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Abstract. Charts represent an essential source of visual information
in documents and facilitate a deep understanding and interpretation of
information typically conveyed numerically. In the scientific literature,
there are many charts, each with its stylistic differences. Recently the
document understanding community has begun to address the problem
of automatic chart understanding, which begins with chart classification.
In this paper, we present a survey of the current state-of-the-art tech-
niques for chart classification and discuss the available datasets and their
supported chart types. We broadly classify these contributions as tradi-
tional approaches based on ML, CNN, and Transformers.

Furthermore, we carry out an extensive comparative performance
analysis of CNN-based and transformer-based approaches on the recently
published CHARTINFO UB-UNITECH PMC dataset for the CHART-
Infographics competition at ICPR 2022. The data set includes 15 dif-
ferent chart categories, including 22,923 training images and 13,260 test
images. We have implemented a vision-based transformer model that
produces state-of-the-art results in chart classification.
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1 Introduction

Charts provide a compact summary of important information or research find-
ings in technical documents and are a powerful visualization tool widely used by
the scientific and business communities. In the recent literature, the problem of
chart mining has attracted increased attention due to numerous advantages, as
suggested in the comprehensive survey published by Davila et al. in 2019 [11]. The
term Chart mining refers to the process of extracting information represented by
charts. Another motivating factor in the increased attention paid to this prob-
lem is a series of competitions held in conjunction with significant conferences to
address the critical challenges in the chart mining pipeline [10,12,13].

Since a variety of charts are possible, chart classification is often the first step
in chart mining. The task of chart image classification can be formalized as, given
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a chart image extracted from a document, classifying the image into one of N
defined categories. The wide variety of chart types in the literature adds to the
complexity of the task [6,11,34]. Some additional problems include interclass
similarity, noise in authentic chart images, and more state-of-the-art datasets
that cover multiple chart types and incorporate 2.5 or 3D charts and noise into
the training samples [34]. The rise of robust deep learning models has contributed
significantly to the success of chart classification. Deep learning approaches have
outperformed traditional machine learning approaches regarding robustness and
performance. Yet there need to be more state-of-the-art solutions that can pro-
vide stable results and are robust enough to address noise in some data sets. In
this paper, we provide a performance comparison of several deep learning models
that are state-of-the-art in the ImageNet [28] classification task. In addition, we
report the performances of several popular vision transformers, which, to the
best of our knowledge, have yet to be used for chart classification, except for the
recent ICPR 2022 CHART-Infographics competition [13].

This paper is organized as follows. Section 2 summarizes the existing chart
classification literature covering traditional and deep learning-based methods,
including a brief discussion on transformer-based chart classification. Section 3
reports and summarizes publicly available datasets. Section 4 briefly highlights
the popular ImageNet pre-trained deep learning-based models that will be used
for our comparative study. Section 5 describes the latest edition of the UB PMC
dataset, the training and testing protocols, and a discussion on their performance
for chart classification. Section 6 provides information on possible improvements
and suggestions for future research. Finally, Sect. 7 concludes with a summary
of the paper.

2 Chart Classification Techniques

Based on the type of approaches used to implement the chart classification task in
the literature, they can be grouped into traditional ML, CNN-based deep learn-
ing, and Transformer-based deep learning. Each type of approach is described
briefly below.

2.1 Traditional ML Approaches

Traditional approaches rely on feature extraction methods that are often manual
and general-purpose. Features are extracted and then represented in mathemat-
ical form for direct processing by machine learning classifiers. Savva et al. [29]
present a system that automatically reformats visualizations to increase visual
comprehension. The authors use low-level image features for classification in
conjunction with text-level features. The system uses a multiclass SVM classi-
fier trained on a corpus containing 2601 chart images labeled with ten categories,
following Gao et al.’s manual extraction approach. In [14], researchers propose
VIEW, a system that automatically extracts information from raster-format
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charts. The authors used an SVM to separate the textual and graphical compo-
nents and classify the chart images based on the graphic elements extracted from
the visual components. The text is typically found in three chart categories - bar
charts, pie charts, and line graphs, with 100 images for each category collected
from various real-world digital resources.

Instead of taking an image as input, Karthikeyani and Nagarajan [19] present
a system to recognize chart images from PDF documents using eleven texture
features that are part of a Gray Level Co-Occurrence Matrix. A chart image
is located in the PDF Document database, and the features are extracted and
fed to the learning model. SVM, KNN, and MLP are the classifiers used for
classification. Cheng et al. [7] employ a multimodal approach that uses text and
image features. These features are provided as input to an MLP. The output
is characterized as a fuzzy set to get the final result. The corpus contains 1707
charts with three categories and a 96.1% classification result.

2.2 CNN-Based Deep Learning Approaches

Liu et al. [22] used a combination of Convolutional Neural Networks (CNNs) and
Deep Belief networks (DBNs) to capture high-level information present in deep
hidden layers. Fully Connected Layers of Deep CNN are used to extract deeply
hidden features. A DBN is then used to predict the image class using the deep
hidden features. The authors use transfer learning and perform fine-tuning to
prevent overfitting. They use a data set that includes more than 5, 000 images of
charts, including pie, scatter, line, bar, and flow classes. Deep features are useful
over primitive features to provide better stability and scalability to the proposed
framework. The proposed method achieves an average accuracy of 75.4%, which
is 2.8% more than the method that uses only deep ConvNets.

Given the results of CNN in the classification of natural images, Siegel et
al. [30] used two CNN-based architectures for chart classification. They evalu-
ated AlexNet and ResNet-50, which are pre-trained on the ImageNet data set
and then fine-tuned for chart classification. This transfer learning approach is
prevalent in subsequent works addressing this particular problem. The proposed
frameworks outperformed the state-of-the-art model at the time, such as ReVi-
sion, by a significant margin. ResNet-50 achieved the best classification accuracy
of 86% on a data set that contained more than 60000 images spread over seven
categories.

Amara et al. [1] proposed a CNN-based on LeNet to classify images from their
corpus of 3377 images into 11 categories. The model comprises eight layers, one
input layer, five hidden layers, one fully connected layer, and one output layer.
The fully connected layer is used as a classifier, while the hidden layers are
convolution and pooling layers designed to extract features automatically. A
fully connected layer employs softmax activation to classify images into defined
classes. For evaluation of the model’s performance, an 80-20 split is performed
on the data set for training and assessment. The proposed model performs better
than the LeNet and pretrained LeNet architectures with an accuracy of 89.5%.
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Jung et al. [18] present a classification method using the deep learning frame-
work Caffe and evaluate its efficacy by comparing it with ReVision [29]. The
authors use GoogLeNet [32] for classification and compare its results with shal-
lower networks like LeNet-1 and AlexNet [20]. GoogLeNet outperforms LeNet-1
and AlexNet with an accuracy of 91.3%. Five-fold cross-validation is used for
calculating the accuracy on an image corpus with 737–901 images for each chart
type. The test concludes that ChartSense provides higher classification accuracy
for all chart types than ReVision.

With studies adapting the deep learning approach for chart image classifi-
cation, a comparative study of traditional vs. CNN architectures was required.
Chagas et al. [6] provide a comparative analysis of conventional vs. CNN tech-
niques. Authors evaluated CNN architectures (VGG19 [31], Resnet-50 [15], and
Inception-V3 [33]) for chart image classification for ten classes of charts. The
performance is compared with conventional machine learning classifiers, Naive
Bayes, HOG features combined with KNN, Support Vector Machines, and Ran-
dom Forests. Pre-trained CNN models with fine-tuned last convolutional layers
were used. The authors concluded that CNN models surpass traditional methods
with an accuracy of 77.76% (Resnet-50) and 76.77% (Inception-V3) compared
to 45.03% (HOG + SVM).

Dia et al. [9] employ four deep learning models on a corpus of 11,174 chart
images of five categories. Of AlexNet [20], VGG16 [31], GoogLeNet [32] and
ResNet [15], the authors get the best accuracy of 99.55% for VGG16 model.
VGG16 outperforms the models used in ChartSense paper by a large margin.

Significant roadblocks to chart mining research are caused by the fact that
current chart data sets must be larger and contain sufficient diversity to support
deep learning. To address this problem, Jobin et al. [21] presented DocFigure, a
chart classification data set with 33, 000 charts in 28 different classes. To clas-
sify charts, the author’s proposed techniques utilize deep features, deep texture
features, and a combination of both. Among these baseline classification tech-
niques, the authors observed that combining deep features and deep texture
features classifies images more efficiently than individual features. The average
classification accuracy improved by 3.94% and 2.10% by concatenating FC-CNN
and FV-CNN over individual use of FC-CNN and FV-CNN, respectively. The
overall accuracy of the combined feature methods turned out to be 92.90%.

Luo et al. proposed a unified method to handle various chart styles [26], where
they show that generalization can be obtained in deep learning frameworks with
rule-based methods. The experiments were performed on three different datasets
of over 300, 000 images with three chart categories. In addition to the framework,
an evaluation metric for the bar, line, and pie charts is also introduced. The
authors concluded that the proposed framework performs better than traditional
rules-based and pure deep learning methods.

Araújo et al. [2] implemented four classic CNN models that performed well
on computer vision tasks, including Xception [8], VGG19 [31], ResNet152 [15]
and MobileNet [16]. The weights of these models were pre-trained on the Ima-
geNet dataset, and the authors further performed hyperparameter tuning to
obtain a stable learning rate and weight decay. These models were employed on
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a self-aggregated chart image corpus of 21,099 images with 13 different chart cat-
egories. Xception outperforms the other models by hitting an accuracy of 95%.

The problem of small datasets has been prevalent since the problem of chart
mining was first introduced. Most work tries to increase the size of the dataset.
However, Bajic and Job [4] use a Siamese CNN network to work with smaller
datasets. The authors show that an accuracy of 100% can be achieved with 50
images per class, which is significantly better than using a vanilla CNN.

With the increase in datasets for chart images and the rise of deep learn-
ing models being employed on said datasets, an empirical study of these deep
learning models was due. Thiyam et al. [35] compared 15 different deep-learning
models on a self-aggregated dataset of 110,182 images spfeatures24 different
chart categories. In addition, the authors tested the performance of these mod-
els on several preexisting test sets. They concluded that Xception (90.25%) and
DenseNet121(90.12%) provide the most consistent and stable performance of all
the deep learning models. The authors arrived at this decision by employing a
five-fold cross-validation technique and calculating the standard deviation for
each model across all datasets.

Davila et al. [10] summarized the work of different participants in the com-
petition’s first edition by harvesting raw tables from Infographics that provided
data and tools for the chart recognition community. Two data sets were pro-
vided for the classification task. One was a synthetically generated AdobeSynth
dataset, and the other UB-PMC data set was gathered from the PubMedCentral
open-access library. The highest average F1-measure achieved for the synthetic
data set was 99.81% and the highest F1-measure achieved for the PMC data set
was 88.29%. In the second edition of the competition, the PMC set was improved
and included in the training phase. An ensemble of ResNet152 and DenseNet121
achieved the highest F1-score of 92.8%. The third edition of the competition was
recently held at ICPR 2022. The corpus of real chart images was made up of
36,183 chart images. The winning team achieved an F1 score of 91% with a base
Swin transformer model with a progressive resizing technique. We summarize
the competition details in Table 1.

Table 1. Competition on Harvesting Raw Tables from Infographics (CHART-
Infographics)

Competition Dataset #Classes Train
Size

Test
Size

Top
performing
Model

F1-measure

ICDAR 2019 [10] AdobeSynth 10 198,010 4540 ResNet-101 99.81%

PMC 7 4242 88.29%

ICPR 2020 [12] Adobe Synth 12 14,400 2,999 DenseNet-
121
+

100%

UB PMC 15 15,636 7,287 ResNet-152 92.8%

ICPR 2022 [13] UB PMC 15 22,923 13,620 Swin Trans-
former

91%
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Table 2. Published Literature on Chart Classification

Authors Dataset Model Metric Performance

Savva et al. [29] Self-acquired SVM Accuracy 96.00%

Gao et al. [14] Self-acquired SVM Accuracy 97.00%

Kartikeyani and Nagarajan [19] Self-acquired MLP Accuracy 69.68%

KNN 78.06%

SVM 76.77%

Cheng et al. [7] Self-acquired MLP Accuracy 96.10%

Liu et al. [22] DeepChart CNN + DBN Accuracy 75.40%

Siegel et al. [30] ChartSeer AlexNet Accuracy 84.00%

ResNet-50 86.00%

Amara et al. [1] Self-acquired CNN Accuracy 89.50%

Jung et al. [18] Chart-Sense GoogleNet Accuracy 91.30%

Balaji et al. [5] Self-acquired CNN Accuracy 99.72%

Chagas et al. [6] Chart-Vega ResNet-50 Accuracy 76.76%

Inception-V3 76.77%

Dai et al. [9] Self-acquired ResNet Accuracy 98.89%

GoogLeNet 99.07%

AlexNet 99.48%

VGG-16 99.55%

Liu et al. [23] Self-acquired VGG-16 Accuracy 96.35%

Davila et al. [10] Synthetic ResNet-101 F1-measure 99.81%

UB-PMC ResNet-101 88.29%

Jobin et al. [21] DocFigure FC-CNN + FV-CNN Accuracy 91.30%

Bajic et al. [3] Self-acquired VGG-16 Accuracy 89.00%

Araujo et al. [2] Self-acquired Xception Accuracy 95.00%

Luo et al. [26] Chart-OCR CNN Custom(Bar) 91.90%

Custom(Pie) 91.80%

Custom(Line) 96.20%

Davila et al. [12] UB-PMC DenseNet-121 + ResNet-152 F1-measure 92.80%

Bajic and Job [4] Self-acquired Siamese CNN Accuracy 100%

Thiyam et al. [35] Self-acquired Xception Accuracy 90.25%

DenseNet121 90.12%

DenseNet201 90.53%

Davila et al. [13] UB-PMC Swin Transformer F1-measure 91.00%

2.3 Transformer-Based Deep Learning Approaches

Since the inception of Vision Transformer, there has been a lot of development in
various computer vision tasks such as image classification, object detection, and
image segmentation. Vision transformer has outperformed CNN-based models
in these tasks on the ImageNet dataset. However, there has not been widespread
application of vision transformers to chart image classification. To our knowl-
edge, only the Swin transformer [24] has been used for chart classification as
reported in [13], which won the CHART-Infographics challenge ICPR2022. The
authors applied a Swin Transformer Base Model with a progressive resizing tech-
nique. The models were initially trained on a scale (input size) of 224 followed
by 384 [13].

The existing models in the literature are summarised in Table 2.
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3 Chart Classification Datasets

There has been a significant increase in the size of datasets both in terms of the
number of samples and the number of chart types. The Revision dataset [29]
had only 2,601 images and 10 chart types. The recent publicly available dataset
[13] comprises around 33,000 chart images of 15 different categories. The details
of several publicly available datasets are discussed in this section.

Table 3. Chart Classification Datasets

Dataset Year #Samples #Category Public (Y/N)

ReVision [29] 2011 2601 10 Y

View [14] 2012 300 3 N

Self [19] 2012 155 8 N

Self [7] 2014 1707 3 N

DeepChart [22] 2015 5000 5 Y

ChartSeer [30] 2016 60000 7 N

Self [1] 2017 3377 11 N

Chart-Sense [18] 2017 6997 10 Y

Chart-Text [5] 2018 6000 2 N

Chart-Vega [6] 2018 14471 10 Y

Chart decoder [9] 2018 11,174 5 N

Self [23] 2019 2500 2 N

Synthetic [10] 2019 202550 10 Y

UB-PMC [10] 4242 7 Y

DocFigure [21] 2019 33000 28 Y

Self [3] 2020 2702 10 N

Self [2] 2020 21099 13 N

Chart-OCR [26] 2021 386966 3 N

UB-PMC [12] 2021 22924 15 Y

Self [4] 2021 3002 10 N

Self [35] 2021 110182 24 N

UB-PMC [13] 2022 33186 15 Y

ChartSense [18]: The ChartSense dataset was put together using the ReVision
dataset, and the authors manually added some additional charts. The corpus has
5659 chart images that cover ten chart categories.

ChartVega [6]: This dataset has ten chart types and was created due to a need
for a benchmark dataset for chart image classification [6]. The dataset contains
both synthetic and real chart images. The set contains 14,471 chart images, of
which 12059 are for training and 2412 are for testing. In addition, a validation
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set of 2683 real chart images is provided. No separate annotations are provided,
as chart images are separated according to their types.

DocFigure [21]: This corpus consists of 28 categories of annotated figure
images. There are 33,000 images that include non-chart categories like natu-
ral images, tables, 3D objects, and medical images. The train set consists of
19,797 images, and the test set contains 13173 images. The labels are provided
in a text document.

ChartOCR [26]: The dataset contains 386,966 chart images created by the
authors by crawling public excel sheets online. The dataset contains only three
classes of chart images. The dataset is divided into the train, validation, and test
sets. The training corpus contains 363,078 images, the validation set contains
11,932 images, and the test set contains 11,965 images. The annotations for the
chart images are provided in JSON format.

UB-PMC CHART-Infographics: This dataset was introduced in the first
edition of Competition on Harvesting Raw Tables from Infographics (ICPR 2019
CHART Infographics) [10]. This dataset has synthetic images created using mat-
plotlib. For the testing, a large set of synthetic data and a small set of real chart
images harvested from PubMedCentral1 were used. The training set has 198,010
images, whereas the synthetic test set has 4540 images, and the real test set has
4242 images. The dataset has ten different chart categories.

The second edition of the competition [12] provided a dataset containing
22923 real chart images of 15 different chart categories in both training and
testing sets. The training set has 15636 images, while the test set has 7287
images. The annotations for the chart image samples are provided in both JSON
and XML formats. The dataset presented as a part of the third and most recent
competition comprises 36183 images of 15 different chart categories. The training
set contains 22,923 images, while the test set contains 13,260 images. Similar to
the previous edition, the annotations are provided in JSON and XML formats.
To the best of our knowledge, this is the largest publicly available dataset for
chart image classification.

The existing classification data sets for charts are summarized in Table 3,
and the composition of the publicly available datasets is reported in Table 4.

4 Deep Learning Models for Comparative Analysis

In this section, we briefly discuss prominent deep-learning models that have
been used to study the performance of chart classification. We have selected two
categories of deep learning models - CNN-based and Transformer-based for the
comparative study. For CNN-based models, we have considered the proven state-
of-the-art models for image classification on the large-scale benchmark dataset
ImageNet [28] over the years. For vision transformer models, we have chosen the
models that have been proven to outperform CNN-based models in computer
vision tasks.
1 https://www.ncbi.nlm.nih.gov/pmc/.

https://www.ncbi.nlm.nih.gov/pmc/
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Table 4. Composition of publicly available datasets

Chart Type UB-PMC [13] DocFigure [21] Chart-Sense [18] Chart-OCR [26] Chart-Vega [6]

Arc – – – – 1440

Area 308 318 509 – 1440

Block – 1024 – – –

Bubble – 339 – – –

Flowchart – 1074 – – –

Heatmap 377 1073 – – –

Horizontal Bar 1421 – – – –

Horizontal Interval 586 – – – –

Line 13956 9022 619 122890 1440

Manhattan 256 – – – –

Map 906 1078 567 – –

Parallel Coordinate – – – – 1339

Pareto – 311 391 – –

Pie 433 440 568 76922 1440

Polar – 338 – – –

Radar – 309 465 – –

Re-orderable Matrix – – – – 1440

Scatter 2597 1138 696 1640

Scatter-Line 3446 – – – –

Sunburst – – – – 1440

Surface 283 395 – – –

Table – 1899 594 – –

Treemap – – – – 1440

Venn 206 889 693 – –

Vertical Bar 9199 1196 557 187154 1512

Vertical Box 1538 605 – – –

Vertical Interval 671 – – – –

Total 36183 33071 5659 386966 14471

4.1 ResNet [15]

The Deep Residual Network was introduced in 2015 and was significantly deeper
than the previous deep learning networks. The motivation behind the model was
to address the degradation problem: Degrading training accuracy with increasing
depth of the model. The authors added shortcut connections, also known as skip
connections, that perform the proposed identity mapping and are significantly
easier to optimize than unreferenced mappings. Despite being deeper than the
previous models, ResNet still needed to be simplified. It achieved the top-5
error of 3.57% and claimed the top position in the 2015 ILSVRC classification
competition [28]. We use a 152-layer version of this Deep Residual Network called
ResNet-152 for our classification problem.

4.2 Xception [8]

Xception is a re-interpretation of the inception module. The said inception mod-
ule is replaced with depth-wise separable convolutions. The number of parame-
ters in both Inception V3 and Xception is the same, so the slight performance
improvement is due to the more efficient use of parameters. Xception shows
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a better performance improvement than Inception V3 on the JFT dataset on
the ImageNet dataset. It achieves the top five accuracy of 94.5%. Xception also
shows promising results in the chart classification literature, as reported by [2]
and [35].

4.3 DenseNet [17]

The Dense Convolutional Network, introduced in 2018, connects each layer in
the network architecture to all other layers. This allows for the exchange of fea-
ture maps at every level and considers the same input as input gathered from all
the previous layers rather than just one preceding layer. The difference between
DenseNet and Resnet lies in the way that they combine features. ResNet com-
bines features through summation, whereas DenseNet combines them through
concatenation. DenseNet is easier to train due to the improved flow of gradients
and other information through the network. The vanilla DenseNet has fewer
parameters than the vanilla ResNet network. We used DenseNet-121 for our
classification task as it was one of the best models for the chart image dataset
as reported in [35].

4.4 ConvNeXt [25]

ConvNeXt model was introduced as a response to hierarchical transformers
outperforming convnets in image classification tasks. Starting with a standard
ResNet architecture, the model is carefully modified to adapt the specific char-
acteristics of a typical hierarchical transformer. This resulted in a CNN-based
model that matches the transformers in robustness and scalability across all
benchmarks. ConvNeXt achieves a top-1 accuracy of 87.8% on ImageNet.

4.5 DeIT Transformer [36]

The authors proposed the Data Efficient Image Transformer(DeIT) with 86M
parameters to make the existing vision transformer more adoptable. This
convolution-free approach achieves competitive results against the existing state-
of-the-art models on ImageNet. The proposed vision transformer achieved a top-
1 accuracy of 85.2% on the ImageNet classification task. We use the base Base
DeIT transformer for the chart classification task.

4.6 Swin Transformer [24]

A hierarchical transformer that employs shifting windows to obtain representa-
tions for vision tasks. The authors note that the hierarchical architecture pro-
vides linear computational complexity and scalability concerning image size.
The limitation of self-attention calculation concerning noncoincident local win-
dows due to the shifting windows allows for better cross-window connectivity.
The qualities above contribute to the Swin transformer’s excellent performance



A Survey and Approach to Chart Classification 77

across computer vision tasks. It achieves 87.3% top-1 accuracy on the ImageNet-
1k dataset. We perform experiments with all the 13 available Swin Transformer
models and report their performance in Table 5. Furthermore we refer to the
best performing Swin Transformer model as Swin-Chart in Table 6.

a. Area b. Map c. Heatmap d. Hor. Bar e. Hor. Interval

f. Manhattan g. Line h. Pie i. Scatter j. Scatter-line

k. Surface l. Venn m. Vert. Bar n. Vert. Box o. Vert. Interval

Fig. 1. Sample of chart images used in this study from UB-PMC [13] dataset

5 Experimental Protocol

5.1 Dataset

We use the ICPR2022 CHARTINFO UB PMC [13] dataset to perform our com-
parative study of deep learning models. The dataset is divided into training and
testing sets. The number of chart images in the training and test set is 22,923 and
11,388, respectively. The ground truth values are annotated in JSON and XML
formats. We further divide the provided training set into training and valida-
tion sets with an 80/20 ratio. The dataset contains charts of 15 categories: area,
map, heatmap, horizontal bar, Manhattan, horizontal interval, line, pie, scat-
ter, scatter-line, surface, Venn, vertical bar, vertical box, and vertical interval.
Samples of each chart type present in the dataset are shown in Fig. 1.
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5.2 Training and Testing Setup

We choose ResNet152, DenseNet121, Xception, and ConvNeXt CNN-based mod-
els and DeIT and Swin Transformers-based models for chart image classification.
The CNN-based models were selected based on their performance in the exist-
ing literature on the ImageNet image classification task. The transformer-based
models are chosen because they beat the CNN-based models. We use the pre-
trained ImageNet weights of these models and fine-tune them for our chart clas-
sification task. The models are trained on a computer with an RTX 3090 video
card with 24 GB memory. Pytorch [27] was used as the engine for our experi-
ments. We use a batch size of 64 for CNN-based models and a batch size of 16 for
transformer-based models. A learning rate of 10−4 is used to train each model
for 100 epochs. Label Smoothing Cross Entropy Loss is used as a loss function.
The evaluation measures the average over all classes and reports precision, recall,
and F1-score.

Table 5. Comparative Performance of all the 13 Pre-trained Swin Transformer Models
on ICPR2022 CHARTINFO UB PMC datase

Model Precision Recall F1-measure

SwinT 0.929 0.924 0.922

SwinT s3 0.931 0.923 0.922

SwinS 0.931 0.926 0.925

SwinS s3 0.928 0.922 0.919

SwinB 224 0.933 0.926 0.925

SwinB 384 0.936 0.932 0.931

SwinB 224 in22k ft1k 0.934 0.930 0.929

SwinB 384 in22k ft1k 0.933 0.929 0.927

SwinB s3 0.927 0.923 0.921

SwinL 224 0.937 0.933 0.932

SwinL 384 0.937 0.931 0.929

SwinL 224 in22k ft1k 0.937 0.933 0.932

SwinL 384 in22k ft1k 0.934 0.930 0.929

5.3 Comparative Results

The models were trained following the steps mentioned in the previous section
and were tested on the UB-PMC test data set. We calculate all deep learn-
ing models’ average precision, recall, and F1 score. Among CNN-based models,
ResNet-152 and ConvNeXt provide the best results across all evaluation metrics.
The ResNet-152 result is consistent with the results in [13] for CNN-based mod-
els. For Swin transformer we perform experiments on 13 models consisting Swin
Tiny(SwinT), Swin Small(SwinS), Swin Base(SwinB) and Swin Larger(SwinL)
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Table 6. Comparative performances of the CNN-based and Transformer-based models
on ICPR2022 CHARTINFO UB PMC dataset

Model Precision Recall F1-score

Resnet-152 [15] 0.905 0.899 0.897

Xception [8] 0.882 0.870 0.866

DenseNet-121 [17] 0.887 0.879 0.875

ConvNeXt [25] 0.906 0.898 0.896

DeIT [36] 0.888 0.879 0.874

Swin-Chart 0.937 0.933 0.932

Table 7. Comparison of Swin-Chart from Table 6 with models stated in [13] on the
ICPR2022 CHARTINFO UB PMC dataset

Team Precision Recall F1-score

Our (Swin-Chart) 0.937 0.933 0.932

IIIT CVIT 0.926 0.901 0.910

UB-ChartAnalysis 0.900 0.881 0.886

six seven four 0.865 0.808 0.827

CLST-IITG 0.704 0.657 0.654

and their varients. SwinL with input image dimension 224 performs best with
an F1-score of 0.932. So, SwinL model is further referred as Swin-Chart. The
scores of all the Swin Transformer models are summarized in Table 5. The best
performing CNN based models fail to compete with Swin-Chart for the chart
classification task as it outperforms the other five models with an average F1-
score of 0.932. The scores for the deep learning models are summarized in Table 6.

Furthermore, we compare our best-performing model(Swin-Chart) with the
models reported in [13]. This comparison is summarized in Table 7. We note
that Swin-Chart surpasses the winner of the ICPR 2022 CHART-Infographics
competition with an average F1-score of 0.931.

6 Future Directions

Although there has been a significant increase in published articles on chart
classification, several problems still need to be addressed.

6.1 Lack of Standard Benchmark Data Sets

The chart image classification problem has been extensively addressed in previ-
ous work. Efforts have been made to increase the size of chart image datasets
that also cover a wide variety of charts [10,35]. With the growing literature in
various domains, authors are finding creative ways to use different charts. This
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adds to the variety of chart types. Integrating such diverse chart types while
creating chart datasets remains an open challenge. In addition, the popularity of
charts such as bar, line, and scatter over others such as Venn, surface, and area
adds to the problem of disparity between the number of samples in particular
chart types.

6.2 Lack of Robust Models

Recent work makes some problematic assumptions in addressing this problem
[11]. A lack of a diverse benchmark dataset adds to this problem, as there needs
to be more consistency in model performance across publicly available datasets.
The inherent intra-class dissimilarity and inter-class similarity of several chart
types affect the model’s performance.

6.3 Inclusion of Noise

Most of the work in the existing literature ignores the effect of noise. Different
types of noise, such as background grids, low image quality, composite charts,
and multiple components along with figures, lead to poor performance for mod-
els that perform exceptionally well on noiseless data [34]. In addition to the
noiseless chart image dataset, if a small set of chart images could be provided
that incorporates the noisy images, it would help fine-tune the models to work
through the inclusion of noise and be invariant to the same.

7 Conclusion

We have provided a brief survey of existing chart classification techniques
and datasets. We used a Transformer model to obtain state-of-the-art results.
Although there has been a significant development both in terms of variety in
models and in the size of datasets, we observe that the chart classification prob-
lem still needs to be solved, especially for noisy and low-quality charts. Our
comparative study showed that Swin-Chart outperforms the other vision trans-
former and CNN-based models on the latest UB-PMC dataset. In the future,
we plan to generalize the results of the Swin-Chart over other publicly available
datasets and try to bridge the gap to a robust deep-learning model for chart
image classification.
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3. Bajić, F., et al.: Data visualization classification using simple convolutional neural
network model. Int. J. Electr. Comput. Eng. Syst. (IJECES) 11(1), 43–51 (2020)
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