
Secret Key Recovery Attack on Masked
and Shuffled Implementations

of CRYSTALS-Kyber and Saber

Linus Backlund(B), Kalle Ngo(B), Joel Gärtner(B), and Elena Dubrova(B)

KTH Royal Institute of Technology, Stockholm, Sweden
{lbackl,kngo,jgartner,dubrova}@kth.se

Abstract. Shuffling is a well-known countermeasure against side-
channel attacks. It typically uses the Fisher-Yates (FY) algorithm to
generate a random permutation which is then utilized as the loop itera-
tor to index the processing of the variables inside the loop. The processing
order is scrambled as a result, making side-channel attacks more difficult.
Recently, a side-channel attack on a masked and shuffled implementa-
tion of Saber requiring 61,680 power traces to extract the long-term
secret key was reported. In this paper, we present an attack that can
recover the long-term secret key of Saber from 4,608 traces. The key
idea behind the 13-fold improvement is to recover FY indexes directly,
rather than by extracting the message Hamming weight and bit flipping,
as in the previous attack. We capture a power trace during the execution
of the decryption algorithm for a given ciphertext, recover FY indexes
0 and 255, and extract the corresponding two message bits. Then, we
modify the ciphertext to cyclically rotate the message, capture a power
trace, and extract the next two message bits with FY indexes 0 and 255.
In this way, all message bits can be extracted. By recovering messages
contained in k ∗ l chosen ciphertexts constructed using a new method
based on error-correcting codes of length l, where k is the module rank,
we recover the long-term secret key. To demonstrate the generality of
the presented approach, we also recover the secret key from a masked
and shuffled implementation of CRYSTALS-Kyber, which NIST recently
selected as a new public-key encryption and key-establishment algorithm
to be standardized.

Keywords: Public-key cryptography · Post-quantum cryptography ·
CRYSTALS-Kyber · Saber · Side-channel attack · Power analysis

1 Introduction

The National Institute of Standards and Technology (NIST) has recently selected
one of the third round finalists in the Post-Quantum Cryptography (PQC)
project, a Learning With Errors (LWE)-based scheme CRYSTALS-Kyber [25],
as a Public-Key Encryption (PKE) and Key Encapsulation Mechanism (KEM)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Zhou et al. (Eds.): ACNS 2023 Workshops, LNCS 13907, pp. 159–177, 2023.
https://doi.org/10.1007/978-3-031-41181-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41181-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-41181-6_9

160 L. Backlund et al.

to be standardized [19]. The other two lattice-based finalists, an NTRU-
based scheme NTRU [8] and a Learning With Rounding (LWR)-based scheme
Saber [11], were dropped from the competition.

The motivation behind the PQC process is to choose new cryptographic
primitives that will remain secure after the potential construction of a large-scale
quantum computer. The first two rounds of the NIST PQC selection process
mainly focused on the theoretical security of the candidate designs and their
implementation efficiency. The third round, however, put the spotlight on the
security of the actual implementations. The resistance to side-channel attacks,
which are considered one of the main security threats to implementations of
cryptosystems at present, has received particular attention. This topic is the
focus of this paper.

An attack on a cryptosystem is usually either a Chosen Plaintext Attack
(CPA) or a Chosen Ciphertext Attack (CCA). Indistinguishability under CPA
(IND-CPA) means that one cannot distinguish two ciphertexts based on the
messages they encrypt. This property is a basic requirement for most provably
secure PKE schemes. Indistinguishability under adaptive CCA (IND-CCA2)
extends this requirement further. By allowing the use of a decryption oracle
that can decrypt any ciphertexts except the given ones, one cannot improve
the guess. The respective PKEs of the CRYSTALS-Kyber and Saber KEMs are
IND-CPA secure. Utilizing a variation of the Fujisaki-Okamoto (FO) transform,
they achieve IND-CCA2 security [15].

By re-encrypting the decrypted message and comparing the resulting cipher-
text with the one received (yielding the true decrypted message only if they
match) the IND-CCA2 schemes are protected against CCAs in theory. How-
ever, this may not hold for the implementations of the schemes. By recovering
the decrypted message during KEM execution via side-channels, the theoretical
security provided by the FO transform can be bypassed. All cryptosystems run
on physical devices that leak information through non-primary channels such as
timing [17], power consumption [16], or electromagnetic (EM) emanations [2].
No physical device free of side-channels has yet been constructed. Instead coun-
termeasures such as masking [7], shuffling [29], random delays insertion [9], etc.
are used to combat side-channel leakage.

Masking [7] attempts to eliminate the leakage by partitioning a secret variable
into two or more shares and executing all operations separately on them. Since
the shares are randomized at each execution, none of them is expected to contain
any exploitable information about the secret variable they mask. There are two
main types of masking: Boolean and arithmetic. Boolean masking uses the XOR
to combine the shares into the original secret. Arithmetic masking uses the
arithmetic addition.

Shuffling [29] is another well-known countermeasure applicable to operations
on secret variables that are not dependent on each other. It typically uses the
Fisher-Yates (FY) algorithm to create a random permutation which is then uti-
lized as the loop iterator to index the processing of the variables inside the
loop. By shuffling the order of the operations, the correlation between executed

Secret Key Recovery Attack on Masked and Shuffled Implementations 161

instructions and time can be hidden. Combined with masking, shuffling was
previously believed to provide sufficient protection against side-channel attacks.
However, in [21] an attack defeating the combined protection was shown, which
uses the bit flipping ciphertext malleability of LWE/LWR PKEs discovered
in [24]. The attack requires 61,680 power traces to extract the secret key from a
first-order masked and shuffled implementation of Saber on an ARM Cortex-M4.

A ciphertext malleability is a means of modifying the unknown message con-
tained in a given ciphertext without re-encrypting it. The work of [24] presents
two ways to accomplish this utilizing the fact that ciphertexts of ring-based
LWE/LWR PKE/KEM schemes like e.g. CRYSTALS-Kyber and Saber corre-
spond to polynomials in negacyclic polynomial rings. The first one is a method
of flipping an individual message bit by adding a fixed value to the correspond-
ing polynomial coefficient. The second one is a method of cyclically rotating the
message by rotating the ciphertext polynomials.

In a KEM, the recovery of a message encapsulated in a properly generated
ciphertext trivially leads to a recovery of the shared (session) key (because it is
derived from the message using hash functions). Furthermore, since the security
of the FO-transform can be bypassed using side-channels, a set of Chosen Cipher-
texts (CCTs) can be used to recover the long-term secret key from the decrypted
messages. A method for constructing CCTs assuming a perfect message recov-
ery was presented in [24]. In [20], an Error-Correcting Code (ECC)-based CCT
construction method was presented, which waives the requirement for a perfect
message recovery.
Our contributions: In this paper, we demonstrate a side-channel attack on a
first-order masked and shuffled implementation of Saber on an ARM Cortex-M4
which requires 4,608 power traces to extract the secret key. The key ideas behind
the 13-fold improvement over the attack of [21] are:

– A message recovery method using 0 and 255 FY indexes and rotations. Rather
than extracting the message Hamming Weight (HW) and bit flipping, as
in [21], we recover “corner” FY indexes 0 and 255, extract the corresponding
two bits of the message, and then cyclically rotate the message by modifying
the ciphertext. In this way, all message bits can be extracted.

– An incremental CCT construction method. We construct CCTs iteratively so
that CCTs based on an ECC with code distance d + 1 are a superset of the
CCTs based on an ECC with code distance d. For a given implementation,
there is an optimal code that minimizes the number of traces required for the
attack. However, the optimal code is not known in advance. The presented
CCT construction method reduces the total capture time for CCTs based on
different codes.

– A method for error-free cyclic rotation of CCTs. It has previously been dis-
cussed how to cyclically rotate a message by modifying the corresponding
ciphertext [24,35]. However, for arbitrary ciphertexts, the rotation may flip a
wrapped-around message bit. We offer a solution tailored to the specifics of
the presented CCT construction method.

162 L. Backlund et al.

To demonstrate the generality of the presented approach, we also extract the
secret key from a first-order masked and shuffled implementation of CRYSTALS-
Kyber, which has been recently selected for standardization by NIST [19]. Given
that the National Security Agency (NSA) has included CRYSTALS-Kyber in
the suite of cryptographic algorithms recommended for national security sys-
tems [1], it is important to thoroughly assess the security of CRYSTALS-Kyber
implementations in order to improve the future versions.

In this paper, we focus on the parametrizations of Saber and CRYSTALS-
Kyber that use module rank k = 3 and target NIST security level 3. The other
security levels with k = 2 and 4 can be treated similarly.

2 Previous Work

This section describes previous work on protected implementations of Saber and
CRYSTALS-Kyber and related side-channel attacks.

2.1 Implementations

Several implementations of Saber [4,18] and CRYSTALS-Kyber [6,12,13] pro-
tected by masking have been presented.

Masking brings a significant execution time overhead to software implementa-
tions. Linear operations are repeated twice. Non-linear operations require even
more complex solutions that decrease the speed substantially. For Saber, the
most lightweight implementation, presented by Van Beirendonck et al. [4], has
an overhead factor of 2.5 on an ARM Cortex-M4 compared to an unmasked
one. This implementation employs first-order masking of the Saber CCA-secure
decapsulation algorithm. It is based on masked logical shifting on arithmetic
shares and a masked binomial sampler.

The vulnerabilities discovered in the early version of the Saber implemen-
tation of Van Beirendonck et al. [4] helped improve the subsequently released
versions of the implementation, as well as the higher-order masked implementa-
tion of Saber by Kundu et al. [18]. Some procedures with the bit-dependent
leakage (easiest to exploit) were patched by re-implementing them to accu-
mulate the message bits into a packed byte array in memory. This results in
a byte-dependent leakage, making side-channel analysis more difficult. Addi-
tionally, in the implementation [18], the procedure performing arithmetic to
Boolean conversion of shares was re-implemented to work in a bitsliced fashion.
Stronger mitigation techniques against side-channel attacks, such as those pre-
sented in [3,14,28], were proposed to strengthen side-channel resistance of the
NIST PQC candidates.

To the best of our knowledge, the implementation of Saber presented in [21] is
the only available masked and shuffled implementation of a module-LWE/LWR
PKE/KEM scheme.

Secret Key Recovery Attack on Masked and Shuffled Implementations 163

2.2 Attacks

Since both CRYSTALS-Kyber and Saber are based on module lattices, they
have many similarities. Side-channel attacks on one are typically applicable to
the other [24,26,30].

In [24], the authors discussed how to attack a masked implementation of
LWE/LWR PKE/KEMs in two steps by recovering each share separately using
templates created on traces with known masks, and then combining the shares.

The first attack on a first-order masked implementation of Saber KEM was
presented in [20]. It recovers a message from a single trace with a high prob-
ability using a neural network trained at the profiling stage. The key idea is
to recover messages in one step, without explicitly extracting random masks at
each execution. It was also shown in [20] how to recover the secret key from
24 power traces captured during the execution of the decryption procedure for
CCTs. The ciphertexts are constructed using an ECC-based method which can
correct some errors in the recovered messages. In [23] the attack was extended
to the implementation of Saber from [18].

An attack applying the method of [20] to a first-order masked implementa-
tion of CRYSTALS-Kyber was presented in [30], targeting the message encoding
vulnerability found in [27]. In [22], it was demonstrated that the method of [20]
can also be used to break a higher-order masked implementation of Saber. It was
shown that the neural networks are capable to recover more than two shares and
then XOR them to get the message. In [5], side-channel attacks on two implemen-
tations of masked polynomial comparison were demonstrated on CRYSTALS-
Kyber.

The closest related work to the presented one is [21] where a side-channel
attack on a first-order masked and shuffled implementation of Saber is described.
The attack requires 257×N power traces to recover a message m and 24×257×N
power traces to recover the secret key, where N is the number of repetitions of
the same measurement. In [21], N = 10 is used. Similarly to the method of [20],
a neural network trained at the profiling stage is used to recover each bit of m.
However, since the bits are shuffled, their order is unknown. Thus, only the HW
of m, HW (m), can be deduced in this way. To find the values of individual bits
of m, 256 additional traces are captured for a ciphertext created using the bit
flipping method of [24]. This ciphertext encrypts a message m′, in which one bit
of m is flipped, and recovering HW (m′) allows determining the flipped bit of m
by comparing HW (m) and HW (m′).

3 Saber and CRYSTALS-Kyber Algorithms

In this section, we briefly describe CRYSTALS-Kyber and Saber algorithms. For
more details, the reader is referred to [25] and [11].

Figure 1 shows pseudocode of the CPA-PKE algorithms, upon which the
respective KEMs are built. The pseudocode is applicable to both CRYSTALS-
Kyber and Saber [31]. CPA-PKE contains three algorithms: key genera-

164 L. Backlund et al.

Fig. 1. Pseudocode of CPA-PKE algorithms.

tion, CPA-PKE.KeyGen; encryption, CPA-PKE.Enc; and decryption, CPA-
PKE.Dec.

The ring Rq in CPA-PKE is the quotient ring Zq[X]/(X256 +1), where Zq is
the ring of integers modulo a positive integer q. Sampling v from a distribution χi

over a set S is denoted by v ← χi(S) while v ← χi(S; r) denotes deterministic
sampling from χi using seed r. The uniform distribution is denoted by U and
�v�p stands for �v�p = �v · (p/q)�, where �x� means rounding of x to the closest
integer with ties being rounded up.

The encode function in CPA-PKE encodes a message to a polynomial by
letting each coefficient of the polynomial be equal to the corresponding bit of
the message times �p3/2�. Similarly, the decode function decodes a polynomial to
a message by letting each bit of the message be determined by the corresponding
polynomial coefficient. If the coefficient is closer to �q/2� than to 0, the message
bit is 1. Otherwise, the message bit is 0.

The PKEs of both CRYSTALS-Kyber and Saber can be seen as different
parametrizations of CPA-PKE, with the security levels of the schemes mainly
differ by the rank k of the module that they use. For the parametrizations
considered in this paper, both CRYSTALS-Kyber and Saber use k = 3.

The most significant difference between CRYSTALS-Kyber and Saber is in
the type of distributions χi that the schemes use and in rounding parameters
p1, p2, p3. In CRYSTALS-Kyber, all distributions χi are centered binomial dis-
tributions with p1 = 1, p2 > 1 and p3 > 1. In Saber, only χ1 is a centered
binomial distribution while samples from the other distributions χi are always
equal to 0. This is compensated by using larger rounding, with p1 = p2 greater
than 1 and p3 significantly greater than 1.

4 Attack Scenario

We assume a scenario in which the attacker has physical access to the target
device to acquire side-channel information and has the ability to query the device

Secret Key Recovery Attack on Masked and Shuffled Implementations 165

with chosen ciphertexts. In addition, we assume that the keys (pk, sk) are static
and that the attacker has a fully controllable profiling device similar to the device
under attack.

Fig. 2. Modified C code of the masked poly tomsg() procedure of masked CRYSTALS-
Kyber with shuffling added.

5 Experimental Setup

This section presents the equipment which we use for trace acquisition and the
target implementations of Saber and CRYSTALS-Kyber.

5.1 Equipment

For trace acquisition, we use a ChipWhisperer-Pro, a CW308 UFO board, and
two CW308T-STM32F4 target boards, one for profiling, DP , and another for the
attack, DA. To verify that the negative effect of intra-device/board variations,
which would be expected in a real attack scenario, is not preventing the presented
attack, we selected DP and DA as a pair of boards acquired from different chip
vendors with different ages and wear-out.

Similar equipment is used in the attack on Saber from [21] except that in [21]
ChipWhisperer-Lite is used instead of ChipWhisperer-Pro. ChipWhisperer-Pro
has a larger buffer size of 98K samples compared to that of ChipWhisperer-Lite,
which is 24K samples.

The target board CW308T-STM32F4 contains an ARM Cortex-M4 with an
STM32F415-RGT6 chip. It runs at 24 MHz. The traces are sampled at 24 MHz
for CRYSTALS-Kyber and 72 MHz for Saber. The choice of sampling rate is
limited by the size of ChipWhisperer-Pro buffer1. For CRYSTALS-Kyber, all
points of interest do not fit into the buffer if a higher sampling rate is used.

1 ChipWhisperer-Pro has an option of streaming, however, streaming can be used only
at a maximum of 10 MHz sampling frequency.

166 L. Backlund et al.

5.2 Target Implementations

To the best of our knowledge, there are no publicly available implementations of
CRYSTALS-Kyber protected by both masking and shuffling. The experiments
presented in this paper are performed using the C implementation which we
built on top of the first-order masked implementations of CRYSTALS-Kyber
from [13].

The attack point of the presented side-channel attack is the procedure
masked poly tomsg(). It is called by CPA-PKE.Dec() during the decode opera-
tion at line 2 in Fig. 1. The modified code of masked poly tomsg(), with shuffling
added, is shown in Fig. 2. The lines marked in blue and red indicate vulnerabili-
ties exploited in the presented attack. The blue lines of FY Gen() are where the
index is being loaded and stored in its randomized position during generation.
The blue line in masked poly tomsg() shows where the random index is loaded
for use in the inner loop. In red color are the lines representing the process-
ing of indexed message bits. The side-channel leakage from this part is used for
recovering the message.

For Saber, we used the same C implementation as in the attack of [21]
upgraded to the latest release. The attack point is the procedure poly A2A().

The C implementations of Saber and CRYSTALS-Kyber were compiled using
arm-none-eabi-gcc with the optimization level -O3 (recommended default).

Table 1. The MLP layer widths.

Width Saber CRYSTALS-Kyber

NY NM NY NM

Input 215 35 820 225

Layer 1 512 256 1024 512

Layer 2 256 128 512 128

Layer 3 128 64 256 64

Output 256 2 256 2

6 Profiling Stage

Our profiling strategy is similar to [21] except that we train two types of neural
networks: one for FY index recovery, NFY , and another for message bit recovery,
Nm. We use the same three dense layer Multilayer Perceptron (MLP) architec-
ture as in [21], but with different layer widths (see Table 1). For CRYSTALS-
Kyber two separate models Nm are trained for the first and the last bits of a
byte (because their leakages differ).

We train on 15K traces for Saber and 50K traces for CRYSTALS-Kyber,
captured from the profiling device DP . As in [21], we cut-and-join traces across

Secret Key Recovery Attack on Masked and Shuffled Implementations 167

bits to increase the training set without having to capture more traces. Unlike
in [21], we do not use traces captured from the device under attack DA for
profiling. In addition, we use standardization of the traces. The implementation
of the index generation function FY Gen() which we use is not constant-time
due to entropy sourcing in the random number generator. Thus, the traces have
to be synchronized before training. We perform this by cutting the segments
corresponding to each FY index at points identified through correlation.

For FY index recovery, the input to the neural networks is a concatenation
of two intervals covering the FY index generation and the FY index usage in
the inner loop. Each of those intervals covers the target index and both of its
neighbors. For message bit recovery, the input trace to neural networks is an
interval covering the processing of both shares for the targeted message bit.

Fig. 3. An average trace representing the generation of the FY indexes 64–72 (top)
and its t-test (bottom) for Saber (a) and CRYSTALS-Kyber (b), respectively. Both
t-tests are performed on 5K traces with known FY indexes.

To find where the FY indexes are generated, we apply Welch’s t-test [33]
to a set of 5K traces T with known FY indexes captured from DP during the
execution of CPA-PKE.Dec(). For each i ∈ {0, 1, . . . , 255}, we partition T into
two subsets such as:

T 0 = {Tj ∈ T | HW (FYj [i]) < 4},
T 1 = {Tj ∈ T | HW (FYj [i]) > 4},

where HW (FYj [i]) is the HW of the FY index of ith processed bit of message
mj in trace Tj , for all j ∈ {0, 1, . . . , |T |}. The Welch’s t-test determines if there
is a noticeable difference in the means of T 0 and T 1.

168 L. Backlund et al.

Fig. 4. An average trace representing the usage of FY indexes during message process-
ing (top) and its t-test (bottom) for Saber (a) and CRYSTALS-Kyber (b), respectively.
Both t-tests are performed on 5K traces with known FY indexes.

Figure 3 show the t-test results for the index generation part of Saber (a) and
CRYSTALS-Kyber (b), respectively. We can see that in both cases the leakage
is of similar type. This is because Saber and CRYSTALS-Kyber use the same
implementation of FY Gen(). The higher t-test values for Saber are probably due
to oversampling. With more samples taken per clock cycle, the probability to
catch a point with the strongest leakage is higher.

In a similar way, one can locate a segment of traces corresponding to the
usage of FY indexes in the inner loop, see Fig. 4 for Saber (a) and CRYSTALS-
Kyber (b), respectively. We can see that the leakage here is considerably weaker
than the one in the index generation part. Still, making use of both segments
helps maximize the prediction accuracy of the neural networks.

The message bits are recovered from the same trace segments where FY
indexes are used. Saber and CRYSTALS-Kyber implementations have different
types of leakage during message processing. In Saber, the leakage is stronger
because poly A2A() procedure decodes the message bits one-by-one and stores
them in a memory in an unpacked fashion. Thus, the leakage patterns of all
message bits are similar. Contrary, in CRYSTALS-Kyber, the message bits are
accumulated into a packed byte array in memory during their processing by
masked poly tomsg() procedure. As a result, within each byte, the bit accumu-
lated first leaks stronger than the bit accumulated last. This makes message
recovery more difficult. The order in which the bits are set is randomized for
each execution due to shuffling. This makes incremental recovery with regard to
previously set bits unfeasible.

For CRYSTALS-Kyber, we train NFY and Nm models on standardized trace
segments covering FY index generation and usage, and message processing,

Secret Key Recovery Attack on Masked and Shuffled Implementations 169

respectively, without any modifications. For Saber, however, we trim some redun-
dant input data points which we identify using the stuck-at-0 fault method
of [32] and retrain to improve the accuracy. We remove all points whose assign-
ment to 0 decreases the prediction accuracy of NFY and Nm less than 0.5% and
0.01%, respectively. We also applied trimming to CRYSTALS-Kyber, but the
attack results got worse. A higher effect of trimming on Saber is likely due to
oversampling.

For each case, NFY and Nm, we train ten models. At the attack stage, these
models are used in an ensemble. For the index prediction, the output of the
ensemble is determined by multiplying the probabilities of score vectors of all
ten models NFY . For the message bit prediction, the output of the ensemble
is obtained by majority voting, considering only the votes by models Nm with
prediction confidence higher than 0.9.

Due to the 3-stage pipelining of ARM Cortex M4, the first and last processed
indexes and message bits look different. Therefore, additional model ensembles
are trained specifically for each of them.

Fig. 5. Distribution of power consumption during the generation of FY indexes 0, 64,
128 and 255 at the trace point with the maximum absolute t-test value in Saber. Index
0 to the left, 64 and 128 in the middle, and 255 to the right.

7 Attack Stage

7.1 Message Recovery Using 0 and 255 FY Indexes and Rotation

If it was possible to recover all FY indexes from power traces during their gener-
ation or inner loop usage, one could recover a message by first extracting its bits
in the unknown order, then recovering the FY indexes of the bits, and finally
re-ordering the bits accordingly. However, we found that neural networks can-
not classify all possible FY indexes with a high probability from a single power
trace. This is due to the high overlap in the distributions of power consumption
of some indexes, see Fig. 5. Bytes that have the same HW are almost completely
overlapping. Only the “corner” indexes 0 and 255, whose HW is unique, can

170 L. Backlund et al.

be distinguished with a high probability because their distributions are nearly
disjoint. For this reason, we use the following method for message recovery.

To recover the message m encrypted in a given ciphertext c, we capture a
power trace during the decryption of c, recover FY indexes 0 and 255 using
neural networks for index recovery, NFY , and extract the corresponding two
bits of m using neural networks for message recovery, Nm. Then, we modify c to
c′ which encrypts m rotated by two bit positions, capture a power trace during
the decryption of c′, and extract the next two message bits with FY indexes 0
and 255. This way, by rotating m by two bit positions 128 times, all message
bits are extracted.

7.2 Cyclic Rotation of CCTs

It is known [24,35] that a message m of a ring-based LWE/LWR can be cyclically
rotated by manipulating a ciphertext c encrypting it. However, an aspect not
covered earlier is that the output values computed by decode(−x) and decode(x)
can be different, where x is defined in line 1 of CPA-PKE.Dec() in Fig. 1. The
function decode(x) essentially decodes a bit of the message by deciding if x is
closer to 0 or q/2, but for neither CRYSTALS-Kyber nor Saber this function
is completely symmetric, meaning that x is decoded to 0 because its value is
closer to 0, while −x = q − x is decoded to 1 as if its value is closer to q/2. This
introduces a source of potential errors during negacyclic rotation of the CCTs.
We fix this by rotating CCTs in a way adopted to their specific construction.

A ciphertext c = (u, v) consists of polynomials in the ring Zq[X]/(X256 + 1).
Cyclic rotation of the message m encrypted in a properly generated c is per-
formed by multiplying both u and v by indeterminant X, corresponding to a
negacyclic rotation of the polynomial coefficients. For the CCTs, we instead only
multiply u by X. In general, this is not equivalent to a cyclic rotation of m. How-
ever, in this way we can control which coefficient of the secret key s affects a
given bit of m in the CCTs. Since we construct the CCTs so that a specific
message bit m[i] is determined by a specific key coefficient s[i], this is sufficient
for the full secret key recovery. Care should be taken to keep track of whether
s[i] has wrapped around modulo n or not. In the former case, the message bit is
determined by −s[i] and not s[i].

7.3 Incremental CCT Construction Method

In the ECC-based CCT construction method of [20], the secret key coefficients
are mapped into the codewords of an [8, 4, 4] extended Hamming code2. We found
that the total number of traces required for secret key recovery can be reduced
if more powerful codes are used. We use [l, w, d] linear codes with code distances
up to 6 for Saber and up to 8 for CRYSTALS-Kyber. We designed incremental

2 In the notation [l, w, d], l is the codeword length, w is the dataword length, and d is
the code distance. A code distance is the minimum Hamming distance between any
two codewords of the code.

Secret Key Recovery Attack on Masked and Shuffled Implementations 171

mapping tables in which CCTs based on an ECC with code distance d + 1 are a
superset of the CCTs based on an ECC with distance d. Our experimental results
show that, for a given implementation, there is an optimal code minimizing the
number of attack traces. However, the optimal code is not known in advance.
The incremental CCT construction method helps reduce the total capture time
for CCTs based on different codes. An attacker can capture as many CCT traces
as the access time to the device under attack allows, and then try different codes.

Table 2. CCT construction table for Saber.

Order of codeword bits
for a code with
distance d

CCT constants Mapping of message bits
into secret key coefficients

6 5 4 3 (k1, k0) –4 –3 –2 –1 0 1 2 3 4

0 0 6 5 (240,10) 1 1 0 0 1 1 0 0 1

1 4 (377,10) 0 0 1 0 1 1 0 1 0

2 6 0 3 (613,4) 1 0 1 0 1 1 0 1 0

3 1 2 0 (373,15) 1 0 1 1 0 1 0 0 1

4 9 5 2 (913,15) 1 1 1 0 0 0 0 1 1

5 10 7 6 (12,3) 1 0 0 0 0 0 0 0 0

6 2 3 1 (793,10) 1 0 0 1 1 0 0 1 1

7 (755,4) 0 1 0 0 1 1 0 0 1

8 8 (917,10) 0 1 1 1 1 0 0 0 0

9 5 (806,10) 0 0 0 1 1 0 0 1 1

10 7 4 (456,15) 1 1 0 1 0 1 0 1 0

11 3 1 4 (68,4) 1 1 1 1 1 0 0 0 0

The presented method uses 3l ciphertexts to recover the secret key coefficients
s[256r+i], for all i ∈ {0, 1, . . . , 255} and r ∈ {0, 1, 2}. The coefficient s[256r+i]
is derived from the codeword (mrl[i], . . . , m(r+1)l−1[i]) of an [l, w, d] linear code
using the mapping defined by Tables 2 and 3 for Saber and CRYSTALS-Kyber,
respectively.

For all j ∈ {0, 1, . . . , l − 1}, the message mrl+j is recovered from the CCT
crl+j = (u, v) which is constructed as

u =

⎧
⎨

⎩

(k1, 0, 0) ∈ R3×1
q for r = 0

(0, k1, 0) ∈ R3×1
q for r = 1

(0, 0, k1) ∈ R3×1
q for r = 2

and

v =
{

k0
∑255

i=0 Xi for Saber
k0 + (k2

∑254
i=1 Xi) + k0X

255 for CRYSTALS-Kyber

for all r ∈ {0, 1, 2}, where the constants (k2, k1, k0) are defined in Tables 2 and 3.

172 L. Backlund et al.

Table 3. CCT construction table for CRYSTALS-Kyber.

Order of codeword bits
for a code with distance d

CCT
constants

Mapping of message bits
into secret key coefficients

8 7 6 5 4 3 2 (k2, k1, k0) –2 –1 0 1 2

0 0 1 8 5 0 (1,153,8) 0 1 1 1 0

1 9 7 0 6 4 1 (0,77,5) 1 1 1 0 0

2 4 0 5 4 1 0 (2,335,15) 1 1 0 1 1

3 6 10 1 1 5 (3,432,3) 0 1 0 0 1

4 1 2 2 3 2 3 (3,606,3) 1 0 0 1 0

5 7 5 9 (1,864,8) 0 1 1 1 0

6 2 3 4 2 (0,915,5) 0 0 1 1 1

7 3 4 (0,898,5) 0 0 1 1 1

8 10 8 3 0 3 2 (3,432,8) 1 0 1 0 1

9 11 (0,105,5) 1 1 1 0 0

10 8 6 7 (3,632,3) 1 0 0 1 0

11 (3,386,3) 0 1 0 0 1

12 12 (3,606,8) 1 0 1 0 1

13 5 9 6 (2,321,15) 1 1 0 1 1

The non-empty entries in the first multi-column of Tables 2 and 3 define
indexes j of the CCTs crl+j , i.e. the order of codeword bits. Each column contains
l non-empty entries, where l is the codeword length. For example, in Table 3, for
d = 2, the codeword length is 4, so there are 4 non-empty entries, j ∈ {1, 0, 3, 2},
in the column.

For each non-empty entry j, the constants (k2, k1, k0) listed in the second
column at the same line as j define u and v parts of crl+j . In the previ-
ous example, CCTs c4r, c4r+1, c4r+2, c4r+3, are constructed using the constants
(2, 335, 15), (0, 77, 5), (3, 432, 8), (3, 606, 3), respectively.

Similarly, the message bits listed in the third multi-column at the same line
as non-empty entries j compose a codeword that determines the secret key coef-
ficient. In the previous example, if the codeword is (0, 1, 1, 0), then the secret
key coefficient is 0. If the codeword is (1, 0, 1, 0), then the key coefficient is 2.

As in [20], we select the constants k1 and k0 so that each secret key coefficient
is uniquely mapped into some codeword composed from the l decrypted message
bits. For CRYSTALS-Kyber, in which the leakage of different bits within a byte is
non-uniform and affected by previously set bits, we also use one more constant,
k2, which allows us to minimize the HW of messages. This helps reduce the
interference of previously accumulated bits on the success rate of the bit recovery.

We found that, in the masked implementation of CRYSTALS-Kyber
from [13], the decoding does not perfectly match the decoding in the unpro-

Secret Key Recovery Attack on Masked and Shuffled Implementations 173

tected reference implementation [25]. To handle this, we select the constants
(k2, k1, k0) for CRYSTALS-Kyber so that decode(x ± ε) = decode(x) for small
ε, results in equivalent ciphertexts in both implementations.

8 Experimental Results

For both Saber and CRYSTALS-Kyber, we performed 10 secret key recovery
attacks on the implementation programmed into the device DA for 10 differ-
ent secret keys selected at random. For Saber, we used CCTs based on ECCs
with code distances 4 and 6. For CRYSTALS-Kyber, we used ECCs with code
distances 2, 4, 6 and 8. So, in total, we carried out 60 secret key recovery attacks.

Table 4. Success rate of CRYSTALS-Kyber secret key recovery using an ECC with
code distance d and N repetitions for 10 attacks.

N d # Incorrect key coeff. (mean) Success Attack time (the worst case)

Undetected Detected rate Capture Message rec. Enum.

30 8 0 0 100% 19.5 h 20.1 h 0 s

6 0 0.2 100% 15.3 h 15.8 h 0.01 s

4 0 2.1 100% 9.8 h 10.0 h 0.08 s

2 17.3 0.9 0% 5.6 h 5.8 h 0.02 s

20 8 0 0 100% 13.0 h 13.4 h 0 s

6 0 0.4 100% 10.2 h 10.5 h 0.01 s

4 0.1 5.4 90% 6.5 h 6.7 h 15 s

2 29.1 3.0 0% 3.7 h 3.9 h 0.4 s

10 8 0 1.8 100% 6.5 h 6.7 h 0.05 s

6 0.1 9.1 90% 5.1 h 5.3 h 96 min

4 0.4 27.8 0% 3.3 h 3.4 h –

2 73.1 15.8 0% 1.9 h 2.0 h –

The results are summarized in Tables 4 and 5. The most important part
is column 3; if there are undetected incorrect key coefficients, the attack fails.
We count incorrect coefficients by comparing the recovered key to the true key,
excluding the detected incorrect coefficient.

Next in importance is column 4; if the number of detected incorrect key
coefficients is small, the coefficients can be recovered by enumerating all their
possible values. With i detected incorrect coefficients, at most 9i and 5i enumer-
ations are required to find the true secret key for Saber and CRYSTALS-Kyber,
respectively. If the number of detected incorrect coefficients is large, one can
instead consider the LWE problem given by these coefficients only. Such an
LWE problem has a smaller dimension than the original problem, potentially

174 L. Backlund et al.

Table 5. Success rate of Saber secret key recovery using an ECC with code distance
d and N repetitions for 10 attacks.

N d # Incorrect key coeff. (mean) Success Attack time (the worst case)

Undetected Detected rate Capture Message rec. Enum.

3 6 0 0 100% 4.0 h 26.0 min 0 s

4 0 0.3 100% 2.7 h 17.3 min 0.01 s

2 6 0 1.7 100% 3.3 h 17.3 min 10.5 s

4 0.4 5.7 80% 2.2 h 11.6 min 12min

1 6 0 4.9 100% 3.0 h 8.7 min 2min

4 0.7 13.2 0% 2.0 h 5.8 min –

allowing typical lattice-based attacks against LWE [10] to succeed in recovering
the remaining coefficients.

Column 5 states the success rate, i.e. the percentage of experiments in which
the secret key was successfully extracted.

The last three columns show the time required for capturing traces for CCTs,
recovering the corresponding messages, and enumerating the detected incorrect
key coefficients (in the worst-case) using a simple single-threaded implemen-
tation on a PC with a processor running at 2.2 GHz. The sign “–” means that
enumeration is not feasible. Note that only the CCT trace capture requires phys-
ical access to the device under attack DA. Other computations are done offline,
so their time is not as crucial.

Table 6. Number of traces required for successful key recovery in all 10 attacks.

Algorithm Code distance

8 6 4 2

Saber 4608 9216

CRYSTALS-Kyber 48384 38016 59136 –

Finally, in Table 6 we compare the number of traces required for secret key
recovery using different ECCs. For both Saber and CRYSTALS-Kyber, the ECC
with code distance 6 seems the best choice. We believe that two main reasons
for the higher number of attack traces required for CRYSTALS-Kyber are:

– Non-uniform leakage of masked message bits in CRYSTALS-Kyber imple-
mentation [13].

– The traces were sampled at a third of the rate used to acquire Saber traces.

Secret Key Recovery Attack on Masked and Shuffled Implementations 175

9 Countermeasures

The following techniques could make the presented attack more difficult:

1. Protecting the shuffling index generation procedure using masking or other
countermeasures.

2. Bitslicing the implementations.

The following techniques would make the presented attack impossible:

1. Prevent decryption of sparse or low-entropy ciphertexts by introducing a
check for minimal entropy as suggested by [34].

2. Prevent decryption of chosen ciphertexts by using e.g. Encrypt-then-Sign
method suggested by [3].

3. Re-generating the keys (pk, sk) for each new shared key establishment.

10 Conclusion

We demonstrated a secret key recovery attack on first-order masked and shuffled
implementations of Saber and CRYSTALS-Kyber by deep learning power SCA.

Note that the ChipWhisperer platform is essentially noise free. Therefore, the
conditions in the experiments can be considered the best-case. Yet, the presented
attack shows a 13-fold improvement over previous work (also performed on the
ChipWhisperer platform), requires no profiling traces from the target device,
and is more robust to inter-device/board variations.

The new message recovery method might have significance beyond the scope
of the presented work. The idea of classifying all-0 and all-1 binary tuples
only (instead of all possible) and rotating the message, may be useful in side-
channel attacks on other software and hardware implementations of ring-based
LWE/LWR PKE/KEMs.

We are currently working on developing deep learning-resistant countermea-
sures for LWE/LWR PKE/KEM implementations.

Our code is available at https://github.com/lbacklund/SCA-Masked-
Shuffled-Saber-Kyber.

Acknowledgments. This work was supported in part by the Swedish Civil Contin-
gencies Agency (Grant No. 2020-11632) and the Swedish Research Council (Grant No.
2018-04482).

References

1. Announcing the commercial national security algorithm suite 2.0. National Security
Agency, U.S Department of Defense (2022). https://media.defense.gov/2022/Sep/
07/2003071834/-1/-1/0/CSA CNSA 2.0 ALGORITHMS .PDF

2. Agrawal, Dakshi, Archambeault, Bruce, Rao, Josyula R.., Rohatgi, Pankaj: The
EM side—channel(s). In: Kaliski, Burton S.., Koç, çetin K.., Paar, Christof (eds.)
CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36400-5 4

https://github.com/lbacklund/SCA-Masked-Shuffled-Saber-Kyber
https://github.com/lbacklund/SCA-Masked-Shuffled-Saber-Kyber
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/3-540-36400-5_4

176 L. Backlund et al.

3. Azouaoui, M., et al.: Post-quantum authenticated encryption against chosen-
ciphertext side-channel attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 372–
396 (2022). https://doi.org/10.46586/tches.v2022.i4.372-396

4. Beirendonck, M.V., et al.: A side-channel-resistant implementation of saber. J.
Emerg. Technol. Comput. Syst. 17(2) (2021). https://doi.org/10.1145/3429983

5. Bhasin, S., et al.: Attacking and defending masked polynomial comparison for
lattice-based cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 334–359
(2021). https://doi.org/10.46586/tches.v2021.i3.334-359

6. Bos, J.W., et al.: Masking kyber: first-and higher-order implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst 2021(4), 173–214 (2021). https://doi.org/
10.46586/tches.v2021.i4.173-214

7. Chari, Suresh, Jutla, Charanjit S.., Rao, Josyula R.., Rohatgi, Pankaj: Towards
sound approaches to counteract power-analysis attacks. In: Wiener, Michael (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 26

8. Chen, C., et al.: NTRU algorithm specifications and supporting documenta-
tion (2020). https://csrc.nist.gov/projects/postquantum-cryptography/round-3-
submissions

9. Coron, Jean-Sébastien., Kizhvatov, Ilya: An efficient method for random delay
generation in embedded software. In: Clavier, Christophe, Gaj, Kris (eds.) CHES
2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04138-9 12

10. Dachman-Soled, Dana, Ducas, Léo., Gong, Huijing, Rossi, Mélissa.: LWE with side
information: attacks and concrete security estimation. In: Micciancio, Daniele, Ris-
tenpart, Thomas (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 12

11. D’Anvers, J., et al.: Saber algorithm specifications and supporting doc-
umentation (2020). https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/
saberspecround3.pdf

12. D’Anvers, J.P., et al.: Revisiting higher-order masked comparison for lattice-
based cryptography: algorithms and bit-sliced implementations. Cryptology ePrint
Archive, 2022/110 (2022). https://eprint.iacr.org/2022/110

13. Heinz, D., et al.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint
Archive, Report 2022/058 (2022). https://eprint.iacr.org/2022/058

14. Hoffmann, C., et al.: Towards leakage-resistant post-quantum CCA-secure pub-
lic key encryption. Cryptology ePrint Archive, Report 2022/873 (2022). https://
eprint.iacr.org/2022/873

15. Hofheinz, Dennis, Hövelmanns, Kathrin, Kiltz, Eike: A modular analysis of the
Fujisaki-Okamoto transformation. In: Kalai, Yael, Reyzin, Leonid (eds.) TCC 2017.
LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70500-2 12

16. Kocher, Paul, Jaffe, Joshua, Jun, Benjamin: Differential power analysis. In: Wiener,
Michael (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

17. Kocher, Paul C..: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, Neal (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

18. Kundu, S., et al.: Higher-order masked Saber. Cryptology ePrint Archive, Report
2022/389 (2022). https://eprint.iacr.org/2022/389

https://doi.org/10.46586/tches.v2022.i4.372-396
https://doi.org/10.1145/3429983
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1007/3-540-48405-1_26
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://eprint.iacr.org/2022/110
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/873
https://eprint.iacr.org/2022/873
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://eprint.iacr.org/2022/389

Secret Key Recovery Attack on Masked and Shuffled Implementations 177

19. Moody, D.: Status Report on the Third Round of the NIST Post-Quantum Cryp-
tography Standardization Process. Nistir 8309, pp. 1–27 (2022). https://nvlpubs.
nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

20. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure saber KEM implementation. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 676–707 (2021). https://doi.org/10.46586/tches.v2021.i4.
676-707

21. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure
saber KEM by power analysis. In: Proceedings of the 5th Workshop on Attacks
and Solutions in Hardware Security, pp. 51–61. ACM (2021)

22. Ngo, K., Wang, R., Dubrova, E., Paulsrud, N.: Side-channel attacks on lattice-
based KEMs are not prevented by higher-order masking. Cryptology ePrint
Archive, Report 2022/919 (2022). https://eprint.iacr.org/2022/919

23. Paulsrud, N.: A side channel attack on a higher-order masked software implemen-
tation of saber. Master’s thesis, KTH (2022)

24. Ravi, P., et al.: On exploiting message leakage in (few) NIST PQC candidates
for practical message recovery and key recovery attacks. Crypt. ePrint Arch.,
2020/1559 (2020). https://eprint.iacr.org/2020/1559

25. Schwabe, P., et al.: CRYSTALS-Kyber algorithm specifications and sup-
porting documentation (2020). https://csrc.nist.gov/projects/postquantum-
cryptography/round-3-submissions

26. Shen, M., et al.: Find the bad apples: an efficient method for perfect key recovery
under imperfect SCA oracles - a case study of Kyber. Cryptology ePrint Archive,
Report 2022/563 (2022). https://eprint.iacr.org/2022/563

27. Sim, B.Y., et al.: Single-trace attacks on the message encoding of lattice-based
kems. Cryptology ePrint Archive, Report 2020/992 (2020). https://eprint.iacr.org/
2020/992

28. Tsai, T.T., et al.: Leakage-resilient certificate-based authenticated key exchange
protocol. IEEE Open J. Comput. Soc. 3, 137–148 (2022). https://doi.org/10.1109/
OJCS.2022.3198073

29. Veyrat-Charvillon, Nicolas, Medwed, Marcel, Kerckhof, Stéphanie., Standaert,
François-Xavier.: Shuffling against side-channel attacks: a comprehensive study
with cautionary note. In: Wang, Xiaoyun, Sako, Kazue (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 44

30. Wang, J., et al.: Practical side-channel attack on masked message encoding in
latticed-based KEM. Cryptology ePrint Archive, Report 2022/859 (2022). https://
eprint.iacr.org/2022/859

31. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on LWE/LWR-based
PKE/KEMs using amplitude-modulated EM emanations. In: International Con-
ference on Information Security and Cryptology (2022). https://eprint.iacr.org/
2022/852

32. Wang, R., Ngo, K., Dubrova, E.: Side-channel analysis of Saber KEM using
amplitude-modulated EM emanations. In: Proceedings of the 25th Euromicro Con-
ference on Digital System Design (2022). https://eprint.iacr.org/2022/807

33. Welch, B.L.: The generalization of ‘Student’s’ problem when several different pop-
ulation variances are involved. Biometrika 34(1/2), 28–35 (1947)

34. Xu, Z., et al.: Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: the case study of Kyber. Cryptology ePrint Archive, Paper
2020/912 (2020). https://doi.org/10.1109/TC.2021.3122997

35. Yajing, C., et al.: Template attack of LWE/LWR-based schemes with cyclic mes-
sage rotation. Entropy 24(10), 15 (2022). https://doi.org/10.3390/e24101489

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2021.i4.676-707
https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2020/1559
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2020/992
https://eprint.iacr.org/2020/992
https://doi.org/10.1109/OJCS.2022.3198073
https://doi.org/10.1109/OJCS.2022.3198073
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://eprint.iacr.org/2022/859
https://eprint.iacr.org/2022/859
https://eprint.iacr.org/2022/852
https://eprint.iacr.org/2022/852
https://eprint.iacr.org/2022/807
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.3390/e24101489

	Secret Key Recovery Attack on Masked and Shuffled Implementations of CRYSTALS-Kyber and Saber
	1 Introduction
	2 Previous Work
	2.1 Implementations
	2.2 Attacks

	3 Saber and CRYSTALS-Kyber Algorithms
	4 Attack Scenario
	5 Experimental Setup
	5.1 Equipment
	5.2 Target Implementations

	6 Profiling Stage
	7 Attack Stage
	7.1 Message Recovery Using 0 and 255 FY Indexes and Rotation
	7.2 Cyclic Rotation of CCTs
	7.3 Incremental CCT Construction Method

	8 Experimental Results
	9 Countermeasures
	10 Conclusion
	References

