
Traffic Optimization by Local Bacterial
Memetic Algorithm

Szilárd Kovács(B) , Zoltán Barta , and János Botzheim

Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest 1117, Hungary
{kovacsszilard,dguqkf,botzheim}@inf.elte.hu

Abstract. Transport is an essential part of our lives. Optimizing trans-
port provides significant economic and life quality improvements. Real-
time traffic optimization is possible with the help of a fast communication
network and decentralized sensing in smart cities. There are several ana-
lytical and simulation-based methods for traffic optimization. Analytical
solutions usually look at more straightforward cases, while simulations
can also consider the behavior of individual drivers. This article focuses
on optimization methods and provides efficient traffic control based on
simulations. The optimization goal is to find the proper sequence and
timings of traffic light signals to ensure maximum throughput. In the
article only the waiting time is selected as optimization criterion, but
with knowledge of the vehicle stock (fuel type, fuel consumption, start-
stop settings, number of passengers, etc.) it can be easily expanded to
multi-objective optimization.

In the literature, there are many optimization solutions, but all have
some disadvantages mainly the scalability and the connectivity. Bacte-
rial evolutionary algorithm and hill climbing algorithm are proposed in
this paper with special area operators for the traffic optimization task.
The developed memetic optimization algorithm can be efficiently scaled
to optimize the traffic of even large cities. The method is efficient and
well parallelized for real-time optimization use. For this study, a part of
the city is examined in a SUMO simulation environment. The simula-
tion result shows that our scalable memetic algorithm outperforms the
currently applied methods by 35–45%.

Keywords: traffic control · memetic algorithm · scalable
optimization · smart city · evolutionary computing

1 Introduction

Traffic optimization is complex, it has many important segments, like statisti-
cal data collection, real-time data collection, driver and vehicle behavior, and
the optimization algorithm. In this paper, we only focus on the optimization
algorithms and add a brief introduction about the other segments for better
understanding. There is no doubt about the importance of data collection and
traffic identification. Semet et al. collected traffic statistical data to calibrate
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a simulation model with a memetic algorithm and used a genetic algorithm to
optimize the traffic flow [23]. A genetic algorithm achieved significantly better
results than an expert. Collecting statistical data will improve traffic control
and play an essential role in developing new road networks. There are many
ways to use statistics to install a new road network [24]. The traffic is changing
rapidly, and traffic control needs to be adapted to this dynamic system. The
traffic is not fully observable, but good estimations can be created. The obser-
vation and estimation of the current state of traffic become the initial condition
for short-term prediction. Monitoring can be performed using connected vehi-
cles (CVs) and external sensors. Smart camera-based systems for intersection
control provide an excellent decentralized capability and enable efficient man-
agement [25]. Complete observation of all intersections is not an efficient method
and in the predicted future, it is not required for CVs. Another critical part of
traffic management is communication. The 5G network offers significant opti-
mization opportunities [20]. Ning et al. developed a hierarchical reinforcement
learning-based model and caching model for managing the Internet of Vehicles.
The system has been optimized based on the limitations of the 5G network and
the processing capacity [17]. Sachenko et al. examined the system signal flow,
including sensors, embedded devices, and a cloud server built with LabView and
ThingSpeak [4]. One of the most popular topics is CVs and their integration into
traditional non-connected cars. Coordinating CVs and conventional vehicles is
a vital task. Karimi et al. examined highway merging options in different sce-
narios for connected and conventional vehicles [11]. A detailed traffic simulation
uses different models for people’s behavior in certain traffic situations. People’s
behavior is difficult to describe, so several models have been developed to man-
age traffic better. A good example is a driver behavior model in work zones [13].
Model identification and calibration are often used to examine specific areas [10].
The importance of drivers’ behavior models decreases with the spreading of CVs.
Every car is predicted to be a CV in a future smart city. Effective adaptive traf-
fic control can only be implemented for CV. Jamal et al. studied in the real
test environment the CVs and adaptive control at an intersection [12]. Wu et
al. tested the Speed Guidance model using a simulated environment for CV.
The model helps CV to approach the intersection at a more optimal speed. The
method’s effectiveness was examined according to the CV prevalence rate and
traffic density. The Speed Guidance model has been optimized for the inter-
section signal control scheme [27]. In the future, traffic optimization will also
include route planning. Nguyen and Jung have optimized the paths of the CVs
using a multi-source, multi-destination ant colony algorithm. Selective (colored)
pheromones were used from sensors for the information on road load. Only ants
with the same destination pick the same pheromone. A negotiation mechanism
was developed for the CV in signal control-free intersections [16].

The paper focuses on the optimization algorithms and does not further inves-
tigate the sensors, the CV communication, the data collection, the driver behav-
iors, and the route planning. These parameters can be used as initial and behav-
ior conditions for the simulation. The paper aims to provide a more efficient scal-
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able simulation-based optimization solution for traffic control. Thereby, Sect. 2
only focuses on different simulation software and optimization methods.

2 Related Literature

There are many possible optimization criteria in transport. Dealing with dis-
parate aspects is a complex task [22]. Al-Turki et al. examined effective traffic
control based on time delay, the number of stops, fuel consumption, and emission
with the non-dominated sorting genetic algorithm II (NSGAII) in a simulated
dual intersection from the real world [3]. In most cases, traffic control aims to
ensure the highest possible throughput and delay minimization. The number of
passengers is usually not considered the highest possible throughout, although
it is crucial. Novačko et al. examined public transport prioritization in Zagreb
by simulation. A weighting with an estimated number of passengers was intro-
duced between zero and maximum prioritization. The new weighting strategy
has helped optimize traffic based on simulation [18]. There are many metadata,
like fuel type, fuel consumption, start-stop settings, number of passengers, and
many more to realistically optimize. Knowing the distribution of the listed meta-
data is not necessarily enough, the route of the specific vehicle should also be
considered. Based on the listed reasons we chose only the throughput maximiza-
tion without the number of passengers. The most used simulation environments
are SUMO and VISSIM from PTV Group. SUMO is one of the most famous free
traffic simulation software. It allows intermodal traffic systems including differ-
ent vehicles, public transport, and pedestrians. SUMO has a wealthy number of
supporting tools that handle tasks such as route finding, visualization, network
import, and emission calculation. SUMO can be enhanced with custom models
and provides various APIs to remotely control the simulation [2]. Next to SUMO,
another famous traffic simulation software is VISSIM from PTV Group. PTV
Group similarly has many software and add-on applications related to traffic.
The software group is one of the most popular in real-world applications. There
are other good simulation options like AnyLogic, NVIDIA Omniverse, and Aim-
sun that can be used.

We differentiate two optimization categories: simulation-based optimization
and analytical solutions. We chose a simulation environment for the optimiza-
tion, connecting to the digital twin concept, because it has many advantages
like flexibility, easy visualization, and opportunity for scenario analysis. Due to
the strong interconnectedness of road networks, evolutionary algorithms have
become widespread for fast traffic control optimization. Genetic algorithms are
the most common, but differential evolution methods and local derivative-free
methods are also used [6]. Hill climbing is the most common derivate-free local
search or traffic optimization. Evolutionary-based methods like GA often have
quick initial convergence but slow down quickly. They are well-parallelized and
applied efficiently for fast and long-term convergence. Genetic algorithms can be
boosted with machine learning solutions [14]. Local search methods usually have
slower initial convergence in large search spaces but improve continuously to the
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nearest local optimum. To overcome the disadvantages of the two approaches
memetic algorithms have been developed by combining them. Memetic algo-
rithms are not spread in the field of traffic control. There are some not dynami-
cally scalable, not classically memetic algorithms that use static locational oper-
ators for sub-dimensional search [9,21].

Reinforcement Learning (RL) is the other promising solution for traffic opti-
mization. It performs excellently in a homogeneous environment where all inter-
sections have the same property [1,8]. The main problem with the RL method
is the scalability in an inhomogeneous environment because the general rule for
every scenario and the communication between different intersections is com-
plex. RL methods are not used with real traffic yet, but they can be viable in
the future.

In addition to simulation-based optimization methods, analytical methods
become more manageable with the spread of CVs. Mahyar et al. developed an
analytical solution for CV and intersections’ optimal synchronous control. They
worked with a probability distribution and used a specific layout during the
elaboration. Their results can be further generalized [5]. Wang et al. developed a
new multi-intersection phase representation of traffic control. This representation
can flexibly work from one-to-many intersections [26].

In summary, the current traffic optimization methods are not efficiently scal-
able or not considering the strong interconnectivity of the traffic system. In
Sect. 3, we present the Bacterial Evolutionary Algorithm (BEA) specified for
traffic optimization. With the special location-based operator, its use, and the
structure of the BEA, we want to provide answers to the listed weaknesses.

3 Memetic Traffic Optimization

One of the most efficient memetic algorithms is the Bacterial Memetic Algorithm
(BMA) [7]. The BMA uses a local search embedded in the bacterial evolution-
ary algorithm (BEA) [15]. BEA includes bacterial mutation and a gene transfer
operation. BMA was implemented with unique local parameters for traffic con-
trol optimization. The local parameter refers to the hierarchical location-based
mutation and local search. Hill-Climbing (HC) was used as a gradient-based
local search. Figure 1 shows an overview of the algorithm.

Unlike in the general BMA, we used local, area-specific operators. The area-
specific operators ensured that the influence of bacterial mutation and gene
transfer could be continuously varied from one intersection to the entire study
area. Figure 2 shows an example of a change in the area of influence.

Four mutation strategies were used in the mutation phase, and applied to:
some of the worst areas, the worst crossing, a random area, or unrelated random
crosses were mutated. In the mutation phases, a local search was performed on
the genes associated with the area. The local search was performed on the timings
of the control sequence. Different strategies have also been added for the gene
transfer: replacing the worst area control with the best of the total population
for that area, replacing one of the worst areas with one of the bests, randomly
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Fig. 1. BMA with local operators and Hill climbing as local search.

Fig. 2. Illustration of different areas of influence and the parallel optimization capa-
bilities using Google map and the topological skeleton of the road network.

transferring an area from a better individual to a worse individual, or random
intersection controls of better individuals replace a worse individual’s control
strategy. Figure 2 also shows that the applied operators allow the formation of
complex regions, that are independent and connected areas for simultaneous
optimization. Each variable size area is evaluated separately and may change
simultaneously during the bacterial mutation, the gene transfer, and the local
search phase.

In addition to the introduced area-specific operators, the evaluation was also
area-specific. Area-specific processing significantly increases the manageability
of the control optimization. The parameters encoding and the optimization
overview are presented in Fig. 3. The individuals contained the list of inter-
sections with the switching sequence, the timings, and the total waiting times.
In Fig. 3 at “List of switching state” ‘r’ refers to “red” and ‘g’ refers to “green”.



Traffic Optimization by Local Bacterial Memetic Algorithm 489

Fig. 3. Simulation overview.

4 Experiment

A SUMO traffic simulation program was used for the experiments. Real-time
route planning and lane change models were not part of the study. The experi-
ments were based on the road network of the 11th district of Budapest, shown
in Fig. 4. The simulation included 1055 crossings and 1636 roads, the number
of controlled intersections was 69. The exact transport network was extracted
from OpenStreetMap [19]. The data is freely available under the Open Database
License.

Fig. 4. The Open Street Map view of the 11th district of Budapest.
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Figure 5 shows the data collection, initialization, and preparation process for
optimization.

Fig. 5. Data collection and pre-processing for the optimization.

4.1 Experiment Description

The starting point for optimization was the traditional fixed-time sequential traf-
fic light control. The duration of each phase was initialized randomly. This has
been extended to variable time and sequence control. The number of vehicles was
set by the traffic scaling option. It increased quasi-linearly during the simula-
tion time, based on the file containing the default generated route. The vehicles
traveled on random routes. Two types of control were compared: circular and
adaptive. In the circular case, the traffic light phases repeat a short sequence. In
the adaptive case, the result is not necessarily a repetitive switching sequence
depending on the traffic condition.

Eight test cases were examined based on the traffic scale, the simulation time,
and the control types combination described in Table 1.

As we introduced in Sect. 1 and in Sect. 2 the Genetic Algorithm and the Hill
Climbing are the methods that are used in the real world so we chose them as
the baseline. A population size of 24 was used for all algorithms. Table 2 contains
the parameters for the algorithms. For each algorithm, the number of parallel
evaluations was maximized by the size of the population, so in the case of Hill
Climbing, 24 random neighbors were examined. In the case of BMA, only the best
8 individuals were mutated in the bacterial mutation, during the gene transfer,
random genes were transferred from the better half of the population to all
individuals, thus expanding the number of evaluations to 24. The total number of
evaluations was 24×50 in all cases. In the Local BMA, the influence radius of the
intersections was randomly chosen in each iteration. In the bacterial mutation,
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Table 1. Tests for the comparison.

Test cases Time [min.] Traffic scale Number of Vehicles Control

Test 1 2 1 147 Cyclic
Test 2 2 2 289 Cyclic
Test 3 4 1 291 Cyclic
Test 4 4 2 576 Cyclic
Test 5 4 2 576 Adaptive
Test 6 4 3 811 Adaptive
Test 7 6 2 801 Adaptive
Test 8 6 3 1204 Adaptive

random areas were selected with a 30% chance, worst areas were chosen with
a 50% chance, and random intersections were chosen with a 20% chance. In
gene transfer, the worst-performing areas were examined with a 30% chance
replaced with the best-performing areas of the entire population, with a 50%
chance replaced with random from the best-performing half of the population,
and a 20% chance of unrelated crossings being transferred from the better half
of the population to the worst.

Table 2. Parameters of each algorithm.

Algorithm and Parameter Value

Bacterial Memetic Algorithm
Number of clones 3
Number of mutated genes 10
Number of local searches 3
Number of genes for local searches 75%
Number of transferred genes 10
Genetic Algorithm
Crossover probability 100%
Number of mutated genes 10
Selection type Elitist
Hill Climbing
Random reset
Decreasing step size from 5 to 1
Neighbor selection maximized 24
Neighbor selection random
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4.2 Experimental Results

First, the results of the first 4 tests are presented. 25 replicates were conducted
of each test with uniform initialization. In each case, BMA gave the best final
result, as shown in Table 3. Both in Table 3 and 4 the mean values and the 95%
confidence radius (in round brackets) are presented for the 25 replicates of the
total waiting time in seconds.

Table 3. Mean values and the 95% confidence radius (in round brackets) of the total
waiting time for the 25 replicates in seconds for cyclic tests.

Tests BMA GA HC

Test 1 1512 (85) 2038 (104) 3090 (142)
Test 2 2445 (109) 3560 (183) 4503 (210)
Test 3 5753 (288) 8047 (442) 9962 (426)
Test 4 10639 (470) 14503 (783) 17089 (736)

From Fig. 6, 7, 8 and 9, the optimization process can be seen for every 24
evaluations. The HC algorithm primarily shows the complexity of the task since
the entire transport network is connected. A good initial decision may turn into
a wrong one later in the other part of the network. BMA takes the lead every
time after roughly the 20th batch evaluation. The local search could only work
with low efficiency due to resource constraints. In the future, we will examine
other local search methods and supplemental methods to improve efficiency. The
initial lag from the standard methods in this field is caused by greater elitism.
In the future, we plan to investigate a method combined with an initial genetic
algorithm.

Fig. 6. Results on Test 1. Fig. 7. Results on Test 2.

Table 4 and Figs. 10, 11, 12 and 13 show the results for the case of adaptive
cycle controls. In the adaptive tests, only BMA and GA were compared, since
the switching order is more important in this case. Tests 4 and 5 show the
difference between the adaptive and traditional switching sequences. Contrary
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Fig. 8. Results on Test 3. Fig. 9. Results on Test 4.

to our preliminary expectations, in the case of a few iterations, the variable series
did not prove to be beneficial. More switching options increased the dimension
of the search in real-time, not enough time is available to utilize the larger search
space. In terms of algorithm comparison, we can see similar results as in the first
4 tests, in addition, the bacterial algorithm can work more efficiently in larger
spaces by dividing the entire search space in the bacterial mutation phase.

Table 4. Mean values and the 95% confidence radius (in round brackets) of the total
waiting time for the 25 replicates in seconds for adaptive tests.

Tests BMA GA

Test 5 11443 (842) 19720 (716)
Test 6 15626 (865) 27660 (785)
Test 7 22591 (1112) 36679 (1331)
Test 8 30210 (1881) 52256 (1294)

Fig. 10. Results on Test 5. Fig. 11. Results on Test 6.
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Fig. 12. Results on Test 7. Fig. 13. Results on Test 8.

4.3 Discussion

A good traffic simulation takes a significant time even with good software. A
batch simulation could take around 5. . .15% of the real-time in a common com-
puter and 1. . .5% in a server computer with the same setting. The modified
scalable BMA provided a 35–45% improvement in all test scenarios after 50
parallel evaluations and took the lead after around 18 batch evaluations.

5 Conclusion and Further Work

Traffic simulation is evolving and the required simulation time will decrease in
the future. The faster simulations will provide time for more complex optimiza-
tions. This article investigated the applied optimization methods in the field of
traffic optimization. A new efficiently scalable optimization was developed based
on BMA. The proposed flexible area-based BMA can efficiently optimize large
areas by scheduled subdivisions. Subareas can vary from one intersection to the
entire area. The subareas sizes adjustment was our strategy, so a better com-
promise was formed between local and global search. Contrary to the literature,
the algorithm can be considered a memetic algorithm not only based on location
but also subject to a gradient-based method. A further advantage is prioritizing
the locations within the population, which helps to perform a focused search in
addition to the exploration. Based on the experimental results, the algorithm
is suitable for both short-term and long-term optimization and performs better
in the case of long-term optimization. As a continuation of the work, we would
like to examine control with real large-scale datasets and with more simulation
detail.
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