*Nα***- Separation Axioms in Topological Spaces**

Nadia M. Ali Abbas and Shuker Khalil

1 Introduction

A topological space (TS) is a fairly broad concept. More specificity is frequently desirable. Some studies in TS and their extensions in nonclassical TS are shown by many mathematicians $[1-13]$ $[1-13]$ $[1-13]$. One method is to define topological spaces with more constrained attributes using the separation axioms. In general, it is not true that a sequence in a topological space has only one limit. However, using the separation axioms, a type of space may be established in which the limit, if it exists at all, is unique. In 2015, N_a - open sets were initially examined by N.A. Dawood and N.M Ali, see [\[14](#page-5-2)]; by using these sets, we study some classes of *N_α*- separation axioms and *N_α*- Ti separation for each *i* = 0, 1, 2, and look into some of their characteristics. Separation axioms have also been generalized to other generic topological spaces such as ordered topological spaces [\[15](#page-5-3)]. Ibrahim [\[16](#page-5-4)] presented and explored the features of a strong variant of α-open sets termed $α_γ$ open via operation in 2013. Khalaf and Ibrahim [[17\]](#page-5-5) extended their investigation of the features of operations defined on the collection of α-open sets introduced by Ibrahim [\[16](#page-5-4)], defining and discussing numerous properties of *α*γ-regular, α-βcompact, and $α_γ$ -connected spaces, as well as $α-(γ, β)$ -continuous functions.

In this chapter, we use N_α - open sets in topological spaces to create new types of N_α -separation axioms and study some of their properties. There are also some definitions and theorems offered. Here in this work, all spaces *X* and *Y* are topological spaces, also the closure (interior resp.) of a subset *A* of *X* is denoted by *cl* (*A*) (*int* (*A*) resp.)

N. M. Ali Abbas

Ministry of Education, Directorate General of Education, Baghdad, Al-Kark, Iraq

S. Khalil (\boxtimes)

Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq

923

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

F. Kamalov et al. (eds.), *Advances in Mathematical Modeling and Scientific*

Computing, Trends in Mathematics, https://doi.org/10.1007/978-3-031-41420-6_79

2 Fundamental Concepts

We will cover some fundamental principles that will be useful in our work.

Definition 1 [\[15](#page-5-3)]

Assume that *X* is a topological space (TS), a set *A* is named N_a - open set ($N_\alpha - OS$) if for some α -open set $B \neq \emptyset$ satisfies $cl(B) \subseteq A$. Also, its complement is named a *N_a*- closed set (N_α − *CS*). The collection of all N_α - open sets is referred as $N_\alpha O(X)$, and its complement by $N_{\alpha} C(X)$.

Remark 1 [[15\]](#page-5-3)

A set *A* is a (N_α − *CS*) if for some α -closed set $\emptyset \neq B \neq X$ satisfies $\subseteq int(B)$.

Remark 2 [[15\]](#page-5-3)

- (i) *X* and \emptyset are N_α open sets (N_α − *OS* s) in any (TS) *X*.
- (ii) Any clopen set is $(N_\alpha OS)$.
- (iii) Any set in discrete space is $(N_\alpha OS)$.

Theorem 1 [[15\]](#page-5-3)

Let X_1, X_2 be topological spaces (TSs). Then A_1 and A_2 are $(N_\alpha - OS \text{ s})$ in X_1, X_2 resp., if and only if $A_1 \times A_2$ is $(N_\alpha - OS)$ in $X_1 \times X_2$.

Proposition 1 [\[15](#page-5-3)]

Let *X* be (TS). Then:

- (i) Finite union of $(N_\alpha OS \text{ s})$ is $(N_\alpha OS)$ also.
- (ii) Finite intersection of $(N_\alpha CS \text{ s})$ is $(N_\alpha CS)$ also.

Definition 2 [\[15](#page-5-3)]

The union of all N_a - open set of *X* contained in *A* is named N_a - interior of *A* and is denoted $N_{\alpha}^{int}(A)$, and the intersection of all $(N_{\alpha} - CS)$ containing *A* is called N_{α} closure of *A*, refereed by $N_{\alpha}{}^{cl}(A)$.

Definition 3 [\[18](#page-5-6)]

We say *A* is generalized N_α – closed set (gN_α – CS) of a space *X*, if N_α ^{cl}(*A*) \subseteq *B* whenever $A \subseteq B$ and B is $(N_{\alpha} - OS)$.

The complement of $(gN_\alpha - CS)$ is generalized N_α - open set $(gN_\alpha - OS)$ in X.

Theorem 2 [[18\]](#page-5-6)

(i) If *A* is $(N_\alpha - CS)$ in *X*, then it is $(gN_\alpha - CS)$.

(ii) If *A* is $(N_\alpha - OS)$ in *X*, then it is $(gN_\alpha - OS)$.

Proposition 2 [\[15](#page-5-3)]

Suppose that (Y, t_v) is a subspace of a (TS) *X* with $A \subseteq Y \subseteq X$. Then:

(i) If $A \in N_aO(X)$, then $A \in N_aO(Y)$.

(ii) If $A \in N_aO(Y)$, then $A \in N_aO(X)$, where *Y* is clopen set in *X*

Definition 4 [\[19](#page-5-7)]

Let X_1, X_2 be (TSs) where, $f : X_1 \rightarrow X_2$ is a mapping, then f is named:

- (i) $N_{\alpha}(N_{\alpha^*} \text{continuous})$ resp. if $f^{-1}(A)$ is $(N_{\alpha} OS)$ in X_1 for each *A* open set $((N_\alpha - OS))$ in X_2 resp.
- (ii) $N_\alpha (N_{\alpha*}$ open) mapping if $f(A)$ is $(N_\alpha OS)$ in X_2 for each open set $((N_\alpha - OS))$ *A* in X_1 resp.
- (iii) gN_α -continuous (gN_α ^{*} -continuous) resp. mapping if for each open set $((gN_\alpha - OS))$ set *A* in *Y* respectively then $f^{-1}(A)$ is $(gN_\alpha - OS)$ in *X*.

3 Some Characteristics of *Nα***-Separation** *Nα***- Axioms**

In this section, we study $N_{\alpha}^{T_i}$ - space X for each $i = 0, 1, 2$ and we discuss some of these spaces' characteristics and remarks. We will prove certain theorems in the following cases when *X* is a finite space.

Definition 5

Assume that *X* is a (TS). We say *X* is a N_α ^{*TO*}-space if for any $x \neq y$ in *X*, there exists $(N_\alpha - OS)$ *A* containing one of them but not other.

Theorem 3

Let *X* be a (TS). Then *X* is N_{α}^{7b} -space if and only if $N_{\alpha}^{Cl(x)} \neq N_{\alpha}^{Cl(y)}$.

Proof Let $N_{\alpha}{}^{Cl(x)} \neq N_{\alpha}{}^{Cl(y)}$, $\forall x \neq y$ in X. This implies $N_{\alpha}{}^{Cl(x)} \nsubseteq N_{\alpha}{}^{Cl(y)}$ or $N_{\alpha}{}^{Cl(y)}$ $\not\subseteq N_{\alpha}^{Cl(x)}$. Suppose $N_{\alpha}^{Cl(x)} \nsubseteq N_{\alpha}^{Cl(y)}$, hence $X \notin N_{\alpha}^{Cl(y)}$, thus $x \in (N_{\alpha}^{Cl(y)})^c$, which is $(N_\alpha - OS)$ and $y \notin (N_\alpha^{Cl(y)})^c$. Thus, *X* is N_α^{To} -space, assume *X* is N_α^{To} -space; hence, for each $x \neq y$ in *X*, there exists $(N_\alpha - OS)$ *G* such that $x \in G$, $y \notin G$ *or* $y \in G$, $x \notin G$. Hence, G^c is $(Na - CS)$. $x \notin G^c$, $y \in G^c$; hence, $x \notin N_\alpha$ ^{Cl{*y*}}, $x \in N_\alpha$ ^{Cl{*x*}</sub>;} this means $x \notin N_\alpha$ *Cl*{*y*}</sub>. Thus, N_α *Cl*{*x*} $\neq N_\alpha$ {*y*}.

Definition 6

Let *X* be a (TS). Then *X* is named $N_{\alpha}^{T_1}$ -space if each pair of distinct points *x* and *y* of *X*, there exist two N_α - open sets *A*, *B* containing *x* and *y*, respectively, such that *y* ∉ *A*, *x* ∉ *B*.

Proposition 3

Let X be a (TS). Then *X* is N_{α}^{T1} -space if and only if $\{x\}$ is $(N_{\alpha} - CS) \forall x \in X$.

Proof Assume that *X* is N_{α}^{T1} -space, to show that each {*x*} is (N_{α} − *CS*), this means we must show that $X/\{x\}$ is $(N_\alpha - OS)$ for each singleton set $\{x\}$ in X.

Let $y \in X/\{x\}$, then $y \neq x$ in X, since X is $N_\alpha^{T_1}$ space, then there exists $(N_\alpha - OS)$ *G* with *y* ∈ *G* and *x* ∉ *G*. This implies that *y* ∈ *G* ⊆ $\frac{X}{\{x\}}$; this implies *X*/{*x*} is $(N_{\alpha} - OS)$. Hence, $\{x\}$ is $(N_{\alpha} - CS)$.

Conversely: Let $\{x\}$ be $(N_\alpha - CS)$, $\forall x \in X$, to prove *X* is $N_\alpha^{T_1}$ -space. Let $x \neq y$ in *X*, hence $\{x\}$, $\{y\}$ are $(N_\alpha - C S s)$ hence $\{x\}^c$, $\{y\}^c$ are $(N_\alpha - O S s)$ and $y \in \{x\}^c$, $x \notin \{x\}^c, x \in \{y\}^c, y \notin \{y\}^c$. Therefore, *X* is Na^{T_1} -space.

Definition 7

Let *X* be a (TS). Then *X* is named N_a ^{*T*2}-space if for any two distinct points *x*, *y* in *X* there exists two $(N_\alpha - OSs)$ *X* satisfy $x \in A_1$, $y \in A_2$ and $A_1 \cap A_2 = \emptyset$

Proposition 4

If X is Na^{T2} - space, then $A = \{(x, y) : x = y, x, y \in X\}$ is $(Na - CS)$.

Proof Assume that *X* is N_{α}^{T2} - space, to prove *A* is $(N_{\alpha} - CS)$, let $(x, y) \in A^c \subseteq X \times X/A$, this mean x and y are two distinct points in X, where X is $N_{\alpha}^{T_1}$ -space then for some $A_1, A_2 \in N_{\alpha}O(X)$ satisfy $x \in A_1, y \in A_2$ and A_1, A_2 are disjoint sets, hence $(x, y) \in A_1 \times A_2 \subseteq A^c$, but $A_1 \times A_2 \in N_\alpha O(X \times X)$ (see Theorem [1](#page-1-0)), hence A^c is N_α - open set, thus A is (N_α – CS).

Proposition 5

If *f*, *g* : *x* \rightarrow *y* are $N_{\alpha*}$ - continuous and Y is N_{α}^{T2} space, then the set *A* = { $x : x \in X f(x) = g(x)$ } is ($N_\alpha - CS$).

Proof If $x \notin A$, then $x \in A^c$ this mean that $f(x) \neq g(x)$ in Y, since Y is N_a ^{T2}-space, then there exist $B_1, B_2 \in N_\alpha O(Y)$ such that $f(x) \in B_1$, $g(x) \in B_2$ and $B_1 \cap B_2 = \emptyset$, but *f*⁻¹(*B*₁), *g*⁻¹(*B*₂) ∈ *N_αO*(*X*) since *f*, g are *N_{α*^{*}}-continuous, hence *x* ∈ *f*⁻¹(*B*₁), *x* ∈ $g^{-1}(B_2)$ hence $x \in f^{-1}(B_1) \cap g^{-1}(B_2)$, let $B = f^{-1}(B_1) \cap g^{-1}(B_2)$, where B is $(N_{\alpha} - OS)$. Now we shall prove $B \subseteq A^c$, i.e $B \cap A = \emptyset$. Suppose that $B \cap A \neq \emptyset$ this mean *y* ∈ *B* ∩ *A*; thus, *y* ∈ *A*, *y* ∈ *B*. Hence, *y* ∈ *f*⁻¹(*B*₁), *y* ∈ *g*⁻¹(*B*₂), hence *f*(*y*) ∈ *B*₁, *g*(*y*) ∈ *B*₂, *y* ∈ *A*. Thus, *f*(*y*) = *g*(*y*), since *y* ∈ *A*, hence *B*₁ ∩ *B*₂ ≠ ∅ , which is a contradiction, thus $B \subseteq A^c$, thus $A^c \in N_\alpha O(X)$, hence $A \in N_\alpha C(x)$.

Proposition 6

If *X* and *Y* are N_a ^{*Ti*}- space, then $X \times Y$ is N_a ^{*Ti*}- space $\forall i = 0, 1, 2$

Proof Assume that *X* and *Y* are $N_{\alpha}^{T_i}$ - space. Put $i = 0$ and take $(x_1, y_1) \neq (x_2, y_2)$ in *X* × *Y*, then for any two distinct points x_1 and x_2 in *X*, there exists $A_1 \in N_\alpha O(X)$ such that $x_1 \in A_1$, $x_2 \notin A_1$ *or* $x_1 \notin A_1$, $x_2 \in A_1$, also $y_1 \neq y_2$, then there exists $A_2 \in N_{\alpha}O(Y)$ such that $y_1 \in A_2$, $y_2 \notin A_2$ or $y_1 \notin A_2$, $y_2 \in A_2$ then $(x_1, y_1) \in A_1 \times A_2$ $(x_2, y_2) \notin A_1 \times A_2$ *or* $(x_1, y_1) \notin A_1 \times A_2(x_2, y_2) \in A_1 \times A_2$ but $A_1 \times A_2$ is $(N_\alpha - OS)$ in *X* × *Y* (see Theorem [1\)](#page-1-0). Hence *X* × *Y* $N_{\alpha}^{T_i}$ - space. Similarly, we can prove other states for $i = 1, 2$.

Proposition 7

If *X* is $N_{\alpha}^{T_i}$, then it is $N_{\alpha}^{T_i-1}$ –space, where $i = 2, 1$.

Proof The proof is consider from Definitions [5](#page-2-0), [6](#page-2-1), and [7](#page-3-0).

Theorem 4

The inverse image of $N_{\alpha}^{T_i}$ -space under injective $N_{\alpha*}$ - continuous mapping is also $N_{\alpha}^{T_i}$ space, where $i = 0, 1, 2$

We shall prove only when $i = 2$ and the other cases are similarly.

Proof Let $f : X \to Y$ be injective, $N_{\alpha,*}$ - continuous mapping and $x_1 \neq x_2$ in X, since *f* is injective then $y_1 = f(x_1) \neq f(x_2) = y_2$ in Y where Y is N_α^{72} then there exist two disjoint *N_a*- open set *A*₁, *A*₂ in *Y* satisfy $y_1 \in A_1$, $y_2 \in A_2$, since *f* is $N_{\alpha*}$ - continuous

than $f^{-1}(A_1)$, $f^{-1}(A_2)$ are $(N_\alpha - OSs)$ in *X* such that $x_1 \in f^{-1}(A_1)$, $x_2 \in f^{-1}(A_2)$ and $f^{-1}(A_1) \cap f^{-1}(A_2) = \emptyset$. Therefore, *X* is N_α ^{T2}-space.

Theorem 5

If $f: X \to Y$ is injective N_α - continuous and *Y* is T_2 space, then *X* is $N_\alpha^{T_2}$ – space.

Proof Similar to the proof of Theorem [4](#page-3-1).

Definition 8

Let *X* be a (TS). Then *X* is called $gN_{\alpha}^{T_i}$ -space, where $i = 0, 1, 2$ if:

- (i) $i = 0$ if for any $x \neq y$ in *X*, there exists $(gN_\alpha OS)$ *A* containing one of them but not other.
- (ii) $i = 1$ if for any $x \neq y$ in *X*, there exist two $(gN_\alpha OSs)$ *A*, *B* containing *x* and *y*, respectively, satisfy $y \notin A$, $x \notin B$.
- (iii) $i = 2$ if for each pair of distinct point *x*, *y* in *X* there exist disjoint ($gN_\alpha OSs$) *A*, *B* such that $x \in A$, $y \in B$.

Proposition 8

Every $N_{\alpha}^{T_i}$ - space is $gN_{\alpha}^{T_i}$ space.

Proof The proof is in hand, from Theorem [2](#page-1-1) where every N_α - open set is gN_α open set.

By Propositions [7](#page-3-2) and [8](#page-4-0) we have the following Diagram [1](#page-4-1)

Theorem 6

If $f: X \to Y$ is injective gN_α - continuous and *Y* is T_2 – space than *X* is $gN_\alpha - T_2$ space.

Proof Assume that $x \neq y$ in *X*, since *f* is injective, thus $f(x) \neq f(y)$ in *Y* where *Y* is *T*₂ space, then there exists disjoint open sets *A*, *B* satisfy $f(x) \in A$, $f(y) \in B$ and $A \cap B = \emptyset$, since *f* is gN_α - continuous, then $f^{-1}(A)$, $f^{-1}(B)$ *are* $(gN_\alpha - OSs)$ in *X* see (Definition [4](#page-1-2)(iii)) where *x* ∈ *f*⁻¹(*A*), *y* ∈ *f*⁻¹(*B*) and *f*⁻¹(*A*) ∩ *f*⁻¹(*B*) = ∅. Hence, *X* is $gN_\alpha - T_2$ space.

4 Conclusion and Future Work

We use N_α -open sets in topological spaces to generate new sorts of N_α -separation axioms and investigate some of their features in this research. Some theorems are also provided. In future work, we will discuss in nonclassical (TS) such as neutrosophic/fuzzy/soft topological spaces.

References

- 1. Jafari, S., Noiri, T.: Contra – α – continuous mappings between topological space. Iran. Int. J. Sci. **2**, 153–167 (2001)
- 2. Damodharan, K., Vigneshwaran, M., Khalil, S.M.: $N_{\delta * gq}$ -continuous and irresolute functions in neutrosophic topological spaces. Neutrosophic Sets Syst. **38**(1), 439–452 (2020)
- 3. Khalil, S.M.: On neurosophic delta generated per-continuous functions in neutrosophic topological spaces. Neutrosophic Sets Syst. **48**, 122–141 (2022)
- 4. Khalil, S.M., Suleiman, E., Ali Abbas, N.M.: New technical to generate permutation measurable spaces. In: 2021 1st Babylon International Conference on Information Technology and Science (BICITS), pp. 160–163 (2021). [https://doi.org/10.1109/BICITS51482.2021.9509892](
14594 11571 a 14594 11571 a
)
- 5. Hasan, M.A., Khalil, S.M., Abbas, N.M.A.: Characteristics of the soft-(1, 2)-gprw–closed sets in soft bi-topological spaces. In: Conf., IT-ELA 2020, vol. 9253110, pp. 103–108 (2020)
- 6. Abbas, N.M.A., Khalil, S.M., Hamza, A.A.: On *α*∗− continuous and contra *α*∗− continuous mappings in topological spaces with soft setting. Int. J. Nonlinear Anal. Appl. **12**, 1107–1113 (2021)
- 7. Hasan, M.A., Ali Abbas, N.M., Khalil, S.M.: On soft α∗− open sets and soft contra α∗− continuous mappings in soft topological spaces. J. Interdiscip. Math. **24**, 729–734 (2021)
- 8. Khalil, S.M., Hameed, F.: An algorithm for generating permutations in symmetric groups using soft spaces with general study and basic properties of permutations spaces. J. Theor. Appl. Inf. Technol. **96**, 2445–2457 (2018)
- 9. Khalil, S.M., Hameed, F.: An algorithm for generating permutation algebras using soft spaces. J. Taibah Univ. Sci. **12**(3), 299–308 (2018)
- 10. Ali Abbas, N.M., Khalil, S.M.: On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces. Int. J. Nonlinear Anal. Appl. **12**(1), 718–725 (2021)
- 11. Nivetha, A.R., Vigneshwaran, M., Abbas, N.M.A., Khalil, S.M.: On $N_{12} \alpha$ continuous in topological spaces of neutrosophy. J. Interdiscip. Math. **24**(3), 677–685 (2021)
- 12. Ali Abbas, N.M., Khalil, S.M., Vigneshwaran, M.: The neutrosophic strongly open maps in neutrosophic bi-topological spaces. J. Interdiscip. Math. **24**(3), 667–675 (2021)
- 13. Jafari, S., Noiri, T.: On contra pre- continuous mapping. Bull. Malays. Math. Soc. **25**, 115–128 (2002)
- 14. Dawood, N.A., Ali, N.M.: *Nα*- open set and *Nα*- regularity in topological space. Int. J. Adv. Sci. Tech. Res. **5**(3), 87–96 (2015)
- 15. Al-shami, T.M., Abo-Elhamayel, M.: Novel class of ordered separation axioms using limit points. Appl. Math. Inf. Sci. **14**(6), 1103–1111 (2020)
- 16. Ibrahim, H.Z.: On a class of αγ-open sets in a topological space. Acta Sci. Technol. **35**(3), 539–545 (2013)
- 17. Khalaf, A.B., Jafari, S., Ibrahim, H.Z.: Bioperations on α-open sets in topological spaces. Int. J. Pure Appl. Math. **103**(4), 653–666 (2015)
- 18. Ali, N.M.: Applications of Na and generalized Na- closed sets in topological space. AL – Bahir J. Nat. Eng. Sci. **8**(15), 55–63 (2018)
- 19. Ali, N.M.: N_α - continuous and contra N_α - continuous mappings in topological space. AL – Bahir J. Nat. Eng. Sci. **3**(5), 67–76 (2016)