®

Check for
updates

Smart Contract-Based E-Voting System
Using Homomorphic Encryption
and Zero-Knowledge Proof

Yuxiao Wu and Shoji Kasahara(®)
Division of Information Science, Nara Institute of Science and Technology,
Nara 6300192, Japan
{wu.yuxiao.ws9,kasahara}@is.naist. jp

Abstract. As an indispensable part of establishing modern represen-
tative democratic organizations, election is based on a voting process
on site or remotely. With the rapid development of information tech-
nology, the application of electronic voting systems in practice is signif-
icantly increasing in recent years. Consequently, whether an electronic
voting system is secure and reliable enough is the most critical factor of
the systems. Whereas, most of the existing proposals neglect to confirm
the trustworthiness of the administrator, which may impact the security
and availability of the system. For this purpose, we propose an up-to-
date electronic voting system based on smart contract using additively
homomorphic encryption and non-interactive zero-knowledge proof. In
our work, we utilize a concise zero-knowledge proof algorithm and an
inbound oracle in combination to allow voters to verify the fidelity of the
administrator. We prove the feasibility, efficiency, and scalability of our
system can satisfy a majority of application scenarios including large-
scale voting. In particular, we evaluate the time performance and cost
performance and demonstrate its merits including the low cost in many
functions and linear performance when generating zero-knowledge proof.

Keywords: Smart contract - Blockchain - E-voting - Zero-knowledge
proof + Homomorphic encryption - Oracle

1 Introduction

With the goal to minimize the expense and maximize the efficiency of executing
an election, it is becoming increasingly difficult to ignore the security, privacy
and compliance when designing electronic voting systems [11]. For this purpose,
in the area of e-voting system, there has been a recent surge in interest and
research. However, security, transparency, distributed authority, data integrity,

This research was supported in part by Japan Society for the Promotion of Science
under Grant-in-Aid for Scientific Research (A) No. 19H01103, and Grant-in-Aid for
Challenging Research (Exploratory) No. 22K19776.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. Zhou et al. (Eds.): ACNS 2023 Workshops, LNCS 13907, pp. 67-83, 2023.
https://doi.org/10.1007/978-3-031-41181-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41181-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-41181-6_4

68 Y. Wu and S. Kasahara

privacy and compliance requirements have become the main bottlenecks blocking
e-voting systems implemented on a large scale [30].

In order to counter the bottlenecks that mentioned above, a promising data
structure known as blockchain is initially introduced to e-voting systems. In
essence, blockchain is a distributed ledger that has the property of tamper-
resistance. That is, the blockchain’s database is maintained by each node on
chain rather than single node which leads to blockchain be the immutable ledger
with transactions in old blocks preserved and transactions in new blocks irre-
versibly added [19].

With regard to the e-voting systems proposed for implementation using the
blockchain technology, a series of requirements and features are summarized to
build proper schemes in [28].

1. Receipt-freeness [4]: Any evidence proving the voter’s selection for a par-
ticular candidate is not allowed to be revealed.

2. Fairness [6,9]: Every voter should have the same weight when taking part

in the voting.

Data integrity [12]: Each valid vote is recorded correctly and can’t be tam-

pered with by any part, once logged.

Privacy [33]: The anonymity of voters should be guaranteed.

Eligibility [22]: The system only accepts the registered voter’s ballot.

Reliability [8]: The system is stable and no vote is missed.

Uniqueness [24]: Double voting is not allowed.

Verifiability [16]: Voters have the right to verify whether their ballots are

tallied legitimately.

@

PN o

According to the features and requirements that mentioned above, cryptog-
raphy is considered as one of the most effective technologies that can be utilized
to e-voting systems. On one hand, in order to achieve the goal of verifying
the trustworthiness of the administrator without information disclosure, zero-
knowledge proof is one of the most widely used cryptographic primitives and
plays a key role in the field of privacy protection. On the other hand, addi-
tively homomorphic encryption has the features that only supports arithmetic
for elements of its plaintext space and provides an operation that produces the
encryption of the sum of two numbers, given only the encryptions of the num-
bers [10]. Consequently, it can be effectively applied to e-voting systems that
focuses on data confidentiality. In our work, combining these two cryptographic
technologies enables us to realize a majority of the above-mentioned require-
ments relating to information security including receipt-freeness, privacy and
verifiability. Whereas, data integrity and reliability relies on the immutability of
blockchain and fairness, eligibility and uniqueness is based on the implementa-
tion of software system by utilizing solidity and python.

The rest of this paper is organized as follows. Section 2 presents related work
and Sect. 3 introduces some fundamental technologies as preliminaries. Section 4
represents our proposed e-voting system, and Sect.5 shows the performance
evaluation of our system from the perspective of time performance and gas fee
performance. Finally, Sect. 6 concludes the paper.

E-Voting System 69

2 Related Work

The existing e-voting schemes that blockchain is applied to are classified into two
types: blockchain-based e-voting system and e-voting system using blockchain.

2.1 Blockchain-Based E-Voting System

In the blockchain-based e-voting system, the whole system is built upon the
blockchain framework. In other words, blockchain is convinced to be the infras-
tructure that sustains the system. Most of the blockchain-based e-voting sys-
tem adopt the permissioned blockchain structure instead of permissionless
blockchains such as Bitcoin and Ethereum.

In [11], the authors propose a blockchain-based e-voting system based on a
permissioned blockchain, and some of the popular blockchain frameworks are
evaluated for constructing a blockchain-based e-voting system. Sun et al. pro-
pose a simple voting protocol based on the existing Quantum Blockchain [13,25].
It satisfies the most important properties of secure voting protocols by introduc-
ing matrix and number theory to the stages of ballot commitment and ballot
tallying [24]. In addition, a blockchain-enabled large-scale e-voting system with
robustness and universal verifiability is presented in [32]. In this system, a hybrid
approach which combines the counting bloom filter and Merkle hash tree is devel-
oped in order to break the bottleneck of cost performance.

Generally speaking, this kind of e-voting systems has the merits of cost-
friendly performance and high response rate. However, a major problem with this
approach is utilizing the permissioned blockchain as the blockchain framework of
the system, leading to lower reliability for voters. In particular, most of the nodes
in the system are maintained by the administrator, making it more difficult for
voters to verify the fidelity of the administrator. This verification by voters is
one of our goals.

2.2 E-Voting System Using Blockchain

Referring to the relation between Infrastructure-as-a-service (Iaas) and Platform-
as-a-service (Paas) (two kinds of cloud service delivery models) in cloud com-
puting [5], the blockchain in this kind of e-voting system acts as the platform
rather than the infrastructure compared with that in blockchain-based e-voting
systems. For this reason, this kind of systems mainly focuses on smart contract
provided by the blockchain. Consequently, Ethereum is convinced to be one of
the most suitable blockchain frameworks for this kind of systems due to its
reliability and functionality.

The authors of [31] present a platform-independent secure and verifiable vot-
ing system combining with a variety of cryptographic techniques including Pail-
lier cryptosystem that supports the execution of a smart contract. In [18], Lyu
et al. propose a trustless e-voting system, which is deployed on Ethereum by
smart contract. The authors use linkable ring signature [7,14,15] and thresh-
old encryption without a trusted third party in their system. Except for these

70 Y. Wu and S. Kasahara

e-voting systems focusing on security and privacy by cryptography, some other
systems concentrating on the countermeasure for the low efficiency and expen-
sive cost also utilize blockchain as the platform. Based on web3 framework and
POA network, Al-Madani et al. make their system to support real-time service
without using any cryptosystem [3].

In contrast to blockchain-based e-voting systems, e-voting systems using
blockchain are commonly doubted due to the higher expense. However, this
kind of systems has great reliability because of introducing the existing famous
blockchain framework (e.g. Ethereum). For this reason, we design our system
based on the criterion that is similar to e-voting systems using blockchain.

3 Preliminaries

3.1 Smart Contract

In order to minimize contracting cost between transacting parties and to avoid
accidental exceptions or malicious actions during contract performance, Nick
Szabo suggested translating the clauses of a contract into code and embedding
them into software or hardware to make them self-execute, which is known as
smart contract [27,34].

As a program running on a blockchain, a smart contract can be correctly
executed by a network of mutually distrusting nodes without the need of an
external trusted authority. The self-executing nature of smart contracts provides
a tremendous opportunity for use in many fields that rely on data to drive
transactions [26].

Blockchains can be divided into permissioned blockchains (i.e. non-public)
and permissionless blockchains (i.e. public). Permissionless blockchain platforms
allow any user to join the network while permissioned blockchain platforms allow
only permitted users to join [34]. Different blockchain platforms provide different
support for smart contracts. Some (e.g. Bitcoin) may only allow users to use a
simple scripting language to develop smart contracts with simple logic; while
some platforms, such as Ethereum, support much more advanced programming
languages for writing smart contracts [23].

3.2 Homomorphic Encryption

An encryption is homomorphic if from Enc(a) and Enc(b), it is possible to com-
pute Enc(f(a, b)) where Enc(x) represents the encryption of x and f is +, x, or
@ (exclusive OR) and without using the private key for decryption [29].
Homomorphic encryption can be categorized into three types of schemes with
respect to the number of allowed operations on the encrypted data; (1) Par-
tially Homomorphic Encryption (PHE), which allows only one type of operation
with an unlimited number of times (i.e., no bound on the number of usages),
(2) Somewhat Homomorphic Encryption (SWHE), which allows some types of
operations a limited number of times, and. (3) Fully Homomorphic Encryption

E-Voting System 71

(FHE), which allows an unlimited number of operations for an unlimited number
of times [1].

Paillier encryption is classified as Partially Homomorphic Encryption. In
detail, it is an additively homomorphic encryption scheme based on composite
degree residuosity classes. Paillier encryption is provably secure under appropri-
ate assumptions in the standard model [20]. Simultaneously, Paillier encryption
is proved to have the additive homomorphism so that it can be appropriately
applied to e-voting systems because of the massive utilizing of add operation in
these systems.

3.3 Zero-Knowledge Proof

Roughly speaking, the zero-knowledge proof realizes a scenario that a prover
who wants to convince a verifier that some statement is true without revealing
any other information.

As the applications, privacy-preserving systems use zero-knowledge proofs to
prove the correctness of outputs without revealing sensitive information about
inputs. In online voting systems, voters prove that they correctly encrypted their
vote, without revealing any information about the selected candidate [2].

The authors of [17] propose zksk, a well-documented Python library for defin-
ing and computing sigma protocols (the most popular class of zero-knowledge
proofs). In zksk, smaller proofs can be converted into building blocks that then
can be combined into bigger proofs. In addition, compared with the large size of
key and proof of traditional zero-knowledge proofs such as zk-SNARKs, zksk is
more practical in some areas due to its smaller data size as low as several bytes.

4 Proposed System

This section describes the proposed smart contract-based e-voting system using
partially homomorphic encryption and non-interactive zero-knowledge proof.
Furthermore, oracle is another crucial technology applied to this system so that
data privacy in the Ethereum-based smart contract is feasible to be guaranteed
against external homomorphism attackers and internal untrusted entities.

4.1 System Components

The roles of users that participate the voting system are classified into three
types: administrator, voter, and observer. The administrator and voter are indis-
pensable for the voting system and have their own nodes, whereas the observer
is optional and is not compulsively required to have a node in Ethereum. More-
over, the voter who tries to verify the zero-knowledge proofs associated with
other voters is also regarded as an observer. The definitions of the three roles
are as follows.

72

Y. Wu and S. Kasahara

Administrator: The entity which is set up to manage and maintain the
whole process of voting. The administrator’s work includes managing voter
registration, initializing voter identity, creating smart contracts for the elec-
tion, verifying ballots from voters, generating zero-knowledge proof, trans-
mitting processed data to the oracle node, and announcing the voting result.
Voter: The entity which is eligible to act as a participant in the democratic
election process. Valid ballots from voters are the essential component that
results in formal voting. It is feasible for voters to register in the system
using their identifiers such as Ethereum addresses, request the public key
published in the blockchain, cast ballots in the smart contract, and verify the
corresponding zero-knowledge proof which reveals their own identities.
Observer: The entity which is an extra part of the system roles to assure
the feasibility and availability of the system. Observers are required to verify
the zero-knowledge proofs of each voter and publish the verification result
individually so that the public can decide whether the result published by
the administrator is trusted or not.

We adopt smart contracts for implementing our voting system. The system

has three types of smart contracts: Contract Voting, Contract VID, and Con-
tract ZKP. The Contract Voting provides the functions of casting the ballot and
processing the original voting data. Contract VID is used for publishing all voter
IDs. Contract ZKP provides the functions of zero-knowledge proof for observers
and voters. The details of the smart contracts are as follows.

1.

Contract Voting: The Contract Voting manages the voters’ identifiers and
announces the administrator’s public key to the eligible voters. The voters’
identifiers are registered in the address array type named “Alist”. The admin-
istrator verifies the eligibility of a voter by checking his/her identifier in
Alist. If the administrator authenticates the voter as an eligible voter, the
administrator announces his/her public key to the voter with a function of
“announce_PK”. When the voter casts a ballot, the administrator verifies
his/her voting data with the function of “verify ballot”.

. Contract VID: The Contract VID manages the identifiers of the voters

whose ballots are verified to be valid and publishes them without revealing
voters’ privacy. All voters’ identifiers are stored in a string array type called
“VID_list”. At the stage of result announcing, any voter and observer can call
the function named “return_VID” to acquire all voters’ identifiers.
Contract ZKP: The Contract ZKP manages the zero-knowledge proofs
according to ballots that have been verified to be valid and allows the voter
to retrieve his/her corresponding proof and verification key. A parameter in
the type of string of “ZKP” is utilized to request zero-knowledge proof data
downloaded from the server via oracle. When a voter wants to search the cor-
responding zero-knowledge proof, he/she can get the result with a function
known as “search_ZKP” as long as the valid address is provided.

The data format of a vote is the encoding of its ballot. Due to the application

of partially homomorphic encryption in this system, the form of voting data is

E-Voting System 73

designed to be compatible with it. After generating his/her voting data of which
detail will be described in the following part, each voter encrypts the voting data
with the public key of the administrator using Paillier encryption.

Let M and N denote the number of candidates and that of voters, respec-
tively. We define the following variables for encoding.

— We define Voted_ballot(j) (j € {1,...,N}) as voter j’s selection among can-
didates. If voter j votes for candidate i € {1,..., M}, Voted_ballot(j) is set
to

Voted_ballot(j) = (10%)""*.

For example, consider candidates A and B are indexed with 1 and 2, respec-
tively. If voter j votes for candidate A (resp. B), Voted_ballot(j) is set to 1
(resp. 100,000,000). Here, we set the interval of 10® for balancing the data
size and the scalability.

— Voter_address(j) is the voter j’s address in the blockchain network. For exam-
ple, in Ethereum, if voter j’s address is 0xeC2804Dd9B992C10396b5A 176106
923d984D90e, this value is substituted to Voter_address(j).

— Each voter has his/her own unique voter ID which is generated by the admin-
istrator at the voter registration stage. Let Voter_ID(j) denote the ID of voter
j. The administrator randomly generates a number from 1 to 99,999,999 for
each voter who passed the identity verification and distributes it to the corre-
sponding voter privately. Consider the case of 100,000,000 voter’s participa-
tion. Assuming the extreme situation that all of them vote for A, the resulting
sum of the Voted_ballot is 100,000,000. Under this condition, we are unable
to distinguish the situations that whether there is one voter voting for B or
there are 100,000,000 voters voting for A except for additional verification.
In order to avoid these matters, we set the maximum capacity of voters to
be 99,999,999 and correspondingly make sure that all of voter’s ID are in the
range from 1 to 99,999,999. Each voter knows his/her own voter ID, and the
administrator can check the mapping relation between the voter’s address
and voter ID.

— At voting, each voter generates his/her own voting data. We define Vot-
ing_data(j) as the voting data of voter j, which is given by

Voting_data(j) =
Voted_ballot(j) + Voter_address(j) + Voter ID(j).

Each voter calculates his/her Voting_data, encrypts the Voting_data as the
ballot and sends it to the Contract Voting for voting.

The voting data processing for the administrator is classified into three task
types. The first task type is retrieving the voting data array and address array
from Contract Voting, then the administrator will rebuild these two arrays and
generate an aggregated list consisting of the voter ID, voting data, and zero-
knowledge proof. The second task type is verifying the validity of each ballot
and generating the zero-knowledge proof for the voters whose ballots are verified

74 Y. Wu and S. Kasahara

to be valid. Last but not least, the list containing information processed in the
former two steps is uploaded to a web page in json type deployed in our server
built up for the oracle node to achieve data.

‘ Ethereum

N4

1‘ A
ZKP
Smart Valid
Ballot (\: contract | | ballots
ZKP
Oracle L
Registration I " |
voter Administrator

Fig. 1. Overview of the System.

4.2 System Model

Figure 1 illustrates the overview of this system. The procedures included in our
system are (1) voter registration, (2) system initialization, (3) contract creation,
(4) voting, (5) ballot verification, (6) ballot tallying and result announcing, (7)
zero-knowledge proof verification, (8) trustworthiness verification. The functions
of each procedure are as follows.

1. Voter registration: The registration is held by the administrator and aims
to sign up the eligible users and distribute the voter IDs. In detail, the admin-
istrator can authenticate the voter identity in two methods in accordance with
the authentication site: on-site authentication and online authentication. In
on-site authentication, the administrator directly authenticate the valid iden-
tity certificate of participants face to face. As soon as authentication finished,
the administrator informs the corresponding voter ID to the voter. In the

E-Voting System 75

other case, with the help of technologies including blockchain and encryption,
the system assures that the voter’s identity is authenticated and the voter ID
is distributed in a private channel which is independent of the blockchain.

. System initialization: The administrator processes the information
received in voter registration and transforms it into arrays that can be used
in the following procedures. On the one hand, the administrator creates an
“Alist” containing all voters’ addresses and uploads it to contract Voting.
On the other hand, the administrator generates a mapping list called “Mlist”
that maps the voter’s address to the voter ID according to voter registration,
and saves it privately and locally.

. Contract creation: In this step, the smart contracts mentioned in Subsect.
4.1 are instantiated and deployed to Ethereum. Except for the instantiation
and deployment, the administrator collects the addresses of these contracts
from Ethereum and publishes them to voters.

. Voting: Voting is the interactive process between contract Voting and voters,
and is considered as a core operation in this system. In advance, voters are
required to calculate their voting data in plaintext. Then, without the partic-
ipation of the administrator, the voter calls the function “announce PK” to
obtain the administrator’s public key based on Paillier encryption. Further-
more, voters encrypt the voting data and upload them to contract Voting.

. Ballot verification: Ballot verification is comprised of two stages: verifica-
tion by contract and verification by the administrator. When contract Vot-
ing receives the encrypted voting data, it automatically verifies whether the
address that the data come from is registered and whether there is any voter
who casts the ballot more than one time. The ballots that do not satisfy the
two conditions are discarded. The ballots that are not discarded in the first
stage are then verified by the administrator for the correctness of the orig-
inal voting data. The administrator decrypts the voting data in ciphertext
and judges the decrypted voting data using “Mlist”. Ballots satisfying the
conditions in both two stages are judged as valid.

. Ballot tallying and result announcing: When the process of voting ends,
the administrator collects all valid ballots and adds their voting data in cipher-
text together to calculate Mgy, which is given by

Mgym = Z Voting_data(y),
JEN

where N, is the index set of the voters whose ballots are judged as valid.
Then, the administrator decrypts msy,.,m and gains the result which can rep-
resent the voting result by the following formula

Result =
Msum — Z {Voter_address(j) + Voter_ID(j)} .
JEN

Then, the administrator conducts vote counting and announces the winner
on the official platform.

76

Y. Wu and S. Kasahara

Zero-knowledge proof verification: In this system, we apply a non-
interactive zero-knowledge proof proposal called “zksk” [17] as the method of
zero-knowledge proof. The proof is generated just after the ballot is verified as
valid at both the two stages. Here, each voter’s ID is kept secret. The detailed
operations of the prover (the administrator) is illustrated in Algorithm 1.

Algorithm 1. Generating Zero-knowledge Proof (operations on the prover’s
side).

Input: group(G,g), voters’ identifiers VID, random values n, r, k
Output: proof 7, verification key y

1:

© P> T

secret = VID
y = secret X g

: stmt = (y,n X g)

pre_com = None
com=r

: chal = H(y || pre_com || com)

resp = k + secret x chal
m = (pre_com, chal, resp)

: return m, y

When the zero-knowledge proof has been generated according to the above
algorithm, the administrator uploads it to contract ZKP which is mapped
to the voter’s address. The voter or any observer can access the proof with
the specific address through the calling of contract ZKP. Then, they conduct
Algorithm 2 to verify the proof.

Algorithm 2. Verifying Zero-knowledge Proof (operations on the verifier’s side).

Input: group(G,g), proof 7, verification key y
Output: proving result True/False

1:
: new_chal = H(y || pre_com || com)
: if new_chal == chal then

new_com = resp X g + (—chal) x y

return True
else
return False

: end if

If a voter verifies the proof associated with him/her successfully, he/she can
trust that his/her ballot is tallied correctly. On the other hand, an observer
can verify the proof of any address to check whether there is any extra ballot
falsified by the administrator.

Trustworthiness verification: The procedure of trustworthiness verifica-
tion is executed to verify the fidelity of the administrator from a different

E-Voting System 77

aspect with zero-knowledge proof verification. The observer utilizes m gy, in
procedure 6 and does reverse operations to check whether the administrator
revised the result. The verification process is shown in Algorithm 3.

Algorithm 3. Trustworthiness Verification.

Input: voting result Result, the sum of voting data msum, public key (n1, g1), voters’
addresses Voter_address, voters’ identifiers Voter_ID
Output: verification result True/False

1 m = Result +3_, - {Voter_address(j) + Voter_ID(j)}
2: A7, Msym == @g1"" X "' mod ni?

3: 37,8, Meum +8 X N2 ==g™ x r™

4: Condition 1: 3 s, (Msum + $ X n1? mod a") ==

5: Condition 2: 3 s s.t. Conditionl, "’i/ %jf"lz enN
6: if Condition 1 and Condition 2 are True then

7: return True

8: else

9: return False

10: end if

4.3 System Features

Based on the system components and system model, a slice of features are clar-
ified. In our work, one of the most popular permissionless blockchains known as
Ethereum is applied as the blockchain framework of the system so that reliability
and robustness of the system is ensured by the stability of Ethereum and smart
contract themselves.

As mentioned in Subsect. 4.2, we utilize a succinct zero-knowledge proof
known as “zksk”. In comparison with other non-interactive zero-knowledge
proofs (e.g. zk-SNARK), the size of zksk’s proving key and verification key is
smaller and can be recorded in a parameter in string type. Thus, zksk is firmly
convinced to be extremely compatible with this system rather than many other
non-interactive zero-knowledge proofs due to the increasing cost according to
data size when using oracle. Consequently, the application of zksk confirms the
verifiability ensuring the voter’s right to learn that his/her ballot has been cor-
rectly tallied.

The voter’s privacy is assured by utilizing Paillier encryption, which is also
known as an additively homomorphic encryption algorithm. The correctness of
the formula that used to check whether the administrator revises the result is
based on the additively homomorphism of Paillier cryptosystem.

In addition, receipt-freeness, fairness, data integrity, and uniqueness are
ensured by the system structure which has been introduced in Subsect. 4.2.
In detail, receipt-freeness and fairness are decided by the procedures includ-
ing voter registration, voting, and ballot verification whereas data integrity and

78 Y. Wu and S. Kasahara

uniqueness are based on the verification process executed in ballot verification
procedure.

5 Performance Evaluation

5.1 Experiment Environment

As explained in Subsect. 4.3, we apply Ethereum to the development of the
proposed system, which is a permissionless blockchain as the blockchain infras-
tructure. Due to the cost saving, we utilize a local Ethereum blockchain known
as Ganache to simulate transactions on Ethereum.

In our work, we implement the system in Python and Solidity. The func-
tions described in Subsect. 4.1 are written in solidity. The remaining functions
including zero-knowledge generation, server command, the second stage of ballot
verification are realized by Python.

In order to enhance the connection between on-chain environment and off-
chain environment and to upload zero-knowledge proof to contract ZKP, we
select Provable [21] as the oracle in our system. With the merit of low cost and
high response speed, Provable is feasible when applied in our system. In Ganache
experiment environment, we set up a Ethereum bridge that allows Provable to
be utilized to the testnet.

For evaluating the performance of the system, we run voter client, admin-
istrator client, and ganache client in the PC with Intel Pentium 4415U CPU,
NVIDIA GeForce 940MX GPU, and ADATA DDR4 2666 12G RAM.

5.2 Execution Time Performance

In this subsection, we investigate the component-wise execution-time perfor-
mance of the proposed voting system in order to figure out the time consumption
of the whole system and which function takes over most of the time.

The functions measured in this experiment are: loading ZKP, loading VID,
generating ZKP, processing data on administrator side, voting (successful), vot-
ing (double voting), voting (not in Alist), encrypting data, and decrypting data.
Table 1 illustrates the execution time performance of each function under the
condition of one voter’s participation.

In Tablel, loading ZKP takes over most of the time, which exceeds 50%
of the whole executing time. Following loading ZKP, the execution times of
loading VID and generating key are around 2s. The execution time of voting
in case of a valid ballot is over 1s, while the execution times of voting in cases
of double voting and not-in-Alist are smaller than that of valid voting. The
reason for this result is that loading operation in smart contract needs to send
VIDs and zero-knowledge proofs from the off-chain environment to the on-chain
environment using oracle. Therefore, it takes a lot of time for data exchange
among different environments. Meanwhile, generating keys and voting also take
more time than other operations due to the complicated cryptographic algorithm

E-Voting System

Table 1. Execution time performance.

Operation Time [s]
Generate Key 2.016
Encrypt data 0.054
Decrypt data 0.105
Vote (successful) 1.312
Vote (double voting) 0.516
Vote (not in Alist) 0.797
Process Data on Admin Side | 0.787
Generate ZKP 0.003
Load VID 2.224
Load ZKP 9.226

79

in them. According to the analysis, we have two conclusions. First of all, the
whole execution time when casting per ballot is about 1.438s to 2.243 s, which
is better than a majority of existing systems that have been investigated on.
What’s more, the operations executed by smart contract are the main reasons

that result in low efficiency.

1.4

—4— Generating ZKP

T T

100 200 300 400 500
number of voters

Fig. 2. Generating Zero-knowledge Proof.

Generating zero-knowledge proof is regarded as the most core part of this
system. Figure2 demonstrates the total execution time for generating zero-
knowledge proof in cases of the number of voters participating the system equal
to 1, 100, 200, 300, 400 and 500. With up to 500 voters’ participation, our sys-
tem has the ability to support zero-knowledge generating within 1.5s, which

80 Y. Wu and S. Kasahara

is fast enough for a large-scale election at the present stage. Meanwhile, this
experiment proves that the proposed voting system exhibits good scalability
performance since the time for generating zero-knowledge proof is proportional
to the number of voters.

5.3 Gas Fee

In this subsection, we investigate how much gas fee of Ethereum is needed for the
proposed voting system. We measure gas fee of the following functions: deploying
contract ZKP, deploying contract VID, announcing public key, verifying ballot,
achieving address list, achieving data list, returning VID, oracle operation, and
receiving ZKP. Table 2 shows the above-mentioned functions’ gas fees.

Table 2. Gas Fee Performance.

Operation Gas Fee (gas)
Deploy voting.sol 151305
Deploy VID.sol 375005
Deploy ZKP.sol 2043210
Announce Public Key | 0

Verify Ballot 2796389

Achieve Address List |0
Achieve Data List 0

Return VID 1382626
Utilize Oracle 1623253
Receive ZKP 278617

We observe in Table2 that operations including announcing public key,
achieving address list, and achieving data list are free of charge. The functions
designed such that those are executed without revision by marking them with
“view” in the definition statements of the functions when programming lead to
this result. For this reason, plenty of gas fee is saved. The execution of verify-
ing ballot consumes almost 0.007 Ether of gas fee, which is spent more than
other operations. The utilizing of multiply iterations is the cause resulting in
the excessive consumption of gas fee when executing the operation of verifying
ballot.

Adding all gas fees in Table 2 yields the total cost of the operations under the
condition of one voter’s participation equal to about 0.027 Ether. From another
perspective, by employing qualitative modes of enquiry, we attempt to illuminate
that the functions regarding contract deployment and data comparison take over
a majority of expense of this system. The strategy on cost saving of the system
can be established based on these functions.

E-Voting System 81
6 Conclusion

In this paper, we proposed a smart contract-based e-voting system, which can
satisfy most of the requirements, especially verifiability. Through the experi-
ments on the execution-time performance and gas consumption, we showed the
feasibility, efficiency, and scalability of our system, that can satisfy a majority
of application scenarios including large-scale voting.

In future work, we consider the following aspects.

— We have developed a system that combines multitudinous state-of-the-art
techniques to make sure the data integrity and reliability, proving its perfor-
mance based on qualitative evaluation. However, there is increasing concern
that our system is not so stable as our evaluation because of the partial
execution of centralized operations in the system. In particular, some of the
voter’s privacy is possibly disclosed if the administrator has the malicious
intention in these operations. According to these factors, we shall focus on
how to establish a more decentralized system and to take smart contract as
the replacement of the administrator in more functions.

— Through the analysis of the execution-time performance and gas fee, we found
that several functions can be modified for building a more cost-saving and
efficient system. For this purpose, not only in python, but also in solidity, we
shall apply some new strategies to the functions. In one case, as we mentioned,
the operation of loading ZKP takes over 50% of the whole execution time,
which affects the efficiency of the system. Therefore, our strategy for enhanc-
ing the execution time from this perspective is to change the oracle that has
a better response performance. Consequently, designing and implementing
these strategies are another core points in our future work.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. 51(4), 1-35 (2018).
https://doi.org/10.1145/3214303

2. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J., et al.: Electing a uni-
versity president using open-audit voting: analysis of real-world use of Helios.
EVT/WOTE 9(10) (2009)

3. Al-madani, A.M., Gaikwad, A.T., Mahale, V., Ahmed, Z.A.: Decentralized E-
voting system based on smart contract by using blockchain technology. In: 2020
International Conference on Smart Innovations in Design, Environment, Manage-
ment, Planning and Computing (ICSIDEMPC), pp. 176-180 (2020). https://doi.
org/10.1109/ICSIDEMPC49020.2020.9299581

4. Ali, S.T., Murray, J.: An overview of end-to-end verifiable voting systems. In: Real-
World Electronic Voting, pp. 189-234 (2016)

5. Almorsy, M., Grundy, J., Miiller, I.: An analysis of the cloud computing security
problem (2016). https://doi.org/10.48550/ARXIV.1609.01107, https://arxiv.org/
abs/1609.01107

https://doi.org/10.1145/3214303
https://doi.org/10.1109/ICSIDEMPC49020.2020.9299581
https://doi.org/10.1109/ICSIDEMPC49020.2020.9299581
https://doi.org/10.48550/ARXIV.1609.01107
https://arxiv.org/abs/1609.01107
https://arxiv.org/abs/1609.01107

82

Ne]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Y. Wu and S. Kasahara

. Anane, R., Freeland, R., Theodoropoulos, G.: e-voting requirements and implemen-
tation. In: The 9th IEEE International Conference on E-Commerce Technology and
The 4th IEEE International Conference on Enterprise Computing, E-Commerce
and E-Services (CEC-EEE 2007), pp. 382-392 (2007). https://doi.org/10.1109/
CEC-EEE.2007.42

. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: ID-based ring signature scheme
secure in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K.,
Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1-16.
Springer, Heidelberg (2006). https://doi.org/10.1007/11908739_1

. Bokslag, W., de Vries, M.: Evaluating e-voting: theory and practice. CoRR
abs/1602.02509 (2016). https://arxiv.org/abs/1602.02509

. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale

elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.

244-251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_66

Hardy, S., et al.: Private federated learning on vertically partitioned data via entity

resolution and additively homomorphic encryption. CoRR abs/1711.10677 (2017).

https://arxiv.org/abs/1711.10677

Hjalmarsson, F.8., Hreiéarsson, G.K., Hamdaqa, M., Hjdlmtysson, G.: Blockchain-

based e-voting system. In: 2018 IEEE 11th International Conference on Cloud

Computing (CLOUD), pp. 983-986 (2018). https://doi.org/10.1109/CLOUD.2018.

00151

Keshk, A.E., Abdul-Kader, H.M.: Development of remotely secure E-voting sys-

tem. In: 2007 ITI 5th International Conference on Information and Commu-

nications Technology, pp. 235-243 (2007). https://doi.org/10.1109/ITICT.2007.

4475655

Kiktenko, E.O.; et al.: Quantum-secured blockchain. Quantum Sci. Tech-

nol. 3(3), 035004 (2018). https://doi.org/10.1088,/2058-9565/aabctb,

https://dx.doi.org/10.1088/2058-9565/aabc6b

Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-

ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP

2004. LNCS, vol. 3108, pp. 325-335. Springer, Heidelberg (2004). https://doi.org/

10.1007/978-3-540-27800-9-28

Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes.

In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614-623. Springer,

Heidelberg (2005). https://doi.org/10.1007/11424826_65

Liu, Y., Wang, Q.: An E-voting protocol based on blockchain. Cryptology ePrint

Archive, Paper 2017/1043 (2017). https://eprint.iacr.org/2017/1043

Lueks, W., Kulynych, B., Fasquelle, J., Bail-Collet, S.L., Troncoso, C.: zksk: a

library for composable zero-knowledge proofs. In: Proceedings of the 18th ACM

Workshop on Privacy in the Electronic Society (WPES@CCS), pp. 50-54 (2019)

Lyu, J., Jiang, Z.L., Wang, X., Nong, Z., Au, M.H., Fang, J.: A secure decentralized

trustless E-voting system based on smart contract. In: 2019 18th IEEE Interna-

tional Conference on Trust, Security and Privacy in Computing and Communica-
tions/13th IEEE International Conference on Big Data Science and Engineering

(TrustCom/BigDataSE), pp. 570-577 (2019). https://doi.org/10.1109/TrustCom/

BigDataSE.2019.00082

Pahlajani, S., Kshirsagar, A., Pachghare, V.: Survey on private blockchain consen-

sus algorithms. In: 2019 1st International Conference on Innovations in Informa-

tion and Communication Technology (ICIICT), pp. 1-6 (2019). https://doi.org/
10.1109/ICIICT1.2019.8741353

https://doi.org/10.1109/CEC-EEE.2007.42
https://doi.org/10.1109/CEC-EEE.2007.42
https://doi.org/10.1007/11908739_1
https://arxiv.org/abs/1602.02509
https://doi.org/10.1007/3-540-57220-1_66
https://arxiv.org/abs/1711.10677
https://doi.org/10.1109/CLOUD.2018.00151
https://doi.org/10.1109/CLOUD.2018.00151
https://doi.org/10.1109/ITICT.2007.4475655
https://doi.org/10.1109/ITICT.2007.4475655
https://doi.org/10.1088/2058-9565/aabc6b
https://dx.doi.org/10.1088/2058-9565/aabc6b
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/11424826_65
https://eprint.iacr.org/2017/1043
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00082
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00082
https://doi.org/10.1109/ICIICT1.2019.8741353
https://doi.org/10.1109/ICIICT1.2019.8741353

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

E-Voting System 83

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-x_16

Provable: Provable documentation. https://docs.provable.xyz/

Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prét 4 voter: a voter-
verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662—673 (2009).
https://doi.org/10.1109/TIFS.2009.2033233

Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for distributed
ledger technology. Cryptology ePrint Archive, Paper 2016/1156 (2016). https://
eprint.iacr.org/2016/1156

Sun, X., Wang, Q., Kulicki, P., Sopek, M.: A simple voting protocol on quantum
blockchain. Int. J. Theor. Phys. 58(1), 275-281 (2019)

Sun, X., Wang, Q., Kulicki, P., Zhao, X.: Quantum-enhanced logic-based
blockchain I: quantum honest-success byzantine agreement and qulogicoin (2018).
https://doi.org/10.48550/ ARXIV.1805.06768, https://arxiv.org/abs/1805.06768
Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc. (2015)
Szabo, N.: Formalizing and securing relationships on public networks. First Monday
(1997)

Taa, R., Tanrtover, O.0: A systematic review of challenges and opportunities
of blockchain for E-voting. Symmetry 12(8) (2020). https://doi.org/10.3390/
sym12081328, https://www.mdpi.com/2073-8994/12/8 /1328

Tebaa, M., Hajji, S.E., Ghazi, A.E.: Homomorphic encryption method applied to
cloud computing. In: 2012 National Days of Network Security and Systems, pp.
86-89 (2012). https://doi.org/10.1109/INS2.2012.6249248

Vivek, S., Yashank, R., Prashanth, Y., Yashas, N., Namratha, M.: E-voting systems
using blockchain: an exploratory literature survey. In: 2020 Second International
Conference on Inventive Research in Computing Applications (ICIRCA), pp. 890—
895 (2020). https://doi.org/10.1109/ICIRCA48905.2020.9183185

Yu, B., Liu, J.K., Sakzad, A., Nepal, S., Steinfeld, R., Rimba, P., Au, M.H.:
Platform-independent secure blockchain-based voting system. In: Chen, L., Man-
ulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 369-386. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_20

Zhang, S., Wang, L., Xiong, H.: Chaintegrity: blockchain-enabled large-scale E-
voting system with robustness and universal verifiability. Int. J. Inf. Secur. 19(3),
323-341 (2020)

Zhang, W., et al.: A privacy-preserving voting protocol on blockchain. In: 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 401-408
(2018). DOL: https://doi.org/10.1109/CLOUD.2018.00057

Zou, W.; et al.: Smart contract development: challenges and opportunities. IEEE
Trans. Softw. Eng. 47(10), 2084-2106 (2021). https://doi.org/10.1109/TSE.2019.
2942301

https://doi.org/10.1007/3-540-48910-x_16
https://docs.provable.xyz/
https://doi.org/10.1109/TIFS.2009.2033233
https://eprint.iacr.org/2016/1156
https://eprint.iacr.org/2016/1156
https://doi.org/10.48550/ARXIV.1805.06768
https://arxiv.org/abs/1805.06768
https://doi.org/10.3390/sym12081328
https://doi.org/10.3390/sym12081328
https://www.mdpi.com/2073-8994/12/8/1328
https://doi.org/10.1109/JNS2.2012.6249248
https://doi.org/10.1109/ICIRCA48905.2020.9183185
https://doi.org/10.1007/978-3-319-99136-8_20
https://doi.org/10.1109/CLOUD.2018.00057
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1109/TSE.2019.2942301

	Smart Contract-Based E-Voting System Using Homomorphic Encryption and Zero-Knowledge Proof
	1 Introduction
	2 Related Work
	2.1 Blockchain-Based E-Voting System
	2.2 E-Voting System Using Blockchain

	3 Preliminaries
	3.1 Smart Contract
	3.2 Homomorphic Encryption
	3.3 Zero-Knowledge Proof

	4 Proposed System
	4.1 System Components
	4.2 System Model
	4.3 System Features

	5 Performance Evaluation
	5.1 Experiment Environment
	5.2 Execution Time Performance
	5.3 Gas Fee

	6 Conclusion
	References

