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1 Introduction 

For many years, indicators have been considered a niche topic in the literature. In 
recent decades, this issue has become central to the scientific debate and has been 
discussed in any conference or workshop on the measurement and analysis of 
socioeconomic phenomena. Indicators are not a specific and exclusive topic of the 
natural or social sciences, but are used and constructed everywhere, and their 
functions in contemporary societies are widespread (Maggino et al., 2021). 

To fully understand the importance of the concept of indicators in social sciences, 
their connection to the concepts of complex systems and measurement must be 
analysed and understood. Humanity has always had the need to know and under-
stand reality and the phenomena defining it to achieve goals and satisfy needs and 
aspirations. Therefore, the need to generate knowledge is a defining feature in our 
lives. Consequently, the relationship between people and knowledge has always 
been a crucial topic in the reflection of scholars in every scientific discipline. 
Knowing reality refers to measuring reality. Measuring reality involves addressing 
complex systems and phenomena. Measuring complex phenomena involves dealing 
with indicators (Maggino & Alaimo, 2022). In the following pages, we try to 
describe these concepts. 
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2 Complexity and Complex Systems 

2.1 Complexity: A Possible Definition 

In recent decades, complexity has become a mainstream topic in different contexts 
and disciplines (e.g. physics, chemistry, biology, sociology, and psychology). The 
increasing attention to this concept coincided with the evolution of science, 
corresponding to the transition from classical to modern science (for details, see 
Alaimo, 2022). However, complexity in science has no precise meaning or unique 
definition (Érdi, 2008). As Morin (1985) states, the analysis of complexity cannot be 
addressed using a preliminary definition; there is no such thing as one complexity 
but different complexities. The influence of different disciplines on its 
conceptualisation has meant that this term has profoundly different meanings. 
Complexity does not belong to a particular theory or discipline, but rather to a 
discourse about science (Stengers, 1985). The term complex is often inappropriately 
used. We can understand its meaning by examining the differences from the concept 
of complicated, often used as a synonym, to refer to the difficulty in handling a 
situation or understanding a concept (Maggino & Alaimo, 2021). When dealing with 
particularly difficult situations or phenomena hard to explain, one tends to define 
them generically as ‘complex’ or ‘complicated’, giving these two concepts the same 
meaning. However, these two terms have profoundly different meanings, as reflected 
in their etymologies (De Toni & Comello, 2010; Letiche et al., 2012). ‘Complicated’ 
comes from the Latin cum plicum, in which the term plicum indicates the fold of a 
sheet. This term indicates something folded, which can be explained and understood 
by its unfolding. By contrast, ‘complex’ derives from the Latin cum plexum, where 
plexum means knot and weave. It refers to something woven, knotted, with inter-
weaving, composed of many interconnected parts: ‘compound’ (Alaimo, 
2021a, 2021b). Understanding a complicated phenomenon requires the adoption of 
an analytic approach; we must unfold the phenomenon in its creases and understand 
its basic components. Thus, understanding this phenomenon comes from under-
standing its components. It is always possible to achieve an understanding of a 
complex phenomenon, although this may seem difficult. 

For instance, think of an embroidered tablecloth on a laid table and napkins that have the 
same embroidery, but it is not visible because they are folded. The embroidery on the latter 
will be immediately evident when we open them up by undoing the folds. The same thing 
happens when we try to solve a complicated problem: in order to understand it in its entirety 
(the embroidery hidden between the folds of the napkin), we have to identify its components 
(the folds of the napkin) and understand them (unfold them). (Maggino & Alaimo, 2022: 44) 

Complex phenomena require a synthetic/systemic approach. We cannot under-
stand the plexum simply by analysing its components; we must try to understand it as 
a whole. 

Think of a nice jumper, with an intricate weave and many different colors. If we split up the 
jumper weave in its basic threads, we obtain a set of threads whose analysis does not help 
recreate the original system of the original jumper. In other words, if we consider the
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Table 1 Main differences between complex and complicated 

Complex Complicated 

Etymology cum plexum: something woven, knotted, 
with interweaving; composed of many 
interconnected parts; compound 

cum plicum: indicates something 
folded, that can be explained and 
understood by unfolding its folds 

Approach 
to 
knowledge 

Synthetic/systemic approach: under-
stand the phenomenon as a whole 

Analytic approach: understand the indi-
vidual components of the phenomenon 

individual threads taken individually (adopting an analytic approach) we do not have a 
vision of the jumper, which comes from their interweaving. (Maggino & Alaimo, 2022: 
44–45) 

As Capra (1996) highlights, different approaches are necessary to understand 
complexity: 

The properties of the parts can be understood only within the context of the larger whole. . . . 
Systems thinking is contextual, which is the opposite of analytical thinking. Analysis means 
taking something apart in order to understand it; systems thinking means putting it into the 
context of a larger whole. (Capra, 1996: 29–30) 

The affirmation of the synthetic approach is one of the most important advances 
in twentieth-century science, closely linked to the awareness of understanding 
complexity using analysis: 

Systems science shows that living systems cannot be understood by analysis. The properties 
of the parts are not intrinsic properties but can be understood only within the context of the 
larger whole. (Capra, 1996: 37) 

A synthesis is not a reduction of reality but a stylisation highlighting the charac-
teristics that arise from the interconnections among the elements defining a complex 
phenomenon. A complex phenomenon can sometimes be considered difficult 
because it cannot be explained. However, this difficulty does not depend on the 
complex nature of the phenomenon, but on the attempt to understand it using an 
analytical approach, merely breaking it down into its essential components rather 
than analysing it as a whole. We also need to clarify that a complex view of reality 
does not necessarily mean having a complete view of reality. The latter indicates that 
all components of a phenomenon are included with no missing data. However, 
having all the elements available and analysing them is not sufficient to understand 
a complex phenomenon. The latter can only be understood through the interconnec-
tions of the elements (Table 1). 

2.2 Complex Systems and Complex Adaptive Systems 

The word complex is often associated with system, a term used in common lan-
guages, and many scientific disciplines. Generally, a system can be defined as a set 
of elements that stand in interaction (Bertalanffy, 1968). More precisely, according



to Meadows (2009), it can be considered ‘an interconnected set of elements that is 
coherently organized in a way that achieves something’ (Meadows, 2009: 11). This 
definition highlights the main components of a system: elements, interconnections, 
and functions. A system is a collection of interconnected elements with a purpose. A 
system has its own behaviour, different from its parts, evolving over time according 
to changes that can concern the system and each of its essential components. 
Obviously, these changes could be shocking and unexpected. Most systems are 
able to withstand the impact of drastic changes thanks to one of their fundamental 
characteristics, resilience, that is the ‘system’s ability to survive and persist within a 
variable environment’ (Meadows, 2009: 76). 
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A system can be defined as an organic, global and organized entity, made up of many 
different parts, aimed at performing a certain function. If one removes a part of it, its nature 
and function are modified; the parts must have a specific architecture and their interaction 
makes the system behave differently from its parts. Systems evolve over time and most of 
them are resilient to change. (Alaimo, 2022: 21) 

A complex system exhibits specific characteristics. It consists of a great variety of 
elements; this means that the elements are not only numerous, but also different from 
each other, making it difficult to understand. Moreover, elements are often other 
systems, which are in turn formed by systems, and so on. Complex systems are based 
on a systemic hierarchy that allows the control of elements, ensuring that they act in 
a coordinated and harmonious manner. They are ruled by what Haken (1983) defined 
as the slaving principle: the elements at a lower hierarchical level are slaves to the 
upper level and the overall system. In a complex system, the interconnections among 
elements are more important than the elements themselves. A high density and a 
variety of interconnections are typical. Complex systems consist of many different 
elements and relations, which can be analysed only in a synthetic way. In a complex 
system, elements and connections, besides being numerous, vary and differ. A 
particular category of complex systems is the so-called complex adaptive system 
(CAS), an open system consisting of various elements interacting with each other in 
a linear and non-linear way, which constitutes a unique and organic entity capable of 
evolving and adapting to the environment (Waldrop 1992). Holland (1992) 
underlined how all CASs share the same three characteristics: evolution, aggregate 
behaviour, and anticipation. They have the capacity to evolve and learn; they can 
adapt to the environment and change by processing information and building models 
capable of assessing whether adaptation is useful. Thus, they can survive. 

As time goes on, the parts evolve in Darwinian fashion, attempting to improve the ability of 
their kind to survive in their interactions with the surrounding parts. This ability of the parts 
to adapt or learn is the pivotal characteristic of complex adaptive systems. (Holland, 
1992: 19) 

Complex adaptive systems present an aggregate behaviour that does not simply 
come from the behaviours of its elements, but emerges as a novelty from the 
interactions of the parts, as Morin (1977) affirms: 

For the immune system, this aggregate behaviour is its ability to distinguish self from others. 
For an economy, it can range from the GNP to the overall network of supply and demand; for
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ecology, it is usually taken to be the overall food web or the patterns of flow of energy and 
materials; for an embryo, it is the overall structure of the developing individual; for the brain, 
it is the overt behaviour it evokes and controls. (Holland, 1992: 19–20) 

In addition to these two characteristics, there is a third that is difficult to 
understand: the typical ability of complex adaptive systems to anticipate changes. 
To adapt to changing circumstances, CASs develop rules that anticipate the conse-
quences of certain responses. ‘At the simplest level, this is not much different from 
Pavlovian conditioning: “If the bell rings, then food will appear”’ (Holland, 1992: 
20). Of course, the effects of such anticipation are complex, especially when a large 
number of elements are conditioned in different ways. Moreover, anticipation can 
cause large changes in aggregate behaviour, even when they do not come true. 

‘The anticipation of an oil shortage, even if it never comes to pass, can cause a 
sharp rise in oil prices, and a sharp increase in attempts to find alternative energy 
sources’ (Holland, 1992: 20). Socioeconomic phenomena are CASs, consisting of a 
network of elements that interact with each other and with the environment. They are 
multidimensional and evolve by modifying their dimensions and the links between 
them. Therefore, knowledge of these phenomena must consider their complex 
nature. For this reason, measurements in the social sciences have typical character-
istics that differ from those in the natural sciences. This requires the definition of 
systems of indicators capable of capturing the different aspects of the phenomena 
analysed. As can be easily understood, these systems are dynamic because they must 
adapt to changes in the measured phenomena. 

The emergence of the concept of complexity has introduced many important 
innovations in the relationship between human beings and knowledge. In particular, 
the need for a new way of looking at reality emerges: the importance of going 
beyond empirical evidence and trying to grasp at the same time the whole and the 
individual components that compose it. 

3 Measurement in the Social Sciences 

Scientific knowledge is the result of a dialogue between logic and evidence, that is, it 
is generated from the interaction of two levels of scientific analysis: the theoretical– 
formal level, in which theories and hypotheses are developed and abstract concepts 
with their mutual relations are specified; and the empirical level, in which hypoth-
eses are verified through empirical data (Maggino, 2017). Knowledge develops from 
the interaction, necessary and unavoidable, between the theory and observations 
realised by measurement. An empirical observation becomes a datum when evalu-
ated within a theoretical framework. Thus, different types of data can be generated 
from the same empirical observations based on different theoretical frameworks, 
which are systems for comparing observations with one or more models. The 
relationship between the model and the observed data is the product of the measure-
ment (Alaimo, 2022). If empirical observations are consistent with the model, it can



be concluded that the latter provides a good description of reality. Different models 
can represent reality with different levels of accuracy. At the same time, they are 
falsifiable; it is not possible to prove their truth because there is always a context in 
which a specific model can be inconsistent. 
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3.1 Measurement: Definitions and Main Aspects 

The concept of measurement has an ancient origin. We can find the first definition of 
measurement in Book V of Euclid’s Elements: measuring an attribute of an Object A 
means taking a reference Object B (called the unit of measurement) and determining 
how many times B is contained in A. Generally, measurement can be defined as the 
evaluation of the extension of a property in relation to a certain standard, the unit of 
measurement (Michell, 1999). Some attributes, such as velocity, height, and length, 
present a specific internal structure, namely, a quantitative structure. Consequently, 
these attributes were defined as quantities. Specific instances of a quantity are called 
the magnitudes of that quantity (e.g. the height of a person is the magnitude of the 
quantity, height). The magnitudes of a quantity are measurable because, based on the 
quantitative structure, they stand in relations/ratios to one another that can be 
expressed as numbers. A measurement can be defined as ‘any method by which a 
unique and reciprocal correspondence is established between all or some of the 
magnitudes of a kind and all or some of the numbers, integral, rational, or real’ 
(Russell, 2009: 176). This statement is the basis of the so-called representational 
approach, according to which ‘measurement is the numerical representation of facts 
regarding the entities measured. A highly appreciated definition and a starting point 
for the reflections of other scholars is that of Stevens: measurement is the assignment 
of numerals to objects or events according to rules’ (Stevens, 1946: 677). Based on 
Stevens’ statement, for instance, Blalock (1968)  defines measurement as a general 
process by which numbers are assigned to objects so that it is also understood which 
types of mathematical operations can be legitimately used. According to these 
definitions, measurement is an activity that determines a shift from the plane of 
reality in which we observe phenomena to the plane of numbers in which we try to 
encode them. This activity is meaningful and necessary. The rules of Stevens’ 
definition must ensure that the translation is as faithful as possible so that any 
mathematical operations performed on objects are legitimate, as specified by 
Blalock. To ensure their meaningfulness, measures must be based on uniform pro-
cedures to collect, score, and report numerical results. In other words, they must be 
standardised. This ensures that possible foreign components representing the error of 
observation are isolated or minimised. Two types of error can be distinguished. The 
random error refers to all those factors that interfere with the measurement of any 
phenomenon and are ineradicable in the process. This type of error influences the 
reliability, that is, the consistency of a measurement model in terms of the degree of 
accuracy and precision with which the instrument measures and the ability to 
produce consistent measurements. The lower the random error, the higher the level



of reliability. The effects of such an error are completely systematic, and as a result, 
an instrument affected by it may overestimate or underestimate the magnitude of an 
attribute measured in a certain object. The systematic error determines the level of 
validity of the process, that is, the ability of a measurement procedure to measure 
what is intended to measure. There can be two types of systematic errors: method-
ological errors, that is, the error of definition/detection of the attribute to be observed, 
and the specific errors introduced by the observer in the use of the observation 
procedure. The lower the systematic error, the higher is the validity. Random error 
causes one measurement to differ slightly from the other because it is linked to 
unpredictable changes that occur during the process. The systematic error always 
affects measurements by the same amount or proportion, assuming a measurement is 
taken in the same way each time; it is predictable. Random errors cannot be 
eliminated; however, most systematic errors can be reduced. To reduce errors, all 
measurements must rely on a set of assumptions of different types (Alaimo, 2022):

• Theoretical assumptions related to the meanings given to the phenomenon 
measured.

• Procedural assumptions related to the rules of correspondence used in assigning 
numbers to observations.

• Statistical assumptions related to the main characteristics of statistical methods 
can be used for the analysis. 
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Compliance with these assumptions makes standardised measures. 

3.2 Measurement in the Social Sciences: Systems 
of Indicators and Their Construction 

‘When social scientists use the term measurement it is in a much broader sense than 
the natural scientists do’ (Lazarsfeld, 1958: 100). With this statement from his well-
known article “Evidence and Inference in Social Research” (1958), Lazarsfeld 
emphasises that in the social sciences, measurement has a typical character, which 
makes them not comparable to the natural sciences. The author made an essential 
contribution to the study and analysis of measurements in social sciences. He defined 
‘operationalisation’ as the process through which theory and abstract concepts are 
translated into (measurable) variables. The variable is, therefore, the operationalised 
property of an object, since the concept to be operationalised must be applied to an 
object. ‘Between concept, property, and variable there is the same link that exists 
between the weight (concept), the weight of an object (property), and the weight of 
an object measured through the balance (variable)’ (Alaimo, 2022: 47–48). 

Measurement in the social sciences is influenced by objects. Socioeconomic 
phenomena are complex adaptive systems, and, consequently, the approach to 
understanding them must take into account their nature. Measuring these phenomena 
means trying to understand their nature, understanding each of them as a whole. In



this field, dealing with measurements means dealing with systems of indicators. 
What is an indicator? This can be considered as the result of the translation of reality 
to the plane of numbers. The term is often used synonymously with an index, but its 
meanings are profoundly different. The meaning of the term index is anything 
useful to indicate, and it is used in statistics with multiple meanings. The indicator 
is what relates concepts to reality (Maggino, 2017: 92). Horn (1993) defined 
indicators as purposeful statistics. An index becomes an indicator only when its 
definition and measurement occur within the ambit of a conceptual model. Given the 
complex and multidimensional nature of socioeconomic phenomena, their analysis 
involves the identification of different basic indicators connected in a system. Each 
indicator constitutes what is currently measured, with reference to a specific aspect 
or dimension of a phenomenon. A system of indicators is not a simple collection of 
measures, but a complex system. Indicators within a system are interconnected, and 
new properties typical of the system emerge from these interconnections. The 
development of systems of indicators must strictly follow a set of rules codified in 
a step-by-step process, the so-called hierarchical design (Maggino, 2017), which is a 
specification of Lazarsfeld’s operationalisation. The starting question is, what is the 
phenomenon to be studied? Defining a phenomenon is not an easy task, based on a 
process of abstraction influenced by different factors, such as the sociocultural and 
spatial-temporal context in which the phenomenon is studied. Consequently, various 
definitions are possible and legitimate. Indeed, the definition of phenomena is 
subjective because it always depends on the researchers’ point of view, on the 
small windows through which they observe reality and make hypotheses on 
it. Evidently, it is necessary to prevent this subjectivity from becoming arbitrary, 
involving no relationship with reality. The second step is the identification of latent 
variables, each of which is an aspect to be observed. These reflect the nature of the 
phenomenon, which is consistent with the conceptual model. Based on its level of 
complexity, a variable can be described by one or more factors. The different factors 
of each variable are referred to as dimensions. This concept is complex and theoret-
ical. It is possible to handle profoundly different situations. The latent variable can 
assume only one underlying dimension. In other situations, we can deal with latent 
variables with two or more dimensions. Once the latent variables and their dimen-
sionality are identified, the next phase consists of the selection of basic indicators. 
We can adopt a single indicator approach by measuring each latent variable using a 
single indicator. This approach could be weak because it is based on the assumption 
of direct correspondence between one latent variable and one indicator. Generally, 
the multi-indicator approach is preferable, in which, for each latent variable, several 
indicators are identified and selected. This approach increases measurement accu-
racy and precision, compensating for random errors. 
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The rigorous application of hierarchical design and adherence to its underlying 
assumptions enables the creation of a system of indicators suitable for measuring a 
particular phenomenon. One of the main assumptions concerns the specification of 
the model of measurement. The measurement model describes the relationship 
between a construct and its indicators. We can deal with two models: the reflective 
and the formative (Curtis and Jackson, 1962; Blalock, 1964; Diamantopoulos &



Siguaw, 2006; Diamantopoulos et al., 2008). In reflective measurement models, 
causality is from the construct to the measures, that is, measures are considered the 
effects of an underlying latent construct (Bollen & Lennox, 1991). The following 
equation explains this relationship: 
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Fig. 1 Reflective 
measurement model: An 
example with three 
indicators and one latent 
variable 

xi = λiηþ εi 

where xi is the i-th indicator, η is the latent variable, λi is the coefficient capturing the 
effect of the latent variable on the i-th indicator, and εi is the measurement error for 
the i-th indicator. Figure 1 summarises the main components of the reflective model. 

In this model, indicators reflect the latent variable and correspond to the linear 
functions of the underlying construct and measurement error. Each indicator has a 
specific error term, assumed to be mutually independent (cov[εi, εj] = 0 for i ≠ j) and 
unrelated to the latent variable (cov[εi, η] = 0 8 i). Thus, changes in the latent 
variable cause variations in all indicators simultaneously, and all indicators must be 
positively correlated. Internal consistency is fundamental: correlations between 
indicators are explained by the measurement model, and two uncorrelated indicators 
cannot measure the same construct (Bollen, 1984). This model is typical in psycho-
metric research, such as in the measurement of attitudes. ‘Let’s suppose we want to 
measure the intelligence of a group of individuals using the results obtained by each 
of them in a series of tests. In this hypothesis, it is quite evident that the intelligence 
of each individual influences the result of the tests and not vice versa. As a 
consequence, we expect that the results of an individual to the different tests are 
quite the same and, from a statistical point of view, correlated with each other 
(because they are determined by the same latent variable). If a test gives a completely 
different result, it does not measure that specific construct’ (Alaimo, 2022:  55–56). 
Formative models typically measure socioeconomic phenomena in which indicators 
cause a latent variable (Curtis & Jackson, 1962; Land, 1970). ‘Let’s suppose we 
want to measure the gender inequality. We must start with its definition: we can say 
that it refers to systematic differences in the outcome of men and women on a variety 
of issues ranging from economic participation and opportunity, political



empowerment, and educational attainment to health and well-being. In this case, by 
means of the definition, we already identify the components that form the concept 
and, consequently, the indicators to be selected. According to this definition, a 
measure of the gender inequality must take into account economic participation 
and opportunity, political empowerment, and educational attainment to health and 
well-being and use at least one indicator to measure each of them. If one of these 
dimensions is not taken into account, the concept of gender gap changes’ (Alaimo, 
2022: 58). Figure 2 shows the main components of the formative models. 
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Fig. 2 Formative 
measurement model: An 
example with three 
indicators and one latent 
variable 

The model is specified by the following equation: 

η= 
n 

i= 1 

γixi þ ζ 

where xi is the i-th indicator, η is the latent variable, γi is the coefficient capturing the 
effect of the i-th indicator on the latent variable, and ζ is the measurement error that 
includes all remaining causes of the construct not represented in and not correlated to 
the indicators (cov[xi, ζ] = 0). Indicators do not present specific measurement error 
terms (Edwards and Bagozzi, 2000). According to this model, indicators are not 
replaceable; thus, changing an indicator will change the construct. Correlations 
among indicators are not explained by the measurement model, and internal consis-
tency is of minimal importance; formative indicators might correlate positively or 
negatively, or lack any correlation (Bollen, 1984). There is a heated debate in the 
literature on the use of these two models. In particular, authoritative scholars have 
strongly criticised and opposed the use of formative measurement models (Howell 
et al., 2007; Wilcox et al., 2008; Edwards, 2011). Other scholars have strongly 
supported the effectiveness of formative models (Bollen, 2007; Diamantopoulos 
et al., 2008; Bollen & Diamantopoulos, 2017). The debate in the literature continues



to be animated, and it is not the aim of this paper to report this in detail. It is 
important to clarify that the choice of the measurement model does not depend 
directly on the researcher, but only on its appropriateness to the phenomenon that 
one intends to study. If the direction of the relationship is from the construct to the 
measures, we have a reflective model: by contrast, if the direction of the relationship 
is from the measures to the construct, we have a formative model (Coltman et al., 
2008; Alaimo, 2022). 
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A system of indicators is a complex system, the analysis and understanding of 
which require approaches that allow more concise views. As Lazarsfeld (1958) 
states, the concept needs to be reconstituted, and all indicators within the system 
must be brought back to a synthesis. Synthesising data responds to a range of 
cognitive and practical needs, which is justified by the fact that knowledge of 
complex phenomena involves some form of reductio ad unum (Sacconaghi, 
2017). From a methodological point of view, synthesis can concern different aspects 
of a multi-indicator system (Maggino, 2017):

• The synthesis of statistical units aims to aggregate the units in order to create 
macro-units for comparison, with reference to the indicators of interest. The 
statistical methods that allow for this are part of the cluster analysis. In this 
chapter, we will not dwell on these techniques, the literature of which is vast and 
deserves a separate discussion (for more information about cluster analysis, see 
Landau et al., 2011; Hennig et al., 2015; Maharaj et al., 2019).

• The synthesis of statistical indicators aims to aggregate the values referring to 
several indicators for each unit of observation, obtaining a synthetic measure. 
From a technical point of view, the statistical methods used in this case can 
belong to two different approaches: aggregative–compensative and 
nonaggregative. 

Obviously, these two aspects are not mutually exclusive; however, it is often 
necessary to do both for a full understanding of reality (Alaimo, 2022). This chapter 
focuses on the synthesis of statistical indicators. 

3.3 Synthesis of Multi-indicators Systems 

As pointed out previously, the complex and multidimensional nature of socioeco-
nomic phenomena requires the adoption of different measures to analyse and 
understand them. The measurement process in the social sciences is associated 
with the construction of systems of indicators, which makes it possible to measure 
phenomena that would not otherwise be measurable. Similar to the phenomena they 
must measure, these systems are also complex adaptive systems. The complex nature 
of such systems requires a synthetic approach to understand the phenomena as a 
whole. This implies the use of various basic indicators and criteria for summarising 
them. A basic indicator can be defined as an indirect measure of a phenomenon that 
cannot be directly measured. From this perspective, an indicator is not simply raw



statistical information, but represents a measure organically linked to a conceptual 
model aimed at describing different aspects of reality. It can be defined as a 
constructed variable related to a specific aspect or dimension of a complex phenom-
enon. Synthetic indicators are obtained by properly synthesising elementary indica-
tors according to established criteria and rules. It is right to emphasise the adverb 
properly: in fact, if the construction of a synthetic index is not done according to 
specific steps and rules (i.e. properly), the resulting measure may inadequately 
represent reality and lead to misleading conclusions. Synthetic indicators have 
been widely used in the literature and various fields. The main purpose of their 
success is informative. It is easier for the public to understand a synthetic indicator 
(a single measure) than many elementary indicators. 
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Before analysing the main methods for synthesising multi-indicator systems in 
detail, it is necessary to formalise them mathematically. Generally, they consist of a 
set of measures (the basic indicators) at different measurement scale levels, observed 
on a set of statistical units. In its simplest form, a system of indicators is a matrix of 
data X typical of multivariate statistics: 

X ≡ xij : i= 1, . . . ,N; j= 1, . . .M ≡
x11 ⋯ x1M 

⋮ ⋱  ⋮  
xN1 ⋯ xNM 

where the i = 1, . . ., N rows represent the statistical units, the j = 1,  . . ,  M columns 
represent the indicators, and the generic unit xij represents the determination of the j-
th indicator in the i-th unit. We must clarify that in this study, we consider 
the simplest formalisation of the synthesis question, in which we do not deal with 
the temporal dimension. Indeed, in most cases, the multi-indicator systems are in the 
form of three-way data time arrays of type ‘same objects × same variables × times’, 
algebraically formalised as follows: 

Y ≡ yijt : i= 1, . . . ,N; j= 1, . . .M; t= 1, . . . ,T 

where indices i, j, and t indicate the units, indicators, and times, respectively, and xijt 
is the value of the j-th indicator observed in the i-th unit at time t-th. These data 
structures are characterised by a greater complexity of information, consisting of the 
fact that multivariate data are observed at different times (D’Urso, 2000). In this 
chapter, we chose not to deal with the synthesis of three-way data time arrays, the 
complexity of which requires deeper knowledge of the subject (for an overview of 
the main synthetic methods for three-way data time arrays, see, e.g. Alaimo (2022)). 

Given the bi-dimensional data matrix X, the goal of the synthesis is to obtain a 
vector v≡ {vi} with N statistical units, in which the generic element vi represents the 
synthetic value of the i-th unit with respect to all the J indicators:
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X ≡
x11 ⋯ x1M 

⋮ ⋱  ⋮  
xN1 ⋯ xNM 

⇛v ≡ vif g ≡
v1 
⋮ 
vN 

Focusing on how to obtain the synthesis of indicators from a technical point of 
view means focusing on the arrow ⇛ of the previous equation. In the literature, there 
are two different approaches to synthesis: aggregative-compensative, and 
non-aggregative. It should be clarified that one approach is not better than the 
other; each has pros and cons, and their use also (and especially) depends on the 
nature of the indicators. This is a crucial point. As clarified in the previous pages, 
indicators within a system can belong to different levels of the scale of measurement 
(Stevens, 1946). This is a relevant issue because the properties of the indicator 
determine the type of statistical tool that can be used to study it, and consequently, 
influence the choice of method of synthesis for a system of indicators. However, this 
issue is often underestimated. The aggregative-compensative approach is the dom-
inant framework in the literature. As the name suggests, it consists of the mathemat-
ical combination (or aggregation) of a set of indicators by applying methodologies 
known as composite indicators (Saisana & Tarantola, 2002; Nardo et al., 2005; 
OECD, 2008). It is evident that the assumption underlying the construction of a 
composite is the possibility that the basic indicators are mathematically combinable 
and therefore cardinal. Despite such evidence, in the literature, several studies deal 
with nominal or ordinal indicators as if they were cardinal, using for their synthesis 
tools that are inappropriate to their level of scale (for instance, the arithmetic or 
geometric mean). Over the years, research has focused on identifying methods 
suitable for dealing with systems of indicators at different scaling levels. Thus, the 
so-called non-aggregative approach gradually became widespread: the synthetic 
indicator was obtained without any aggregation of the basic indicators. Different 
methodologies have been proposed within this approach, such as social choice 
theory (Sen, 1977; McLean, 1990, Arrow, 2012) or multi-criteria analysis (Nijkamp 
& van Delft, 1977; Macoun & Prabhu, 1999; Belton & Stewart, 2002; Ehrgott et al., 
2005; Zopounidis & Pardalos, 2010). In particular, the partially ordered set (poset) 
theory (Neggers & Kim, 1998; Schroder, 2002) has become a reference, as 
evidenced by the large number of studies using this method for both ordinal (see, 
for instance, Fattore, 2016, Alaimo et al., 2022b, 2023, Fattore & Alaimo, 2023) and 
mixed (see Bruggemann & Patil, 2011; Kerber, 2017; Alaimo et al., 2021a, 2021b, 
2022a) indicator systems. In the following pages, we focus on the aggregative-
compensative approach and on systems in which all indicators are cardinal. 

3.4 The Aggregative-Compensative Approach 

As specified previously, the aggregative-compensative approach involves the aggre-
gation using a mathematical function of the basic indicators. Therefore, a composite 
indicator is a measure based on sub-indicators that have no common meaningful unit



of measurement, and there is no shared method of weighting these sub-indicators. 
Synthesis is a measure not necessarily a number. This can be an image, as 
highlighted by the literature on the use of metaphoric images for the representation 
of phenomena (Tufte, 2001; Lima, 2013). Some authors (for instance, Diener & Suh, 
1997) have criticised the choice of constructing a single composite index, pointing 
out that a more appropriate choice would be to use a dashboard. This is an open issue 
in the literature, and we can find arguments supporting composites or against them. 
A dashboard allows one to avoid an arbitrary choice of the functional form and 
weighting scheme and to observe a phenomenon from multiple points of view. 
However, this does not allow for a simple and direct understanding of the phenom-
enon under consideration. Constructing a composite is not an easy task and involves 
the implementation of different steps and a series of decisions and choices: the 
selection of basic indicators, whether and how to normalise them, and which 
aggregation procedure to choose. Although guided by knowledge of the phenome-
non, most of these choices are subjective and, therefore, often considered 
non-scientific. This is one reason composite indicators have been considered a 
niche field in the literature for many years. Beyond these critics, composites are 
widely disseminated and used in the scientific literature and policymakers. We must 
clarify that there is no universal method for the construction of composites that must 
be guided by expert knowledge of the phenomenon. 
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The construction of a composite indicator is a step-by-step process (Nardo et al., 
2005; OECD, 2008):

• Definition of the phenomenon
• Selection of the basic indicators
• Exploratory analysis of basic indicators
• Normalisation of individual indicators
• Aggregation of the normalised indicators
• Index validation 

The steps are hierarchically ordered; therefore, the next step presupposes the 
previous step. The first two steps are theoretical, but they are not considered separate 
from the statistical-methodological ones (the other three). 

In the previous pages, we discussed that measurement in the social sciences 
begins with the definition of the phenomenon. The concept must always be referred 
to and inserted within a theoretical framework that provides meaning. Particular 
attention should be given to the measurement model as we have seen in the previous 
pages. The choice of the measurement model depends on the appropriateness of the 
phenomenon to be measured and on the nature and direction of the relationships 
between constructs and measures (Alaimo, 2022). All socioeconomic phenomena 
require a formative measurement model. Therefore, in the following pages, we 
assumed that we deal with formative measurement model. The reflective measure-
ment model is most widely used in the psychological and management sciences. The 
synthetic approaches and methods that allow us to deal with reflective models differ 
from those typical of the formative. One of the main methods in reflective models is 
undoubtedly factor analysis (Spearman, 1904; Thurstone, 1931; Cattell, 1978). It



must be clear what the composite wants to measure. If a phenomenon is poorly 
defined, it will certainly be poorly measured. However, the opposite was not true. If 
the phenomenon is well-defined and the matrix is composed of indicators of good 
quality, it is not necessarily the case that the composite index is valid (e.g. if the 
methodology used is not consistent with the indicators). 
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The selection of indicators is a delicate step that cannot be conducted indepen-
dently of the others. The choice of basic indicators is based on a theoretical 
framework. Therefore, the approach used is based on a reasoned selection of the 
indicators included in the system. One question that must be addressed is, how many 
indicators should we consider? There are no unequivocal answers to this question. 
The general rule is that all dimensions of the phenomenon must be represented and 
measured using at least one indicator. Consequently, each latent variable can be 
defined and measured by using a single indicator. This single indicator approach is 
weak and assumes the existence of direct correspondence between one latent 
variable and one indicator. It is preferable to adopt a multi-indicator approach, that 
is, using several indicators for each dimension. This approach allows the overcoming 
(or at least reduction) of problems produced by the single indicator approach. In fact, 
using multiple indicators increases the measurement accuracy and precision, 
allowing one to compensate for random errors. Simultaneously, the risk is that the 
indicators are redundant. Redundancy can be defined as the excess of significant 
elements and information compared to what is strictly necessary for the correct 
understanding of a message. It is often intentional to increase the probability of 
complete reception of the message, even in the presence of noise or disturbances. 
The redundancy of indicators in a system can be useful in increasing the reliability of 
the measurement; the multi-indicator approach reduces the random error. However, 
we often encounter systems with too many indicators in which synthesis may not be 
significant or even possible. Therefore, it was necessary to reduce the number of 
indicators. There is not always a valid rule for this choice that should always be made 
with the theoretical framework and measurement model in mind. Dealing with a 
reflective measurement model, if it is necessary to eliminate indicators from the 
system, we can begin with those that are not correlated with the others because they 
do not measure the latent reflective variable considered. But even if we eliminated 
one indicator correlated with the others, we would have no change in the latent 
variable which ‘causes’ the indicators and remains unchanged. However, the for-
mative models are different. The exclusion of an elementary indicator always affects 
the latent variable and, consequently, the composite indicator. This is because the 
indicators ‘cause’ the latent variable and remove (or add) one change (perhaps even 
slightly) the latent variable. Moreover, if we wanted or needed to eliminate an 
indicator, it would be more appropriate to act on indicators that are highly correlated 
with each other rather than to eliminate an indicator not correlated with the others 
and that, consequently, measures a different aspect of the phenomenon. In general, 
we need to choose a number of indicators that allow us to adequately represent the 
desired conceptual dimension, avoiding redundancy and ensuring the reduction of 
error by finding a compromise between possible redundancies caused by 
overlapping information and the risk of losing information (Salzman, 2003).
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Fig. 3 Examples of linear correlation 

Fig. 4 Examples of non-linear correlation 

The exploratory analysis of basic indicators is an important methodological step 
that aims to answer important questions. Is the latent structure of the synthetic index 
well defined? Are the chosen indicators sufficient to describe the phenomenon? It 
involves the application of multivariate statistical techniques to study the latent 
structure of data and analyse the relationships among the indicators within the 
system. The traditional approach involves the study of correlations between elemen-
tary indicators and principal component analysis (PCA). The term correlation in 
statistics indicates a reciprocal relationship between phenomena; in particular, it 
refers to the reciprocal relationship between two quantitative characteristics. Given 
two quantitative characters, X and Y, there is a positive correlation or concordance 
between them when they tend to increase or decrease together; in other words, when 
as one increases (or decreases), so does the other. There is a negative correlation or 
discordance when; as one variable increases, the other tends to decrease. Correlation 
is a symmetrical concept that does not refer to a cause-and-effect link but to the 
tendency of one variable to change in relation to another. When discussing the 
correlation, two aspects must be considered: the type of relationship between the two 
variables and the form of the relationship. The relationship can be linear if 
(in extreme simplicity) one graphically represents the double distribution through 
a scatter plot, the cloud of points approximates a straight line, as in the examples 
reported in Fig. 3. 

There is a non-linear correlation if one by graphically represents the double 
distribution through a scatter plot, the cloud of points will have a non-linear 
(curvilinear) trend, as in the examples reported in Fig. 4.
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Regarding the form of the relationship, we need to consider the direction, which 
can be positive (if as one variable increases, so does the other) or negative (if as one 
variable increases, the other decreases), and the magnitude, which refers to the 
strength of the relationship between the variables. Correlation coefficients are used 
to express the relationship between two variables in terms of both magnitude and 
direction. The correlation coefficient takes values within the range [-1, 1]:

- 1≤ϕ≤ þ 1

• The maximum value 1 in the case of perfect positive correlation
• The minimum value -1 in case of perfect negative correlation
• the value 0 in case of uncorrelation. 

For exploratory analysis, the most commonly used coefficients for analysing the 
correlation between two variables X and Y are as follows: 

1. Pearson correlation coefficient rX,Y = cov X,Yð Þ  

where cov(X,Y ) are the covariances, σX is the standard deviation of X, and σY 
is the standard deviation of Y. 

N 

6 d2 i 

Spearman’s rank correlation coefficient ρX,Y = 1- i= 1 

N N2ð Þ- 1 

where di = r(xi) - r(yi) is the difference between the two ranks of the i-th 
observation. 

3. Kendall rank correlation coefficient τ= c- dð Þ  
þð Þ  

where c is the number of concordant pairs and d is the number of discordant 
pairs. 

Although important, correlations are not decisive; in the context of constructing 
synthetic indicators, they can be considered as a guide. The first thing to consider is 
the measurement model, remembering that it depends not on an arbitrary choice of 
the researcher but on the definition of the phenomenon and the consequent nature of 
the latent variable. The importance of studying correlations is evident in the case of a 
reflexive measurement model. In fact, the indicators, in this case, are a ‘reflex’ of the 
latent variable. Thus, the correlation between the indicators is explained by the 
measurement model, and the two uncorrelated indicators cannot measure the same 
latent variable. Therefore, correlation analysis allows for the exclusion of indicators 
unrelated to the latent variable. In the case of formative models, the study of 
correlations is equally important. In this case, the internal consistency of the indica-
tors is of minimal importance, and two unrelated indicators can be relevant to the 
same construct. Simultaneously, two highly correlated indicators are likely to mea-
sure the same aspect of the phenomenon (redundancy). PCA is a multivariate 
statistical technique used in the composite indicator field for various purposes:



• To identify the dimensionality of the phenomenon
• To define the weights
• As an aggregation method 
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This technique was first described by Karl Pearson (1901), and was later inde-
pendently developed and named by Harold Hotelling (1933). Let us consider data 
matrix X with N statistical units and M cardinal indicators, as previously described. 
The aim of PCA is to take the M variables V1, . . ., VM and find linear combinations of 
these to produce principal components Z1, . . ., ZM that are uncorrelated: 

Zj = 
M 

i= 1 
aijV i j= 1, 2, . . . ,M 

The weights aij are chosen such that the principal components Ζ satisfy the 
following conditions:

• They are uncorrelated (orthogonal).
• The first principal component accounts for the maximum possible proportion of 

the variance of the set of original variables, the second principal component 
accounts for the maximum of the remaining variance, and so on, until the last 
component absorbs all the remaining variance that is not accounted for by the 
preceding components. 

a1j þ a2j þ . . .þ aMj = 1 j= 1, 2, . . . ,M 

PCA just involves finding the eigenvalues λj of the covariance matrix C: 

C= 
c11 ⋯ c1M 

⋮ ⋱  ⋮  
cM1 ⋯ cMM 

where the diagonal element cii is the variance of Vi and cij is the covariance of 
variables Vi and Vj. The eigenvalues of matrix C are the variances in the principal 
components. There were M eigenvalues. Negative eigenvalues are not possible in a 
covariance matrix. An important property is that the sum of the variances of the 
principal components is equal to the sum of the variances of the original variables. 

λ1 þ λ2 þ . . .þ λM = c11 þ c22 þ . . .þ cMM 

Before performing PCA, the original variables were commonly standardised to 
have zero means and unit variances to avoid one variable having an undue influence 
on the principal components. Thus, matrix C takes the form of a correlation matrix. 
In this case, the sum of the diagonal terms, and hence the sum of the eigenvalues, is 
equal to M, which is the number of variables. The correlation coefficients of the 
principal components Ζ with the variables V are defined loadings, rZj ,Vi (for a more



in-depth discussion of PCA, e.g. see Denis, 2021). In exploratory analysis, PCA has 
only a descriptive purpose. In particular, if the variance explained by the first 
component is high, most of the indicators correlate and represent a single aspect of 
the phenomenon. This leads to the conclusion that we can consider only one latent 
factor and then construct a single composite. Otherwise, if the variance explained by 
the first component is not very high, there are several groups of indicators 
representing different aspects of the phenomenon, and consequently, this seems to 
highlight the presence of more than one latent factor and the necessity of 
constructing more than one composite. There is no precise threshold; in general, if 
the first component explains more than 50% of the total variance, we can consider 
only one latent construct present (Alaimo & Maggino, 2020). The absence of 
correlation among the components is an useful property because it implies that the 
principal components measure different statistical dimensions in the data. It must be 
noted that PCA does not always work in the sense that a large number of original 
variables are reduced to a small number of transformed variables. Indeed, if the 
original variables are uncorrelated, the analysis does nothing. The best results were 
obtained when the original variables were highly correlated, positive, or negative. 
This is a crucial finding. The first principal component, resulting from PCA, is often 
used as a composite indicator. However, it represents highly intercorrelated indica-
tors and neglects others. Therefore, many highly important but poorly intercorrelated 
indicators may not be represented by the composite index. In a formative model, this 
is not a good strategy because an indicator not correlated with the others measures a 
different aspect of the phenomenon. 

The Complexity of Social Phenomena and the Construction of Indicators 49

Table 2 Example: System of 
three cardinal indicators 
observed in four units 

V1 V2 V3 

A 108 21.23 8.66 

B 89 23.56 8.92 

C 90 21.56 8.76 

D 112 21.96 8.62 

At this point, we focus on the technical steps of normalisation and aggregation. 
To facilitate their explanation, we used an example of a system of three indicators 
and four units, as reported in Table 2. 

Normalisation is required to make indicators comparable because they often 
present different measurement units and ranges. The objective is to transform them 
into pure numbers. Given the original data matrix X, the objective is to obtain a 
matrix R ≡ {rij} where rij is the normalised value of the j-th indicator for the i-th 
unit. Normalisation is a very delicate step because it can change the distribution 
and the internal variability of the indicators. There are various normalisation 
methods. We report some of the most common normalisation methods, each of 
which has advantages and disadvantages. Choosing one rather than another affects 
synthesis. This problem can be partially overcome by performing a robustness 
analysis to evaluate the effects of the different procedures on the results obtained.



However, from a conceptual point of view, normalisation does not solve the problem 
of combining different measures, of mixing apples and oranges (Alaimo, 2022). 
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In normalisation, it is necessary to define the polarity of the basic indicators, that 
is, the sign of the relationship between the indicator itself and the phenomenon. 
Therefore, the type of composite we want to construct defines the polarity. In other 
words, some indicators may be positively related to the phenomenon to be measured 
(positive polarity), whereas others may be negatively related (negative polarity). For 
instance, if we want to construct a composite whose increase coincides with an 
improvement in well-being, job satisfaction would have a positive polarity, while the 
unemployment rate would be negative. On the contrary, if we want to construct a 
composite whose increase indicates a worsening of well-being, job satisfaction 
would have negative polarity, while the unemployment rate would be positive. 
After normalisation, all indicators must have positive polarity, that is, an increase 
in the normalised indicators corresponds to an increase in the composite index 
(Maggino, 2017: 166). If some indicators have a negative polarity, they must be 
inverted. There are two main methods for inverting polarity: 

1. The linear transformation involves taking the complement with respect to the 
maximum value. Given the original data matrix X, it is calculated as follows: 

x' ij = max 
i 

xij - xij 

where xij is the value of the j-th indicator in the i-th unit, max 
i 

xij is the maximum 

value of the j-th indicator, and x' ij is the inverted value. This is the simplest technique, 
which allows us to save the same distances between units with different origins. It is 
particularly used with ranking, standardisation, and rescaling normalisation 
methods. 

2. The non-linear transformation consists of taking the reciprocal of the value. 
Given the original data matrix X, it is calculated as follows: 

x' ij = 
1 
xij 

where xij is the value of the j-th indicator in the i-th unit, and x' ij is the inverted value. 
This technique, typically used with indicisation, has been criticised because it 
modifies the distances between units and requires all values greater than 0. 

Table 3 reports the results of the two inversion procedures for indicator V3. 
A particular situation is the so-called double polarity, in which we observe an 

indicator presenting a positive polarity below a certain threshold and a negative 
polarity above it, or vice versa. Examples of such indicators are female-to-male 
ratios, that is, the ratio between the percentage of females and the percentage of 
males. These indicators are particularly used for measuring the gender gap (WEF,



3 1 2  

1 4 4  

2 2 3  

4 3 1  

2021): they have a positive polarity up to the value of 1 (which expresses gender 
equality between women and men); from 1 on, the polarity is reversed. Dealing with 
double polarity, we can use the triangular transformation 
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Table 3 Example: System of 
three cardinal indicators 
observed in four units; linear 
and non-linear inversion of 
polarity for indicator V3 

V1 V2 V3 V ' 
3(linear) V ' 

3(non-linear) 

A 108 21.23 8.66 0.26 0.115 

B 89 23.56 8.92 0.00 0.112 

C 90 21.56 8.76 0.16 0.114 

D 112 21.96 8.62 0.30 0.116 

Table 4 Example: System of 
three cardinal indicators 
observed in four units: ranking 
normalisation 

V1 V2 V3 

A
B
C
D

x' ij = λxj - xij 

where xij is the value of the j-th indicator in the i-th unit, x' ij is the inverted value, and 
λxj is the value of the j-th indicator in which the polarity inverts (the threshold). 

If all the indicators present the same unit of measurement and similar ranges or are 
expressed as percentages or ratios, a good choice is no normalisation, that is, 
aggregating the data of the original matrix. However, in most cases, we do not 
deal with such a situation; hence, we need to normalise. 

Ranking 
The normalised values of the j-th indicator are obtained by ranking its values in all 
statistical units: 

rij = rank xij 

Thus, rij is the rank of the i-th unit in the ranking corresponding to the j-th 
indicator. If two or more units have the same value, several procedures can be used to 
assign a rank. One of the most widely used methods consists of assigning the same 
rank equal to the mean of the ranks they would have had in the case of different 
values. The transformation to ranks purifies indicators from the measurement unit. 
Its main advantage is that it is unaffected by the presence of outliers in the original 
data. However, ranking assumes the same distance between every unit, and conse-
quently, the differences between units cannot be evaluated because absolute level 
information is lost. In Table 4, we report the results of ranking normalisation for the 
reported example.
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Table 5 Example: system of 
three cardinal indicators 
observed in four units; min– 
max normalisation 

V1 V2 V3 

A 0.83 0.00 0.14 

B 0.00 1.00 1.00 

C 0.04 0.14 0.47 

D 1.00 0.31 0.00 

Re-scaling or Min–Max 
The normalised values of the j-th indicator were re-scaled in the range [0, 1] as 
follows: 

rij = 
xij - min 

i 
xij 

max 
i 

xij - min 
i 

xij 

where max 
i 

xij and min 
i 

xij are, respectively, the minimum and maximum values 

(commonly the observed values in the N statistical units) that represent the possible 
range of the j-th indicator. Reporting an indicator in the range [0, 1] can be an 
advantage, giving an easy-to-read representation. Moreover, the range of indicators 
with very little variation will increase, which will contribute more to the composite 
(this is evident in the example in Table 5). The main drawback is that being based on 
the range, it is sensitive to outliers. In Table 5, we report the results of the min–max 
normalisation for the reported example. 

Standardisation or z-scores 
The normalised values of the j-th indicator were obtained as z-scores, converting the 
indicator to a common scale with 0 mean and standard deviation equal to 1, as 
follows: 

rij = 
xij - μj 
σj 

where μj = 

N 

i= 1 

xij 

N and σj = 

N 

i= 1 

xij - μjð Þ2 
N are the arithmetic mean and standard devi-

ation of the indicator j-th. The main advantage of this method is that it reports the 
indicator to a standard Gaussian distribution and, consequently, simplifies the 
analysis. The main drawback is the presence of negative values, which can be a 
limitation of some aggregation methods (i.e. geometric mean). In Table 6, we report 
the results of the z-score normalisation for the reported example. 

Indicisation 
The normalised values of the j-th indicator are obtained as percentage ratios between 
the original values and a reference, as follows:



x
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Table 6 Example: System of 
three cardinal indicators 
observed in four units: 
z-scores normalisation 

V1 V2 V3 

A 0.399 -0.822 -0.597 

B -1.214 1.436 1.343 

C -1.129 -0.502 0.149 

D 0.739 -0.114 -0.896 

μj 
a 103.300 22.078 8.740 

σj 
a 11.776 1.032 0.134 

a Arithmetic mean and standard deviations of indicators are calcu-
lated based on the original values reported in Table 2 

Table 7 Example: System of 
three cardinal indicators 
observed in four units: 
indicisation 

V1 V2 V3 

A 96.429 90.110 97.085 

B 79.464 100.000 100.000 

C 80.357 91.511 98.206 

D 100.000 93.209 96.937 

rij = ij 

xoj
* 100 

where xoj is the reference value selected for the j-th indicator, which generally 
corresponds to the maximum observed or to a general benchmark. This method 
makes it possible to decouple indicators from the unit of measurement and to 
preserve the relative distance between different units. The main drawback of this 
method is its high sensitivity to outliers. In Table 7, we report the result of the 
indicisation for the example reported using the maximum value observed in each 
indicator as a reference value. 

The following step is the aggregation of normalised indicators, that is, the 
composition of the normalised indicators into a single synthetic index. In the 
literature, many methods have been proposed for constructing composites (there is 
no objective of this chapter to report a review of all aggregation methods and 
procedures in the literature; for more detailed information, see Saisana & Tarantola 
(2002), OECD (2008), and Maggino (2017)). Each method has its advantages and 
disadvantages; there is no such thing as the best method. The method used has an 
impact on the results obtained, in particular, the definition of the importance of each 
individual indicator (weighting) and the identification of the technique for 
synthesising the indicators. 

The choice of weighting has a large impact on the values and consequently on the 
meaning of the composites. Thus, it is essential to understand the effects of one 
choice on another. In the literature, there are different approaches to the weighting 
issue, which can be traced to three categories (Gan et al. 2017):



• Giving to all the indicators the same weight (equal weighting)
• Weights derived from the statistical characteristics of the data and attributed as 

the result of a statistical method, for instance, principal component analysis 
(statistic-based weighting)

• Weights assigned to individual indicators based on the judgments of the public or 
experts (public/expert opinion-based weighting) 
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No agreed-upon methodology exists to weigh basic indicators. The simplest 
weighting strategy, that is, attributing equal weight to all basic indicators, consider-
ing them equally important (Nardo et al., 2005) is the most commonly used. This 
method is not without criticism, especially from those who consider a possible 
misconception of the underlying logic according to which the weight assigned to a 
variable can be directly interpreted as a measure of its importance to the value of the 
composite (Becker et al., 2017: 12). The statistical method, for instance, using the 
results of PCA, is very questionable because most of the time it is based on the 
correlations among basic indicators and, as we have seen, their interpretation 
changes according to the measurement model. It is likely that the best method is 
based on the opinions of stakeholders and experts. When the latter cannot be used, a 
good strategy could be to select a limited number of robust indicators, giving them 
the same weight (Alaimo, 2022). 

Aggregation methods can be classified according to various criteria (Gan et al., 
2017). One of the main classifications is based on the degree of toleration/substitut-
ability among the basic indicators. The components of a synthetic index are called 
substitutable if a deficit in one component can be compensated for by a surplus in 
another. The assumption of component substitutability implies the adoption of 
additive aggregation methods (e.g. arithmetic mean). The components are defined 
as nonsubstitutable if no compensation is allowed between them. In this case, 
multiplicative (e.g. geometric mean) or noncompensative methods are adopted. 
Thus, this conceptual assumption has an important effect on the other steps of the 
construction of the composites, in particular, the selection of the aggregation func-
tion. Based on this classification criterion, we can distinguish between the following:

• Additive aggregation methods: They employ functions that sum the normalised 
values of the basic indicators to form a composite index. The most widely used 
additive method is the weighted arithmetic mean. Given the normalised matrix 
R ≡ {rij}, the value of the composite indicator Ci for generic unit i-th is obtained 
as follows: 

Ci = 
M 
j= 1rijwj 

M 

where wj is the weight of the j-th indicator. The weights must satisfy the following 
constraints: wj > 0 and M 

j= 1wj = 1. In the case of equal weighting, that is, wj = 1 M, 
we have the simple arithmetic mean. This technique implies full compensability such



that poor performance in some indicators can be compensated for by sufficiently 
high values in other indicators. 
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Table 8 Example: System of 
three cardinal indicators 
observed in four units; min– 
max normalisation; arithmetic 
and geometric mean 
aggregation 

V1 V2 V3 Ci (arithmetic) Ci (geometric) 

A 0.83 0.00 0.14 0.323 0.000 

B 0.00 1.00 1.00 0.667 0.000 

C 0.04 0.14 0.47 0.217 0.138 

D 1.00 0.31 0.00 0.437 0.00

• Multiplicative aggregation methods: Multiplicative functions are used on the 
normalised values of basic indicators to form a composite index. The most 
widespread method is the weighted geometric mean. Given the normalised matrix 
R ≡ {rij}, the value of the composite indicator Ci for generic unit i-th is obtained 
as follows: 

Ci = 
M 

j= 1 

r 
wj 

ij 
M 

where wj is the weight of the j-th indicator. The weights must satisfy the following 
constraints: wj > 0 and M 

j= 1wj = 1. In the case of equal weighting, that is, wj = 1 M, 
we have a simple geometric mean. Geometric mean-based methods only allow 
compensability between indicators within certain limitations (partially compensa-
tive) because of the geometric-arithmetic mean inequality (Beliakov et al., 2007), 
which limits the ability of indicators with very low scores to be fully compensated 
for by indicators with high scores. 

In Table 8, we report the results of the aggregation using simple arithmetic and 
geometric means for the values normalised with min-max (Table 5). 

Additive and multiplicative methods imply total and partial compensation, 
respectively, among the basic indicators. The compensability issue is not only 
methodological but also, and above all, conceptual. Choosing one approach over 
the other affects not only the values of the composite but also, and more importantly, 
the interpretation of the phenomenon being measured. For instance, looking at the 
Human Development Index (UNDP, 1990), if we admit full compensability, we 
implicitly affirm that a surplus in education can compensate for a deficit in health. 
This is highly questionable. However, if we affirm the non-compensability of the 
basic indicators, we risk crushing the results of our synthesis. A possible solution 
identified in the literature (Casadio Tarabusi & Guarini, 2013; Mazziotta & Pareto, 
2016) is the adoption of a partially compensative method, that is allowing compen-
sation ‘up to a certain point’; however, the question would arise as to what is the 
permissible and tolerable threshold of compensability. 

The Benefit of the Doubt (BoD) approach is an aggregative method for composite 
indicator construction (Cherchye et al., 2007; Rogge, 2018) based on Data



Envelopment Analysis (DEA), a linear programming technique that is useful for 
measuring the relative efficiency of decision-making units on the basis of multiple 
inputs and outputs (Farrell, 1957; Charnes et al., 1978). The efficiency of a set of 
indicators can be adapted to construct a synthetic indicator using input-oriented 
DEA. The synthetic measure is obtained as the weighted sum of the normalised 
indicators relative to a benchmark. More precisely, it is defined as the performance 
of a single unit divided by the performance of the benchmark: 
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BoDi = 
M 
j= 1rijwij 

r*ij 

where rij is the normalised value of the j-th indicator for the i-th statistical unit 
according to the min–max procedure, wij is the corresponding weight, and r*ij is the 
benchmark given by the following: 

r*ij = max
ri2 1,...,N½ ]

M 

j= 1 
rijwij 

The identification of the optimal set of weights guarantees that each unit is 
associated with the best possible position compared to all the others. Optimal 
weights were obtained by solving the following equation: 

BoD*
i = max

wij 

M 
j= 1rijwij 

max 
k2 1, ...,N½ ]

M 
j= 1rkjwkj 

,8i= 1, . . . ,N 

under the constraint that the weights are non-negative, and the result is bounded [0, 
1]. The most favourable weights were always applied to all observations. The main 
advantages of this method are related to the DEA solution. Because the weights are 
specific for each unit, cross-unit comparisons are not possible, and the values of the 
scoreboard depend on the benchmark performance. Another drawback is the multi-
plicity of the equilibria. Hiding the problem of multiple equilibria prevents the 
weights from being uniquely determined (even if the composite indicator is unique). 
The optimisation process could lead to many 0-weights if no restrictions were 
imposed on the weights. 

The construction of a composite involves different subjective choices: the selec-
tion of individual indicators, choice of aggregation model, and weights of the 
indicators. All these subjective choices are the bones of the composite indicator, 
and together with the information provided by the numbers themselves, shape the 
message communicated by the composite indicator (OECD, 2008). The effective-
ness of a composite index also depends on testing its assumptions, which is the 
purpose of the validation. It evaluates the robustness of the composite index in terms 
of its capacity to produce correct and stable measures and its discriminant capacity 
(Maggino, 2017). The robustness of a composite index is assessed by uncertainty



analysis, which focuses on how uncertainty in the input factors propagates through 
the structure of the composite index and affects the results. The sensitivity analysis 
focuses on how much each individual source of uncertainty contributes to the output 
variance (Saisana et al., 2005). Used during composite construction, these proce-
dures help in indicator selection, add transparency to the index construction process, 
and explore the robustness of alternative composite index designs and rankings. The 
discriminant capacity of a composite index is assessed by exploring its capacity to 
discriminate between units and/or groups, distributing all the units without any 
concentration of individual scores in a few segments of the continuum, showing 
values that are interpretable in terms of selectivity through the identification of 
particular reference values or cut-off points (Maggino & Zumbo, 2011). 
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