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1 Introduction

In a variety of conditions, double-diffusive natural convection, or flows caused
by buoyancy due to simultaneous temperature and concentration gradients, can
occur. Some literature is available on the single and double component layer.
Sumithra and Manjunatha [1] conducted an analytical study of magneto convec-
tion in a combined layer limited by adiabatic boundaries. Sankar et al. [2] and
Jagadeesha et al. [3] examined the two-component convection using the Darcy
model for porous enclosure in the presence of heat and solute source. Pushpa
et al. [4] explored the thermosolutal convection. The influence of magnetic field
on double-diffusive mixed convection in a rectangular inclined domain with an
aspect ratio was investigated using a finite volume technique by Shivananda and
Satheesh [5]. Shivakumara et al. [6] explored the effect of cross-diffusion on the
beginning of convective instability. Sumithra and Arul Selvamary [7] discussed
the single component convection for couple stress fluid in combined system for
two boundary combinations. In the presence of magnetic field, heat generation or
absorption, and chemical reaction, Xiaoli Qiang et al. [8] investigated unstable
MHD double-diffusive convection flows between two infinite vertical parallel plates.
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Peristaltically deformable and double-diffusive characteristics have been examined
by Tanveer et al. [9].

Recently, the influence of a power law fluid and an angled magnetic field on a
porous material in a staggered cavity is studied by Hussain et al. [10]. The influence
of the Soret and Dufour factors is also considered. Meften [11] investigated two
models of double-diffusive convection in a fluid layer where viscosity varies
quadratically with temperature and nonlinear results are obtained using conditional
energy analysis. Manjunatha et al. [12] and Manjunatha and Sumithra [13] studied
the effects of three profiles and a heat source on convection in a combined structure
in the presence of magnetic field. In the present study, the effect of magnetic field
and heat source on onset convection is examined in detail for two types of boundary
combinations.

2 Mathematical Formulation

Consider a double component, electrically conducting liquid saturated isotropic,
sparsely packed porous layer of thickness dj, with an imposed magnetic field
intensity Ho underlying a triple component liquid layer of thickness dy and with
heat sources @, and @, respectively. The porous layer’s lower surface is hard,
while the fluid layer’s upper surface is free, with surface tension effects depending
on temperature and concentration as shown in Fig. 1. A Cartesian coordinate system
(X, ¥, z) is used with the origin at the interface between the porous and fluid
layers, and the z-axis is vertically upward. Let AT and AC be the temperature
and concentration difference between the lower and upper boundaries, 7 = Tj the

reference temperature, and C = Cp the reference salinity. With the Boussinesq
m, Double component
fluid layer
Free z
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Fig. 1 Geometry of the problem
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approximation, the basic equations for region 1 and region 2 (see Sumithra and
Manjunatha [1] and Shivakumara et al. [14]).
Fluid layer: Region 1
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where the fluid and porous regions are denoted by the subscripts f and p, respec-
—
tively. V r is the velocity vector, pg is the fluid density, u ¢ is the fluid viscosity,

Py is the total pressure, H is the magnetic field, T is the temperature, vy is the
magnetic viscosity, yr is the magnetic permeability, «.r is the solute diffusivity of
the fluid, and Cy is the salinity field. For region 2, ¢, is the porosity, K is the
permeability , M is the heat capacity ratio, «, is the thermal diffusivity, and v, is
the effective magnetic viscosity.

The goal of this research is to see if a quiescent state can withstand tiny
perturbations superimposed on the basic state; the solutions are as follows:
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— —
Vi=0,Pr=Prpzp), Ty =Tsp(zy), Cyr = Cyp(zy), H = Ho(zy) (13)
— —
Vp=0,Pp = Ppp(zp), Tp = Tpp(zp), Cp = Cpp(zp), H = Ho(zp) (14)
where
—Przs(zr—d T, — Ty)z
Tp(zf) = 1218 f)+(" O)f—i-To 0<zy<dy
2Kf df
D,7,(zp+d To— Tz
Top(zp) = pipGptdy) | To=Izp | p —d, <z, <0
2kp dp
Co—Cy)z
Cfb(Zf)ZCO—% 0<Zf<df
C;—Co)z
c,,h(z,,)zco—(’d—")” —d, <z, <0
p

To = kpdyTy+kpdsT) dpdy(Ppdy+Pydy) C = kepdpCytiepdrCy
Kydpticpdy 20k pdptrpdy) 770 Kefdp+iepdy .
To investigate the stability of the basic state, regions 1 and 2 are subjected to
infinite perturbations:

73 E7 4 ’ / /
Vf = Vf’Pf = be+Pf,Tf= be(Zf)+9f, Cf :Cfb(zf)+va

— —)/

H = Hy(zy) + H' (15)
o el 1 1 /
szvp,PpZPpb"_P , T, = pb(zp)+9pacp=Cpb(Zp)+S ,

- e
H = Hy(zp) + H' (16)

where V/,, PJQ, 0}, S}, H'velocity, pressure, temperature, salinity, and magnetic
field are respectively perturbed quantities for region 1 and the similar quantities in

—
region 2 are V . P,, 05,5, H'. The variables are nondimensionalized for regions
2

1 and 2 using d, ij .7-To = Tu.Co — CuHo, and dp 2. 22.T) — Ty, C; — Co. Ho.
We arrive at the following stability equations in region 1 and region 2, respec-
tively, using the conventional linear stability analysis approach and assuming that

the concept of exchange of stability holds (see Sumithra and Manjunatha [1] and
Shivakumara et al. [14]):

((D§ o 0 D}) Wr(zp) =0 17)
(D} = ah¥r(zp) + (14 Ripzp = D) Wz =0 (18)

rf(Dic —a?)Sf(Zf)‘I‘Wf(Zf) =0 (19)
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((DI% —ad)+ Qpﬂsz,) W,(zp) =0 (20)
(D3 — a2)0,(zp) + (1 + R}, 2z, + 1)) Wy(zp) =0 (21)
tp(Df7 - af,)Sp(zp) + W,(z,) =0 (22)
. R; Rip
In the abo;/e equatlons,2 ag, ap, Qf. Qps Riy = sy Ri, = sy
®sd d : .
Rif = %, Rip = q);’p”, Tp = ';”—-jf, and 7, = KK‘: are, namely, the horizontal wave

numbers, the Chandrasekhar numbers, the modified internal Rayleigh numbers,
the internal Rayleigh numbers, and the diffusivity ratios, 8 = /dﬁzis the porous
P

parameter, W (z¢) and W, (z,) are the vertical velocities, 8¢ (z r) and 6,,(z ) are the
temperatures, and S¢(zy) and S,(zp) are the concentration distributions. Because

the wave numbers for the combined layers must be the same, so that we have

a — =d 7= i
i =, and hence a, = day, here d = a; is the depth ratio.

The boundary conditions are nondimensionalized after:
DiWs(1) + (M0 (1) + M;Ss(1)) a7 = 0 (23)
The velocity conditions are
We(l) =0, W,(=1) =0,D,W,(—1) =0, fo(O) = W,(0),
Td*(D} + a7)Ws(0) = A(D3 + a3)Wy(0), TdD Wy (0) = D, W, (0),
M%%(D} —3a3 D)W (0) = [-D, + AB*(D; — 3a; D,)IW,(0) (24)
The conditions for adiabatic-adiabatic and adiabatic-isothermal, respectively, are
Dr(1) =0,04(0) = fGP(O), D0¢(0) = D,6,(0), Dpo,(=1) =0 (25)
Ds0r(1) =0,07(0) = f”@,,(O), Ds0r(0) = D,6,(0),0,(=1) =0 (26)
The salinity conditions are
D¢Sy(1) =0,5¢(0) = S‘Sp(O), DyS¢(0) = D,S,(0), D,S,(—=1) =0 (27)

In the above equations, $ is the solute diffusivity ratio, T is the thermal ratio, [1

. . . . 3o, (Tu—To)d
is the viscosity ratio, M; = g—;}%

¢ Cy—Co)dr . . .
M; = %%m the solute Marangoni number (sMn), and o; is the surface

tension.

is the thermal Marangoni number (tMn),
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3 Methodology

Introducing (24), the velocity profiles are obtained by solving (17) and (20) and
appropriately written as follows:

Wy(zp)=Arlcoshyrzs+ay sinhypz p+as coshgrzp+aszsinhgrzy]  (28)
Wy (zp)=A1laq coshépzp+assinhéyz,]  (29)

where
/ 2 / 2
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A7 = sinhgy — (j—f) sinh ¢, Ag = — cosh /.
Introducing (19) and (22), the salinity profiles are obtained using the condition
(27), as follows:
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4 Thermal Marangoni Number

4.1 Case (i): Adiabatic-Adiabatic Boundary Condition

The fluid-porous structure is horizontally enclosed by the adiabatic boundaries.

Using the boundary conditions for temperature (25), the distributions 6(z ) and
0p(zp) are produced by solving (18) and (21):

Or(zy) = Arlcicoshayrzy +cpsinharzy + Xra(z5)] (32)

0p(zp) = Atlczcoshapz, + cqasinhapzy, + Xpa(zp)] (33)

where X ¢2(zf) = A1[81 — 82 + 83 — 841, Tpa(zp) = A1ld5 — 8]
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— 282
Al6 = I:(gz(iZHPZ) + ( paZp) } (a4 COSh8 — das Slnh 8])) - Al60,
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8, (01 p—0t2) . .
Algo = %(% coshd, —agsinhd,), A7 = Taf sinhay,
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We get tMn by using the expression (23) as

— A1 — Msa30
Mll = 2 . (34)
af(cl coshay + cosinhay + Az + A3)

where
A= w%(cosh Yy +aysinhyp) + (p?c(az coshgy +azsinhgy),
cosh w_f+a1 sinh /¢ + ap coshgs+azsinhgy ]
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f LT

4.2 Case (ii): Adiabatic-Isothermal Boundary Condition

The lower porous boundary of the combined layer is adiabatic and the upper fluid
boundary of the composite layer is isothermal. Using the temperature boundary
conditions (26), the distributions 07 (z ) and 0,(zp)are produced by solving (18)
and (21):
Or(zy) = Ailescoshayrzy +cosinhayrzy + Xp3(zy)] (35)
0p(zp) = Atlcrcoshapz, + cgsinhapz, + Xp3(zp)] 36)

where X ¢3(zf) = A1[611 — 812 + 613 — S14], Xp3(zp) = A1ld15 — S16l,

S11 = W(cosh Vrzp +aisinhyrzy),
812 = (Z#(al coshyrzyp +sinhrzy),

813 = w(az coshgrzy+azsinhgrzy),
814 = (sz ff s(azcoshgrzy +aysinhgyrzy),
815 = WM(M coshé,z, + assinhd,zp),
816 = (82;‘4” ”) (ascosh§,z, 4+ assinh8,z)),

Ot3f—R‘ 1,a4f=—2R]f,ot3p=—(R1p+l),0l4p=—2R}kp,
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We get tMn from (23) as

—A — Msaf,U
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where A4 W(cosh Vs +apsinhyy) — (ww#(al cosh /s + sinh ¢/ ),
I I
A M(azcoshqof +a351nh¢f)—ﬁ(a3cosh<pf + azsinhgy).

(¢7—a (@7

5 Results and Discussion

The tMns for two cases of thermal boundary conditions M;; and M;;, are obtained
as expressions of the depth ratio d, the porous parameter 3, the thermal ratio T,
the solutal ratio 3’, sMn M; and the Chandrasekhar number Q r, the horizontal
wave numbers ay and ap, the diffusivity ratio trandrt,, and R;‘f and R}‘p the
modified internal Rayleigh numbers for region 1 and region 2. The thermal boundary
conditions taken are adiabatic-adiabatic and that the combined layer is horizontally
enclosed by the adiabatic boundaries and adiabatic-isothermal, the lower porous
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Fig. 2 Comparison of tMn 40 l
for case (i)
adiabatic-adiabatic and case ‘
(ii) adiabatic-isothermal '
20+ n
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10+ — g
R,
——
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Depth ratio t;

boundary of the composite system is adiabatic, and the upper fluid boundary of
the composite system is isothermal. These tMns M; are drawn versus the depth
ratiod using Mathematica software. The other parameters are ay = 0.5, Oy = 10,

B=10,4=28=T=1,1 =1, =025 M = 10, R*f_landR*p_l

the effects of the various parameters are described in detail and represented in the
graphs below.

Figure 2 represents the comparison of M;; and M;,, where M, is the dependent
variable and d, the depth ratio, is the independent variable. The tMn decreases up to
some value of the depth ratio, and later it increases as the value of the depth ratio also
increases. This behavior is qualitatively the same for both types of thermal boundary
combination (TBC). It is interesting to note that for larger values of depth ratios, the
Marangoni numbers coincide and no change in them for d > 2, i.e., for porous
layer dominant (in depth) systems which is physically impressive as the TBC at the
boundary of the porous layer is changed. But for the smaller depth ratio values, the
thermal Marangoni number for case (i) is smaller than that for case (ii), indicating
that the system with case (i) TBC is more stable.

For both situations of TBCs, the effects of the Chandrasekhar number Q r on
double-diffusive Marangoni convection (DDMC) (DDMC) are shown in Fig. 3. The
values of Q ¢ that were used were 1, 10, and 100. The curves are diverging, showing
that Q y is more prominent at higher depth ratios, i.e., for the porous layer dominant
composite system (PDCS). Because an increase in the value of Q y raises the tMns
for a certain depth ratio, the DDC can be advanced by lowering the values of Q,
and the system can be destabilized. This parameter’s effect is analogous to that of
TBCs.
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Fig. 3 Variations of 0y = 1,10, 100 on tMn whenay = 0.5, =1.0, 1 =2, =T = 1,77 =
7, =025, M, = 10, R}, = 1 andR}, = 1

The effect of a modified internal Rayleigh number R}, on the tMn is shown in
Fig. 4 for both the TBCs R}‘f = —1,0 and 1. For larger depth ratio values, i.e., for
porous layer dominant composite system (PDCS), the curves diverge, reflecting the
importance of the modified internal Rayleigh number. The tMn increases when the
value of R}‘f is increased, that is, from sink to source, for a certain depth ratio. As a
result, the DDMC in the presence of a magnetic field can be delayed by raising the
value of R}‘ . As a result, the heat absorption stabilizes the system. For TBCs, the
effect of this parameter is comparable.

The effect of a modified internal Rayleigh number for porous layer R}‘p on the
tMn is shown in Fig. 5 for R}‘p = —1, 0 and 1. The Marangoni number grows as the
amount of R’;p is increased from sink to source; hence, the DDMC in the presence
of a magnetic field can be delayed by raising the value of R}kp. As a result, the
heat absorption stabilizes the system. This parameter has the same effect in both
scenarios of TBCs. Also, as shown in the diagram, this parameter is effective for
some modest depth ratios, that is, for PDCS in both scenarios of TBCs.

The effect of solute Marangoni number M, on the Marangoni number is similar
for both the cases of TBCs, which is exhibited in Fig. 6 for My = 5, 10 and 50. On
increasing the values of Mj, the tMn for DDMC in the presence of magnetic field
increases; hence, the DDMC can be delayed by increasing the values of M. The
diverging curves reveal that the effect of sMn is intensive for larger values of depth
ratios, that is, for PDCS. The effect of this parameter is comparable to the cases of
TBCs.
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Fig. 4 Variations of R;‘f = —1,0,1 ontMn whenay = 05,0y = 10,8 = 1.0, i = 2, S =
T =117 =1,=025M, =10andR}, = 1

40

30

10}

Depth ratio d

(@)

40

30

10

2 3 4 5
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Fig. 5 Variations of R;‘p = —1,0, 1 for porous region on tMn when ay = 0.5, 0y = 10, 8 =

1.0,4=2,8=T=1,15 =1, = 0.25, M,

6 Conclusion

= 10 and R*

In the current study, the impact of a heat source and magnetic field on onset
convection is thoroughly investigated for two different boundary configurations.
Because of this, the composite layer system is stable and can be used in adiabatic-
adiabatic thermal boundary conditions, where convection needs to be regulated. The

following are the key findings from the current study:
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Fig. 6 Variations of M; = 5,10,50 on tMn when ay = 2.5, 0y = 10,8 = 1.0, n =2, S =

T=171=1,=025R},=land R}, =1

(i) When compared to the case (ii) thermal boundary condition, the tMn for the
case (i) thermal boundary condition is large. As a result, in the case of case
(i), the fluid-porous system is stable and can be used in circumstances where
convection must be controlled.

(ii) All the physical parameters are effective for the larger values for depth ratios
that are for the PDCS.

(iii) In the present study, by increasing the values of the Chandrasekhar number Q f,
the modified internal Rayleigh numbers R*f, R}‘p, and the solute Marangoni
number M; in the presence of magnetic field, the thermal Marangoni numbers,
i.e., to stabilize the system, so the onset of DDMC is delayed.

(iv) The DDMC in the combined system can be controlled by selecting the proper
values for the physical parameters. Results are in good accordance with earlier
work.
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