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Chapter 3
Physiological Significance of Oxidative 
Stress and Anti-oxidative System

Saddam Hussain, Azhar Rasul, Ghulam Hussain, Majeeda Rasheed, 
Maria Manan, Komal Riaz, Saba Riaz, Muhammad Asif Khalil, 
Ayesha Sadiqa, and Sevki Adem

3.1  Introduction

Two valence electrons have parallel spins in each of their two anti-bonding  
orbitals in molecular oxygen. This spin restriction allows it to accept a pair of elec-
trons from a donor. A redox reaction is a fundamental metabolic activity in living 
organisms [1]. The movement of a single electron may result in the formation of 
free radicals and other issues [2]. Free radicals generally show a high level of reac-
tivity. These radicals are extremely unstable and reactive with other chemicals. 
Guyton de Morveau coined the term “radical” in 1786, and later, Gay-Lussac, 
Berzelius, and Liebig used it to refer to unaltered atomic groups in numerous 
 substances [3].
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Free radicals not only take part in pathogenic processes but are also essential for 
many physiological activities of living organisms, such as healthy aging [4]. Lipid 
peroxidation was reported to have both negative and positive consequences [5]. Free 
radicals can cause numerous diseases in humans by damaging lipids, proteins, and 
DNA. ROS and RNS are responsible for cellular damage by substituting macromol-
ecules [6]. There are numerous antioxidants, both natural and artificial. Endogenous 
antioxidants are characterized as enzymatic or non-enzymatic [7].

3.2  Roots of Oxidative Stress

An imbalance in the production of reactive oxygen species results in the oxidative 
stress and capacity of an organism’s antioxidative defense mechanisms to lessen the 
harm due to oxidants. As a byproduct of normal aerobic metabolism, ROS may 
provide a fundamental health concern when the amount increases in response to 
stress [8]. The mitochondrion is a primary organelle which is taking part in the pro-
duction of ROS. ATP is produced by numerous processes including the electron 
transport chain. Only one or two electron of oxygen are reduced instead of four 
electrons during this process, which is responsible for the formation of O2 or H2O2, 
which then changes into other ROS [9]. Free radicals may be created by both 
 internal and external processes. Infection, inflammation, ischemia, immune cell 
activation, cancer, mental stress, and aging contribute to endogenous free radical 
formation [10].

Numerous studies show that excessive macronutrient intakes might increase oxi-
dative stress. An excessive amount of high caloric intake will increase the number 
of substrates entering mitochondrial respiration. As a consequence, the number of 
contributed electrons to the electron transport chain will be surged [11]. When 
superoxide concentrations cross a certain point, extra electrons may gather at com-
plex III and donate more electrons to molecular oxygen [12].

ROS generation is fundamentally dependent on enzymatic and non-enzymatic 
processes. Superoxide radical is produced by xanthine oxidase, peroxidases, and 
NADPH oxidase [10]. The sole class of enzymes with the specific purpose of pro-
ducing ROS is the NADPH oxidases, which differentiates it from other enzymes 
producing ROS as the byproduct of their activity [13]. Free radicals may also be 
created by non-enzymatic processes like oxygen’s interactions with organic materi-
als or the radiation that is exposed to cells. Non-enzymatic free radicals production 
may also take place during mitochondrial respiration [14].
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3.2.1  Endogenous Sources of ROS Production

Different cellular organelles with high oxygen consumption rates, including the 
endoplasmic reticulum, mitochondria, and peroxisomes are examples of endoge-
nous generators of ROS.

3.2.1.1  Production of Oxidative Stress in Mitochondria

Mitochondria generate the majority of the intracellular ROS. Oxidizing radicals are 
generated at complex-I and complex-III in oxidative phosphorylation [15]. 
Alongside cytochrome c oxidase, monoamine oxidase, glycerol phosphate dehydro-
genase, a-ketoglutarate dehydrogenase, and p66shc also take part in ROS genera-
tion within mitochondria [16].

3.2.1.2  Generation of Oxidative Stress in Peroxisomes

The respiratory pathway in peroxisomes involves the transport of electrons from 
different metabolites to O2, which ultimately causes the generation of hydrogen 
peroxides [17]. β-oxidation of fatty acids produces hydrogen peroxide in peroxi-
somes. OH•, H2O2, and O2•− are also produced in peroxisome [18].

3.2.1.3  Generation of Oxidative Stress in the Endoplasmic Reticulum

Diamine oxidase, cytochrome b5, and cytochrome P-450 play role in ROS produc-
tion [19]. Erop1p is a thiol oxidase that leads to the production of H2O2 [20]. Auto 
oxidation of the prostaglandin synthesis, immune cell activation, adrenaline, cyto-
chrome P-450, phagocytic cells, flavin mononucleotide (FMNH2), flavin adenine 
dinucleotide (FADH2), inflammation, anxiety, mental stress [21], infection, exces-
sive exercise, aging, ischemia, and cancer are other endogenous sources of ROS [19].

3.2.2  Production of Oxidative Stress by Exogenous Sources

Various synthetic products are causing oxidative stress directly or via producing 
by- products. Some of the major exogenous sources for the generation of oxidative 
stress are given below (Fig. 3.1).

 I. Smoke-generated oxidative stress

Smoke from cigarettes comprises a variety of extremely unstable free radicals 
that increase the generation of ROS and RNS and cause oxidative stress [22]. Lung 
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Fig. 3.1 Exogenous sources of oxidative stress

inflammatory cells (macrophages, epithelium, and neutrophils) are affected by ciga-
rette smoke, due to the activation of NADPH oxidase 2, which produces superoxide 
radicals [23].

 II. Ultra-violet generated oxidative stress

There are two ways that UV light might harm cellular components. The first 
method involves the cell and its constituent parts directly absorbing incoming light. 
This results in the production of an excited state of the molecules following chemi-
cal reactions. The second mechanism is photosensitization. Incoming radiation is 
absorbed by photosensitizers such as bilirubin. As a result, the sensitizers are excited 
to triple states [24].

 III. Other exogenous sources of oxidative stress

Other factors like air and water pollution are involved in the production of oxida-
tive stress in the body. Radiations and radioactivity also take part in the production 
of oxidative stress. Drugs like halothane, bleomycin, paracetamol, doxorubicin, and 
metronidazole have a record of generation of oxidants. Industrial solvents, pesti-
cides, chemicals like carbon tetrachloride, transition metals, heavy metals, alcohol 
consumption, and cooking (smoked meat, fat, and junk foods) are also recorded as 
the sources of oxidative stress [25].
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Fig. 3.2 Involvement of ROS in the pathophysiology of cell (a) ROS produces lipid peroxides in 
the cell membrane, inducing lipid peroxidation chain reaction or the generation of aldehydes such 
as 4-Hydroxy-2-nominal (HNE), that are detrimental to cellular activities via Ca2+ signaling and 
thus cause diseases such as inflammation [26], (b) Proteins are primary targets of ROS with revers-
ible or irreversible modifications to the amino acid residues like Cys, Met, Arg and Tyr [26], (c) 
ROS are produced by electron transport chain in mitochondria to a large extent. ROS are generated 
via single electron leakage in the following situations: (i) during normal ETC function, at complex-
 I and complex-III; (ii) during conditions of high NADH/ NAD+ ratio and low electron transport 
chain activity, (iii) during conditions of a high pool of reduced ubiquinone and transmembrane H+ 
gradient, at complex I and (iv) during hypoxic conditions, at complex III [27], (d) The oxidative 
modifications of guanine base is one of the most common forms of DNA damage. Nuclear DNA is 
far less susceptible to ROS than mitochondrial DNA, which contributes to age-related mitochon-
drial malfunction. The fact that guanine is quickly oxidized could have important physiological 
consequences [26].

3.3  Molecular Targets of Free Radicals

Increased generation of RNS and ROS and decreased antioxidant defense result in 
nitrosative and oxidative stress. Major components of cells (mitochondria, plasma 
membrane, and DNA molecule) are damaged as shown in Fig. 3.2, leading to mul-
tiple disorders [14].
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3.4  Role of Oxidative Stress in Health Illness

Oxidative stress is related to the emergence of many acute and chronic ailments in 
addition to speeding up aging and generating acute illnesses. The impact of oxida-
tive stress on hypertension, Alzheimer’s disease, and some malignancies will be 
covered in this chapter.

3.4.1  Oxidative Stress and Hypertension

The intricate and prevalent cardiovascular risk factor is hypertension [28], which is 
responsible for morbidity and mortality worldwide [29]. Hypertension is linked 
with inflammatory processes but is not confirmed whether inflammation is the con-
sequence or cause of hypertension [30]. Tissue damage and remodeling in hyperten-
sion ensure its central role in hypertension and its side effects [31].

3.4.1.1  Sources of ROS

Research on ROS sources in hypertension is extensive. These are NADPH oxidase, 
uncoupled eNOS, xanthine oxidases, and mitochondria [32].

3.4.1.2  Oxidative Stress as a Mediator of Hypertension

In the year of 1991, Nakazono and his colleagues described that the blood pressure 
of spontaneously hypertensive rats (SHR) was reduced by intravenous injection of 
a fusion protein composed of human Cu/ Zn SOD and COOH terminal basic pep-
tides with enhanced attraction for heparan sulfate. This result indicated that oxida-
tive stress could be a mediator of hypertension in SHR. Additionally, they discovered 
that the xanthine oxidase inhibitor oxypurinol decreased the blood pressure in male 
SHR, correlating hypertension in male SHR to oxidative stress [33].

After 5 years of Nakazono’s findings, Rajagopalan and his colleagues reported 
that administering large doses of angiotensin to rats raised their blood pressure and 
increased vascular superoxide, which was mediated by NADPH oxidase [34]. 
Superoxide levels were unaffected by norepinephrine, which raised blood pressure  
to comparable levels. Vascular dysfunction and constriction were eliminated when 
researchers administered a liposome-encapsulated superoxide dismutase [35]. 
These researchers later demonstrated that superoxide probably degraded vascular 
NO to raise blood pressure [36].

Superoxide binds to the NO generated by endothelial NO synthase (eNOS), 
forming peroxynitrite. This decreases NO bioavailability which results in vaso-
constriction. Furthermore, in the presence of ROS, the eNOS cofactor, 
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tetrahydrobiopterin (BH4) is converted to dihydrobiopterin leading eNOS to syn-
thesize superoxide [37]. The instability was only partially reversed by the addition 
of BH4. These researchers hypothesized that peroxynitrite can inactivate eNOS by 
oxidizing BH4, as well as by damaging the enzyme’s heme/heme core [38]. 
Antioxidants such as vitamins E and C; tempol, apocynin, allopurinol, 
N-acetylcysteine, and BH4 reduced depression according to a study performed in 
male animals [39].

3.4.2  Oxidative Stress and Alzheimer’s Disease

Clinical symptoms of Alzheimer’s disease include a gradual decline in memory and 
cognitive abilities and severe dementia. Over the next few decades, people with 
Alzheimer’s disease are expected to rise upto 15 million from the present number of 
over 4 million [40, 41]. When hyperphosphorylated tau protein aggregates bind to 
Fe3+, neurofibrillary tangles are produced [42]. The amyloid-peptide may form a 
chelation complex with transition metal ions, which then catalyzes the production 
of H2O2 and the poisonous OH radical [43]. In AD patients, there is significant lipid 
peroxidation, which could lead to neuronal loss by a variety of pathways, gathered 
with impaired activity of glucose transporters, ion pumps, and glutamate transport-
ers. Patients with AD have been found to have additional oxidative protein damage 
indicators like 3-nitrotyrosine and protein carbonyls [44].

3.4.3  Oxidative Stress and Cancer

Cancer ranks among the main causes of mortality in people. Free radicals alter DNA 
chemically in many ways, make them potentially mutagenic, and contribute to the 
development of cancer [45, 46]. Cancer cells exhibit increased levels of oxidative 
stress due to the activation of the oncogenes and loss of tumor suppressors [47]. 
ROS changes the gene expression and growth signals, which leads to cancer cell 
proliferation [48].

3.4.3.1  Colorectal Cancer (CRC)

CRC is one of the important types of cancer with 608,000 fatalities per year [49]. 
ROS from internal and external sources are continually exposed to the gastrointes-
tinal system, especially the colon, and rectum [50]. Epithelial cells are sites where 
colon cancer begins to develop. These cells have high metabolic rate and divide 
quickly [51]. This exposure eventually leads to a disrupted intestinal metabolic 
equilibrium that results in cancer [52].
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3.4.3.2  Breast Cancer

ROS damages the breast epithelium which results in hyperplasia of epithelium, 
breast cancer, and fibroblast proliferation [53]. Thymidine phosphorylase produces 
oxygen radicals in the carcinoma cell when proteins are quickly glycated. It can be 
overexpressed in a majority of breast cancer which might cause oxidative stress [54].

3.4.3.3  Prostate Cancer

Cellular growth of prostate cancer is caused by ROS production [55]. Prostate can-
cer first appears when the protein NADPH oxidase 1 (Nox1) is overexpressed. ROS 
and Nox1 levels are noticeably greater in prostate cancer [56].

3.4.3.4  Lung Cancer

Among the main global causes of cancer mortality in males, lung cancer has been 
increasing at a steady rate in recent decades. Approximately 30% of all cancer 
deaths are caused by lung cancer. Lung inflammation and cancer are two conditions 
that oxidative stress contributes to significantly [57]. The significant environmental 
risk factor for lung cancer is cigarette smoking. The particulate matter from ciga-
rette smoke is a complicated combination of several stable ROS and carcinogens 
with very long half-lives [49].

3.5  Antioxidants and Classification of Antioxidants

Antioxidants may be synthetic or natural. The natural antioxidant system has two 
categories, enzymatic antioxidants, and non-enzymatic antioxidants as shown in 
Fig. 3.3 [58]. Free radicals may be stabilized or inactivated by antioxidant enzymes 
before they damage cellular components. Synthetic antioxidants are chemically pre-
pared substances [58]. Natural antioxidants are further divided into two categories. 
They may be endogenous and exogenous antioxidants [59]. Exogenous are those 
antioxidants that we take through food and supplements that are high in antioxi-
dants [60].

Examples of exogenous antioxidants include vitamins, minerals, carotenoids, 
beta carotene, lycopene, lutein, zeaxanthin, organic sulfur compounds, allium, allyl 
sulfide, indoles, uric acid, glutathione and polyphenols which are phenolic acids 
and flavonoids. Flavonoids may be anthocyanidins cyanidin, pelargonidin, isoflavo-
noids, genistein, flavonols, catechin, EGCG, flavonols quercetin kaempferol, and 
flavanones. Endogenous antioxidants are the primary defense system including glu-
tathione peroxidase, superoxide dismutase, catalase, and the secondary defense sys-
tem which includes glucose-6 phosphate dehydrogenase and glutathione reductase. 
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Fig. 3.3 Classification of antioxidants based on enzymatic and non-enzymatic categories

Synthetic antioxidants are also categorized as enzymatic and non-enzymatic anti-
oxidants. They are phenolic structures, nano-antioxidants, oxides, and metallic 
nanoparticles [61].

3.6  Sources of Antioxidants

Antioxidants are found in natural foods and can also be synthesized. Antioxidants 
are mostly found in plants [62]. Phenolic structures are endogenous. A brief descrip-
tion of sources of antioxidants is elaborated in Fig. 3.4. We get phenolic structures 
from apples, grapes, pomace, pomegranate, berries, oranges, tomatoes, olive oil, 
coffee, and tea. Exogenous may be polyphenols, minerals, carotenoids, vitamins, 
and organosulfur compounds [63].

Polyphenols are found in spices, berries, nuts, herbs, cocoa powder, flaxseeds, 
olives, vegetables, coffee, and tea. Polyphenols may trigger apoptosis, inhibit tumor 
development and increase cell survival since they are prooxidants and antioxidants. 
However, polyphenols’ biological impacts could go well beyond just reducing oxi-
dative stress [64]. Minerals are found in meat, dairy foods, cereals, fish, nuts milk, 
fruits, and vegetables [65]. Other sources of antioxidants are vitamins which are 
found in potatoes, citrus fruits, red and green peppers, strawberries, green leafy 
vegetables, blueberries, blackberries, carrots, and kale [66]. Carotenoids are also the 
type of antioxidants that are found in spinach, yams, cantaloupe, kale, watermelon, 
tomatoes, bell peppers, and carrots [67]. Organosulfur compounds are found in 
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Fig. 3.4 Natural sources of antioxidants enriched with phenolic compounds, polyphenols, miner-
als, vitamins, carotenoids, and organosulphur compounds

cabbage, broccoli, cauliflower, brussels sprouts, garlic, onion, meat, eggs, and fish 
[68]. Additionally, there are excellent sources of certain particular antioxidants, 
such as the allium sulfur compounds found in garlic, onions, and leeks [69]. 
Anthocyanins are found in berries, grapes, and eggplant [70]. Beta carotene is found 
in apricots, pumpkins, carrots, mangoes, parsley, and spinach [71]. Flavonoids are 
found in different fruits, onions, tea, green tea, and apples [72].

3.7  Mechanism of Action of Antioxidants

Reactive intermediates are produced both endogenously and exogenously. 
Concerning the mechanism of antioxidants, there are five basic ways by which anti-
oxidants work namely (1) radical-scavenging mechanisms (2) H• species donation, 
(3) oxidant enzyme inhibition, (4) metal chelation, and lastly (5) repair of damaged 
cell components [73]. Several physical, chemical, and enzymatic factors promote 
oxidative reactions that result in the loss of an electron from the outermost shell of 
a given substance [74, 75]. This series of damage is prevented when there are 
enough antioxidants present in the body through the five mechanisms which are 
illustrated in Fig. 3.5. The first one employs the free radical scavenging mechanism 
thus interrupting the chain reactions by inhibiting further oxidation Fig. 3.5 Part 1. 
The second way of the antioxidant system involves the donation of H0 species to 
unstable molecules thus producing a more stable radical which does not contribute 
to further propagation and is stable comparatively to Fig. 3.5 part 2 [76–87]. The 
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Fig. 3.5 Mechanism of action of antioxidants

third path of the antioxidant system involves the inhibition or deactivation of oxida-
tive enzymes Fig. 3.5 part 03 [88–90]. The fourth mechanism refers to the chelation 
of different metals such as Fe2 which results in the production of highly aggressive 
HO• radical which, in turn, prevents metal-induced free radical formation Fig. 3.5 
part 4 [91–95]. The last mechanism, the fifth one, employs the repairing of damaged 
components of the cell such as proteins, membrane, lipids, and deoxyribonucleic 
acid (DNA) [83, 96–99]. Depending upon the structure and nature of the antioxidant 
agents, the said mechanisms may act alone or in association with one another [74, 
100, 101].

3.8  Role of Antioxidants in the Treatment 
of Different Diseases

Antioxidants play a major role in the treatment of different ailments by scavenging 
free radicals and eliminating them from the body through different processes. Some 
of them are enlisted below;

3.8.1  Antioxidants and Hypertension

Hypertension is an important cardiovascular issue that contributes to almost half of 
the prevalent coronary heart diseases and associated disorders like chronic kidney 
diseases (CKD) [102–107]. In addition, hypertension ranks third among the list of 
six major factors which cause global diseases [108].
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Antioxidant treatment appears to be an effective method for reestablishing a 
healthy equilibrium between oxidants and antioxidants in hypertensive patients. 
Antioxidants have promising potential to relieve hypertension in animal models. In 
spontaneously hypertensive rats (SHR), NO viability was enhanced and blood pres-
sure was lowered after oral administration of lazaroid, the ROS scavenger medicine 
[109]. Similar results were seen when N-acetylcysteine (NAC), another antioxidant, 
was used to treat high blood pressure. NAC reduced blood pressure by preventing 
ROS production and increasing NOS activity [110]. A similar pattern was observed 
in SHR given the xanthine oxidase inhibitor allopurinol [111]. The bioavailability 
of nitric oxide was greatly increased, and the treatment blunted the progressive and 
time-dependent rise in systolic blood pressure [112].

3.8.1.1  Anti-hypertensive Drugs with Antioxidant Properties

Several molecules with anti-hypertensive and antioxidant properties have been dis-
covered so far. Among these celiprolol, nebivolol, propranolol, and carvedilol got 
major focus [113]. Tissue lipid peroxidation and oxidative stress are both decreased by 
propranolol [113, 114]. Patients with heart failure can benefit from carvedilol’s free 
radical scavenging properties which decrease lipid peroxidation [113, 115]. However, 
not all beta-blockers have these antioxidant properties; for example, atenolol has been 
demonstrated to possess no affect on ROS generation in lining cells [116].

3.8.2  Antioxidants and Aging

Aging is a universal, inevitable, biological phenomenon affecting almost all living 
organisms from multicellular to unicellular life [117–119]. When we talk about the 
process behind the oxidative stress associated with aging, we can’t find clear data 
despite the presence of many different hypotheses, most probably elevated levels of 
RONS, a process that inhibits the proliferation that results due to damage during 
replication [120].

Several antioxidants are available which have anti-aging properties such as reti-
noids [121–123], vitamin C [124–129], tea extracts [130–132], grapes seed extracts 
[133], peptides, and hydroxy acids have anti-aging character. The interesting thing 
is that almost all of these are antioxidants [134–144].

3.8.3  Antioxidants and Cancer

Antioxidants have the ability to avoid harmful and sometimes carcinogenic effects. 
Mice that have been exposed to carcinogens or have lost tumor suppressor genes got 
benefit from many isoforms of glutathione S-transferases (GSTs) which work 
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together to keep the liver, skin, and colon cancer-free [145–147]. Glutathione 
Peroxidases (GPXs) can also protect against carcinogen and ROS-induced malig-
nancies initiation in a variety of animals. In colon cancer mouse models, GPX3 
inhibits tumor initiation [32]. Similarly, animals with reduced SOD2 expression, 
either alone or in combination with GPX1 loss, exhibited higher DNA damage and 
tumor incidence [148, 149].

Catechins, especially epigallocatechin-3-gallate (EGCG), are abundant in green 
tea (Camellia sinensis). Animal studies on carcinogenesis have revealed that EGCG 
and green tea can reduce tumor growth. Polyphenols found in tea are potent radical 
scavengers due to the presence of dihydroxy and trihydroxy groups. NRF2- 
antioxidant response element-dependent upregulation of glutamate cysteine ligase, 
glutamyl transferase, and heme oxygenase-1 gene expression in EGCG-treated 
mice [150]. Berberine has been shown to suppress the growth of a wide variety of 
cancers by binding to oligonucleotides, stabilizing DNA triplexes or G-quadruplexes, 
and blocking the enzymes telomerase and topoisomerase. Berberine can scavenge 
reactive oxygen species (ROS), inhibit lipid peroxidation, and decrease metal ion 
concentrations associated with lipid peroxidation [151].

3.9  Conclusion and Future Perspectives

Oxidative stress arises when the balance between the rate at which oxygen-reactive 
species are produced and accumulated in cells and tissues and the rate at which the 
body can eliminate them is disturbed. Mainly ROS is generated as a byproduct of 
normal cellular reactions. ROS production that is necessarily produced at a limited 
level is easily diminished, but certain chemicals, drugs, and other sources become 
responsible for high ROS production. Oxidative stress has a vital role in different 
diseases including cancer. Antioxidants are substances that counteract oxidative 
stress. Although a lot of research work regarding the mechanism of product and 
action of ROS was discovered, more investigations should be done to find out a link 
between disease and ROS level, food and antioxidant production, and the role of 
ROS in normal cellular activities. There should be educational seminars and public 
awareness campaigns that emphasize the importance of antioxidants and encourage 
antioxidants-enriched diets.
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