N_{α} - Separation Axioms in Topological Spaces

Nadia M. Ali Abbas 💿 and Shuker Khalil

1 Introduction

A topological space (TS) is a fairly broad concept. More specificity is frequently desirable. Some studies in TS and their extensions in nonclassical TS are shown by many mathematicians [1-13]. One method is to define topological spaces with more constrained attributes using the separation axioms. In general, it is not true that a sequence in a topological space has only one limit. However, using the separation axioms, a type of space may be established in which the limit, if it exists at all, is unique. In 2015, N_a - open sets were initially examined by N.A Dawood and N.M Ali, see [14]; by using these sets, we study some classes of N_{α} - separation axioms and N_{α} - Ti separation for each i = 0, 1, 2, and look into some of their characteristics. Separation axioms have also been generalized to other generic topological spaces such as ordered topological spaces [15]. Ibrahim [16] presented and explored the features of a strong variant of α -open sets termed α_{γ} open via operation in 2013. Khalaf and Ibrahim [17] extended their investigation of the features of operations defined on the collection of α -open sets introduced by Ibrahim [16], defining and discussing numerous properties of α_{γ} -regular, α - β compact, and α_{ν} -connected spaces, as well as α -(γ , β)-continuous functions.

In this chapter, we use N_{α} - open sets in topological spaces to create new types of N_{α} -separation axioms and study some of their properties. There are also some definitions and theorems offered. Here in this work, all spaces X and Y are topological spaces, also the closure (interior resp.) of a subset A of X is denoted by cl(A) (*int* (A) resp.)

N. M. Ali Abbas

Ministry of Education, Directorate General of Education, Baghdad, Al-Kark, Iraq

S. Khalil (🖂)

Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq

923

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 F. Kamalov et al. (eds.), *Advances in Mathematical Modeling and Scientific*

Computing, Trends in Mathematics, https://doi.org/10.1007/978-3-031-41420-6_79

2 Fundamental Concepts

We will cover some fundamental principles that will be useful in our work.

Definition 1 [15]

Assume that X is a topological space (TS), a set A is named N_a - open set $(N_\alpha - OS)$ if for some α -open set $B \neq \emptyset$ satisfies $cl(B) \subseteq A$. Also, its complement is named a N_a - closed set $(N_\alpha - CS)$. The collection of all N_α - open sets is referred as $N_\alpha O(X)$, and its complement by $N_\alpha C(X)$.

Remark 1 [15]

A set *A* is a $(N_{\alpha} - CS)$ if for some α -closed set $\emptyset \neq B \neq X$ satisfies $\subseteq int(B)$.

Remark 2 [15]

- (i) X and \varnothing are N_{α} open sets $(N_{\alpha} OS s)$ in any (TS) X.
- (ii) Any clopen set is $(N_{\alpha} OS)$.
- (iii) Any set in discrete space is $(N_{\alpha} OS)$.

Theorem 1 [15]

Let X_1 , X_2 be topological spaces (TSs). Then A_1 and A_2 are $(N_\alpha - OS \text{ s})$ in X_1 , X_2 resp., if and only if $A_1 \times A_2$ is $(N_\alpha - OS)$ in $X_1 \times X_2$.

Proposition 1 [15]

Let X be (TS). Then:

- (i) Finite union of $(N_{\alpha} OS s)$ is $(N_{\alpha} OS)$ also.
- (ii) Finite intersection of $(N_{\alpha} CS s)$ is $(N_{\alpha} CS)$ also.

Definition 2 [15]

The union of all N_a - open set of X contained in A is named N_a - interior of A and is denoted $N_{\alpha}^{int}(A)$, and the intersection of all $(N_{\alpha} - CS)$ containing A is called N_{α} - closure of A, referred by $N_{\alpha}^{cl}(A)$.

Definition 3 [18]

We say A is generalized N_{α} – closed set $(gN_{\alpha} - CS)$ of a space X, if $N_{\alpha}{}^{cl}(A) \subseteq B$ whenever $A \subseteq B$ and B is $(N_{\alpha} - OS)$.

The complement of $(gN_{\alpha} - CS)$ is generalized N_{α} - open set $(gN_{\alpha} - OS)$ in X.

Theorem 2 [18]

(i) If A is $(N_{\alpha} - CS)$ in X, then it is $(gN_{\alpha} - CS)$. (ii) If A is $(N_{\alpha} - OS)$ in X, then it is $(gN_{\alpha} - OS)$.

Proposition 2 [15]

Suppose that (Y, t_y) is a subspace of a (TS) X with $A \subseteq Y \subseteq X$. Then:

(i) If $A \in N_a O(X)$, then $A \in N_\alpha O(Y)$.

(ii) If $A \in N_a O(Y)$, then $A \in N_\alpha O(X)$, where Y is clopen set in X

Definition 4 [19]

Let X_1, X_2 be (TSs) where, $f : X_1 \to X_2$ is a mapping, then f is named:

- (i) $N_{\alpha}(N_{\alpha*}$ continues) resp. if $f^{-1}(A)$ is $(N_{\alpha} OS)$ in X_1 for each A open set $((N_{\alpha} OS))$ in X_2 resp.
- (ii) $N_{\alpha}(N_{\alpha*}$ open) mapping if f(A) is $(N_{\alpha} OS)$ in X_2 for each open set $((N_{\alpha} OS)) A$ in X_1 resp.
- (iii) gN_{α} -continuous ($gN_{\alpha*}$ -continuous) resp. mapping if for each open set (($gN_{\alpha} OS$)) set A in Y respectively then $f^{-1}(A)$ is ($gN_{\alpha} OS$) in X.

3 Some Characteristics of N_{α} -Separation N_{α} - Axioms

In this section, we study N_{α}^{Ti} - space X for each i = 0, 1, 2 and we discuss some of these spaces' characteristics and remarks. We will prove certain theorems in the following cases when X is a finite space.

Definition 5

Assume that X is a (TS). We say X is a N_{α}^{TO} -space if for any $x \neq y$ in X, there exists $(N_{\alpha} - OS)$ A containing one of them but not other.

Theorem 3

Let X be a (TS). Then X is N_{α}^{To} -space if and only if $N_{\alpha}^{Cl\{x\}} \neq N_{\alpha}^{Cl\{y\}}$.

Proof Let $N_{\alpha}^{Cl\{x\}} \neq N_{\alpha}^{Cl\{y\}}, \forall x \neq y$ in X. This implies $N_{\alpha}^{Cl\{x\}} \not\subseteq N_{\alpha}^{Cl\{y\}}$ or $N_{\alpha}^{Cl\{y\}} \not\subseteq N_{\alpha}^{Cl\{y\}}$. $\not\subseteq N_{\alpha}^{Cl\{x\}}$. Suppose $N_{\alpha}^{Cl\{x\}} \not\subseteq N_{\alpha}^{Cl\{y\}}$, hence $X \notin N_{\alpha}^{Cl\{y\}}$, thus $x \in (N_{\alpha}^{Cl\{y\}})^{c}$, which is $(N_{\alpha} - OS)$ and $y \notin (N_{\alpha}^{Cl\{y\}})^{c}$. Thus, X is N_{α}^{To} -space, assume X is N_{α}^{To} -space; hence, for each $x \neq y$ in X, there exists $(N_{\alpha} - OS)$ G such that $x \in G$, $y \notin G$ or $y \in G$, $x \notin G$. Hence, G^{c} is (Na - CS). $x \notin G^{c}$, $y \in G^{c}y$; hence, $x \notin N_{\alpha}^{Cl\{y\}}$, $x \in N_{\alpha}^{Cl\{x\}}$; this means $x \notin N_{\alpha}^{Cl\{y\}}$. Thus, $N_{\alpha}^{Cl\{x\}} \neq N_{\alpha}^{\{y\}}$.

Definition 6

Let X be a (TS). Then X is named N_{α}^{T1} -space if each pair of distinct points x and y of X, there exist two N_{α} - open sets A, B containing x and y, respectively, such that $y \notin A, x \notin B$.

Proposition 3

Let X be a (TS). Then X is N_{α}^{T1} -space if and only if $\{x\}$ is $(N_{\alpha} - CS) \forall x \in X$.

Proof Assume that X is N_{α}^{T1} -space, to show that each $\{x\}$ is $(N_{\alpha} - CS)$, this means we must show that $X/\{x\}$ is $(N_{\alpha} - OS)$ for each singleton set $\{x\}$ in X.

Let $y \in X/\{x\}$, then $y \neq x$ in X, since X is N_{α}^{T1} space, then there exists $(N_{\alpha} - OS)$ G with $y \in G$ and $x \notin G$. This implies that $y \in G \subseteq \frac{X}{\{x\}}$; this implies $X/\{x\}$ is $(N_{\alpha} - OS)$. Hence, $\{x\}$ is $(N_{\alpha} - CS)$.

Conversely: Let $\{x\}$ be $(N_{\alpha} - CS)$, $\forall x \in X$, to prove X is N_{α}^{T1} -space. Let $x \neq y$ in X, hence $\{x\}$, $\{y\}$ are $(N_{\alpha} - CSs)$ hence $\{x\}^c$, $\{y\}^c$ are $(N_{\alpha} - OSs)$ and $y \in \{x\}^c$, $x \notin \{x\}^c$, $x \in \{y\}^c$, $y \notin \{y\}^c$. Therefore, X is Na^{T1} -space.

Definition 7

Let X be a (TS). Then X is named N_{α}^{T2} -space if for any two distinct points x, y in X there exists two $(N_{\alpha} - OSs)$ X satisfy $x \in A_1$, $y \in A_2$ and $A_1 \cap A_2 = \emptyset$

Proposition 4

If X is Na^{T2} - space, then $A = \{(x, y) : x = y, x, y \in X\}$ is (Na - CS).

Proof Assume that X is N_{α}^{T2} - space, to prove A is $(N_{\alpha} - CS)$, let $(x, y) \in A^c \subseteq X \times X/A$, this mean x and y are two distinct points in X, where X is N_{α}^{T1} -space then for some $A_1, A_2 \in N_{\alpha}O(X)$ satisfy $x \in A_1, y \in A_2$ and A_1, A_2 are disjoint sets, hence $(x, y) \in A_1 \times A_2 \subseteq A^c$, but $A_1 \times A_2 \in N_{\alpha}O(X \times X)$ (see Theorem 1), hence A^c is N_{α} - open set, thus A is $(N_{\alpha} - CS)$.

Proposition 5

If $f, g : x \to y$ are $N_{\alpha*}$ - continuous and Y is N_{α}^{T2} space, then the set $A = \{x : x \in Xf(x) = g(x)\}$ is $(N_{\alpha} - CS)$.

Proof If $x \notin A$, then $x \in A^c$ this mean that $f(x) \neq g(x)$ in Y, since Y is N_{α}^{T2} -space, then there exist $B_1, B_2 \in N_{\alpha}O(Y)$ such that $f(x) \in B_1, g(x) \in B_2$ and $B_1 \cap B_2 = \emptyset$, but $f^{-1}(B_1), g^{-1}(B_2) \in N_{\alpha}O(X)$ since f, g are $N_{\alpha*}$ -continuous, hence $x \in f^{-1}(B_1)$, $x \in g^{-1}(B_2)$ hence $x \in f^{-1}(B_1) \cap g^{-1}(B_2)$, let $B = f^{-1}(B_1) \cap g^{-1}(B_2)$, where B is $(N_{\alpha} - OS)$. Now we shall prove $B \subseteq A^c$, i.e $B \cap A = \emptyset$. Suppose that $B \cap A \neq \emptyset$ this mean $y \in B \cap A$; thus, $y \in A, y \in B$. Hence, $y \in f^{-1}(B_1), y \in g^{-1}(B_2)$, hence $f(y) \in B_1, g(y) \in B_2, y \in A$. Thus, f(y) = g(y), since $y \in A$, hence $B_1 \cap B_2 \neq \emptyset$, which is a contradiction, thus $B \subseteq A^c$, thus $A^c \in N_{\alpha}O(X)$, hence $A \in N_{\alpha}C(x)$.

Proposition 6

If X and Y are N_{α}^{Ti} - space, then $X \times Y$ is N_{α}^{Ti} - space $\forall i = 0, 1, 2$

Proof Assume that X and Y are N_{α}^{Ti} - space. Put i = 0 and take $(x_1, y_1) \neq (x_2, y_2)$ in $X \times Y$, then for any two distinct points x_1 and x_2 in X, there exists $A_1 \in N_{\alpha}O(X)$ such that $x_1 \in A_1$, $x_2 \notin A_1$ or $x_1 \notin A_1$, $x_2 \in A_1$, also $y_1 \neq y_2$, then there exists $A_2 \in N_{\alpha}O(Y)$ such that $y_1 \in A_2$, $y_2 \notin A_2$ or $y_1 \notin A_2$, $y_2 \in A_2$ then $(x_1, y_1) \in A_1 \times A_2$ $(x_2, y_2) \notin A_1 \times A_2$ or $(x_1, y_1) \notin A_1 \times A_2(x_2, y_2) \in A_1 \times A_2$ but $A_1 \times A_2$ is $(N_{\alpha} - OS)$ in $X \times Y$ (see Theorem 1). Hence $X \times Y N_{\alpha}^{Ti}$ - space. Similarly, we can prove other states for i = 1, 2.

Proposition 7

If X is N_{α}^{Ti} , then it is N_{α}^{Ti-1} –space, where i = 2, 1.

Proof The proof is consider from Definitions 5, 6, and 7.

Theorem 4

The inverse image of N_{α}^{Ti} -space under injective $N_{\alpha*}$ - continuous mapping is also N_{α}^{Ti} space, where i = 0, 1, 2

We shall prove only when i = 2 and the other cases are similarly.

Proof Let $f: X \to Y$ be injective, $N_{\alpha*}$ - continuous mapping and $x_1 \neq x_2$ in X, since f is injective then $y_1 = f(x_1) \neq f(x_2) = y_2$ in Y where Y is N_{α}^{T2} then there exist two disjoint N_{α} - open set A_1, A_2 in Y satisfy $y_1 \in A_1, y_2 \in A_2$, since f is $N_{\alpha*}$ - continuous

Diagram 1 The relationship	$N_{\alpha}T2 \rightarrow N_{\alpha}T1$	\rightarrow	$N_{\alpha}T0$
between $N_{\alpha}^{T_i}$ -spaces and	\downarrow		\downarrow
gN_{α}^{II} spaces	$gN_{\alpha}T2 \rightarrow gN_{\alpha}T1$	\rightarrow	$gN_{\alpha}T0$

than $f^{-1}(A_1)$, $f^{-1}(A_2)$ are $(N_{\alpha} - OSs)$ in X such that $x_1 \in f^{-1}(A_1)$, $x_2 \in f^{-1}(A_2)$ and $f^{-1}(A_1) \cap f^{-1}(A_2) = \emptyset$. Therefore, X is N_{α}^{T2} -space.

Theorem 5

If $f: X \to Y$ is injective N_{α} - continuous and Y is T_2 space, then X is $N_{\alpha}^{T_2}$ - space.

Proof Similar to the proof of Theorem 4.

Definition 8

Let X be a (TS). Then X is called gN_{α}^{Ti} -space, where i = 0, 1, 2 if:

- (i) i = 0 if for any $x \neq y$ in X, there exists $(gN_{\alpha} OS) A$ containing one of them but not other.
- (ii) i = 1 if for any $x \neq y$ in X, there exist two $(gN_{\alpha} OSs)A$, B containing x and y, respectively, satisfy $y \notin A$, $x \notin B$.
- (iii) i = 2 if for each pair of distinct point *x*, *y* in *X* there exist disjoint $(gN_{\alpha} OSs)$ *A*, *B* such that $x \in A, y \in B$.

Proposition 8

Every N_{α}^{Ti} - space is gN_{α}^{Ti} space.

Proof The proof is in hand, from Theorem 2 where every N_{α} - open set is gN_{α} - open set.

By Propositions 7 and 8 we have the following Diagram 1

Theorem 6

If $f: X \to Y$ is injective gN_{α} - continuous and Y is T_2 – space than X is $gN_{\alpha} - T_2$ space.

Proof Assume that $x \neq y$ in X, since f is injective, thus $f(x) \neq f(y)$ in Y where Y is T_2 space, then there exists disjoint open sets A, B satisfy $f(x) \in A$, $f(y) \in B$ and $A \cap B = \emptyset$, since f is gN_{α} - continuous, then $f^{-1}(A)$, $f^{-1}(B)$ are $(gN_{\alpha} - OSs)$ in X see (Definition 4(iii)) where $x \in f^{-1}(A)$, $y \in f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Hence, X is $gN_{\alpha} - T_2$ space.

4 Conclusion and Future Work

We use N_{α} -open sets in topological spaces to generate new sorts of N_{α} -separation axioms and investigate some of their features in this research. Some theorems are also provided. In future work, we will discuss in nonclassical (TS) such as neutrosophic/fuzzy/soft topological spaces.

References

- 1. Jafari, S., Noiri, T.: Contra α continuous mappings between topological space. Iran. Int. J. Sci. **2**, 153–167 (2001)
- Damodharan, K., Vigneshwaran, M., Khalil, S.M.: N_{δ*gα}-continuous and irresolute functions in neutrosophic topological spaces. Neutrosophic Sets Syst. 38(1), 439–452 (2020)
- Khalil, S.M.: On neurosophic delta generated per-continuous functions in neutrosophic topological spaces. Neutrosophic Sets Syst. 48, 122–141 (2022)
- Khalil, S.M., Suleiman, E., Ali Abbas, N.M.: New technical to generate permutation measurable spaces. In: 2021 1st Babylon International Conference on Information Technology and Science (BICITS), pp. 160–163 (2021). https://doi.org/10.1109/BICITS51482.2021.9509892
- Hasan, M.A., Khalil, S.M., Abbas, N.M.A.: Characteristics of the soft-(1, 2)-gprw–closed sets in soft bi-topological spaces. In: Conf., IT-ELA 2020, vol. 9253110, pp. 103–108 (2020)
- 6. Abbas, N.M.A., Khalil, S.M., Hamza, A.A.: On α^* continuous and contra α^* continuous mappings in topological spaces with soft setting. Int. J. Nonlinear Anal. Appl. **12**, 1107–1113 (2021)
- Hasan, M.A., Ali Abbas, N.M., Khalil, S.M.: On soft α^{*} open sets and soft contra α^{*} continuous mappings in soft topological spaces. J. Interdiscip. Math. 24, 729–734 (2021)
- Khalil, S.M., Hameed, F.: An algorithm for generating permutations in symmetric groups using soft spaces with general study and basic properties of permutations spaces. J. Theor. Appl. Inf. Technol. 96, 2445–2457 (2018)
- Khalil, S.M., Hameed, F.: An algorithm for generating permutation algebras using soft spaces. J. Taibah Univ. Sci. 12(3), 299–308 (2018)
- Ali Abbas, N.M., Khalil, S.M.: On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces. Int. J. Nonlinear Anal. Appl. 12(1), 718–725 (2021)
- Nivetha, A.R., Vigneshwaran, M., Abbas, N.M.A., Khalil, S.M.: On N_{*gα}- continuous in topological spaces of neutrosophy. J. Interdiscip. Math. 24(3), 677–685 (2021)
- Ali Abbas, N.M., Khalil, S.M., Vigneshwaran, M.: The neutrosophic strongly open maps in neutrosophic bi-topological spaces. J. Interdiscip. Math. 24(3), 667–675 (2021)
- Jafari, S., Noiri, T.: On contra pre- continuous mapping. Bull. Malays. Math. Soc. 25, 115–128 (2002)
- 14. Dawood, N.A., Ali, N.M.: N_{α} open set and N_{α} regularity in topological space. Int. J. Adv. Sci. Tech. Res. **5**(3), 87–96 (2015)
- Al-shami, T.M., Abo-Elhamayel, M.: Novel class of ordered separation axioms using limit points. Appl. Math. Inf. Sci. 14(6), 1103–1111 (2020)
- 16. Ibrahim, H.Z.: On a class of $\alpha\gamma$ -open sets in a topological space. Acta Sci. Technol. **35**(3), 539–545 (2013)
- Khalaf, A.B., Jafari, S., Ibrahim, H.Z.: Bioperations on α-open sets in topological spaces. Int. J. Pure Appl. Math. **103**(4), 653–666 (2015)
- Ali, N.M.: Applications of Na and generalized Na- closed sets in topological space. AL Bahir J. Nat. Eng. Sci. 8(15), 55–63 (2018)
- 19. Ali, N.M.: N_{α} continuous and contra N_{α} continuous mappings in topological space. AL Bahir J. Nat. Eng. Sci. **3**(5), 67–76 (2016)