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Abstract. Unmanned aerial vehicles (UAVs) have diverse applications
in various fields, including the deployment of drones in 5G mobile net-
works and upcoming 6G and beyond. In UAV wireless networks, where
the UAV is equipped with an eNB or gNB, it is critical to position it opti-
mally to serve the maximum number of users located in high-capacity
areas. Furthermore, the high mobility of users leads to greater network
dynamics, making it challenging to predict channel link states. This study
examines the use of Proximal Policy Optimization (PPO) to optimize the
joint UAV position and radio spectrum resource allocation to meet the
users’ quality-of-service (QoS) requirements.

Keywords: 5G · 6G · Unmanned aerial vehicle (UAV) · resource
allocation optimization · deep reinforcement learning (DRL) · Proximal
Policy Optimization (PPO) · Deep Reinforcement Learning (DQN)

1 Introduction

The beauty of Unmanned Aerial Vehicles (UAVs), which includes drones, have
recently attracted lots of researcher’s attention in the industrial fields due to their
ability to operate and monitor activities from remote locations; moreover, UAVs
are well known for their portability, lightweight, low cost and flying without a
pilot. UAV features make it suitable to be integrated into the fifth-generation
(5G) and the networks beyond 6G wireless networks, where UAV can be deployed
as aerial base stations into what is called the UAV-assisted [1,2]. Such situations
include quick service recovery after a natural disaster and offloading base sta-
tions or the Next Generation Node B (gNBs) at hotspots in case of failure or
malfunction of the ground base station or the gNB. In addition, UAV can be
used to enhance network coverage and performance, where the location of the
UAV can be controlled and dynamically changed to optimize the network per-
formance according to the users’ needs and their mobility model. Such scenarios
are represented in Fig. 1.
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Fig. 1. UAV emergency model.

A UAV-assisted application was investigated in terms of performance analy-
sis, resource allocation, UAV placement and position optimization, channel mod-
eling, and information security as in [3,4] and [5]. UAV-assisted wireless com-
munications have three main types; the first type is called UAV-carried Evolved
Node B (eNB) or gNB, where the UAV acts as an aerial base station and is
used to extend the network coverage [6,7] and [8]. The second type is called
UAV relaying, where the UAVs are used as aerial relays to provide a wireless
connection for users that cannot communicate with each other directly [9,10].
Finally, the third type is identified as a UAV-assisted Internet-of-Things (IoT)
network, where UAVs assist the IoT network in collecting/disseminating data
from/to its nodes or charging its nodes [11] and [12].

However, due to the UAV’s limitations, only some applications use UAVs in
the existing systems. The fundamental limitation is the battery life of the UAV,
which is affected by the high power consumption dissipated in the hovering,
horizontal, and vertical movements of the drone. Besides the battery life, the
position of the UAV is also a significant concern in implementing real systems.

One of the significant applications of using the UAV in the communication
system is during emergencies (such as floods or earthquakes, ... etc.) while the
infrastructure is partially or totally unavailable, and the need to provide mobile
service to the users is highly required. In these situations, the UAV can perform
this task and provide mobile services to the user equipment (UE’s) while granting
the required quality-of-service (QoS). The main challenge for using the UAV-
assisted network is to find the optimal position of the UAV in the cell area before
getting a dead battery. Which is very complicated and challenging to determine,
and the traditional optimization methods of artificial intelligence (AI) cannot
solve those complicated optimization problems.
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In order to address those two concerns, Reinforcement learning (RL) algo-
rithms are applied, especially deep reinforcement learning, which has been proven
to outperform the existing traditional algorithm. In this work, we introduced a
different deep RL algorithm to solve the UAV-assisted joint position and radio
resource allocation optimization problem. The main target is to find the optimal
position of the UAV that is dynamically changed concerning the UE’s required
QoS and consider the UAV battery energy level in each time step, in addition
to the required energy to get back to the start point.

Our main contribution in this study is presented as follows. We developed
a method that collaboratively optimizes communication resource allocation and
position for the UAV based on reinforcement learning, where the position and
radio resource allocation joint optimization problem is formulated to obtain
the maximum cumulative discounted reward. For the non-convexity nature of
the optimization problem, we designed and applied different deep reinforcement
learning algorithms for the UAV to solve the joint optimization issue, then we
compared these algorithms’ performance to solve the proposed problem; these
algorithms are Proximal Policy Optimization (PPO) and Deep Reinforcement
Learning (DQN).

Section 2 reviews the related literature on optimizing the position and
resource allocation in UAV-assisted networks. Also, we review the reinforcement
learning application in such optimization problems for UAV-assisted wireless
networks. System model and problem formulation are illustrated in Sect. 3, and
simulation and results are presented in Sect. 4. The conclusion is discussed in
Sect. 5.

2 Related Work

The design of UAV position for improving various communication performance
metrics has gained significant attention, as shown in various studies such as
in [13], which focused on optimizing the spectrum efficiency and energy effi-
ciency of a UAV-enabled mobile relaying system by adjusting the UAV’s flying
speed, position, and time allocation. [14] aimed to optimize the global minimum
average throughput through optimized UAV trajectories and OFDMA (orthog-
onal frequency-division multiple access) resource allocation. [15] explored the
UAV-enabled wireless communication system with multiple UAVs and aimed to
increase the minimum user throughput by optimizing communication schedul-
ing, power allocation, and UAV trajectories. In [16], UAVs served as flying Base
Stations (BSs) for vehicular networks, delivering data from vehicular sources to
destination nodes. The authors determined the optimal UAV position and radio
resource allocation by combining Linear Programming and successive convex
approximation methods.

Despite the deployment optimization of UAVs, machine learning (ML) algo-
rithms have been introduced to optimize different QoS network requirements.
The reinforcement RL and deep learning (DL) received the foremost researchers’
focus in this field. Such researches as in [17], where the authors proposed UAV
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autonomous indoor navigation and target detection approach based on a Q-
learning algorithm. While in [18], the authors proposed multi-agent reinforce-
ment learning to optimize the resource allocation of the multi-UAV networks,
and the algorithm is designed to maximize the systems’ long-term reward. The
authors of [19] have considered RL algorithms to optimize UAV’s position to
maximize sensor network data collection under QoS constraints. Moreover, in
[20], the researchers adopted deep learning RL based to dynamically allocate
radio resources in heterogeneous networks.

Based on the related literature review, a limited number of researchers are
solving the UAV position’s joint optimization problem and the UE’s resource
allocation. Motivated by that, we applied the deep RL algorithms to solve this
optimization problem.

3 An RL-Based Approach

We considered a multi-rotor UAV with total energy Emax that flying at a fixed
altitude of hmax from a base point denoted by s0 = (x0, y0). The UAV has
an onboard gNB that will serve K subscribers within a specific area. At the
beginning (τi) of time slot i, the gNB decides the assignment of Resource Blocks
(RB) for each customer according to specific criteria; in our study, we adopt
the customer’s QoS requirements, and the channel quality, where the gNB can
measure the channel quality of each user’s device and allocate the RB’s based on
a minimum requirement to maintain the network performance. We assume that
the gNB receives the CQI values. (CQI(i) = [CQI1,i, CQI2,i, . . . , CQIk,i]) of
k = {1, ...,K} user equipment (UEs) at time instance τi where i = 0, . . ., which
is in accordance with the time-slot operation of the gNB, so τi+1 − τi = Δ. At
each time step τi = a × i × Δ, the UAV decides to continue flying or get back
to the base point while monitoring the battery level. For this problem, we apply
Reinforcement learning (RL) for flight control as follows:

– At each time step τi, the state si = [(xi, yi, hmax, Ei), [CQIk,i]] ∀ k ∈
[0,K] consists of UAV position, which can be denoted by the coordinates
(xi, yi, hmax) and the UAV battery energy level, in addition to the received
CQI values, form the UE’s CQIk,i∀k ∈ [1,K], and the UAV battery level Ei.

– We assume that the altitude of the UAV is fixed in this study, which can
lead to the possible actions: backward, forward, left, right, and hovering in
the same location and returning to the base point. The action space is A ==
{L,R, FW,BW,HO,RE}.

– The reward function ri =
∑K

k=1 Uk,i is defined as the total number of served
UE’s in each time step, where the binary variable Uk ∈ {0, 1},∀k, which
is asserted if the UAV succeeded in serving the kth UE, and allocated the
required resources to guarantee the minimum throughput required to provide
coverage for the cell in emergencies. Otherwise, Uk is set to 0. In this study, we
adopt the max CQI scheduling allocation of the UE’s, where the UE’s with
the highest values of CQI are allocated while there are available resource
blocks in the radio frame.
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The energy consumption of the UAV consists of mainly two parts: one that
is required to provide the onboard gNB with its energy to operate, and the other
is the propulsion energy of the UAV so that it can fly around. The UAV will
decide to get back to the base point by monitoring its battery energy level (Ei)
at each time step τi, and compare it with the energy required to fly back to
the start point s0 = (x0, y0) from its position point (Ei+1,r). The UAV battery
energy constraints is assumed to be:

Ei > Ei,r AND Ei+1 > Ei+1,r. (1)

4 Simulation and Analysis

4.1 Models Used in Simulation

User Mobility. User mobility modeled in this research is based on the Gauss-
Markov Mobility Model [21]. Where the Mobile nodes (UE’s) are located in
random locations within the cell area, these nodes will set their speed as for
the kth UE the speed is denoted as (Vi,k) and its direction denoted as (Di,k)
for each specific step (i). At every step i, the current position of the kth UE
coordinates (xk,i, yk,i) depends on the previous location (xk,i−1, yk,i−1), previous
speed Vk,i−1 and previous direction Dk,i−1, assuming the directions values can be
set to ∈ [0, 90, 180, 270], to follow the proposed grid world model of the network
cell. The kth UE position at the ith step, is expressed as

Xk,i = Xk,i−1 + Vk,i−1 cos Dk,i−1,

Yk,i = Yk,i−1 + Vk,i−1 sin Dk,i−1.
(2)

Parameters Vk,i−1 and Dk,i−1 are chosen from a random Gaussian distribution
with a mean equal to 0 and a standard deviation equal to 1.

RB Scheduling Algorithm. In our study, we adopt the best-CQI scheduling
algorithm to allocate RB to the UE, where the gNB Scheduler allocates the RBs
to the UE’s that reported the highest CQI during Transmission Time Interval
(TTI), where the higher CQI value means a better channel condition.

Energy Consumption Model for Multi-rotor UAV. In this study, we con-
sidered rotary-wing UAV, the UAV has four brushless motors which are powered
by the carried battery, and they rotate at the same constant speed ωrotor. The
UAV will fly to a specific position and hover or continue flying to the next posi-
tion. We follow the forces model in [22] to derive the energy consumption for both
UAV motion phases. The propulsion power of the UAV is essential to support
the UAV’s hovering and moving activities either the vertical movement, where
in our study, we assumed the UAV height is constant; thus, we will not consider
this movement phase, the other movement type is the horizontal movement from
one position to another in the cell grid.
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Fig. 2. UAV hovering state forces. Fig. 3. UAV forward state forces.

Hovering is one of the motion activities of the drone, where the thrust of the
rotor is used to equilibrate the gravity effect completely; Fig. 2 represents the
hovering phase forces. Thrust is denoted by:

FT =
1
2
ρNrotorAuavVuavωrotor, (3)

where ρ is the air density and equals to (1.225 kg/m2), the rotor propeller area
is Auav and is equal to Auav = πr2

uav where ruav is the propeller radius. Finally,
the number of UAV rotors is represented by the variable Nrotor. The VUAV is
the resultant velocity of the drone, and the hovering phase is equal to the motor
speed, which is denoted by ωrotor and can also be defined as the induced velocity
of the rotor blades.

In the hovering phase, the thrust of the drone motors must equal the gravi-
tational force (mtot × g), where the value of Vuav =

√
2mtot × g/(ρAuavNrotor).

Accordingly, in time step duration Δ where the power is equal to Phov = FT Vuav,
with V = 0, the energy that the battery must supply is only that to defy the
weight force, and considering the UAV motor efficiency ηmot and the propeller
efficiency ηpro is defined as

Ehov =

√
2(mtot × g)3

ρAuavNrotor
× 1

ηmotηpro
× Δ. (4)

where mtot is the total mass in Kg and equals to the sum of UAV mass (muav),
the payload (the carried gNB) (mpld) and the battery (mb), i.e. mtot = muav +
mb + mpld. The earth gravitational force g and equals to (9.81 ≈ 10m/ss).
Finally, ηmot is the efficiency of the UAV motor.

The UAV horizontal movement is considered the most challenging drone
motion to estimate; where according to Newton’s 1st low where the drone
required to generate motors thrust force (FT ) that is equal and opposite to
the total sum of forces consists of drag force (FD) due to the drone speed and
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the weight force (FW = mtot × g) due to the total weight of the drone and it is
cargo (battery and carried gNB). All horizontal movement forces are shown in
Fig. 3. The vertical forces under the equilibrium condition are mathematically
represented by

FT × cos φtilt = mtot × g. (5)

Applying Newton’s 1st law to find the UAV velocity required to maintain the
required conditions, the forces are denoted by

FD = FW × tan φtilt =
1
2
CDρAeff

uavV 2
UAV , (6)

where CD represents the drag coefficient, and Aeff
uav represents the vertical pro-

jected area of the UAV and can be evaluated as Aeff
uav = Aside

uav sin (90 − φtilt) +
Atop

uav sin φtilt, where Aside
uav and Atop

uav represents the side and top surface of the
UAV, which can be approximated as Aeff

uav = Atop
uav sin φtilt. To evaluate the UAV

energy consumed in the horizontal movement of the drone with constant speed,
and using Eqs. 5 and 6, the power formula denoted by Phor = FT Vuav is pre-
sented as

Ehor =

√
2(mtot × g)3

CDρAeff
uavNrotor

× sin φtilt

cos3 φtilt
× 1

ηmotηpro
× Δ, (7)

where ηmot and ηpro are the efficiency of the motor and the propeller, respec-
tively. The UAV properties and parameters values used in the simulation are
represented in Table 1, in addition to the UAV battery specifications, which
represent the battery model installed with DJI Matrice 600 Pro drone models
[23]. At a given trajectory (xi, yi, hmax), the remaining energy of the UAV can
be expressed as

Ei = Emax −
i∑

i=0

Ei. (8)

Energy Model of gNB. Path loss is modeled as the probability model that
consists mainly of two components, i.e., LoS and NLoS. LoS connection prob-
ability between the receiver and transmitter is an essential factor and can be
formulated as [24]

pLoS,k(i) =
1

1 + aLOS · exp (−bLOS (φk(i) − aLOS))
, (9)

where aLOS and bLOS are environmental constants, and φk(i) is the eleva-
tion angle in degree, and it depends on the UAV height as well as the dis-
tance between the UAV and user k, the elevation angle can be evaluated from
φk = − 180

π sin−1( h(i)
dk(i) ). Furthermore, h(i) is the UAV height, and dk(i) is the

distance between the UAV and the kth UE and defined as

dk(i) =
√

h2(i) + (x(i) − xk(i))2 + (y(i) − yk(i))2. (10)
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Table 1. UAV energy model parameters simulation values.

UAV and motor parameters

Notations Physical definition Simulation value

muav UAV Weight (6×TB48S batteries) 10 kg

ρ Air density in kg/m3 1.225

CD Drag coefficient 0.044

ruav Propeller radius in meter [m] 0.1905

Atop
uav UAV top area [m2] 0.3

Vuav Max UAV speed 18m/s

Nrotor Number of rotors 6

φtilt Tilt Angle values 25◦

Nbattery Number of batteries 6

ηmot Motor efficiency 0.8

ηpro Propeller system efficiency 0.8

UAV battery model parameters

Parameter Simulation value

Battery model TB48S

Battery type LiPo 6S

Weight 680 g

Capacity (Q) 5700 mAh

Voltage 22.8V

Energy 129.96 Wh

eNB model parameters [26]

Parameter Simulation value

LTE Mode TDD

Frequency Bands 400 Mhz: (400–430) Mhz

600 Mhz: (566–626) Mhz, (606–678) Mhz

1.4 Ghz: (1447–1467) Mhz

1.8 Ghz: (1785–1805) Mhz

Channel Bandwidth 5/10/15/20 MHz

Max Output Power 15 W

Power Supply 48V DC or 220V AC

Power Consumption 150W

MIMO 2 × 2

Dimensions 330 * 260 * 110 mm

Weight 5.5 kg

Users 200

The probability of having NLoS communication between the UAV and kth UE
is denoted by:

pNLoS,k(i) = 1 − pLoS,k(i). (11)

Hence, the mean path loss model (in dB) we adopt the following equation
from [24]

Lk (h, dk, i) (dB) = LLoS,k(i) × pLoS,k(i) + LNLoS,k(i) × pNLoS,k(i), (12)



Deep Reinforcement Learning for Jointly Resource Allocation 79

where, LLoS,k(i) and LNLoS,k(i) are the path loss for LoS and NLoS communi-
cation links and denoted by

LLoS,k(i) = 10 × αpl log
(

4πfcdk(i)
c

)

+ δLoS, (13)

LNLoS,k(i) = 10 × αpl log
(

4πfcdk(i)
c

)

+ δNLoS, (14)

where αpl is the path loss exponent and its environment-dependent variable, both
of the δLoS and δNLoS are the mean losses due to LoS and NLoS communication
links, c = 3 × 108 the speed of light and fc is the network operating frequency.

With γk(i) represents the Signal-to-Noise Ratio (SNR) of the kth UE at the
ith step, while assuming Pr,k(i) is the received signal power at the kth UE, the
SNR is defined as

γk(i) =
Pr,k(i)

σ2
. (15)

The SNR can be rewritten in terms of the path loss and transmitted UAV
power as

γk(i) =
Pk(i) × Lk(i)

σ2
, (16)

where Pk(i) is the transmitted power from the UAV to the kth UE at the ith

step.
The 5G NR maximum data rate of the kth UE can be evaluated in Mbps

using the formula defined in [25], and expressed as:

Rk(i) = 10−6 ·
J∑

j=1

(

Ωj, k · Mj,k · ζj,k · CR,max · NRB
j,k (i) · 12

Tμ
s

· (1 − OHj,k)

)

,

(17)
where J represents the number of aggregated component carriers, (Ωj,k) is the
maximum number of layers, and (Mj,k) is the modulation order. In contrast,
(ζj,k) is a scaling factor that has values of (1, 0.8, 0.75, and 0.4). The code
rate is denoted by (CR,max), and is can have the values in Tables 5.1.3.1-1,
5.1.3.1-2 and 5.1.3.1-3 in 3gpp.38.214 with a maximum value of (948/1024).
The numerology μ can have the values of [0, 1, 2, 3, 4] which responds to the
subcarrier spacing (SCS) of 15 kHz, 30 kHz, 60 kHz, 120 kHz and 240 kHz. The
variable Tμ

s represents the average OFDM symbol duration for certain μ and
can be evaluated as (Tμ

s = 103

14×2µ ). The NRB
j,k (i) is the number of allocated RBs

to the kth UE at the ith step. Finally, OHj,k denotes the overhead and can have
the values of (0.14, 0.18, 0.08, and 0.10).

Moreover, the data rate can have another formula to be evaluated according
to [25], as

Rk(i) = 10−3 ·
J∑

j=1

TBSj,k(i) × 2μ, (18)

where TBSj,k is the total maximum number of DL-SCH transport block bits
received within a 1ms TTI for the kth UE and jth carrier.
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4.2 Simulation Results

In our case study, we considered one UAV that flies at a maximum altitude of
hmax = 200 m over grid area size (1500×1500), The simulation parameters listed
in Table 1 and the network setting listed in Table 2. In each episode, there are
two scenarios for the UE’s mobility. One scenario is considering 20 number of UE
which are generated and distributed randomly in the cell area while assuming
random walk mobility model to be the mobility model for the UE within the
cell, moreover, the second scenario considered placing four UE’s and fix their
positions at the corners of the cell.

Table 2. Parameters for simulation.

Parameter Value

Bandwidth 10 MHz

Transmitted power 23 dBm

Frequency 2 GHz

Noise power −174 dBm

Path loss threshold −220 dBm

MIMO 2 × 2

The deep RL algorithms PPO and DQN models were constructed and trained
on a random proposed environment where the UAV carries the eNB and flies
around the cell to provide mobile services to the maximum number of UE’s.
The battery capacity of the UAV was initialized with a value Emax. The first
scenario where the mobility of the UE’s is considered, we illustrate the compar-
ison results for applying PPO and DQN RL algorithms then tuned them with
different learning rates (lr) values: [0.01, 0.001, 0.0001].

The accumulative rewards for each iteration of the training is illustrated in
Fig. 4, in this training results the PPO which was tuned wit learning rate 0.001
has the better performance than the other to solve the optimization problem. The
other scenario in which we placed four UE’s corners of the cell, Fig. 5 illustrates
the accumulative rewards achieved in each training iteration using both model
(PPO and DQN) which are in addition tuned with different learning rates (lr)
[0.01, 0.001, 0.0001]. Comparing the performance of the RL algorithms showed
that the PPO agent which tuned with lr = 0.01 or lr = 0.001 proves a superior
performance than the others.
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Fig. 4. Max reward per episode - 20 UE with random walk mobility model.

Fig. 5. Max reward per episode - 4 UE places at cell corners.

5 Conclusion

In this paper, we developed a framework for UAV autonomous navigation in
urban environments that takes into account trajectory and resource allocation
and the battery limitation of the UAV while taking into account the UE mobility
within the environment. We deploy the RL PPO-based algorithm, which allows
the UAV to navigate in continuous 2D environments using discrete actions, where
the model was trained to navigate in a random environment. Then evaluated,
the PPO and DQN algorithms while tuning the agents with different learning
rate values, and then compared the results accordingly.
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