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1 Introduction 

In a variety of conditions, double-diffusive natural convection, or flows caused 
by buoyancy due to simultaneous temperature and concentration gradients, can 
occur. Some literature is available on the single and double component layer. 
Sumithra and Manjunatha [1] conducted an analytical study of magneto convec-
tion in a combined layer limited by adiabatic boundaries. Sankar et al. [2] and 
Jagadeesha et al. [3] examined the two-component convection using the Darcy 
model for porous enclosure in the presence of heat and solute source. Pushpa 
et al. [4] explored the thermosolutal convection. The influence of magnetic field 
on double-diffusive mixed convection in a rectangular inclined domain with an 
aspect ratio was investigated using a finite volume technique by Shivananda and 
Satheesh [5]. Shivakumara et al. [6] explored the effect of cross-diffusion on the 
beginning of convective instability. Sumithra and Arul Selvamary [7] discussed 
the single component convection for couple stress fluid in combined system for 
two boundary combinations. In the presence of magnetic field, heat generation or 
absorption, and chemical reaction, Xiaoli Qiang et al. [8] investigated unstable 
MHD double-diffusive convection flows between two infinite vertical parallel plates. 
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Peristaltically deformable and double-diffusive characteristics have been examined 
by Tanveer et al. [9]. 

Recently, the influence of a power law fluid and an angled magnetic field on a 
porous material in a staggered cavity is studied by Hussain et al. [10]. The influence 
of the Soret and Dufour factors is also considered. Meften [11] investigated two 
models of double-diffusive convection in a fluid layer where viscosity varies 
quadratically with temperature and nonlinear results are obtained using conditional 
energy analysis. Manjunatha et al. [12] and Manjunatha and Sumithra [13] studied 
the effects of three profiles and a heat source on convection in a combined structure 
in the presence of magnetic field. In the present study, the effect of magnetic field 
and heat source on onset convection is examined in detail for two types of boundary 
combinations. 

2 Mathematical Formulation 

Consider a double component, electrically conducting liquid saturated isotropic, 
sparsely packed porous layer of thickness . dp with an imposed magnetic field 
intensity . H0 underlying a triple component liquid layer of thickness . df and with 
heat sources .Φp and . Φf , respectively. The porous layer’s lower surface is hard, 
while the fluid layer’s upper surface is free, with surface tension effects depending 
on temperature and concentration as shown in Fig. 1. A Cartesian coordinate system 
(x, y, z) is used with the origin at the interface between the porous and fluid 
layers, and the z-axis is vertically upward. Let .ΔT and .ΔC be the temperature 
and concentration difference between the lower and upper boundaries, .T = T0 the 
reference temperature, and .C = C0 the reference salinity. With the Boussinesq 
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Fig. 1 Geometry of the problem
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approximation, the basic equations for region 1 and region 2 (see Sumithra and 
Manjunatha [1] and Shivakumara et al. [14]). 

Fluid layer: Region 1 

.∇f .
−→
V f = 0. (1) 

∇f .
−→
H = 0. (2) 

∂
−→
V f 
∂t 

+ (−→V f .∇f )
−→
V f = −  

1 

ρ0 
∇f Pf + 

μf 
ρ0 

∇2 
f 
−→
V f + 

γf 
ρ0 

(
−→
H .∇f )

−→
H . (3) 

∂Tf 
∂t 

+ (−→V f .∇f )Tf = κf ∇2 
f Tf + Φf . (4) 

∂Cf 
∂t 

+ (−→V f .∇f )Cf = κcf ∇2 
f Cf . (5) 

∂
−→
H 
∂t 

= ∇f × −→
V f × −→

H + νf ∇2 
f 
−→
H (6) 

Porous layer: Region 2 

.∇p.
−→
V p = 0. (7) 

∇p.
−→
H = 0. (8) 

1 

εp 

∂
−→
Vp 
∂t 

+ 
1 

ε2 p 
(
−→
Vp.∇p)

−→
Vp = −  

1 

ρ0 
∇pPp − 

μp 
Kρ0 

−→
Vp + 

γp 
ρ0 

(
−→
H .∇p)

−→
H . (9) 

M 
∂Tp 
∂t 

+ (
−→
Vp.∇p)Tp = κp∇2 

pTp + Φp. (10) 

φp 
∂Cp 
∂t 

+ (−→Vp.∇p)Cp = κcp∇2 
pCp. (11) 

φp 
∂
−→
H 
∂t 

= ∇p × −→
Vp × −→

H + νp∇2 
p 
−→
H (12) 

where the fluid and porous regions are denoted by the subscripts f and p, respec-

tively. .
−→
V f is the velocity vector, . ρ0 is the fluid density, . μf is the fluid viscosity, 

. Pf is the total pressure, . 
−→
H is the magnetic field, . Tf is the temperature, . νf is the 

magnetic viscosity, . γf is the magnetic permeability, . κcf is the solute diffusivity of 
the fluid, and . Cf is the salinity field. For region 2, . φp is the porosity, K is the 
permeability , M is the heat capacity ratio, . κp is the thermal diffusivity, and . νp is 
the effective magnetic viscosity. 

The goal of this research is to see if a quiescent state can withstand tiny 
perturbations superimposed on the basic state; the solutions are as follows:
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.
−→
V f = 0, Pf = Pf b(zf ), Tf = Tf b(zf ), Cf = Cf b(zf ),

−→
H = H0(zf ). (13) 

−→
Vp = 0, Pp = Ppb(zp), Tp = Tpb(zp), Cp = Cpb(zp),

−→
H = H0(zp) (14) 

where 

. Tf b(zf ) = −Φf zf (zf − df )

2κf

+ (Tu − T0)zf

df

+ T0 0 ≤ zf ≤ df

Tpb(zp) = −Φpzp(zp + dp)

2κp

+ (T0 − Tl)zp

dp

+ T0 − dp ≤ zp ≤ 0

Cf b(zf ) = C0 − (C0 − Cu)zf

df

0 ≤ zf ≤ df

Cpb(zp) = C0 − (Cl − C0)zp

dp

− dp ≤ zp ≤ 0

.T0 = κf dpTu+κpdf Tl

κf dp+κpdf
+ df dp(Φpdp+Φf df )

2(κf dp+κpdf )
, .Co = κcf dpCu+κcpdf Cl

κcf dp+κcpdf
. 

To investigate the stability of the basic state, regions 1 and 2 are subjected to 
infinite perturbations: 

. 
−→
V f = −→

V ′
f , Pf = Pf b + P ′

f , Tf = Tf b(zf ) + θ ′
f , Cf = Cf b(zf ) + S′

f ,

−→
H = H0(zf ) + −→

H ′
. (15) 

−→
Vp = −→

Vp

′
, Pp = Ppb + P ′

p, Tp = Tpb(zp) + θ ′
p, Cp = Cpb(zp) + S′

p, 
−→
H = H0(zp) + −→

H ′ (16) 

where .
−→
V ′

f , P ′
f , θ ′

f , S′
f ,

−→
H ′velocity, pressure, temperature, salinity, and magnetic 

field are respectively perturbed quantities for region 1 and the similar quantities in 

region 2 are .
−→
Vp

′
, P ′

p, θ ′
p, S′

p,
−→
H ′. The variables are nondimensionalized for regions 

1 and 2 using . df , . 
d2f
κf
,. 
κf

df
,.T0 − Tu,.C0 − Cu,. H0, and .dp,

d2p
κp

,
κp

dp
,.Tl − T0, Cl − C0, . H0. 

We arrive at the following stability equations in region 1 and region 2, respec-
tively, using the conventional linear stability analysis approach and assuming that 
the concept of exchange of stability holds (see Sumithra and Manjunatha [1] and 
Shivakumara et al. [14]): 

.

(
(D2

f − a2f )
2 − Qf D2

f

)
Wf (zf ) = 0. (17) 

(D2 
f − a2 f )θf (zf ) +

(
1 + R∗

If (2zf − 1)
)

Wf (zf ) = 0. (18) 

τf (D
2 
f − a2 f )Sf (zf ) + Wf (zf ) = 0. (19)
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(
(D2 

p − a2 p) + Qpβ2D2 
p

)
Wp(zp) = 0. (20) 

(D2 
p − a2 p)θp(zp) +

(
1 + R∗

Ip(2zp + 1)
)

Wp(zp) = 0. (21) 

τp(D2 
p − a2 p)Sp(zp) + Wp(zp) = 0 (22) 

In the above equations, . af , . ap, . Qf , . Qp, .R∗
If = Rif

2(T0−Tu)
, .R∗

Ip = Rip

2(Tl−T0)
, 

.Rif = Φf d2f
κf

, .Rip = Φpd2p
κp

, .τf = κcf

κf
, and .τp = κcp

κp
are, namely, the horizontal wave 

numbers, the Chandrasekhar numbers, the modified internal Rayleigh numbers, 
the internal Rayleigh numbers, and the diffusivity ratios, .β =

√
K
d2p
is the porous 

parameter, .Wf (zf ) and .Wp(zp) are the vertical velocities, .θf (zf ) and .θp(zp) are the 
temperatures, and .Sf (zf ) and .Sp(zp) are the concentration distributions. Because 
the wave numbers for the combined layers must be the same, so that we have 
.
af

df
= ap

dp
and hence .ap = d̂af , here .d̂ = dp

df
is the depth ratio. 

The boundary conditions are nondimensionalized after: 

.D2
f Wf (1) + (

Mtθf (1) + MsSf (1)
)
a2f = 0 (23) 

The velocity conditions are 

. Wf (1) = 0,Wp(−1) = 0,DpWp(−1) = 0, T̂ Wf (0) = Wp(0),

T̂ d̂2(D2
f + a2f )Wf (0) = μ̂(D2

p + a2p)Wp(0), T̂ d̂Df Wf (0) = DpWp(0),

T̂ d̂3β2[(D3
f − 3a2f Df )]Wf (0) = [−Dp + μ̂β2(D3

p − 3a2pDp)]Wp(0) (24) 

The conditions for adiabatic-adiabatic and adiabatic-isothermal, respectively, are 

.Df θf (1) = 0, θf (0) = T̂ θp(0),Df θf (0) = Dpθp(0),Dpθp(−1) = 0. (25) 

Df θf (1) = 0, θf (0) = T̂ θp(0), Df θf (0) = Dpθp(0), θp(−1) = 0 (26) 

The salinity conditions are 

.Df Sf (1) = 0, Sf (0) = ŜSp(0),Df Sf (0) = DpSp(0),DpSp(−1) = 0 (27) 

In the above equations, . Ŝ is the solute diffusivity ratio, . T̂ is the thermal ratio, . μ̂

is the viscosity ratio, .Mt = ∂σt

∂Tf

(Tu−T0)df

μf κf
is the thermal Marangoni number (tMn), 

.Ms = ∂σt

∂Cf

(Cu−C0)df

μf κf
is the solute Marangoni number (sMn), and . σt is the surface 

tension.
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3 Methodology 

Introducing (24), the velocity profiles are obtained by solving (17) and (20) and 
appropriately written as follows: 

.Wf (zf )=A1[coshψf zf +a1 sinhψf zf +a2 coshϕf zf +a3 sinhϕf zf ]. (28) 

Wp(zp)=A1[a4 cosh δpzp+a5 sinh δpzp] (29) 

where 

.ψf =
√

Qf +
√

Qf +4a2f
2 , ϕf =

√
Qf −

√
Qf +4a2f
2 , .δp =

√
a2p

1+Qpβ2 , a1 = − a3Δ2
Δ1

, 

.a2 = Δ5Δ7−Δ8Δ4
Δ3Δ7−Δ6Δ4

, . a3 = Δ5Δ6−Δ8Δ3
Δ4Δ6−Δ7Δ3

, a4 = T̂ (1+a2), a5 = 1
δp

(T̂ d̂a1ψf +a3ϕf )

.Δ1 = d̂2β2(ψ3
f − 3a2f ψf ) + ψf ,Δ2 = d̂2β2(ϕ3

f − 3a2f ϕf ) + ϕf , 

.Δ3 = T̂ cosh δp,Δ4 = − d̂T̂ sinh δp

δp
(ϕf − Δ2ψf

Δ1
),.Δ5 = −Δ3,Δ6 = coshϕf , 

.Δ7 = sinhϕf − (Δ2
Δ1

) sinhψf ,Δ8 = − coshψf . 
Introducing (19) and (22), the salinity profiles are obtained using the condition 

(27), as follows: 

.Sf (zf ) = A1[c13 cosh af zf + c14 sinh af zf + Σf 1(zf )]. (30) 

Sp(zp) = A1[c15 cosh apzp + c16 sinh apzp + Σp1(zp)] (31) 

where .Σf 1(zf ) = −1
τf

[
coshψf zf +a1 sinhψf zf

ψ2
f −a2f

+ a2 coshϕf zf +a3 sinhϕf zf

ϕ2
f −a2f

]
, 

.Σp1(zp) = −1
τp

[
a4 cosh δpzp+a5 sinh δpzp

δ2p−a2p

]
, .c13 = Ŝc15 + Δ100 + Δ101, 

.c14 = 1
af

(c16ap + Δ102 + Δ103), .c15 = Δ108ap cosh ap−Δ107Δ105
ap sinh apΔ107+Δ106ap cosh ap

, 

.c16 = Δ105Δ106+ap sinh apΔ108
ap sinh apΔ107+Δ106ap cosh ap

,.Δ100 = −Ŝ
τp

(
a4

δ2p−a2p

)
, 

.Δ101 = 1
τf

[
1

ψ2
f −a2f

+ a2
ϕ2

f −2
f

]
. Δ102 = −1

τp

(
δpa5

δ2p−a2p

)
,Δ103 = 1

τf
(

a1ψf

ψ2
f −a2f

+ a3ϕf

ϕ2
f −2

f

)

.Δ104 = 1
τf

[
(sinhψf +a1 coshψf )ψf

ψ2
f −a2f

+ (a2 sinhϕf +a3 coshϕf )ϕf

ϕ2
f −a2f

]
, 

.Δ105 = 1
τp

[
δp(−a4 sinh δp+a5 cosh δp)

δ2p−a2p

]
, 

.Δ106 = Ŝaf sinh af cosh ap + ap sinh ap cosh af , 

.Δ107 = Ŝaf sinh ap sinh af + ap cosh af cosh ap, 

.Δ108 = Δ104 − (Δ100 + Δ101)af sinh af − (Δ102 + Δ103) cosh af .
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4 Thermal Marangoni Number 

4.1 Case (i): Adiabatic-Adiabatic Boundary Condition 

The fluid-porous structure is horizontally enclosed by the adiabatic boundaries. 
Using the boundary conditions for temperature (25), the distributions .θf (zf ) and 
.θp(zp) are produced by solving (18) and (21): 

.θf (zf ) = A1[c1 cosh af zf + c2 sinh af zf + Σf 2(zf )]. (32) 

θp(zp) = A1[c3 cosh apzp + c4 sinh apzp + Σp2(zp)] (33) 

where . Σf 2(zf ) = A1[δ1 − δ2 + δ3 − δ4],Σp2(zp) = A1[δ5 − δ6]
.δ1 = (α2f zf +α1f )

(ψ2
f −a2f )

(coshψf zf + a1 sinhψf zf ), 

.δ2 = 2ψf α2f

(ψ2
f −a2f )

2 (a1 coshψf zf + sinhψf zf ), 

.δ3 = (α2f zf +α1f )

(ϕ2
f −a2f )

(a2 coshϕf zf + a3 sinhϕf zf ), 

.δ4 = 2ϕf α2f

(ϕ2
f −a2f )

2 (a3 coshϕf zf + a2 sinhϕf zf ), 

.δ5 = (α1p+α2pzp)

(δ2p−a2p)
(a4 cosh δpzp + a5 sinh δpzp), 

.δ6 = 2α2pδp

(δ2p−a2p)
2 (a5 cosh δpzp + a4 sinh δpzp), 

.α1f = R∗
If − 1, α2f = −2R∗

If , α1p = −(R∗
Ip + 1), α2p = −2R∗

Ip, 

.c1 = c3T̂ + Δ10 − Δ11, .c2 = 1
af

(c4ap + Δ12 − Δ13), .c3 = Δ19Δ14−Δ16Δ18
Δ15Δ18+Δ17Δ14

, 

.c4 = Δ16Δ17+Δ19Δ15
Δ14Δ17+Δ18Δ15

,.Δ9 = −[δ7 + δ8 + δ9 + δ10], 
.δ7 = ψf (α2f +α1f )

(ψ2
f −a2f )

(a1 coshψf + sinhψf ), 

.δ8 =
[

α2f

(ψ2
f −a2f )

− 2ψ2
f α2f

(ψ2
f −a2f )

2

]
(coshψf + a1 sinhψf ), 

.δ9 = ϕf (α2f +α1f )

(ϕ2
f −a2f )

(a3 coshϕf + a2 sinhϕf ), 

.δ10 =
[

α2f

(ϕ2
f −a2f )

− 2ϕ2
f α2f

(ϕ2
f −a2f )

2

]
(a2 coshϕ + a3 sinhϕ), 

.Δ10 = T̂

[
α1pa4

(δ2p−a2p)
− 2α2pδpa5

(δ2p−a2p)
2

]
, 

.Δ11 = α1f

(ψ2
f −a2f )

− 2ψf a1α2f

(ψ2
f −a2f )

2 + a2α1f

(ϕ2
f −a2f )

− 2ϕf a3α2f

(ϕ2
f −a2f )

2 , 

.Δ12 =
[

α2p

(δ2p−a2p)
− 2δ2pα2p

(δ2p−a2p)
2

]
a4 + a5α1p

(δ2p−a2p)
, 

. Δ13 = α1f ψf a1+α2f

(ψ2
f −a2f )

− 2α2f ψ2
f

(ψ2
f −a2f )

2 + α1f ϕf a3+α2f a2

(ϕ2
f −a2f )

− 2a2α2f ϕ2
f

(ϕ2
f −a2f )

2 ,

.Δ14 = ap cosh ap,Δ15 = ap sinh ap,
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.Δ16 =
[

−α2p

(δ2p−a2p)
+ 2δ2pα2p

(δ2p−a2p)
2

]
(a4 cosh δp − a5 sinh δp) − Δ160, 

.Δ160 = δp(α1p−α2p)

(δ2p−a2p)
(a5 cosh δp − a4 sinh δp), .Δ17 = T̂ af sinh af , 

. Δ18 = ap cosh af ,Δ19 = Δ9 − af (Δ10 − Δ11) sinh af − (Δ12 − Δ13) cosh af

We get tMn by using the expression (23) as  

.Mt1 = −Λ1 − Msa
2
f�

a2f (c1 cosh af + c2 sinh af + Λ2 + Λ3)
(34) 

where 
.Λ1 = ψ2

f (coshψf + a1 sinhψf ) + ϕ2
f (a2 coshϕf + a3 sinhϕf ), 

.� = c13 cosh af zf +c14 sinh af zf − 1
τf

[
coshψf +a1 sinhψf

ψ2
f −a2f

+ a2 coshϕf +a3 sinhϕf

ϕ2
f −a2f

]
, 

.Λ2 = (α2f +α1f )

(ψ2
f −a2f )

(coshψf + a1 sinhψf ) − 2ψf α2f

(ψ2
f −a2f )

2 (a1 coshψf + sinhψf ), 

. Λ3 = (α2f +α1f )

(ϕ2
f −a2f )

(a2 coshϕf + a3 sinhϕf ) − 2ϕf α2f

(ϕ2
f −a2f )

2 (a3 coshϕf + a2 sinhϕf )

4.2 Case (ii): Adiabatic-Isothermal Boundary Condition 

The lower porous boundary of the combined layer is adiabatic and the upper fluid 
boundary of the composite layer is isothermal. Using the temperature boundary 
conditions (26), the distributions .θf (zf ) and .θp(zp)are produced by solving (18) 
and (21): 

.θf (zf ) = A1[c5 cosh af zf + c6 sinh af zf + Σf 3(zf )]. (35) 

θp(zp) = A1[c7 cosh apzp + c8 sinh apzp + Σp3(zp)] (36) 

where .Σf 3(zf ) = A1[δ11 − δ12 + δ13 − δ14],Σp3(zp) = A1[δ15 − δ16], 
.δ11 = (α4f zf +α3f )

(ψ2
f −a2f )

(coshψf zf + a1 sinhψf zf ), 

.δ12 = 2ψf α4f

(ψ2
f −a2f )

2 (a1 coshψf zf + sinhψf zf ), 

.δ13 = (α4f zf +α3f )

(ϕ2
f −a2f )

(a2 coshϕf zf + a3 sinhϕf zf ), 

.δ14 = 2ϕf α4f

(ϕ2
f −a2f )

2 (a3 coshϕf zf + a2 sinhϕf zf ), 

.δ15 = (α3p+α4pzp)

(δ2p−a2p)
(a4 cosh δpzp + a5 sinh δpzp), 

.δ16 = 2α4pδp

(δ2p−a2p)
2 (a5 cosh δpzp + a4 sinh δpzp), 

.α3f = R∗
If − 1, α4f = −2R∗

If , α3p = −(R∗
Ip + 1), α4p = −2R∗

Ip,
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.c5 = c7T̂ + Δ21 − Δ22, c6 = 1
af

(c8ap + Δ23 − Δ24),.c7 = Δ30Δ25−Δ27Δ29
Δ28Δ25+Δ26Δ29

, 

.c8 = Δ30Δ26+Δ27Δ28
Δ29Δ26+Δ25Δ28

, .Δ20 = −[δ17 + δ18 + δ19 + δ20], 
.δ17 = ψf (α4f +α3f )

(ψ2
f −a2f )

(a1 coshψf + sinhψf ), 

.δ18 =
[

α4f

(ψ2
f −a2f )

− 2ψ2
f α4f

(ψ2
f −a2f )

2

]
(coshψf + a1 sinhψf ), 

.δ19 = ϕf (α4f +α3f )

(ϕ2
f −a2f )

(a3 coshϕf + a2 sinhϕf ), 

.δ20 = [ α4f

(ϕ2
f −a2f )

− 2ϕ2
f α4f

(ϕ2
f −a2f )

2 ](a2 coshϕf + a3 sinhϕf ), 

.Δ21 = T̂

[
α3pa4

(δ2p−a2p)
− 2α4pδpa5

(δ2p−a2p)
2

]
, 

.Δ22 = α3f

(ψ2
f −a2f )

− 2ψf a1α4f

(ψ2
f −a2f )

2 + a2α3f

(ϕ2
f −a2f )

− 2ϕf a3α4f

(ϕ2
f −a2f )

2 , 

.Δ23 = [ α4p

(δ2p−a2p)
− 2δ2pα4p

(δ2p−a2p)
2 ]a4 + a5α3p

(δ2p−a2p)
, 

.Δ24 = α3f ψf a1+α4f

(ψ2
f −a2f )

− 2α4f ψ2
f

(ψ2
f −a2f )

2 + α3f ϕf a3+α4f a2

(ϕ2
f −a2f )

− 2a2α4f ϕ2
f

(ϕ2
f −a2f )

2 , 

.Δ25 = cosh ap,Δ26 = sinh ap, 

.Δ27 = −α3p−α4p

(δ2p−a2p)
(a4 cosh δp − a5 sinh δp) + 2δpα4p

(δ2p−a2p)
2 (a5 cosh δp − a4 sinh δp), 

.Δ28 = af T̂ sinh af ,Δ29 = ap cosh af , 

.Δ30 = Δ20 − af (Δ21 − Δ22) sinh af − (Δ23 − Δ24) cosh af . 
We get tMn from (23) as  

.Mt2 = −Λ1 − Msa
2
f�

a2f (c5 cosh af + c6 sinh af + Λ4 + Λ5)
(37) 

where .Λ4 = (α4f +α3f )

(ψ2
f −a2f )

(coshψf + a1 sinhψf ) − 2ψf α4f

(ψ2
f −a2f )

2 (a1 coshψf + sinhψf ), 

.Λ5 = (α4f +α3f )

(ϕ2
f −a2f )

(a2 coshϕf + a3 sinhϕf ) − 2ϕf α4f

(ϕ2
f −a2f )

2 (a3 coshϕf + a2 sinhϕf ). 

5 Results and Discussion 

The tMns for two cases of thermal boundary conditions .Mt1 and .Mt2 are obtained 
as expressions of the depth ratio . d̂, the porous parameter . β, the thermal ratio . T̂ , 
the solutal ratio . Ŝ, sMn  .Ms and the Chandrasekhar number . Qf , the horizontal 
wave numbers . af and . ap, the diffusivity ratio .τf andτp, and .R∗

If and .R∗
Ip the 

modified internal Rayleigh numbers for region 1 and region 2. The thermal boundary 
conditions taken are adiabatic-adiabatic and that the combined layer is horizontally 
enclosed by the adiabatic boundaries and adiabatic-isothermal, the lower porous
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Fig. 2 Comparison of tMn 
for case (i) 
adiabatic-adiabatic and case 
(ii) adiabatic-isothermal 
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boundary of the composite system is adiabatic, and the upper fluid boundary of 
the composite system is isothermal. These tMns . Mt are drawn versus the depth 
ratio. d̂ using Mathematica software. The other parameters are .af = 0.5,Qf = 10, 
.β = 1.0, μ̂ = 2, Ŝ = T̂ = 1, τf = τp = 0.25,Ms = 10, R∗

If = 1 and .R∗
Ip = 1, 

the effects of the various parameters are described in detail and represented in the 
graphs below. 

Figure 2 represents the comparison of .Mt1 and . Mt2, where . Mt is the dependent 
variable and . d̂ , the depth ratio, is the independent variable. The tMn decreases up to 
some value of the depth ratio, and later it increases as the value of the depth ratio also 
increases. This behavior is qualitatively the same for both types of thermal boundary 
combination (TBC). It is interesting to note that for larger values of depth ratios, the 
Marangoni numbers coincide and no change in them for .d̂ ≥ 2, i.e., for porous 
layer dominant (in depth) systems which is physically impressive as the TBC at the 
boundary of the porous layer is changed. But for the smaller depth ratio values, the 
thermal Marangoni number for case (i) is smaller than that for case (ii), indicating 
that the system with case (i) TBC is more stable. 

For both situations of TBCs, the effects of the Chandrasekhar number .Qf on 
double-diffusive Marangoni convection (DDMC) (DDMC) are shown in Fig. 3. The  
values of . Qf that were used were 1, 10, and 100. The curves are diverging, showing 
that . Qf is more prominent at higher depth ratios, i.e., for the porous layer dominant 
composite system (PDCS). Because an increase in the value of .Qf raises the tMns 
for a certain depth ratio, the DDC can be advanced by lowering the values of . Qf , 
and the system can be destabilized. This parameter’s effect is analogous to that of 
TBCs.
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Fig. 3 Variations of .Qf = 1, 10, 100 on tMn when . af = 0.5, β = 1.0, μ̂ = 2, Ŝ = T̂ = 1, τf =
τp = 0.25,Ms = 10, R∗

If = 1 and. R∗
Ip = 1

The effect of a modified internal Rayleigh number .R∗
If on the tMn is shown in 

Fig. 4 for both the TBCs .R∗
If = −1, 0 and 1. For larger depth ratio values, i.e., for 

porous layer dominant composite system (PDCS), the curves diverge, reflecting the 
importance of the modified internal Rayleigh number. The tMn increases when the 
value of .R∗

If is increased, that is, from sink to source, for a certain depth ratio. As a 
result, the DDMC in the presence of a magnetic field can be delayed by raising the 
value of . R∗

If . As a result, the heat absorption stabilizes the system. For TBCs, the 
effect of this parameter is comparable. 

The effect of a modified internal Rayleigh number for porous layer .R∗
Ip on the 

tMn is shown in Fig. 5 for .R∗
Ip = −1, 0 and 1. The Marangoni number grows as the 

amount of .R∗
Ip is increased from sink to source; hence, the DDMC in the presence 

of a magnetic field can be delayed by raising the value of . R∗
Ip. As a result, the 

heat absorption stabilizes the system. This parameter has the same effect in both 
scenarios of TBCs. Also, as shown in the diagram, this parameter is effective for 
some modest depth ratios, that is, for PDCS in both scenarios of TBCs. 

The effect of solute Marangoni number . Ms on the Marangoni number is similar 
for both the cases of TBCs, which is exhibited in Fig. 6 for .Ms = 5, 10 and 50. On 
increasing the values of . Ms , the tMn for DDMC in the presence of magnetic field 
increases; hence, the DDMC can be delayed by increasing the values of . Ms . The  
diverging curves reveal that the effect of sMn is intensive for larger values of depth 
ratios, that is, for PDCS. The effect of this parameter is comparable to the cases of 
TBCs.
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Fig. 4 Variations of .R∗
If = −1, 0, 1 on tMn when . af = 0.5,Qf = 10, β = 1.0, μ̂ = 2, Ŝ =

T̂ = 1, τf = τp = 0.25,Ms = 10 and. R∗
Ip = 1
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Fig. 5 Variations of .R∗
Ip = −1, 0, 1 for porous region on tMn when . af = 0.5,Qf = 10, β =

1.0, μ̂ = 2, Ŝ = T̂ = 1, τf = τp = 0.25,Ms = 10 and . R∗
If = 1

6 Conclusion 

In the current study, the impact of a heat source and magnetic field on onset 
convection is thoroughly investigated for two different boundary configurations. 
Because of this, the composite layer system is stable and can be used in adiabatic-
adiabatic thermal boundary conditions, where convection needs to be regulated. The 
following are the key findings from the current study:
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Fig. 6 Variations of .Ms = 5, 10, 50 on tMn when . af = 2.5,Qf = 10, β = 1.0, μ̂ = 2, Ŝ =
T̂ = 1, τf = τp = 0.25, R∗

If = 1 and . R∗
Ip = 1

(i) When compared to the case (ii) thermal boundary condition, the tMn for the 
case (i) thermal boundary condition is large. As a result, in the case of case 
(i), the fluid-porous system is stable and can be used in circumstances where 
convection must be controlled. 

(ii) All the physical parameters are effective for the larger values for depth ratios 
that are for the PDCS. 

(iii) In the present study, by increasing the values of the Chandrasekhar number . Qf , 
the modified internal Rayleigh numbers . R∗

If , . R
∗
Ip, and the solute Marangoni 

number . Ms in the presence of magnetic field, the thermal Marangoni numbers, 
i.e., to stabilize the system, so the onset of DDMC is delayed. 

(iv) The DDMC in the combined system can be controlled by selecting the proper 
values for the physical parameters. Results are in good accordance with earlier 
work. 
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