
Typefaces and Ligatures in Printed
Arabic Text: A Deep Learning-Based

OCR Perspective

Omar Alhubaiti1 and Irfan Ahmad1,2(B)

1 King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
{g201802660,irfan.ahmad}@kfupm.edu.sa

2 SDAIA–KFUPM Joint Research Center for AI, Dhahran 31261, Saudi Arabia

Abstract. Arabic script is complex, with multiple shapes for the same
characters in different positions. Another challenge of the script, in the
context of recognition, is ligatures. A combination of a specific two or
more character sequence takes a different shape than what those char-
acters normally look like when they appear in a similar position. Deep
learning-based systems are widely used for text recognition these days.
In this work, we investigate the performance of deep learning systems
for two alternative modeling choices: using characters as modeling units
and using character shapes as modeling units. Moreover, we also inves-
tigate the impact on text recognition with mixed typefaces, where the
training and test sets have samples from multiple typefaces, and discuss
the effect of font families on recognition performance. We extend this by
studying the effectiveness of the text recognition system in recognizing
text from unseen typefaces, i.e., text in the test set is from a typeface not
available in training. Finally, we present a methodology to automatically
detect ligatures in printed Arabic text. We conducted experiments on
the publicly available APTI dataset of printed Arabic text and report
the findings and discuss the results.

Keywords: Printed Arabic Text OCR · Omnifont Text Recognition ·
Unseen Font Text Recognition · Automatic Ligatures Identification

1 Introduction

Arabic text has a complex cursive script that is written from right to left. Char-
acters in Arabic take on different shapes depending on their position in a word
(beginning, middle, ending, and alone) [7,9]. Not all characters take on all four
shapes in different positions, and some of these shapes are dramatically different
for some characters than for others, who would look almost identical. Linking
between characters also varies between characters, and is a short (or varying
length) horizontal dash, known as Kashida. Some characters can only be linked
to those before or after them, or both. Ligatures are also present in Arabic script,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Coustaty and A. Fornés (Eds.): ICDAR 2023 Workshops, LNCS 14194, pp. 5–18, 2023.
https://doi.org/10.1007/978-3-031-41501-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41501-2_1&domain=pdf
http://orcid.org/0000-0001-8311-1731
https://doi.org/10.1007/978-3-031-41501-2_1


6 O. Alhubaiti and I. Ahmad

which are unique shapes of specific sequences of characters that would look dif-
ferent if those characters were not in that sequence. Normally, the characters
forming a ligature are connected vertically instead of the normal horizontal con-
nections. The only mandatory ligature is Lam-Alif, which is hard to read if it
were not a ligature. Other ligatures are optional and vary between different type-
faces. According to some studies, there are 478 possible ligatures in Unicode for
printed Arabic script [1]. In addition to that, Arabic script employs diacritics
to account for missing short vowels, since Arabic is an Abjad script [24]. There
are four main diacritics, which can appear singly, doubly (Tanween/Nunation),
or combined with a stress marker (Shadda). There are other diacritics like the
tilde ˜ and Alif Khanjariyah (’). It is customary not to write vowels if they
are inferable from the context and to only write them when their absence might
cause confusion to the reader, with the exception of religious texts and learning
materials. All these factors contribute to the difficulty of the text recognition
problem in Arabic script.

According to Tahir [23], there are eight main typefaces in the Arabic script:
Nashk, Ruqaa, Diwani, Thuluth, Hamayoni, Farsi, Tawqi’, and Ijaza. Other type-
faces are derived from these and are similar in form to the originals. In modern
computer systems, many typefaces can be classified as Naskh variety and come
in two forms: Traditional, which is more or less faithful to the rules of writing
present in calligraphy books such as [23], and simplified, in which some rules are
discarded in favor of readability or simplicity. Other font files such as Diwani or
Ruqaa vary very little between implementations and are compliant with callig-
raphy rules.

In this paper, we present an empirical investigation of the performance of
a deep learning-based text recognition system in recognizing Arabic texts in
different typefaces. Specifically, we examine the two common modeling choices:
using Arabic characters as modeling units and using Arabic character shapes as
modeling units to determine which modeling choice is more effective for deep
learning-based Arabic OCR. Furthermore, we investigate the impact of mixed
typefaces on text recognition, where the training and test sets include samples
from multiple typefaces. We also study the effectiveness of the text recognition
system in recognizing text from unseen typefaces, i.e., text in the test set is from
a typeface not available in the training set, and analyze the effect of font families
on recognition performance. Lastly, we introduce a methodology for automatic
detection of ligatures in printed Arabic text.

The rest of the paper is organized as follows: In Sect. 2, we discuss the related
works in this field. In Sect. 3, we explain the architecture of the deep learning
system we employed for Arabic text OCR. In Sect. 4, we present the experiment
details and the results. Finally, in Sect. 5 we present the conclusions from our
work and some possible future works.

2 Related Work

In this field, recent research employs one of two major classifiers: Hidden Markov
Models (HMMs) and deep learning systems based on neural networks. This



Typefaces and Ligatures in Printed Arabic Text 7

section first presents the works that use HMMs, followed by those that use deep
learning-based systems. Additionally, we describe some of the datasets used in
the literature.

In 2008, a study by Prasad et al. [15] utilized HMMs for OCR by detecting
the writing line and applying overlapping sliding windows over the line without
further segmentation. Hand-crafted features were extracted from the windows.
To expand the vocabulary, trimodel units were utilized as HMM models, result-
ing in a total of 162 HMMs for characters excluding the unigrams. The authors
provide detailed information on the HMM construction method. This study was
tested on the DAMP dataset and yielded a 15.9% WER for character mode.
However, using n-grams improved the performance to 11.5% WER for 5-grams,
as there were numerous out-of-vocabulary occurrences during testing.

In [3], Ahmad et al. try reducing HMM models using sub-characters in both
printed and hand-written text. The number of HMMs was down to 108 from
178 coming at a slight error cost for handwritten text (e.g. WER of 3.62% up
from 3.50%) and slightly better at printed (CER of 5.98% CER down from
6.51%). Authors note that this approach is beneficial when training datasets are
imbalanced pertaining to character representation.

Ahmad et al. in [2] performed text recognition using HMMs with an open
vocabulary approach. This approach handles multiple typefaces for text-line
images. There are three main outputs of this study: a typeface recognizer, a
text recognizer for a particular typeface, and unseen typeface recognizer that
works by adapting known typefaces. In this work, features are handcrafted (and
explained in detailed) and tuned for all the tasks and the recognizer obtains
the features using segmented and overlapping sliding windows technique that
exploits Arabic scripts’ prominent line of writing and trains based on expecta-
tion maximization. Results show that splitting typeface and text recognition and
adaptation for unseen typefaces provide superior performance. Authors test the
framework on their own P-KHATT database which they describe, resulting in
2.89% Character Error Rate (CER) for mono-font, 95% success rate for mixed
fonts, and 7.18% CER for unseen fonts. For APTI database, 2.07% CER is the
result for mono font recognition. This approach may need testing for all fonts as
unseen font in P-KHATT and APTI to further confirm research findings.

An example of work that uses HMMs for printed text recognition while also
segmenting text into connected components is [20]. A writing line is established
and certain manual features are calculated and HMMs were created without
optimizing their number. No results were provided in this work. The dataset for
this work is hand-crafted in MS-Word application and is very limited.

An instance of user-friendly systems for OCR is [22] where authors have
developed a system for library use to perform OCR on old documents. The sys-
tem performs image processing (straightening lines etc.), OCR, and translation.
This work also describes the interface and API of the system. In terms of OCR,
KALDI speech recognition framework is used, which relies on HMMs for language
modeling with 165 HMMs used in total. Multiple datasets (ALTEC, IFN/ENIT,
KHATT, and HADARA80P) were used for training with special care for lig-
atures (which are mapped to pronunciation variants in KALDI) and to open



8 O. Alhubaiti and I. Ahmad

the vocabulary. Evaluation is done against three of the four systems mentioned
in [6]. The proposed system performed worse than others and authors suggest
it is due to difference between training datasets and actual library-setting test
(84.6% WER vs FineReader’s 100%). This study can benefit greatly from a new
dataset that is closer to the target testing domain.

In [13], Jaiem et al. tackle OCR using texture analysis, noting that older
works use approaches such as Wavelets and Gabor Filters. This work differ-
entiates between apriori (global) and posterior (context-based) recognition and
chooses the former to work on using steerable pyramid (SP) where the image
is decomposed recursively to different resolutions by applying filters on it and
features extracted at different levels and orientations. A back-propagation Neu-
ral Network is used for recognition which is evaluated on APTID/MF yielding
results of 99.63% accuracy vs 97.04% using KNN at many typefaces.

When it comes to deep neural networks, many works approach text recog-
nition using RNNs and sometimes CNNs for feature extraction. In [4], Ahmed
et al. presents text recognition from scene images. Unconventionally, this work
uses CNNs instead of RNNs for this task. For training, input is 50× 50 gray-
scale images augmented to 5 orientations. The architecture is a fully connected
forward network using 3× 3 and 5× 5 filters, Relu for non-linearity, and max-
pooling for features. Using EAST dataset which has 27 classes referring to dif-
ferent scene conditions with 2700 characters, authors tested this approach and
optimized learning rate to obtain 14.57% error rate. Authors mentioned that
low performance was attributed to small training dataset. The specific network
architecture is not provided in this study.

Jain et al. in [14] use a CNN(features)-RNN(recognition) architecture for
OCR in videos without extracting text from scenes first drawn by the success of
such an approach in other similar scripts. The architecture consists of 7 convo-
lutional layers with 4 max-pooling layers in between and 2 batch normalization
(CNN), then (RNN) a couple of bidirectional long-short-term-memory layers
(blstm) and a soft-max layer, before passing to the CTC layer for sequential
recognition. This approach is trained on a hand-crafted dataset from wikipedia
then tuned to ACTIV and ALIF datasets. Results vary from (98.17%, 79.67%
Character Recognition Rate and Word Recognition Rate, respectively) on some
tests to (75.05% and 39.43%), outperforming other systems such as Tesseract
in all tests. Accuracy figures are far from the optimum 99% proposed in [5] to
approach human-like performance, hence, more wor is needed in this field.

In [17], Rawls et al. were the first to combine deep learning approach for
recognition, which uses CNN for feature extraction and LSTM and CTC for
recognition with some language modelling in the form of WFST:weighted finite-
state transducer using n-gram language models. The architecture composes of 2
convolutional (fully connected + Relu) units (CNN, features are extracted from
a sliding window which is hand-optimized), followed by (RNN) (LSTM + fully
connected), then a softmax layer, before passing to the CTC objective. This work
was tested on the DAMP dataset. Authors specify hardware and parameters,
used and report 2.7% and 8.4% CER and WER, respectively, surpassing the
benchmark.



Typefaces and Ligatures in Printed Arabic Text 9

A study in 2017 by Alghamdi and Teahan [6] tests four Printed Arabic OCR
systems (Automatic Reader, FineReader, Clever Page, and Tesseract) which
are first introduced then metrics that measure such systems’ performance are
discussed, with the authors developing and defining their own suggested metrics
(9 in total, including (digit, diacritic, and punctuation), and character (dot,
loop, zigzag shaped, and overall) accuracies). Authors discuss several databases
settling on KAFD for evaluation purposes. This work then compares the four
systems in each of the 9 metrics while giving reasons for each metric’s results,
where each system excelled at different metrics from others. Authors note low
overall accuracy of the systems, while the result being stronger if tested on more
datasets. Areas of improvement in the whole field noted by the authors include
diacritic and dot performance, and complex typefaces. Qaroush et al. in [16]
presented a system for omnifont printed Arabic text recognition. A CNN-based
system that relies on explicit character segmentation was developed. The authors
report near-perfect segmentation results and high recognition results on APTI
dataset of printed Arabic texts.

3 A System for Printed Arabic Text Recognition

The model we use here is adapted from [18]. Figure 1 shows an overview of the
model’s architecture. This model is a combination of CNN layers for feature
detection, and RNN layers for the rest of the tasks which are Recognition and
Classification. The CNN part of the model is made of five sets of convolution
and max-pooling with the following dimensions: First, we start with 32× 128
image with a feature depth of 1, next we have 64× 16, 32× 8, 32× 4, 32× 2, and
32× 1 layers. The last of which has a feature depth of 256 and is the output of
this part of the network.

Next, the RNN input has 32 time steps for a maximum of 32 characters
per word and 256 features. Output of this part is a 2D map with 512 hidden
cells and 32 time steps and the number of characters is variable (103 when
using character shape as a model and 30 when using character as a model).
This part is a stacked LSTM (forward and backwards). This is then fed to CTC
(Connectionist-Temporal-Classification) to calculate loss for back-propagation.
CTC is also used for decoding where we have the number of characters against
probabilities for each. Various methods can be used after that like Beam Search
or dictionaries but we opt for a simple best path decoding for this work. CTC
has the advantages of not needing to segment the image to individual characters.

4 Experiments and Results

4.1 Dataset

We have used the APTI (Arabic Printed Text Image) dataset for conducting teh
experiments [21]. APTI is a printed word dataset of more than 110,000 words
in 10 different typefaces of which we used seven typefaces. This datasets has



10 O. Alhubaiti and I. Ahmad

Fig. 1. Arabic text recognition system architecture. (figure adapted from: [19]).

10 sizes per typeface, of which we chose the largest (24 pts) and 4 styles per
typeface (Normal, Bold, Italic, old-Italic) of which we selected the Normal. This
is a purely computer-rendered dataset without camera or scanning artifacts.
This dataset comes in 5 evenly divided sets that have comparable amount of
characters in different shapes and positions which can be separated for use in
training, validation, and testing. Ground truth for this dataset initially takes
character shape into consideration. For use with character as a model approach,
we modified that to discard the character shape information. The seven typefaces
we used in our experiments from the APTI dataset are shown in Fig. 2.

4.2 Evaluation Measures

In this section, we present the measures we used to evaluate the text recognition
results.

Character Error Rate (CER): CER is defined as follows:

CER(%) =
S + I + D

N
× 100 (1)

where; S, I, and D are substitution, insertion, and deletion errors respectively,
and N is the total number of characters in the evaluation set (cf. [12, p. 419–
421]).

Word Error Rate (WER): WER is defined as follows:

WER(%) =
S + I + D

N
× 100 (2)

where; S, I, and D are substitution, insertion, and deletion errors respectively,
and N is the total number of words in the evaluation set.



Typefaces and Ligatures in Printed Arabic Text 11

Fig. 2. Sample text images from the APTI dataset.

4.3 Experiment Setup

We used a machine with an Intel core-i7-7700HQ processor @2.80 GHz with
24 GB of RAM, and an Nvidia GTX 1060-6 GB graphics card over-clocked to
1911 MHz. The system was implemented using GPU accelerated tensor-flow in
Python under Microsoft Windows 10 v1809. We used decaying learning rate
starting at 0.01 for the first 10 batches, 0.001 for the next 10,000 batches, and
0.0001 for the rest. We keep training until error rate stops improving for 5
epochs. If accuracy did not improve or has declined, that model is discarded and
the previous weights are reused for further training.

4.4 Character vs Character Shape as Modeling Unit for Printed
Arabic OCR

First we trained the model on two of the seven typefaces, one simple (Arabic
Transparent) and one complex (Diwani), to determine whether character as a
model (Beginning, middle, and end shapes of a character are treated as one
single model) was better or worse than character shape as a model (Beginning,
middle, and end are treated as separate models). We did these experiments
using 90% of the set-1 of the APTI dataset for training, and the remaining



12 O. Alhubaiti and I. Ahmad

10% for testing, using 25,000 random images for each epoch. The model only
accepts single characters as symbols for shapes. For example, we can represent
Alif-Beginning as ‘A’, Baa-Beginning as ‘B’, and so on. This poses a problem
when having many character shapes as is the case when using character shape
as a model. We got around this issue by using additional Unicode characters for
extra shapes. We also use this when encoding ligatures as a single unit. When the
model validates, it treats all shapes of the same character as one symbol, since
when printing this output to a document, the font-system converts a character
to its appropriate shape again and thus it makes no sense to penalize the model
over this type of mistakes. The results of these experiments are summarized in
Table 1. From the results, we can see that using character as a model performs
better than using character shape as a model. This is in contrast to what was
reported in [10] for handwritten Arabic text recognition using deep learning
systems. A possible explanation for this phenomenon is that the character and
their different position dependent shapes are quite regular in printed Arabic
texts but highly variable in handwritten texts. This, in addition to the fact
that we can have more samples per class if we used character as a model than
otherwise, and the network is able to select the best features to generalize and
use as discriminants for that character.

4.5 Single Typeface, Mixed Typeface, and Unseen Typeface Text
Recognition

Next, we ran a set of experiments without involving ligatures at all. These consist
of 8 total training: one for each of the seven typefaces and the eighth experi-
ment for all the seven typefaces combined. We trained the model on sets 1–3
of each typeface of size 24-pts with normal style and validated using the set–
4. For each epoch, the system selects 30,000 random images from the training
set split into 600 batches) except for the last experiment involving all type-
faces which has 150,000 random training images per epoch using a 75%–25%
training/validation-testing split. Results are present in Table 2. We can see that
the model performs quite well even for complex typefaces with lots of overlap.
The best results are reported for Simplified Arabic typeface and the worst results
are for Naskh typeface. It is also interesting to note that mixed typeface recog-
nition results are as good as single typeface recognition, which are in contrast
to what is reported for some HMM-based systems (e.g., [2]). This could possibly
be attributed to the high capacity of deep learning models having high number
of trainable parameters.



Typefaces and Ligatures in Printed Arabic Text 13

Table 1. Summary of the results for different modeling units on text from two typefaces
from the APTI dataset.

Modeling Unit Typeface CER WER

Character Arabic Transparent 0.82 4.33

Diwani 0.27 1.56

Character Shape Arabic Transparent 1.01 5.00

Diwani 1.54 8.11

Table 2. Summary of the OCR results for different typefaces from the APTI dataset.

Typeface CER WER

Andalus 0.26 1.33

Arabic Transparent 0.15 0.73

Naskh 0.28 1.34

Thuluth 0.26 1.28

Diwani 0.24 1.26

Simplified Arabic 0.14 0.67

Traditional Arabic 0.15 0.76

Mixed (All combined) 0.20 1.03

Next, to investigate the performance of the system on unseen typeface and
to test whether typeface similarity has an effect on model accuracy, we designed
a set of leave-one-out experiments. We train the system on six typefaces and test
on the remaining typeface, alternating. Results are summarized in Table 3.

From these results, we can clearly see that for fonts that visually differ from
each other, the model was unable to generalize and achieved poor results. For
Simplified Arabic and Arabic Transparent typefaces, however, and to a lesser
extend, Traditional Arabic, the model was able to generalize very well. The
explanation for this is that all these typefaces belong to the same family (Naskh
Family). Decotype Naskh was visually more archaic so the model was not able
to generalize sufficiently in this case. So we can have the intuition that we can
use one typeface from the same family (out of several different Naskh imple-
mentations, or several different Andalus implementations, for instance) to have
a more general model for that family.



14 O. Alhubaiti and I. Ahmad

Table 3. Summary of the OCR results for unseen typefaces from the APTI dataset.

Unseen Typeface CER WER

Andalus 56.83 98.09

Arabic Transparent 0.18 0.89

Naskh 10.94 39.00

Thuluth 20.00 66.03

Diwani 56.21 98.56

Simplified Arabic 0.29 1.42

Traditional Arabic 5.30 25.73

4.6 An Approach to Automatically Identify Ligatures in Printed
Arabic Texts

We performed a pilot study to determine whether our approach will be able to
distinguish between a ligature and a non-ligature in a typeface where we do not
fully know the ligature (either we do not have the font file or the font file does
not contain ligature information, like .ttf fonts). We chose Naskh typeface as a
relatively simpler one and Diwani as the complex one. We could not choose a
simpler typeface such as Simplified Arabic or Arabic Transparent because these
typefaces do not have much ligatures, if at all.

We selected six bigram combinations that are present as ligatures in both
typefaces: (Nuun or Miim in the beginning position with either Jeem, Haa, or
Khaa in the middle position). They are the most common ligatures in Arabic
(cf. [8,9]). Additionally, We have selected six similar bigram combinations that
are non-ligatures (Saad or Daad in the beginning position either Jeem, Haa, or
Khaa in the middle position). Sample ligatures from the APTI dataset is shown
in Fig. 3. It should be noted that same character pairs may not form ligatures
in other typefaces as illustrated in Fig. 4.

To develop a system to automatically identify ligatures, we train our text
recognition system twice. Once treating these 12 character bigrams as ligatures
thereby modeling each of them as a single ligature model. This is done by chang-
ing the training set annotations. For the second round of training, we treat the
12 character bigrams as individual characters and not as ligatures. Our final lig-
ature identification system then decodes the unseen test sets with the possibility
of treating the 12 character bigrams pairs as either ligatures or non-ligatures
depending on which has the higher probability.



Typefaces and Ligatures in Printed Arabic Text 15

Fig. 3. Sample ligatures (circumscribed within a blue oval) from the APTI dataset.
(Color figure online)

Fig. 4. Sample text images from the APTI dataset where character combinations do
not form ligatures.

If the model detects a ligature correctly, we consider this as a true positive.
Additionally, if the model classified a non-ligature pair correctly by outputting
individual characters instead of ligatures, this is regarded as a true negative. On
the other hand, if a ligature was classified as a non-ligature by outputting indi-
vidual characters instead of ligatures, this is treated as a false negative. Similarly,



16 O. Alhubaiti and I. Ahmad

if a non-ligature was classified as a ligature by outputting individual characters
instead of ligatures by outputting ligatures instead of individual characters, we
consider this as a false positive. Based on this setup, we ran our experiments
on the unseen test sets of the two selected typefaces. The resulting confusion
matrix is presented in Fig. 5.

We can see that the system was able to differentiate between ligatures and
non-ligatures effectively. The possible explanation is that a bigram ligature looks
visually different from how the original characters would look like in other con-
texts. Thus the system learns the individual characters from other contexts and
ligatures from explicit training on these bigram pairs. On the other hand, non-
ligature bigrams would look the same as they look in other contexts. Moreover,
we have many more samples in the dataset where the two constituent characters
of this non-ligature bigram appear as separate characters. So, the system will
lean more towards recognizing the non-ligature bigrams as individual characters
instead of as ligatures.

Fig. 5. Confusion matrix for Ligature Detection.

5 Conclusions and Future Work

In this paper, we present our work related to printed Arabic text recognition
using deep-learning. We investigated two alternative modeling choices and con-
clude that character as a model perform better than character shape as a model.
Further we conducted experiments to investigate the system’s performance for
single typeface text recognition to observe if different typefaces lead to different
recognition performance due to their visual complexity. We observed that the
system was able to effectively recognize text in all the seven typefaces which
ranges from visual simple to visually complex typefaces. In fact, the system’s
performance was at times better for visually complex typefaces as compared to



Typefaces and Ligatures in Printed Arabic Text 17

some of the simpler ones. Moreover, the system’s performance of mixed type-
faces text recognition was as good as single typeface text recognition. We also
saw that models trained for different typefaces in the same family can general-
ize to other unseen typefaces from the same family but not to typefaces from
different families. Last but not the least, we presented an approach to develop a
system to automatically identify ligatures in unseen text. The system, although
not perfect, performed reasonably well.

The experiments were conducted on only one dataset and for only seven dif-
ferent typefaces. This clearly is a limitation of the work. Further experiments
need to be carried out to confirm the generalizability of the presented con-
clusions. Furthermore, only six bigram ligatures were experimented. There are
many more ligatures, so further work is needed to confirm the effectiveness of
the presented approach for automatic identification of ligatures. Accordingly,
possible follow-ups for this work include expanding the case study for ligature
detection into more ligatures and typefaces, and trying the scheme for additional
datasets. Investigating other deep learning models, such as transformer models
can also be an interesting future work. This work might also be applicable to
handwritten text although the factor that each writer might create their own
ligatures can limit the usefulness of this which needs to be investigated. More-
over, deeper investigation into the font-family concept is warranted to determine
whether models can generalize within the classical categorization of typefaces as
seen in calligraphy books. Last but not the least, generating rare occurring lig-
atures using systems such as GANs (e.g., [11]) in order to robustly train a text
recognition system can be an interesting future work.

Acknowledgment. The authors would like to thank King Fahd University of
Petroleum and Minerals (KFUPM) for supporting this work. Irfan Ahmad would like
to additionally thank Saudi Data and AI Authority (SDAIA) and KFUPM for sup-
porting him through SDAIA-KFUPM Joint Research Center for Artificial Intelligence
grant number JRC–AI–RFP–06.

References

1. Arabic ligature: Graphemica search. https://graphemica.com/search?q=arabic+
ligature. Accessed 20 Apr 2023

2. Ahmad, I., Mahmoud, S.A., Fink, G.A.: Open-vocabulary recognition of machine-
printed Arabic text using hidden Markov models. Pattern Recogn. 51, 97–111
(2016)

3. Ahmad, I., Rothacker, L., Fink, G.A., Mahmoud, S.A.: Novel sub-character hmm
models for Arabic text recognition. In: 2013 12th International Conference on Doc-
ument Analysis and Recognition, pp. 658–662. IEEE (2013)

4. Ahmed, S.B., Naz, S., Razzak, M.I., Yousaf, R.: Deep learning based isolated Ara-
bic scene character recognition. In: 2017 1st International Workshop on Arabic
Script Analysis and Recognition (ASAR), pp. 46–51. IEEE (2017)

5. Al-Badr, B., Mahmoud, S.A.: Survey and bibliography of Arabic optical text recog-
nition. Signal Process. 41(1), 49–77 (1995)

6. Alghamdi, M., Teahan, W.: Experimental evaluation of Arabic OCR systems. PSU
Res. Rev. 1(3), 229–241 (2017)

https://graphemica.com/search?q=arabic+ligature
https://graphemica.com/search?q=arabic+ligature


18 O. Alhubaiti and I. Ahmad

7. Amara, N.: On the problematic and orientations in recognition of the Arabic writ-
ing. In: CIFED 2002, pp. 1–10 (2002)

8. Elarian, Y., Ahmad, I., Awaida, S., Al-Khatib, W., Zidouri, A.: Arabic ligatures:
analysis and application in text recognition. In: 2015 13th International Conference
on Document Analysis and Recognition (ICDAR), pp. 896–900. IEEE (2015)

9. Elarian, Y., Ahmad, I., Zidouri, A., Al-Khatib, W.G.: Lucidah ligative and unliga-
tive characters in a dataset for Arabic handwriting. Int. J. Adv. Comput. Sci. Appl.
10(8) (2019)

10. Eltay, M., Zidouri, A., Ahmad, I.: Exploring deep learning approaches to recognize
handwritten Arabic texts. IEEE Access 8, 89882–89898 (2020)

11. Eltay, M., Zidouri, A., Ahmad, I., Elarian, Y.: Generative adversarial network
based adaptive data augmentation for handwritten Arabic text recognition. PeerJ
Comput. Sci. 8, e861 (2022)

12. Huang, X., Acero, A., Hon, H.W., Reddy, R.: Spoken Language Processing: A
Guide to Theory, Algorithm, and System Development, vol. 1. Prentice Hall PTR,
Upper Saddle River (2001)

13. Jaiem, F.K., Kanoun, S., Eglin, V.: Arabic font recognition based on a texture anal-
ysis. In: 2014 14th International Conference on Frontiers in Handwriting Recogni-
tion, pp. 673–677. IEEE (2014)

14. Jain, M., Mathew, M., Jawahar, C.: Unconstrained scene text and video text recog-
nition for Arabic script. In: 2017 1st International Workshop on Arabic Script
Analysis and Recognition (ASAR), pp. 26–30. IEEE (2017)

15. Prasad, R., Saleem, S., Kamali, M., Meermeier, R., Natarajan, P.: Improvements in
hidden Markov model based Arabic OCR. In: 2008 19th International Conference
on Pattern Recognition, pp. 1–4. IEEE (2008)

16. Qaroush, A., Awad, A., Modallal, M., Ziq, M.: Segmentation-based, omnifont
printed Arabic character recognition without font identification. J. King Saud
Univ.-Comput. Inf. Sci. 34(6), 3025–3039 (2022)

17. Rawls, S., Cao, H., Sabir, E., Natarajan, P.: Combining deep learning and language
modeling for segmentation-free OCR from raw pixels. In: 2017 1st International
Workshop on Arabic Script Analysis and Recognition (ASAR), pp. 119–123. IEEE
(2017)

18. Scheidl, H.: Handwritten text recognition in historical documents. In: Tuwien Fac-
ulty of Informatics, Technische Universität Wien, Diplomarbeit. Tuwien (2018)

19. Scheidl, H.: Build a handwritten text recognition system using tensorflow. Medium,
09-Aug-2020 (2019)

20. Shaker, A.S.: Recognition of off-line printed Arabic text using hidden Markov mod-
els. Ibn AL- Haitham J. Pure Appl. Sci. 31(2), 230–238 (2018). https://doi.org/
10.30526/31.2.1952. http://jih.uobaghdad.edu.iq/index.php/j/article/view/1952

21. Slimane, F., Ingold, R., Kanoun, S., Alimi, A.M., Hennebert, J.: A new arabic
printed text image database and evaluation protocols. In: 2009 10th International
Conference on Document Analysis and Recognition, pp. 946–950. IEEE (2009)

22. Stahlberg, F., Vogel, S.: QATIP-an optical character recognition system for Ara-
bic heritage collections in libraries. In: 2016 12th IAPR Workshop on Document
Analysis Systems (DAS), pp. 168–173. IEEE (2016)

23. Tahir, K.M.: Tarikh al-khatt al-Arabi wa-adabuh: huwa kitāb tār̄ıkh̄ı ijtimā̄ı adab̄ı
muzayyan bi-al-uwar al-khāıyah wa-al-rusāum al-fūtughrāf̄ıyah. al-Matbaah al-
Tijariyah al-Had̄ıthah (1982)

24. Zitouni, I.: Natural Language Processing of Semitic Languages. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-45358-8

https://doi.org/10.30526/31.2.1952
https://doi.org/10.30526/31.2.1952
http://jih.uobaghdad.edu.iq/index.php/j/article/view/1952
https://doi.org/10.1007/978-3-642-45358-8

	Typefaces and Ligatures in Printed Arabic Text: A Deep Learning-Based OCR Perspective
	1 Introduction
	2 Related Work
	3 A System for Printed Arabic Text Recognition
	4 Experiments and Results
	4.1 Dataset
	4.2 Evaluation Measures
	4.3 Experiment Setup
	4.4 Character vs Character Shape as Modeling Unit for Printed Arabic OCR
	4.5 Single Typeface, Mixed Typeface, and Unseen Typeface Text Recognition
	4.6 An Approach to Automatically Identify Ligatures in Printed Arabic Texts

	5 Conclusions and Future Work
	References


