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1 Introduction 

A topological space (TS) is a fairly broad concept. More specificity is frequently 
desirable. Some studies in TS and their extensions in nonclassical TS are shown 
by many mathematicians [1–13]. One method is to define topological spaces with 
more constrained attributes using the separation axioms. In general, it is not true 
that a sequence in a topological space has only one limit. However, using the 
separation axioms, a type of space may be established in which the limit, if it 
exists at all, is unique. In 2015, Na- open sets were initially examined by N.A 
Dawood and N.M Ali, see [14]; by using these sets, we study some classes of 
Nα- separation axioms and Nα- Ti separation for each i = 0, 1, 2, and look into 
some of their characteristics. Separation axioms have also been generalized to other 
generic topological spaces such as ordered topological spaces [15]. Ibrahim [16] 
presented and explored the features of a strong variant of α-open sets termed αγ-
open via operation in 2013. Khalaf and Ibrahim [17] extended their investigation 
of the features of operations defined on the collection of α-open sets introduced 
by Ibrahim [16], defining and discussing numerous properties of αγ-regular, α-β-
compact, and αγ-connected spaces, as well as α-(γ, β)-continuous functions. 

In this chapter, we use Nα- open sets in topological spaces to create new 
types of Nα-separation axioms and study some of their properties. There are also 
some definitions and theorems offered. Here in this work, all spaces X and Y are 
topological spaces, also the closure (interior resp.) of a subset A of X is denoted by 
cl (A) (int (A) resp.) 

N. M. Ali Abbas 
Ministry of Education, Directorate General of Education, Baghdad, Al-Kark, Iraq 

S. Khalil () 
Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
F. Kamalov et al. (eds.), Advances in Mathematical Modeling and Scientific 
Computing, Trends in Mathematics, https://doi.org/10.1007/978-3-031-41420-6_79

923

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41420-6protect T1	extunderscore 79&domain=pdf
https://orcid.org/0000-0002-8731-3418
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79
https://doi.org/10.1007/978-3-031-41420-6_79


924 N. M. Ali Abbas and S. Khalil

2 Fundamental Concepts 

We will cover some fundamental principles that will be useful in our work. 

Definition 1 [15] 
Assume that X is a topological space (TS), a set A is named Na- open set (Nα − OS) 
if for some α-open set B /= ∅ satisfies cl (B) ⊆ A. Also, its complement is named a 
Na- closed set  (Nα − CS). The collection of all Nα- open sets is referred as NαO(X), 
and its complement by NαC(X). 

Remark 1 [15] 
A set  A is a (Nα − CS) if for  some  α-closed set ∅ /= B /= X satisfies ⊆ int (B). 

Remark 2 [15] 
(i) X and ∅ are Nα- open sets (Nα − OS s) in any (TS) X. 
(ii) Any clopen set is (Nα − OS). 
(iii) Any set in discrete space is (Nα − OS). 

Theorem 1 [15] 
Let X1, X2 be topological spaces (TSs). Then A1 and A2 are (Nα − OS s) in X1, X2 
resp., if and only if A1 × A2 is (Nα − OS) in  X1 × X2. 

Proposition 1 [15] 
Let X be (TS). Then: 

(i) Finite union of (Nα − OS s) is (Nα − OS) also.  
(ii) Finite intersection of (Nα − CS s) is (Nα − CS) also.  

Definition 2 [15] 
The union of all Na- open set of X contained in A is named Na- interior of A and is 
denoted Nα int(A), and the intersection of all (Nα − CS) containing A is called Nα-
closure of A, refereed by Nα cl(A). 

Definition 3 [18] 
We say A is generalized Nα – closed set  (gNα − CS) of a space X, if  Nα cl(A) ⊆ B 
whenever A ⊆ B and B is (Nα − OS). 

The complement of (gNα − CS) is generalized Nα- open set (gNα − OS) in  X. 

Theorem 2 [18] 
(i) If A is (Nα − CS) in  X, then it is (gNα − CS). 
(ii) If A is (Nα − OS) in  X, then it is (gNα − OS). 

Proposition 2 [15] 
Suppose that (Y, ty) is a subspace of a (TS) X with A ⊆ Y ⊆ X. Then: 

(i) If A ∈ NaO(X), then A ∈ NαO(Y). 
(ii) If A ∈ NaO(Y), then A ∈ NαO(X), where Y is clopen set in X 

Definition 4 [19] 
Let X1, X2 be (TSs) where, f : X1 → X2 is a mapping, then f is named:
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(i) Nα(Nα∗- continues) resp. if f−1 (A) is (Nα − OS) in  X1 for each A open set 
((Nα − OS))in X2 resp. 

(ii) Nα(Nα∗- open) mapping if f (A) is (Nα − OS) in  X2 for each open set 
((Nα − OS)) A in X1 resp. 

(iii) gNα-continuous (gNα∗ -continuous) resp. mapping if for each open set 
((gNα − OS)) set A in Y respectively then f−1(A) is (gNα − OS) in  X. 

3 Some Characteristics of Nα-Separation Nα- Axioms 

In this section, we study Nα Ti- space X for each i = 0, 1, 2 and we discuss some 
of these spaces’ characteristics and remarks. We will prove certain theorems in the 
following cases when X is a finite space. 

Definition 5 
Assume that X is a (TS). We say X is a Nα TO-space if for any x /= y in X, there exists 
(Nα − OS) A containing one of them but not other. 

Theorem 3 
Let X be a (TS). Then X is Nα To-space if and only if Nα Cl{x} /= Nα Cl{y}. 

Proof Let Nα Cl{x} /= Nα Cl{y}, ∀x /= y in X. This implies Nα Cl{x} ⊈Nα Cl{y} or Nα Cl{y}
⊈ Nα Cl{x}. Suppose Nα Cl{x} ⊈ Nα Cl{y}, hence X /∈ Nα Cl{y}, thus x ∈ (Nα Cl{y})c, which 
is (Nα − OS) and y /∈ (Nα Cl{y})c. Thus, X is Nα To-space, assume X is Nα To-space; 
hence, for each x /= y in X, there exists (Nα − OS) G such that x ∈ G, y /∈ G or y ∈ G, 
x /∈ G. Hence, Gc is (Na − CS). x /∈ Gc, y ∈ Gcy ; hence, x /∈ Nα Cl{y}, x ∈ Nα Cl{x} ; 
this means x /∈ Nα Cl{y}. Thus, Nα Cl{x} /= Nα

{y}. 

Definition 6 
Let X be a (TS). Then X is named Nα T1-space if each pair of distinct points x and y 
of X, there exist two Nα- open sets A, B containing x and y, respectively, such that 
y /∈ A, x /∈ B. 

Proposition 3 
Let X be a (TS). Then X is Nα T1 -space if and only if {x} is (Nα − CS) ∀x ∈ X. 

Proof Assume that X is Nα T1-space, to show that each {x} is (Nα − CS), this means 
we must show that X/{x} is (Nα − OS) for each singleton set {x} in X. 

Let y ∈ X/{x}, then y /= x in X, since X is Nα T1 space, then there exists (Nα − OS) 
G with y ∈ G and x /∈ G. This implies that .y ∈ G ⊆ X

{x} ; this implies X/{x} is 
(Nα − OS). Hence, {x} is (Nα − CS). 

Conversely: Let {x} be (Nα − CS), ∀ x ∈ X, to prove X is Nα T1 -space. Let x /= y 
in X, hence {x}, {y} are (Nα − CSs) hence {x}c, {y}c are (Nα − OSs) and y ∈ {x}c, 
x /∈ {x}c, x ∈ {y}c, y /∈ {y}c. Therefore, X is NaT1-space.
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Definition 7 
Let X be a (TS). Then X is named Nα T2-space if for any two distinct points x, y in 
X there exists two (Nα − OSs) X satisfy x ∈ A1, y ∈ A2 and A1 ∩ A2 = ∅ 

Proposition 4 
If X is NaT2- space, then A = {(x, y) :  x = y, x, y ∈ X} is (Na − CS). 

Proof Assume that X is Nα T2- space, to prove A is (Nα − CS), let 
(x, y) ∈ Ac ⊆ X × X/A, this mean x and y are two distinct points in X, where X 
is Nα T1-space then for some A1, A2 ∈ NαO(X) satisfy x ∈ A1, y ∈ A2 and A1, A2 
are disjoint sets, hence (x, y) ∈ A1 × A2 ⊆ Ac, but  A1 × A2 ∈ NαO(X × X) (see 
Theorem 1), hence Ac is Nα- open set, thus A is (Nα − CS). 

Proposition 5 
If f, g : x → y are Nα∗- continuous and Y is Nα T2 space, then the set 
A = {x : x ∈ X f (x) = g(x)} is (Nα − CS). 

Proof If x /∈ A, then x ∈ Ac this mean that f (x) /= g(x) in Y, since Y is Nα T2-space, 
then there exist B1, B2 ∈ NαO(Y) such that f (x) ∈ B1, g(x) ∈ B2 and B1 ∩ B2 = ∅, 
but f−1(B1), g−1(B2) ∈ NαO(X) since f, g are Nα∗-continuous, hence x ∈ f−1(B1), 
x ∈ g−1(B2) hence x ∈ f−1(B1) ∩ g−1(B2), let B = f−1(B1) ∩ g−1(B2), where B is 
(Nα − OS). Now we shall prove B ⊆ Ac, i.e B ∩ A = ∅. Suppose that B ∩ A /= ∅ 
this mean y ∈ B ∩ A; thus, y ∈ A, y ∈ B. Hence, y ∈ f−1(B1), y ∈ g−1(B2), hence 
f (y) ∈ B1, g(y) ∈ B2, y ∈ A. Thus, f (y) = g(y), since y ∈ A, hence B1 ∩ B2 /= ∅ , 
which is a contradiction, thus B ⊆ Ac, thus Ac ∈ NαO(X)„ hence A ∈ NαC(x). 

Proposition 6 
If X and Y are Nα Ti- space, then X × Y is Nα Ti- space ∀i = 0, 1, 2 

Proof Assume that X and Y are Nα Ti- space. Put i = 0 and take (x1, y1) /= (x2, y2) 
in X × Y, then for any two distinct points x1 and x2 in X, there exists A1 ∈ NαO(X) 
such that x1 ∈ A1, x2 /∈ A1 or x1 /∈ A1, x2 ∈ A1, also  y1 /= y2, then there exists 
A2 ∈ NαO(Y) such that y1 ∈ A2, y2 /∈ A2 or y1 /∈ A2, y2 ∈ A2 then (x1, y1) ∈ A1 × A2 
(x2, y2) /∈ A1 × A2 or (x1, y1) /∈ A1 × A2(x2, y2) ∈ A1 × A2 but A1 × A2 is (Nα − OS) 
in X × Y (see Theorem 1). Hence X × Y Nα Ti- space. Similarly, we can prove other 
states for i = 1, 2. 

Proposition 7 
If X is Nα Ti, then it is Nα Ti − 1 –space, where i = 2, 1. 

Proof The proof is consider from Definitions 5, 6, and 7. 

Theorem 4 
The inverse image of Nα Ti -space under injective Nα∗- continuous mapping is also 
Nα Ti space, where i = 0, 1, 2 

We shall prove only when i = 2 and the other cases are similarly. 

Proof Let f : X → Y be injective, Nα∗- continuous mapping and x1 /= x2 in X, since 
f is injective then y1 = f (x1) /= f (x2) = y2 in Y where Y is Nα T2 then there exist two 
disjoint Nα- open set A1, A2 in Y satisfy y1 ∈ A1, y2 ∈ A2, since f is Nα∗- continuous
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Diagram 1 The relationship 
between Nα Ti-spaces and 
gNα Ti spaces 

than f−1(A1), f−1(A2) are  (Nα − OSs) in  X such that x1 ∈ f−1(A1), x2 ∈ f−1(A2) 
and f−1(A1) ∩ f−1(A2) = ∅. Therefore, X is Nα T2-space. 

Theorem 5 
If f : X → Y is injective Nα- continuous and Y is T2 space, then X is Nα T2 – space. 

Proof Similar to the proof of Theorem 4. 

Definition 8 
Let X be a (TS). Then X is called gNα Ti-space, where i = 0, 1, 2 if: 

(i) i = 0 if for any x /= y in X, there exists (gNα − OS) A containing one of them 
but not other. 

(ii) i = 1 if for any x /= y in X, there exist two (gNα − OSs) A, B containing x and y, 
respectively, satisfy y /∈ A, x /∈ B. 

(iii) i = 2 if for each pair of distinct point x, y in X there exist disjoint (gNα − OSs) 
A, B such that x ∈ A, y ∈ B. 

Proposition 8 
Every Nα Ti- space is gNα Ti space. 

Proof The proof is in hand, from Theorem 2 where every Nα- open set is gNα-
open set. 

By Propositions 7 and 8 we have the following Diagram 1 

Theorem 6 
If f : X → Y is injective gNα- continuous and Y is T2 – space than X is gNα − T2 
space. 

Proof Assume that x /= y in X, since f is injective, thus f (x) /= f (y) in  Y where Y 
is T2 space, then there exists disjoint open sets A, B satisfy f (x) ∈ A, f (y) ∈ B and 
A ∩ B = ∅, since f is gNα- continuous, then f−1(A), f−1(B) are (gNα − OSs) in  
X see (Definition 4(iii)) where x ∈ f−1(A), y ∈ f−1(B) and f−1(A) ∩ f−1(B) = ∅ . 
Hence, X is gNα − T2 space. 

4 Conclusion and Future Work 

We use Nα-open sets in topological spaces to generate new sorts of Nα-separation 
axioms and investigate some of their features in this research. Some theorems 
are also provided. In future work, we will discuss in nonclassical (TS) such as 
neutrosophic/fuzzy/soft topological spaces.
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