity measures and b) throughput
time as a performance measure over different time windows. The connection
between complexity and performance is then investigated by means of statistical
regression. Our results suggest that process complexity is closely connected to
throughput time, but also dependent on idiosyncratic factors. We discuss impli-
cations of this finding for research and practice.

The remainder of the paper is structured as follows. Section 2 introduces
complexity metrics and the related concepts. Section 3 presents our approach
for the calculation of process complexity, throughput time, and the creation
of our statistical models. Section 4 presents our results and showcases the best
statistical models. Section 5 provides the discussion of the results and points to
avenues for future research. Finally, Sect. 6 concludes with a summary.

2 Background

In this section, we discuss the background against which we position our work.
First, we summarize related work on process complexity. Second, we outline
research on process performance and the role that complexity plays for it.

2.1 Process Complexity

In BPM research, process complexity has often been approached from a process
model perspective. Most notably is the work by Mendling on the relationship
between process model complexity and error probability [19,21,22]. Recently,
various metrics for complexity based on event logs have been defined, partially
inspired by work in neighboring disciplines, such as organization science. These
measures can be used to quantify different aspects of business processes complex-
ity that are visible from event log data. The various measures can be organized
in five categories as presented in Table 1.

The first category encompasses measures pertaining to the size of a given
event log. These measures count properties of an event log, such as the number
of events, sequences, and minimum, average, and maximum sequence length [15].
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Table 1. Complexity Measures for Business Processes based on Event Logs (adapted
from [1])

Category Measure Reference

Size Number of Events [15]

Number of Event Types [15]

Number of Sequences [15]

Minimum, Average, Maximum Sequence Length [29]

Variation Number of Acyclic Paths in Transition Matrix [25]

Number of Ties in Transition Matrix [16]

Lempel-Ziv Complexity [24]

Number and Percentage of Unique Sequences [29]

Distance Average Affinity [15]

Deviation from Random [24]

Average Edit Distance [24]

Simple Entropy Sequence entropy [1]

Variant entropy [1]

Normalized sequence entropy [1]

Normalized variant entropy [1]

Enriched Entropy Enriched Sequence entropy [31]

Enriched Variant entropy [31]

Enriched Normalized sequence entropy [31]

Enriched Normalized variant entropy [31]

The second category contains measures capturing the variation of process
behavior as documented in the event log. Many of the measures in this cate-
gory build on a transition matrix that is derived based on the directly-followed
relations as captured in the event log [1]. Pentland et al. [25] operationalize
process complexity as the number of acyclic paths provided by the transition
matrix. Closely related to this is the measure by Hærem et al. [16], who measure
complexity as the number of ties, i.e. directly-follows relations, over all distinct
sequences. Further measures that depict variation are Pentland’s [24] approach to
compress an event log based on the Lempel-Ziv algorithm as well as the absolute
and relative number of unique sequences [29] contained in an event log.

The third category includes measures that are based on different notions of
distance [1]. Günther [15] suggests a measure of affinity of two event sequences,
capturing the extent to which directly-follow relations of the sequences overlap.
His average affinity measure calculates the mean of the pair-wise affinity over
all sequences in the event log [15]. This measure is similar to Pentland’s [24]
deviation from random of the transition matrix. Pentland [24] further proposes
average edit distance between event sequences based on optimal matching [4].



416 M. Vidgof et al.

The fourth category of measures builds on graph entropy and has been
recently proposed by Augusto et al. [1]. They distinguish between measures
for sequence and variant entropy of an event log. Additionally, they suggest that
each of the measures can be normalized to take a value between 0 and 1. We
refer to these measures as simple entropy measures.

Fifth, the measures by [1] have been extended beyond the control flow to
incorporate data variety [30]. In contrast to the simple entropy measures, we
refer to this class of measures as enriched entropy measures.

Several of these measures have been applied to study an increasing breadth
of research problems. The above named study by Augusto et al. [1], for example,
investigated the influence of process complexity on the quality of process models
derived from event log data. They find that process complexity is negatively cor-
related with the quality of discovered process models. Thus, the more complex
the event log, the poorer will be the model discovered by process mining algo-
rithms. Importantly, different discovery algorithms are more sensitive to certain
complexity measures than others [1].

There are also some behavioral studies that examine how process complexity
changes over time. Pentland et al. [25] simulate how process complexity changes
over time. They find that organizational processes undergo different phases of
process complexity. At the initiation of their simulation, processes exhibit low
levels of complexity. After several iterations of the simulation, process complex-
ity suddenly sharply increases, leading to bursts of complexity. Afterwards, com-
plexity again decreases resulting in limited but ongoing variation in the process.
Further, Wurm et al. [34] investigate process complexity in the Purchase-to-Pay
and Order-to-Cash processes of a multinational enterprise. While they find that
process complexity changes continuously, they do not find any indication for
sudden bursts of complexity in the examined processes.

Importantly, both studies [25,34] rest on measures that are not precise [1].
As shown in [1], corner cases can be identified that illustrate that the measures
used tend to overestimate the actual complexity of a process.

2.2 Process Performance

The literature suggests a clear link between process complexity and process per-
formance. Empirical studies indicate that the standardization of business pro-
cesses ultimately leads to better process performance [23] and outsourcing suc-
cess [32]. In particular, Münstermann et al. [23] have found that process stan-
dardization is positively associated with different process performance dimen-
sions, such as process time, cost, and quality. By means of standardization,
organizations aim to reduce process complexity, i.e. the number of ways that a
process can be performed [26,35].

At a second look, however, the relationship between process complexity and
process performance is not that clear-cut. Detailed findings by Münstermann et
al. [23] show that the effect of standardization is conditional to the industry and
type of process in question. Specifically, they find that process standardization
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only significantly influences process performance in the service industry and for
companies that can be classified as analyzers [23].

Furthermore, studies that measure the complexity of processes and their
corresponding performance rely on perceptual measures that can cause several
important validity issues. First, there are important validity concerns that need
to be taken into account when developing perceptual measures for organizational
and process performance [17]. Second, there are perceptual differences that need
to be considered when interpreting results from perceptual measures. For exam-
ple, the hierarchical erosion effect [12] describes that perceptions at lower levels
of an organization’s hierarchy tend to be less favourable. Similarly, Pentland
[24] shows that process stakeholders’ perception and actual enactment of pro-
cess variation diverge substantially. Third, the use of perceptional measures to
determine changes in properties of business processes is inefficient. In order to
assess the effect of an improvement initiative on process performance, one would
have to survey process stakeholders again and again. For example, to assess the
success of a standardization initiative, a company would have to survey process
stakeholders at least twice: prior to the initiative and after the initiative. Thus,
studies based on perceptual measures are often restricted to data that is col-
lected at a single point in time and only provide a static perspective of processes
and their performance.

In light of these limitations, several authors have proposed to use process
mining to move from opinion-based to evidence-based measures for business
processes [2,3,13,27]. In this regard, the studies by [2,3] are the first to define
measurability of process performance indicators and evaluate process redesign
best practices based on event logs, respectively.

In the following, we develop an evidence-based and time-sensitive measure
for process complexity based on the recent work by [1]. As this measure is based
on graph entropy it is precise and allows researchers and process managers to
quantify process complexity in a comprehensive way at any given point in time.
In addition, it allows to continuously monitor how process complexity changes
over time. We further evaluate the measure by applying it to a set of event logs
from the Business Process Intelligence (BPI) Challenge allowing us to closely
examine the relationship between process complexity and process performance.

3 Approach

In this section, we describe our approach. First, we introduce the notion of
forgetting that allows us to weight events in the event log differently based
on their time of occurrence. Then, we prepare the dataset by splitting it into
time periods, performing complexity and performance measurements as well as
filtering out the outliers. Then, we automatically build regression models and
systematically reduce the number of variables in them. All computations were
performed on a laptop with Intel R©Core TM i7-8565U CPU @ 4.60 GHz x 4 and
16 GB of DDR4 RAM, Linux kernel 4.15.0-88-generic 64-bit version, Python
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version 3.8.10 and R version 4.0.3. The code for complexity and performance
measurement as well as the data are available on GitHub1,2.

3.1 Forgetting

An important concern for prediction models is the potential evolution of
the data-generation mechanism over time [18, p.525]. The available measures
described in Sect. 2.1, such as sequence entropy and normalized sequence entropy,
rely on counting the events distributed over different partitions of an automa-
ton. However, they weight all events equally. This can lead to undesirably high
influence of older complex execution paths on current complexity measurements.

Here, we consider the idea of forgetting, which means the events that happen
earlier should add less to the sequence entropy than more recent ones. To this
end, we assign a weight to each event based on its timestamp, or, to be more
precise, based on the time difference between each event and the most recent
event in the log. Thus, the older the event, the more it will be discounted.

There are two ways of doing so. The first, näıve way, is calculating the weight
linearly as in Formula 1. Thus, this method is called linear forgetting. Sequence
entropy with linear forgetting can be then computed similarly to the original
sequence entropy by summing up the weights of the events instead of counting
them.

wl(e) = 1 − tsmax − ts(e)
tsmax − tsmin

(1)

While linear forgetting provides a first glimpse of how forgetting can be
incorporated into sequence entropy, it has a number of problems, all of which
are connected to the weight assignment. First, the weight of the earliest observed
event is 0, meaning the contribution of this event to process complexity is dis-
regarded. This is an inadequate solution. Second, it implies a linear nature of
forgetting itself, which does not reflect reality closely enough.

Thus, we introduce a more advanced method – exponential forgetting. It is
similar to the first method, the only difference being a slightly more complex
weighting Formula 2.

we(e) = exp(−k
tsmax − ts(e)
tsmax − tsmin

) (2)

With such weighting, the weight of the most recent event is 1 and earlier
events have decreasing weights that never reach 0. In addition, the forgetting
coefficient k > 0 is introduced. It enables further control over the contribution
of the older events. The larger the coefficient, the less the weight of the event.
The coefficient is considered to be 1 by default and in this paper we proceed
with this default value. If it is desired to decrease the weight of older events even
more, a larger coefficient k > 1 can be set. In the opposite case, one should use
0 < k < 1.
1 https://github.com/MaxVidgof/process-complexity.
2 https://github.com/MaxVidgof/complexity-data.

https://github.com/MaxVidgof/process-complexity
https://github.com/MaxVidgof/complexity-data
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3.2 Data Preparation

Our dataset comprises 14 publicly available real-life event logs from Business
Process Intelligence Challenge (BPIC) [5–10]. In order to use them for statistical
analysis, we apply the following procedure. First, we split each event log into
time periods. Then, we measure process performance and complexity for each
period. Afterwards, we create a merged dataset with all event logs and add
an industry label to specify which industry the process belongs to. Finally, we
remove the outliers. In this section, we describe these steps in more detail.

Time Periods. We start by splitting the event logs into time periods. First, we
extract the minimum and maximum timestamp of the log events. We then set
the month of the earliest event to be the starting period and the month of the
last event to be the end period. Afterwards, we split the event log into months
using an intersecting filter, as outlined in [34]. The filter assigns all traces to a
period that started before or during the period and ended during or after the
period. In other words, it selects all active traces in a given period. The choice
of this filter further entails that a trace can be assigned to multiple periods.

Theoretically, it is possible to choose any granularity level at this point. I.e.,
we could choose shorter time periods like weeks or even days, but also longer
ones like years. In any case, the choice of the the time interval mostly depends on
case duration, e.g. setting time periods as granular as weeks if a process instance
takes half a year on average will only increase the amount of data points without
providing any additional value.

Complexity Measurement. For each time period, we measure the complexity
of the process, treating traces in every period as separate event logs. We use
all metrics defined in Sect. 2.1 and presented in Table 1. Furthermore, we add
forgetting to both simple and enriched sequence entropy, as outlined in Sect. 3.1.
Note that when calculating entropy metrics with forgetting, only a log partition
(one month in our case) is considered, the minimal and maximal timestamp
refer to the first and last event in this partition, not in the entire event log.
It is also worth noting that from this point on we treat entropy metrics (both
simple and enriched) as one group, which will be important in future steps. In
addition, we also measure a set of what we called generic metrics. These are the
metrics that can be measured out of the box by PM4Py3 and include number of
cases, number of activity repetitions, among others. We calculate a total of 38
complexity measurements for each time period.

Performance Measurement. As already discussed, there are various ways to
assess process performance, including time and cost dimensions. However, most
publicly available event logs lack cost data, as is the case for the event logs we
chose for analysis. We thus focus on measuring process time as an indicator for
process performance. More specifically, we examine the throughput time of the
respective processes. While using cycle time could potentially be more insight-
ful, many event logs do not contain information about starting timestamps of

3 https://pm4py.fit.fraunhofer.de/.

https://pm4py.fit.fraunhofer.de/
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activities, thus making it impossible to calculate cycle time. Throughput time,
in contrast, can be easily calculated for any event log. For each time period, we
calculate the median throughput time of all traces in that period. While average
throughput time might seem a more intuitive measure, median throughput time
is more robust.

Combined Dataset. After calculating the measurements for all logs, we com-
bine them in a single dataset. In this dataset, each row consists of the originating
event log, time period and corresponding measurements. We also want to con-
trol for industry-specific process characteristics that may influence performance
but will not be captured by the complexity metrics. Thus, we also introduce the
variable industry that specifies which industry the event log belongs to according
to the SIC division4. Following the classification, we assigned BPIC 2011 [6] to
healthcare, BPIC 2015 [5] and 2018 [10] to public administration, BPIC 2017 [7]
to finance, BPIC 2019 [8] to manufacturing, and BPIC 2020 [9] to education.

Outlier Removal. The last step of our data preparation procedure is the
removal of outlier periods. At the beginning and at the end of each event log,
there are periods that contain considerably less traces than the rest of the log.
Our assumption is this is a by-product of data extraction. Consider the following
case: if it is decided to extract all traces from January until December of year Y ,
then all the traces that were ongoing in this time period will be extracted. How-
ever, some of them might have started earlier than January and some also ended
later than December. It is indeed better to keep those traces in full rather than
trim them (which might result in removing the start or end events and harm
process discovery) or remove them entirely (in which case we would not have
full information about resource usage). Still, in this case the extracted log will
contain events occurring (at least) in years Y − 1 and Y + 1. For our approach,
however, this is critical as this produces periods having not all traces, which, in
turn, reduces the overall data quality. Thus, we filter out these periods either
based on the event log description or based on the number of cases. Note that
we only remove outliers on the level of time periods, not individual traces. The
resulting dataset and some descriptive statistics are presented in Table 2.

3.3 Regression Analysis

After data preparation, we can now continue with building statistical models
to explain throughput time based on process complexity. We start with two
sets of independent variables. One with and one without industry as dummy
variable. For each set, we have the following procedure. First, we build the models
automatically. Then, we reduce model size in terms of number of variables in two
steps such that we are left with simple yet powerful models. Note that we only
consider linear combination of independent variables in this work. The remainder
of the section describes the procedure in more detail.

4 https://en.wikipedia.org/wiki/Standard Industrial Classification.

https://en.wikipedia.org/wiki/Standard_Industrial_Classification
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Table 2. Dataset description.

Event Median

Source Industry logs Periods Traces Events throughput time

BPIC 2011 [6] Healthcare 1 34 1143 150291 333 days

BPIC 2015 [5] Public adm 5 51 832–1409 44354–59681 38–108 days

BPIC 2017 [7] Finance 1 13 31509 1202267 19 days

BPIC 2018 [10] Public adm 1 34 43809 2514266 267 days

BPIC 2019 [8] Manufacturing 1 13 251734 1595923 64 days

BPIC 2020 [9] Education 5 34 2099–10500 18246–86581 7–72 days

Independent Variables. We use two sets of independent variables: complex-
ity metrics with and without industry. The reason for including industry is to
account for effects on throughput time that are in the nature of the specific pro-
cess and do not depend on complexity of its execution sequences. On the other
side, however, it is interesting whether process performance can be explained
purely in terms of theory-backed complexity measures.

Automated Model Selection. We use automated model selection procedures
to select the best regression models based on Akaike Information Criterion
(AIC). We use three directions: forward, backward and both. With forward selec-
tion, we start with a small set of variables (only industry if it is used or empty set
of variables otherwise) and then add new variables one by one. At each step, the
model with the lowest AIC is selected for the further step. The procedure stops
if adding more variables does not decrease AIC or if all variables are already
included. In the backward direction, we start from the model having all vari-
ables and remove them, also in a stepwise manner. Using both directions, we
start from a simple model and then at each step we can either add or remove a
variable, depending on what yields the best AIC. As a result, we get 3 models
for each of the 2 independent variable setups.

Significant Variables. While the models produced in the previous step tend
to have high explanatory power, they include a large number of independent
variables, making them difficult to interpret and to use in practice. However,
these models can often be further reduced in terms of the used variables. As a first
step in this reduction, we remove all non-significant variables, i.e. variables with
p-value larger than 0.001, from the models. We remove all variables that are not
highly significant in one step. Interestingly, after this, some other variables in the
model become less significant as well, thus we repeat the procedure until all the
variables in the model are highly significant. In some cases, this procedure allows
us to considerably reduce the size of the models, while keeping the explanatory
power mostly unchanged. There are, however, cases, where the reduction leads
to considerably lower explanatory power.

Minimal Models. Finally, we create minimal models. I.e., we further reduce
the size of the models, such that at most one independent variable from each
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of the five categories (size, variation, distance, entropy, generic) is left. When
selecting among variables in one category, the one with the lowest p-value is
taken. In case two variables have the same p-value, the one that yields higher
R-squared if left in the model is selected.

4 Results

In this section, we present our results. We start with automatically generated
models that include industry as dummy variable. We present summaries of full
models, significant models as well as minimized models. Then, we show the best
of the minimized models in terms of R-squared. Afterwards, we present models
that use only theoretical variables following the same structure.

4.1 Full Metrics

We started with a model where throughput time depends on industry and auto-
matically added complexity metrics. The best model was achieved with backward
selection. It included 23 variables and had R-squared of 0.9566887. Other mod-
els were very similar: forward selection also produced a model with 23 variables
with very close R-squared of 0.9566887; selection in both directions produced
a slightly smaller model – 18 variables – with still similarly high R-squared of
0.9556369.

Restricting to only significant variables allowed to massively reduce the com-
plexity of the models: to 11 for forward and backward selection and to 10 for
selection in both directions. The explanatory power of such models, however,
only marginally decreased to roughly 0.94 for these models.

While being rather small, these models still contained some redundancy.
They contained multiple variables belonging to the same categories of complexity
defined in Sect. 2. In most cases, variables belonging to the same category were
highly correlated, which is not surprising given they measure the same aspects
of complexity. When removing such redundancy by leaving only one variable
per category, we arrived at two models: the one resulting from minimizing the
forward selection model had 6 variables and R-squared of almost 0.92, and the
one resulting from minimizing the backward selection model had only 5 variables
because the generic variables were not among the significant variables, and had
R-squared of 0.87. Minimizing the model resulting from selecting in both direc-
tions resulted in the same model as from forward selection and thus was dropped
out.

The summary of the models can be viewed in Table 3. The best of the minimal
models was the model resulting from forward selection. It is presented in more
detail in Table 4. Note that while several possible values for the industry variable
are present (finance, healthcare, manufacturing and public), only one of them is
present in the formula for each observation. The default value is the remaining
industry, education, thus in case of process in education no industry variable
should be considered for the estimation.
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Table 3. Summary of regression models built from full set of metrics.

Size Variable selection method Number of variables R-squared

Full forward 23 0.9554849

Full backward 23 0.9566887

Full both 18 0.9556369

Significant forward 11 0.9489275

Significant backward 11 0.9442622

Significant both 10 0.9391087

Minimal forward 6 0.9195022

Minimal backward 5 0.8726173

Table 4. Best model with industry as dummy variable.

Variable Estimate

Intercept 101.96221156

Finance −199.51131885

Healthcare 280.14409159

Manufacturing −251.45111110

Public −124.96774620

Magnitude 0.00950598

Level of detail 3.04980147

Affinity −195.87822418

Number of activity repetitions in period −0.00192884

Enriched variant entropy −0.00079535

R-Squared 0.9195022

4.2 Theoretical Metrics

While the models presented above explain most of the variance in through-
put time, they heavily rely on the industry variable that accounts for industry-
specific process characteristics. However, we see that relying only on theoretical
variables, i.e. only complexity variables, without any adjustments, still gives
valuable results.

First, we can see that some of the automatically generated models are in fact
even better than the ones shown in the previous section. Namely, the models
achieved with forward selection and selection in both directions have slightly
higher R-squared (0.969 vs 0.955) and at the same time have less variables
(19 and 15 vs 23 and 18, respectively). The model generated with backward
selection is slightly worse, still on par with its counterpart.

Reducing the models to significant variables only gave differing results, some
of them are very optimistic. Indeed, the model with forward selection could be
reduced to only 9 variables while still having R-squared of 0.94. For the other
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Table 5. Summary of regression models built from theoretical metrics.

Size Variable selection method Number of variables R-squared

Full forward 19 0.9696743

Full backward 26 0.9513178

Full both 15 0.9698724

Significant forward 9 0.93589

Significant backward 18 0.9479194

Significant both 7 0.8202257

Minimal forward 2 0.7965621

Minimal backward 4 0.6385549

Minimal both 4 0.7294595

Table 6. Best model with theoretical variables only.

Variable Estimate

(Intercept) −142.1478

Average trace length 4.8333

Affinity 274.9644

R-Squared 0.7965621

two models, the results are also very good, yet not that impressive. For instance,
the model with backward selection could be reduced from 26 to 18 variables
while maintaining its R-squared of over 0.94, it is still very large. The model
with selection in both directions could be reduced to 7 variables only, however,
at a price of considerably lower R-squared of 0.82.

The models could be reduced even further, with the smallest minimal model
containing only 2 variables. However, the explanatory power of such models
barely reaches 0.8 in the best case. The models are summarized in Table 5. The
best minimal model containing only theoretical variables is presented in more
detail in Table 6. Interestingly, the significant model for forward selection only
contained complexity metrics from 2 categories, thus the minimal model has only
2 variables.

5 Discussion

5.1 Implications

During this work, we have made some interesting observations. First of all, we see
that industry alone explains 80% of variance in the dependent variable through-
put time. This means that processes in different industries and in different com-
panies are so different in their nature that knowing where the process is executed
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allows us to infer a lot about its throughput time without considering its com-
plexity at all.

However, adding the complexity dimension on top of the industry allows us
to gain even more insightful information, explaining up to 95.6% of variation
in throughput time. One can look at it from different perspectives. On the one
hand, when having 80% of the output explained by one categorical variable
that does not even need any further computation, one can say that all possible
additions to it are only marginal and are not worth considering. On the other
hand, being able to explain more than 95% of variance in throughput time is a
valuable capability that is worth the effort. In addition, there is a compromise
solution with the minimal models. One can still achieve remarkable explanatory
power using only a handful of metrics: 5 complexity metrics on top of industry
can explain roughly 92% of variance.

Despite having such high explanatory power, models containing industry as
an independent variable have received criticism as the observations used to build
them only consider one or two processes per industry and thus are not necessarily
representative. In the light of this criticism, we also developed models explaining
throughput time solely by the complexity of the corresponding processes. The
good news is that these theoretical variables successfully managed to compensate
the information gained by industry. After all, the industry a process belongs to
is not something that directly influences process performance by itself but rather
a factor that contributes to how the process is set up, thus it is not surprising
that these differences are (at least to some extent) visible in the complexity of
the process.

These models with theoretical variables achieve similar results in terms of
R-squared while having slightly smaller variable counts. Interestingly, the full
models that were generated in the first step have even slightly higher R-squared.
This resulted from different starting points: for the models with industry, the
lower boundary for model selection was a model already containing the industry
because it was considered a baseline. The theoretical models, instead, had a
constant as their lower boundary. The interpretation of this is that if we set
no boundaries and allow (but do not force) selecting the industry variable, it
might be the case that the best models will still not contain it, which even
better supports our idea of being able to explain process performance using its
complexity only.

It is also interesting to look at these models in more details because they are
structurally different from the ones including industry. In the first step, these
two kinds of models are similar in terms of both the number of variables and
R-squared. In the second step, where we restrict the models to only contain-
ing significant variables, some differences become visible. Theoretical models
achieved with forward selection and selection in both directions have slightly
smaller R-squared than their counterparts including industry. However, this can
be attributed to just having also slightly smaller number of variables. The model
achieved with backward selection, however, does not fit the pattern. Its full ver-
sion had a lot of significant variables, thus it could not be reduced much, which
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also allowed it to keep most of its R-squared. The most interesting differences
become visible in the last reduction step, where we only choose one variable per
category. Theoretical models contain a more homogeneous sets of variables, i.e.
more variables from one category, while some categories can be missing entirely.
Thus, reducing them to minimal models yields much smaller (2–4 variables) but
also much less powerful (R-squared 0.63–0.79) models. Note that models con-
taining industry cannot have such low values at all as industry alone would have
R-squared of 0.8.

Up to this point, our goal was to develop the most simple yet powerful
explanatory models. However, as we achieved this, we asked ourselves whether
we can tweak the models a bit further to gain more explanatory power while not
increasing the complexity of the models by much. The first approach we tried
was to add interplay between the variables in our models. This, however, was
not very fruitful. Adding pairwise interplay terms between all variables in mod-
els did not improve R-squared. Adding all possible interplay terms between two
but also more variables in the model did increase the R-squared (for instance,
we achieved R-squared of 0.96 with only 6 variables for the model including
industry), however, such terms are very difficult to explain.

Another approach that we took was clustering the event logs based on their
median throughput times and developing separate models for each cluster. With
this approach, we could achieve slightly better (or smaller) models in the first
step. However, R-squared falls drastically when we try to minimize models.

The last observation that we did, also going in the direction of clustering, is
that in the end processes are different and while we can explain a lot of their
variance in terms of complexity, there is no one-fits-all solution. Our results
and models should be thus considered as toolbox, and the practitioners should
analyze which exact variables makes sense in case of their processes.

5.2 Future Work

We see several promising avenues for future research. First, our quantitative anal-
ysis of throughput time can be extended in several directions. On the one hand
side, future work can use principal component analysis to cluster the independent
variables. This would not only reduce model size, but might lead to interesting
insights how different theoretical variables can be empirically grouped together.
On the other hand side, our analysis presented in this paper can be comple-
mented by the prediction of throughput time. We deem our models a suitable
starting point for such an endeavour.

Second, behavioral studies can investigate how process complexity develops
over time. For example, how process complexity is reduced and increases in
course of business process standardization initiatives. Such a study could focus
on the specific actions taken by management and unpack how they influence
process performance and overall complexity. We deem such studies particularly
fruitful, if they can complement insights from event logs with detailed interviews
with key stakeholders, such as managers and process experts.
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Third, more generally, there are plenty of opportunities for behavioral busi-
ness process research due to the increasing availability of digital trace data [13].
Future research can make use of digital trace data from event logs to investi-
gate how business process change over time, contributing to theory on business
process change and routine dynamics [20,33].

6 Conclusion

In this paper, we reported on a study in which we empirically examined the link
between process complexity and throughput time. Based on 14 event logs and
38 different process complexity metrics, we created various statistical models
that explain the throughput time of business processes. Our models are able to
explain a large share of the variance in the throughput time, reaching R-squared
values of up to 0.96. Our results provide important implications for research
on process complexity and process standardization. Practitioners can use our
implementation of the different complexity measures to monitor their processes.
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Abstract. Standardization has been shown to be a reliable method of reduc-
ing unpredictability and consequently improving the performance of routine pro-
cesses. However, it is surprising that the literature on knowledge-intensive pro-
cesses (KiPs) rarely discusses this option or portrays such processes as inherently
unsuitable for standardization. This presents the question of whether and to what
extent standardization and following standards benefit KiPs. In this paper, we
report findings from a case study on the impact of deviations from standards on
the sales process of an IT service provider. Each instance of the sales process is
a new project which involves a series of tasks characterized by different degrees
of knowledge intensity. The findings are based on two data sources: (i) process
documentation, and (ii) semi-structured interviewswithmanagers and process par-
ticipants. We applied the constructivist grounded theory method in the analysis
of these materials. Our analysis yielded a series of propositions that characterize
the benefits and issues that deviations from standards may bring to KiPs and the
circumstances under which they are likely to materialize. Our study implies that
deviations from standards mostly undermine the performance of KiPs unless they
are initiated internally by process actors when standards are not sufficiently robust.

Keywords: Knowledge-Intensive Processes · Standardization · Communication

1 Introduction

Process standardization via imperative modeling, which prescribes all possible execu-
tion paths, is considered an essential management mechanism for improving routine
processes with a low degree of unpredictability [24]. Imperative standardization allows
companies to decrease the costs and time of process execution and increase the quality
of process outputs [14, 15]. However, it is argued that imperative standardization is inef-
fective for knowledge-intensive processes (KiPs), which are highly unpredictable [12,
24], and therefore often deviate from the expected paths [10].
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For this reason, efforts to standardize in KiPs mostly focus on setting boundaries
for the process execution by declaring possible procedures and rules that need to be
followed when executing them [18]. The body of literature dedicated to standardizing
KiPs [9, 13, 18] focuses mainly on the design aspects of declarative modeling languages.
Nevertheless, little is known about the various aspects of applying declarative standards
in practice.

The aim of this paper is to expand the current body of literature on standardiza-
tion in KiPs by looking at: (i) how declarative standards are followed in practice, (ii)
what makes process actors deviate from pre-defined rules, and (iii) what are the conse-
quences of these deviations for process performance. To do so,we conducted a qualitative
case study and derived propositions from the collected data following the constructivist
grounded theory method [2]. We explored deviations from standards in the sales process
of an IT service provider by obtaining information from the process documentation and
conducting a series of semi-structured interviews with management and participants in
two specific instances of the sales process. Our findings reveal both positive and negative
consequences of deviating from standards in the execution ofKiPs and the circumstances
under which these consequences are likely to materialize.

The paper is structured as follows. Section 2 reviews the literature on process stan-
dardization and KiPs. Section 3 describes the procedures for the data collection and
data analysis. Section 4 provides background on the sales process and sales projects.
Section 5 deduces propositions from the collected evidence. Section 6 relates the findings
of our study to the literature and outlines practical implications. In Sect. 7 we present
our conclusions.

2 Theoretical Background

This section first summarizes previous findings on the positive effects of standardization
on various aspects of process performance and drivers of and barriers to standardization.
It goes on to characterizeKiPs in distinguishing them from routine processes and outlines
the benefits standardization might bring to KiPs.

2.1 Process Standardization

Making the different process instances as uniform as possible [15] is expected to yield
lower costs of process execution, improved collaboration, decreased process throughput
time, improved quality and control, or process automation. Similar to Schäfermayer et al.
[16], we understand standardization as the “unification of business processes and the
underlying actions within an organization.” Standardization aims to “enable handoffs
across process boundaries in terms of information, and to improve collaboration and
develop comparative measures of process performance” [3, p. 102].

Most empirical studies on process standardization have focused either on drivers and
influencing factors of standardization or on the impact of standardization on business or
process performance that has been identified in theory. Process standardization has been
statistically shown to positively impact process performance in terms of time, cost, and
quality [14].
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Many studies that have focused on process standardization have been conceptual. For
instance, Wurm andMendling [23] proposed a theoretical model of process standardiza-
tion that identified that standardization could be increased by: (i) developing a formalized
process manual and process training, and (ii) constraining IT. Both factors could be pos-
itively influenced by a culture of uncertainty avoidance and collectivism. Conceptual
studies underline that the positive effects of standardization might be explained by its
ability to reduce uncertainty and unpredictability in process execution.

Despite the positive effects that standardization may bring to companies, the oppor-
tunities for standardization might be limited by a number of factors. For instance, pro-
cess complexity, which is a frequently cited characteristic of KiPs [1, 4], has been
shown to hamper standardization [16]. It is therefore necessary to examine how KiPs
are conceptualized in the literature.

2.2 Knowledge-Intensive Processes

In contrast to routine processes, KiPs involve social interactions and depend on unex-
pected events, which means these processes are highly unpredictable [4, 6]. Szelagowski
[19] defines three types of KiPs classified in terms of the increasing degree of unpre-
dictability associated with the execution of them: (i) structured processes with ad-hoc
exceptions, (ii) unstructured processes with pre-defined elements, and (iii) unstructured
processes. In the latter two types of processes, the unpredictability is so high that it
becomes impossible to pre-define the control flow of the KiPs in advance, and thus
the process structure emerges during the execution of them [4, 10]. Therefore, the
unpredictability associated with KiPs presents a challenge to ensuring high process
performance [8].

The approach to addressing this challenge in the literature is twofold. On the one
hand, it is claimed that the challenge of unpredictability cannot be addressed by stan-
dardization [11, 12], as process execution would inevitably deviate from the expected
paths [10]. As an alternative to standardizing KiPs, various publications recommend
empowering workers involved in the process execution by giving them decision-making
autonomy, setting high requirements for creativity and innovation that allow for dealing
with unexpected situations, and improving communication and collaboration between
process stakeholders [1, 4, 6, 18].

On the other hand, there have been attempts to solve the challenge of unpredictability
by modifying the approach to standardization to the needs of the KiPs and developing
declarative modeling notations [9, 13, 18]. In contrast to pre-defining all the possi-
ble execution paths, as is traditionally done in imperative approaches [20], declarative
approaches prescribe rules and constraints that set boundaries for the process execution
as well as possible procedures that may be executed to achieve process goals, but with-
out specifying the exact order of these procedures. Although publications on declarative
process modeling outline the approach to standardizing KiPs, to the best of our knowl-
edge, they do not investigate the practical aspects of applying these standards, including
the consequences of deviating from the standards and the circumstances under which
these deviations occur.
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3 Methodology

We studied standardization and knowledge intensity in sales processes, which are specif-
ically interesting in this context, because they are considered an example of KiPs [7].
We collected our data in a medium-sized Czech IT company, which delivers customized
IT solutions for its clients (hereafter referred to as the Company). The project-oriented
culture of the Company provides employees with substantial opportunities for autonomy
and self-organization, in order to address the volatile nature of the business.

We studied the process documentation and conducted a series of semi-structured
interviews to obtain an insight into two sales projects, Projects A and B, which represent
instances of the sales process and vary in multiple aspects, as described in Sect. 4.
We then applied the constructivist grounded theory method [2] to derive theoretical
propositions from the collected evidence and validated these propositions by means of
semi-structured interviews with some of the initial respondents and external experts.

3.1 Data Sources

To obtain an in-depth insight into the sales process of the Company, we relied on two
data sources: (i) process documentation, and (ii) semi-structured interviews with the
CEO and with participants in Projects A and B.

Process Documentation. The Company gave us access to the Confluence1 pages that
describe the standard flow of the sales process and contain methodological guidelines
on executing specific sub-processes within the process. Examining the process docu-
mentation served as the input for developing a description of the standardized process
flow (see Sect. 4.1) and helped us structure the interviews.

Semi-structured Interviews. We conducted two entry interviews with the CEO of the
Company, who had previously held the post of Head of Sales and currently remains
involved in the sales process. In the first interview, we asked the CEO to describe the
sales process, while in the second we asked him to identify recent sales projects of
different sizes that could serve as input for our analysis. The CEO evaluated Projects A
and B as those best suited to our criteria.

We obtained insights into Projects A and B by interviewing the project participants
as specified in Table 1. The participants were asked to describe the project they were
involved in, reflect on their role, and identify what went well and what could have been
done better. Moreover, R1, R2, and R7 were asked to reflect on the degree of knowledge
intensity and standardization associated with each sub-process of the sales process, as,
unlike other respondents, they were involved in all of the sub-processes.

All the interviews were semi-structured. Following Scheibelhofer’s [17] recommen-
dations, we started the interview with broad, open-ended questions, making notes while
the interviewee addressed the questions, and then asking follow-up questions based on
these notes.

1 https://www.atlassian.com/software/confluence.

https://www.atlassian.com/software/confluence
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Table 1. Summary of interview data collected

ID Position Role in Project A Role in Project B

R1 CEO Business Representative Formal Acceptance

R2 Bid Manager, Sales Bid Manager N/A

R3 Business Analyst, Analysis Business Analyst N/A

R4 Head of Project Management Office Project Manager N/A

R5 Lead of JavaScript Area Solution Architect N/A

R6 Quality Assurance (QA) Engineer N/A Solution Architect

R7 Head of Sales N/A Bid Manager

In total, we conducted nine semi-structured interviews. The interview duration varied
between 20 and 59 min. The two initial interviews with the CEO were conducted on-
site, while the remaining seven interviews were done via online calls. We recorded the
interviews and sent anonymized transcripts to the interviewees for validation. R2 and
R4 provided clarifying notes to the transcripts of their interviews.

3.2 Data Analysis

This study applied the constructivist grounded theory method to analyze the collected
data. We followed a three-stage process of initial, focused, and theoretical coding, as per
recommendations by Charmaz [2]. The initial coding was done line-by-line to restrict
analyst-imposed interpretations and allow codes to emerge from the data.

We integrated the initial codes into five focused codes: (i) “process performance”,
(ii) “characteristics of standardization”, (iii) “problems in execution”, (iv) “things that
went well in execution”, and (v) “deviation from standards”. The latter focused code,
which describes the degree to which the execution of specific sub-processes in Projects
A and B was guided by standard procedures, for example, included initial codes such
as “not being good at following standard procedures” and “not following standardized
methodology.”

In the theoretical coding, we attempted to define how the focused codes related to
each other. When we related the focused codes “deviation from standards” and “process
performance”, we found that deviations from standards had happened in both projects
but had led to different results, as the performance of Project A was characterized as low,
while the performance of Project Bwas high. Based on the principles of the constructivist
grounded theory method [2], we followed up on this surprising finding and revised the
focused codes, focusing on deviations from standards.

After this revision, we came upwith the following focused codes: (i) “factors that had
led to a deviation from standards (e.g., communication, robustness)”, (ii) “circumstances
under which a deviation had happened (e.g., maturity of relationships with the client,
solution complexity)”, and (iii) “drivers of standardization” (i.e., external, internal). In
the subsequent theoretical coding, we related these revised focused codes and deduced
four theoretical propositions.
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We validated the propositions by conducting semi-structured interviews, in which
the respondents were asked to relate the propositions to their past experiences. First, we
conducted the internal validation with R1 and R7, who are directly involved in the sales
process and therefore have insight into most sales projects executed in the Company.
Then we conducted four semi-structured validation interviews with workers involved in
project-oriented KiPs, but not affiliated with the Company. The profiles of experts who
participated in the internal and external validations are provided in Table 2.

Table 2. Expert profiles

ID Process Experience (years) Company size

R1 Sales (in the Company) 10+ Medium

R7 Sales (in the Company) 5+ Medium

E1 Software deployment 10+ Large

E2 Software development 10+ Medium

E3 Supply chain management 5+ Large

E4 Software testing 5 Large

4 Background on the Sales Process and the Sales Projects

This section introduces the standard flow of the sales process and categorizes each of
its five sub-processes in terms of their embedded unpredictability (and thus, knowledge
intensity) based on Szelagowski’s [19] framework. Moreover, the section presents two
specific process instances – Projects A and B. The section concludes by reflecting on
how the process was followed in each of the Projects.

4.1 Standard Flow of the Sales Process

The sales process consists of five sub-processes, as presented in Fig. 1. The process starts
when a new opportunity is identified in the market. At this point, the Head of Sales either
assigns the lead to one of the three bid managers (BM) or to himself, thereby taking on
the role of the BM. Once the BM has been assigned, he/she continues with qualifying
the opportunity.

Qualify Opportunity. When qualifying the opportunity, the BM collects the data nec-
essary to address the questions in a standardized checklist. The process documentation
specifies that the sub-process is considered complete only if all the questions on the
checklist have been addressed. However, the procedure of data collection is not stan-
dardized and emerges based on the judgment of the BM. Therefore, we characterized
the “Qualify Opportunity” sub-process as unstructured with pre-defined fragments.
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Fig. 1. Sales process

Gather Team. The process continues with gathering the presales team. The allocation
of people is initiated by the BM at a weekly traffic meeting. After the traffic meeting,
the team leaders of the requested people check their availability and either approve the
BM’s request or suggest other people who could take up the roles. Therefore, the process
documentation clearly prescribes a control flow for the “Gather Team” sub-process. At
the same time, the standard does not prevent theBMfromgoing to the trafficmeetingwith
a list of pre-selected candidates for the team. Therefore, we characterized the “Gather
Team” sub-process as structured with ad-hoc exceptions.

DevelopOpportunity. During the opportunity development, theBM focuses on gather-
ing additional data via intensive communication with the client. In parallel, the Solution
Architect (SA) and developers progress with the design of the solution.

As with the “Qualify Opportunity” sub-process, the work of the BM is guided by a
standardized checklist. At the same time, the work of the SA was characterized by R5
as follows:

I don’t have [any documents I can consult]. It is basically only [my] knowledge
of an [software] application and [my] imagination.

This confirms that process execution is reliant on previous knowledge and expertise,
as well as on the creativity of the workers involved in its execution, which signals the
high knowledge intensity of the process.

Although the process documentation does not prescribe the specific activities that
need to be executed during the “Develop Opportunity” sub-process, it limits the scope
of possible activities by clarifying the following point:

The presales team works on identifying the information necessary for the creation
of a business case.

Based on the above-mentioned features, we concluded that the “Develop Opportu-
nity” sub-process is unstructured with pre-defined fragments.

Prepare Business Case. The goal of the “Prepare Business Case” sub-process is to
complete a standardized Excel sheet with the financial and workload estimates. As
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illustrated by the comment from R4 below, the estimates are done on the basis of the
previous experience and knowledge of workers:

I assess all these risks by literally thinking about the project.

Therefore, we characterized the “Prepare Business Case” sub-process as unstruc-
tured with pre-defined fragments.

Prepare Offer. In the final stage of the sales process, the BM prepares an offer. At this
stage, outputs from previous steps are combined into a pitch presentation. The offer is
then sent to the client. The process is successfully concluded when the client accepts the
offer.

The standard procedure prescribes a control flow for the “Prepare Offer” sub-process
and also the standardized scope of documentation that needs to be prepared. Moreover,
new documentation is prepared based on existing documentation from past projects.
However, the project is associated with ad hoc exceptions, as reported by the R1:

The offer … is usually accompanied by mandatory documents … There’s very
basic stuff that is used in individual cases. But it doesn’t really need any sort of
major experience or input or insight.

On the basis of the above-mentioned observations, we characterized the “Prepare
Offer” sub-process as structured with ad-hoc exceptions.

To sum up, the sales process in the Company consists of sub-processes that are
either structured with ad-hoc exceptions or unstructured with pre-defined fragments.
Therefore, the theoretical propositions presented in Sect. 5 would only hold for these
types of processes and do not hold for purely structured or purely unstructured types,
therefore covering most KiPs encountered in practice.

4.2 Sales Projects

To see how the sales process is executed in practice, we looked at two specific instances
of it, represented by Projects A and B. Table 3 compares the projects in terms of six
factors that were reflected in the semi-structured interviews related to both projects,
including performance and deviation from standards.

Project A. Client A, an investment brokerage firm, was a new client. In Project A, the
Company was co-developing a new software application for Client A together with a
third party. The Company was responsible for the front-end development, while the third
party was responsible for the back-end development. The project started in December
2021, when the Company won the tender initiated by Client A. It was paused in October
2022 because of the delay in back-end development. The project restarted in January
2023 and was completed in March 2023 after the client accepted the offer.

When reflecting on Project A’s performance, which took sixteenmonths to complete,
R1 reported that the project was associated with “ridiculous overheads” and took “too
much time”, therefore, we evaluated the project performance as low.

The R2 reported that the execution of the sales process in Project A had followed the
standards for all sub-processes apart from the “Develop Opportunity” sub-process, in
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Table 3. Comparison of the sales projects

Factor Project A Project B

Client New Long-term

Type of project initiation Reactive Proactive

Third parties involved 1 0

Duration 16 months (including a 3-month freeze) 2 months

Performance Low High

Deviation from standards Yes Yes

which the presales team “started the analysis phase without having a signed contract”,
which is against the rules specified in the process documentation. R3 and R5, who
were involved in the analysis, confirmed the non-standard character of the “Develop
Opportunity” sub-process.

Project B. Client B, a postal service firm, was a long-term client. The Company built
a web portal for the client through a series of consecutive projects. Project B started in
January 2023, when R7 approached Client B with a proposal to automate the quality
assurance of the web portal, which Client B agreed to consider. After specifying the offer
and negotiating the details, the contract was signed in February 2023, thereby marking
the completion of Project B.

When reflecting on Project B’s performance, R1 referred to the project as “success-
ful”. In particular, he made the following comment:

I think that [Project B] went well. We were able to handle the risk properly, we
were able to make the pitch correctly.

The execution of the sales process in Project B also deviated from the process doc-
umentation. The deviations happened in the execution of the “Prepare Business Case”
sub-process, as reported by R7.

To sum up, although Projects A and B varied in terms of process performance,
the execution of both projects deviated from standards. This contradiction attracted
our attention and guided the further analysis. We wanted to ascertain the reasons why
deviation from standards was associated with different levels of process performance
and the circumstances under which deviations occurred in both projects.

5 Findings

This section describes within-case and cross-case analyses of Projects A and B and
deduces propositions regarding (i) associations between deviations from standards and
process performance and (ii) necessary conditions enabling these associations. The
section concludes with the results of an internal and external validation of the derived
propositions.
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5.1 Deviation from Standards and Low Process Performance (Project A)

The performance of reactively initiated Project A, whose execution deviated from the
rules prescribed in the documentation, was low (see Sect. 4.2). The within-case analysis
of Project A revealed the reasons for the deviation, which are described in more detail
below.

Externally Driven Deviation. We first looked at the characteristics of the deviation
from standards that occurred in Project A. Our data showed that the deviation from
standards was driven by Client A with the Company having to adjust to the client’s
demands, which is supported by the comment below from R3:

Client A was cooperating with UX directly without user stories … At some point,
we were losing the continuity and the Company offered my service to Client A to
do the documents for the project, but Client A didn’t accept this offer, they were
doing their own documents. So, my role in the team was to check their documents
[for] gaps and continuity between [back end and front end].

We labeled this deviation from standards initiated by an external process stakeholder
(e.g., a client) an “externally driven deviation” (EDD). We then looked at the dynamics
of the execution of Project A and identified two factors that changed between the pre-
freeze phase of Project A (Phase 1), which lasted ten months (from December 2021 to
October 2022), and the post-freeze phase (Phase 2), which lasted three months (from
January to March 2023). Our analysis showed that the quality of communication and
unpredictability changed dramatically between the two phases.

Communication. In Phase 1, R2, R3, and R5 highlighted issues related to communi-
cation with Client A. They reported feeling that representatives of Client A lacked a
common opinion and were trying to find a consensus during the joint meeting rather
than beforehand. R3 summarized the situation as follows:

[Client A representatives] didn’t communicate with each other. Marketing would
make a user story, but [Back-end Development] wouldn’t read it.

In Phase 2, R1 had to intervene in communication with Client A and began to
negotiate with the client:

We went up front and we said: “Hey guys, we really don’t need this project. So,
if we are going to, like, walk away from it, neither side will be happy, because
you won’t get your application, we won’t get our money, but ultimately, we don’t
really care. So, let’s really work hard together to, you know, find this mutually
agreeable solution.”

Consequently, Project A finalized shortly after overcoming the communication
barriers, resulting in the signing of the contract.

Unpredictability. Another factor that evidently changed over the course of Project
A was the unpredictability. On the basis of our analysis, we characterized Phase 1 as
highly unpredictable, whereas Phase 2 was associated with less unpredictability. As
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stated in Sect. 4.2, Project A was the first time Client A and the Company had interacted.
Therefore, the initial maturity of the relationships between the Company and the client
was low, which subsequently improved during the project execution, as confirmed by
R1 and R2.

The second factor that affected the unpredictability was the dependence on the third
party in the solution development. In fact, the project was frozen due to delays in the
back-end development on the third-party side. In Phase 2, the dependency on the third
party was removed, since the back end had been delivered, which allowed the Company
to proceed with specifying requirements for the front end. R3 and R5, who were directly
involved in the task, reported that this situation led to more predictability and certainty.

To conclude, the situation of Project A was characterized by an EDD, low commu-
nication quality and high unpredictability, which undermined the process performance
in Phase 1. Once it had improved in Phase 2, the project was promptly completed.

5.2 Deviation from Standards and High Process Performance (Project B)

We conducted a within-case analysis of proactively initiated Project B, in which the
deviation from standards was associated with high process performance. The analysis
allowed us to identify reasons and get a better comprehension of the circumstances of
the situation.

Internally Driven Deviation. We started by looking at the characteristics of the devia-
tion from standards that occurred in Project B. Our data showed that the deviation from
standards in the “Prepare Business Case” sub-process was initiated by R7, who did not
use the Excel template but did a rapid estimate, as indicated by the following comment:

I knew there was a large difference [between the overhead costs and the price of
the project], so I didn’t do the business case.

Therefore, we refer to the type of deviation in Project B as an “internally driven
deviation” (IDD), which we conceptualize as a deviation from standards initiated by a
process actor.

Robustness of Standards. When we asked R7 to elaborate on the reasons he did not
execute the “Prepare Business Case” sub-process to the full extent, his response was as
follows:

Preparing a business case for a time-and-material project is something that feels
unnecessary, because there is the same difference inmargin. There is still a margin,
and it doesn’t matter how many man-days you sell.

This led us to speculate that the process documentation did not prescribe the best app-
roach to dealing with the situation in this specific context (i.e., in the time-and-material
type of project), and therefore, using Endsley’s [5] terminology, we characterized the
process documentation as a case of low robustness, i.e., insufficiently able to handle
current and potential situations.
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5.3 Cross-Case Analysis and Deviations from Standards in Knowledge-Intensive
Processes

In the cross-case analysis, our aimwas to identify and compare factors that were revealed
in the within-case analysis of Projects A and B. Table 4 summarizes the results of the
comparison.

Table 4. Comparison of the sales projects

Factor Project A Project B

Externally driven deviation Present No evidence found

Quality of communication Low in Phase 1
Moderate in Phase 2

High

Unpredictability High in Phase 1
Moderate in Phase 2

Low

Internally driven deviation No evidence found Present

Robustness of standards Low No evidence found

After revisiting transcripts of interviews with the members of the presales teams in
both projects, we found no evidence for the occurrence of IDD in Project A and for an
EDD in Project B. Moreover, we did not find any evidence to characterize the robustness
of the process documentation for Project A, in which the Company was dealing with a
different type of project (i.e., a fixed time and fixed price).

In contrast toProjectA, the unpredictability inProjectBwas low, as theCompanywas
not dependent on third parties, it initiated the project proactively by approaching the client
with a pre-defined proposal, and it was able to predict the behavior of Client B based on
previous interactions. Simultaneously, the communication quality was reportedly high,
as confirmed by R1, who highlighted that a state of mutual understanding and ultimate
transparency between the Company and long-term Client B was reached quickly and
effortlessly. R6 and R7 were of the same opinion as R1 regarding the high quality of
communication in Project B.

Based on the results of the within-case and cross-case analyses, we created a series
of propositions regarding the necessary but insufficient conditions that lead to either a
negative association between an EDD and process performance or a positive association
between an IDD and process performance.

In Project A, where an EDD was negatively associated with process performance,
two such conditions were: high unpredictability and low quality of communication. In
formal terms:

Proposition 1. High unpredictability is a necessary but not sufficient condition
for a negative association between an externally driven deviation and process
performance to occur.
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Proposition 2. Low communication quality is a necessary but not sufficient condi-
tion for a negative association between an externally driven deviation and process
performance to occur.

In Project B, where an IDD was positively associated with process performance,
two necessary conditions were: low unpredictability and low robustness of standards. In
formal terms:

Proposition 3. Low unpredictability is a necessary but not sufficient condition
for a positive association between an internally driven deviation and process
performance to occur.

Proposition 4. Low robustness of standards is a necessary but not sufficient condi-
tion for a positive association between an internally driven deviation and process
performance to occur.

5.4 Results of Validation

The six derived propositions were validated internally with R1 and R7 and externally
with four external experts (E1 to E4; see Sect. 3.2). The results of the validation are
presented in Table 5.

Table 5. Results of validation

Proposition R1 R7 E1 E2 E3 E4 Valid?

1 NE S NE NS NE NE No

2 S S NE S NE S Yes

3 S S NE S S S Yes

4 S S S S S S Yes

Note: S – supported, NS – not supported, CS – conditionally supported, NE – no evidence

First, wewould like to stress that most experts confirmed the occurrence of a negative
association between anEDDandprocess performance and a positive association between
an IDD and process performance across instances of the sales process in the Company
and in other KiPs executed in medium- and large-sized companies. Additionally, R7 and
E2 highlighted that the association between an IDD and process performance might also
be negative, although this does not contradict our theory, as we did not encounter any
cases in which such a situation occurred.

The validation of the necessary conditions for a negative association between an
EDD and process performance (Propositions 1 and 3) allowed us to confirm the role of
quality communication and reconsider the role of unpredictability. As became evident
from interviews with R1, E1, E2, and E4, unpredictability increases as a result of an
EDD and does not lead to its emergence, as we initially assumed.

The validation of Propositions 3 and 4 related to the necessary conditions for a
positive association between an IDD and process performance allowed us to consider
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both propositions valid, since most of the experts found supporting examples in their
experience for both propositions.

6 Discussion

In this section, we relate the valid propositions to the existing literature and outline the
practical implications of our study.

Proposition 2. Our findings showed that low quality of communication is a necessary
condition for a negative association between an EDD and process performance to occur.
This proposition is relevant to KiPs, as, due to their interactive nature, these processes
are highly reliant on effective communication [4], which is not the case for routine
processes.

The association between communication and standardizationwas studied byWüllen-
weber et al. [22], whose findings indicated that process standardization positively affects
intra-organizational communication. Our findings bring a new perspective to these rela-
tionships, where intra-organizational communication of low quality might lead to a
deviation from standards, which consequently increases the unpredictability in process
execution that these standards aim to reduce, thereby undermining process performance.
Therefore, our findings contribute to the Business Process Management (BPM) litera-
ture by expanding the rationale underlying the relationships between intra-organizational
communication and standardization.

From a practical standpoint, it is evident that to avoid increased unpredictability and
consequent reduction in process performance, it is necessary to have a high quality of
communication from the initial phases of process interactions. This especially concerns
situations in which companies need to interact with external stakeholders who they do
not know (e.g., new clients).

Proposition 3. According to Proposition 3, low unpredictability is a necessary but not
sufficient condition for a positive association between an IDD and process performance
to occur. This proposition is relevant to KiPs, since it outlines the role of unpredictability,
which is a commonly reported characteristic of these processes [4, 6, 11].

As described in Sect. 2.2, unpredictability presents challenges to the performance
of KiPs. As we did not find an empirical confirmation for the benefits of deviating
from standards in the context of high unpredictability, our findings extend the current
understanding of how this challenge might be addressed by showing that standardiza-
tion and following standards are beneficial for reducing unpredictability and improving
performance in KiPs.

From a practical perspective, deviating from standards in situations of high unpre-
dictability is not recommended, as it might lead to unknown risks and, in the end,
undermine the process performance.

Proposition 4. According to Proposition 4, low robustness of standards is a necessary
but not sufficient condition for a positive association between an IDD and process per-
formance to occur. Although this proposition is not directly relevant to KiPs, it brings an
important contribution by outlining the overlap between BPM and Human-Automation
Interaction (HAI) research. The concept of robustness is commonly known in HAI
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research [5] and is argued to be one of the factors influencing trust in automation, which,
in turn, is associated with process performance [21].

As indicated by an interviewwith R7, the situation of distrust of standards is common
in the Company and is explained by the low robustness of standards in certain situations.
Therefore, our data allows us to conclude that the theoretical mechanism explaining
interactions between robustness, trust, and performance discussed in HAI research in the
context of automation is also applicable in the context of standardization, and therefore
BPM.

As for the practical implications, we would recommend that companies do not
encourage IDDs even in situations of low unpredictability, but rather update the stan-
dards, so that they incorporate the previous experience of process actors. This would
lead to the increased effectiveness of standards. One way to achieve this is to discuss
any deviations from standards in lessons learned sessions after the end of the process
iteration and adjust standards based on the results of these discussions.

In general, we conclude that deviations from standards in the execution of KiPs are
undesirable, since they increase unpredictability and consequently undermine process
performance. Companies are recommended to increase the quality of communication
with external process stakeholders and keep standards up to date, incorporating the
growing experience of process actors to minimize deviations from standards.

7 Conclusions

Our primary goal was to investigate the reasons and consequences of deviating from
standards in the context of the execution of KiPs. We did this by examining the sales
process of an IT service provider (the Company) and conducting a cross-case compari-
son of two instances of this process, the subjects of which were Projects A and B. The
collected evidence revealed: (i) a negative association between an externally driven devi-
ation from standards and process performance, and (ii) a positive association between
an internally driven deviation from standards and process performance.

Moreover, we deduced four propositions regarding the necessary conditions for the
above associations to occur and considered three of themvalid in the results of validation.
Relating these three valid propositions to the literature illustrated their relevance for KiPs
and allowed us to make certain theoretical contributions. In addition, we put forward a
number of recommendations for practitioners on how to avoid deviations from standards.

Nevertheless, our study has a number of limitations related to data collection and
validation. First, we only compared two process instances of a single process in a single
company.Although the internal validation allowed us to compensate for the insufficiency
of the collected evidence, further data collection is required. Following the principles
of theoretical sampling [2], we would like to focus our efforts on collecting more evi-
dence on (i) the negative association between an EDD and process performance, (ii) the
positive association between an IDD and process performance; and also on the hitherto
undiscovered situations of (iii) the negative association between an IDD and process
performance, which was mentioned by several experts in the process of validation, and
possibly (iv) the positive association between an EDD and process performance.
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We plan to continue data collection in the Company to get further insight based on
more instances of the sales process. Subsequently, we are considering collecting data on
instances of the sales process in a large-sized company. The data collection can then be
continued by conducting research on other KiPs across companies of different sizes and
operating in various industries.

Another limitation of our study was the validation of the derived propositions. The
validation sessions were conducted in the form of semi-structured interviews with a lim-
ited number of internal and external experts. In further research, we plan to initiate panel
discussions to enable an exchange of opinions between experts, involve bid managers
in internal validation, as they would have more detailed insights into specific instances
of a sales project, and involve experts from academia in the external validation.
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Abstract. The academic and professional BPMdiscipline is concentrated on pro-
cess performance and conformance. However, changing consumer demand pat-
terns, ESG requirements and concepts such as conscious capital have increased the
pressure to create more than ‘transactional value’ from business processes. One
such consequence is the requirement to provide trusted processes and the embed-
ded request for benevolence. A benevolent process prioritizes customers’ demands
over providers’ interests. Following a Design Science approach and informed by
primary data collected from three large service organisations and related sec-
ondary data, this paper presents eight design guidelines, grouped in four pairs, for
benevolent processes. These design guidelines conceptualise an entirely new set
of process aims and have the potential to initiate BPM research and professional
practice exceeding common transactional value propositions.

Keywords: Trust · benevolence · design guidelines · transactional value

1 Beyond Transactional Value

Traditionally, the management of business processes has been driven by the economic
paradigm. As a result, process improvement initiatives have predominantly targeted
reducing costs and processing time and increasing process quality [1] and a plethora
of approaches along the process lifecycle have been developed to support exactly these
objectives. However, customers nowadays require more than transactional excellence
and developments such as the ESG framework (environmental, social and governance)
have led to formal requirements for process analysts and owners to go beyond established
metrics of successful process execution. This movement is further amplified by man-
agement approaches such as conscious capitalism [2], shared value [3] and the notion of
the purpose-led organisation [4]. These approaches postulate that all stakeholders, and
not just shareholders need to be considered when designing business processes. In this
context, the established focus on process performance and conformance and the related
set of skills and tools are still necessary, but no longer sufficient. Rather, new approaches
for the design and management of business processes need to be invented to respond to
these calls in the academic and professional domain of BPM.

This overall notion of ‘doing good’ beyond economic incentives is best captured in
the concept of benevolence. Benevolence prioritises the well-being of the other party
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and is therefore oppositional to the dominating provider-centric view of BPM which
tends to emphasise flawless, economically efficient process execution. Benevolence as
a design criterion in a corporate context overall, and in the specific domain of BPM, is
in its infancy which makes its operationalisation difficult. This is despite the fact that
various studies have demonstrated that benevolence increases customer loyalty [5] and
comes with reputational gains [6]. Benevolence also creates an emotional attachment to
the firm [7], has positive effects on the long-term sustainability of organisations [8], and
promotes relationships [9] and interpersonal trust [10]. Studies have also shown that in
specific contexts benevolence matters more than competence [11]. However, while the
latter is a typical focus in the allocation of work along a process to staff members, the
former has so far not made it as a primary concern into the BPM literature. Research that
integrates trust in general and benevolence in particular into business process design has
only emerged recently [12]. Related research on customer-centric process design tends
to focus on demand-oriented process practices from an economic lens (see approaches
such as customer journey mapping) as opposed to an authentic benevolent motivation.

Thus,with a specific focus on an organisation’s business processes,we aim to acceler-
ate and guide the design of benevolent processes. For this, we are using design guidelines
derived from primary and secondary data to inform the design of benevolent business
processes. Therefore, the research question of this paper is “What are design guidelines
that can inform benevolent business processes?

In order to address this research question, first the existing body of knowledge on
benevolence was comprehensively studied and used to derive the key dimensions of
benevolence. Following a Design Science approach, and building on this consolidated
body of knowledge, we then started to create the desired artefact, i.e., guidelines for
the design of benevolent processes. For this, we first interacted with executives from
three Australian organisations in the domains of financial and insurance services. These
were identified from within members of the Brisbane Trust Alliance, a community of
professionals dedicated to advancing the professionalisation of trust management, and
also via a white paper we circulated to executives within Australia. This set of primary
data allowed us to inductively build a set of design guidelines,whichwegrouped into four
pairs. These guidelines were then further revised and specified in light of complementary
secondary data which reported on process-related benevolence across industries and
which we identified based on feedback we received from our three interview partners as
well as based on the initial literature review.

This paper is structured as follows. Section 2 contextualises the research by sum-
marising the body of knowledge on benevolence and differentiates these from related
constructs such as customer centricity, corporate social responsibility and also process
patterns. Section 3 describes the research method of our study before Sect. 4, the core
of this paper, presents eight benevolent process design guidelines grouped in four pairs.
Section 5 discusses our findings and elaborates on those contextual factors that matter
for a successful adoption of these guidelines. Finally, Sect. 6 sums up the paper with
conclusions, limitations and possible future research directions.
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2 Research Context

2.1 Benevolence

The word benevolence comes from the Latin words “bene” and “volens”, which means
“wanting the good” [13]. In the management literature, benevolence is understood as
caring for the other party andmanifests in actions that go beyond contractual aspects [13,
14]. Benevolence is demonstrated by the giving party being responsive to and considerate
of the receiving party’s needs in order to enhance the receiving party’s well-being [15].

Depending on the social semantics, benevolence is divided into two forms [5]. Altru-
istic benevolence is “the extent to which a trustee is believed to want to do good to the
trustor, aside from an egocentric motive” [14, p. 718] and comes without expectation
of future gain. Mutualistic benevolence, on the other hand, is defined as “the degree to
which one party is genuinely interested in the other’s well-being and seeks joint gain”
[16, p. 36]. This form of benevolence is based on reciprocal utilitarian motives. For
example, employees provide their customers with exceptional support in the hope of
strengthening their loyalty [5]. The expected gain of the benevolent party, however, is
unpredictable, delayed and cannot be guaranteed. Against this background, a benevo-
lent business process has three characteristics: (1) the process constitutes an immediate
benefit for the recipient party; (2) the process is an investment for the provider in the
short term, (3) the benevolent behaviour in the process is not mandated.

A further differentiation of benevolence can be made based on the social level of
the interaction. The micro level refers to benevolent behaviour between two individuals.
Livnat (2004) [17] describes three elements (the emotive, the performative, and the
cognitive element) that comprise benevolent acts between two stakeholders. The meso
level refers to benevolence in the context of an organisation’s business processes. Doney
and Cannon (1997) [16] determined processes by which industrial buyers demonstrate
benevolence and as a result develop trust in a supplier. Finally, the macro level captures
regulated benevolence [18] to protect the rights of customers and employees.

Benevolent processes can be distinguished into public and private. Public benevolent
processes are known to the customer through advertising, publications or past interac-
tionswith the company. For example, a customermight be allowed to exchange a product
without the need to provide reasons, and this is explicitly stated in the company’s return
policy. Private benevolence, on the other hand, is situational and not expected by the
customer. Tesla’s over-the-air update which extended the possible distance to be trav-
elled for customers close to a hurricane (USA) or bush fire (Australia) was such a not to
be expected type of private benevolence.

If the benevolent behaviour is codified in a defined process, script or guideline, it is
formal benevolence. Formalisation ensures consistency in the provision of benevolent
actions whereas informal benevolence is situational and not prescribed.

The focus of this paper is on mutualistic, formal, micro benevolence only.
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2.2 Related Concepts in BPM

2.2.1 Customer Centric Process Design

Customer centricity puts the customer at the centre of all business activities [19]. The
focus of customer centric process design is on the needs of customers and their expec-
tations in order to achieve above-average customer satisfaction and loyalty [20, 21]. In
the domain of BPM, customer-centricity has been triggered by Lean Management and
gave rise to approaches such as moments of truth, design-thinking and customer journey
mapping.

While customer centricity is dedicated to the understanding and satisfaction of cus-
tomer needs via convenient processes (e.g., first contact resolution, choice of channel
[19]), benevolence matters in those ‘moments of truth’ in which empathy matters more
than convenience (e.g., the customer’s inability to repay a debt within a given period
due to a personal hardship). Customer centricity is for most organisations a necessity to
remain competitive whereas benevolence is optional, often not even expected by cus-
tomers [15]. Unlike customer centricity which is the desire to have an attractive market
offering, benevolence is driven by the desire to address a customer’s circumstances.

2.2.2 CSR Business Processes

Corporate Social Responsibility (CSR) is the notion that companies have an obligation
to constituent groups in the society they operate in, beyond shareholders [22]. Despite
CSR being discussed over decades, it is still widely debated on facets such as the degree
of voluntary behaviour that drives a firm’s CSR, which stakeholder groups (customers,
employees, communities, etc.) a firm should serve with CSR or how to balance the
serving of multiple stakeholder-groups’ interests. Companies are expected to report on
their CSR efforts and many firms have dedicated CSR teams to design and execute CSR
initiatives. So far, only limited research has considered an integrated perspective onBPM
and CSR [23].

CSR and benevolence both aim for social-good, are driven by value-creation objec-
tives, and can influence a firm’s ‘social license to operate’ [24]. They both can help
organisations to proactively manage corporate social ‘irresponsibility’ [25]. While more
contemporary CSR debates such as ‘CSR for Corporate Social Performance’ versus
‘Obligatory CSR’ aimed at reducing harm and increasing benefits at the societal level
[26] bring the resemblance between CSR and benevolence very close, benevolence is
different from traditional CSR practices in several ways. First, benevolence is purely vol-
untary and not influenced by any reporting requirements or external law/policy enforce-
ments. Second, benevolence in the context of this paper is targeted as acts by the firm
towards one key stakeholder group; customers. And third, unlike CSR, benevolence is
conducted by the firm as part of its regular business operations.

2.3 Process Patterns and Design Guidelines

Process patterns are proven solutions to recurring situations and are popular artefacts
within Business Process Management. Among others, process patterns have been pro-
posed as a foundation for process-aware systems [27], which inspired related work in
data patterns and resource patterns within the process management community.
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Patterns have been widely used to categorize process weaknesses as in the seven
wastes of lean management, and as broad process improvement patterns [28]. More
recently, explorative process patterns [29] have been proposed to identify new revenue
opportunities for an existing process. An overview about process patterns can be found
at bpmpatterns.org. Process patterns are atomic building blocks for business processes
and aim to trigger specific considerations among stakeholders dealing with processes
(e.g., identify a weakness, reflect on a re-design suggestion).

In contrast to process patterns, design guidelines refer to higher order principles and
are motivated by a design intention – here the design of benevolent processes and the
inherent creation of immediate value for a customer beyond the expected transactional
value of the business process. Thus, design guidelines are applicable constructs embed-
ding research contributions that help with the creation of artefacts (here: benevolent
processes) in practice [30]. Patterns as atomic and often (semi) formalised templates
can be a part of a design guideline. In the following we propose a set of process design
guidelines unique in their intention; the design of benevolent business processes. Each
guideline will be described as follows: (1) an example to provide clarity to the guideline,
(2) the context describes the factors leading to the emergence of the benevolent process
design guideline; (3) a definition of the benevolent process design guideline; (4) the type
of value created for both parties involved (customer and provider), (5) a simple textual
description of the pattern inherent to the design guideline; (6) required considerations
for the application of the design guideline, and finally, (7) a discussion of the perceived
ease of automation of this design guideline.

3 Research Method

The study followed a Design Science Research Paradigm. In the first, guideline-building
phase, a comprehensive analysis of benevolent business practices was conducted based
on a detailed literature review. As the existing body of knowledge on benevolent process
design is very limited, we collated ‘moments of corporate benevolence’ primarily from
publicly available resources (e.g., company web pages, media releases, social networks
and forums that shared customer experiences). These were further complemented by
collecting input from our industry and academic network where we sought for examples
and/or elaborations of corporate benevolence people have experienced or witnessed. We
extracted over 40 examples, which were exposed to detailed researcher corroborations.

Second, the guideline-building phase continued, while we approached organisations
participating in the Brisbane Trust Alliance, a community of 40 + professionals across
various industries committed to improving their trust literacy. This community meets
on a monthly base since end of 2021, and at each meeting dedicates their discussions
towards one trust-related topic. Two organisations (here after referred to as Case 1 and
2) expressed an interest to assess the potential applicability of these eight guidelines in
the sense of a naturalistic, ex-ante artefact evaluation [31].

Case 1 is an Australian mutual organisation with more than 1.7 million members and
more than 2,200 employees providing road assistance, insurance and banking services
to its members. Its motivation to consider benevolent business processes has been the
alignmentwith its value systemas amember-based organisation. TheChief PurposeOffi-
cer, together with several of the most senior executives of the organisation, considered
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the applicability of our guidelines and presented the findings for discussion to the Trust
Alliance. Case 2 is an Australian automotive and accessories retailer with more than 300
stores employing more than 14,000 staff across Australia and New Zealand. This retailer
sees trust as an opportunity to derive a competitive advantage in an economic environ-
ment in which competing on product and price is increasingly challenging. Benevolence
is a key feature of trust and the retailer has in particular an interest in deploying services
recovery practices, here called compensation. The General Manager, eCommerce and
Marketing, of one of the four brands of the organisation, committed to assess our guide-
lines and together with input from other senior executives shared related views with the
Trust Alliance.

The two executives (Chief Purpose Officer of Case 1 and the General Manager,
eCommerce and Marketing of Case 2) were involved in the following activities related
to building the artefact; (1) individual briefing between at least one of the authors and
the executives to contextualize and motivate the research; (2) conceptual application,
i.e. the executive contemplated – guideline by guideline – the deployment of the artefact
presented; (3) presentation of the applicability of the artefact within each respective
organisation (by the executive) to the Brisbane Trust Alliance; and (4) related discussion
among all Trust Alliance members (e.g., correctness of application, adequate naming of
the guideline, need to refine definition of artefact constructs). Both executives identified
for each of these eight guidelines (a) their related practices, (b) new practices they could
deploy (pre an economic assessment), and (c) those practices that would be impossible
to implement. This discussion helped us to further improve the definition, intention
and constraints of our eight design guidelines, provided us with additional practices
and helped us to better understand prerequisites for the implementation of benevolent
business processes.

In the third phase, the focus was on early evaluation of the design guidelines. Here
we summarized our initial conceptualization in a white paper that we circulated beyond
the members of the Brisbane Trust Alliance leading to an expression of interest by an
international insurance and healthcare group of more than 43 million customers and
84,000 employees globally. This became the third case study (Case 3) which was used
for quasi validation of the design guidelines. The Chief Customer and Strategy Officer
from their Melbourne office assessed our eight design guidelines against their more than
100 defined micro-moments in customer facing processes. In an interview, we extracted
the feedback and used the insights and examples provided to further revise our definitions
and the details for each guideline.

The purpose of the benevolent process design guidelines is to make BPM profes-
sionals aware of a design rationale that goes beyond the common focus on transactional
value. The assessment of the actual (technical, ethical, legal) feasibility, desirability, and
viability of these guidelines is context-specific and beyond the scope of this paper.

4 Benevolent Process Design Guidelines

Figure 1 summarizes the eight benevolent process guidelines as per our joint codification
and shows how they are bundled in four pairs, which we call benevolent principles. In the
following we will describe each of these guidelines according to the attributes outlined
in Sect. 3.
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4.1 Be Fair

Benevolence materialises when a business process demonstrates that a customer’s well-
being matters more than the immediate interests of the organisation. Unfortunately, such
practices are not always common. TheAustralian Royal Commission intoMisconduct in
the Banking, Superannuation and Financial Services Industry, established in December
2017 (royalcommision.gov.au/banking), as an example, surfaced practices, in which the
financial advice provided to banking customers was incentivised more by commissions
than suitability of the products for the customer.

Fig. 1. The eight benevolent process design guidelines grouped in four principles

‘Being fair’ is relevant when products are complex and it is difficult for the customer
to select the right one, when the products are not commonly used or when the products
(e.g., due to interest rates changes) change frequently. ‘Be fair’ captures two guidelines
dedicated to making sure customers receive the product or service, right for them. These
two guidelines can be differentiated based on the strength to which they ensure fit-for-
purpose; is it an action (adequacy) or recommendation (awareness) that ensures this
fit?

4.1.1 Adequacy

Example. Aspart of their customer engagement process, a telecommunication company
runs monthly queries to identify customers of mobile data plans who have consistently
used 50% or less of their data plans over at least six months. Those customers are then
proactively downgraded to the next lower data plan and informed about the decision.
Customers have two weeks to respond in case they would like to keep their current data
plan, otherwise the downgrade takes place. From then, the customer is charged less each
month. In a similar way, some Neo Banks proactively move their customers’ funds into
higher interest retail banking products unless the customer declines within a specified
timeframe. One of our three case partners, the global health insurer, referred to running
regular processes during which over-insured customer were proactively approached to
discuss and adjust their insurance policies according to their actual requirements (e.g.,
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excluding age-related services no longer needed). A more common form of benevolent
processes increases the quality of services (e.g., increased Internet speed or data volume)
without price changes.

Context. In sales processes in which a customer has to estimate upfront consumption
volumes (e.g., telco data plans, software purchases), some customers will over-estimate
their demands meaning they end up in the language of lean management with an over-
produced product or service. Benevolence is demonstrated by adjusting this service to
an adequate offering that matches the actual demands of the customer once they are
understood. Thus, adequacy is a form of down-selling. However, while common down-
selling reactively offers more budget-friendly solutions to a hesitant buyer (e.g., after
they took out an item of their shopping cart), adequacy is about proactively ensuring that
the customer only pays what is needed to get a sufficient product or service. Adequacy
works well in subscription processes such as telecommunication or energy plans, cloud
solutions, but also retail banking or insurance processes.

Definition. Adequacy is an event-driven activity in which a customer’s service is
proactively adjusted to the most appropriate, sufficient service.

Value. The customer will receive an immediate monetary benefit (paying less) without
compromising the quality of service received. Thus, adequacy is a true net gain. In the
short-term, the provider will miss out on the difference between previous and revised
pricing model but demonstrates benevolence which might lead to retention [5].

Pattern. Adequacy is triggered by a time-based event (e.g., once the month) which is
the result of a report identifying all those customers who under-utilize existing services
they subscribed to. The identified customers are then adjusted to the most adequate,
and for them more cost-effective, service and notified about it. Customers are offered a
period (e.g., five business days) to decline the offer, otherwise it is regarded as accepted.

Consideration. The implementation of the adequacy guideline requires a definition of
‘under-utilization’, the period for which this under-utilization occurs, and a business rule
for how the customer declines the downgrade.

Process Automation. Adequacy is a benevolent process design guideline that can be
automated reasonablywell. Data analysis can help to identify those customers that under-
utilize existing service and trigger a downgrade of the customers’ service to the most
adequate one. The customer is then notified about this downgrade.

4.1.2 Awareness

Example. A provider of white goods sells its washing machines, dish washers etc. with
a standard two-year warranty during which any issues will be fixed free of charge. Four
weeks before the warranty expires, the customer is contacted to ensure they are aware
of the upcoming expiry date, and that any issues could be addressed within the next
four weeks without any cost. Similarly, the global health insurance provider ensures
that their customers are aware of free access to wellbeing services such as massages or
acupuncture. Such services can be part of a comprehensive bundle of services (e.g., car
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insurance), but also, like in the case of the road assistance company, be complementary
services (e.g., a taxi service in case of a breakdown).

Context. Customers often have access to relevant services free of charge but they are
unaware of them. While the adequacy design guideline interprets the non-use of these
services as a service oversupply, the awareness design guideline is driven by the intention
to make the customer fully aware of potentially relevant services. The services are often
time-stamped (like a warranty) so that this pattern is more of a one-off than a regularly
executed activity.

Definition. Awareness matters for about-to-expire, in advance paid services such as
maintenance, warranty as well as products that complement a primary product.

Value. Making the customer aware of a free-of-charge service means access to a value
add without any costs. In return, the provider is required to offer this service and carry
related costs, costs that otherwisewould not have occurred. Again, the act of benevolence
has the potential to lead to increased loyalty and advocacy.

Pattern. Awareness requires either a time-based event that correlates with a service
about to expire or a definition of services available to a customer. The customer will
have a certain period to request or consume this service.

Consideration. Awareness is a notification process encouraging customers to access
complementary services. The impact of the uptake of these services in termsof resourcing
and costs needs to be assessed.

Process Automation. Awareness can be automated with current technologies. For this,
it needs to be defined when and for what type of service what type of customer group
will be notified using what type of communication channel. A nuanced execution of
awareness will require artificial intelligence and machine learning (e.g., if only specific
customers in defined contexts are about to be notified).

4.2 Do Right

Doing right is about ensuring that harm is prevented from the customer and recognising
when an organisation’s processes did not deliver to their promise. Consequently, we call
these two design guidelines (1) prevention which occurs proactively and early on in
customer engaging processes and (2) compensation which takes places reactively and at
a late stage in a process.

4.2.1 Prevention

Example. When customers order the same book again on Amazon, they will be asked
to re-confirm if they are certain that they like to proceed as the same book has been
ordered by this Amazon account before. This prevents the customer from ordering the
book by mistake. Prevention might also be an alert highlighting that the purchase about
to be initiated is different to previous purchases (e.g., in the case of repetitive refill
purchases). Moreover, prevention is deployed in processes in which a provider aims to
keep the customer safe. For example, if someone is about to rent an e-scooter after 10pm
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the provider’s app might request that the user enters ‘Y E S’ on the phone’s keyboard to
prevent possibly intoxicated customers from using the scooter. Aldi’s cashierless shops
are using AI-empowered facial recognition to estimate the age of a customer and will
not enable sales of age-constrained items (e.g., alcohol) unless the customer provided
evidence that they are over the minimum age. Prevention occurs in cars (like Teslas) that
stop proactively at a red light or headsets that automatically reduce the volume of music
after the user has listened to it on a volume level that could be damaging for too long.

Context. An organisation embeds a preventative step in its sales process to avoid regret
or even harm on the customer’s side. Such a process might be in contrast to the aim of
friction free process execution according to the customer’s requirements.

Definition. Prevention is a process activity by a provider with the intention to trigger a
consideration of the intended purchase in order to avoid post-order regrets or harm.

Value. The customer benefits from prevention if the intended purchase is made in a
hurry or without sufficient consideration (e.g., if the item has been ordered before).
The company demonstrates potentially trust-building values that come with the loss of
immediate revenue.

Pattern. A purchasing or ongoing consumption process is extended with an addi-
tional prevention activity which is context-dependent (e.g., time-dependent, previous
purchases).

Consideration. The deployment of the prevention design guideline requires an identi-
fication of possible regrets and harm due to the process to be executed. This demands a
careful assessment of the process impact. Prevention might be a simple alert that can be
over-ridden (e.g., a customer purchases an item in a grocery store that they are allergic
to according to their customer record) or a firm decline of a purchase.

Process Automation. Prevention might require the customer contributing some per-
sonal information to assess fit of purchase. For example, the automotive retailer warns
their customer if they are about to buy a car battery that does not fit their vehicle according
to the car registration they provided. The automation of prevention requires an identi-
fication of possible regrets such as redundant or incompatible purchases. This requires
access to data such as previous transactions or assets owned by the customer.

4.2.2 Compensation

Example. The fast-food chain McDonald’s offers the meal ordered for free if the cus-
tomer has to wait for too long. A similar process is in place for Starbucks. The German
Railway has a policy according to which a passenger will get a 25% (50%) discount
of the purchased ticket of the train is delayed by 60 (120) minutes. The latter is a typi-
cal example for public (announced) benevolent process. Compensation does not always
have to be time related. For example, a retailer might proactively offer vouchers in case
of non-satisfactory process execution (e.g., an item was not available for collection).

Context. Compensation is the practice of offering a reimbursement to the customer, for
example by offering a discount in response to underperformance. Instead of a discount,
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it might also be a value-add (e.g., adding an additional product or service for free such
as access to the airline’s lounge in compensation for a disrupted flight).

Definition. The literature discusses compensation as service recovery [32], defined as
the process of recovery from an insufficient customer experience with the aim to regain
the loyalty of the customer.

Value. Compensation creates customer value by reducing, reversing or even over-
compensating for a previous mistake in the customer engagement process. The company
has to fund the costs of this service discovery.

Pattern. Compensation comes in a variety of ways ranging from ad-hoc, informal
actions to well-specified processes. Whereas the former requires empowerment at the
edges so that staff involved can make relevant decisions, only the latter is pattern-like
and repeatable. It requires contextual rules for the process execution need (e.g., in case
waiting time exceeds x minutes, a reimbursement of $y will be offered).

Consideration. The organisation needs to identify relevant process failure, the extent
to which this failure impacts and is actually experienced by the customer, and the type of
compensation offered, including the option of staged discounts (see German Railway).
It needs to be decided if compensation is well-published, and if so, how it is communi-
cated to the customer. Compensation as a benevolence practice also requires considering
potential fraud, and how this can be prevented.

ProcessAutomation. The ease andways of automating compensationwill vary depend-
ing on its configuration. Public compensation is a well-defined process with precise
business rules which come in the form of ECA (event-condition-action) triplets. Thus,
an automated process compensation requires three features. First, it needs to be assessed
if the process failure can be captured automatically (e.g., via video analytics, event logs
or IoT devices capturing delays or unavailability of products). Second, the condition
for process initiation needs to be coded (e.g., threshold, type of customer). Third, the
actual form and delivery of automated compensation needs to be defined (e.g., printing
voucher, direct funds transfer).

4.3 Say Yes

Saying yes to a customer as a benevolent principle means that all possible attempts are
made within a process to fulfill a customer’s request. Such requests might be either
exceptional (qualitative) enquiries requiring a case-by-case decision (acceptance) in a
process, or they are frequent requests that can be anticipated and quantified (tolerance).

4.3.1 Acceptance

Example. An airline received a phone call from one of its members. The caller asked
to put her membership on hold as she was undergoing cancer therapy, and as such could
not fly during the period of this treatment. The call centre agent looked into the airline’s
policy and responded that only pregnancy was a valid reason to put a membership on
hold, and as such had to reject this request. This incident made it into the media and the
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airline’s CEO later stated that he could not blame the call centre agent as they had acted
compliant with the airline’s call centre processes. AnAustralian superannuation provider
received a request from a customer who wanted to access income protection as he was
about to donate their liver. However, the company’s policy stated that only receiving
an organ qualified for access to income protection. The case also made the news as the
customer wanted to donate their liver to their two-year old daughter who was facing a
life threating illness. On the pressure of the media, both companies decided to increase
the benevolence of their processes and accepted their customers’ requirements.

Context. Acceptance is characterized by the specificity of the customer’s enquiry, mak-
ing the definition of upfront rules difficult. The need for benevolent action is most visible
when customers approach an organisation with an off-script enquiry (put membership
on hold) and the systemically proposed next best action (rejection) is not one with the
benevolence required. Constrained by predefined routines, the responding business pro-
cesses often do not not have the flexibility required to support what seems like the right,
kind-hearted action.

Definition. Acceptance is the fulfillment of a customer’s enquiry despite it being a
service that is typically not available.

Value. The customer experiences value in the form of getting what they ask for whereas
the organisation needs to resource and fund the provision of the related service.

Pattern. Despite the fact that events requiring acceptance come in various forms, com-
panies can in some scenarios be proactive and follow formal processes. For example,
some banks embed a ‘loan holiday’ in their mortgage product allowing customers to
activate this holiday – a period during which they pause repayments – in exceptional
personal circumstances. This is a practice in place by many Canadian banks (e.g., The
Royal Bank of Canada, Bank of Montreal). Similarly, restaurants might consider cash
payments in a variety of currencies if they are in a tourist-intensive, transitional place
(e.g., at an airport).

Consideration. If anticipating and classifying requests is too difficult or simply impos-
sible, organisational governance solutions are needed. This could be in the form of the
practice at the Ritz Carlton [33]. This luxurious hotel chain moved from prescribing the
actions to be taken by their concierges (e.g., carry luggage) to empowering and funding
their front-line decision making. As a result, a concierge can now react situationally
to a specific context and has the funds to accept unusual requests (e.g., a request for a
special vehicle). Such empowerment as a mechanism of benevolence only works when
the staff is sufficiently trained and experienced. An alternative and more scalable gov-
ernance arrangement is practiced by some organisations in their call centres. When an
agent receives an exceptional request but needs to make an immediate decision (as time-
consuming escalation to a supervisor would not be seen as ‘benevolent enough’), they
can reach out to an immediate colleague close by and seek confirmation. If both agents
agree, and this is to be documented, the request will be accepted (or declined).

Process Automation. Acceptance is an automated benevolent process only in the case
of anticipated requests (e.g., banking customers asking to pause mortgage payments).
Here a stand-by process variant is defined that can be activated if needed. Otherwise,
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access to a database of previous acceptances allows front-line staff to accept customer
enquiries based on previous reference cases.

4.3.2 Tolerance

Example. One of the authors of this paper was on a domestic flight in Australia. Their
suitcase was 24 kgs, one kilogram above the upper limit of 23 kg. This would typically
lead to an extra fee of AUS$85. However, instead of charging or mentioning anything,
our colleague noticed how the airline member lifted the suitcase when it was on the
scale and checked it in without any request for payment. We don’t know if this was a
spontaneous action of the staff, or an action according to a defined script of the airline.
In any case, it is an example for tolerance – ‘saying yes’ to a customer’s (suit)case that
exceeds a defined threshold. Unlike acceptance, tolerance can be quantified and related
requests can be anticipated. For example, an organisation might tolerate requests for a
free-of-charge repair of an item a few days (or weeks) after the product’s warranty has
expired. Similarly, late payments of a customer might be tolerated without a penalty or
late arrivals (for a booking at a restaurant or a pick-up of a requested item from a retailer)
might be tolerated as a sign of benevolence.

Context. Many business processes come with defined, quantified boundaries for their
initiation (e.g., years of experience in a recruitment process,weight and size in a logistical
process, opening hours of a shop, etc.). By default, exceeding these thresholds means
either ‘no process at all’ or additional costs or other efforts. There are in some cases legal
reasons (e.g., age limits for certain products), but inmany cases the thresholds are created
for internal reasons such as demand control or considering economic requirements.

Definition. Tolerance is the formalised benevolent practice in which customer requests
that are going beyond quantified thresholds are still allowed though this will often be a
hidden allowance, i.e. in advance unknown to the customer.

Value. Despite not fitting the requirements, the process is conducted for the customer
so they can receive the desired service. The tolerating provider of the process carries the
negative consequences of allowing such a request (e.g., costs of working hours).

Pattern. Tolerance is a guideline that is applicable in processes with quantified thresh-
olds only. The related process configuration requires a hidden adjustment, i.e., the
published tolerance level is different to the actual tolerance level.

Consideration. The provider needs to decide on the tolerance policy. Process mining
is here a potential source of valuable datasets, e.g., what percentage of processes fall
within what tolerance levels. Furthermore, the costs and other implication of tolerating
processes beyond the defined thresholds need to be calculated and assessed.

Process Automation. A company deploying tolerance as a benevolence design guide-
line needs to define the tolerance spectrum and context factors moderating it. For
example, in light of the workload this type of benevolence might be more feasible
in low demand periods. Augmented tolerance is the interplay of a system providing
context-specific data and human judgement by an empowered staff member.
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4.4 Be Humane

The previous six design guidelines relate to the transactional business processes an
organisation has with its customers and adds a benevolence lens to the established focus
on process performance and conformance. The fourth, and final pair of design guidelines
is different. ‘Being humane’ is about the customer as an individual with a personal life
that has its ups and downs. Attentiveness is a set of practices that recognises positive
life events whereas empathy is the opposite and is about how the organisation reacts
sensitively to negative life events.

4.4.1 Attentiveness

Example. When a customer checks into a hotel on their birthday, there might be a
certain chance to be upgraded. The hotel uses the simple data point birthday as an
external variable of the check-in process. A builder in Australia has a principle that
they purchase a gift for the new owner of the home they built to the value of up to
AUS$500. The only prerequisite is that the gift needs to fit into the life of the customer
(e.g., an expensive cactus for someone who likes outdoor gardening). Similar practices
are deployed by some banks on the day a mortgage is fully paid off or health providers
at the end of a successful therapy. Many companies have small gift procedures that are
triggered by a customer’s milestone date.

Context. Attentiveness goes beyond immediate fulfillment as it is about taking part in
the life of a customer. The benevolent act here can be closer (paying off a mortgage) or
further removed (wedding gift) from the vicinity of the business.

Definition. Attentiveness is a proactive execution of an action that demonstrates support
and celebration for a customer’s achievement or positive life event.

Value. The customer experienced value in the form of feeling seen and cared for by an
organisation. The organisation needs to allocate resources and funds for the planning
and provision of gift and attention given to the customer.

Pattern. Attentiveness is initiated by two types of data points. Internal to the process
it is the successful completion of a process that is personally significant to the customer
(e.g., paying off a home loan). Externally, it is positive life event (e.g., birth of a child).

Consideration. A prerequisite for being attentive is to have legitimate access to a life
event and to comply with regional data protection rules. For example, the European
GDPR prevents organisations from even sending Christmas cards to their customers as
their addresses have only been collected for the sole purpose of conducting business
transactions. Being ‘too attentive’ can also be seen as an unwanted intrusion by the
customer. The Dutch airline KLM had an initiative called ‘KLM Surprise’ during which
they used social media data of their travelling customers to learn more about the motives
of their customers. However, when they then surprised their customers during the check-
in process (e.g., with baseball caps of the team they are about to watch during their trip
to Florida), not all customers appreciated this level of attentiveness.

Process Automation. Attentiveness requires a definition of the start events that matter
and how they can be accessed. This could be the simple re-purposing of a process end
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event (e.g., home loan has been paid off) as a start event for an attentive practice (e.g.,
sending a gift). As soon as personal data is a trigger of an attentive practice, regional
data compliance needs to be carefully considered including gaining customer’s consent.

4.4.2 Empathy

Example. The call centre of an Australian insurance company received a call in which
a father wanted to cancel the car insurance for his daughter. The young agent in the call
centre was trained to retain the customer by exploring rate discounts or other forms of
down-selling. However, the caller was not interested – his daughter had passed away.
The agent cancelled the insurance immediately and closed the file. But empathy is not
just about reacting to specific events. It also materialises in explicitly committing time
to conversations with customers. A related benevolent practice has been established by
the second largest supermarket chain in The Netherlands, Jumbo. 1.3 million people
in The Netherlands are older than 75 years, often lonely and a visit to a supermarket
provides a rare, but much valued opportunity for interaction. Therefore, Jumbo opened
in the summer of 2019 its first Kletskassa – ‘chat checkout’. Here, staff at the checkout
are committed to a personal chit-chat with the customers, the opposite of the super-
market checkout process designed for high throughput rates. This practice has been so
appreciated by Jumbo’s customers, that nowmore than 200of its stores have aKletskassa.

Context. Demonstrating empathy is needed in special, often emotionally or even trau-
matic circumstances and goes beyond successful fulfillment. Empathy requires addi-
tional activities that demonstrate care and do not come with immediate benefits for the
provider. Empathy requires taking the perspective of the effected customer and showing
feelings such as sympathy or compassion.

Definition. Empathy is the “affective response more appropriate to someone else’s
situation than one’s own” [34]. Showing empathy is the proactive execution of an activity
that demonstrates care for the challenging situation of a customer.

Value. Empathy leads to customer value that is non-monetary whereas the providers’
efforts to be empathic can often be quantified (see Jumbo’s additional checkout).

Pattern. Empathy follows the same pattern like attentiveness, just that it is triggered
by negative life events.

Consideration. Showing empathy requires a careful consideration of the circumstances
and a classification of what type of action justifies a demonstration of empathy. Themost
appropriate next call of action, which might be a pre-described one (if then then this)
or an undefined choice for the staff in charge. Comparability, appropriateness and the
requirement for individualisation needs to be carefully considered.

Process Automation. Many forms of empathy will be beyond a scripted process
automation and rely on the emotional intelligence of empowered staff. However, empa-
thy by design is also possible as the dedicated check-out line of Jumbo shows. The
automation of an empathic practice might be as simple as having an initiating trigger
(‘send flowers’) as part of a call centre agent’s script.
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5 Discussion

We presented eight benevolent process design guidelines summarising our study of
related practices within three organisations and complementary secondary data. We
aimed to consider all the practices we observed but cannot claim completeness.

Beyond the actual benevolent process design guidelines, benevolence needs to be
seen from its organisational, technological and economic setting as well as from the
viewpoint of the customer’s individual considerations. Though the idea of committing
to customer’s well-being is compelling, it has to be feasible and alignedwith the strategic
and operational context and the technological potential of the organisation.

As trust accounting does not exist, and gains in loyalty and advocacy are less tan-
gible than the funds benevolent practices require, many organisations tend to remain
focused on rating quarterly targets higher than building long-termpartnerships.However,
a changing environmental climate inwhich concepts such as shared value, conscious cap-
italism and the purpose-led organisation are getting increasing attention, is expected to
provide fertile ground formore benevolent practices. The formalisation of ESG reporting
makes purpose-related reporting the new ‘business-as-usual’ and trust-building actions
are increasingly becoming a primary concern.

The three organisations we worked with and who mapped these design guidelines
against their own processes and assessed the applicability of the proposed design guide-
lines overall, all highlighted the need to revise their customer service charter, i.e., their
rules, policies, procedures and service-level agreements as well as work on internal
changes in terms of their culture of customer engagement. This will be required to
establish a system capable of delivering authentic and scalable benevolent processes.

6 Conclusions, Limitations and Future Research

The academic and professional BPM discipline possesses a comprehensive set of mature
and validated approached to derive transactional value via business processes. However,
changing customer demands and regulatory conditions require value propositions that
go beyond a time-cost-quality ambition. Demonstrating authentic benevolence is one
of these values, and this paper takes a first step in providing operational advice for the
design of benevolent processes using process design guidelines.

As part of our study, we interviewed executives of three organisations. However,
like most companies, their benevolent practices are only at their infancy meaning we
needed to relymore on perceptions than actual practices. As such the absence of substan-
tial empirical insights led to compromises in terms of the understanding of each of the
benevolent process patterns or the completeness of this list of design guidelines. More-
over, we did not provide a detailed formalisation of each design guideline or assessed
boundary conditions, i.e., in which context these guidelines are applicable.

As one of the first contributions towards benevolent process design guidelines, this
paper has the potential to initiate future research directions. At this stage, the design
guidelines are presented as a ‘list’ of individual options to consider, but there are inter-
relationships between them. In particular some design guidelines can set pre-conditions
for other design guidelines. An empirical investigation of these interrelationships will
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provide a deeper understanding of their application. The current design guidelines and
examples are focused on corporates (large, for-profit organisations), but the concept of
benevolent process design guidelines is equally applicable for government agencies,
not-for-profit organisations and smaller enterprises. Thus, how these design guidelines
can be extended and/or adapted within diverse sectors can be investigated further and
complemented with a collection of rich case examples from these other sectors. Finally,
knowledge about the actual impact of thesemutualistic benevolent process design guide-
lines in the form of retention, advocacy or trust is limited, but a highly relevant factor
before organisations would proceed their implementation.
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Abstract. During the last decades, process mining (PM) has matured and rapidly
increased in its adoption. Making sense of data is a main part of the work of PM
analysts, which involves cognitive processes. Recent work has leveraged behav-
ioral data to explain these processes. Still, the process of process mining (PPM)
is yet to be well understood and a theoretical foundation for explaining how these
processes unfold is missing. This paper attempts to fill this gap by understanding
how PPM data can be analyzed in a theory-guided manner and what insights can
be gained from this analysis. To investigate these aspects, we analyzed verbal
data and interaction traces obtained from analysis sessions with 29 participants
performing a PM task. The analysis was based on the Predictive Processing (PP)
theory and the derived Prediction Error Minimization (PEM) process, anchored in
cognitive science. The results include (1) a theoretical adaptation of the PEM the-
ory to the PPM context, (2) four strategies utilized by PM analysts, identified, and
validated based on the adapted theory, and (3) an understanding of the differences
in performance between analysts using different strategies and independence of
the expertise level and the strategy choice.

Keywords: Process Mining · Predictive Processing · Prediction Error
Minimization · Analysis Strategies · Mixed Methods

1 Introduction

Over the past decades, information systems penetrated all areas of people’s lives and
led to an incredible growth of produced event data in various branches of industry. This
growth has led to the development of techniques to analyze such data, such as process
mining, which stood out as a valuable discipline for extracting insights from event logs
and supporting the discovery, monitoring, and improvement of real processes.

Until now, process mining research has mainly concentrated on the technical per-
spective, proposing new approaches and tool enhancements [1, 2]. Still, recent studies on
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the “process of processmining” (PPM) have highlighted the importance of the individual
perspective and focusing on the individual analyst’s perception and behavior [3].

The PPM includes different activities such as choosing the data sources, inspecting,
cleaning, and preprocessing the data, selecting and implementing process mining algo-
rithms, and interpreting and presenting the results. A main goal of individual analysts
during the PPM is to make sense of data. The sense-making process entails an iterative
cycle, where attention is focused according to a set goal, leading to the generation of
predictions about the world, which are then tested and reconsidered for minimizing the
prediction error, i.e., the discrepancy between the predicted and the actual input. These
are complicated cognitive processes that may entail high cognitive load [4, 5]. Although
recent works have attempted to leverage behavioral data to explain such processes, e.g.,
by eliciting patterns of observed behavior or analysts’ challenges [6–10], these processes
are not yet well understood and there is a lack of theory in the process mining (PM) field
that can explain how these processes unfold.

This paper attempts to fill this gap by proposing a theory-guided analysis approach
based on a theory from a neighboring field. More specifically, previously mentioned
characteristics of the PPM point to a close correspondence with the Prediction Error
Minimization (PEM) theory, which is a part of the Predictive Processing (PP) theory
[11–13]. In this research, we adapted the PEM theory to the context of the PPM, yielding
the PEM4PPM model. This model provides a theoretical lens for analyzing the PPM
from a cognitive perspective and understanding the analysts’ cognitive processes. We
applied this model to analyze data recording analysts’ interactions with PM tools as
well as think-aloud data verbalizing their thinking processes while performing PM tasks
during the analysis phase of the PPM.With our analysis, we aim to answer the following
two research questions:

• RQ1: How can PPM data be analyzed in a theory-guided manner (specifically, based
on the PEM theory)?

• RQ2: What insights can be gained from this analysis?

To address these questions, we employed a mixed-method (qualitative and quanti-
tative) approach [14]. RQ1 was addressed in a qualitative manner. First, we made the
theoretical adaptation of the PEMmodel for the PPM, which resulted in the first version
of the PEM4PPM model. Second, data collection and analysis of students’ data were
performed with the goal to refine the model. As a result of this step, the PEM4PPM
model was refined to include additional cognitive steps, and four analysis strategies
were identified. Next, the model and the strategies were validated against data stemming
from experienced analysts. In addition, an analysis protocol was established. Finally, we
integrated our findings regarding the identified strategies from both datasets and formed
hypotheses for RQ2. To answer RQ2, we applied a quantitative approach, focused on
analyzing the influence of the previously discovered strategies on the analysts’ perfor-
mance and checking the association between the strategies and the level of expertise. The
main contributions of this paper are (i) a theoretical adaptation of the PEM to the PPM
context, (ii) four strategies utilized by PM analysts, identified and validated based on the
adapted theory, and (iii) an understanding of the difference in performance between ana-
lysts using different strategies and independence of the expertise level and the strategy
choice.
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The remainder is organized as follows: Sect. 2 provides background concepts and
related work. Section 3 presents the proposed PEM4PPM model. Section 4 describes
the research method of this work and Sect. 5 reports on the findings. Section 6 discusses
the findings and limitations of our work. Section 7 provides conclusions and outlines
future research directions.

2 Related Work

2.1 Human Involvement in the PPM

Vom Brocke et al. [3] proposed a five-level framework for research on PM. Two of the
levels, group and individual, focus on the humans involved in PM.While the group level
characterizes the effect of PM on people’s interaction and work mode, the individual
level concentrates on people’s perception and behavior. There are additional recently
published papers taking an individual perspective and focusing on different aspects
related to the behavior of PM analysts. These include analysts’ patterns of behavior,
goals, and strategies in the initial exploration phase [6], strategies applied by analysts
during the analysis stage [7], the development of PM questions [8], the discovery of pro-
cess improvement opportunities by exploring how analysts use PM [9], and challenges
perceived by process analysts during different project phases [10].

This work also takes the individual perspective but extends the body of knowledge
through a theory-guided approach. More specifically, this work attempts to unveil and
explain the complicated cognitive processes that PM analysts follow to make sense of
event data representing real-world behavior from a cognitive perspective [4, 5]. Such a
theoretical cognitive lens is still missing.

2.2 The Prediction Error Minimization Theory

Our choice of a conceptual basis for analyzing the PPM from a cognitive perspective is
based on the previously outlined similarities (cf. Section 1). PEM conceives the brain
as a probabilistic inference system, which attempts to predict the input it receives by
constructing models of the possible causes of this input. This system aims to minimize
the prediction error, namely, the discrepancy between the predicted and the actual input.
If the prediction error is small, then there may be no need to revise the model that gives
rise to the prediction. If, on the other hand, the prediction error is large, then it is likely
that the model fails to capture the causes of the inputs and, therefore, must be revised.
In this case, there are two optional courses of action for reducing the prediction error.
The first is to revise one’s model of the world until the prediction error is satisfactorily
diminished (termed ‘perceptual inference’) and the second is to change the world (e.g.,
bymanipulations that yield additional inputs) so that itmatches themodel (termed ‘active
inference’). Moreover, PEM suggests that predictive models are arranged in a hierarchy.
Interpretation of sensory signals is at the lowest level of the hierarchy, while low-level
features are grouped into objects at the higher levels. Even further up the hierarchy, these
objects are grouped together as parts of larger scenes entailing multiple objects [11, 12].
It is important to note, that PEM is not only a formal apparatus which allows generating
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precise quantitative models, but it is also a general framework that can be applied in the
service of different explanatory programs. Thus, this framework can be enriched with
additional assumptions about a specific domain, e.g., PM [15].

3 The Proposed PEM4PPMModel Based on the PEM Theory

In this section, we present the PEM4PPMmodel, which we developed based on the PEM
theory, by adaptation to the PPM as a part of answering RQ1 (cf. Section 4.1).

The PEM process involves receiving input, focusing attention (possibly based on
a goal) [16], and then iteratively creating a model and respective predictions, testing
predictions, minimizing errors and eventually, when the error is small enough, acting
upon the prediction.The initial PEM4PPMmodelwas created in a series of brainstorming
sessions, where the bi-directional mapping between PEM steps and PM operations took
place, considering what PM operations could accomplish each PEM step and what PEM
step could correspond to each PM operation. The model is shown in Fig. 1, which
illustrates a diagram of a goal-oriented PPM conceptualized in terms of the PEM theory.
Each step or sequence of steps in the diagram can be skipped. Cognitive operations are
color-coded according to the PEM steps to which they correspond, and example mining
operations appear in italics below PPM steps where relevant.

Fig. 1. The PEM4PPM model

According to the model, high-level business goals serve as a starting point for each
PM endeavor. They can be later decomposed or refined into more specific goals. The
refinement of goals can be done until the goal is concrete enough to be achieved by an
available mining operation. Additional goals can be set or refined at any stage during this
process.More concretely, when a goal is to be refined, a series of operations are involved.
In the beginning, the relevant subset of the data needs to be filtered and organized. Next,
this data needs to be explored to find behavior that may be of interest. These both are
operations that enable focusing the attention on parts and aspects of the input data.
Based on this, concrete hypotheses can be formed regarding the identified behavior, as
predictions to be tested. Predictions can also be generated and tested by the creation
of specific artifacts (e.g., creating a process model through discovery). Accordingly,
available PM techniques are applied for testing hypotheses or creating artifacts. Then, the
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results are assessed against the goal or the hypothesis forminimizing the prediction error.
There are two possible outcomes for this assessment: (1) conclusion – goal achieved; (2)
the goal needs to be further refined and this can be repeated iteratively. Next, the results
can point to a new goal to be set.

4 Research Methodology

This section presents the main steps of the research method followed in this paper.

4.1 Overview

The objective of this work was to gain an understanding of how to analyze PPM data in a
theory-guided manner (based on the PEMmodel) (cf. RQ1) and to explore what insights
can be gained from this analysis (cf. RQ2). For this purpose, a mixed-method research
approach combining both qualitative and quantitativemethodswas applied [14]. Figure 2
provides a high-level depiction of the method used for this research.

Fig. 2. Chronological visual representation of the mixed method process

To address RQ1 (“How can PPM data be analyzed in a theory-guided manner
(specifically, based on the PEM theory)?”) we applied a qualitative research approach
[17]. Our aims were to adapt the PEM theory as a basis for analyzing the PPM and
establish and validate an adapted PEM model and a derived analysis protocol.

First, during Stage 1, we adapted the PEM theory, creating a first version of the
PEM4PPM model through brainstorming sessions (as described in Sect. 3).
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Second, as a part of Stage 2, we refined the model using behavioral data. For this, we
collected data from student participants (Students Dataset) and analyzed it. We decided
to use students for model refinement since they were expected to have sufficient knowl-
edge for performing a process mining analysis (all of them took the same “Process
Mining” course). This stage resulted in the second version of the model, PEM4PPM v2,
which included some additional, refined cognitive steps. Moreover, we used the model
to analyze user behavior and derived strategies, as patterns of behavior, applied by the
students during their work.

Finally, during Stage 3, we validated the PEM2PPM v2 model discovered in stage 2
and the identified strategies by analyzing the data that were collected from experienced
analysts (Experienced Analysts Dataset). Experienced analysts were chosen for this
stage since they differ in their expertise and experience from students and therefore
could contribute to further validating, and possibly refining our findings. In addition,
during this stage, we developed an analysis protocol describing the cognitive steps of
the PEM4PPM v2 model.

To address RQ2 ("What insights can be gained by analyzing the PPM on the basis
of PEM model?") a quantitative research approach was used. The strategies identified
from analyzing the Students and Experienced Analysts Datasets in the context of RQ1,
gave the direction for RQ2, i.e., to gain an understanding of whether the difference in
performance between analysts using different strategies is significant and whether the
level of expertise and the choice of strategy are independent of each other.

4.2 Data Collection and Settings

Overall, the study presented here comprises 29 participants: 16 students and 13 experi-
enced analysts. More specifically, the Students Dataset was used for model refinement
and for gaining initial insights (Stage 2), whereas the Experienced Analysts Dataset
served for their validation (Stage 3). Despite having been collected separately, these
two datasets are comparable since they were collected in the context of two studies of a
similar design and set-up but different tasks and participants. More details about the two
datasets are provided online: https://doi.org/10.5281/zenodo.8055223, including demo-
graphic information, interview protocols and examples of experienced participants’ cod-
ing for the entire duration of the session, showing the chain of evidence from statements
to findings.

Collection of Data from Students. The data collection took place between June and
July 2021. The study consisted of individual Zoom1 video sessions with 16 participants,
all first- and second-degree students taking the “Process Mining” course provided by the
University of Haifa2. All the students agreed to be observed and recorded via Zoom for
the entire duration of the study. The study consisted of a process mining task (guided
exploration) and a semi-structured interview. Before taking part in the study, students
were asked to perform an initial exploration of the log guided by a fewquestions provided
to them as a part of course assignments. This was done to help them avoid possible

1 Zoom https://zoom.us/
2 The full study design, including participants’ recruitment procedure, was approved by the
Institutional Ethics Committee (Approval no. 238/21).

https://doi.org/10.5281/zenodo.8055223
https://zoom.us/
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technical issues which may be related to various operations such as installing the tool,
preprocessing, filtering, or importing/converting the log. In addition, these questions
were designed to give students the opportunity to better understand the process, its
activities and event attributes, and to familiarize with the tool before participating in
the study. Our assumption was that this preliminary stage enabled participants to better
concentrate on the provided question and guidelines during the data collection.

For the guided exploration, the students were asked to analyze the Road Traffic
Fine Management (RTFM) event log, i.e., a real-life event log representing the process
of managing fines for road traffic violations by the Italian police [18]. The log was
chosen as it comes with extensive documentation about the process which allowed us
to prepare the materials for the study [19]. The participants were asked to answer the
following question related to the log “Describe two to three circumstances in which a
penalty is added. Is the penalty addition always legitimate, i.e., do people that receive
a penalty deserve it?”. This question was designed to guide participants in exploring
different scenarios but also go deeper into the data and investigate penalty addition.
For their analysis, the participants could choose among different tools (Disco, ProM,
PM4Py and bupaR), but all the participants chose Fluxicon Disco3. During the task, the
participants were instructed to verbalize everything they were doing in a think-aloud
manner [20]. In this way, we aimed to gain insights into their cognitive processes. The
session was supervised by one author, who reminded participants to speak out in case of
long sequences of actions happened without explanation. No feedback on their analysis
strategies and outcomes was provided to the students during the session and they could
conduct the analysis at their own pace.

After the participants completed the process mining task, we interviewed them
to improve our understanding of analysis strategies and cognitive factors underlying
them. The interviews were semi-structured [21] to allow expanding and gathering of
information on relevant aspects emerging during the session.

For each student participant, we collected the recording of the session (screen record-
ing of the analysis conducted in Disco and audio of the think-aloud), the log produced
by Disco, i.e., a log that is produced automatically by the tool which records both the
debug information and user’s actions in the PM tool, and the audio recordings of the
interviews. The session lasted up to one hour in most cases, with an average duration of
38 min. The interviews lasted between 8 and 13 min.

For this dataset, the signed participant consent, as approved by the Institutional
Review Board (IRB) committee, does not allow for making this data publicly available
in its raw form.

Collection of Data fromExperienced Analysts. Thirteen experienced analysts served
for validation, giving us the opportunity to validate the PEM4PPM v2 model, which we
had refined based on the students’ data. The data collection took place between May
and July 2021, and involved analysts in the professional network of the authors who met
the following requirements: (i) having analyzed at least two real-life event logs in the
two years prior to the study and (ii) being knowledgeable of at least one among bupaR,
Celonis, Disco, ProM and PM4Py, i.e., the PM tools available for the task. These two
criteria allowed us to select participants familiar with the PM but having varying levels

3 Fluxicon Disco https://fluxicon.com/disco/

https://fluxicon.com/disco/
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of experience and expertise. For this paper, we selected participants who used Disco to
keep this set comparable to the Students Dataset and to reduce the dependency of the
validation of the PEM4PPM v2 model and the strategies on the working mode imposed
by the tool. The experienced analysts differ in their affiliation, job role and position, and
tool knowledge. The data collection followed a similar design and the same materials
used with the students: participants were asked to engage in a PM task while verbalizing
their thoughts in a think-aloudmanner.What differedwas the scenario questionwe asked
on the RTFM log: “Can you describe the three most prevalent circumstances in which
the fines and the related expenses are not paid (in full) in this process?”. Then, as done
with the students, we prompted participants to look deeper into reasons for which fines
are not paid. In this case, we did not ask participants to engage in an initial exploration
phase, as the risks for technical issues and lack of experience with PM analysis were
mitigated by the set-up (a remote desktop environment with the study materials and
tools) and the participation requirements. Data collection was supervised by one author
who prompted participants to speak in case of long silences, but, as for the students, no
feedback on their analysis nor its outcome was given.

Finally, we conducted semi-structured interviews asking participants about (i) activ-
ities and artifacts, (ii) goals, (iii) strategies, and (iv) challenges of PM analysis. In detail,
we asked them to reflect on the task they had just executed but also prompted them to
share general anecdotes and work experiences with PM.

For each participant, we collected the same data as for the students: the screen and
audio recording of the session, the log produced by Disco and the audio recordings of
the interviews.

In this case, the sessions lasted between 20 and 90 min, with an average duration of
43. The interviews lasted between 23 and 43 min, and about 31 min on average. The
data is collected as part of the ProMiSE project, for which we plan to share results and
anonymized data with the research community upon project completion.

4.3 Data Preparation and Analysis

This section details how the collected datawas analyzed to address RQ1 andRQ2 (Stages
2–4) leveraging the PEM4PPM model developed in Stage 1 (cf. Section 3).

Data Preparation: For the data preprocessing, we engaged in the following activities.
First, (i) we transcribed the verbal utterances from the audio recordings of the session
with the help of Vocalmatic4 (Students Dataset) andMAXQDA5 (Experienced Analysts
Dataset), which allowed us to keep information about the timestamps of each utterance.
Then, (ii) we watched all the screen recordings and reported next to each transcribed
utterance a short description of non-verbal behavior observed from the videos. Examples
of non-verbal behavior of interest for our analysis are pointingwith the cursor to a specific
process activity, reading documentation related to the task, filtering the data, etc. Then
(iii) we merged and cleaned the logs from Disco removing debug information that did
not relate to actions performed by participants in the tool and, thus, was not relevant to

4 Vocalmatic https://vocalmatic.com/
5 MAXQDA https://www.maxqda.com/

https://vocalmatic.com/
https://www.maxqda.com/
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our research. As a final step, (iv) we merged and organized the data from (i), (ii) and
(iii) in Excel, using the timestamps produced by the transcription tools and Disco to
synchronize the different sources. In this way, we obtained a multimodal dataset [22]
for our analysis, which included both verbal utterances and interaction traces of the
participants with Disco.

Stage 2: To refine the PEM4PPM model we used the Students Dataset. This stage
involved two activities: (i) coding the data according to the steps of the PEM4PPM
v1 model to refine and tune the model and (ii) identifying different strategy types,
characterizing, and grouping them into categories.

We utilized provisional coding, a first-cycle coding method, to code the Students
Dataset [23]. The behavior and thinking process of each participant (as reflected by the
verbal utterances and interaction traces) was analyzed individually. Since the steps of
the PEM4PPM v1 model were not yet validated during this first analysis iteration, we
analyzed the data described in the previous paragraph by combining both deductive and
inductive methods. In detail, at the beginning of the analysis, a set of a priori codes,
reflecting the steps of the PEM4PPM v1model, was used. The coding was performed by
assigning a code to each multimodal piece of data (think-aloud, screen recordings, and
Disco logs), and using one or the other source to disambiguate in case the user cognitive
step was not clear. The first author coded all the data in 3 iterations. At the end of each
iteration, two other authors checked the codes independently to ensure consistency and
assess the reliability of the process. Throughout the analysis, the authors revised and
refined the codes collaboratively in several meetings. The final coding was determined
through discussions among authors in an iterative consensus building process, similar to
[24]. Since a one-to-one mapping of the data to the PEM4PPM v1 steps was not possible
in all the cases, two additional steps (“Task understanding” and “Interpret data”) emerged
as additional steps in the PPM process. Next, they were validated against the theoretical
literature [25, 26] and we added them to our model, obtaining PEM4PPM v2.

Then, based on the PEM4PPM v2 model, high-level patterns were identified during
the second cycle of coding. For this purpose, theoretical coding (sometimes also called
“Selective Coding” or “Conceptual Coding”) [27] was utilized. It allowed us to group
the first cycle summaries (steps of the PEM4PPM v2 model) into strategies applied by
participants during their work. Analyzing commonalities and variabilities among these
processes allowed us to identify the repetitive use of certain patterns and strategies that
can be associated with different analyst profiles. These strategies were characterized by
the presence or absence of the steps “Interpret data”, “Generate hypotheses”, or “Test
hypotheses” in the verbal utterances, since other steps were present in most cases. These
steps relate to cognitive operations of “creating prediction” and “testing”. As a result of
this analysis, we discovered four strategies associated with different analyst profiles. To
investigate the possible reasons for applying specific strategies by students the interview
data was examined.

Stage 3: To validate the PEM4PPMv2model and the strategies discovered by analyzing
the students’ data, we coded and analyzed the data collected from experienced analysts.
The coding and analysis of this dataset were performed following a similar approach
to the analysis of the students’ data described above. However, in this stage, we used
the steps of the PEM4PPM v2 model in a deductive manner. The coding was performed
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by 2 authors in two iteration and, similarly to what was described for the students, we
worked collaboratively in the team of authors to reach a consensus. The validation of
the PEM4PPM v2 resulted in the analysis protocol describing the cognitive steps of
the PEM4PPM v2 model, their explanation, example statement, and detection method.
Table 1 presents a part of this protocol. The full analysis protocol can be found in the
supplementary materials: https://doi.org/10.5281/zenodo.8055223.

Table 1. Analysis protocol (partial) describing the cognitive steps of the PEM4PPM v2 model.
For each quote, we write the student (S) and experienced (E) participant’s ID in parenthesis.

Cognitive step Explanation Example statement

Task understanding Understanding the
task/problem,
understanding the data
(e.g., attributes, model,
activities), verifying with
researcher/stakeholder
information regarding the
data or task

“Wait, the question is about the fine or the
additional penalty?” (S7)

Set/ Refine goal Formulating a goal
related to the question

“So, the question is to identify the flows
where the payment has not been done
completely. That is why now I isolate the
flows, the different flows we have…” (E26)

Focus Concentrating on a
specific part/activity of
the map

“So, I think I first want to focus on the cases
in which there was the addition of a penalty,
so I’m actually going to filter by this
element [activity Add penalty]” (S3)

Explore Learning about the
process

“He has a fine of 20, he has a fine of 22, he
pays 22, then he had a penalty of 44. I don’t
understand why and then he paid another
35.” (S8)

Interpret data Explaining the process
based on previously
inspected behaviors,
information about the
process, the participant’s
previous knowledge and
experience, or their
combination

“Yeah, this is one third of the cases. Here it
says 30% of the cases. We saw on the
diagram that it was one third. Oh, yeah.
30% is one third. Um, yeah, one third of the
citizens are good [laughing]. I have never
driven in Italy, but it doesn’t look like
people drive following the rules. And I
think that the data confirms…” (E3)

Create artifact Producing deliverable
objects driven by a goal

“Hmm. And it will make a difference,
probably. Is it possible for me to make a
screenshot of this and put it aside?” (E3)

(continued)

https://doi.org/10.5281/zenodo.8055223
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Table 1. (continued)

Cognitive step Explanation Example statement

Generate hypotheses Forming a hypothesis
about previously
identified behaviour or
possible answers for the
question

“I assume that it can be a difference
between Amount for example, paid and
Amount counted.” (E28)

Test hypotheses Checking hypotheses
using available PM
techniques

NA (this step can be identified only by
actions in the PM tool performed to test
previously generated hypotheses)

Assess results Evaluating the findings
against previously
defined hypothesis or
goal

“There are actually quite a lot of cases
where there was a payment in the dataset,
there was no value for the Payment
Amount.” (E16)

Conclude Providing a final answer
to the question or its part

“So, most of the fines are legitimate. The
majority behaves in a way that is legitimate,
but there are some cases, like I said, that
either they paid and then received a penalty
or they sent an appeal or received the appeal
and did not receive an answer to it, but
received a penalty. These are actually the
illegitimate situations.” (S5)

Stage 4: Finally, aiming to address RQ2, we performed a combined analysis of both
datasets focusing on the elicited strategies. Inspired by the analysis conducted to address
RQ1, we formulated hypotheses regarding the difference in performance between ana-
lysts using different strategies and the independence of the level of expertise and the
choice of strategy. In this stage, we tested such hypotheses. In order to assess the ana-
lysts’ performance, we developed a gold standard: one author “graded” the answers
provided by the participants, then two other authors validated the grades independently,
and an iterative consensus building process took place (like the one applied for the cod-
ing). The answers were assessed using a grading scale from 0 to 100, where 0 indicates
the lowest performance and 100 is the highest. The grades reflected the correctness of
the analysts’ answers to the questions of the task.

More details about the data analysis and findings, including the analysis protocol, the
coding scheme with examples, the protocols for assessing the participants’ performance
and statistical outputs are available online: https://doi.org/10.5281/zenodo.8055223.

5 Findings

In this section, we present the results of our analysis for RQ1 (cf. Section 3 and Sect. 5.1)
and RQ2 (cf. Section 5.2).

https://doi.org/10.5281/zenodo.8055223


476 E. Sorokina et al.

5.1 Qualitative Analysis

Validated PEM4PPM model. During Stage 3 of the empirical study (cf. Section 4.1),
we validated the PEM4PPMv2model. The resultingmodel is shown in Fig. 3, additional
steps when compared to the initial model version are highlighted with grey. The step
“Task understanding” reflects situations in which participants spent time understanding
the task at hand from the documentation available or asking clarification questions to the
researcher supervising the data collection. Instead, “Interpret data” implies explaining
the process based on previously observed behaviors, information about the process, the
participant’s experience, or their combination.

Fig. 3. The PEM4PPM model after validation (PEM4PPM v2)

Identifying and Validating PM Analysts’ Strategies. This section presents the four
strategies applied by PM analysts. These strategies were identified using the Students
Dataset during Stage 2 and validated with the data collected from experienced analysts
in Stage 3. Here we present the strategies we identified, with sample participants’ quotes
from interviews. For each strategy we indicate the count of students (S) and experienced
analysts (E) using it in the form of #/29 (S = #, E = #):

1. No indicated interpret data - No indicated hypothesis - No testing (NNN) strategy
which was observed for 2/29 (S = 2, E = 0) of the participants. The conclusions of
the participants were based on their observations from the exploration stage. These
participants spent the entire session understanding the data. “I think I would try to use
filters and not switch between cases and maps and try to draw conclusions through
filters and this is also a way to work”. (S12)

2. With interpret data - No indicated hypothesis - No testing (WNN) strategy which
was observed for 12/29 (S = 8, E = 4) of the participants. Instead of basing their
conclusions on the testing of hypotheses, these participants made them mainly based
on exploration and data interpretation. “The process was very new, for me, it was a
really challenge to understand what’s. It was a simple process of course. It was just
finding and these things. But it was new for me, so it took a time for me to understand
different steps of the process and the process was really strange in some ways.” (E6)

3. With interpret data - With hypothesis - No testing (WWN) strategy which was
observed for 5/29 (S= 2, E= 3) of the participants. Participants formulated hypothe-
ses but for some reason (e.g., insufficient tool knowledge (S8, S16, E28) or question
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understanding (S16), were reluctant to follow a trial-and-error approach while being
observed (E11)) did not test them. “Indirectly, knowing that you were looking at the
screen while doing this, I think not consciously or unconsciously, I think I was a little
bit reluctant on the trial and error.” (E11)

4. With interpret data - With hypothesis - With testing (WWW) strategy which was
observed for 10/29 (S = 4, E = 6) of the participants. The WWW strategy reflects
the PEM4PPM v2 model by containing all its steps. “So, it was not like you do the
hypothesis and then you check it is more like you do a preliminary hypothesis. You
check that the hypothesis make sense in a secondary step once the data is already
been explored and then you do, you check the hypothesis after that always related
with the questions.” (E7)

It is important to note that “No indicated interpret data” or “No indicated hypoth-
esis” means that these cognitive steps were not explicitly expressed during the session
by the participants. Although they could be performed implicitly, they are clearly not
emphasized. Looking through the data after its classification according to the strategies,
we noticed that experienced analysts tend to apply the WWW strategy (46%) more than
students (25%).

Moreover, we observed that the answers of participants utilizing the WWW strategy
are of higher quality (in terms of correctness and accuracy) than those of participants
using other strategies. The students’ mean grade was 51, while the experienced analysts’
mean grade was 59. These assessments, together with the defined strategies, formed a
basis for formulating four hypotheses:

• H1a: analysts (students and experienced) who use the WWW strategy have higher
performance (grades) than analysts using other strategies.

• H1b: students who use the WWW strategy have higher performance (grades) than
students using other strategies.

• H1c: experienced analysts who use the WWW strategy have higher performance
(grades) than experienced analysts using other strategies.

• H1d: the level of expertise (student vs experienced analyst) and the choice of strategy
(WWW vs any other strategy) are not independent.

5.2 Quantitative Analysis

The hypotheses formulated based on the findings of RQ1 aimed to investigate the differ-
ences in performance between analysts using different strategies and check whether the
level of expertise and the choice of strategy are independent of each other. For the analy-
sis, the data regarding the strategy applied by each participant and their performance was
organized and exported to an IBM SPSS version 23 environment for statistical analysis.

In order to test hypotheses a-c, we conducted the Mann-Whitney test (also known
as the Wilcoxon test for independent samples) [28]. This test is used to compare differ-
ences between two independent groups when the dependent variable is either ordinal or
continuous, but not normally distributed.

The conclusions resulting from testing hypotheses a-c (Table 2) is that the grades of
analysts (in general, and students and experienced analysts separately) using the WWW
strategy are significantly higher than the grades of those using other strategies.
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Table 2. Results of Mann-Whitney test; students (S), experienced analysts (E).

Hypothesis N U Z Calculated effect
size (r)

One-tailed p-value Decision for H0
(reject H0 if p-value
< α (0.05))

a (S and E) 29 13.5 -3.762 -0.699 .0000185 rejected

b (S) 16 2.5 -2.688 -0.672 .002 rejected

c (E) 13 6 -2.161 -0.599 .0175 rejected

To check whether selecting the WWW over any other strategy is independent of
being a student or an experienced analyst (hypothesis d), we conducted the Chi-Squared
Test of Independence of Categorical Variables [29]. It is a statistical test used to check
whether some categorical variables are statistically independent in a population.

The conclusion from testing hypothesis d is that H0 cannot be rejected
(χ (1)2 = 1.421, p-value= .233). Therefore, we concluded that the choice of theWWW
strategy over another does not depend on being a student or an experienced analyst.

6 Discussion

In this section, we review our findings, link them to relatedwork, and discuss their impact
on future research.Ourwork proposes the PEM4PPMmodel, a theoretical foundation for
explaining the cognitive processes of individual analysts during the PPM, derived from
theory and refined and validated with user behavior data. This approach complements
fully data-drivenwork, e.g., [6–10], and extends the body of knowledge on the individual
perspective with a theoretical lens.

In addition, based on the PEM4PPM model we identified four strategies applied
by PM analysts. While some analysts performed all operations (WWW strategy), other
analysts did not “generate hypothesis” and “test hypothesis” (NNN and WNN strate-
gies). A possible explanation for not investigating the data more in-depth may be that
analysts pursuing the NNN and WNN strategies were still in the stage where they col-
lected evidence in the hope to suggest a hypothesis, rather than in the stage of testing
a hypothesis they had in mind [30]. The development of strategies aiming to improve
performance by realizing all their steps, usually in a specific order, is well renowned in
the problem-solving and information-processing field [31, 32]. Analysts’ strategies were
also the focus of [7]. Unlike this work they organized them by analysis goals (under-
stand, plan, analyze, and evaluate) and based their analysis on post-session interviews,
rather than on the participants’ real-time think-aloud.

The established analysis protocol together with the developed and validated
PEM4PPM model can be used for future research. Moreover, this has implications for
tool development or improvement allowing to consider the individual and his/her anal-
ysis processes. Since identified strategies differ in terms of performance this can give
rise to the development of process guidance for PM analysts. These findings also can
have implications for teaching students how to approach process mining. Beyond the
expected contributions to the field of process mining, the outcomes of this research may
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be possible to generalize and adapt for additional data science tasks, which also entail
extracting knowledge from data.

Limitations. The findings of this study should be considered in the light of some limita-
tions. First, although participants were constantly encouraged to verbalize their thoughts
in a think-aloudmanner, it is possible that some thoughtsmight have remained concealed.
We mitigated this risk by triangulating the verbal utterances with the log data. In the
future, adopting additional techniques, e.g., eye tracking or EEG [33], might help to fill
this gap, since additional fine-grained information about where the analyst focused their
attention might be collected. Second, although the data coding was done carefully and
iteratively by building consensus among researchers, it is still based on subjective assess-
ment and could be done differently. Yet, we note that this is a common procedure [24],
and that such an iterative process, where coding changes along the iterations, intercoder
reliability is usually not measured. Third, while the findings reported here have been
established, specifically with statistically significant results for the quantitative analysis,
the setting of the study is limited, using one dataset and one process mining tool. For
addressing our research questions, of how to analyze PPM data and what insights can be
gained, this is sufficient. Yet, to draw general conclusions about PPM, additional studies
are still needed. At last, one important consideration to make is the confidentiality of the
collected data, which, as clarified in Sect. 3, cannot be fully shared. While we acknowl-
edge that this may limit the replicability of the study, the inclusion of representative
examples adds transparency and enables the reader to follow the chain of evidence from
the raw data to the presented results.

7 Conclusions

In this paper, we have presented the findings of an empirical study investigating how
PPM data can be analyzed in a theory-guided manner (specifically, based on the PEM
theory) and what insights can be gained from this analysis. We adapted the PEM the-
ory to the context of the PPM, yielding the PEM4PPM model. This model provided a
theoretical lens for analyzing the PPM from a cognitive perspective and understanding
the analysts’ cognitive processes. Applying the PEM4PPM model for the analysis of
the verbal utterances and interaction traces obtained from sessions with 29 participants
we identified four strategies applied by PM analysts. We characterized these strategies
by the sets of cognitive operations involved. Moreover, we investigated whether the
difference in performance between analysts using different strategies is significant and
whether the level of expertise and the choice of strategy are independent. We found that:
(i) the grades of analysts (in general, and students and experienced analysts separately)
using the WWW strategy are significantly higher than the grades of those using other
strategies; (ii) the level of expertise (student or experienced analyst) and the choice of
strategy are independent.

FutureWork. WeestablishedPEM4PPMas a basis for analyzingPPMdata and showed
that it can yield benefits. Having established this, the generalizability of the findings may
be improved by conducting additional studies with more participants and in different
settings e.g., different PM tools and tasks using different event logs. In addition, a better
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understanding of the thinking processes of PM analysts may be gained by collecting
data with technologies such as eye tracking or EEG. Another possible avenue for future
research is the development of a support tool, designed in accordancewith thePEM4PPM
model, to assist PM analysts throughout the PPM.
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