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1  Introduction

The world population is expected to reach the 9.7 billion mark by 2050, and the 
global grain requirement has been predicted to be increased by 70% to meet the 
demands of this rapidly growing population (FAO, 2017; World Population 
Prospects, 2022). Even though in the past few decades, the application of fertilizers 
has been influential to increase productivity up to a certain streak, the food supply 
chain is still facing issues due to a decline in agricultural yields and limited land 
availability. To overcome such concerns, farmers are imposed to use conventional 
fertilizers, herbicides, and pesticides (Singh et al., 2009; El-Ghamry et al., 2018). 
Haphazard usage of these agrochemicals is vicious as their carcinogenic and muta-
genic properties may lead to hazardous effects on human health and the environ-
ment (Sarıgül & İnam, 2009). Moreover, these conventional approaches have not 
been demonstrated to be efficient in fulfilling the current nutritional demands of 
this expanding global population. For soil supplementation, huge amounts of nutri-
ent salts like ammonium salts, urea, nitrate, and phosphate compounds are applied 
in the form of fertilizers, provoking higher concentrations of salts in soil that 
impedes crop yield (Mani & Mondal, 2016). The application of chemical fertilizers 
has been seen to result in the loss of nutrients as they fail to reach the targeted sites 
and therefore get fixed into the soil or contribute to water pollution through leach-
ing (Liu & Lal, 2015; Feregrino-Perez et al., 2018). As mentioned in a study by 
Bortolin et al. (2013), most of the urea applied in soil perishes due to volatilization 
and leaching which leads to the accumulation of NH4+ increasing the soil pH 
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(Bortolin et al., 2013). Some reports have stated that key macronutrients like nitro-
gen, phosphorus, and potassium, when applied to soil, result in a considerable loss 
of up to 40–70%, 80–90%, and 50–90%, respectively (Feregrino-Perez et  al., 
2018). The scarcity of micronutrients like iron is due to the low solubility of the 
oxidized ferric form in aerobic conditions (Sebastian et al., 2017). Zinc and mag-
nesium deficiency is also very usual in neutral and alkaline soil and calcium-rich 
soil (Rengel, 2015). Additionally, repeated applications of these macronutrient fer-
tilizers lead to a sharp decline in soil fertility and an increase in salt concentration 
in soil, thereby hampering crucial soil properties and crop productivity (Liu & Lal, 
2015; Solanki et  al., 2015; Feregrino-Perez et  al., 2018). Therefore, modern 
approaches and technologies need to take over these conventional practices to fulfil 
the nutritional demands in an economically and ecologically feasible manner.

Nanotechnology is an emerging field that bears the promise to contribute signifi-
cantly toward agricultural developments. Various nanomaterials like single or mul-
tiwalled nanotubes, magnetized iron nanoparticles, copper (Cu), aluminum (Al), 
silver (Ag), gold (Au), zinc (Zn), silica (Si), cerium oxide (Ce2O3), and titanium 
dioxide (TiO2) (Raliya & Tarafdar, 2013; Raliya et al., 2015, 2016a, b; Tan et al., 
2017) have been demonstrated to enhance the yield in plants. Nanoparticles provide 
a high surface-to-volume ratio and controlled release mechanisms that enable them 
to be considered as next-generation fertilizers (Feregrino-Perez et  al., 2018). 
Nanofertilizers are nanomaterials encapsulated or functionalized with nutrients that 
enable the controlled and targeted delivery of one or multiple nutrients to satisfy the 
needs of plants (Zuverza-Mena et al., 2017). Hence, it is very essential to develop 
smart fertilizers to sustain agricultural productivity as well as crop quality (Iavicoli 
et  al., 2017; Dimkpa & Bindraban, 2017). Nanotechnology has been currently 
exploring a new era of slow-release systems to deliver fertilizers in a targeted and 
controlled fashion. Slow-release can be elucidated as a permeation-regulated trans-
fer of active substances from a modified reservoir to a targeted region accompanied 
by genuine maintenance of the concentration level of the active ingredient at a fixed 
level for an extended period (Mihou et al., 2007).

Nanofertilizers have been designed with the objective of controlled delivery of 
agrochemicals in the agricultural field as they possess high resilience and extended 
shelf life. In this connection, the implementation of slow-release systems can be 
regarded as one of the most promising approaches to sustainable agriculture and the 
improvement of nutrient availability in plants (Kuzma, 2007; Lal, 2008; Kabiri 
et al., 2011). This chapter provides insight into this revolutionary transition from 
conventional nanofertilizers to modernized smart slow-release fertilizers, their 
implementation in agricultural restoration, and the probable challenges against their 
utilization in agroindustries.

D. Ghosh et al.



345

2  Nanofertilizer Application—Present Status

Nanofertilizers are micro- and/or macronutrients that are encapsulated or function-
alized with nanomaterials mediating the controlled release and its successive slow 
diffusion into the soil. The use of nanoscale fertilizers can minimize nutrient loss 
reducing its fast degradation and volatility, thereby enhancing the nutrient quality 
and the fertility of the soil and promoting crop productivity (Nongbet et al., 2022). 
Nanofertilizers provide a significant role in crop production and are found to 
enhance the growth, yield, and quality of crops and food products for human and 
animal consumption (Meena et al., 2017). In the current context of sustainable agri-
culture, recent progress is undoubtedly witnessing the successful use of numerous 
nanofertilizers for achieving enhanced crop productivity (Zulfiqar et al., 2019).

Micro- and macronutrients are essential components for the healthy growth and 
development of plants. Lacking an adequate supply of these essential elements as 
well as their presence in excess amounts can impart deleterious effects on plants 
(Madan et al., 2016). These minerals play crucial roles throughout the phases of 
germination, growth, and development of plants, including the functioning of cel-
lular components like proteins, pigments, and enzymes, and are involved in cellular 
signaling and metabolism (Duhan et al., 2017). Among all the essential nutrients, 
nitrate, phosphorus, potassium, and magnesium are majorly required by plants and 
cannot be absorbed directly from the atmosphere, thus being absorbed through the 
roots (Wang et al., 2016). In this connection, the nanoscale dimension of nanofertil-
izers has become a specialized solution for addressing nutrient deficiency problems.

Nanofertilizers generally include as constituents several nanoparticles, including 
metal oxides, carbon-based, and nanoporous materials, in varying compositions and 
combinations (Liu & Lal, 2015). Nanofertilizers can be synthesized by physical, 
chemical, and biological techniques and are equipped to provide a controlled- 
release function, ensuring a slow and restrained supply of imperative nutrient mol-
ecules (Zulfiqar et  al., 2019; Usman et  al., 2020). The modern micro- and 
macronutrient-based nanofertilizers and nanomaterial-enhanced fertilizers can 
improve the solubility, dispersion, bioavailability, and accessibility of definite nutri-
ent molecules, conferring a secured and stable binding to the plant surface, reducing 
nutrient wastage (Duhan et al., 2017; Prasad et al., 2017). Nanofertilizers act as the 
influencers of many proteins, photosynthetic pigments, coenzymes, purines, vita-
mins, activators for the photosynthesis, and respiration systems of the plant (Jakiene 
et al., 2015). For the nanoparticles to be applied as nanofertilizers, initially they are 
synthesized via different approaches and then loaded or encapsulated with required 
nutrients to enhance target-specific plant uptake efficacy (Zulfiqar et al., 2019). In 
some instances, different nanoparticles are combined to develop intracellular struc-
tures in cell walls to enter and enhance the potential genetic properties (Larue et al., 
2012). Thus, nano-assisted fertilizers showed excellent transport characteristics 
through plant tissues/cells with controlled mobility over conventional water-soluble 
fertilizers. The working mechanism of nanoparticles is flexible on both root entry 
and foliar entry (Zulfiqar et  al., 2019). Therefore, nano-assisted materials in 
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nanofertilizers play a significant role against various abiotic stresses like drought 
(Jaberzadeh et  al., 2013), salinity (Siddiqui et  al., 2014), heavy metal (Tripathi 
et al., 2015), temperature (Haghighi et al., 2014), etc.

2.1  Macronutrient Nanofertilizers

Conventional macronutrient biofertilizers are the chemical alloy of one or multiple 
nutrients like N, P, K, S, Ca, Mg, and many others that are required crucially in a 
higher content for plant growth and development. Among these, the chief macronu-
trients (N, P, and K) were found to be elusive to the plants (40–70%, 80–90%, and 
50–90%, respectively), after soil application, resulting in a considerable loss of 
minerals (Zulfiqar et al., 2019). According to sources, overall macronutrient fertil-
izer (P2O5 + N2 + K2O) consumption is subjected to be increased from 175.5 million 
tons (Mt) to 263 Mt by 2050 globally (Liu & Lal, 2015). Therefore, the low effi-
ciency and substantial application of these traditional macronutrient fertilizers can 
lead to their transport in huge amounts to the surface and groundwater bodies, lead-
ing to a disruption in the aquatic ecosystems, along with threats to human health. To 
replace conventional macronutrient nanofertilizers and to ensure sustainable food 
yield, highly effective and environment-friendly macronutrient nanofertilizers are 
required to earliest. In addition to the improved crop growth and yield, these macro-
nutrient nanofertilizers can be an efficient tool in dispensing the required amount of 
nutrients to the plants, reducing the transportation cost and nutrient loss (Liu & Lal, 
2015; Zulfiqar et  al., 2019). These nanofertilizers are composed of one or a few 
nutrients encapsulated or loaded on definite nanoparticles. The efficacy of nanopar-
ticles is regulated by several factors, including particle size, distribution, organic 
matter, uptake, soil texture, exposure route, soil pH, and accumulation of nanofertil-
izers in plants (Chhipa, 2017). Nanoparticles are favored to enter the intercellular 
spaces through apoplastic pathways and even into the epidermal and cortical cells to 
accumulate. Nitrogen nanofertilizers have been studied to show the highest seed 
yield and oil yield, in comparison to conventional N fertilizers. While phosphorus 
nanofertilizers were found to enhance biomass production in Glycine max. 
Furthermore, the application of NPK nanofertilizers was investigated to enhance the 
plant height, seed weight, and seed yield in Helianthus annuus (Baloch et al., 2015). 
Among the other macronutrient nanofertilizers, calcium carbonate nanoparticles 
(CaCO3 NPs) appeared to be a handy tool in increasing the soluble sugar and protein 
in Arachis hypogaea (Bandala & Berli, 2019). Delfani et  al. (2014) reported 
enhanced seed growth in Vigna unguiculata, after the combined application of mag-
nesium nanoparticles (Mg NPs) and iron nanoparticles (Fe NPs) (Delfani 
et al., 2014).

Zeolites substantially improve the soil condition by increasing the water utiliza-
tion efficiency and can also enhance the nutrient capacity by minimizing the volatil-
ization of ammonia and salts (Sangeetha & Baskar, 2016). A study by Lateef et al. 
(2016) on composite materials of nano-zeolite (ZNC) loaded with macronutrients 
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(N, P, K, Ca, Mg, and S) and micronutrients (Fe, Zn, and Cu) in the form of their 
salts, showed an exceptional increase in water absorbency, water retention capacity, 
swelling ratio, and equilibrium water content of ZNC in comparison to nano-zeolite 
(NZ), therefore showing the environment-friendly approach of ZNC to be applied as 
fertilizers (Lateef et al., 2016). In another study on slow-release Zn nanofertilizer, 
where NZ was used as a substrate, it was observed that both zeolite and ZnO NPs 
significantly increased the mineral nitrogen (N) content in soil than the biogas slurry 
alone. This was due to the significant increase in the nutrient mobilization that was 
influenced by extracellular enzymes such as phosphatase and urease and soil micro-
biota (Yuvaraj & Subramanian, 2018).

Some of the recent studies have suggested that the traditional water-soluble 
phosphorus fertilizes can be substituted by nano-hydroxyapatite [nHA, 
Ca10(PO4)6(OH)2]-based nanofertilizer, which is a key component of human bones, 
teeth, and hard tissues (Gómez-Morales et  al., 2013; Chhipa, 2017; Maghsoodi 
et al., 2020). Eutrophication caused by commercially available P fertilizers can be 
turned down up to a certain level by using nHA due to its less solubility and con-
tamination risk. Besides, it forms a strong bond with urea, causing a potential slow 
release of nitrogen or urea (Kottegoda et al., 2011; Maghsoodi et al., 2020).

2.2  Micronutrient Nanofertilizers

Micronutrients are the essential elements that are required in a very minute amount 
(≤100  ppm) but are vital for maintaining various metabolic processes in plants. 
Micronutrients such as iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molyb-
denum (Mo), and titanium dioxide (TiO2) are often found to be added as soluble 
salts in NPK fertilizers (Zulfiqar et al., 2019).

Among different micronutrient nanofertilizers, iron (Fe) is one of the essential 
ones that can regulate optimal plant growth. Ghafariyan et al. (2013) evaluated iron 
nanoparticles (FeNPs) in hydroponic soybean plants to reduce chlorotic symptoms. 
In another research, the application of 0.5 g L−1 FeNPs on black-eyed pea plants 
increased leaf iron content, the number of pods per plant, grain weight, and chloro-
phyll content (Delfani et al., 2014). Zn is also a very important micronutrient that is 
responsible for enzyme activity, proliferation, differentiation of cells, and chloro-
plast development. The optimization of Zn concentration is necessary as there are 
reports of both positive and negative effects (Sturikova et al., 2018). In general, a 
concentration of 0.05  mg/L was found to be optimum for regular plant growth, 
above which phytotoxicity was observed (Liu & Lal, 2015). The use of Zn nanopar-
ticles (ZnNPs) in mung bean showed some extraordinary boost in the form of 
increased root and shoot length and biomass (Mahajan et al., 2011). Mn is another 
essential micronutrient that is required for healthy plants. The application of Mn 
nanoparticles (MnNPs) in mung bean (Vigna radiata) demonstrated excellent 
results in terms of increased photosynthesis, as well as root-shoot length, biomass, 
and the number of rootlets (Pradhan et al., 2013).
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Cu and TiO2 nanoparticles (CuNPs and TiO2NPs, respectively) were also evalu-
ated as micronutrient nanofertilizers as both of these are required at a trace amount 
for the normal growth of plants (Wang et al., 2020). CuNPs-based fertilizers are 
much of interest nowadays as they can function both as pesticides and fertilizers. 
CuNPs were found to be effective in increasing the photosynthetic rate in Elodea 
densa when seeds were incubated with a concentration of less than 0.25  mg/L 
(Nekrasova et  al., 2011). Among the photocatalytic materials, titanium dioxide 
(TiO2) was found to be a sustainable model to tackle major agricultural issues, in 
terms of photoactivity, chemical stability, tunable hydrophilicity, and biocompati-
bility. TiO2-based nanomaterials (TiO2 NPs) demonstrated an upper hand over con-
ventional metallic nanomaterials as it is shown not to hamper the germination in 
rice, lettuce, radish, cucumber, tomato, and pea, yet exalting the root elongation 
when applied at a lower dose of 0.5  g/Kg (Rodríguez-González et  al., 2019). 
Moreover, molybdenum (Mo) at a very low soil concentration (0.01 mg/L) contrib-
utes to an important micronutrient for optimal plant growth. Legumes exposed to 
both colloidal molybdenum nanoparticles (MoNPs) and microorganism- 
functionalized colloidal MoNPs showed enhanced performance, yield, and disease 
resistance than that of the untreated plants (Taran et al., 2014) (Table 13.1).

2.3  Nano-Biofertilizers

In addition to the macro- and micronutrient fertilizers, presently, the development of 
nano-biofertilizers is also being reckoned as effective over conventional chemical 
fertilizers, due to their lesser environmental toxicity and residual effects. Nano- 
biofertilizers are the amalgamation of engineered nanoparticles with conventional 
biofertilizers, like microorganisms that can provide sufficient nutrients to plants, by 
fixing atmospheric nitrogen, solubilizing phosphate, restoring soil nutrient richness, 
and solubilizing insoluble complex organic matter into simple compounds 
(Dineshkumar et al., 2018; Itelima et al., 2018). In this connection, Boddupalli et al. 
(2017) have reported that the combined application of different plant growth- 
enhancing organisms (such as Azolla, Azospirillum, Azotobacter, Azotobacter, 
Bacillus, Beijerinckia, Cyanobacteria, Pseudomonas, and Rhizobium) and nanopar-
ticles resulted in the enhancement in plant growth along with the alleviation of the 
phytotoxicity of NPs (Boddupalli et  al., 2017). The use of nanoclay-coated 
Trichoderma sp. and Pseudomonas sp. as biofertilizers has improved the water 
retention capacity as well as nutrient use efficiency in crops (Mukhopadhyay & De, 
2014). The application of silver (Ag) and gold (Au) nanoparticles encapsulated bio-
fertilizer using Pseudomonas fluorescens, Bacillus subtilis, and Paenibacillus elgii 
has shown excellence in inducing plant growth in different agricultural plants 
(Rahman & Zhang, 2018). Biosynthesized ZnO nanoparticles incorporated with 
Pseudomonas aeruginosa have also shown broad-spectrum antimicrobial properties 
that can be implemented for enhancing crop protection (Barsainya & Singh, 2018).
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Table 13.1 Application of various nanofertilizers in plants and their positive impacts

Nanoparticles Crop species
Applied 
concentration Positive impacts References

Calcium borate 
nanoparticles

Lactuca sativa 
and Cucurbita 
pepo

30 mg/L at 
10-day intervals 
throughout the 
experiment

Reduced the boron 
deficiency and 
significantly improved 
the productivity of 
both crops

Meier et al. 
(2020)

Carbon 
nanoparticles

Zea mays 50–800 mg/kg 
NPK fertilized 
soil

Enhanced crop growth 
through improved 
biomass yield, plant 
height, nutrient 
uptake, and nutrient 
use efficiency

Zhao et al. 
(2021)

Carbon 
nanoparticles 
loaded with 
nitrogen (N) and 
potassium (K)

Phaseolus 
vulgaris

0–40 mg/L foliar 
spray

Improved growth 
parameters (plant 
height, number of 
leaves per plant, 
number of flowers per 
plant, and plant fresh 
weight) along with 
increased yield

Salama et al. 
(2021)

Cerium dioxide 
nanoparticles

Brassica 
oleracea

Applied in 
combination with 
NPK fertilizer

Cabbage head weight 
increased three times 
higher than the control 
plants; chlorophyll 
content also increased 
significantly

Abdulhameed 
et al. (2021)

Cu-, Fe-, and 
N-doped titanium 
dioxide 
nanoparticles

Vigna 
unguiculata

Foliar application Improved 
morphological 
characteristics, 
productivity, 
photosynthetic 
attributes, alert 
physiological changes; 
reduced lipid 
peroxidation and 
hydrogen peroxide 
content

Kamal and 
Mogazy 
(2021)

Graphite carbon 
nanoparticles

Lactuca sativa 1% wt CNP 
along with 30% 
commercial 
fertilizer

Nitrogen uptake 
increased, reduced 
nitrate leaching, but no 
reduction in yield than 
the 100% use of 
commercial fertilizer

Pandorf et al. 
(2020)

(continued)
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Table 13.1 (continued)

Nanoparticles Crop species
Applied 
concentration Positive impacts References

Hydroxyapatite 
nanoparticles

Rosmarinus 
officinalis

0.5 and 1 g/L 
foliar spray

Improved growth 
characteristics 
(thickness in the stem, 
lamina, midvein, 
xylem, and phloem) 
and oil production 
with great quality

Elsayed et al. 
(2022)

Iron oxide 
nanoparticle

Morus alba 10 mg/kg in soil Promising 
improvement in 
morphological traits, 
photosynthetic 
attributes, and 
antioxidant defense 
than the control plants

Haydar et al. 
(2022)

NPK 
nanoparticles

Zea mays 1.5 g/L in the 
case of spraying 
and 7.5 kg/ha in 
the case of soil 
mix along with 
mineral fertilizer

Increased the uptake 
of N, P, and K 
elements; increased 
morphological traits 
and total yield with 
improved grain quality

Al-Gym and 
Al-Asady 
(2020)

Selenium 
nanoparticles 
(SeNPs)

Solanum 
melongena, 
Cucumis 
sativus, 
Solanum 
lycopersicum

1–25 μg/kg soil Leaf plate surface area 
increased double than 
the untreated 
seedlings; reduction in 
hyperthermia stress

Gudkov et al. 
(2020)

Silica 
nanoparticles

Cucumis 
sativus

0–120 mg/L 
foliar spray

Enhanced plant length, 
leaf area, leaf number, 
leaf biomass, fruit 
weights, and quality as 
compared to control 
plants

Yassen et al. 
(2017)

Silica 
nanoparticles

Tagetes erecta 100–600 mg/L 
foliar spray

Enhanced biometrics; 
physiological, 
biochemical, and 
flower traits (days 
taken to first bud 
initiation, fresh and 
dry mass of flower, 
flowering duration)

Attia and 
Elhawat 
(2021)

Zero-valent iron
(ZVI), Fe3O4 
nanoparticles

Oryza sativa 50 mg/L foliar 
spray

Improved plant growth 
and photosynthetic 
attributes under 
iron-deficient 
conditions

Li et al. 
(2021)

(continued)
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Table 13.1 (continued)

Nanoparticles Crop species
Applied 
concentration Positive impacts References

Zinc oxide 
nanoparticles

Coffea arabica 10 mg/L foliar 
application

Increased fresh and 
dry weight of leaves 
and roots; Zn uptake 
increased; and the 
photosynthetic rate 
increased than the 
untreated and zinc 
sulfate–treated plants

Rossi et al. 
(2019)

Zinc oxide 
nanoparticles

Oryza sativa 0.5–5 g/L foliar 
spray

Significantly improved 
the growth and yield 
parameters, reverted 
the Zn-deficiency 
symptoms, enhanced 
the plant Zn content

Bala et al. 
(2019)

3  Scope of Nanofertilizers in the Improvement of Plant 
Growth and Development

Nanofertilizers perform a very crucial role in the physiological and biochemical 
functions of plants by increasing the availability of nutrients (Verma et al., 2022). In 
wheat, nano-NPK was observed to increase nutrient availability and stomatal 
dynamics along with photosynthetic parameters, thereby improving leaf growth 
(Abdel-Aziz et al., 2018). Zn nanofertilizers were observed to increase overall plant 
performance including biomass, photosynthetic pigments, and enzymatic activities 
(Vafa et al., 2015). Zn is also capable of activating various enzymes that are associ-
ated with metabolic processes (Rezaei & Abbasi, 2014; Hussein & Abou-Baker, 
2018; Seleiman et al., 2020), as well as growth regulators, pollen production, and 
biological membrane integrity, via affecting the auxin production in plants (Alloway, 
2008; Rajput et al., 2021; Wu & Li, 2021). Zn nanofertilizers were found to improve 
the photosynthetic pigments, plant length, biomass, soluble protein, and carbohy-
drates in maize. Moreover, they accelerated the biosynthesis of carbohydrates in 
maize by increasing the formation of soluble sugars (Sharifi, 2016). Groundnut 
seeds when treated with Zn nanofertilizers gained higher levels of starch, sugars, 
protein, and oil, which are important components for grain development and metab-
olism (Safyan et  al., 2012; El-Metwally et  al., 2018; El-Saadony et  al., 2021). 
Pomegranate fruit yield was seen to be increased after the foliar application of nano-
 Zn and -B (Boron) (Janmohammadi et  al., 2016). The foliar application of TiO2 
nanoparticles was observed to affect the growth and development of barley plants, 
boosting plant yield, and seed quality as well as improving fertilizer efficiency and 
grain production (Janmohammadi et  al., 2016; Tarafder et  al., 2020). In another 
study, TiO2 nanofertilizers were demonstrated to increase plant biomass by uplifting 
the activities of photosynthetic complexes and nitrogen metabolism, thereby 
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contributing to plant development and seed quality (Raliya et  al., 2015; 
Janmohammadi et  al., 2016; Mittal et  al., 2020). The use of Fe nanofertilizers 
boosted the crop yield in soybean which was visible in terms of seed production 
(Sheykhbaglou et al., 2010). The application of Mn nanofertilizers in mung bean 
enhanced the nutrient utilization efficiency along with the crop quality. The photo-
synthetic rate was observed to be improved in groundnuts after the application of 
Mn nanofertilizers (Ghafariyan et  al., 2013; Mekdad, 2017; El-Metwally et  al., 
2018; Adisa et al., 2019). In a study, the foliar application of Mo nanoparticles in 
groundnut was found to be enhancing the plant length, pod numbers, grain weight 
number, length of seeds, seed and pod output, and overall biomass (Fellet et al., 
2021). Therefore, recent studies have sufficiently advocated for the beneficial attri-
butes of different nanoparticles for plant growth and development.

4  Slow-Release Nanofertilizers

As discussed previously, several nanomaterials have contributed to healthy plant 
growth and development, yet the effects were not always found to be beneficial 
(Kah, 2015; Ma et al., 2018). Kah et al. (2018) classified all the nanofertilizers into 
three categories: micronutrient nanofertilizers, macronutrient nanofertilizers, and 
nanocarriers (Kah et al., 2018). Among them, nanocarriers were evaluated to have 
the highest median efficacy. These nanocarriers are designed to possess all the nec-
essary properties like effective concentration, controlled release in response to defi-
nite stimuli, enhanced targeted delivery mechanisms, reduced ecotoxicity, and also 
an efficient mode of delivering agrochemicals to avoid repeated application. These 
nanocarriers act as carriers of beneficial compounds that ensure a properly targeted 
delivery without hampering plant growth and other organisms. Moreover, they can 
be formulated in such a way so that they release nutrients in a slow and controlled 
manner (Guo et al., 2018). Slow-release nanofertilizers are magnificent alternatives 
to conventional soluble fertilizers due to their proficiency in releasing nutrients at a 
slower rate throughout the growth phases of plants; therefore, plants can absorb 
most of the nutrients without being wasted due to leaching.

4.1  Synthesis of Slow-Release Fertilizers

Slow-release fertilizers for agricultural applications are mostly formulated in micro-
capsule suspensions encapsulating different agrochemicals (Hack et al., 2012). As 
agricultural practices require Kg-scale production, it is crucial to map out specific 
scalable techniques for the manufacture of slow-release fertilizers. Though the tra-
ditional bottom-up approaches assemble molecules at the molecular level, provid-
ing good control over the size and shape, they have limitations in channelizing 
large-scale productions. Hence, the synthesis procedure needs to be both rapid and 
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scalable, which promotes a low-cost production of these slow-release fertilizers 
(Lee et al., 2022). The most common processes for the production of slow-release 
fertilizers are discussed as follows.

4.1.1  Nanoprecipitation

Solvent displacement or nanoprecipitation is a schematic technique for the produc-
tion of nanoparticles. It is a simple and low-energy-consuming technique. In this 
process, dissolved solutes are precipitated as particles by rapidly changing the sol-
vent quality that is generated by the addition of miscible antisolvent or ionic/pH 
gradient or temperature manipulation (Hornig et al., 2009; Zhu et al., 2010; D'Addio 
& Prud'homme, 2011; Zhou et  al., 2017). For agricultural implementations, this 
technique can be scaled up to an approach called flash nanoprecipitation (FNP) 
(Johnson & Prud'homme, 2003; Feng et al., 2019). This method converts the con-
ventional nanoprecipitation into a continuous process by the addition of cross flows 
in a confined impinging jet mixer or multi-inlet mixer or jet mixing reactor (Liu 
et al., 2008; Han et al., 2012; Ranadive et al., 2019). This scale-up technique can 
generate 3–10 kg/day of nanofertilizers and can be further enhanced by running 
parallel such units to maximize the output (Lim et  al., 2014; Feng et  al., 2019). 
Nanoprecipitation is commonly used for the controlled-release pesticide delivery 
(Boehm et al., 2003; Yearla & Padmasree, 2016). In this connection, the formulation 
of slow-release nanofertilizers offers higher penetration across leaves as well as 
increased efficacy of systematic delivery to the plant.

4.1.2  Emulsion Evaporation

Currently, emulsion evaporation is the most used method in manufacturing 
controlled- release fertilizers (Hack et  al., 2012). In this self-assembly technique, 
agrochemicals, slow-release matrices, and other organic components are dissolved 
in a water-immiscible, volatile organic solvent like dichloromethane, chloroform, or 
ethyl alcohol. The water phase containing surfactants emulsifies the oil phase using 
an ultrasonic probe or high-speed homogenizer. This results in the formation of an 
oil–water emulsion, which is followed by the removal of organic solvent, thereby 
forming nanoparticles by self-assembly. The process shows similar encapsulation 
efficiency to nanoprecipitation methods (Zhang et al., 2013).

4.1.3  Ionotropic Gelation

In this technique, controlled release systems are developed through cross-linking or 
by electrostatic interactions between the charged matrix and oppositely charged 
particles. This can be done through common chemicals like cross-linking sodium 
alginate with calcium ions or with sodium tripolyphosphate and can be implemented 
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for agrochemical delivery. This method has been used to demonstrate a wide variety 
of agrochemicals, including plant growth regulators, insecticides, herbicides, and 
fungicides (Namasivayam et al., 2018; Maluin et al., 2019; Valderrama et al., 2020; 
Ghaderpoori et al., 2020). These nanofertilizers provide sustainable release of agro-
chemicals ensuring their extended efficiency (Artusio et al., 2021).

4.2  Delivery, Uptake, Translocation, and Biodistribution 
of Slow-Release Nanofertilizers

The concept of nanomaterials customized for precise delivery to plants was initially 
adapted from targeted drug delivery using nanocarriers (Biju, 2014). These nanofer-
tilizers consist of plant nutrients encapsulated on nanocarriers, delaying availability 
for plant uptake, thus allowing the extension of the period for the availability of 
fertilizer after a single application (Fu et al., 2018). Generally, agrochemicals are 
delivered to plants by three means—foliar spray, soil treatment, and seed treatment. 
Functionalized nanomaterials have several ramifications when applied to soil as the 
direct exposure and localized concentration of particles are much higher than those 
of the indirect foliar application, contributing a significantly weak amount to the 
plant sinks. To avoid nutrient loss due to foliar applications, a higher leaf area index 
and low exposure dose with multiple applications and weather-based applications 
are required. Yet the higher soil exposure could affect the rhizospheric microbial 
communities and influence the aggregation, thereby limiting plant uptake (Gajjar 
et al., 2009; Collins et al., 2012; Fernández & Brown, 2013; Mehta et al., 2016; Cao 
et al., 2016). Despite certain circumstantial factors (such as particle concentration in 
air, weather conditions, exposure time, and physiochemical properties of particles), 
aerosols of functionalized nanomaterials may cause risk to humans or other ani-
mals, if inhaled or exposed to air (Biswas & Wu, 2005). In this connection, to ensure 
safe foliar application, the use of suitable shield equipment and eye-protective 
glasses, along with masks and gloves, is necessary (Jain et al., 2018). Mesoporous 
silica nanoparticles with 3 nm pore size were used to deliver a gene and its chemical 
inducer into isolated tobacco plant cells and leaves (Torney et al., 2007). To avoid 
the leaching of the loaded gene and its inducer, gold nanoparticles were capped. 
Different specific target molecules like aptamers, oligonucleotides, and peptide 
molecules can be used for the surface operationalization of nanofertilizers to the 
nutrients in the nanocarriers get released in response to plant signals in the rhizo-
sphere (Mastronardi et al., 2016; Monreal et al., 2016). In a study, it has been evalu-
ated that foliar application of iron and magnesium NPs to black-eyed peas (Vigna 
unguiculata) showed comprehensive positive growth and developmental changes. 
Similar results were found in other experiments performed on tomatoes and water-
melons (Delfani et al., 2014; Raliya et al., 2016a, b) (Fig. 13.1).

Several studies have used models to convey the mechanism of uptake and trans-
port in different plant parts. The uptake process involves the movement of nutrient 
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Fig. 13.1 Schematic portrayal of nanofertilizers application, uptake, and translocation of nutrients 
in plants. NPs delivered to plants by soil application, seed coating, and foliar spray to improve 
overall plant growth and development (Source: Manzoor et al., 2022)

ions through the soil toward the root xylem vessels followed by transport in the 
xylem and further biodistribution of ions in different plant parts (Bowling, 1976). 
The movement of water and solutes can be demonstrated by Richard’s equation and 
the convection-diffusion equation in currently studied models. There are also many 
models where nutrient uptake has been described by the Michaelis–Menten equa-
tion (Claassen et al., 1986; Barber, 1995). It was observed that uptake enhanced 
with the increasing nutrient concentration in a curvilinear pattern approaching the 
maximum level of uptake. Still, the kinetic parameters fluctuate with plant species, 
plant age, soil temperature, and other important properties. Initially, the nutrient 
transport models in plant tissues were analyzed considering steady-state source- 
sink theory, where the flow was driven by an osmotically generated pressure gradi-
ent (Minchin et al., 1993). As diffusional pressure is insignificant in comparison to 
convective transport in the main bulk flow and thereby neglected. Although, diffu-
sive transport is effective near the vessel boundaries as the connective flux is zero 
(Payvandi et  al., 2014). Most of the models in the literature convey only a few 
aspects of fertilizer to crop translocation pathway. However, numerous models have 
been developed to identify nutrient uptake, but there are still some loopholes in cur-
rent studies. Hence, it is much necessary to address the models of nanofertilizers 
uptake and transport in plants.
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5  Recent Status of Different Slow-Release Nanofertilizers

In the current scenario, among the nano-enabled slow-release fertilizers for the 
smart delivery of nutrients, most of the systems were observed to be involved with 
macronutrients considering their fundamental and biological functions, larger 
inputs, and high loss. The carrier material studied for the delivery of such nutrients 
falls into different categories such as mesoporous silica, carbon-based nanomateri-
als, nanoclays, hydroxyapatite nanoparticles, and many more.

Mesoporous silica nanoparticles (MSiNPs) are one of the most efficient carrier 
molecules that have been evaluated to be very useful in the delivery of nutrients and 
pesticides. In this regard, the prospect of ABA-encapsulated and thiol group-dodecyl 
disulfide-functionalized mesoporous silica nanoparticles (MSiNPs) was considered 
to be effective for the alleviation of drought stress in Arabidopsis thaliana via 
increasing seed germination and internal antioxidant defense (Sun et al., 2018). In 
another study, the ABA-encapsulated MSiNPs were found to diminish the effects of 
cold stress, besides salt and drought stress (Jin et al., 2013). The use of MSiNPs as 
a carrier of urea fertilizer resulted in the controlled release of urea which suggested 
its utility as a smart delivery system for agrochemicals like pesticides and fertilizers 
(Wanyika et al., 2012). The rich mesoporous surface of silica enables this material 
to be biofunctionalized with urease for the development of a delivery system for 
nitrogen (Hossain et al., 2008). The uptake of MSiNPs by wheat and lupin increased 
plant growth by enhancing the accumulation of leaf total protein and chlorophyll 
pigments. This also introduces MSiNPs to be used as an effective delivery system of 
agrochemicals in plants in a controlled manner without hampering the plant growth 
and yield (Sun et al., 2016). The MSiNPs were also found to accelerate the delivery 
of different macro- and micronutrients like K, Mg, Ca, Zn, and Mn in Zoysia sp., 
playing an effective role in plant growth (Adams et al., 2020). Functionalized and 
encapsulated SiNPs and NPK were combined to synthesize controlled-release fer-
tilizers (CRFs), meant to be implemented for the precise and well-restraint delivery 
of agrochemicals (Mushtaq et  al., 2018). However, given the complex synthesis 
procedure and a shortage of field applications, further evaluation of the feasibility 
and applicability of MSiNPs as a nutrient carrier requires to be looked forward 
(Fig. 13.2).

Carbon-based nanomaterials have gained greater attention for drug delivery as 
well as fertilizer applications (Bianco et  al., 2005; Mukherjee et  al., 2016). In a 
study by Ashfaq et al. (2017), Cu nanoparticles-loaded carbon nanofibers (CNFs) 
were evaluated to show a slower release of Cu in water than that of Cu-loaded acti-
vated carbon microfibers (ACFs) (Ashfaq et al., 2017). Nanofiber formulation was 
observed to enhance the seed germination rate, root-shoot length, chlorophyll, and 
protein content of chickpeas (Cicer arietinum). Kumar et al. (2018) demonstrated a 
polymer film (PVAc-starch) with carbon nanofibers as a carrier of Cu–Zn nanopar-
ticles on chickpeas and found that its polymeric composition prevented the rapid 
release of Cu–Zn nanoparticles into the soil. Moreover, the effects of Zn on reactive 
oxygen species (ROS) and the translocation of Cu–Zn CNFs within plant tissues 

D. Ghosh et al.



357

Fig. 13.2 Mechanism of controlled release of micronutrients by slow-release fertilizer. (a) 
Micronutrients entrapped inside the nanoparticle’s pore and secured by some gatekeeper materials 
(biomacromolecules and biopolymers); (b) micronutrients get attached to the surface of the 
nanoparticles by different bonds or magnetic force; (c) micronutrients entrapped inside the nano-
core; and (d) entrapment of micronutrients by some polymeric nanoparticles aided by their net-like 
structure, and the factors (e.g., soil enzyme, soil pH, water diffusion, hydrolysis of polymers, etc.) 
affecting the release of micronutrients

were also observed in chickpea (Kumar et al., 2018). Still, the mechanism respon-
sible for plant uptake of nutrient-loaded nanocarriers in both studies was not 
clearly stated.

Nanoclays are layered silicates with two-dimensional platelets of a nanoscale 
thickness (~1  nm) and length of several micrometers (de Azeredo et  al., 2011). 
Nanoclays have a wide range of applications including fertilizer carriers as well as 
in food and beverage packing (Lagarón & Busolo, 2012). Nanoclays can be both 
anionic and cationic (Hayles et al., 2017). The unique anion exchange capacity of 
these nanoclays makes them favorable to act as carriers for nitrate, phosphate, and 
borate (Everaert et al., 2016; Benício et al., 2017; Bernardo et al., 2018; Songkhum 
et al., 2018). The most frequently used cationic nanoclays used as nutrient carriers 
are montmorillonite, zeolite, and kaolinite (Roshanravan et al., 2015; Lateef et al., 
2016; Mikhak et al., 2017). Nanoclays can protect nutrient molecules from physical 
barriers as well as intercalate nutrients into their layers through ion exchange or 
non-electrostatic interactions like H-bond (Kottegoda et al., 2014; Everaert et al., 
2016; Songkhum et al., 2018). These features allow nanoclays to hold the potential 
of sustaining nutrients for a longer time, accelerate plant growth, improve nutrient 
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use efficiency, balance nutrient supply, and minimize environmental pollution 
(Roshanravan et al., 2015; Kottegoda et al., 2014; Benício et al., 2017; Songkhum 
et al., 2018). Moreover, nanoclays can modify soil parameters. For instance, a study 
on LDH-P (layered double hydroxide phosphates) showed that pH increased in both 
sandy and clayey soils after cultivating maize plants 25 days after sowing. It was 
postulated that an increase in pH facilitates the adsorption of P by plants, although 
the mechanism is still unexamined (Benício et al., 2017) (Table 13.2).

Hydroxyapatite nanoparticles (nHAs) are another group of much-interested 
nano-enabled nutrient delivery systems. Urea-laden hydroxyapatite nanohybrids 
were developed by a research group and showed efficient slow release of nitrogen 
(Kottegoda et  al., 2017). The nHA synthesized from carboxymethyl cellulose 
(CMC) when applied to soybean (Glycine max) was demonstrated to increase the 
growth rate by 32.6% more than that of the conventional P fertilizer-treated plants 
(Liu & Lal, 2014). Priyam et al. (2019) invented a novel technique of nHA biosyn-
thesis from Bacillus licheniformis, a phosphate-releasing bacteria, that have similar 
properties to commercially available nHA, yet not having any negative impacts on 
soil bacterium (Priyam et al., 2019). A study by Xiong et al. (2018) revealed that the 
application of nHA bearing a surface charge of −13.8 can result in a higher yield of 
plants in comparison to conventional fertilizers (Xiong et al., 2018).

Among the polymeric nanoparticles, chitosan is a promising material as an agro-
chemical delivery system. Chitosan nanoparticles loaded with NPK (chitosan–NPK 
NPs) were compared to conventional NPK fertilizers, and after foliar application, 
chitosan–NPK NPs were found to accelerate growth and crop yield in wheat (Abdel- 
Aziz et al., 2016). Even though this polymeric nanofertilizer showed great potential, 
the mechanism behind it is still unknown. The enhancement possibly is a result of 
the slow release of NPK from chitosan NPs. Another nano-enabled fertilizer was 
produced by premixing montmorillonite, urea, and the polymer of polycaprolactone 
(PCL) or polyacrylamide hydrogel (HG), having a urea load of 75% in the final 
product. Among these, the HG polymer was found to enhance the mechanical 
strength of fertilizer and the nanofertilizer was demonstrated to show a slower 
release of N relative to pure urea. They also showed a significant role in the decline 
of N2O emissions (Kundu et al., 2016).

Besides these majorly used nanocarriers of nanofertilizers, there are several dif-
ferent unconventional nano-enabled slow-release fertilizers. A nanosized Mn car-
bonate hollow core–shell loaded with Zn sulfate was reported to show a controlled 
release of Zn as demanded by rice plants (Yuvaraj & Subramanian, 2015). The 
result showed that the core–shell structure enhanced the nutrient use efficiency by 
extending the prolonged release of Zn for up to 29 days, which was more than the 
traditional ZnSO4. Pine oleoresin and nanoscale zinc oxide or rock phosphate were 
used as carriers for urea and were found to decrease N2O emissions (Kundu et al., 
2016). Although there are still a limited number of studies regarding the mechanism 
of the controlled release of nutrients by these smart slow-release fertilizers.
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Table 13.2 Different slow-release nanofertilizers and their perspective of application in plants

Slow-release 
component 
(coating/
encapsulated) Core material (carrier) Perspective of synthesis References

Commercial 
fertilizer 
(undefined)

Silica nanoparticles To compete with the salinity 
and drought stress of plants

Mushtaq 
et al. (2019)

Copper 
nanoparticles

Carbon nanofiber To increase water uptake 
capacity, germination rate, 
seedling lengths, and 
chlorophyll and protein

Ashfaq et al. 
(2017)

Copper oxide 
nanoparticles

Chitosan and sodium alginate 
complex

To obtain a hybrid 
nanocomposite for making a 
potential alternative to realize 
a smart delivery nanofertilizer 
using an eco-sustainable 
method

Leonardi 
et al. (2021)

Diammonium 
phosphate 
(DAP) fertilizer

Potassium ferrite nanoparticles Phosphate and nitrogen slow 
release in the soil to defend 
their deficit

Saleem et al. 
(2021)

Halloysite 
nanotubes

Chitosan To prepare a potential 
controlled-release carrier and 
delivery system for 
agricultural fertilizers

Wang et al. 
(2020)

Humic 
substances

Nanohydroxyapatites Synergistic co-release of 
phosphate ions and humic 
substance, early plant growth, 
productivity under NaCl- 
induced abiotic stresses

Yoon et al. 
(2020)

NPK and silica 
nanoparticles

The first coating of 
semipermeable chitosan and 
the second superabsorbent 
coating of sodium alginate and 
kaolin

Slow release of NPK and 
silica nanoparticles withholds 
a large amount of water 
which can help a plant to 
survive under salinity and 
extreme drought stress

Mushtaq 
et al. (2018)

Potassium and 
nitrogen (urea 
and nitrate)

Calcium phosphate 
nanoparticles and nano-NPK

Enhancement in the efficacy 
of conventional fertilizer, 
controlled availability of 
nitrogen to plants

Ramírez- 
Rodríguez 
et al. (2020)

Urea Nano-biocomposite of 
starch-g-poly(acrylic 
acid-co-acrylamide) 
superabsorbent polymer with 
natural char nanoparticles

To increase the soil water 
holding capacity and 
sustainability of N by slow 
release of urea

Salimi et al. 
(2020)

Zinc oxide 
nanoparticles

Soy-protein-based bioplastic To study the increment in the 
versatility and functionality 
of bioplastics and 
nanofertilization in 
horticulture

Jiménez- 
Rosado et al. 
(2021)
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6  Limitations and Concerns in the Commercialization 
of Slow-Release Nanofertilizers

In recent times, a huge increase in the number of patents issued for the synthesis of 
nano-based agricultural commercials and their applications has been noted (Kim 
et al., 2018). Research funding for nano-research is highest in the USA, followed by 
Germany and Japan, whereas China published the highest number of publications, 
and the USA obtained the highest number of patents (Dubey & Mailapalli, 2016). 
The global market for nanoformulation and agrochemical utilization is rapidly 
spreading out in the USA, Brazil, China, India, South Africa, and multiple European 
countries. Particularly in India, several agrochemical corporations are developing 
nano-based fertilizers. For instance, Tropical Agrosystem India Private Limited has 
launched nanofertilizers in the name TAG NANO (NPK, PhoS, Zinc, Cal, and many 
more). These are protein-lacto-glutamate formulations chelated with micronutri-
ents, vitamins, seaweed extracts, humic acids, and probiotics (Elemike et al., 2019; 
Guha et al., 2020). Nano Green Sciences, Inc., India has also produced a colloidal 
nanofertilizer. Two other companies, namely, JU Agri Sciences Pvt. Ltd., Janakpuri, 
New Delhi, India, and Shan Maw Myae Trading Co., Ltd., have also released 
nanofertilizers under the name Nano Max NPK Fertilizer and Nano Micro Nutrient 
(Eco Star), respectively (Guha et al., 2020).

Although there are numerous research publications and patents concerning the 
prospects of crop production and protection, the commercialization of those nano-
products is extremely limited. Specifically, due to the low expenditure on research 
and development infrastructure, high production value, low agricultural returns, and 
negligence in the transfer and imposition of technology in the agricultural sector, 
challenges have arisen (Huang et al., 2015; Kah, 2015). Besides, these products may 
pose threat to agricultural and food production by contaminating the food chain 
causing high risk to humans as well as to the ecosystem (Peng et al., 2017). Thereby 
it is very essential to gain authentic information regarding the various challenges 
and limitations of the facilities offered by nanobiology in the agroindustry (Iavicoli 
et al., 2017).

The major challenges encountered during the commercialization of nano-based 
agricultural products are the high valuation involved in the production, the limita-
tions in the scalability of research and the development of trials, and the concerns 
related to the public’s perception of the product’s impacts on health and the environ-
ment (Agrawal & Rathore, 2014). Therefore, scrutinizing the issues related to 
expenses and returns involved in nano-agrochemical productions is very crucial for 
the desired levels of implementation and success of these products (Dimkpa & 
Bindraban, 2017).

To confront such issues, an analysis of various nano-agrochemical products, as 
well as production methods, is essential to be compared to discover the best-suited 
production path for the manufacturing of nanomaterials (Pereira et  al., 2015; 
Dimkpa & Bindraban, 2017). Finding such a comprehensive analysis can serve as 
an important information tool to escort future investments from various industries. 
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However, the commercialization and mass production of these nano-based products 
need to be controlled and strictly tracked through government-devised and globally 
implementable standards (Agrawal & Rathore, 2014).

7  Future Perspectives

Nanofertilizers, especially slow-release smart nanofertilizers, hold great potential in 
the restoration of agricultural practices and production by deploying pieces of infor-
mation from all cross-disciplinary fields. Studies involving the comparison among 
slow-release nanofertilizers, conventional nanofertilizers, and traditional nutrient 
fertilizers to evaluate the relative plant growth and development parameters as well 
as plant-protection mechanisms are highly recommended for further transparency 
of understanding their mode of action. The preliminary evaluation needs to be done 
under a controlled environment to screen and validate whether any ecological safety 
issues are in occurrence. This can be followed by further field trial experiments of 
the developed controlled-release fertilizers against the conventional ones. This will 
provide a more realistic approach to determining the benefits of their agricultural 
application in terms of their cost efficiency, effectiveness, and environmental profi-
ciency. Moreover, to design adequate tools for their regulation and associated ben-
efits, substantial characterization of both nano- and non-nano-fractions of these 
slow-release nanofertilizers is required. Additionally, an integrated analysis of these 
nano-based smart fertilizers can be performed to ensure further advancements and 
commercialization of technology. It will be a huge success if slow-release nanofer-
tilizers can be revolutionized to pose a phenomenal impact on the environment, 
energy, and the economy. Further, research and technological interventions are 
advisable that focus on the optimization of fabrication procedures and the search for 
non-contaminative or biodegradable low-cost continuous matrix materials for mak-
ing nanofertilizers an economically viable venture.

8  Conclusion

Slow-release nanofertilizers (SRFs) are a potential new agricultural productivity 
and sustainability solution. SRFs can deliver nutrients to plants in a regulated and 
sustained manner, reducing nutrient runoff and improving water usage efficiency. 
SRFs can also be programmed to target certain plant growth stages, increasing agri-
cultural yields even more. SRFs can be more cost-effective than traditional fertiliz-
ers, in addition to providing environmental benefits. SRFs can be sprayed at lower 
rates, saving farmers money on fertilizer. SRFs can also be utilized to increase crop 
quality, potentially leading to better prices. SRFs are still in their early phases of 
application, but the potential benefits of this technology are evident. SRFs have the 
ability to transform modern agriculture methods and contribute to meeting the 
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world’s growing food needs. SRFs are an exciting new technology that has the 
potential to transform modern agriculture practices. More research is needed to 
fully understand the benefits and dangers of SRFs, although current evidence indi-
cates that they have the potential to be a valuable tool for boosting crop yield and 
sustainability. Smart fertilizer development, particularly slow-release nanofertiliz-
ers, represents a bright prospect for modern agriculture techniques. These fertilizers 
provide various benefits, including greater nutrient usage efficiency, reduced pollu-
tion, and increased crop yields. More research is needed, however, to fully compre-
hend the long-term consequences of these fertilizers on soil health, plant growth, 
and the ecosystem. Overall, smart fertilizers have the potential to be a helpful tool 
for sustainable agriculture, but careful implementation and monitoring are required 
to assure their safe and successful usage.
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